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S1. The ”spinterface” mechanism for the CISS effect

For the sake of clarity and having the present paper self-contained, we briefly outline here

the spinterface mechanism for the CISS effect. The reader can find a mre complete and

detailed description in Ref. 1.

The starting point is the understanding that if the energy levels in the molecule (or in

the electrode) are somehow spin-dependent (e.g. via Zeeman splitting), then naturally the

energetics of the different spin-species would be different, leading directly to spin-selectivity

(namely different transport properties for the different spins). An immediate possible cause

for such Zeeman splitting is the simple fact that as current is passed through a helical

molecule, a solenoid magnetic field is generated inside the molecule, which interacts with the

electron spins. However, simple evaluation of the relevant field strengh (using the classical
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relation between field and current in a solenoid, Bsol = µ0ntI where µ0 is the permiability, nt

is the solenoid turn density and I the current) shows that the currents in molecular junctions

are way too small (some 5-7 orders of magnitude) to generate the required Zeeman splitting

that would lead to the spin-selectivity observed in experiments. Therefore, it is clear that a

different mechanism is required to explain the observations.

The spinterface mechanism relies on several basic assumption. First, that the surface

states of the metallic electrode are characterized by finite orbital angular momentum. This

can be the angular momentum of the frontier orbitals of the atoms connected to the molecule

(if the electrode states are localized and hence similar to the single-atom states), or they can

be delocalized surface states. In either case, they are characterized by some finite orbital

angular momentum ~L.

Second, we assume that since angular momentum of charged particles carries with it a

magnetic moment, then the surface states would also be affected by the solenoid field ~Bsol.

Since the generated field is in the z-direction, the energy associated with this interaction is

µ~B · ~L = α0 cos(θ)I, where α0 is a constant (in units of energy/current) which takes into

account the fundamental constants and the magnitude of the orbital angular momentum |L|.

cos θ is the tilt angle between the angular momentum and the molecular (z) axis.

However, this is not enough, because as pointed out above, the solenoid field is very

small. Here comes the third assumption; if there is a spin-imbalance in the molecule (namely

a difference in the density of spin-up and spin-down electrons, up and down referring to the

directions parallel and anti-parallel to the molecular axis), then this generates an additional

effective field (the spin-torque field) which is felt by the surface angular momentum. This

assumption relies on the well-known consept of spin-transfer torque, namely the fact that as

electrodes cross an interface the total angular momentum must be conserved. Therefore, an

additional effective field of the form Bstα1∆ns is felt by the surface angular momentm.

The combined action of these two fields, eff = Bsol + Bst works to stabilize the surface

angular momentum at a finite tilt angle θM . The solenoid field is very small, but breaks the
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symmetry and determines the direction (parallel or anti-parallel to the molecular axis), while

the spin-torque field Bst is much larger - but is spin-symmetric. Therefore, in the absence

of a solenoid field (e.g. in a non-helical molecule) the average tilt angle will be θM = π/2,

meaning that on average the surface orbital magnetization vanishes, i.e.〈~L〉 = 0. Only due

to the solenoid field a direction is fixed which allows for 〈~L〉 6= 0. This requires finite current,

reflecting the non-equilibrium nature of te CISS effect.

The final assumption is that in the electrode there is finite spin-orbit coupling, of the

form αA~L · ~S (where ~S is the spin of the electrons in the electrode states). Therefore, if

there is finite angular momentum, this leads to a difference in the energy of the different

spin-species in the electrode, which translates to a spin-dependent chemical potential. This

spin-dependent chemical potential leads to different transport properties of the different spin

species, and hence to spin-filtering.

We point out that an essentially similar effect can be obtained if the interface interaction is

not between the orbital angular momentum of the surface states and the combined solenoid-

spin imbalance field in the molecule, but between the spins of the surface electrons and the

effective solenoid-spin imbalance field in the molecule. The surface electron spins naturally

interact with the solenoid field via a Hamiltonian term of the form ~S ·Bsol. The interaction

between the surface electron spins and the spin-imbalance in the molecule comes from spin-

exchange couplingof the form J ~S · ~s. Applying a (semi-classical) mean-field approximation

to this kind of interaction would lead to exactly the same dynamics (and equations for the

effective spin-dependent chemical potential) as described in Ref. 1.

