Supporting Information

Nickel^{II}-catalyzed asymmetric photoenolization/Mannich reaction

of (2-alkylphenyl) ketones

Liangkun Yang, Wang-Yuren Li, Liuzhen Hou, Tangyu Zhan, Weidi Cao,* Xiaohua Liu and Xiaoming

Feng*1

¹Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

*E-mail: wdcao@scu.edu.cn; xmfeng@scu.edu.cn

Table of Contents

1 General information	2
2 Synthesis of the substrates	2
3 General procedures for the catalytic asymmetric reaction	15
4 Gram-scale synthesis and further transformations	24
5 Control experiments	
6 X-ray crystal structure	29
7 The analytical and spectral characterization data for the products	
8 References	
9 Copies of the NMR spectra for new compounds	
10 CD spectra of the products	

1 General information

¹H NMR spectra were recorded at 400 MHz or 600 MHz. The chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, m = multiple, br = broad), coupling constants (Hz), integration. ¹³C NMR data were collected at 100 MHz or 150 MHz with complete proton decoupling. ¹⁹F NMR spectra were collected on commercial instruments (376 MHz or 565 MHz) with complete proton decoupling. Melting points (Mp) were determined using OptiMelt automated melting point system. Enantiomeric excesses (ee) were determined by chiral HPLC analysis by using the corresponding commercial chiralpak column as stated in the experimental procedures at 25 °C, and UPC² at 35 °C with UV detector at 254 nm. Optical rotations were reported as follows: $[\alpha]^{T}_{D}$ (c: g/100 mL, in solvent). High resolution mass spectra (HRMS) analyses were recorded on a Thermo Scientific LTQ Orbitrap XL with positive ion mode and methanol were used to dissolve the sample. IR spectra were recorded on Pierkin Elmer 100 FT/IR spectrometer, and the wave numbers of the absorption peaks are given in cm⁻¹. Solvents were dried and distilled prior to use according to the standard methods. Unless noted, other commercially available reagents were used without further purification. The chiral N,N'-dioxide ligands were synthesized by the same procedure in the literature¹.

2 Synthesis of the substrates

2.1 General procedure A for the synthesis of the substrates B15-B19 and B23-B41

2.1-1 Methods for the synthesis of α-aryl-o-toluic acids

method A

The α -phenyl-*o*-toluic acid used for synthesizing the substrates **B15-B19** was commercially available, and the starting α -aryl-*o*-toluic acids used for synthesizing the substrates **B23-B27** were prepared by method **A** according to the literature² and the α -aryl-*o*-toluic acids used for synthesizing substrates **B28-B41** were prepared by method **B** according to the literature³.

Method A: The commercially available substituted *o*-bromo-benzaldehyde was dissolved in dry THF (2.0 M) under an Ar atmosphere. Phenylmagnesium bromide solution (1.5 equiv., 1.0 M in THF) was slowly added under vigorous stirring. The resultant mixture was stirred at rt until the

reaction was completed as monitored by TLC. Then, a saturated aqueous solution of NH_4Cl was added to the reaction mixture slowly, and extracted with EtOAc (3 times). The combined organic phase was dried over Na_2SO_4 and concentrated in vacuum. The residue was purified by flash column chromatography to give the corresponding alcohol as colorless oil.

 CF_3CO_2H (2.0 equiv.) was added dropwise to the alcohol (1.0 equiv.) solution in DCM (0.3 M) reaction mixture at 0 °C under Ar atmosphere. After stirred for 10 min, Et₃SiH (4.0 equiv.) was added dropwise, and the resulting mixture was stirred overnight at rt. The solvent was removed in vacuum, and the residue was purified by flash column chromatography to give the substituted diarylmethane as colorless oil.

To a solution of the substituted diarylmethane (1.0 equiv.) in THF (0.5 M) was added "BuLi (1.05 equiv.) dropwise at -78 °C. The reaction mixture was stirred at -78 °C for 1 h. Then anhydrous CO_2 was bubbled through the mixture for 30 min. The mixture was allowed to warm to rt for 30 min. The reaction was quenched with H₂O, basified with aqueous NaOH until pH value is about 12~14, and washed with Et₂O. The resulting aqueous phase was acidified with aqueous HCl until pH value is about 1~2, and extracted twice with EtOAc. The combined organic layers were washed with water and brine, then dried over Na₂SO₄ and evaporated under reduced pressure to give the crude carboxylic acid, which were used in the next step without further purification.

Method **B**: A flask was charged with $Pd(OAc)_2$ (0.01 equiv.), PPh₃ (0.02 equiv.), arylboric acid (1.5 equiv.), K₃PO₄ (4.0 equiv.). The flask was evacuated and back filled with argon, and then the 2-(bromomethyl)benzonitrile (1.0 equiv.) in toluene (0.3 M) were added. The reaction mixture was stirred at 80 °C for 9 h. When all the starting material has been consumed, the reaction mixture was quenched with water. The organic materials were extracted with Et₂O. The combined organic extracts were washed with water, and 1N NaOH solution and then with brine and dried over anhydrous MgSO₄. The solvents were removed in vacuo and the resulting crude material was subjected to flash column chromatography to afford 2-benzylbenzonitrile.

2-Benzylbenzonitrile was added to KOH (8.0 equiv.) in ethylene glycol (0.5 M) and water (1.0 mL/6.0 mmol). The solution was heated at reflux for 3 h, allowed to cool to room temperature, and made acidic to pH 2 with 5% HCl. The suspension was extracted with CHCl₃ (3×50 mL), and the extracts were washed with water and brine, dried over Na₂SO₄, and concentrated under reduced pressure to give the crude carboxylic acid, which were used in the next step without further purification.

2.1-2 General procedure for the synthesis of the substrates

(1) The substrates B15-B19 and B23-B41 were synthesized according to reference work⁴.

To an oven-dried flask equipped with a stirrer bar was added 2-benzylbenzoic acid (1.0 equiv.), 1ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (1.5 equiv.) and N, Odimethylhydroxylamine hydrochloride (1.5 equiv.). The flask was capped with a rubber septum, evacuated and refilled with argon three times. Dry dichloroethane (0.4 M) and triethylamine (1.5 equiv.) were added by syringe. After being stirred at room temperature for 6 h, water was added to

the reaction mixture, and the aqueous layer was extracted with dichloroethane (3 times), washed with water, saturated aq. NaCl and dried over MgSO₄. The filtrate was concentrated under reduced pressure. The crude amide was used for the next reaction without further purification.

To an oven-dried flask equipped with a stirrer bar was capped with a rubber septum, evacuated and refilled with argon three times. The solution of amide in dry THF (2.0 M) was added by syringe and cooled to -78 °C. The 1.0 M THF solution of Grignard reagent (1.1 equiv.) was added dropwise by syringe. After being stirred at room temperature for 5 h, a saturated aqueous solution of NH₄Cl was added to the reaction mixture, and the aqueous layer was extracted with ethyl acetate (3 times), washed with water, brine and dried over Na₂SO₄. The filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography to give (2benzylphenyl)(phenyl)methanone.

(2-benzylphenyl)(o-tolyl)methanone (B15)

81% yield, colourless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.40 – 7.37 (m, 1H), 7.35 – 7.33 (m, 1H), 7.28 – 7.25 (m, 2H), 7.23 – 7.19 (m, 4H), 7.17 – 7.16 (m, 1H), 7.14 – 7.07 (m, 4H), 4.20 (s, 2H), 2.34 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 200.6, 140.8, 140.6, 139.3, 138.5, 138.4, 131.3, 131.2, 131.0, 130.6, 130.3, 129.2, 128.3, 126.0, 125.8, 125.2, 38.9, 20.6. ESI-HRMS: calcd for C₂₁H₁₈ONa⁺ ([M + Na]⁺) = 309.1250, found 309.1247.

IR (neat): 1661, 1598, 1450, 1299, 1254, 926, 735, 699, 641 cm⁻¹.

(2-benzylphenyl)(4-methoxyphenyl)methanone (B16)

80% yield, white solid: mp: 70-73 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.73 – 7.70 (m, 2H), 7.42 – 7.33 (m, 1H), 7.30 – 7.22 (m, 3H), 7.20 – 7.13 (m, 2H), 7.13 – 7.04 (m, 3H), 6.92 – 6.75 (m, 2H), 4.02 (s, 2H), 3.85 (s, 3H). ¹³C{¹**H**} **NMR** (101 MHz, CDCl₃) δ 197.2, 163.6, 140.4, 139.6, 139.2, 132.5, 130.6, 130.5, 129.9, 129.1, 128.2, 128.1, 125.9, 125.5, 113.5, 55.5, 38.7.

ESI-HRMS: calcd for $C_{21}H_{18}O_2Na^+$ ([M + Na]⁺) = 325.1199, found 325.1198. **IR** (neat): 1655, 1597, 1257, 1150, 1028, 932, 748, 699 cm⁻¹.

(2-benzylphenyl)(3-fluorophenyl)methanone (B17)

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.35 (m, 3H), 7.34 – 7.22 (m, 4H), 7.21 – 7.10 (m, 3H), 7.10 – 7.01 (m, 3H), 4.06 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.0, 162.4 (d, *J* = 248.9 Hz), 140.2, 140.2, 139.6 (d, *J* = 6.1 Hz), 138.1, 130.9, 130.5, 129.8 (d, *J* = 7.8 Hz), 129.1, 128.5, 128.2, 126.0,125.9 (d, *J* = 2.9 Hz), 125.6, 120.0 (d, *J* = 21.7 Hz), 116.4 (d, *J* = 22.2 Hz), 38.75.

¹⁹**F**{¹**H**} **NMR** (377 MHz, CDCl₃) δ -111.87.

ESI-HRMS: calcd for $C_{20}H_{15}FONa^+$ ([M + Na]⁺) = 313.0999, found 313.0996.

IR (neat): 1665, 1586, 1481, 1439, 1267, 1210, 849, 739, 698, 642 cm⁻¹.

(2-benzylphenyl)(4-fluorophenyl)methanone (B18)

87% yield, white solid: mp: 52-55 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 – 7.66 (m, 2H), 7.48 – 7.35 (m, 1H), 7.30 – 7.24 (m, 3H), 7.17 – 7.13 (m, 2H), 7.11 – 6.99 (m, 5H), 4.05 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.76, 166.5 (d, *J* = 256.0 Hz), 140.9 (d, *J* = 27.0 Hz), 139.3, 134.7 (d, *J* = 2.9 Hz), 133.5 (d, *J* = 9.5 Hz), 131.7, 131.1, 129.9, 129.1, 129.0, 126.8, 126.4, 116.3, 116.1, 39.6.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -104.83.

ESI-HRMS: calcd for $C_{20}H_{15}FONa^+$ ([M + Na]⁺) = 313.0999, found 313.0996. **IR** (neat): 1663, 1595, 1449, 1268, 1231, 1149, 931, 853, 746, 698 cm⁻¹.

(2-benzylphenyl)(4-chlorophenyl)methanone (B19)

72% yield, white solid: mp: 74-77 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.66 – 7.57 (m, 2H), 7.43 – 7.39 (m, 1H), 7.37 – 7.32 (m, 2H), 7.31 – 7.24 (m, 3H), 7.18 – 7.11 (m, 2H), 7.11 – 7.00 (m, 3H), 4.06 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.2, 140.2, 140.1, 139.5, 138.3, 135.9, 131.4, 130.9, 130.5, 129.1, 128.6, 128.5, 128.3, 126.0, 125.7, 38.8. **ESI HPMS:** colled for C H 35 ClONa⁺ (IM + Nal⁺) = 320,0704 found 320,0701

ESI-HRMS: calcd for $C_{20}H_{15}^{35}CIONa^+$ ([M + Na]⁺) = 329.0704, found 329.0701, $C_{20}H_{15}^{37}CIONa^+$ ([M + Na]⁺) = 331.0674, found 331.0666.

IR (neat): 1663, 1585, 1488, 1399, 1265, 1090, 928, 848, 743, 699, 660 cm⁻¹.

(2-benzyl-4-methylphenyl)(phenyl)methanone (B23)

28% yield, colourless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 – 7.66 (m, 2H), 7.54 – 7.47 (m, 1H), 7.39 – 7.35 (m, 2H), 7.22 – 7.13 (m, 3H), 7.13 – 7.02 (m, 5H), 4.07 (s, 2H), 2.34 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.5, 140.7, 140.6, 140.4, 138.0, 135.8, 132.8, 131.6, 130.1, 129.2, 129.1, 128.2, 128.2, 126.2, 125.9, 38.7, 21.4.

ESI-HRMS: calcd for $C_{21}H_{18}ONa^+$ ([M + Na]⁺) = 309.1250, found 309.1248.

IR (neat): 1659, 1601, 1448, 1271, 1166, 950, 826, 720, 698, 601 cm⁻¹.

(2-benzyl-5-methylphenyl)(phenyl)methanone (B24)

22% yield, colourless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.76 - 7.67 (m, 2H), 7.56 - 7.48 (m, 1H), 7.40 - 7.36 (m, 2H), 7.22 - 7.19 (m, 1H), 7.17 - 7.12 (m, 3H), 7.11 - 7.02 (m, 4H), 4.00 (s, 2H), 2.31 (s, 3H).
¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.7, 140.7, 138.7, 137.7, 136.9, 135.2, 133.0, 131.0, 130.7, 130.1, 129.0, 129.0, 128.2, 128.2, 125.9, 38.4, 20.8.

ESI-HRMS: calcd for $C_{21}H_{18}ONa^+$ ([M + Na]⁺) = 309.1250, found 309.1246. **IR** (neat): 1662, 1596, 1493, 1449, 1314, 1287, 1212, 1176, 966, 852, 728, 697, 652 cm⁻¹.

(2-benzyl-4-fluorophenyl)(phenyl)methanone (B25)

31% yield, colourless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.77 – 7.65 (m, 2H), 7.58 – 7.54 (m, 1H), 7.44 – 7.40 (m, 2H), 7.33 – 7.29 (m, 1H), 7.25 – 7.18 (m, 2H), 7.14 – 7.08 (m, 3H), 6.98 – 6.89 (m, 2H), 4.08 (s, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.4, 163.6 (d, *J* = 251.9 Hz), 143.8 (d, *J* = 7.8 Hz), 139.6, 137.7, 134.6 (d, *J* = 7.8 Hz), 133.2, 131.1 (d, *J* = 8.9 Hz), 130.1, 129.2, 128.4, 128.4, 126.3, 117.7 (d, *J* = 21.8 Hz), 112.6 (d, *J* = 21.7 Hz), 38.7.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -109.22.

ESI-HRMS: calcd for $C_{20}H_{15}FONa^+$ ([M + Na]⁺) = 313.0999, found 313.0995. **IR** (neat): 1662, 1582, 1492, 1449, 1314, 1265, 1233, 1150, 968, 831, 722, 699 cm⁻¹.

(2-benzyl-5-chlorophenyl)(phenyl)methanone (B26)

31% yield, colourless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.73 – 7.65 (m, 2H), 7.58 – 7.49 (m, 1H), 7.44 – 7.34 (m, 2H), 7.30 – 7.20 (m, 3H), 7.19 – 7.15 (m, 2H), 7.13 – 7.03 (m, 3H), 4.03 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.4, 142.4, 139.4, 137.3, 137.0, 136.2, 133.3, 130.7, 130.0, 129.1, 128.4, 128.3, 126.3, 125.8, 38.5.

ESI-HRMS: calcd for $C_{20}H_{15}^{35}CIONa^+$ ([M + Na]⁺) = 329.0704, found 329.0702. $C_{20}H_{15}^{37}CIONa^+$ ([M + Na]⁺) = 331.0674, found 331.0665.

IR (neat): 1663, 1590, 1449, 1313, 1279, 1151, 929, 828, 739, 697 cm⁻¹.

(2-benzyl-5-chlorophenyl)(phenyl)methanone (B27)

38% yield, colourless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 – 7.64 (m, 2H), 7.60 – 7.50 (m, 3H), 7.42 – 7.38 (m, 3H), 7.20 – 7.12 (m, 2H), 7.12 – 7.00 (m, 3H), 4.07 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.3, 142.3, 140.9, 139.1, 136.7, 133.7, 131.9 (q, *J* = 32.4 Hz), 130.0, 129.1, 128.5, 128.4, 127.4 (q, *J* = 3.8 Hz), 126.4, 123.7 (q, *J* = 273.6 Hz), 122.7 (q, *J* = 3.8 Hz), 38.8.

¹⁹**F**{¹**H**} **NMR** (377 MHz, CDCl₃) δ -62.74.

ESI-HRMS: calcd for $C_{21}H_{15}F_3ONa^+$ ([M + Na]⁺) = 363.0967, found 363.0962. **IR** (neat): 1668, 1597, 1329, 1270, 1164, 1124, 1073, 936, 839, 704, 660 cm⁻¹.

(2-(2-fluorobenzyl)phenyl)(phenyl)methanone (B28)

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 – 7.71 (m, 2H), 7.60 – 7.51 (m, 1H), 7.46 – 7.36 (m, 3H), 7.35 – 7.20 (m, 3H), 7.14 – 7.02 (m, 2H), 7.00 – 6.86 (m, 2H), 4.10 (s, 2H). ¹³C{¹**H**} **NMR** (101 MHz, CDCl₃) δ 198.5, 161.0 (d, J = 245.7 Hz), 138.8 (d, J = 20.9 Hz), 137.7, 133.2, 131.5, 131.4, 130.6, 130.5, 130.2, 128.7, 128.4, 128.0 (d, J = 8.0 Hz), 127.5 (d, J = 15.9Hz), 125.7, 124.0 (d, J = 3.5 Hz), 115.2 (d, J = 21.9 Hz).31.9, 31.9. ¹⁹F{¹**H**} **NMR** (377 MHz, CDCl₃) δ -117.16.

ESI-HRMS: calcd for $C_{20}H_{15}FONa^+$ ([M + Na]⁺) = 313.0999, found 313.0994. **IR** (neat): 1663, 1596, 1489, 1450, 1268, 1231, 935, 759, 705, 640 cm⁻¹.

(2-(3-fluorobenzyl)phenyl)(phenyl)methanone (B29)

B29

38% yield, colourless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.77 – 7.65 (m, 2H), 7.60 – 7.49 (m, 1H), 7.47 – 7.36 (m, 3H), 7.34 – 7.24 (m, 3H), 7.16 – 7.05 (m, 1H), 6.86 (d, *J* = 8.0 Hz, 1H), 6.82 – 6.71 (m, 2H), 4.06 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.3, 162.7 (d, J = 245.0 Hz), 143.0 (d, J = 7.2 Hz), 139.3, 138.7, 137.5, 133.2, 130.9, 130.4, 130.1, 129.6 (d, J = 8.1 Hz), 128.8, 128.3, 125.8, 124.8 (d, J = 2.9 Hz), 115.9 (d, J = 21.1 Hz), 112.9 (d, J = 21.1 Hz), 38.5.

¹⁹**F**{¹**H**} **NMR** (377 MHz, CDCl₃) δ -113.60.

ESI-HRMS: calcd for $C_{20}H_{15}FONa^+$ ([M + Na]⁺) = 313.0999, found 313.0993. **IR** (neat): 1662, 1591, 1485, 1447, 1314, 1267, 1136, 932, 765, 707, 641 cm⁻¹.

(2-(3-methylbenzyl)phenyl)(phenyl)methanone (B30)

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 – 7.67 (m, 2H), 7.57 – 7.49 (m, 1H), 7.43 – 7.35 (m, 3H), 7.31 – 7.22 (m, 3H), 7.07 – 7.03 (m, 1H), 6.93 – 6.82 (m, 3H), 4.02 (s, 2H), 2.18 (s, 3H). ¹³C{¹H} **NMR** (101 MHz, CDCl₃) δ 198.6, 140.3, 140.1, 138.7, 137.8, 137.6, 133.1, 130.7, 130.2, 130.1, 129.9, 128.4, 128.2, 128.1, 126.7, 126.2, 125.5, 38.7, 21.2. **ESI-HRMS**: calcd for C₂₁H₁₈ONa⁺ ([M + Na]⁺) = 309.1250, found 309.1246. **IR** (neat): 1663, 1598, 1447, 1313, 1268, 924, 762, 708, 641 cm⁻¹.

(2-(3-chlorobenzyl)phenyl)(phenyl)methanone (B31)

B31

73% yield, colourless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 – 7.66 (m, 2H), 7.56 – 7.52 (m, 1H), 7.46 – 7.36 (m, 3H), 7.35 – 7.25 (m, 3H), 7.09 – 7.03 (m, 3H), 6.98 – 6.95 (m, 1H), 4.04 (s, 2H). ¹³C{¹**H**} **NMR** (101 MHz, CDCl₃) δ 198.3, 142.4, 139.2, 138.7, 137.4, 134.0, 133.2, 130.9, 130.4, 130.1, 129.4, 129.1, 128.8, 128.3, 127.3, 126.2, 125.8, 38.5.

ESI-HRMS: calcd for $C_{20}H_{15}{}^{35}ClONa^+$ ([M + Na]⁺) = 329.0704, found 329.0700. $C_{20}H_{15}{}^{37}ClONa^+$ ([M + Na]⁺) = 331.0674, found 331.0666.

IR (neat): 1661, 1596, 1475, 1445, 1313, 1269, 937, 919, 765, 706, 641 cm⁻¹.

(2-(3,4-dichlorobenzyl)phenyl)(phenyl)methanone (B32)

¹**H** NMR (400 MHz, CDCl₃) δ 7.74 – 7.65 (m, 2H), 7.60 – 7.52 (m, 1H), 7.48 – 7.36 (m, 3H), 7.34 – 7.26 (m, 3H), 7.20 (d, J = 8.4 Hz, 1H), 7.14 (d, J = 2.0 Hz, 1H), 6.92 (dd, J = 8.4, 2.0 Hz, 1H), 4.02 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.2, 140.7, 138.8, 138.6, 137.3, 133.3, 132.1, 131.0, 130.9, 130.5, 130.1, 130.1, 129.9, 128.9, 128.6, 128.3, 126.0, 38.0.

