Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

Supplementary data

Figure S1: HPLC chromatogram of purified DAHK (a), SG3 (b), AKH- α R4W5^{NBD} (c), DSIP (d), AKH-LAH4^{NBD} (e), AKHK^{NBD} (f), A β_{1-16} (g). The separation was performed using a linear

Figure S2: LC-MS spectra of purified DAHK (a), SG3 (b), AKH- α R4W5^{NBD} (c), DSIP (d), AKH-LAH4^{NBD} (e), AKHK^{NBD} (f), A β_{1-16} (g). The separation was performed using a linear gradient of buffer A (Formic acid 0.1%) and buffer B (Formic acid 0.1%, ACN 90%) ranging

from 5% buffer B to 100% buffer B in 15 minutes, flow 1ml/min, and m/z detection from 0 to 2000 Da.

	Theoretical m/z	Observed m/z	Yield (%)	Purity (%)
DAHKK ^{NBD}	759.78	760.10	5.72	99.8
SG3 ^{NBD}	2055.35	2054.80	1	87.4
AKH-αR5W4 ^{NBD}	2227.55	2228.14	2	98.95
DSIP ^{NBD}	1194.18	1196.08	8	>99
AKH-LAH4 ^{NBD}	3276.04	3277.22	4.3	88.3
AKHK ^{NBD}	644.31	644.57	13.3	94.3
Αβ ₁₋₁₆	1954.05	1954.57	65.7	98.2

Table S1: Comparison between theoretical and observed m/z values of purified peptides as well as their yield and purity

Peptide	ATCUN Motif	Linker + CPP Sequence	Fluorophore (AA Position)	C-ter
			Position)	
SG3	-	-KGRLSGMNEVLSFRWL	NBD (1)	Amide
aR5W4	-	-KGRRWWRRWWR	NBD (1)	Amide
AKH-	AKH-	-KKALLALALHHLAHLALHLALALKKA	NBD (2)	Amide
LAH4				
DSIP	-	-KGWAGGDASGE	NBD (1)	Amide

Table S2: List of peptides screened for their capacity to penetrate PC12 cells: Peptides synthetized contained different CPPs previously tested in the literature, including SG3⁵⁰, and $\alpha R5W4^{39}$ or has been shown to be an effective antimicrobial peptide LAH4 (LAH5 and AKH-LAH4)⁵¹.

Figure S3: (a) Absorption spectra of $AKH-\alpha R5W4^{NBD}$ versus $AKH-LAH4^{NBD}$ at pH 2 or at pH 7.4 GndHCL 6M. (b) Absorption spectra of $AKH-\alpha R5W4^{NBD}$ versus $AKH-LAH4^{NBD}$ at pH 7.4 GndHCL 6M at 0 min vs 10 min incubation. (c) Stability of $AKH-\alpha R5W4^{NBD}$ versus $AKH-LAH4^{NBD}$ at different pH: Each peptide was incubated in solutions at either pH 2 (0.01% TFA) or pH 7.4 (100 mM HEPES) for 60 min. Conditions: $AKH-\alpha R5W4^{NBD} = AKH-LAH4^{NBD} = 4$ μM ; pH 2 was buffered using 0.01% TFA; pH 7.4 was buffered using 100 mM HEPES in the presence (a and b) or absence (c) of GndHCL 6M. Experiments are representative of 3 independent experiments.

Figure S4: Spectra depicting the quenching of AKH- $\alpha R5W4^{NBD}$ by different metal ions as plotted in Figure 3a. Conditions: AKH- $\alpha R5W4^{NBD}$: 7 μM ; Cu(II), Zn(II), Fe(III), Mn(II):5 μM ; HEPES 100 mM pH 7.4.

Figure S5: *a*)*Cu* concentration in untreated cells (Ctrl) and after 1h 1 μ M GTSM treatment measured by ICP-AES per 2 x 10⁶ PC12 cells. b) Detected Cu concentration in medium containing cell lysate after spiking Cu(II) with 1ppm (15.74 μ M) and 3ppm (47.2 μ M) Cu(II). Values are expressed as in parts per million (ppm)

Figure S6: Viability of PC12 after treatment with $AKH-\alpha R5W4^{NBD}$ or $AKH-LAH4^{NBD}$ in presence and absence of Cu(II). 5 X 10⁴ PC12 cells were incubated with the indicated concentration of peptides.

Figure S7: *AKH-\alphaR5W4*^{NBD} and *AKH-LAH4*^{NBD} imports *Cu* into PC12 cells after 1h incubation at 37°C, measured by ICP-MS. Each condition was done in duplicates, n=3 independent experiments with 2.10⁶ PC12 cells. A parametric ANOVA test was carried out with a Dunnett's Multiple Comparison Test ** p<0,001, *** p<0,0001.

Figure S8: Penetration of Cu(II)-AKH-LAH4^{NBD} into PC12 cells. Representative images at the indicated time obtained from live imaging performed on 5.10⁴ cells incubated with Cu(II)-AKH-LAH4^{NBD} = 1 μ M, at 37°C using a Leica TCS SP5 (II) confocal microscope, with an excitation wavelength at 477 nm for 30min. Time point zero is about 1 minute after incubation with the peptides. Bars = 10 μ m. Similar observations were obtained with 5 different cell cultures.