S2. The CISS effect for small SOC in the electrodes

The theory presented in ref.2 suggests that the CISS effect is due to the interplay between

the spin-orbit coupling (SOC),αA, in the electrodes in the spin-transfer torque between the

electrode and the molecule, parametrized by an energy scale α1. This description of the
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CISS requires that there is some SOC in the electrode, but indeed it must not be very large

- a small SOC coupling can be compensated by a larger α1. This is important, since the

CISS effect has been measured also with electrodes with much smaller SOC than those of

Au (e.g. Ag, Al or Ni).

To demonstrate this, in Fig. 1(top panel) below we have repeated the calculation pre-

sented in Ref.2 (single molecular level, weak coupling limit), namely the CISS polarization

as a function of voltage, performing it for different values of SOC, αA = 100, 31, 10, 3.1 meV

(all of them smaller than the SOC of AU, estimated at 0.5-1 eV). The top panel shows

this calculation for α1 = 10meV, the same value used in Ref.2 Even for these values, an

appreciable polarization can be obtained (∼ 5− 8 % at 0.5V).

However, if α1 is increased to 100meV (bottom panel), substantial polarization can be

achieved even for small SOC; the inset shows the polarization at V=0.5V as a function of

αA, showing polarization of ∼ 5% even for αA = 3 meV, two orders of magnitude smaller

than the value for Au.

S3. Details for the theoretical calculation

Hamiltonian and Green’s functions

The poly-CG double-strand DNA is described by a standard tight-binding single-particle

Hamiltonian,

HDNA =
∑
j,σ

∑
s=1,2

εj,s|jsσ〉〈jsσ|

+
∑
j,s,σ

(
αsj,j+1|nsσ〉〈j + 1, sσ|+ h.c.

)
+
∑
j,σ

(βj|j, 1, σ〉〈j, 2, σ|+ h.c.) , (1)

where j are the position index, s = 1, 2 are the two strands of the DNA and σ the carrier

spin. εj,s are the onsite energies, αsj,j+1 are the intra-strand couplings and βj the inter-strand
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Figure 1: Top panel: Polarization P as a function of voltage for different values of the SOC,
αA = 100, 31, 10, 3.1 meV, with α1 = 10 meV (all other parameters same as in Ref.2 Bottom
panel: same, for α1 = 100 meV. Inset: polarization at V=0.5V as a function of αA.
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couplings. For numerical values we use the parametrization of Refs.3–6 The electrodes are

described by simple (wide-band) self-energies1,7

Σr,a
L = ∓iΓ

∑
jLσ

|jLσ〉〈jLσ| ,Σr,a
Rs = ∓iΓ

∑
jRσ

|jRσ〉〈jRσ|δσs . (2)

where jL and (jR) are indices representing the contact sites between the molecule and the

left (metallic) electrode and right (magnetic) electrodes. Note that the magnetic electrode

only allows transfer of the majority spins (defined by the polarization of the electrode s).

To take into account e− ph interactions, we resort to the self-consistent Green’s function

calculation,8,9 which is applicable for soft phonons (i.e. with a broad spectral function).

Within this approximation, the e − ph coupling is encoded in a dephasing (retarded and

advanced) self-energy Σr,a
deph , which is local in space, and defined by the self-consistent

equation Σr,a
deph(ω) =

∑
j,s γ

2[Gr,a(ω)]js,js|js〉〈js| , where γ is the e − ph coupling strength,

[Gr,a(ω)]js,js〈js| = Gr,a(ω)|js〉 and Gr,a(ω) =
(
ω −HDNA + Σr,a

deph(ω) + Σr,a
L + Σr,a

R

)−1
are

the retarded and advanced Green’s functions (which are evaluated self-consistently along

with the dephasing self-energy).