ESI-HRMS: calcd for $C_{20}H_{14}{}^{35}Cl_2ONa^+$ ([M + Na]⁺) = 363.0314, found 363.0310, $C_{20}H_{14}{}^{35,37}Cl_2ONa^+$ ([M + Na]⁺) = 365.0284, found 365.0279, $C_{20}H_{14}{}^{37}Cl_2ONa^+$ ([M + Na]⁺) = 367.0255, found 367.0240.

IR (neat): 1661, 1596, 1469, 1314, 1269, 1030, 918, 763, 707, 639 cm⁻¹.

(2-(benzo[d][1,3]dioxol-5-ylmethyl)phenyl)(phenyl)methanone (B33)

21% yield, colourless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.63 (m, 2H), 7.51 – 7.43 (m, 1H), 7.35 – 7.31 (m, 3H), 7.22 – 7.17 (m, 3H), 6.55 – 6.39 (m, 3H), 5.75 (s, 2H), 3.89 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.5, 147.4, 145.7, 140.2, 138.7, 137.5, 134.2, 133.1, 130.6, 130.2, 130.1, 128.5, 128.3, 125.6, 122.2, 109.7, 107.9, 100.7, 38.5.

ESI-HRMS: calcd for $C_{21}H_{16}O_3Na^+([M + Na]^+) = 339.0992$, found 339.0989.

IR (neat): 1662, 1486, 1444, 1269, 1244, 1039, 928, 766, 707, 641 cm⁻¹.

(2-([1,1'-biphenyl]-4-ylmethyl)phenyl)(phenyl)methanone (B34)

60% yield, white solid; mp: 92-94 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 – 7.67 (m, 2H), 7.55 – 7.45 (m, 3H), 7.45 – 7.34 (m, 7H), 7.34 – 7.24 (m, 4H), 7.15 – 7.13 (m, 2H), 4.10 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.5, 140.9, 140.0, 139.5, 138.9, 138.8, 137.6, 133.1, 130.8, 130.3, 130.1, 129.5, 128.6, 128.6, 128.3, 127.0, 126.9, 125.6, 38.5.

ESI-HRMS: calcd for $C_{26}H_{20}ONa^+$ ([M + Na]⁺) = 371.1406, found 371.1404. **IR** (neat): 1662, 1597, 1486, 1447, 1314, 1269, 936, 760, 700, 641 cm⁻¹.

(2-(4-fluorobenzyl)phenyl)(phenyl)methanone (B35)

60% yield, colourless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.75 – 7.65 (m, 2H), 7.56 – 7.52 (m, 1H), 7.44 – 7.35 (m, 3H), 7.33 – 7.23 (m, 3H), 7.05 – 7.00 (m, 2H), 6.89 – 6.77 (m, 2H), 4.03 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ161.2 (d, *J* = 244.1 Hz), 139.9, 138.6, 137.5, 136.1 (d, *J* = 3.5 Hz), 133.2, 130.7, 130.5 (d, *J* = 7.8 Hz), 130.3, 130.1, 128.7, 128.3, 125.7, 114.95 (d, *J* = 21.0 Hz), 38.0.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -117.29.

ESI-HRMS: calcd for $C_{20}H_{15}FONa^+$ ([M + Na]⁺) = 313.0999, found 313.0995. **IR** (neat): 1662, 1599, 1508, 1446, 1269, 1222, 1156, 934, 766, 705, 640 cm⁻¹.

(2-(4-chlorobenzyl)phenyl)(phenyl)methanone (B36)

66% yield, colourless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.73 – 7.66 (m, 2H), 7.59 – 7.52 (m, 1H), 7.43 – 7.38 (m, 3H), 7.33 – 7.23 (m, 3H), 7.15 – 7.09 (m, 2H), 7.02 – 6.99 (m, 2H), 4.03 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.4, 139.6, 138.9, 138.6, 137.5, 133.2, 131.8, 130.8, 130.4, 130.4, 130.1, 128.8, 128.3, 125.8, 38.2.

ESI-HRMS: calcd for $C_{20}H_{15}{}^{35}CIONa^+$ ([M + Na]⁺) = 329.0704, found 329.0700, $C_{20}H_{15}{}^{37}CIONa^+$ ([M + Na]⁺) = 331.0674, found 331.0665.

IR (neat): 1662, 1489, 1446, 1314, 1269, 1092, 935, 760, 706, 639 cm⁻¹.

phenyl(2-(4-(trifluoromethyl)benzyl)phenyl)methanone (B37)

¹**H** NMR (400 MHz, CDCl₃) δ 7.73 – 7.66 (m, 2H), 7.59 – 7.52 (m, 1H), 7.49 – 7.36 (m, 5H), 7.36 – 7.27 (m, 3H), 7.20 (d, *J* = 8.0 Hz, 2H), 4.14 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.3, 144.6, 139.0, 138.7, 137.4, 133.3, 130.9, 130.5, 130.1, 129.4, 128.9, 128.3, 128.3 (q, *J* = 32.2 Hz), 126.0, 125.1 (q, *J* = 3.8 Hz), 124.2 (q, *J* = 272.9 Hz), 38.7.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -62.40.

ESI-HRMS: calcd for $C_{21}H_{15}F_3ONa^+$ ([M + Na]⁺) = 363.0967, found 363.0959. **IR** (neat): 1662, 1323, 1268, 1160, 1115, 1066, 936, 765, 735, 706 cm⁻¹.

(2-(4-methylbenzyl)phenyl)(phenyl)methanone (B38)

B38

63% yield, colourless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.68 (m, 2H), 7.56 – 7.49 (m, 1H), 7.43 – 7.34 (m, 3H), 7.31 – 7.20 (m, 3H), 6.96 (s, 4H), 4.01 (s, 2H), 2.22 (s, 3H).
¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.5, 140.3, 138.7, 137.6, 137.3, 135.4, 133.0, 130.6, 130.2,

130.1, 129.0, 128.9, 128.5, 128.2, 125.4, 38.3, 20.9.

ESI-HRMS: calcd for $C_{21}H_{18}ONa^+$ ([M + Na]⁺) = 309.1250, found 309.1247.

IR (neat): 1662, 1597, 1513, 1446, 1313, 1267, 936, 791, 765, 704, 640 cm⁻¹.

(2-(4-methoxybenzyl)phenyl)(phenyl)methanone (B39)

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 – 7.66 (m, 2H), 7.55 – 7.51 (m, 1H), 7.44 – 7.33 (m, 3H), 7.32 – 7.21 (m, 3H), 7.03 – 6.93 (m, 2H), 6.73 – 6.66 (m, 2H), 3.99 (s, 2H), 3.70 (s, 3H). ¹³C{¹H} **NMR** (101 MHz, CDCl₃) δ 198.6, 157.8, 140.5, 138.7, 137.6, 133.0, 132.5, 130.6, 130.2, 130.1, 130.1, 128.4, 128.2, 125.5, 113.6, 55.1, 37.9. **ESI-HRMS**: calcd for C₂₁H₁₈O₂Na⁺ ([M + Na]⁺) = 325.1199, found 325.1195.

IR (neat): 1662, 1598, 1510, 1446, 1246, 1178, 1035, 933, 766, 705, 640 cm⁻¹.

(2-(furan-3-ylmethyl)phenyl)(phenyl)methanone (B40)

36% yield, colourless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.68 (m, 2H), 7.57 – 7.55 (m, 1H), 7.46 – 7.37 (m, 3H), 7.35 – 7.33 (m, 1H), 7.32 – 7.25 (m, 2H), 7.25 – 7.19 (m, 1H), 7.08 (s, 1H), 6.16 (s, 1H), 3.85 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.4, 142.7, 139.8, 139.5, 138.4, 137.6, 133.1, 130.3, 130.3, 130.1, 128.7, 128.3, 125.6, 123.6, 111.1, 28.4.

ESI-HRMS: calcd for $C_{18}H_{14}O_2Na^+$ ([M + Na]⁺) = 285.0886, found 285.0882.

IR (neat): 1661, 1596, 1446, 1313, 1267, 1153, 1022, 934, 873, 764, 705, 640 cm⁻¹.

phenyl(2-(thiophen-3-ylmethyl)phenyl)methanone (B41)

58% yield, white solid; mp 47-50 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 – 7.65 (m, 2H), 7.58 – 7.49 (m, 1H), 7.44 – 7.36 (m, 3H), 7.34 – 7.23 (m, 3H), 7.12 – 7.10 (m, 1H), 6.88 – 6.72 (m, 2H), 4.05 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.4, 140.6, 139.7, 138.5, 137.5, 133.1, 130.5, 130.3, 130.0, 128.6, 128.4, 128.2, 125.6, 125.4, 121.8, 33.6.

ESI-HRMS: calcd for $C_{18}H_{14}OSNa^+$ ([M + Na]⁺) = 301.0658, found 301.0659.

IR (neat): 1660, 1596, 1445, 1313, 1266, 1152, 932, 759, 705, 639 cm⁻¹.

(2) General procedure for the synthesis of the substrates B20–B22

The substrates **B20–B22** were prepared as shown below according to the known literature⁵.

To an oven-dried microwave vial charged with arylbromide (2.0 equiv.) under a N₂ atmosphere was added THF (0.33 M). The solution was cooled to -78 °C and "BuLi (2.0 equiv.) was added dropwise. The resulting mixture was stirred at -78 °C for 30 mins, then **S1** (1.0 equiv.) in THF (0.5 M) was added dropwise. The reaction mixture was stirred for 30 mins or until full consumption of **S1** (as judged by TLC) and was then quenched with a saturated aqueous solution of NH₄Cl. Water was added, and the aqueous phase was extracted with Et₂O (3 times). The combined organic layer was dried over MgSO₄ and evaporated under reduced pressure. Purification by column chromatography (petroleum ether / ethyl acetate mobile phase) afforded the desired aryl ketone.

(2-benzylphenyl)(4-(trifluoromethyl)phenyl)methanone (B20)

69% yield, white solid: mp: 50 -54 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.76 – 7.74 (m, 2H), 7.64 – 7.62 (m, 2H), 7.49 – 7.41 (m, 1H), 7.35 – 7.31 (m, 1H), 7.31 – 7.24 (m, 2H), 7.16 – 7.13 (m, 2H), 7.10 – 7.02 (m, 3H), 4.10 (s, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.4, 140.6, 140.5, 140.2, 137.9, 134.1 (q, *J* = 32.8 Hz), 131.2, 130.9, 130.2, 129.1, 128.8, 128.3, 126.1, 125.8, 125.2 (q, *J* = 3.6 Hz), 123.6 (q, *J* = 273.6 Hz), 38.89.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -63.04.

ESI-HRMS: calcd for $C_{21}H_{15}F_3ONa^+$ ([M + Na]⁺) = 363.0967, found 363.0962. **IR** (neat): 1670, 1409, 1324, 1266, 1169, 1128, 1065, 932, 859, 739, 700, 653 cm⁻¹.

4-(2-benzylbenzoyl)benzonitrile (B21)

40% yield, white solid: mp: 101 - 105 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.74 – 7.68 (m, 2H), 7.68 – 7.61 (m, 2H), 7.49 – 7.45 (m, 1H), 7.37 – 7.35 (m, 1H), 7.31 – 7.27 (m, 1H), 7.25 – 7.22 (m, 1H), 7.16 – 7.10 (m, 2H), 7.09 – 6.99 (m, 3H), 4.09 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 196.9, 140.7, 140.7, 140.1, 137.4, 132.0, 131.3, 131.0, 130.2, 129.1, 128.7, 128.3, 126.1, 125.8, 118.0, 116.0, 38.9.

ESI-HRMS: calcd for $C_{21}H_{15}NONa^+$ ([M + Na]⁺) = 320.1046, found 320.1043.

IR (neat): 2231, 1668, 1291, 1266, 930, 857, 747, 698 cm⁻¹.

(2-benzylphenyl)(thiophen-2-yl)methanone (B22)

65% yield, yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.67 – 7.66 (m, 1H), 7.45 – 7.36 (m, 2H), 7.32 – 7.23 (m, 3H), 7.20 – 7.13 (m, 2H), 7.11 – 7.07 (d, *J* = 7.5 Hz, 3H), 7.05 – 6.99 (m, 1H), 4.10 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 190.3, 144.9, 140.3, 139.7, 138.5, 135.6, 134.9, 130.8, 130.4, 129.2, 128.2, 128.1, 128.0, 125.9, 125.5, 38.6.

ESI-HRMS: calcd for $C_{18}H_{14}OSNa^+$ ([M + Na]⁺) = 301.0658, found 301.0655. **IR** (neat): 1639, 1514, 1410, 1293, 1048, 851, 728, 699, 647 cm⁻¹.

3 General procedures for the catalytic asymmetric reaction

Procedure for the synthesis of the adduct C: To a dry quartz tube under nitrogen atmosphere was added L₃-PiMe₂Br (10 mol%), Ni(OTf)₂ (10 mol%), LiNTf₂ (30 mol%), *N*-sulfonyl cyclic ketimine A (0.1 mmol), ketone substrate B (0.2 mmol) in CH₂Cl₂ (2.5 mL), and the mixture was stirred at 35 °C for 30 minutes. Then the resulting mixture was degassed for 10 mins and stirred under UV LED (2 W, $\lambda_{max} = 365$ nm) irradiation at room temperature. After the *N*-sulfonyl cyclic

ketimine was fully consumed (detected by TLC), the residue was purified by column chromatography (petroleum ether:ethyl acetate: = 3:1) on silica gel to afford the product **C**.

Procedure for the synthesis of the adduct D: To a dry quartz tube under nitrogen atmosphere was added L₃-PiAd (10 mol%), Ni(OTf)₂ (10 mol%), *N*-sulfonyl cyclic ketimine A (0.1 mmol), B (0.2 mmol) and CH₃CN (1.0 mL), and the mixture was stirred at 35 °C for 30 minutes. Then the resulting mixture was degassed for 10 mins and stirred under UV LED (20 W, $\lambda_{max} = 365$ nm) irradiation at room temperature. After the *N*-sulfonyl cyclic ketimine was fully consumed (detected by TLC), TsOH·H₂O (1.0 equiv.) was added. After the conversion is completed, the solvent was removed in vacuo, and the residue was purified by column chromatography (petroleum ether:ethyl acetate: = 4:1) on silica gel to afford the product **D**.

The corresponding racemic products were obtained by using racemic N,N-dioxide (±)-L₃-PiAd as the ligand under the respective catalytic reaction conditions.

Figure S1. Photochemical setup with UV LED *Note: The distance between UV LED and reaction mixture is about 0.5 cm.*

3.1 Optimization of the reaction conditions

Table 1. The background reaction

	$ \begin{array}{c} $	Ph addit B1	$\xrightarrow{\text{tive}} CH_2Cl_2, \text{ r.t.} \xrightarrow{O} S_{\text{CH}_2Cl_2, \text{ r.t.}} \xrightarrow{O} $	Ph
Entry ^a	Additive	conditions	Yield $(\%)^b$	dr ^c
1	-	20 W, 2.5 h	43	28:72
2	$30 \text{ mol}\% \text{ LinTf}_2$	20W, 2.5 h	67	56:44
3	-	20 W, 20 min	19	38:62
4	$30 \text{ mol}\% \text{ LiNTf}_2$	20 W, 20 min	41	71:29
5^d	-	2 W, 30 min	13	70:30
6 ^{<i>d</i>}	-	2 W, 2 h	32	68:32
7^d	-	2 W, 8 h	67	69:31
8^d	30 mol% LiNTf ₂	2 W, 8 h	56	78:22
9 ^d	10 mol% Ni(OTf) ₂	2 W, 8 h	25	58:42
10^d	30 mol% LiNTf ₂ + 10 mol% Ni(OTf) ₂	2 W, 8 h	50	61:39

^{*a*}Unless otherwise noted, the reactions were carried out with **A1** (0.1 mmol), **B1** (0.15 mmol), additive in CH₂Cl₂ (1.5 mL) under N₂ protection and irradiation ($\lambda_{max} = 365$ nm) at room temperature for a certain time. ^{*b*}Yield of the isolated product. ^{*c*}The dr values were determined by ¹H NMR analysis. ^{*d*}2.5 mL CH₂Cl₂ and 0.2 mmol **B1** was used.

	a	•	0	. 1	1.
Table 7	Scree	ening	ot.	metal	salte
I abit 2.	0010	uning	O1	metui	Suits

	+ Ph -	Metal Salts/ L₃-PiAd (1:1, 10 mol%) 20 W, 365 nm CH ₂ Cl ₂ , r.t.	EtO ₂ C _{Ph}	$ \begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & &$
A1	B1		C1 Pn	L ₃ -PiAd, Ad = 1-adamantyl
Entry ^a	Metal Salts	Yield (%) ^b	$\mathrm{d}\mathbf{r}^{c}$	ee (%) ^d
1	Sc(OTf) ₃	67	54:46	0
2	Mg(OTf) ₂	76	64:36	4/9
3	Ni(OTf) ₂	68	58:42	57/52
4	Cu(OTf) ₂	75	33:67	-4/3
5	Zn(OTf) ₂	67	53:47	5/5
6	Ba(OTf) ₂	59	17/83	7/0

7	Co(OTf) ₂	69	49/51	19/16
8	AgOTf	58	40/60	0
9	Al(OTf) ₃	67	47:53	0
10	In(OTf) ₃	72	48:52	0
11	Y(OTf) ₃	70	37:63	7/0
12	La(OTf) ₃	64	40:60	0
13	Fe(OTf) ₃	75	62:38	17/15

^{*a*}Unless otherwise noted, the reactions were carried out with A1 (0.1 mmol), B1 (0.15 mmol), metal salt (10 mol%), L₃-PiAd (10 mol%) in CH₂Cl₂ (1.5 mL) under N₂ protection and 20 W LED ($\lambda_{max} = 365$ nm) irradiation at room temperature for 2.5 h. ^{*b*}Yield of the isolated product. ^{*c*}The dr values were determined by ¹H NMR analysis. ^{*d*}The ee values were determined by UPC² on a chiral stationary phase.

	+ Ph -	Ni(OTf) ₂ /L ₃ -PiAd (1:1, 10 mol%) 20 W, 365 nm Solvent, r.t.	NH EtO ₂ C Ph	$\overbrace{\begin{matrix} 0 \\ N \\ Ad \end{matrix}}^{+} \overbrace{\begin{matrix} + \\ N \\ N \\ H \\ Ad \end{matrix}} \overbrace{\begin{matrix} 0 \\ N \\ H \\ Ad \end{matrix}}^{+} \overbrace{\begin{matrix} + \\ N \\ N \\ H \\ Ad \end{matrix}} = 0$
A1	B1		C1 ^{Ph}	L ₃ -PiAd, Ad = 1-adamantyl
Entry ^a	Solvent	Yield $(\%)^b$	dr ^c	ee (%) ^d
1	CH_2Cl_2	68	58:42	57/52
2	THF	81	10:90	11/8
3	Toluene	66	39:61	0/5
4	MeOH	75	24:76	-9/7
5	Et ₂ O	35	14:86	0
6	Acetone	81	10:90	17
7	EtOAc	92	14:86	0/14
8	CH ₃ CN	87	23:77	5/12

Table 3. Screening of solvents

^{*a*}Unless otherwise noted, the reactions were carried out with **A1** (0.1 mmol), **B1** (0.15 mmol), Ni(OTf)₂ (10 mol%), **L₃-PiAd** (10 mol%) in solvent (1.5 mL) under N₂ protection and 20 W LED ($\lambda_{max} = 365$ nm) irradiation at room temperature for 2.5 h. ^{*b*}Yield of the isolated product. ^{*c*}The dr values were determined by ¹H NMR analysis. ^{*d*}The ee values were determined by UPC² on a chiral stationary phase.

Table 4. Screening of chiral N,N'-dioxide ligands

L₃-**PiAd**: R = 1-adamantyl, n = 2 **L**₃-**PiCPh**₂: $R = CHPh_2$, n = 2**L**₃-**PiPr**₂: R = 2,6-^{*i*}Pr₂C₆H₃, n = 2

 L_3 -TQsEPh: R = (S)-1-phenylethyl L_3 -TQAd: R = 1-adamantyl

Entry ^a	Ligand	Yield $(\%)^b$	$\mathrm{d}\mathbf{r}^c$	ee (%) ^d
1	L ₃ -PiAd	68	58:42	57/52
2	L ₃ -PiPr ₂	85	64:36	8/14
3	L ₃ -RaPr ₂ Ad	86	54:46	0/18
4	L ₃ -TQsEPh	60	47:53	6/8
5	L ₃ -PrPr ₂	75	58:42	-4/5
6 ^e	L ₃ -PiCPh ₂	74	53:47	22/23

^{*a*}Unless otherwise noted, the reactions were carried out with **A1** (0.1 mmol), **B1** (0.15 mmol), Ni(OTf)₂ (10 mol%), **Ligand** (10 mol%) in CH₂Cl₂ (1.5 mL) under N₂ protection and 20 W LED ($\lambda_{max} = 365$ nm) irradiation at room temperature for 2.5 h. ^{*b*}Yield of the isolated product. ^{*c*}The dr values were determined by ¹H NMR analysis. ^{*d*}The ee values were determined by UPC² on a chiral stationary phase. ^{*e*}CH₂ClCH₂Cl as the solvent and Ni(BF₄)₂·6H₂O instead of Ni(OTf)₂.