- 1	
\mathbf{n}	
u	

Conditions		Asc consumption (µM/min)	SD (+/-)
Abeta ₁₋₁₆₋ Cu(II) 0.5:1		1.51	0.13
AKH-αR5W4 ^{NBD}	DFO	FO 0.13	
	Pre-Incubation	0.33	0.03
	Co-addition	1.20	0.05
AKH-LAH4 ^{NBD}	DFO	0.06	0.06
	Pre-Incubation	0.11	0.02
	Co-addition	0.44	0.21
AKHK ^{NBD}	DFO	0.02	0.02
	Pre-Incubation	0.06	0.03
	Co-addition	1.30	0.56
Abeta ₁₋₄₂₋ C	Cu(II) 0.5:1	(II) 0.5:1 5.50	
AKH-αR5W4 ^{NBD}	Pre-Incubation	0.07	0.10
	Co-addition	0.65	0.28
AKHK-αR5W4 ^{NBD}	Pre-Incubation	0.03	0.15
	Co-addition	0.82	0.28

Figure S9: Retrieval of Cu(II) from $A\beta$ by AKH- $\alpha R5W4^{NBD}$, AKHK^{NBD} or AKH-LAH4^{NBD}, reduces ROS production. (a) Inhibition of Cu(II)- $A\beta_{1-16}$ ROS production by AKH-LAH4^{NBD}. Inhibition of Cu(II)- $A\beta_{1-42}$ ROS production by AKH- $\alpha R5W4^{NBD}$ (b), or AKHK^{NBD}(c) monitored by the absorbance at 265 nm of ascorbate. Preincubation: 10 μ M Cu(II)- $A\beta_{1-16/42}$ 0.5:1 and 5 μ M AKH- $\alpha R5W4^{NBD}$, AKHK^{NBD} or AKH-LAH4^{NBD} were incubated for 1h before addition of ascorbate followed by absorbance measurement; Co-addtion: 10 μ M Cu(II)- $A\beta_{1-16}$ 0.5:1 and 5 μ M AKH- $\alpha R5W4^{NBD}$ or AKHK^{NBD} is added together with ascorbate followed by absorbance measurement. (d) Table showing the consumption of ascorbate expressed in μ M/min. Conditions: Asc: 100 μ M, AKH- $\alpha R5W4^{NBD}$ =AKHK^{NBD}=AKHK^{NBD}=AKH-LAH4^{NBD} = Cu:5 μ M, $A\beta_{1-16}$: 10 μ M, DFO: 10 μ M; HEPES 100 mM pH 7,4. n=2 independent experiments.

	(a)AB ₁₋₁₆		(b)GSH	
	Half time (min)	Fluorescence Quench (%)	Half time (min)	Fluorescence Recovery (%)
AKH- αR5W4 ^{NBD}	10.52 ± 0.6	91.3 ± 10.1	30.9 ± 5.9	79 ± 4.3
AKHK ^{NBD}	12.39 ± 1.2	105.2 ± 5	96.4 ± 7.4	86.1 ± 12

Figure S10: (a) Kinetics of Cu(II) transfer from $A\beta_{1-16}$ to $AKH-\alpha R5W4^{NBD}$ or $AKHK^{NBD}$. Conditions: $AKH-\alpha R5W4^{NBD}$ and $AKHK^{NBD}$: $5 \mu M$; $A\beta_{1-16}$: $10 \mu M$; Cu: $5 \mu M$; DMEM 10% pH 7,4; 25°C; n=3. (b) Reduction kinetics of Cu(II) on $AKH-\alpha R5W4^{NBD}$ or $AKHK^{NBD}$ by 5 mM GSH. Conditions: $4 \mu M Cu(II)$ -AKH- CPP^{NBD} , 5 mM GSH, HEPES 100 mM pH 7.4; 37°C; n=3 independent experiments.

Figure S11: Transfer of Cu(II) from $A\beta$ to ATCUN motif prevents Cu-induced ROS production and toxicity to PC12 cells. (a) $A\beta_{1-16}$, (b) $A\beta_{1-42}$ (2 different batches). Preincubation of 5 μ M AKH-LAH4^{NBD}, AKH- α R5W4^{NBD} or AKHK^{NBD} with 10 μ M Cu(II)- $A\beta_{1-16/42}$ 0.5:1 in 10% DMEM in a test tube for 1h before addition of 500 μ M ascorbate and immediate administration on the PC12 cells. Experiments were done in triplicates, n=3. A parametric ANOVA test was carried out with a Tukey Post Test ** p<0,001, *** p<0,0001. Experiments were carried out in DMEM dilutes to 10% (10% DMEM) with salts: 0.2g/L CaCl2, 0.0001g/L Fe(NO3)3, 0.098g/L MgSO4, 0.4g/L KCl, 3.7g/L NaHCO3, 6.4g/L NaCl, 0.11g/L NaH2PO4, 4.5g/L D-Glucose.