Currents and CISS effect

Once the Green’s functions are evaluated self-consistently, the current, local density and the

polarization are evaluated using the standard Landauer formula, Js = e
h

∫
dεTs(ε) (fLσ(ε)− fRσ(ε)) ,

where Ts(ε) = Tr (Σr
LG

r
sΣ

a
RsG

a). Similarly, the local electronic density (which is needed

for the calculation of the spin-imbalance and the spin-transfer torque), given by nσs =∫
dερσs(ε) (ηLfLσ + ηRfRσ) , where ρσs(ε) = − 1

π
=Gr

σs(ε) is the electronic density of states,

and ηL/Rs =
ΓL/Rs

ΓL+ΓRs
weigh the coupling to the left and right electrodes.

The Fermi functions f(ε) =
(

1 + exp
(
ε−µ
kBT

))−1

depend on electrode (L,R) via a volt-

age bias ±V/2, and on spin σ through the splitting of the chemical potential µσ = µ +

σαA cos(θM,σ), where αA is the SOC in the metallic electrode, and θM,σ is the average an-

gle between the surface magnetization in the metallic electrode and the molecular axis.
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θM is determined self-consistently via the equation1 cos(θM,σ) = B(ξ[θM,σ]), where B(x) =

I1(x)/I0(x), where In(x) are Bessel functions of the first kind, and ξ[θM,σ] =
α0Jσ [θM,σ ]+α1∆Sσ [θM,σ ]

kBT
.

Here, Jσ(V ) = J↑,σ(V ) + J↓,σ(V ) is the total current (at a given magnetization direction σ

of the magnetic electrode), and ∆Sσ = n↑,σ(V )− n↓,σ(V ) is the spin-imbalance at the edge

site of the molecular moiety. The currents and densities depend on θM,σ through the spin-

dependent shift of the chemical potential, leading to a self-consistent solution. Once θM,σ is

determined self-consistently, the spin-dependent currents are evaluated from the expression

of the (spin-independent) current J(V ) through Jσ(V ) = J(V + σαA cos(θM,σ(V )).

S4. Length dependence of current and differential con-

ductance

The currents and differential conductance of the molecular junction as a function of voltage is

plotted in Fig. S1, for different values of chain length (ranging from 15 to 25 BPs, indicated

by going from bright to dark, see legend). Changing the length of the chain shifts the

conductance values, but does not alter the shape of the J − V curves, thus leaving the

differential conductance essentially indifferent to length. Since the polarization follows the

differential conductance, it is also basically indiferent to molecular length.

S5. A rate-equation model for the experimental data

As pointed in the main text, in order to fit the experimental data with theory, one needs

a model for transport through the junction, which can provide an expression for both the

currents and the local densities. While in principle the model presented in Sec. 1 of this

SI can be used, it requires fitting the exact DNA sequence, the γ parameter, and other

unknowns of the system. Even then, it is likely that the model will not capture the currents

correctly - because even using the DNA Hamiltonian with the parametrized energies is a
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Figure 2: Currents (a-b) and differential conductance (c-d) as a function of voltage (lof
scale), for difference molecular lengths (15-25 BPs, indicated by the legend) for γ = 0 ((a)
and (c)) and γ = 0.3 eV ((b) and (d)).

huge over-simplification of the DNA chain.

in order to overcome this problem and still obtain simple model which can be used

to analyze the experimental data, we note the following observation: although the model

Hamiltonian presented in Sec. S1 above, including the e−ph coupling parameter γ, describes

a rather complicated system, its transport properties can actually be fitted by a very simple

model of transport through only a few resonant energy levels. The reason is that although

the level broadening Γ is quite large, transport is effectively done only via a few localized

modes in the chain (a similar observation was done in,10 where this fact can be seen through

analyzing the transmission function), which are weakly coupled to the electrodes. This is the

situation where the rate-equation formalism (see, e.g., Refs. 11 and 12) is applicable. Within

the rate-equation model, transport through the system is described by a set of resonance

energies εi, and transport through these levels is characterized by an electron transfer rate

γi (in units of nA). The current through the junction is then simply given by1,11
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J(V ) =
∑
i

γi (fL(εi)− fR(εi)) , (3)

where fL/R =
(

1 + exp
(
εi±V/2
kBT

))−1

are the left and right electrodes’ Fermi distributions in

the presence of voltage bias. Similarly, the density (and from it the spin-density imbalance,

required for the CISS model), can be obtained using

n =
∑
i

1

2
γi (fL(εi) + fR(εi)) . (4)

In Fig. 3(a) we plot the J − V curves for the 25BP chain, as extracted from the detailed

formulation presented in Sec. S1 above (points), for γ = 0 (blue) and γ = 0.3 eV (black).