	O N CO_2Et Ph	Ni(OTf) ₂ / L₃-PiAd (1:1, 10 mol%) 20 W, 365 nm additive, CH ₂ Cl ₂	EtO ₂	NH Ph Ph		H-N Ad
A1	B1			C1 ^{Ph}	L ₃ -PiAd, Ad =	1-adamantyl
Entry ^a	Metal Salts	Additive (x mol%)	T (°C)	Yield (%) ^b	dr ^c	ee (%) ^d
1	Ni(OTf) ₂	None	rt	68	58:42	57/52
2	Ni(OTf) ₂	NaBArF4 (10 mol%)	rt	74	74:26	81/52
3	Ni(OTf) ₂	NaBAr ^F ₄ (20 mol%)	rt	67	65:35	73/50
4	Ni(OTf) ₂	NaBAr ^F ₄ (30 mol%)	rt	53	66:34	56/35
5	Ni(OTf) ₂	LiNTf ₂ (10 mol%)	rt	77	66:34	81/70
6	Ni(OTf) ₂	LiNTf ₂ (20 mol%)	rt	90	65:35	88/84
7	Ni(OTf) ₂	LiNTf ₂ (30 mol%)	rt	94	74:26	89/85

Table 5. Screening of additives with different metal salts and temperature

8	Ni(OTf) ₂	LiNTf ₂ (40 mol%)	rt	89	65:35	89/86
9	Ni(OTf) ₂	LiNTf ₂ (50 mol%)	rt	80	69:31	87/82
10	Ni(OTf) ₂	LiNTf ₂ (100 mol%)	rt	89	64:36	86/84
11	Ni(OTf) ₂	LiCl (30 mol%)	rt	77	64:36	47/54
12	Ni(OTf) ₂	LiBF ₄ (30 mol%)	rt	76	60:40	54/57
13	Ni(OTf) ₂	LiOTf (30 mol%)	rt	74	58:42	46/67
14	Ni(OTf) ₂	NaNTf ₂ (30 mol%)	rt	71	68:32	77/40
15	Ni(OTf) ₂	LiNTf ₂ (30 mol%)	0	86	71:29	86/80
16	Ni(OTf) ₂	LiNTf ₂ (30 mol%)	-20	63	53:47	63/76
17	Ni(NTf ₂) ₂	None	rt	80	73:27	76/52
18	NiCl ₂ +AgNTf ₂	None	rt	64	51:49	5/-13
19	Ni(NTf ₂) ₂	LiNTf ₂ (20 mol%)	rt	90	58:42	84/78
20	Ni(ClO ₄) ₂ ·6H ₂ O	None	rt	73	65:35	0
21	Ni(ClO ₄) ₂ ·6H ₂ O	LiNTf ₂ (30 mol%)	rt	66	73:27	77/39
22	Ni(BF ₄) ₂ ·6H ₂ O	None	rt	80	63:37	36/4
23	Ni(BF ₄) ₂ .6H ₂ O	LiNTf ₂ (30 mol%)	rt	72	72:28	78/37

^{*a*}Unless otherwise noted, the reactions were carried out with **A1** (0.1 mmol), **B1** (0.15 mmol), Ni(OTf)₂ (10 mol%), **L₃-PiAd** (10 mol%), additive in CH₂Cl₂ (1.5 mL) under N₂ protection and 20 W LED ($\lambda_{max} = 365$ nm) irradiation at room temperature for 2.5 h. ^{*b*}Yield of the isolated product. ^{*c*}The dr values were determined by ¹H NMR analysi. ^{*d*}The ee values were determined by UPC² on a chiral stationary phase.

Table 6. Rescreening of chiral N,N'-dioxide ligands

Entry ^a	Ligand	Yield $(\%)^b$	dr ^c	ee (%) ^d
1	L ₃ -TQAd	77	63:37	47/38
2	L ₄ -PiAd	78	62:38	10/10

3	L ₃ -PiAd	94	74:26	89/85
4	L ₂ -PiAd	82	70:30	80/66
5	L ₃ -PiAd ²	85	64:36	91/89
6	L ₃ -PiMe ₂	72	76:24	49/19
7	L ₃ -PiMe ₃	89	63:37	83/74
8	L ₃ -PiMe ₂ Br	91	72:28	92/84
9	L ₃ -PiEt ₂	84	71:29	65/52
10	L ₃ -PiEt ₂ Me	81	70:30	69/56
11	ent-L ₃ -PiEt ₂ Br	80	74:26	-69/-31
12	L ₃ -PiEt ₃	74	59:41	37/27
13	L ₃ -PiPr ₃	73	53:47	4/4
14	L ₃ -PiPr ₂ Ad	72	57:43	2/4

^{*a*}Unless otherwise noted, the reactions were carried out with **A1** (0.1 mmol), **B1** (0.15 mmol), Ni(OTf)₂ (10 mol%), **Ligand** (10 mol%), LiNTf₂ (30 mol%) in CH₂Cl₂ (1.5 mL) under N₂ protection and 20 W LED ($\lambda_{max} = 365$ nm) irradiation at room temperature for 2.5 h. ^{*b*}Yield of the isolated product. ^{*c*}The dr values were determined by ¹H NMR analysis. ^{*d*}The ee values were determined by UPC² on a chiral stationary phase.

Table 7. Screening of illumination intensity

A1	$D_{2}Et + Ph$ B1	Ni(OTf) ₂ /L ₃ -PiMe ₂ Br (1:1, 10 mol%) LiNTf ₂ (30 mol%) X W, 365 nm CH ₂ Cl ₂ , r.t.	$\rightarrow \begin{array}{c} 0 \\ S \\ NH \\ EtO_2C \\ Ph \\ C1 \end{array} \begin{array}{c} 0 \\ Ph \\ Ph \end{array}$	0 N-H R R = 2	⁺ N → O H − N L ₃ -PiMe ₂ Br R c,6-Me ₂ -4-Br-C ₆ H ₂
Entry ^a	Intensity (W)	Time (h)	Yield (%) ^{b}	dr ^c	ee (%) ^d
1	20	2.5	91	72:28	92/84
2	5	5	89	85:15	93/76
3	2	8	79	90:10	93/65

^{*a*}Unless otherwise noted, the reactions were carried out with **A1** (0.1 mmol), **B1** (0.15 mmol), Ni(OTf)₂ (10 mol%), **L**₃-**PiMe₂Br** (10 mol%), LiNTf₂ (30 mol%) in CH₂Cl₂ (1.5 mL) under N₂ protection and X W LED ($\lambda_{max} = 365$ nm) irradiation at room temperature for a certain time. ^{*b*}Yield of the isolated product. ^{*c*}The dr values were determined by ¹H NMR analysis. ^{*d*}The ee values were determined by UPC² on a chiral stationary phase.

Table 8. Screening of reaction concentration

1	1.5	79	90:10	93/65
2	2.5	90	91:9	93/64
3	3.5	90	90:10	92/61

^{*a*}Unless otherwise noted, the reactions were carried out with **A1** (0.1 mmol), **B1** (0.15 mmol), Ni(OTf)₂ (10 mol%), **L₃-PiMe₂Br** (10 mol%), LiNTf₂ (30 mol%) and CH₂Cl₂ under N₂ protection and 2 W LED ($\lambda_{max} = 365$ nm) irradiation at room temperature for 8 h. ^{*b*}Yield of the isolated product. ^{*c*}The dr values were determined by ¹H NMR analysis. ^{*d*}The ee values were determined by UPC² on a chiral stationary phase.

	+ Ph B1	Ni(OTf) ₂ /L ₃ -PiMe ₂ Br (1:1, 10 mol%) LiNTf ₂ (30 mol%) 2 W, 365 nm CH ₂ Cl ₂ , r.t.	O O S NH EtO ₂ C Ph C1 Ph	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ &$
Entry ^a	Ratio (A1:B1)	Yield (%) ^b	dr ^c	ee (%) ^d
1	1:1.5	90	91:9	93/64
2	1:2	96	92:8	93/65
3 ^e	1:2	82	91:9	93/63
4	1:3	98	91:9	93/64

Table 9. Screening of the ratio of the substrates

^{*a*}Unless otherwise noted, the reactions were carried out with A1 (0.1 mmol), B1 (x mmol), Ni(OTf)₂ (10 mol%), L₃- PiMe₂Br (10 mol%), LiNTf₂ (30 mol%) in CH₂Cl₂ (2.5 mL) under N₂ protection and 2 W LED ($\lambda_{max} = 365$ nm) irradiation at room temperature for 8 h. ^{*b*}Yield of the isolated product. ^{*c*}The dr values were determined by ¹H NMR analysis. ^{*d*}The ee values were determined by UPC² on a chiral stationary phase. ^{*e*}The reaction time was 6 h.

	et Ph B1	Ni(OTf) ₂ /L ₃ -PiMe ₂ Br (x:y, 10 mol%) LiNTf ₂ (30 mol%) 2 W, 365 nm CH ₂ Cl ₂ , r.t.	O,O NH EtO ₂ C Ph C1 Ph	$0 = \frac{1}{10^{-10}} + $
Entry ^a	x:y	Yield $(\%)^b$	$\mathrm{d}\mathbf{r}^{c}$	ee (%) ^d
1	1.1:1	70	89:11	90/40
2	1:1	96	92:8	93/65
3 ^e	1:1	91	92:8	91/65
4	1:1.1	95	92:8	93/66
5	1:1.2	96	92:8	93/66

Table 10. Screen of the ratio of metal salt and ligand

^{*a*}Unless otherwise noted, the reactions were carried out with A1 (0.1 mmol), B1 (0.2 mmol), Ni(OTf)₂ (10 mol%), L₃-PiMe₂Br (10 mol%), LiNTf₂ (30 mol%) in CH₂Cl₂ (2.5 mL) under N₂ protection and 2 W LED ($\lambda_{max} = 365$ nm) irradiation at room temperature for 8 h. ^{*b*}Yield of the isolated product. ^{*c*}The dr values were determined by ¹H NMR analysis. ^{*d*}The ee values were determined by UPC² on a chiral stationary phase. ^{*e*} Ni(OTf)₂/L₃-PiMe₂Br (5 mol%).

	$D_{2Et} + P_{Ph} - P_{Ph}$	Ni(OTf) ₂ /L ₃ -PiMe ₂ Br (1:1, 10 mol%) LiNTf ₂ (30 mol%) <i>h</i> v, CH ₂ Cl ₂ , r.t.	O O O O O O O O O O O O O O O O O O O	$0 \xrightarrow{+}_{N-H} \xrightarrow{+}_{N-H} \xrightarrow{+}_{H-N} 0$ $R L_3-PiMe_2Br R$
A1	B1		C1 ^{Ph}	$R = 2,6-Me_2-4-Br-C_6H_2$
Entry ^a	Light source	Yield $(\%)^b$	dr^c	ee (%) ^d
1 <i>e</i>	2 W 365 nm (0.5 h)	10	80:20	78/11
2 ^e	2 W 365 nm (2 h)	26	81:19	77/14
3 ^e	2 W 365 nm	84	80:20	77/13
4	2 W 365 nm	96	92:8	93/65
5	2 W 385 nm	92	58:42	91/72
6	2W 400 nm	48	90:10	91/54
7 f	2W 400 nm	87	90:10	91/52
8^g	20 W 400 nm	73	88:12	91/65
9^h	20 W 420 nm	11	92:8	92/63
10^{h}	20 W 440 nm	0	-	-

Table 11. Screen of the light sources

^{*a*}Unless otherwise noted, the reactions were carried out with A1 (0.1 mmol), B1 (0.2 mmol), Ni(OTf)₂ (10 mol%), L_3 -PiMe₂Br (10 mol%), LiNTf₂ (30 mol%) in CH₂Cl₂ (2.5 mL) under N₂ protection and irradiation at room temperature for 8 h. ^{*b*}Yield of the isolated product. ^{*c*}The dr values were determined by ¹H NMR analysis. ^{*d*}The ee values were determined by UPC² on a chiral stationary phase. ^{*e*}Without LiNTf₂. ^{*f*}16 h. ^{*s*}3 h. ^{*h*}12 h.

Table 12. Screen of the conditions of produce for the synthesis of the adduct D

O S N CO ₂ Et	о — — — — В44	Ni(OTf) ₂ / Ligand (1:1, 10 mol%) 20 W, 365 nm CH ₃ CN, N ₂ , r.t.	TsOH∙ H₂O (1 equiv.) ▲ 1 h	D1
Entry ^a	Ligand	Additive	Yield (%) ^b	ee (%) ^c
1^d	L ₃ -PiMe ₂ Br	30 mol% LiNTf ₂	37	54
2	L ₃ -PiMe ₂ Br	-	70	60
3	L ₃ -PiAd	30 mol% LiNTf ₂	49	89
4	L ₃ -PiAd	-	60	90
5 ^e	L ₃ -PiAd	-	59	90

6 ^f	L ₃ -PiAd	-	56	89
7 ^g	L ₃ -PiAd	-	56	89

^{*a*}Unless otherwise noted, the reactions were carried out with A1 (0.1 mmol), B1 (0.2 mmol), Ni(OTf)₂ (10 mol%), Ligand (10 mol%) and CH₃CN (1.0 mL) under N₂ protection and 20 W LED (λ_{max} = 365 nm) irradiation at room temperature for 2 h. ^{*b*}Yield of the isolated product. ^{*c*}The ee values were determined by UPC² on a chiral stationary phase. ^{*d*}2.5 mL CH₂Cl₂ as the solvent. ^{*e*}2 W 365 nm, 24 h. ^{*f*}0.15 mmol B44. ^{*g*}0.3 mmol B44.

3.2 The possible mechanism of ring-closure reaction

3.3 Limitations of the asymmetric PEM reaction

4 Gram-scale synthesis and further transformations

4.1 Procedure for the gram-scale synthesis

2.5 mmol scale synthesis: A dry round-bottom quartz flask was charged with L₃-PiMe₂Br (173.0 mg, 10 mol%), Ni(OTf)₂ (89.2 mg, 10 mol%) under N₂ atmosphere. Then CH₂Cl₂ (62.5 mL) was added and the mixture was stirred at 35 °C for 48 hours. The mixture was evaporated under reduced pressure, then LiNTf₂ (216.8 mg), A1 (597.5 mg), B1 (1360.0 mg), 62.5 mL CH₂Cl₂ were added under N₂ protection. The mixture was degassed for 10 mins and stirred under 3.75 W UV LED × 4 (λ_{max} = 365 nm) irradiation at room temperature. After A1 was fully consumed (21 h), the residue was purified by column chromatography on silica gel to afford the product C1 as white solid (1.23 g, 96% yield, 93:7 dr, 96%/80% ee). The absolute configuration of C1 (CCDC:

2081680) was determined to be (S,R) by X-ray crystal analysis. The self-coupling product (**By1**) of the imine was obtained (52.1 mg, 3:1 dr).

5 mmol scale synthesis: A dry round-bottom quartz flask was charged with L₃-PiMe₂Br (346.0 mg, 10 mol%), Ni(OTf)₂ (178.4 mg, 10 mol%) under N₂ atmosphere. Then CH₂Cl₂ (100 mL) was added and the mixture was stirred at 35 °C for 48 hours. The mixture was evaporated under reduced pressure, then LiNTf₂ (433.6 mg), A1 (1195.0 mg), B1 (2720.0 mg), 100 mL CH₂Cl₂ were added under N₂ protection. The mixture was degassed for 10 mins and stirred under 3.75 W UV LED × 4 (λ_{max} = 365 nm) irradiation at room temperature. After A1 was fully consumed (54 h), the residue was purified by column chromatography on silica gel to afford the product C1 as white solid (2.36 g, 93% yield, 92:8 dr, 96%/83% ee).

Figure S2. Gram-scale photochemical setup

Notes: Compared with the 0.1 mmol scale synthesis using a test tube, the gram-scale synthesis was performed in a big round-bottom flask, which requires four UV LEDs to achieve full illumination of the reaction mixture (3.75 W UV LED \times 4). Moreover, The distance between UV LED and the center of reaction mixture is about 4.0 cm rather than 0.5 cm in the 0.1 mmol scale synthesis.

4.2 Transformation of the product C1

To a stirred solution of C1 (51.1 mg, 0.1 mmol, 98:2 dr, 93% ee) in MeOH (2 mL) at r.t. was added Pd/C (5% w/w Pd on carbon) (23 mg), the reaction mixture was stirred at room temperature under H₂ atmosphere for 48 h. Then, the mixture was filtered and the filtrate was concentrated under reduced pressure to give the crude product and was subsequently purified by flash column chromatography (petroleum ether : ethyl acetate: = 2:1) to afford E1 (50.2 mg) in 98% yield with 87:13 dr and 92%/82% ee. The absolute configuration of E1 (CCDC: 2130299) was determined to be (*S*,*R*,*R*) by X-ray crystal analysis.

To a solution of PPh₃ (43.4 mg, 0.166 mmol) and E1 (42.5 mg, 0.083 mmol, 87:13 dr, 92%/82% ee) in THF (2 mL), diethyl azodiformate (DEAD) (28.9 mg) was added dropwise at 0 °C. After being stirred at room temperature overnight, the mixture was evaporated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether:ethyl acetate: = 4:1) to give 21.5 mg F1 in 53% yield with 92% ee and 11.8 mg F1' in 29% yield with 92% ee. The absolute configuration of F1' (CCDC: 2171982) was determined to be (*S*,*R*,*R*) by X-ray crystal analysis. The absolute configuration of F1 was determined by NOE analysis based on the configuration of E1 and F1'.

5 Control experiments

5.1 Illumination experiments of the product C1 in different conditions

NH NH	Ni(OTf) ₂ / L₃-PiMe₂Br (1:1, 10 mol%) LiNTf ₂ (30 mol%)	NH
EtO ₂ C Ph O Ph 93:7 dr, 96%/80% ee	CH ₂ Cl ₂ , 2 W, 365 nm N ₂ , r.t.	EtO ₂ Č Ph O Ph

Entry	variation from the standard conditions	Yield (%)	dr	ee (%)
1	-	89	91:9	96/87
2	no LiNTf ₂	92	79:21	96/91
3	no LiNTf ₂ , 192 h	54	13:87	83/95
4	no Ni(OTf) ₂ /L ₃ -PiMe ₂ Br	83	92:8	96/82
5	no LiNTf ₂ and L_3 -PiMe ₂ Br	91	87:13	96/88
6	no LiNTf2 and Ni(OTf)2/L3-PiMe2Br	92	82:18	96/91
7	20 W for 45 h	54	12:88	80/95
8	no LiNTf ₂ , 20 W for 20 h	51	10:90	76/95

9	no LiNTf ₂ and Ni(OTf) ₂ /L ₃ -PiMe ₂ Br,	52	11.89	78/95
	20 W for 20 h	52	11.09	10/20
10	2 w 385 nm	74	37:63	95/93
11	20 w 385 nm	37	6:94	-/96
12	2 w 400 nm	98	90:10	96/87

Standard conditions: To a dry quartz tube under nitrogen atmosphere was added L₃-PiMe₂Br (10 mol%), Ni(OTf)₂ (10 mol%), LiNTf₂ (30 mol%) and C1 (0.1 mmol, 93:7 dr, 96%/80% ee) in CH₂Cl₂ (2.5 mL), and the mixture was stirred at 35 °C for 30 minutes. Then the resulting mixture was degassed for 10 mins and stirred under UV LED (2 W, $\lambda_{max} = 365$ nm) irradiation at room temperature for 10 h. The yield and dr values were determined by ¹H NMR analysis of the crude products, 1,1,2,2-Tetrachlorethan (1.0 equiv.) as the internal standard. The ee values were determined by UPC² on a chiral stationary phase.

We have screened other solvents (such as THF, CH_3CN , Toluene and Acetone) to reverse the diastereoselectivity, but no better result was obtained. C1 were mainly decomposed into the corresponding retro-aza-vinylogous Michael product.

5.2 Deuteration of substrate B1

Figure S4. Proton spectrum of B1 after irradiation in CH₂Cl₂/CD₃OD

Standard conditions: To a dry quartz tube under nitrogen atmosphere was added L₃-PiMe₂Br (5 mol%), Ni(OTf)₂ (5 mol%), LiNTf₂ (15 mol%), **B1** (0.2 mmol) in CH₂Cl₂/CD₃OD (2.4 mL/0.1 mL), and the mixture was stirred at 35 °C for 30 minutes. Then the resulting mixture was degassed for 10 mins and stirred under UV LED (2 W, $\lambda_{max} = 365$ nm) irradiation at room temperature for 8

h. Then the solvent was removed in vacuo, and the residue was purified by column chromatography on silica gel to afford the deuterium **B1**.

The deuteration of substrate B1 strongyl indicated a intramolecular HAT process.

5.3 Investigating the process of intermolecular hydrogen atom transfer

To a dry quartz tube under nitrogen atmosphere was added L_3 -PiMe₂Br (10 mol%), Ni(OTf)₂ (10 mol%), LiNTf₂ (30 mol%), *N*-sulfonyl cyclic ketimine A1 (0.1 mmol), B (0.2 mmol) in CH₂Cl₂ (2.5 mL), and the mixture was stirred at 35 °C for 30 minutes. Then the resulting mixture was degassed for 10 mins and stirred under UV LED (2 W, $\lambda_{max} = 365$ nm) irradiation at room temperature for 8 h. No reaction occurred when replacing benzoyl group with cyan or hydrogen atom.

6 X-ray crystal structure

Figure S5. X-ray Crystal Structure of the product C1

The crystal of product C1 was obtained in the solvents of anhydrous methanol and *n*-hexane. CCDC: 2081680 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via $\frac{https://www.ccdc.cam.ac.uk/structures/.}{https://www.ccdc.cam.ac.uk/structures/.}$

Figure S6. X-ray Crystal Structure of the product E1

The crystal of the product **E1** was obtained in the solvents of anhydrous CH_2Cl_2 and *n*-hexane. CCDC: 2130299 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via https://www.ccdc.cam.ac.uk/structures/.

(S,R,R)-**F1'**

The crystal of the product **F1'** was obtained in the solvents of anhydrous CH_2Cl_2 and petroleum ether. CCDC: 2171982 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via https://www.ccdc.cam.ac.uk/structures/.

Formula	C60 H50 N2 O10 S2	C30 H27 N O5 S	C60 H50 N2 O8 S2
Formula mass (amu)	1023.14	513.58	991.14
Space group	P 21	P 21 21 21	P 21 21 21
<i>a</i> (Å)	12.1285 (12)	9.4559 (3)	9.6145 (2)
<i>b</i> (Å)	14.0298 (14)	16.0249 (5)	18.9746 (4)
<i>c</i> (Å)	15.1633 (17)	16.2168 (5)	26.9615 (6)
α (deg)	90	90	90
β (deg)	104.928 (4)	90	90
γ (deg)	90	90	90
$V(Å^3)$	2493.1 (5)	2457.33 (13)	4918.62 (18)
Ζ	2	4	4
λ (Å)	0.71073	1.54178	1.54178
<i>T</i> (K)	173 K	173 K	175 K
$ ho_{ m calcd} ({ m g \ cm^{-3}})$	1.363	1.388	1.338
μ (mm ⁻¹)	0.172	1.526	1.476
Transmission factors	0.915-0.998	0.785-1.000	0.592-0.970
$\theta_{\rm max}({\rm deg})$	27.567	80.535	80.527
No. of unique data, including $F_0^2 < 0$	10901	4900	10276
No. of unique data, with $F_o^2 > 2\sigma(F_o^2)$	7797	4740	9982
No. of variables	677	343	651
$R(F)$ for $F_{o}^{2} > 2\sigma(F_{o}^{2})^{a}$	0.0620	0.0355	0.0319
$R_{\rm w}(F_{\rm o}^2)^{b}$	0.1180	0.0906	0.0812
Goodness of fit	1.086	1.089	1.039

Crystallographic Data for C60 H50 N2 O10 S2, C30 H27 N O5 S and C60 H50 N2 O8 S2.

^{*a*} $R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$

^b $R_{\rm w}(F_{\rm o}^2) = \left[\sum \left[w(F_{\rm o}^2 - F_{\rm c}^2)^2\right] / \sum wF_{\rm o}^4\right]^{1/2}; w^{-1} = \left[\sigma^2(F_{\rm o}^2) + (Ap)^2 + Bp\right], \text{ where } p = \left[\max(F_{\rm o}^2, 0) + 2F_{\rm c}^2\right] / 3.$

7 The analytical and spectral characterization data for the products

ethyl (S)-3-((R)-(2-benzoylphenyl)(phenyl)methyl)-2,3-dihydrobenzo[d]isothiazole-3-carbox ylate 1,1-dioxide (C1)

White solid; mp: 65-69 °C; 96% yield, 92:8 dr (determined by ¹H NMR), 93%/65% ee. $[\alpha]_{589}^{20} = -146.3$ (c = 0.70, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **IC-3**, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 7.04 min, t_{R2} = 9.17 min, t_{R3} = 10.16 min, t_{R4} = 14.78 min.

¹**H** NMR (600 MHz, CDCl₃) δ 8.13 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.62 – 7.60 (m, 1H), 7.58 – 7.56 (m, 1H), 7.54 -7.52 (m, 3H), 7.49 – 7.45 (m, 2H), 7.36 – 7.33 (m, 1H), 7.30 – 7.26 (m, 3H), 6.96-6.90 (m, 5H), 6.08 (s, 1H), 5.53 (s, 1H), 4.10 – 4.07 (m, 1H), 3.92 – 3.89 (m, 1H), 1.00 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 198.3, 169.8, 139.2, 138.0, 137.5, 136.7, 135.9, 135.0, 133.2, 133.2, 130.5, 130.2, 130.1, 129.2, 128.8, 128.2, 127.6, 127.1, 126.6, 125.9, 121.4, 72.9, 64.0, 52.7, 13.4.

ESI-HRMS: calcd for $C_{30}H_{25}NO_5SNa^+$ ([M + Na]⁺) = 534.1346, found 534.1346. **IR** (neat): 3265, 1735, 1661, 1450, 1312, 1242, 1170, 930, 710 cm⁻¹

	Retention Time	Area	% Area
1	7.032	2612008	9.82
2	9.205	2620568	9.85
3	10.140	10684355	40.15
4	15.074	10691445	40.18

	Retention Time	Area	% Area
1	7.041	267515	1.44
2	9.174	1222596	6.58
3	10.165	604869	3.26
4	14.780	16479055	88.72

ethyl (S)-3-((S)-(2-benzoylphenyl)(phenyl)methyl)-2,3-dihydrobenzo[d]isothiazole-3-carboxy late 1,1-dioxide (C1-(II))

White solid; mp: 67-71 °C; 51% yield, 10:90 dr (determined by ¹H NMR), 76%/95% ee. $[\alpha]_{589}^{28.4} = -55.6$ (c = 0.53, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IC-3, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 6.84$ min, $t_{R2} = 8.92$ min, $t_{R3} = 9.81$ min, $t_{R4} = 14.70$ min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.57 (d, *J* = 7.6 Hz, 1H), 7.52 – 7.47 (m, 3H), 7.41 - 7.39 (m, 1H), 7.34 – 7.36 (m, 2H), 7.30 – 7.26 (m, 3H), 7.25 – 7.23 (m, 2H), 7.22 – 7.18 (m, 1H), 7.16 – 7.08 (m, 2H), 7.05 – 7.03 (m, 1H), 5.98 (s, 1H), 5.91 (s, 1H), 4.09 – 3.98 (m, 2H), 1.02 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.6, 169.8, 139.1, 138.4, 137.5, 136.5, 135.5, 134.8, 133.4, 133.0, 131.5, 130.7, 130.4, 129.1, 129.0, 128.6, 128.1, 127.4, 126.3, 126.0, 121.0, 73.1, 63.8, 50.2, 13.6. **ESI-HRMS**: calcd for C₃₀H₂₅NO₅SNa⁺ ([M + Na]⁺) = 534.1346, found 534.1346. **IR** (neat): 3266, 1736, 1657, 1450, 1312, 1242, 1171, 930, 708 cm⁻¹

	Retention	Area	% Area
	Time		
1	7.032	2612008	9.82
2	9.205	2620568	9.85
3	10.140	10684355	40.15
4	15.074	10691445	40.18

	Retention	Area	% Area
	Time		
1	6.840	175822	2.45
2	8.918	6247513	87.14
3	9.809	78298	1.09
4	14.700	667674	9.31

White solid; mp: 96-100 °C ; 98% yield, 87:13 dr (determined by ¹H NMR), 86%/53% ee. $[\alpha]_{589}^{18}$ = -95.2 (c = 1.00, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IC-3, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, λ = 254 nm), retention time: t_{R1} = 7.42 min, t_{R2} = 9.72 min, t_{R3} = 10.84 min, t_{R4} = 15.95 min.

¹**H NMR** (600 MHz, CDCl₃) δ 8.14 (d, *J* = 7.8 Hz, 1H), 7.77 (d, *J* = 7.8 Hz, 1H), 7.61 – 7.50 (m, 6H), 7.45 – 7.43 (m, 1H), 7.36 – 7.30 (m, 4H), 7.03 – 7.01 (m, 2H), 6.97 – 6.94 (m, 3H), 6.00 (s, 1H), 5.50 (s, 1H), 3.51 (s, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 198.2, 170.3, 139.1, 137.8, 137.5, 136.2, 136.1, 134.9, 133.3, 130.6, 130.5, 130.2, 130.1, 129.4, 129.2, 128.3, 127.7, 127.2, 126.8, 126.0, 121.3, 73.0, 54.25, 52.5.

ESI-HRMS: calcd for $C_{29}H_{23}NO_5SNa^+$ ([M + Na]⁺) = 520.1189, found 520.1188. **IR** (neat): 3268, 1740, 1660, 1450, 1312, 1251, 1170, 930, 756, 710 cm⁻¹.

	TIME		
1	7.425	195002	3.10
2	9.720	621720	9.88
3	10.839	384207	6.10
4	15.952	5094341	80.92

isopropyl (S)-3-((R)-(2-benzoylphenyl)(phenyl)methyl)-2,3-dihydrobenzo[d]isothiazole-3-car boxylate 1,1-dioxide (C3)

White solid; mp: 67-70 °C; 99% yield, 94:6 dr (determined by ¹H NMR), 95%/57% ee. $[\alpha]_{589}^{20} = -196.6$ (c = 0.93, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **IC-3**, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 6.00$ min, $t_{R2} = 7.74$ min, $t_{R3} = 9.68$ min, $t_{R4} = 14.00$ min.
¹**H** NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.0 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.73 – 7.62 (m, 1H), 7.59 – 7.46 (m, 3H), 7.32 – 7.40 (m, 4H), 7.25 – 7.23 (m, 1H), 7.18 – 7.14 (m, 2H), 6.93 – 6.90 (m, 1H), 6.85 – 6.81 (m, 2H), 6.70 – 6.68 (m, 2H), 6.19 (s, 1H), 5.48 (s, 1H), 4.91 – 4.82 (m, 1H), 1.26 (d, J = 6.4 Hz, 3H), 0.82 (d, J = 6.4 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.7, 169.3, 139.7, 138.3, 137.5, 137.4, 135.3, 135.1, 133.3, 133.0, 130.5, 130.4, 130.2, 129.8, 128.8, 128.0, 127.8, 127.4, 127.0, 126.5, 125.5, 121.4, 72.9, 72.6, 53.4, 21.3, 20.3.

ESI-HRMS: calcd for $C_{31}H_{27}NO_5SNa^+$ ([M + Na]⁺) = 548.1502, found 548.1504. **IR** (neat): 3259, 1728, 1662, 1313, 1255, 1174, 1103, 930, 736, 710 cm⁻¹.

benzyl (S)-3-((R)-(2-benzoylphenyl)(phenyl)methyl)-2,3-dihydrobenzo[d]isothiazole-3-carbo xylate 1,1-dioxide (C4)

White solid; mp: 103-107 °C; 99% yield, 88:12 dr (determined by ¹H NMR), 88%/56% ee. $[\alpha]_{589}^{19} = -115.2$ (c = 1.01, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IC-3, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 11.17$ min, $t_{R2} = 15.06$ min, $t_{R3} = 16.17$ min, $t_{R4} = 20.82$ min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.54 – 7.48 (m, 6H), 7.44 – 7.40 (m, 1H), 7.33 – 7.22 (m, 7H), 7.06 – 7.04 (m, 2H), 6.96 – 6.91 (m, 5H), 6.02 (s, 1H), 5.64 (s, 1H), 5.11 (d, *J* = 12.0 Hz, 1H), 4.80 (d, *J* = 12.0 Hz, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.2, 169.8, 139.0, 138.1, 137.5, 136.4, 136.1, 134.8, 133.9, 133.2, 133.1, 130.6, 130.5, 130.2, 130.1, 129.6, 128.8, 128.5, 128.5, 128.5, 128.3, 128.2, 127.7, 127.1, 126.6, 126.0, 121.3, 72.8, 69.3, 52.3.

ESI-HRMS: calcd for $C_{35}H_{27}NO_5SNa^+$ ([M + Na]⁺) = 596.1502, found 596.1502. **IR** (neat): 3269, 1738, 1660, 1451, 1311, 1224, 1170, 930, 736, 707 cm⁻¹.

	Time		
1	11.172	353464	2.52
2	15.060	1220283	8.69
3	16.173	753474	5.37
4	20.820	11710319	83.42

ethyl (S)-3-((R)-(2-benzoylphenyl)(phenyl)methyl)-5-(tert-butyl)-2,3-dihydrobenzo[d]isothia zole-3-carboxylate 1,1-dioxide (C5)

C5

White solid; mp: 157-160 °C; 93% yield, 90:10 dr (determined by ¹H NMR), 91%/56% ee. $[\alpha]_{589}^{17} = -125.4$ (c = 0.98, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IC-3, CO₂/MeOH = 88/12, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 7.64$ min, $t_{R2} = 10.47$ min, $t_{R3} = 12.22$ min, $t_{R4} = 16.65$ min.

¹**H** NMR (600 MHz, CDCl₃) δ 8.14 (d, *J* = 8.4 Hz, 1H), 7.71 (s, 1H), 7.60 – 7.55 (m, 3H), 7.51 – 7.49 (m, 1H), 7.44 (s, 2H), 7.35 – 7.29 (m, 4H), 6.95 – 6.89 (m, 5H), 5.97 (s, 1H), 5.45 (s, 1H), 4.09 – 4.07 (m, 1H), 3.80 – 3.62 (m, 1H), 1.30 (s, 9H), 1.03 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 198.3, 169.9, 157.3, 139.3, 137.8, 137.6, 136.4, 136.3, 133.2, 132.2, 130.6, 130.0, 130.0, 129.3, 128.3, 127.6, 127.6, 127.0, 126.8, 123.0, 120.9, 72.9, 63.7, 52.6, 35.3, 31.0, 13.5.

ESI-HRMS: calcd for $C_{34}H_{33}NO_5SNa^+$ ([M + Na]⁺) = 590.1972, found 590.1973. **IR** (neat): 3269, 2964, 1735, 1662, 1597, 1312, 1242, 1199, 1152, 1107, 1031, 930, 712 cm⁻¹.

	Retention Time	Area	% Area
1	7.797	3034119	10.94
2	10.584	2957079	10.67
3	12.180	10899662	39.31
4	16.961	10833305	39.08

ethyl (S)-3-((R)-(2-benzoylphenyl)(phenyl)methyl)-5-methoxy-2,3-dihydrobenzo[d]isothiazol e-3-carboxylate 1,1-dioxide (C6)

White solid; mp: 90-93 °C; 80% yield, 84:16 dr (determined by ¹H NMR), 93%/60% ee. $[\alpha]_{589}^{18} =$ -157.5 (c = 0.87, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IC-3, CO₂/MeOH = 80/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 6.18$ min, $t_{R2} = 6.89$ min, $t_{R3} =$ 8.60 min, $t_{R4} = 10.61$ min.

¹**H NMR** (600 MHz, CDCl₃) δ 8.10 (d, J = 7.8 Hz, 1H), 7.56 – 7.53 (m, 3H), 7.49 – 7.46 (m, 1H), 7.43 – 7.42 (m, 1H), 7.34 – 7.32 (m, 1H), 7.29 – 7.27 (m, 3H), 7.22 – 7.22 (m, 1H), 6.98 – 6.93 (m, 6H), 6.03 (s, 1H), 5.46 (s, 1H), 4.09 – 4.06 (m, 1H), 3.89 – 3.84 (m, 4H), 1.00 (t, J = 7.2 Hz, 3H). ¹³C{¹H} **NMR** (151 MHz, CDCl₃) δ 198.3, 169.7, 163.5, 139.3, 139.2, 138.0, 137.6, 136.1, 133.2, 130.5, 130.1, 130.0, 129.3, 128.9, 128.2, 127.7, 127.1, 126.7, 122.7, 127.3, 117.0, 110.0, 72.5, 63.9, 55.9, 52.6, 13.4.

ESI-HRMS: calcd for $C_{31}H_{27}NO_6SNa^+$ ([M + Na]⁺) = 564.1451, found 564.1451. **IR** (neat):3267, 1735, 1661, 1596, 1287, 1250, 1186, 930, 711 cm⁻¹.

	Retention Time	Area	% Area
1	6.195	158799	14.85
2	6.913	157687	14.75
3	8.608	376283	35.20
4	10.709	376316	35.20

	Retention Time	Area	% Area
1	6.184	535179	3.28
2	6.894	2141928	13.11
3	8.602	484950	2.97
4	10.608	13169840	80.64

ethyl (S)-3-((R)-(2-benzoylphenyl)(phenyl)methyl)-5-(trifluoromethoxy)-2,3-dihydrobenzo[d]i sothiazole-3-carboxylate 1,1-dioxide (C7)

White solid; mp: 73-76 °C; 87% yield, 80:20 dr (determined by ¹H NMR), 75%/60% ee. $[\alpha]_{589}^{19} =$ -147.0 (c = 0.93, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **OX-3**, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 5.28 min, t_{R2} = 6.14 min, t_{R3} = 7.01 min, t_{R4} = 10.21 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.0 Hz, 1H), 7.62 – 7.53 (m, 5H), 7.50 – 7.46 (m, 1H), 7.36 – 7.27 (m, 5H), 7.02 – 6.89 (m, 5H), 6.10 (s, 1H), 5.43 (s, 1H), 4.12 – 4.07 (m, 1H), 3.91 – 3.83 (m, 1H), 1.02 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.2, 169.1, 152.4 (q, *J* = 1.9), 139.2, 137.5, 137.3, 135.6, 133.3, 130.6, 130.3, 130.1, 130.0, 129.4, 128.93, 129.0,128.9, 128.3, 127.9, 127.4, 126.9, 123.4, 123.3, 118.30, 72.5, 64.4, 52.6, 13.3.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -57.89.

ESI-HRMS: calcd for $C_{31}H_{24}F_3NO_5SNa^+$ ([M + Na]⁺) = 618.1169, found 618.1168. **IR** (neat): 3265, 1739, 1661, 1255, 1213, 1180, 736, 709 cm⁻¹.

	Retention Time	Area	% Area
1	5.082	1204017	13.89
2	5.905	3136417	36.18
3	6.677	1138982	13.14
4	9.660	3190330	36.80

	Retention Time	Area	% Area
1	5.156	477406	4.14
2	5.991	1154894	10.02
3	6.809	1889407	16.39
4	9.879	8003806	69.44

ethyl (S)-3-((R)-(2-benzoylphenyl)(phenyl)methyl)-5-fluoro-2,3-dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (C8)

White solid; mp: 96-99 °C; 87% yield, 85:15 dr (determined by ¹H NMR), 87%/57% ee. $[\alpha]_{589}^{20} =$ -129.7 (c = 0.86, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **IC-3**, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 5.04 min, t_{R2} = 5.55 min, t_{R3} = 6.03 min, t_{R4} = 7.47 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.0 Hz, 1H), 7.57 – 7.48 (m, 6H), 7.36 – 7.32 (m, 1H), 7.31 – 7.26 (m, 3H), 7.18 – 7.13 (m, 1H), 7.00 – 6.91 (m, 5H), 6.11 (s, 1H), 5.46 (s, 1H), 4.12 – 4.07 (m, 1H), 3.97 – 3.89 (m, 1H), 1.00 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.2, 169.3, 165.4 (d, *J* = 256.5 Hz), 139.9 (d, *J* = 9.4 Hz), 139.2, 137.7, 137.4, 135.7, 133.3, 131.1 (d, *J* = 2.6 Hz), 130.6, 130.2, 130.1, 129.3, 128.7, 128.2, 127.8, 127.3, 126.8, 123.6 (d, *J* = 10.0 Hz), 118.7 (d, *J* = 24.3 Hz), 112.9 (d, *J* = 24.9 Hz), 72.5, 72.4, 64.3, 52.7, 13.4.

¹⁹**F**{¹**H**} **NMR** (377 MHz, CDCl₃) δ -103.13.

ESI-HRMS: calcd for $C_{30}H_{24}FNO_5SNa^+$ ([M + Na]⁺) = 552.1251, found 552.1251. **IR** (neat): 3263, 1737, 1661, 1594, 1314, 1239, 1179, 929, 711 cm⁻¹.

ethyl (S)-3-((R)-(2-benzoylphenyl)(phenyl)methyl)-5,6-dimethoxy-2,3-dihydrobenzo[d]isothi azole-3-carboxylate 1,1-dioxide (C9)

9216315

79.27

4

7.468

White solid; mp: 107-110 °C; 93% yield, 85:15 dr (determined by 1H NMR), 94%/60% ee. $[\alpha]_{589}^{19} = -153.8$ (c = 1.00, in CH2Cl2), dissolved in MeOH for UPC² (Daicel Chiralcel IC-3, CO2/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 6.98$ min, $t_{R2} = 9.36$ min, $t_{R3} = 10.25$ min, $t_{R4} = 15.26$ min.

¹**H** NMR (600 MHz, CDCl3) δ 8.09 (d, J = 7.8 Hz, 1H), 7.58 – 7.53 (m, 3H), 7.49 – 7.47 (m, 1H), 7.35 – 7.32 (m, 1H), 7.30 – 7.25 (m, 4H), 7.09 (s, 1H), 6.99 – 6.95 (m, 4H), 6.90 (s, 1H), 5.99 (s, 1H), 5.45 (s, 1H), 4.09 – 4.06 (m, 1H), 3.93 (s, 3H), 3.84 – 3.83 (m, 4H), 1.01 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl3) δ 198.4, 169.9, 153.4, 151.2, 139.2, 137.9, 137.7, 136.2, 133.1, 130.6, 130.0, 129.7, 129.4, 129.0, 128.2, 127.7, 127.1, 127.1, 126.7, 106.4, 101.9, 72.3, 63.7, 56.4, 56.2, 52.3, 13.5.

ESI-HRMS: calcd for $C_{32}H_{29}NO_7SNa^+$ ([M + Na]⁺) = 594.1557, found 594.1562. **IR** (neat): 3270, 1734, 1661, 1594, 1501, 1283, 1243, 1151, 931, 859, 712 cm⁻¹.

	Time		
1	6.982	366137	3.16
2	9.357	1393047	12.02
3	10.249	289432	2.50
4	15.263	9540983	82.32

ethyl (S)-3-((R)-(2-benzoylphenyl)(phenyl)methyl)-6-methyl-2,3-dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (C10)

White solid; mp: 89-93 °C; 91% yield, 90:10 dr (determined by ¹H NMR), 94%/63% ee. $[\alpha]_{589}^{19} =$ -141.0 (c = 0.90, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel **OX-3**, CO₂/MeOH = 80/20, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 5.38 min, t_{R2} = 7.38 min, t_{R3} = 9.89 min, t_{R4} = 18.72 min.

¹**H** NMR (600 MHz, CDCl₃) δ 8.11 (d, J = 7.8 Hz, 1H), 7.70 (d, J = 7.8 Hz, 1H), 7.57 – 7.54 (m, 1H), 7.53 – 7.51 (m, 2H), 7.48 – 7.45 (m, 1H), 7.40 – 7.39 (m, 1H), 7.34 – 7.32 (m, 2H), 7.28 – 7.25 (m, 3H), 6.96 – 6.90 (m, 5H), 6.06 (s, 1H), 5.48 (s, 1H), 4.07 – 4.04 (m, 1H), 3.89 – 3.86 (m, 1H), 2.35 (s, 3H), 0.98 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 198.3, 170.0, 141.3, 139.2, 138.1, 137.5, 136.1, 135.0, 134.4, 133.9, 133.2, 130.9, 130.2, 130.1, 129.2, 128.8, 128.1, 127.6, 127.0, 126.6, 125.5, 121.3, 72.7, 63.9, 52.6, 21.1, 13.4.

ESI-HRMS: calcd for $C_{31}H_{27}NO_5SNa^+$ ([M + Na]⁺) = 548.1502, found 548.1503. **IR** (neat): 3266, 1734, 1661, 1449, 1312, 1245, 1162, 930, 712 cm⁻¹.