The solid lines are fits to a rate-equation model. For the coherent case, we find that only

one level is required to fully reconstruct the J − V curve, while three levels are required for

full reconstruction of the current for the incoherent (γ = 0.3eV) case. We point here that we

can use the rate equation formalism to simultaneously fit both the currents and the densities

(not shown), which requires typically an addition of 2-3 more levels.

In Fig. 3(b) we show the experimental bare J−V curves, extracted from Ref. 13 (markers)

and the experimental fits (solid lines). To obtain a good fit to the experimental data, the

model required at least eight resonance levels (the fit parameters are shown in the table

below). This demonstrates the complexity of the chosen molecules in Ref. 13, but allows us

to fit the CISS data remarkably well. It is important to note that the theoretical description

CISS effect and its fit to the data is completely orthogonal to the fits to the J − V curves.

Put simply, the transport parameters are obtained from the bare data (no CISS), and are

kept the same for the fits shown in Fig. 4 of the main text.
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Figure 3: (a) J − V curves obtained form the full theoretical description (points) and the
rate-equation model (solid lines), for a 25BP chain with γ = 0 (blue) and γ = 0.3 eV (black).
(b) Bare experimental J − V curves, extracted from Xie et al.13 (markers), and fits to the
rate equation model (solid lines).

Table 1: Fit parameters for the data of Xuoti et al..

26BPs # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8
εi 0.758 0.175 0.526 0.606 0.31 0.81 0.42 0. 685
γi 0.21 0.034 0.12 0.179 0.058 0.33 0.048 0.12

40 BPs # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8
εi 0.432 0.358 0.506 0.1666 0.578 0.262 0.66 0.062
γi 0.07 0.057 0.081 0.029 0.094 0.045 0.153 0.021

50 BPs # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8
εi 0.606 0.526 0.424 0.319 0.685 0.758 0.175 0.812
γi 0.179 0.12 0.048 0.058 0.129 0.217 0.034 0.33
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S6. Length-dependence: fit to experimental data of Mishra

et al.14

Indeed, the methodology we presented in the previous SI section can be applied to various

experimental data sets. We choose the data of Mishra et al. (Ref.15 since it shows apparent

length-dependent polarization, which seems to be at odds with the results shown in the

manuscript. They are not.

To see this, we follow the same procedure as in the previous section. First, we use the

average I-V curves (averaged over the magnetization directions of the magnetic electrodes)

to obtain the transport parameters for different DNA lengths. Two notes are in order here.

First, we were forced to use the average I-V curves (extracted by digitizing the figures in

Ref.15), because no data for the control experiment with no electrode magnetization was

supplied. Second, we chose here to use not the weak-coupling limit as for the data of

Zuoti et al., but rather the strong coupling limit (see1), because this model seems to fit the

experimental data much better. We find that even for the longest DNA chains, seperating

the transmission function to transmission through 6-8 independent levels was enough to

capture the I-V curves very well.

Once the transport parameters are obtained, we evaluate the currents for the two elec-

trode magnetizations independently, and most importantly keeping the same parameters α1

and αA the same for all molecular lengths.

The results are shown in Fig. 4 below. We use for all lengths αA = 0.82 eV and

α1 = 4meV. As can be seen, there is again remarkable agreement between the experi-

mental data and the theory, thus corroborating our conclusion that the CISS mechanism is

length-independent, and all the length-dependence arises from the length dependence of the

transmission and spin polarization.
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energy for charge transfer in DNA. The Journal of Physical Chemistry B 2003, 107,

2595–2601.
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