	Retention Time	Area	% Area
1	5.382	153286	1.85
2	7.385	227896	2.75
3	9.887	673131	8.11
4	18.723	7240677	87.29

ethyl (S)-3-((R)-(2-benzoylphenyl)(phenyl)methyl)-7-fluoro-2,3-dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (C11)

White solid; mp: 91-95 °C; 91% yield, 85:15 dr (determined by ¹H NMR), 85%/59% ee. $[\alpha]_{589}^{17} =$ -127.5 (c = 0.90, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IC-3, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 7.21$ min, $t_{R2} = 9.90$ min, $t_{R3} =$ 12.21 min, $t_{R4} = 18.93$ min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (d, J = 8.0 Hz, 1H), 7.66 – 7.64 (m, 1H), 7.62 – 7.54 (m, 2H), 7.52 – 7.47 (m, 3H), 7.34 – 7.32 (m, 1H), 7.29 – 7.25 (m, 3H), 7.11 – 7.08 (m, 1H), 7.01 – 6.88 (m, 5H), 6.19 (s, 1H), 5.52 (s, 1H), 4.11 – 4.06 (m, 1H), 3.94 – 3.90 (m, 1H), 0.99 (t, J = 7.2 Hz, 3H). ¹³C{¹H} **NMR** (101 MHz, CDCl₃) δ 198.3, 196.4, 156.0 (d, J = 262.6 Hz), 140.0, 139.2, 137.8, 137.4, 135.6, 135.6, 133.2, 130.5, 130.2, 130.0, 129.3, 128.6, 128.2, 127.8, 127.3, 126.7, 123.3 (d, J = 19.8 Hz) 121.5 (d, J = 4.1 Hz), 117.2 (d, J = 18.3 Hz), 73.03, 64.25, 52.72, 13.35.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -114.55.

ESI-HRMS: calcd for $C_{30}H_{24}FNO_5SNa^+$ ([M + Na]⁺) = 552.1251, found 552.1251. **IR** (neat): 3258, 1736, 1661, 1596, 1472, 1320, 1262, 1226, 1179, 1113, 1020, 928, 760, 708 cm⁻¹.

	Retention Time	Area	% Area
1	7.288	1761337	12.99
2	9.943	1764755	13.02
3	12.289	5016990	37.01
4	18.743	5011288	36.97

	Retention Time	Area	% Area
1	7.214	336764	3.07
2	9.901	1331008	12.15
3	12.210	694387	6.34
4	18.930	8597076	78.45

ethyl (S)-3-((R)-(2-benzoylphenyl)(phenyl)methyl)-7-chloro-2,3-dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (C12)

White solid; mp: 85-89 °C; 87% yield, 90:10 dr (determined by ¹H NMR), 86%/58% ee. $[\alpha]_{589}^{16} =$ -105.7 (c = 0.76, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **IC-3**, CO₂/MeOH = 70/30, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 3.84 min, t_{R2} = 5.38 min, t_{R3} = 5.88 min, t_{R4} = 11.39 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.58 – 7.46 (m, 5H), 7.39 – 7.32 (m, 2H), 7.30 – 7.26 (m, 3H), 7.00 – 6.92 (m, 5H), 6.17 (s, 1H), 5.54 (s, 1H), 4.09 – 4.02 (m, 1H), 3.94 – 3.83 (m, 1H), 0.98 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.3, 169.4, 139.3, 139.1, 137.8, 137.4, 135.6, 134.2, 133.2, 133.0, 131.2, 130.6, 130.1, 130.1, 129.3, 128.9, 128.7, 128.2, 127.8, 127.4, 126.7, 124.2, 72.0, 64.2, 52.4, 13.3.

ESI-HRMS: calcd for $C_{30}H_{24}{}^{35}ClNO_5SNa^+$ ([M + Na]⁺) = 568.0956, found 568.0957. $C_{30}H_{24}{}^{37}ClNO_5SNa^+$ ([M + Na]⁺) = 570.0926, found 570.0933

IR (neat): 3258, 1735, 1661, 1593, 1452, 1318, 1257, 1224, 1173, 1114, 931, 755, 710 cm⁻¹.

	Retention Time	Area	% Area
1	3.839	195462	2.16
2	5.378	573108	6.33
3	5.885	733366	8.10
4	11.387	7548704	83.41

ethyl (*S*)-3-((*R*)-(2-benzoylphenyl)(phenyl)methyl)-7-(trifluoromethyl)-2,3-dihydrobenzo[*d*]i sothiazole-3-carboxylate 1,1-dioxide (C13)

White solid; mp: 86-89 °C; 92% yield, 81:19 dr (determined by ¹H NMR), 67%/57% ee. $[\alpha]_{589}^{19} =$ -89.1 (c = 0.94, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **IC-3**, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 3.87 min, t_{R2} = 5.59 min, t_{R3} = 6.26 min, t_{R4} = 12.85 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.4 Hz, 2H), 7.76 – 7.70 (m, 2H), 7.57 – 7.48 (m, 4H), 7.37 – 7.27 (m, 6H), 6.96 – 6.93 (m, 4H), 5.60 (s, 1H), 4.11 – 4.03 (m, 1H), 3.95 – 3.87 (m, 1H), 0.98 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.3, 169.3, 139.0, 137.7, 137.4, 135.6, 133.4, 133.3, 130.6, 130.1, 130.1, 129.9, 129.4, 128.9, 128.8, 128.7, 128.4 (q, *J* = 4.4), 128.2, 127.9, 127.4, 126.8, 122.0 (q, *J* = 275.4 Hz) 72.3, 64.3, 52.5, 13.3.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -59.59.

ESI-HRMS: calcd for $C_{31}H_{24}F_{3}NO_{5}SNa^{+}([M + Na]^{+}) = 602.1219$, found 602.1221. **IR** (neat): 3255, 1736, 1660, 1447, 1386, 1322, 1261, 1229, 1177, 1141, 931, 709 cm⁻¹.

ethyl (S)-3-((R)-(2-benzoylphenyl)(phenyl)methyl)-2,3-dihydronaphtho[2,3-d]isothiazole-3-c arboxylate 1,1-dioxide (C14)

1689377

7717333

14.78

67.52

3

4

6.262

12.852

White solid; mp: 103-108 °C; 77% yield, 87:13 dr (determined by ¹H NMR), 80%/37% ee. $[\alpha]_{589}^{18} = -114.1$ (c = 0.80, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IC-3, CO₂/MeOH = 80/20, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 7.25$ min, $t_{R2} = 10.46$ min, $t_{R3} = 12.55$ min, $t_{R4} = 22.42$ min.

¹**H** NMR (600 MHz, CDCl₃) δ 8.23 – 8.15 (m, 2H), 8.03 (d, *J* = 9.0 Hz, 1H), 7.87 – 7.84 (m, 2H), 7.61 – 7.54 (m, 5H), 7.49 – 7.46 (m, 1H), 7.36 – 7.34 (m, 1H), 7.31 – 7.27 (m, 3H), 7.01 – 7.00 (m, 2H), 6.89 – 6.85 (m, 3H), 6.24 (s, 1H), 5.67 (s, 1H), 4.10 – 4.05 (m, 1H), 3.92 – 3.87 (m, 1H), 0.99 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 198.4, 169.8, 139.2, 138.1, 137.5, 136.0, 135.6, 134.2, 133.6, 133.2, 130.7, 130.6, 130.1, 130.1, 129.3, 129.1, 129.0, 128.3, 128.2, 128.2, 127.7, 127.1, 126.7, 124.9, 123.2, 121.3, 72.8, 64.0, 51.9, 13.4.

ESI-HRMS: calcd for $C_{34}H_{27}NO_5SNa^+$ ([M + Na]⁺) = 584.1502, found 584.1501. **IR** (neat): 3264, 1735, 1661, 1131, 1249, 1165, 1017, 931, 758, 707 cm⁻¹.

	Retention	Area	% Area
	Time		
1	7.248	1216996	4.05
2	10.463	2561834	8.53
3	12.553	2760507	9.19
4	22.419	23498890	78.23

ethyl (*S*)-3-((*R*)-(2-(2-methylbenzoyl)phenyl)(phenyl)methyl)-2,3-dihydrobenzo[*d*]isothiazole -3-carboxylate 1,1-dioxide (C15)

White solid; mp: 143-147 °C; 81% yield, 90:10 dr (determined by ¹H NMR), 63%/61% ee. $[\alpha]_{589}^{18} = -112.4$ (c = 0.82, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IC-3, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 7.78$ min, $t_{R2} = 9.39$ min, $t_{R3} = 11.38$ min, $t_{R4} = 16.37$ min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.67 – 7.64 (m, 1H), 7.58 – 7.53 (m, 2H), 7.51 – 7.46 (m, 1H), 7.33 – 7.26 (m, 3H), 7.23 – 7.19 (m, 2H), 6.99 – 6.97 (m, 1H), 6.95 – 6.89 (m, 3H), 6.88 – 6.80 (m, 3H), 6.10 (s, 1H), 5.82 (s, 1H), 4.15 – 4.09 (m, 1H), 4.06 – 4.00 (m, 1H), 2.37 (s, 3H), 1.03 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 200.6, 169.9, 140.1, 138.5, 138.3, 137.0, 135.6, 135.1, 133.3, 131.5, 131.4, 131.0, 130.5, 130.5, 130.3, 128.6, 127.6, 127.1, 126.9, 125.8, 125.2, 121.4, 73.1, 64.0, 52.5, 20.6, 13.4.

ESI-HRMS: calcd for $C_{31}H_{27}NO_5SNa^+$ ([M + Na]⁺) = 548.1502, found 548.1501. **IR** (neat): 3264, 1734, 1661, 1452, 1303, 1245, 1170, 1033, 927, 735, 703 cm⁻¹.

3	11.443	4535293	41.87
4	16.661	4500254	41.55

ethyl (S)-3-((R)-(2-(4-methoxybenzoyl)phenyl)(phenyl)methyl)-2,3-dihydrobenzo[d]isothiazo le-3-carboxylate 1,1-dioxide (C16)

White solid; mp: 96-100 °C; 78% yield, 84:16 dr (determined by ¹H NMR), 78%/42% ee. $[\alpha]_{589}^{18}$ = -94.3 (c = 0.46, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel **OX-3**, CO₂/MeOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm), retention time: t_{R1} = 5.97 min, t_{R2} = 8.45 min, t_{R3} = 9.51 min, t_{R4} = 17.93 min.

¹**H** NMR (600 MHz, CDCl₃) δ 8.09 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.62 – 7.59 (m, 1H), 7.56 – 7.51 (m, 2H), 7.48 – 7.44 (m, 3H), 7.34 – 7.31 (m, 1H), 7.27 – 7.25 (m, 1H), 6.96 – 6.92 (,, 1H), 6.90 – 6.89 (m, 4H), 6.69 (d, J = 8.4 Hz, 2H), 6.09 (s, 1H), 5.43 (s, 1H), 4.08 – 4.04 (m, 1H), 3.92 – 3.87 (m, 1H), 3.78 (s, 3H), 1.00 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.9, 169.8, 163.6, 139.8, 137.5, 136.8, 136.0, 135.0, 133.2, 132.4, 130.5, 130.2, 130.1, 129.1, 128.8, 128.7, 127.6, 127.0, 126.7, 125.9, 121.4, 113.3, 73.0, 64.0, 55.4, 53.0, 13.4.

ESI-HRMS: calcd for $C_{31}H_{27}NO_6SNa^+$ ([M + Na]⁺) = 564.1451, found 564.1453. **IR** (neat): 3263, 1734, 1653, 1597, 1311, 1256, 1173, 1027, 931, 850, 756, 701 cm⁻¹.

	Retention	Area	% Area
	Time		
1	5.972	246129	4.24
2	8.452	543208	9.37
3	9.509	583908	10.07
4	17.927	4426389	76.32

ethyl (S)-3-((R)-(2-(3-fluorobenzoyl)phenyl)(phenyl)methyl)-2,3-dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (C17)

Colorless oil; 99% yield, 79:21 dr (determined by ¹H NMR), 93%/61% ee. $[\alpha]_{589}^{18} = -132.6$ (c = 1.02, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel **OX-3**, CO₂/MeOH = 85/15,

flow rate = 1.5 mL/min, λ = 254 nm), retention time: t_{R1} = 4.93 min, t_{R2} = 6.62 min, t_{R3} = 7.31 min, t_{R4} = 10.45 min.

¹**H NMR** (600 MHz, CDCl₃) δ 8.11 (d, J = 7.8 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.66 – 7.60 (m, 1H), 7.59 – 7.56 (m, 1H), 7.53 – 7.52 (m, 1H), 7.48 – 7.46 (t, J = 7.5 Hz, 1H), 7.37 – 7.34 (m, 1H), 7.29 – 7.23 (m, 3H), 7.20 – 7.17 (m, 2H), 7.16 – 7.13 (m, 1H), 6.97 – 6.93 (m, 1H), 6.92 – 6.84 (m, 4H), 6.10 (s, 1H), 5.46 (s, 1H), 4.13 – 4.07 (m, 1H), 3.99 – 3.94 (m, 1H), 1.02 (t, J = 7.2 Hz, 3H). ¹³C{¹H} **NMR** (151 MHz, CDCl₃) δ 197.0, 169.8, 162.3 (d, J = 248.5 Hz), 139.5 (d, J = 6.2 Hz), 138.8, 138.2, 136.7, 135.6, 135.1, 133.3, 130.7, 130.6, 130.3, 129.8 (d, J = 7.6 Hz), 129.0, 128.6, 127.6, 127.2, 126.8, 126.0 (d, J = 2.7 Hz), 125.7, 121.4, 120.2 (d, J = 21.4 Hz), 116.3 (d, J = 22.6 Hz), 72.87, 64.02, 53.04, 13.40.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ -111.93.

ESI-HRMS: calcd for $C_{30}H_{24}FNO_5SNa^+$ ([M + Na]⁺) = 552.1251, found 552.1249. **IR** (neat): 3265, 1735, 1665, 1587, 1447, 1373, 1297, 1241, 1170,1135, 1033, 892, 754, 703 cm⁻¹.

7913600

76.10

4

10.454

ethyl (S)-3-((R)-(2-(4-fluorobenzoyl)phenyl)(phenyl)methyl)-2,3-dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (C18)

C18

White solid; mp: 70-73 °C; 90% yield, 89:11 dr (determined by ¹H NMR), 93%/67% ee. $[\alpha]_{589}^{18} =$ -140.5 (c = 0.43, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **IC-3**, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 4.86 min, t_{R2} = 6.24 min, t_{R3} = 7.45 min, t_{R4} = 10.12 min.

¹**H** NMR (600 MHz, CDCl₃) δ 8.10 (d, J = 7.8 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.64 – 7.62 (m, 1H), 7.58 – 7.55 (m, 1H), 7.53 – 7.52 (m, 1H), 7.49 – 7.46 (m, 3H), 7.36 – 7.33 (m, 1H), 7.25 – 7.24 (m, 1H), 6.96 – 6.94 (m, 1H), 6.90 – 6.87 (m, 4H), 6.85 – 6.83 (m, 2H), 6.11 (s, 1H), 5.42 (s, 1H), 4.12 – 4.06 (m, 1H), 3.98 – 3.93 (m, 1H), 1.01 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.8, 169.8, 165.7 (d, J = 255.6 Hz), 139.2, 137.9, 136.8, 135.6, 135.0, 133.7 (d, J = 2.7 Hz), 133.3, 132.6(d, J = 9.7 Hz), 130.6, 130.5, 130.3, 128.7, 128.6, 127.6, 127.2, 126.8, 125.7, 121.4, 115.3 (d, J = 21.9 Hz), 72.9, 64.0, 53.1, 13.4.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ -104.41.

ESI-HRMS: calcd for $C_{30}H_{24}FNO_5SNa^+$ ([M + Na]⁺) = 552.1251, found 552.1249. **IR** (neat): 3264, 1734, 1662, 1596, 1308, 1237, 1169, 931, 855, 756, 702 cm⁻¹.

	Time	Area	% Area
1	4.858	459570	1.83
2	6.235	2337475	9.32
3	7.450	777029	3.10
4	10.117	21515912	85.75

ethyl (S)-3-((R)-(2-(4-chlorobenzoyl)phenyl)(phenyl)methyl)-2,3-dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (C19)

C19

White solid; mp: 77-81 °C; 92% yield, 84:16 dr (determined by ¹H NMR), 95%/75% ee. $[\alpha]_{589}^{17} =$ -139.5 (c = 0.91, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **IC-3**, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 6.67 min, t_{R2} = 8.74 min, t_{R3} = 10.93 min, t_{R4} = 14.77 min.

¹**H** NMR (600 MHz, CDCl₃) δ 8.10 (d, J = 7.8 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.65 – 7.62 (m, 1H), 7.58 – 7.56 (m, 1H), 7.53 – 5.52 (m, 1H), 7.48 – 7.46 (m, 1H), 7.40 – 7.38 (m, 2H), 7.36 – 7.34 (m, 1H), 7.25 – 7.24 (m, 1H), 7.19 – 7.18 (m, 2H), 6.97 – 6.95 (m, 1H), 6.91 – 6.88 (m, 2H), 6.84 – 6.82 (m, 2H), 6.10 (s, 1H), 5.42 (s, 1H), 4.12 – 4.06 (m, 1H), 3.99 – 3.93 (m, 1H), 1.02 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 197.3, 169.9, 139.8, 139.1, 138.1, 136.8, 135.8, 135.6, 135.1, 133.4, 131.3, 130.7, 130.7, 130.3, 128.9, 128.7, 128.5, 127.7, 127.3, 126.7, 125.8, 121.5, 72.9, 64.1, 53.2, 13.5

ESI-HRMS: calcd for $C_{30}H_{24}{}^{35}ClNO_5SNa^+$ ([M + Na]⁺) = 568.0956, found 568.0958. $C_{30}H_{24}{}^{37}ClNO_5SNa^+$ ([M + Na]⁺) = 570.0926, found 570.0933

IR (neat): 3264, 1735, 1662, 1586, 1309, 1242, 1171, 1091, 929, 754, 705 cm⁻¹.

	Retention	Area	% Area
	Time		
1	6.610	738665	17.16
2	8.767	746213	17.34
3	10.934	1412977	32.83
4	14.953	1405550	32.66

	Retention Time	Area	% Area
1	6.671	508972	2.01
2	8.741	3511775	13.84
3	10.933	533469	2.10
4	14.774	20819904	82.05

ethyl (S)-3-((R)-phenyl(2-(4-(trifluoromethyl)benzoyl)phenyl)methyl)-2,3-dihydrobenzo[d]is othiazole-3-carboxylate 1,1-dioxide (C20)

C20

White solid; mp: 63-67 °C; 85% yield, 74:26 dr (determined by ¹H NMR), 92%/52% ee. $[\alpha]_{589}^{19} =$ -131.6 (c = 1.08, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IC-3, CO₂/MeOH =

85/15, flow rate = 1.5 mL/min, λ = 254 nm), retention time: t_{R1} = 2.67 min, t_{R2} = 3.45 min, t_{R3} = 4.36 min, t_{R4} = 5.43 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.67 – 7.62 (m, 1H), 7.62 – 7.57 (m, 1H), 7.56 – 7.52 (m, 3H), 7.47 – 7.46 (m, 2H), 7.39 – 7.36 (m, 1H), 7.27 – 7.25 (m, 2H), 6.97 – 6.93 (m, 1H), 6.89 – 6.85 (m, 2H), 6.79 – 6.77 (m, 2H), 6.11 (s, 1H), 5.41 (s, 1H), 4.15 – 4.07 (m, 1H), 4.04 – 3.98 (m, 1H), 1.03 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.5, 169.8, 140.2, 138.7, 138.2, 136.7, 135.4, 135.1, 134.3 (q, *J* = 32.9 Hz), 133.3, 131.0, 130.6, 130.3, 130.1, 129.0, 128.6, 128.6, 127.6, 127.3, 126.9, 125.6, 125.1 (q, J = 3.7 Hz), 121.5, 72.8, 64.1, 53.3, 13.4.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -63.21.

ESI-HRMS: calcd for $C_{31}H_{24}F_3NO_5SNa^+$ ([M + Na]⁺) = 602.1219, found 602.1221. **IR** (neat): 3265, 1735, 1670, 1324, 1242, 1170, 1132, 1066, 931, 858, 757, 707 cm⁻¹.

3624281

44.06

4

5.429

	Retention	Area	% Area
	Time		
1	2.669	519492	6.29
2	3.450	1639819	19.85
3	4.360	272554	3.30
4	5.428	5827274	70.56

ethyl (S)-3-((R)-(2-(4-cyanobenzoyl)phenyl)(phenyl)methyl)-2,3-dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (C21)

White solid; mp: 105-107 °C; 65% yield, 87:13 dr (determined by ¹H NMR), 41%/45% ee. $[\alpha]_{589}^{18} = -33.6$ (c = 0.68, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IC-3, CO₂/MeOH = 80/20, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 8.70$ min, $t_{R2} = 10.09$ min, $t_{R3} = 10.93$ min, $t_{R4} = 14.77$ min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.0 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.60 – 7.56 (m, 3H), 7.49 (s, 1H), 7.46 – 7.42 (m, 3H), 7.40 – 7.38 (m, 2H), 7.29 – 7.27 (d, *J* = 4.4 Hz, 1H), 7.24 – 7.21 (m, 2H), 7.19 – 7.12 (m, 2H), 6.98 – 6.96 (m, 1H), 5.99 (s, 1H), 5.93 (s, 1H), 4.08 – 4.00 (m, 2H), 1.02 (t, *J* = 7.2 Hz, 3H)..

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.0, 169.6, 140.6, 138.7, 137.1, 136.8, 135.6, 135.0, 133.3, 131.8, 131.4, 130.5, 130.5, 129.0, 128.8, 128.7, 127.6, 126.3, 126.2, 121.2, 117.8, 116.1, 72.9, 63.9, 50.0, 13.6.

ESI-HRMS: calcd for $C_{31}H_{24}N_2O_5SNa^+$ ([M + Na]⁺) = 559.1298, found 559.1300. **IR** (neat): 3262, 1737, 1665, 1311, 1242, 1170, 930, 857, 755, 706 cm⁻¹.

	Retention Time	Area	% Area
1	8.751	1513637	16.47
2	10.178	1529577	16.64
3	12.186	3022902	32.89
4	16.240	3123597	33.99

ethyl (S)-3-((R)-phenyl(2-(thiophene-2-carbonyl)phenyl)methyl)-2,3-dihydrobenzo[d]isothia zole-3-carboxylate 1,1-dioxide (C22)

C22

White solid; mp: 95-98 °C; 42% yield, 75:25 dr (determined by ¹H NMR), 73%/12% ee. $[\alpha]_{589}^{18} =$ -110.8 (c = 0.23, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **OX-3**, CO₂/MeOH = 80/20, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 6.78 min, t_{R2} = 9.29 min, t_{R3} = 11.36min, t_{R4} = 21.62 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 7.6 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.66 – 7.62 (m, 2H), 7.56 – 7.52 (m, 2H), 7.50 – 7.47 (m, 1H), 7.45 – 7.42 (m, 1H), 7.38 – 7.34 (m, 1H), 7.24 – 7.20 (m, 1 H), 7.02 – 7.00 (m, 1H), 6.95 – 6.92 (m, 3H), 6.87 – 6.85 (m, 1H), 6.08 (s, 1H), 5.55 (s, 1H), 4.08 – 4.03 (m, 1H), 3.87 – 3.79 (m, 1H), 0.98 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 190.1, 169.9, 144.7, 139.0, 137.8, 136.7, 136.2, 135.0, 133.3, 130.7, 130.6, 130.2, 129.0, 128.9, 128.8, 128.6, 128.0, 127.7, 127.2, 126.8, 126.0, 121.4, 73.0, 64.0, 52.7, 13.4.

ESI-HRMS: calcd for $C_{28}H_{23}NO_5S_2Na^+$ ([M + Na]⁺) = 540.0910, found 540.0908. **IR** (neat): 3266, 1735, 1637, 1411, 1298, 1239, 1170, 1035, 853, 753, 728 cm⁻¹.

	Retention Time	Area	% Area
1	6.785	361423	10.88
2	9.286	335219	10.09
3	11.365	466392	14.04
4	21.616	2158189	64.98

ethyl (S)-3-((R)-(2-benzoyl-5-methylphenyl)(phenyl)methyl)-2,3-dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (C23)

White solid; mp: 94-96 °C; 86% yield, 88:12 dr (determined by ¹H NMR), 77%/37% ee. $[\alpha]_{589}^{18} =$ -113.4 (c = 0.77, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **IC-3**, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 6.22 min, t_{R2} = 6.79 min, t_{R3} = 9.33 min, t_{R4} = 11.98 min.

¹**H** NMR (600 MHz, CDCl₃) δ 7.92 (s, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.61 – 7.58 (m, 1H), 7.56 – 7.53 (m, 3H), 7.49 – 7.44 (m, 2H), 7.31 – 7.28 (m, 2H), 7.21 – 7.19 (m, 1H), 7.13 – 7.12 (m, 1H), 7.02 – 7.01 (m, 2H), 6.97 – 6.92 (m, 3H), 6.08 (s, 1H), 5.62 (s, 1H), 4.10 – 4.04 (m, 1H), 3.89 – 3.83 (m, 1H), 2.49 (s, 3H), 0.97 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 198.3, 169.9, 141.07, 138.4, 138.0, 136.7, 136.2, 136.2, 135.0, 133.2, 133.0, 130.5, 130.2, 130.1, 129.9, 129.6, 128.1, 127.7, 127.2, 127.1, 126.0, 121.3, 73.0, 63.9, 52.1, 21.9, 13.4.

ESI-HRMS: calcd for $C_{31}H_{27}NO_5SNa^+$ ([M + Na]⁺) = 548.1502, found 548.1502. **IR** (neat): 3263, 1735, 1658, 1450, 1310, 1241, 1171, 1035, 907, 711 cm⁻¹.

ethyl (S)-3-((R)-(2-benzoyl-4-methylphenyl)(phenyl)methyl)-2,3-dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (C24)

White solid; mp: 210-214 °C; 98% yield, 87:13 dr (determined by ¹H NMR), 91%/68% ee. $[\alpha]_{589}^{19} = -136.6$ (c = 0.87, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IC-3, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 7.73$ min, $t_{R2} = 8.78$ min, $t_{R3} = 9.81$ min, $t_{R4} = 16.69$ min.

¹**H** NMR (600 MHz, CDCl₃) δ 8.00 (d, J = 7.8 Hz, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.60 – 7.56 (m, 1H), 7.55 – 7.50 (m, 3H), 7.48 – 7.43 (m, 2H), 7.37 – 7.35 (m, 1H), 7.29 – 7.26 (m, 2H), 7.10 – 7.07 (m, 1H), 6.96 – 6.87 (m, 5H), 6.06 (s, 1H), 5.43 (s, 1H), 4.11 – 4.06 (m, 1H), 3.92 – 3.86 (m, 1H), 2.33 (s, 3H), 1.02 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 198.5, 169.9, 139.2, 137.6, 136.7, 136.5, 136.2, 135.0, 134.9, 133.2, 133.1, 131.2, 130.4, 130.1, 129.6, 128.8, 128.1, 127.6, 127.0, 125.9, 121.3, 73.0, 64.0, 52.5, 20.9, 13.4.

ESI-HRMS: calcd for $C_{31}H_{27}NO_5SNa^+$ ([M + Na]⁺) = 548.1502, found 548.1501. **IR** (neat): 3264, 1734, 1661, 1450, 1312, 1240, 1172, 1034, 857, 716 cm⁻¹.

	Retention Time	Area	% Area
1	7.734	208221	2.07
2	8.784	1092445	10.88
3	9.812	391689	3.90
4	16.686	8352276	83.15

ethyl (S)-3-((R)-(2-benzoyl-5-fluorophenyl)(phenyl)methyl)-2,3-dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (C25)

White solid; mp: 93-97 °C; 88% yield, 88:12 dr (determined by ¹H NMR), 93%/68% ee. $[\alpha]_{589}^{18} =$ -129.3 (c = 0.92, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IC-3, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 5.45 min, t_{R2} = 6.83 min, t_{R3} = 7.71 min, t_{R4} = 15.56 min.

¹**H NMR** (600 MHz, CDCl₃) δ 7.90 – 7.88 (m, 1H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.61 – 7.58 (m, 1H), 7.54 – 7.52 (m, 3H), 7.52 – 7.49 (m, 1H), 7.47 – 7.44 (m, 1H), 7.32 – 7.29 (m, 3H), 7.04 – 6.93 (m, 6H), 6.08 (s, 1H), 5.61 (s, 1H), 4.13 – 4.08 (m, 1H), 3.93 – 3.87 (m, 1H), 1.01 (t, *J* = 7.2 Hz, 3H). ¹³C{¹H} **NMR** (151 MHz, CDCl₃) δ 197.2, 169.6, 163.5 (d, *J* = 252.6 Hz), 141.5 (d, *J* = 7.7 Hz), 137.6, 136.3, 135.5, 135.1 (d, *J* = 3.0 Hz), 135.0, 133.3, 133.3, 131.7 (d, *J* = 8.9 Hz), 130.6, 130.1, 130.0, 128.3, 127.8, 127.4, 125.8, 121.4, 116.6 (d, *J* = 23.1 Hz), 113.7 (d, *J* = 21.6 Hz), 72.8, 64.2, 52.1, 13.4.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ -106.77.

ESI-HRMS: calcd for $C_{30}H_{24}FNO_5SNa^+$ ([M + Na]⁺) = 552.1251, found 552.1250. **IR** (neat): 3259, 1735, 1661, 1585, 1313, 1244, 1171, 1034, 857, 712 cm⁻¹.

ethyl (S)-3-((R)-(2-benzoyl-4-chlorophenyl)(phenyl)methyl)-2,3-dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (C26)

White solid; mp: 134-138 °C; 99% yield, 94:6 dr (determined by ¹H NMR), 95%/56% ee. $[\alpha]_{589}^{19}$ = -175.1 (c = 1.02, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **IC-3**, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, λ = 254 nm), retention time: t_{R1} = 7.55 min, t_{R2} = 8.68 min, t_{R3} =10.99 min, t_{R4} = 20.42 min.

¹**H** NMR (600 MHz, CDCl₃) δ 8.14 (d, J = 1.8 Hz, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.62 – 7.59 (m, 1H), 7.53 – 7.48 (m, 4H), 7.47 – 7.44 (m, 1H), 7.33 – 7.28 (m, 3H), 7.24 – 7.23 (m, 1H), 6.98 – 6.92 (m, 5H), 6.12 (s, 1H), 5.51 (s, 1H), 4.15 – 4.10 (m, 1H), 3.95 – 3.90 (m, 1H), 1.03 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 197.2, 169.6, 140.3, 137.5, 137.2, 136.7, 136.4, 135.2, 135.0, 133.4, 133.3, 130.6, 130.6, 130.2, 130.0, 129.1, 128.3, 127.8, 127.4, 126.9, 125.8, 121.4, 72.7, 64.2, 52.3, 13.4.

ESI-HRMS: calcd for $C_{30}H_{24}{}^{35}ClNO_5SNa^+$ ([M + Na]⁺) = 568.0956, found 568.0956. $C_{30}H_{24}{}^{37}ClNO_5SNa^+$ ([M + Na]⁺) = 570.0926, found 570.0932.

IR (neat): 3254, 1734, 1662, 1588, 1450, 1312, 1241, 1170, 931, 757, 711 cm⁻¹.

ethyl (*S*)-3-((*R*)-(2-benzoyl-4-(trifluoromethyl)phenyl)(phenyl)methyl)-2,3-dihydrobenzo[*d*]i sothiazole-3-carboxylate 1,1-dioxide (C27)

White solid; mp: 70-74 °C; 94% yield, 89:11 dr (determined by ¹H NMR), 88%/26% ee. $[\alpha]_{589}^{17} =$ -140.2 (c = 1.02, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **IC-3**, CO₂/MeOH = 85/15, flow rate = 1.0 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 4.13 min, t_{R2} = 4.58 min, t_{R3} = 6.10 min, t_{R4} = 7.98 min.

¹**H** NMR (600 MHz, CDCl₃) δ 8.38 (s, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.65 – 7.63 (m, 2H), 7.53 – 7.51 (m, 1H), 7.49 – 7.44 (m, 4H), 7.40 – 7.39 (m, 1H), 7.26 – 7.22 (m, 2H), 6.96 – 6.94 (m, 1H), 6.90 – 6.87 (m, 2H), 6.79 – 6.78 (m, 2H), 6.18 (s, 1H), 5.40 (s, 1H), 4.16 – 4.11 (m, 1H), 4.03 – 3.98 (m, 1H), 1.03 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 197.1, 169.5, 143.0, 139.0, 136.5, 135.1, 134.6, 133.7, 133.4, 132.1 (q, J = 32.6 Hz), 130.7, 130.3, 130.0, 129.0, 128.3, 127.8, 127.5, 125.6, 125.1 (q, J = 3.9 Hz), 123.8 (q, J = 3.5 Hz), 123.5 (q, J = 272.9 Hz), 121.5, 72.7, 64.3, 53.3, 13.4. ¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ -62.77.

ESI-HRMS: calcd for $C_{31}H_{24}F_3NO_5SNa^+$ ([M + Na]⁺) = 602.1219, found 602.1219. **IR** (neat): 3257, 1735, 1666, 1329, 1242, 1170, 1130, 1073, 936, 852, 711 cm⁻¹.

ethyl (*S*)-3-((*R*)-(2-benzoylphenyl)(2-fluorophenyl)methyl)-2,3-dihydrobenzo[*d*]isothiazole-3 -carboxylate 1,1-dioxide (C28)

White solid; mp: 73-77 °C; 82% yield, 41:59 dr (determined by ¹H NMR), 65%/55% ee. $[\alpha]_{589}^{20} =$ -48.2 (c = 0.83, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel **OX-3**, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 7.65 min, t_{R2} = 9.52 min, t_{R3} = 13.02 min, t_{R4} = 26.40 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.0 Hz, 1H), 7.82 – 7.80 (m, 1H), 7.71 – 7.67 (m, 1H), 7.50 – 7.42 (m, 4H), 7.39 – 7.34 (m, 3H), 7.29 – 7.27 (m, 2H), 7.14 – 7.11 (m, 2H), 7.07 – 7.05 (m, 1H), 6.95 – 6.92 (m, 1H), 6.86 – 6.81 (m, 1H), 6.18 (s, 1H), 5.94 (s, 1H), 4.11 – 4.05 (m, 2H), 1.10 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.4, 169.6, 160.0 (d, J = 248.5 Hz), 139.0, 137.1, 136.9, 135.5, 135.1, 134.8, 133.2, 133.0, 131.1, 130.7, 130.4, 130.2, 129.3 (d, J = 8.7 Hz), 128.6, 128.0, 127.1, 126.4, 124.2 (d, J = 3.5 Hz), 120.9, 115.4 (d, J = 23.4 Hz), 72.3, 63.9, 44.6, 13.5.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -115.16.

ESI-HRMS: calcd for $C_{30}H_{24}FNO_5SNa^+$ ([M + Na]⁺) = 552.1251, found 552.1251. **IR** (neat): 3263, 1736, 1663, 1451, 1313, 1243, 1172, 1027, 931, 758, 708 cm⁻¹.

	Retention Time	Area	% Area
1	7 (20	10(7074	20.00
I	/.629	196/8/4	29.08
2	9.500	1396717	20.64
3	13.032	1984669	29.33
4	26.438	1416767	20.94

ethyl (S)-3-((R)-(2-benzoylphenyl)(3-fluorophenyl)methyl)-2,3-dihydrobenzo[d]isothiazole-3 -carboxylate 1,1-dioxide (C29)

White solid; mp: 76-79 °C; 98% yield, 80:20 dr (determined by ¹H NMR), 91%/73% ee. $[\alpha]_{589}^{19} =$ -133.9 (c = 0.90, in CH₂Cl₂), dissolved in MeOH for **HPLC** (Chiralcel **IF**, Hexane/iPrOH = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 20.28 min, t_{R2} = 28.42 min, t_{R3} = 30.58 min, t_{R4} = 42.60 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.0 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.58 – 7.52 (m, 4H), 7.50 – 7.46 (m, 2H), 7.40 – 7.35 (m, 2H), 7.32 – 7.27 (m, 4H), 6.87 – 6.82 (m, 1H), 6.68 – 6.66 (m, 2H), 6.10 (s, 1H), 5.49 (s, 1H), 4.10 – 4.05 (m, 1H), 3.94 – 3.86 (m, 1H), 0.98 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.2, 169.6, 162.0 (d, J = 246.0), 139.2, 138.3 (d, J = 7.5), 137.5, 137.4, 136.5, 135.1, 133.4, 133.3, 130.7, 130.7, 130.0, 129.3, 128.9 (d, J = 8.4), 128.6, 128.2, 126.9, 125.8 (d, J = 2.7), 125.6, 121.5, 117.4 (d, J = 25.8), 114.1 (d, J = 21.0), 72.7, 64.2, 52.4, 13.3.

¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -113.49.

ESI-HRMS: calcd for $C_{30}H_{24}FNO_5SNa^+$ ([M + Na]⁺) = 552.1251, found 552.1259. **IR** (neat): 3262, 1736, 1660, 1590, 1449, 1313, 1244, 1172, 929, 759, 711 cm⁻¹.

	Retention Time	Area	% Area
1	20.839	1388118	10.43
2	28.245	1350024	10.15
3	30.715	5249188	39.46
4	43.624	5315591	39.96

	Retention Time	Area	% Area
1	20.278	1548116	17.47
2	28.424	249344	2.81
3	30.585	318770	3.60
4	42.600	6746702	76.12

ethyl (S)-3-((R)-(2-benzoylphenyl)(m-tolyl)methyl)-2,3-dihydrobenzo[d]isothiazole-3-carbox ylate 1,1-dioxide (C30)

C30

White solid; mp: 67-70 °C; 92% yield, 91:9 dr (determined by ¹H NMR), 91%/56% ee. $[\alpha]_{589}^{18} = -123.9$ (c = 0.92, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **IC-3**, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 12.66$ min, $t_{R2} = 15.51$ min, $t_{R3} = 17.69$ min, $t_{R4} = 22.02$ min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (d, J = 8.0 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.60 – 7.52 (m, 5H), 7.50 – 7.42 (m, 2H), 7.37 – 7.33 (m, 1H), 7.31 – 7.28 (m, 3H), 6.81 – 6.80 (m, 2H), 6.75 – 6.73 (m, 1H), 6.69 (s, 1H), 6.04 (s, 1H), 5.45 (s, 1H), 4.11 – 4.03 (m, 1H), 3.92 – 3.84 (m, 1H), 1.99 (s, 3H), 1.00 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.3, 169.8, 139.2, 138.0, 137.5, 137.1, 136.7, 135.8, 135.0, 133.1, 131.0, 130.5, 130.4, 130.1, 129.1, 128.9, 128.1, 127.8, 127.5, 127.2, 126.6, 125.9, 121.3, 72.9, 64.0, 52.5, 21.1, 13.4.

ESI-HRMS: calcd for $C_{31}H_{27}NO_5SNa^+$ ([M + Na]⁺) = 548.1502, found 548.1501. **IR** (neat): 3266, 1735, 1661, 1312, 1243, 1172, 930, 761, 711 cm⁻¹.

ethyl (S)-3-((R)-(2-benzoylphenyl)(3-chlorophenyl)methyl)-2,3-dihydrobenzo[d]isothiazole-3 -carboxylate 1,1-dioxide (C31)

White solid; mp: 75-79 °C; 95% yield, 81:19 dr (determined by ¹H NMR), 88%/56% ee. $[\alpha]_{589}^{18} =$ -130.8 (c = 0.93, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **IC-3**, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 6.76 min, t_{R2} = 8.03 min, t_{R3} = 10.13 min, t_{R4} = 11.72 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.4 Hz, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.67 – 7.61 (m, 1H), 7.58 – 7.51 (m, 4H), 7.51 – 7.46 (m, 2H), 7.39 – 7.35 (m, 1H), 7.33 – 7.27 (m, 4H), 6.93 – 6.91 (m, 1H), 6.85 (s, 2H), 6.11 (s, 1H), 5.43 (s, 1H), 4.11 – 4.04 (m, 1H), 3.94 – 3.86 (m, 1H), 0.99 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.2, 169.5, 139.2, 137.8, 137.4, 137.3, 136.3, 135.1, 133.4, 133.4, 133.4, 130.7, 130.7, 130.5, 130.0, 129.3, 128.8, 128.6, 128.2, 127.3, 127.0, 125.6, 121.5, 72.7, 64.2, 52.4, 13.4.

ESI-HRMS: calcd for $C_{30}H_{24}{}^{35}ClNO_5SNa^+$ ([M + Na]⁺) = 568.0956, found 568.0961. $C_{30}H_{24}{}^{37}ClNO_5SNa^+$ ([M + Na]⁺) = 570.0926, found 570.0937.

IR (neat): 3261, 1736, 1660, 1313, 1245, 1171, 1031, 931, 762, 712 cm⁻¹.

	Retention Time	Area	% Area
1	6.768	1273720	10.31
2	8.015	4883826	39.53
3	10.159	1307420	10.58
4	11.726	4890926	39.58

	Retention Time	Area	% Area
1	6.760	264015	4.16
2	8.030	309405	4.87
3	10.131	951005	14.97
4	11.719	4827109	76.00

ethyl (S)-3-((R)-(2-benzoylphenyl)(3,4-dichlorophenyl)methyl)-2,3-dihydrobenzo[d]isothiazo le-3-carboxylate 1,1-dioxide (C32)

White solid; mp: 81-84 °C; 96% yield, 78:22 dr (determined by ¹H NMR), 85%/47% ee. $[\alpha]_{589}^{18} =$ -104.1 (c = 1.11, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **IC-3**, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 7.54 min, t_{R2} = 8.24 min, t_{R3} = 10.31 min, t_{R4} = 15.22 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.0 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.60 – 7.50 (m, 6H), 7.38 – 7.30 (m, 5H), 6.98 – 6.96 (m, 2H), 6.88 – 6.85 (m, 1H), 6.11 (s, 1H), 5.43 (s, 1H), 4.11 – 4.05 (m, 1H), 3.92 – 3.84 (m, 1H), 0.97 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.0, 169.4, 139.1, 137.3, 137.2, 136.3, 136.1, 135.1, 133.6, 133.5, 132.3, 131.6, 131.4, 130.9, 130.8, 130.0, 129.5, 129.5, 129.4, 128.5, 128.3, 127.1, 125.5, 121.7, 72.5, 64.3, 51.8, 13.3

ESI-HRMS: calcd for $C_{30}H_{23}{}^{35}Cl_2NO_5SNa^+$ ([M + Na]⁺) = 602.0566, found 602.0571. $C_{30}H_{23}{}^{35}Cl^{37}ClNO_5SNa^+$ ([M + Na]⁺) = 604.0537, found 604.0540. $C_{30}H_{24}{}^{37}ClNO_5SNa^+$ ([M + Na]⁺) = 606.0507, found 606.0515.

IR (neat): 3261, 1737, 1661, 1470, 1314, 1246, 1172, 1031, 931, 765, 712 cm⁻¹.

	Retention	Area	% Area
	Time		
1	7.535	467029	5.81
2	8.239	462636	5.75
3	10.313	5821847	72.41
4	15.216	1289087	16.03

ethyl (S)-3-((R)-benzo[d][1,3]dioxol-5-yl(2-benzoylphenyl)methyl)-2,3-dihydrobenzo[d]isothi azole-3-carboxylate 1,1-dioxide (C33)

White solid; mp: 96-99 °C; 64% yield, 92:8 dr (determined by ¹H NMR), 91%/39% ee. $[\alpha]_{589}^{19}$ = - 118.2 (c = 0.66, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IC-3, CO₂/MeOH =

80/20, flow rate = 1.5 mL/min, λ = 254 nm), retention time: t_{R1} = 5.31 min, t_{R2} = 6.71 min, t_{R3} = 8.64 min, t_{R4} = 9.83 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.64 – 7.60 (m, 1H), 7.58 – 7.52 (m, 4H), 7.51 – 7.46 (m, 2H), 7.35 – 7.27 (m, 4H), 6.53 (d, *J* = 1.6 Hz, 1H), 6.28 – 6.22 (m, 2H), 6.08 (s, 1H), 5.73 (s, 2H), 5.43 (s, 1H), 4.11 – 4.03 (m, 1H), 3.95 – 3.87 (m, 1H), 0.98 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.4, 169.9, 147.1, 146.5, 139.2, 138.4, 137.5, 136.9, 135.2, 133.4, 133.2, 130.6, 130.6, 130.1, 129.6, 129.2, 128.4, 128.2, 126.7, 125.8, 124.1, 121.5, 110.9, 107.3, 100.8, 73.0, 64.1, 52.4, 13.4.

ESI-HRMS: calcd for $C_{31}H_{25}NO_7SNa^+$ ([M + Na]⁺) = 578.1244, found 578.1246. **IR** (neat): 3262, 1735, 1661, 1487, 1446, 1313, 1246, 1172, 1038, 929, 760, 709 cm⁻¹.

ethyl (*S*)-3-((*R*)-[1,1'-biphenyl]-4-yl(2-benzoylphenyl)methyl)-2,3-dihydrobenzo[*d*]isothiazol e-3-carboxylate 1,1-dioxide (C34)

White solid; mp: 103-107 °C; 78% yield, 87:13 dr (determined by ¹H NMR), 88%/35% ee. $[\alpha]_{589}^{17} = -68.6$ (c = 0.91, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IC-3, CO₂/MeOH = 80/20, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 9.87$ min, $t_{R2} = 13.20$ min, $t_{R3} = 14.62$ min, $t_{R4} = 19.26$ min.

¹**H** NMR (600 MHz, CDCl₃) δ 8.16 (d, J = 7.8 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.62 – 7.55 (m, 5H), 7.50 – 7.46 (m, 2H), 7.39 – 7.37 (m, 2H), 7.35 – 7.27 (m, 7H), 7.16 – 7.15 (m, 2H), 7.07 – 7.06 (m, 2H), 6.10 (s, 1H), 5.59 (s, 1H), 4.10 – 4.05 (m, 1H), 3.91 – 3.85 (m, 1H), 0.99 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 198.3, 169.8, 140.4, 139.6, 139.1, 138.0, 137.5, 136.5, 135.2, 135.0, 133.3, 133.2, 130.6, 130.6, 130.5, 130.1, 129.3, 128.9, 128.5, 128.2, 127.0, 126.8, 126.7, 126.3, 125.9, 121.5, 72.9, 64.0, 52.2, 13.4.

ESI-HRMS: calcd for $C_{36}H_{29}NO_5SNa^+$ ([M + Na]⁺) = 610.1659, found 610.1664. **IR** (neat): 3267, 1736, 1661, 1449, 1314, 1244, 1171, 930, 761, 703 cm⁻¹.

	Retention	A #20	9/ A roo
	Time	Alca	70 Alea
1	9.868	878640	4.25
2	13.203	1083226	5.23
3	14.624	16924538	81.78
4	19.260	1807835	8.74

ethyl (*S*)-3-((*R*)-(2-benzoylphenyl)(4-fluorophenyl)methyl)-2,3-dihydrobenzo[*d*]isothiazole-3 -carboxylate 1,1-dioxide (C35)

C35

White solid; mp: 71-75 °C; 94% yield, 79:21 dr (determined by ¹H NMR), 88%/51% ee. $[\alpha]_{589}^{17} =$ -125.7 (c = 0.92, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **IC-3**, CO₂/MeOH = 95/5, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 12.61 min, t_{R2} = 15.16 min, t_{R3} = 17.40 min, t_{R4} = 19.88 min.

¹**H** NMR (600 MHz, CDCl₃) δ 8.09 (d, J = 7.8 Hz, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.64 – 7.61 (m, 1H), 7.58 – 7.54 (m, 2H), 7.52 – 7.47 (m, 4H), 7.36 – 7.34 (m, 1H), 7.30 – 7.27 (m, 3H), 6.90 – 6.88 (m, 2H), 6.60 – 6.57 (m, 2H), 6.13 (s, 1H), 5.50 (s, 1H), 4.11 – 4.04 (m, 1H), 3.93 – 3.88 (m, 1H), 0.98 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 198.3, 169.7, 161.8 (d, *J* = 246.6), 139.1, 138.0, 137.4, 136.6, 135.0, 133.4, 133.3, 131.9 (d, *J* = 8.5), 130.8, 130.6, 130.6, 130.0, 129.3, 128.4, 128.2, 126.7, 125.7, 121.5, 114.5 (d, *J* = 21.4), 72.9, 64.1, 52.0, 13.4.

¹⁹F{¹H} NMR (565 MHz, CDCl₃) δ -115.04.

ESI-HRMS: calcd for $C_{30}H_{24}FNO_5SNa^+$ ([M + Na]⁺) = 552.1251, found 552.1252. **IR** (neat): 3264, 1736, 1661, 1508, 1313, 1234, 1170, 1031, 930, 762, 707 cm⁻¹.

2	14.571	2401714	12.30
3	16.253	7371012	37.74
4	19.420	7346331	37.61

ethyl (S)-3-((R)-(2-benzoylphenyl)(4-chlorophenyl)methyl)-2,3-dihydrobenzo[d]isothiazole-3 -carboxylate 1,1-dioxide (C36)

White solid; mp: 75-78 °C; 96% yield, 90:10 dr (determined by ¹H NMR), 94%/60% ee. $[\alpha]_{589}^{19} =$ -122.1 (c = 1.06, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **IC-3**, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 7.11 min, t_{R2} = 9.00 min, t_{R3} = 10.99 min, t_{R4} = 13.42 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.63 – 7.46 (m, 7H), 7.37 – 7.29 (m, 4H), 6.92 – 6.86 (m, 4H), 6.10 (s, 1H), 5.51 (s, 1H), 4.11 – 4.03 (m, 1H), 3.91 – 3.83 (m, 1H), 0.97 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.1, 169.6, 139.0, 137.8, 137.4, 136.4, 135.0, 134.6, 133.4, 133.3, 133.1, 131.5, 130.7, 130.1, 129.4, 128.6, 128.3, 127.8, 126.8, 125.7, 121.5, 72.7, 64.1, 51.9, 13.3.

ESI-HRMS: calcd for $C_{30}H_{24}{}^{35}ClNO_5SNa^+$ ([M + Na]⁺) = 568.0956, found 568.0958. $C_{30}H_{24}{}^{37}ClNO_5SNa^+$ ([M + Na]⁺) = 570.0926, found 570.0935.

IR (neat): 3262, 1735, 1661, 1586, 1490, 1373, 1313, 1242, 1171, 1017, 930, 853, 759, 709 cm⁻¹.

	Retention Time	Area	% Area
1	7.109	238893	2.00
2	9.001	318489	2.67
3	10.988	10385857	87.16
4	13.425	972067	8.16

ethyl (S)-3-((R)-(2-benzoylphenyl)(4-(trifluoromethyl)phenyl)methyl)-2,3-dihydrobenzo[d]is othiazole-3-carboxylate 1,1-dioxide (C37)

C37

White solid; mp:78-80 °C; 91% yield, 78:22 dr (determined by ¹H NMR), 87%/35% ee. $[\alpha]_{589}^{18} =$ -109.1 (c = 1.06, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel ID-3, CO₂/MeOH =

95/5, flow rate = 1.5 mL/min, λ = 254 nm), retention time: t_{R1} = 13.02 min, t_{R2} = 14.99 min, t_{R3} = 18.51 min, t_{R4} = 20.26 min.

¹**H** NMR (600 MHz, CDCl₃) δ 8.11 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.65 – 7.61 (m, 1H), 7.59 – 7.55 (m, 2H), 7.52 – 7.47 (m, 4H), 7.38 – 7.35 (m, 1H), 7.31 – 7.28 (m, 3H), 7.16 – 7.15 (m, 2H), 7.12 – 7.11 (m, 2H), 6.14 (s, 1H), 5.59 (s, 1H), 4.10 – 4.05 (m, 1H), 3.91 – 3.85 (m, 1H), 0.97 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 198.1, 169.5, 140.1, 139.1, 137.4, 137.3, 136.2, 135.0, 133.5, 133.4, 130.8, 130.8, 130.6, 130.4, 130.0, 129.4, 128.7, 128.2, 127.0, 125.6, 124.5 (q, *J* = 3.3 Hz), 123.9 (q, *J* = 272.0 Hz), 121.64, 72.55, 64.24, 52.26, 13.34.

¹⁹**F**{¹**H**} **NMR** (565 MHz, CDCl₃) δ -62.67.

ESI-HRMS: calcd for $C_{31}H_{24}F_3NO_5SNa^+$ ([M + Na]⁺) = 602.1219, found 602.1221.

IR (neat):3261, 1736, 1660, 1450, 1323, 1240, 1166, 1119, 1069, 1020, 930, 856, 760, 736, 709 cm⁻¹.

679171

9647374

5.13

72.90

3

4

18.513

20.265

ethyl (S)-3-((R)-(2-benzoylphenyl)(p-tolyl)methyl)-2,3-dihydrobenzo[d]isothiazole-3-carboxy late 1,1-dioxide (C38)

White solid; mp: 72-76 °C; 96% yield, 89:11 dr (determined by ¹H NMR), 89%/41% ee. $[\alpha]_{589}^{18} =$ -118.5 (c = 0.84, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **IC-3**, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 6.96$ min, $t_{R2} = 10.42$ min, $t_{R3} =$ 11.16 min, $t_{R4} = 13.19$ min.

¹**H** NMR (600 MHz, CDCl₃) δ 8.11 (d, J = 7.8 Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.60 – 7.58 (m, 1H), 7.56 – 7.53 (m, 4H), 7.50 – 7.48 (m, 1H), 7.46 – 7.44 (m, 1H), 7.33 – 7.27 (m, 4H), 6.86 – 6.85 (m, 2H), 6.72 – 6.71 (m, 2H), 6.05 (s, 1H), 5.51 (s, 1H), 4.09 – 4.05 (m, 1H), 3.89 – 3.84 (m, 7.2 Hz, 1H), 2.07 (s, 3H), 0.97 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 198.3, 169.9, 139.0, 138.4, 137.5, 136.7, 136.6, 134.9, 133.2, 133.1, 133.0, 130.5, 130.4, 130.1, 130.0, 129.3, 128.9, 128.4, 128.1, 126.5, 125.9, 121.3, 72.9, 63.9, 52.2, 20.9, 13.4.

ESI-HRMS: calcd for $C_{31}H_{27}NO_5SNa^+$ ([M + Na]⁺) = 548.1502, found 548.1501. **IR** (neat): 3266, 1734, 1661, 1449, 1373, 1312, 1242, 1170, 1029, 930, 759, 707 cm⁻¹.

	Retention Time	Area	% Area
1	6.944	1427526	8.05
2	10.354	1442432	8.13
3	11.062	7434791	41.92
4	13.150	7429503	41.89

ethyl (S)-3-((R)-(2-benzoylphenyl)(4-methoxyphenyl)methyl)-2,3-dihydrobenzo[d]isothiazole -3-carboxylate 1,1-dioxide (C39)

C39

White solid; mp: 66-69 °C; 67% yield, 92:8 dr (determined by ¹H NMR), 84%/31% ee. $[\alpha]_{589}^{19}$ - 102.6 (c = 0.72, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IC-3, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, λ = 254 nm), retention time: t_{R1} = 8.32 min, t_{R2} = 12.16 min, t_{R3} = 15.57 min, t_{R4} = 16.70 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.62 – 7.58 (m, 1H), 7.57 – 7.52 (m, 4H), 7.50 – 7.44 (m, 2H), 7.32 – 7.27 (m, 4H), 6.87 – 6.84 (m, 2H), 6.45 – 6.42 (m, 2H), 6.05 (s, 1H), 5.47 (s, 1H), 4.11 – 4.03 (m, 1H), 3.92 – 3.84 (m, 1H), 3.58 (s, 3H), 0.98 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.3, 169.9, 158.4, 139.0, 138.5, 137.5, 136.8, 135.0, 133.2, 133.2, 131.3, 130.5, 130.4, 130.1, 129.2, 128.6, 128.2, 128.1, 126.5, 125.8, 121.4, 113.0, 73.1, 64.0, 54.9, 51.9, 13.4.

ESI-HRMS: calcd for $C_{31}H_{27}NO_6SNa^+$ ([M + Na]⁺) = 564.1451, found 564.1453. **IR** (neat): 3265, 1734, 1661, 1511, 1310, 1245, 1174, 1032, 930, 762, 707 cm⁻¹.

	Retention	Area	% Area
	Time		
1	8.316	432035	2.74
2	12.160	1182864	7.51
3	15.570	830703	5.27
4	16.700	13303452	84.47

White solid; mp: 83-87 °C; 64% yield, 96:4 dr (determined by ¹H NMR), 90% ee. $[\alpha]_{589}^{18}$ = -89.1 (c = 0.68, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **IC-3**, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, λ = 254 nm), retention time: t_{R1} = 6.20 min, t_{R2} = 7.73 min, t_{R3} = 9.12 min, t_{R4} = 11.02 min.

¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.0 Hz, 1H), 7.73 – 7.68 (m, 3H), 7.65 – 7.51 (m, 5H), 7.44 – 7.36 (m, 4H), 7.05 (s, 1H), 6.97 (s, 1H), 5.99 (s, 1H), 5.93 (s, 1H), 5.39 (s, 1H), 4.10 – 4.02 (m, 1H), 3.83 – 3.75 (m, 1H), 0.96 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.9, 169.3, 142.2, 141.6, 138.5, 137.8, 137.6, 136.3, 135.1, 133.4, 133.4, 131.0, 130.6, 130.1, 129.7, 129.5, 128.4, 127.1, 125.6, 121.5, 121.1, 110.9, 72.7, 64.0, 44.8, 13.4.

ESI-HRMS: calcd for $C_{28}H_{23}NO_6SNa^+$ ([M + Na]⁺) = 524.1138, found 524.1140. **IR** (neat): 3269, 1736, 1659, 1310, 1245, 1170, 1025, 930, 708 cm⁻¹.

ethyl (S)-3-((R)-(2-benzoylphenyl)(thiophen-3-yl)methyl)-2,3-dihydrobenzo[d]isothiazole-3-c arboxylate 1,1-dioxide (C41)

White solid; mp: 65-69 °C; 92% yield, 92:8 dr (determined by ¹H NMR), 88%/49% ee. $[\alpha]_{589}^{18} = -89.2$ (c = 0.86, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IC-3, CO₂/MeOH = 80/20, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 5.52$ min, $t_{R2} = 7.02$ min, $t_{R3} = 7.55$ min, $t_{R4} = 9.52$ min.

¹**H** NMR (600 MHz, CDCl₃) δ 8.11 (d, *J* = 7.8 Hz, 1H), 7.76 (d, *J* = 7.8 Hz, 1H), 7.65 – 7.58 (m, 4H), 7.57 – 7.55 (m, 1H), 7.54 – 7.51 (m, 1H), 7.49 – 7.47 (m, 1H), 7.37 – 7.32 (m, 4H), 6.90 – 6.88 (m, 1H), 6.83 – 6.83 (m, 1H), 6.58 – 6.57 (m, 1H), 5.99 (s, 1H), 5.61 (s, 1H), 4.08 – 4.03 (m, 1H), 3.84 – 3.79 (m, 1H), 0.97 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 198.1, 169.5, 138.8, 137.7, 137.6, 136.7, 136.6, 134.9, 133.4, 133.3, 130.8, 130.6, 130.0, 129.4, 129.2, 128.5, 128.3, 126.9, 125.6, 124.7, 124.5, 121.4, 72.8, 64.0, 48.6, 13.3.

ESI-HRMS: calcd for $C_{28}H_{23}NO_5S_2Na^+$ ([M + Na]⁺) = 540.0910, found 540.0911. **IR** (neat): 3268, 1735, 1659, 1311, 1246, 1170, 929, 764, 712 cm⁻¹.

	Retention Time	Area	% Area
1	5.533	662031	7.03
2	7.038	4043880	42.96
3	7.583	671406	7.13
4	9.608	4035582	42.87

	Retention	A #00	9/ A roo
	Time	Alea	70 Alea
1	5.517	180474	2.09
2	7.024	467527	5.41
3	7.548	530482	6.14
4	9.523	7455852	86.35

ethyl (S)-3-((R)-1-(2-benzoylphenyl)ethyl)-2,3-dihydrobenzo[d]isothiazole-3-carboxylate 1,1 -dioxide (C42)

White solid; mp: 67-70 °C; 87% yield, 48:52 dr (determined by ¹H NMR), 93%/83% ee. $[\alpha]_{589}^{24} =$ -29.5 (c = 0.78, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IA-3, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 6.20$ min, $t_{R2} = 7.58$ min, $t_{R3} =$ 8.40 min, $t_{R4} = 12.42$ min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.97 – 7.81 (m, 2H), 7.76 – 7.56 (m, 3H), 7.51 – 7.34 (m, 6H), 7.24 – 7.11 (m, 1H), 7.07 – 7.01 (m, 1H), 5.87 (s, 1H), 4.64 – 4.58 (m, 1H), 4.35 – 4.23 (m, 2H), 1.40 – 1.39 (d, *J* = 7.2 Hz, 3H), 1.31 – 1.27 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.2, 170.4, 139.8, 138.0, 137.9, 135.3, 135.3, 133.4, 133.1, 130.8, 130.6, 130.0, 129.5, 129.1, 128.5, 126.9, 126.1, 121.4, 73.0, 63.8, 42.5, 18.5, 13.9.

ESI-HRMS: calcd for $C_{25}H_{23}NO_5SNa^+$ ([M + Na]⁺) = 472.1189, found 472.1185.

IR (neat): 3278, 1735, 1659, 1450, 1310, 1246, 1173, 1135, 1021, 762, 709 cm⁻¹.

	Retention	Area	% Area
	Time		
1	6.200	386781	4.39
2	7.575	4187878	47.56
3	8.400	147403	1.67
4	12.416	4083013	46.37

ethyl (S)-3-(2-benzoylbenzyl)-2,3-dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (C4 3) and ethyl 3-(2-benzoylphenyl)-2-(2-sulfamoylphenyl)acrylate (C43-(II))

C43 White solid; mp: 66-70 °C; 54% yield, 61% ee. $[\alpha]_{589}^{24} = -42.5$ (c = 0.47, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **IA-3**, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 16.10 min, t_{R2} = 19.28 min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 – 7.75 (m, 3H), 7.67 – 7.55 (m, 3H), 7.54 – 7.48 (m, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 7.37 – 7.27 (m, 3H), 7.14 – 7.08 (m, 1H), 6.75 (s, 1H), 4.19 (dq, *J* = 10.8, 7.2 Hz, 1H), 4.06 (dq, *J* = 10.8, 7.2 Hz, 1H), 3.89 (d, *J* = 14.0 Hz, 1H), 3.56 (d, *J* = 14.0 Hz, 1H), 1.22 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.5, 170.0, 138.7, 137.4, 137.3, 135.5, 133.6, 133.4, 133.2, 132.3, 130.8, 130.6, 130.5, 130.4, 128.3, 126.7, 125.4, 121.3, 69.2, 63.3, 40.6, 13.8. ESI-HRMS: calcd for C₂₄H₂₁NO₅SNa⁺ ([M + Na]⁺) = 458.1033, found 458.1028. IR (neat): 3274, 1734, 1657, 1450, 1299, 1250, 1169, 764, 708 cm⁻¹.

	Retention Time	Area	% Area
1	16.269	2515418	50.06
2	19.446	2509825	49.94

	Retention	Area	% Area
	Time		
1	16.103	7393418	80.53
2	19.281	1788050	19.47

The retro-vinylogous Michael product C43-(II) was obtained in 18% yield and 1:1 Z/E, which could also be found in other substrates.

Analytic data of the less polar isomer:

White solid; mp: 57-61 °C

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 – 7.99 (m, 1H), 7.81 – 7.72 (m, 2H), 7.61 – 7.54 (m, 3H), 7.54 – 7.49 (m, 2H), 7.49 – 7.39 (m, 4H), 7.26 (m, 1H), 7.17 (s, 1H), 5.71 (s, 2H), 4.01 (q, *J* = 7.2 Hz, 2H), 0.95 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.7, 166.5, 141.4, 140.7, 137.7, 137.4, 136.7, 136.0, 133.2,

 $133.1,\,132.5,\,132.3,\,131.3,\,130.6,\,130.3,\,129.8,\,128.7,\,128.4,\,127.7,\,127.5,\,61.0,\,13.5.$

ESI-HRMS: calcd for $C_{24}H_{21}NO_5SNa^+$ ([M + Na]⁺) = 458.1033, found 458.1026.

IR (neat): 3354, 3264, 1709, 1652, 1343, 1272, 1216, 1166, 1027, 933, 766, 705 cm⁻¹.

Analytic data of the more polar isomer:

White solid; mp: 161-164 °C

¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (m, 1H), 7.98 (s, 1H), 7.86 – 7.79 (m, 2H), 7.64 (m, 1H), 7.51 (m, 2H), 7.42 (m, 2H), 7.36 (m, 1H), 7.25 – 7.19 (m, 2H), 7.19 – 7.12 (m, 1H), 7.00 (d, *J* = 7.6 Hz, 1H), 5.42 (s, 2H), 4.35 – 4.15 (m, 2H), 1.27 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.4, 167.6, 141.6, 139.9, 138.2, 137.2, 135.5, 134.1, 133.4,

133.0, 132.4, 130.9, 130.9, 130.4, 129.7, 129.0, 128.5, 128.3, 127.6, 61.8, 14.0.

ESI-HRMS: calcd for $C_{24}H_{21}NO_5SNa^+$ ([M + Na]⁺) = 458.1033, found 458.1025.

IR (neat): 3261, 1693, 1654, 1342, 1250, 1164, 1032, 934, 764, 706 cm⁻¹.

ethyl (S)-7-methylene-7,12-dihydro-12aH-benzo[4,5]isothiazolo[2,3-b]isoquinoline-12a-carb oxylate 5,5-dioxide (D1)

Colorless oil; 60% yield, 90% ee. $[\alpha]_{589}^{18}$ = -195.5 (c = 0.43, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IA-3, CO₂/MeOH = 96/4, flow rate = 1.5 mL/min, λ = 254 nm), retention time: t_{R1} = 10.57 min, t_{R2} = 11.95 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.6 Hz, 1H), 7.82 – 7.71 (m, 3H), 7.69 – 7.65 (m, 1H), 7.32 – 7.27 (m, 2H), 7.20 – 7.18 (m, 1H), 5.62 (d, *J* = 2.8 Hz, 1H), 5.50 (d, *J* = 2.8 Hz, 1H), 4.11 – 4.03 (m, 1H), 4.01 – 3.95 (m, 1H), 3.86 (d, *J* = 15.2 Hz, 1H), 3.17 (d, *J* = 15.2 Hz, 1H), 0.98 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.9, 134.6, 134.2, 134.0, 133.7, 130.7, 129.8, 129.6, 129.0, 128.9, 127.8, 124.4, 123.8, 121.8, 94.6, 66.8, 62.7, 40.1, 13.7.

ESI-HRMS: calcd for $C_{19}H_{17}NO_4SNa^+$ ([M + Na]⁺) = 378.0770, found 378.0769. **IR** (neat): 1742, 1619, 1455, 1312, 1179, 1048, 772 cm⁻¹.

	Retention	Area	% Area
	Time		
1	10.574	665815	5.06
2	11.953	12496830	94.94

ethyl (*S*,*Z*)-7-ethylidene-7,12-dihydro-12a*H*-benzo[4,5]isothiazolo[2,3-*b*]isoquinoline-12a-car boxylate 5,5-dioxide (D2)

White solid; mp: 196-198 °C; 56% yield, 94:6 (*Z*:*E*) (determined by ¹H NMR), 90% ee. $[\alpha]_{589}^{16} =$ -239.9 (c = 0.41, in CH₂Cl₂), dissolved in MeOH for **UPC²** (Daicel Chiralcel **OD-3**, CO₂/MeOH = 95/5, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 5.72 min, t_{R2} = 6.43 min, t_{R3} = 8.53 min, t_{R4} = 10.49 min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 7.6 Hz, 1H), 7.69 – 7.64 (m, 2H), 7.62 – 7.57 (m, 2H), 7.23 – 7.14 (m, 2H), 7.06 – 7.04 (m, 1H), 6.65 – 6.60 (m, 1H), 4.25 – 4.08 (m, 2H), 3.74 (d, J = 16.4 Hz, 1H), 3.34 (d, J = 16.4 Hz, 1H), 2.20 (d, J = 7.2 Hz, 3H), 1.19 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.3, 137.8, 134.0, 133.3, 131.7, 130.1, 129.6, 128.6, 128.5, 127.8, 127.3, 126.4, 123.5, 123.1, 121.9, 67.0, 62.7, 37.4, 15.0, 13.8.

ESI-HRMS: calcd for $C_{20}H_{19}NO_4SNa^+$ ([M + Na]⁺) = 392.0927, found 392.0924. **IR** (neat):1734, 1453, 1311, 1251, 1225, 1175, 1054, 762 cm⁻¹.

	Retention	Area	% Area
	Time		
1	5.725	428227	4.03
2	6.430	38446	0.36
3	8.531	9590668	90.17
4	10.486	578885	5.44

ethyl (12*R*,12*aS*)-12-methyl-7-methylene-7,12-dihydro-12a*H*-benzo[4,5]isothiazolo[2,3-*b*]iso quinoline-12a-carboxylate 5,5-dioxide (D3)

White solid; mp: 109-111 °C; 86% yield, 54:46 dr (determined by ¹H NMR), 90%/90% ee. $[\alpha]_{589}^{18} = -171.6$ (c = 0.63, in CH₂Cl₂), dissolved in MeOH for **HPLC** (Chiralcel **ID**, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 20.23$ min, $t_{R2} = 22.78$ min, $t_{R3} = 30.09$ min, $t_{R4} = 41.98$ min.

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 – 7.61 (m, 5H), 7.36 – 7.18 (m, 5H), 5.66 – 5.39 (m, 1H), 4.07 – 3.34 (m, 3H), 1.74 – 0.83 (m, 6H)

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.5, 136.3, 134.8, 134.3, 132.8, 130.9, 130.7, 129.2, 128.9, 127.8, 127.5, 124.8, 124.0, 121.8, 92.5, 71.0, 62.6, 42.5, 16.9, 13.6.

ESI-HRMS: calcd for $C_{20}H_{19}NO_4SNa^+$ ([M + Na]⁺) = 392.0927, found 392.0924. **IR** (neat):1741, 1619, 1455, 1312, 1239, 1178, 1025, 770 cm⁻¹.

	Retention Time	Area	% Area
1	20.261	21110341	23.88
2	22.649	21128901	23.90
3	29.724	23167610	26.21
4	41.733	22989702	26.01

	Retention Time	Area	% Area
1	20.231	16778632	51.17
2	22.784	913286	2.79
3	30.088	773799	2.36
4	41.979	14325211	43.69

ethyl (12*R*,12*aS*)-7-methylene-12-phenyl-7,12-dihydro-12a*H*-benzo[4,5]isothiazolo[2,3-*b*]iso quinoline-12a-carboxylate 5,5-dioxide (D4)

White solid; mp: 108-110 °C; 72% yield, 67:33 dr (determined by ¹H NMR), 92%/89% ee. $[\alpha]_{589}^{17} = -290.2$ (c = 0.62, in CH₂Cl₂), dissolved in MeOH for **HPLC** (Chiralcel **ID**, Hexane/iPrOH = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 23.57$ min, $t_{R2} = 27.29$ min, $t_{R3} = 31.68$ min, $t_{R4} = 37.22$ min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 – 7.85 (m, 2H), 7.64 – 7.58 (m, 2H), 7.47 – 7.43 (m, 1H), 7.39 – 7.36 (m, 1H), 7.33 – 7.30 (m, 1H), 7.27 – 7.25 (m, 1H), 7.20 – 7.17 (m, 1H), 7.04 – 6.99 (m, 3H), 6.97 – 6.95 (m, 1H), 5.62 (d, J = 2.8, 1H), 5.57 – 5.56 (d, J = 2.8, 1H) 5.19 (s, 1H), 4.08 – 3.93 (m, 2H), 0.99 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.5, 136.4, 134.7, 134.3, 133.6, 132.9, 132.1, 130.4, 129.9, 129.7, 129.3, 128.3, 128.0, 127.9, 127.5, 124.8, 124.4, 121.2, 92.7, 71.1, 62.9, 52.7, 13.6. ESI-HRMS: calcd for C₂₅H₂₁NO₄SNa⁺ ([M + Na]⁺) = 454.1084, found 454.1082. IR (neat):1736, 1618, 1452, 1313, 1225, 1179, 1028, 767, 705 cm⁻¹.

2	27.257	1799476	21.32
3	31.886	1804924	21.38
4	37.134	2402041	28.46

ethyl (S)-3-((R)-3-oxo-2,3-dihydro-1*H*-inden-1-yl)-2,3-dihydrobenzo[*d*]isothiazole-3-carboxy late 1,1-dioxide (C44)

White solid; mp: 171-175 °C; 47% yield, 58:42 dr (determined by ¹H NMR), 34%/37% ee. $[\alpha]_{589}^{19} = -25.0$ (c = 0.33, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel IC-3, CO₂/MeOH = 80/20, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: $t_{R1} = 10.58$ min, $t_{R2} = 12.26$ min, $t_{R3} = 14.64$, $t_{R4} = 18.83$ min.

¹**H** NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz, 1H), 7.82 – 7.80 (m, 2H), 7.72 – 7.67 (m, 2H), 7.63 – 7.59 (m, 1H), 7.51 - 7.47 (m, 1H), 7.28 – 7.27 (m, 1H), 4.45 (dd, *J* = 7.2, 2.8 Hz, 1H), 4.36 (q, *J* = 7.2 Hz, 2H), 2.44 (dd, *J* = 18.8, 7.6 Hz, 1H), 2.20 (dd, *J* = 18.8, 3.2 Hz, 1H), 1.40 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 202.6, 169.9, 150.6, 138.5, 136.4, 135.4, 134.7, 134.0, 131.2, 129.2, 125.3, 124.9, 124.4, 122.0, 71.3, 64.0, 46.1, 38.6, 14.1.

ESI-HRMS: calcd for $C_{19}H_{17}NO_5SNa^+$ ([M + Na]⁺) = 394.0720, found 394.0720.

IR (neat): 3272, 1712, 1467, 1305, 1245, 1166, 935, 762, 735

	Retention	Area	% Area
	Time		
1	10.513	582464	30.35
2	12.175	379422	19.77
3	14.538	380921	19.85
4	18.708	576355	30.03

	Retention Time	Area	% Area
1	10.584	1204525	19.59
2	12.263	782839	12.73
3	14.644	1691535	27.51
4	18.831	2470016	40.17

ethyl (S)-3-((R)-4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)-2,3-dihydrobenzo[d]isothiazole-3-c arboxylate 1,1-dioxide (C45)

White solid; mp: 173-176 °C; 61% yield, 57:43 dr (determined by ¹H NMR), 75%/80% ee. $[\alpha]_{589}^{19} = -67.7$ (c = 0.37, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel **OX-3**, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 254$ nm), retention time: t_{R1} = 27.86 min, t_{R2} = 34.04 min, t_{R3} = 36.95, t_{R4} = 56.04 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 -8.11 (m, 1H), 7.86 – 7.82 (m, 2H), 7.79 – 7.76 (s, 1H), 7.52 – 7.44 (m, 2H), 7.35 – 7.27 (m, 1H), 7.20 – 7.10 (m, 1H), 4.29 – 4.21 (qd, *J* = 7.2, 4.6 Hz, 2H), 4.07 (dd, *J* = 5.6, 2.8 Hz, 1H), 3.26 – 3.17 (m, 1H), 2.40 – 2.33 (m, 1H), 2.17 – 2.08 (m, 1H), 1.92 – 1.85 (m, 1H), 1.27 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.1, 169.8, 139.8, 136.8, 135.0, 134.4, 133.9, 132.1, 131.1, 128.6, 128.1, 128.0, 125.7, 122.0, 73.1, 63.8, 46.2, 33.3, 22.8, 13.9.

ESI-HRMS: calcd for $C_{20}H_{19}NO_5SNa^+$ ([M + Na]⁺) = 408.0876, found 408.0873. **IR** (neat): 3270, 1733, 1680, 1305, 1241, 1169, 1025, 761, 734 cm⁻¹.

ethyl (S)-3-((R)-(2-((R)-hydroxy(phenyl)methyl)phenyl)(phenyl)methyl)-2,3-dihydrobenzo[d]i sothiazole-3-carboxylate 1,1-dioxide (E1)

White solid; mp: 234-239 °C; 98% yield, 87:13 dr (determined by ¹H NMR), 92%/82% ee. $[\alpha]_{589}^{19} = -159.8$ (c = 0.87, in THF), dissolved in MeOH for UPC² (Daicel Chiralcel **OX-3**, CO₂/MeOH = 90/10, flow rate = 1.5 mL/min, $\lambda = 211$ nm), retention time: t_{R1} = 5.95 min, t_{R2} = 7.59 min, t_{R3} = 11.40, t_{R4} = 13.60 min.

¹**H** NMR (600 MHz, DMSO- d_6) δ 8.69 (s, 1H), 7.82 – 7.75 (m, 2H), 7.73 (d, J = 7.8 Hz, 1H), 7.64 – 7.59 (m, 2H), 7.55 – 7.53 (m, 2H), 7.45 – 7.42 (m, 3H), 7.39 – 7.36 (m, 1H), 7.33 – 7.28 (m, 2H), 7.07 – 7.01 (m, 3H), 6.77 – 7.66 (m, 2H), 5.63 (d, J = 4.2 Hz, 1H), 5.48 (d, J = 4.8 Hz, 1H), 5.03 (s, 1H), 3.66 – 3.60 (m, 1H), 3.51 – 3.45 (m, 1H), 0.44 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (151 MHz, DMSO-*d*₆) δ 169.2, 143.7, 142.4, 137.3, 136.3, 136.0, 134.8, 133.3, 130.9, 130.5, 128.5, 128.3, 127.7, 127.4, 126.9, 126.9, 126.8, 126.8, 126.6, 124.9, 121.0, 72.0, 71.0, 61.9, 53.6, 12.9.

ESI-HRMS: calcd for $C_{30}H_{27}NO_5SNa^+$ ([M + Na]⁺) = 536.1502, found 536.1502. **IR** (neat): 3263, 1733, 1452, 1312, 1244, 1201, 1171, 1035, 762, 703 cm⁻¹.

	Retention Time	Area	% Area
1	6.023	2274030	18.73
2	7.657	2274961	18.73
3	11.439	3785273	31.17
4	13.727	3809252	31.37

	Retention Time	Area	% Area
1	5.951	136339	0.58
2	7.590	2945601	12.53
3	11.400	827040	3.52
4	13.599	19598006	83.37

ethyl (7*S*,12*R*,12*S*)-7,12-diphenyl-7,12-dihydro-12aH-benzo[4,5]isothiazolo[2,3-*b*]isoquinolin e-12a-carboxylate 5,5-dioxide (F1)

White solid; mp: 210-214 °C; 53% yield, 92% ee. $[\alpha]_{589}^{15} = -144.2$ (c = 0.45, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel **OX-3**, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, $\lambda = 211$ nm), retention time: t_{R1} = 8.23 min, t_{R2} = 21.83 min.

¹**H NMR** (400 MHz, DMSO- d_6) δ 7.79 (d, J = 8.0 Hz, 1H), 7.66 – 7.60 (m, 4H), 7.52 – 7.48 (m, 3H), 7.45 – 7.42 (m, 3H), 7.30 (d, J = 7.2 Hz, 1H), 7.23 – 7.19 (m, 1H), 7.17 – 7.11 (m, 3H), 7.07 – 7.04 (m, 1H), 6.76 (d, J = 7.6 Hz, 1H), 6.07 (s, 1H), 5.50 (s, 1H), 4.16 – 3.99 (m, 2H), 0.99 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, DMSO- *d*₆) δ 168.6, 139.4, 138.4, 135.7, 135.6, 135.0, 133.1, 132.8, 131.4, 130.8, 130.2, 129.6, 128.8, 128.3, 128.1, 128.1, 127.6, 127.3, 127.2, 125.0, 121.0, 72.2, 62.6, 59.4, 48.7, 13.7.

ESI-HRMS: calcd for $C_{30}H_{25}NO_4SNa^+$ ([M + Na]⁺) = 518.1397, found 518.1387. **IR** (neat): 1736, 1452, 1311, 1230, 1178, 748, 726, 699 cm⁻¹.

ethyl (7*R*,12*R*,12*S*)-7,12-diphenyl-7,12-dihydro-12aH-benzo[4,5]isothiazolo[2,3-*b*]isoquinolin e-12a-carboxylate 5,5-dioxide (F1')

White solid; mp: 93-96 °C; 29% yield, 92% ee. $[\alpha]_{589}^{16} = -241.9$ (c = 0.22, in CH₂Cl₂), dissolved in MeOH for UPC² (Daicel Chiralcel OX-3, CO₂/MeOH = 85/15, flow rate = 1.5 mL/min, λ = 211 nm), retention time: t_{R1} =7.44 min, t_{R2} = 9.73 min.

¹**H** NMR (400 MHz, DMSO- d_6) δ 7.85 (d, J = 8.0 Hz, 1H), 7.70 – 7.64 (m, 2H), 7.52 – 7.46 (m, 3H), 7.43 – 7.34 (m, 4H), 7.28 – 7.25 (m, 1H), 7.22 – 7.18 (m, 1H), 7.02 – 6.94 (m, 5H), 6.73 (d, J = 7.6 Hz, 1H), 6.36 (s, 1H), 5.55 (s, 1H), 3.96 – 3.88 (m, 1H), 3.83 – 3.75 (m, 1H), 0.80 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (101 MHz, DMSO- *d*₆) δ 170.1, 140.7, 138.4, 135.6, 134.5, 133.7, 133.5, 133.1, 130.6, 130.0, 129.7, 129.4, 128.2, 128.2, 128.1, 128.0, 127.9, 127.4, 126.9, 124.9, 120.8, 69.9, 62.3, 56.6, 50.4, 13.3.

ESI-HRMS: calcd for $C_{30}H_{25}NO_4SNa^+$ ([M + Na]⁺) = 518.1397, found 518.1391. **IR** (neat): 1731, 1452, 1303, 1240, 1179, 965, 753, 704 cm⁻¹.

	Time		
1	7.465	10714867	49.97
2	9.733	10728934	50.03

diethyl [3,3'-bibenzo[d]isothiazole]-3,3'(2H,2'H)-dicarboxylate 1,1,1',1'-tetraoxide (By1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (m, 2H), 7.66 (m, 2H), 7.62 – 7.57 (m, 2H), 7.50 (m, 2H), 6.17 (s, 2H), 4.32 – 4.22 (m, 4H), 1.26 (t, *J* = 7.2 Hz, 6H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.8, 136.4, 132.7, 131.7, 131.6, 127.3, 121.5, 73.7, 64.4, 13.7.

8 References

- (a) Z. P. Yu, X. H. Liu, Z. H. Dong, M. S. Xie and X. M. Feng, *Angew. Chem. Int. Ed.*, 2008, 47, 1308-1311; (b) X. Zhou, D. J. Shang, Q. Zhang, L. L. Lin, X. H. Liu and X. M. Feng, *Org. Lett.*, 2009, 11, 1401-1404.
- 2 D.-M. Yan, Q.-Q. Zhao, L. Rao, J.-R. Chen and W.-J. Xiao, *Chem. Eur. J.*, 2018, **24**, 16895-16901.
- 3 L. Zhang, G. Y. Ang and S. Chiba, Org. Lett., 2011, 13, 1622-1625.
- 4 Y. Masuda, N. Ishida and M. Murakami, J. Am. Chem. Soc., 2015, 137, 14063-14066.
- 5 J. Jurczyk, M. C. Lux, D. Adpressa, S. F. Kim, Y.-h. Lam, C. S. Yeung and R. Sarpong, *Science*, 2021, **373**, 1004-1012.

9 Copies of the NMR spectra for new compounds

B15

B16

B17

110 100 fl (ppm) -10 210 200 170 160 150 140 130

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

150 140 130 120 110 100 fl (ppm) -10 200 190 170 160

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

-10 110 100 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

-10 200 190 170 160 150 140 130 120 110 100 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Π(ppm)

110 100 fl (ppm) -10 210 200 190 170 160 150 140 130

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

 $\begin{array}{c} \textbf{B26} \\ \textbf{B26$

110 100 fl (ppm) -10

170 160 150 110 100 fl (ppm) -10

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

-10 110 100 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

B29

-10 110 100 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

170 160 150 140 130 110 100 fl (ppm) -10

-10 110 100 fl (ppm)

B33

B34 B34 B34

200 190 170 160 150 140 130 120 110 100 fl (ppm) -10

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

B39

-10 110 100 fl (ppm)

-10 210 200 170 160 150 140 130 120 110 100 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

-10 170 160 150 140 130 110 100 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

110 100 fl (ppm) -10 170 160 150 130 120

-10 170 160 150 110 100 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

2.8.14 2.7.77 2.7.76 2.7.76 2.7.61 2.7.61 2.7.61 2.7.61 2.7.61 2.7.62 2.7.63 2.7.63 2.7.64 2.7.764</li

140 130 110 100 fl (ppm) -10

C2

C3

210 200 190 180 170 160 150 140 130 120

110 100 fl (ppm) 90 80 70 60 50

40

30 20 10

0

-10

-10 170 160 150 110 100 fl (ppm)

C4

170 160 150 140 130 120 110 100 fl (ppm) -10

C7

144

53.5 -54.0 -54.5 -55.0 -55.5 -56.0 -56.5 -57.0 -57.5 -58.0 -58.5 -59.0 -59.5 -60.0 -60.5 -61.0 -61.5 -62.0 -62.5 -63.0 -63.5 -64.0 -64.5 -65.0 -65.5 -65.0 -65.5 -67.0 -67.5 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 fl (ppm)

10 0 -10

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

-104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -18 -119 -120 -121 -122 -123 -124 -125 -126 -127 -128 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

-10 110 100 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

C15

210 200 190

180 170 160 150

140 130 120

110 100 fl (ppm) 90 80 70 60 50

40

30 20 10

0 -10

8.12 8.12 7.68 7.68 7.68 7.68 7.68 7.65 7.65 7.65 7.65 7.65 7.65 7.65 7.75 7.65 7.75

210 200 180 170 160 150 140 130 120 110 100 fl (ppm) 90 80 70 60 50 40 30 20 10 0 -10 190

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

170 160 150 110 100 fl (ppm) -10

110 100 fl (ppm) -10

. 110 100 fl (ppm) -10

C20

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

C21

8.12 8.12 7.18 7.18 7.18 7.16 7.17 7.16 7.17 7.16 7.17 7.16 7.17 7.16 7.17 7.16 7.17 7.16 7.17

C22

160 150 110 100 fl (ppm) -10

170 160 150 110 100 fl (ppm) -10

C24

110 100 fl (ppm) -10

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

$\begin{array}{c} & \mathbf{C26} \\ & \mathbf{C18} \\ & \mathbf{$

180 170 160 150 110 100 fl (ppm) -10

C27

I9F NMR (377 MHz, CD,0δ-115.16.

Parameter	Value	
1 Title	as-20211022-ylk-cat532.3.1	11
2 Solvent	CDCl3	
3 Temperature	295.8	
4 Number of Scans	16	
5 Spectrometer Frequenc	y376.55	
6 Nucleus	19F	

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

110 100 fl (ppm) -10

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

$\begin{array}{c} 8.18 \\ 7.155 \\$

C31

 170 160 150

8.8.11
 7.7.58
 8.8.11
 8.8.12
 8.8.12
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14
 8.8.14

110 100 fl (ppm)

-10

C33

160 150 110 100 fl (ppm) -10

110 100 fl (ppm) -10

170 160 110 100 fl (ppm) -10

160 150 110 100 fl (ppm) -10

110 100 fl (ppm) -10

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

110 100 fl (ppm) -10

110 100 fl (ppm) -10

C39

C40

C41

110 100 fl (ppm) -10

$C45 \\ C45 \\ C45$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

C43-(II) the more polar isomer

D2

. 140

100 90 fl (ppm)

¹H NMR - NOESY (400 MHz, CDCl3) – (**D2**)

-10 fl (ppm)

E1

F1

-10 110 100 fl (ppm)

¹H NMR - NOESY (400 MHz, DMSO- d_6) – (F1)

F1′

¹H NMR - NOESY (400 MHz, DMSO- d_6) – (F1')

10 CD spectra of the products

