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A Detailed Methods

A.1 Code and Parameter AvailabilityThe Python code used to produce the results discussed in this paper is distributed open source under MIT 
license [https://github.com/choderalab/espaloma]. Core dependencies include PyTorch 1.9.1 [1], 
Deep Graph Library 0.6.0 [2], the Open Force Field Toolkit 0.10.0 [3, 4], and OpenMM 7.7.0 [5].

Describe how espaloma can be used in OpenMM via openmmtools, and describe which model is 
available as espaloma-0.0.2

A.2 Datasets
The typed ZINC validation subset distributed with parm@Frosst [6] was used in atom typing classification 
experiments (Section 1.1).

For MM fitting experiments (Section 2), we employed molecules the PhAlkEthOH dataset [7], 
parametrized with GAFF-1.81 [8] using Antechamber [9, 10] from AmberTools21, and generated molecular 
dynamics (MD) snapshots with annotated energies according to the procedure detailed below (Section A.4). 
We filtered out molecules with a gap between minimum and maximum energy larger than 0.1 Hartree (62.5 
kcal/mol).

For QM fitting experiments (Section 3), datasets hosted on QCArchive [11] are used. We filter out snap-
shots with energies more than 0.1 Hartree (62.5 kcal/mol) higher than the minima. Within all datasets, we 
randomly select training, test, and validation sets with 80:10:10 partitions.
A.3 Machine learning experimental details
The input features of the atoms included the one-hot encoded element, as well as the hybridization, aro-
maticity, (various sized-) ring membership, and formal charge thereof, assigned using the OpenEye Toolkit
(OpenEye Scientific Software).
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All models are trained with 5000 epochs with the Adam optimizer [12]; early stopping was used to select
the epoch with lowest validation set loss.

Hyperparameters, namely choices of graphneural network layer architectures (GIN [13], GCN [14], Graph-
SAGE [15], SGConv [16]), depth of graph neural network and of Janossy pooling network (3, 4, 5, 6), activation
functions (ReLU, sigmoid, tanh), learning rates (1e-3, 1e-4, 1e-5), and per-layer units (16, 32, 64, 128, 256,
512) were briefly optimized with a grid search using validation sets on the MM fitting experiment. As a
result, we use three 128-units GraphSAGE [15] layers with ReLU activation function for stage I and four 128-
units feed-forward layers with ReLU activation for stage II and III. Reported metrics: R2: the coefficient of
determination, RMSE: root mean square error, MAPE: mean absolute percentage error; note that the MAPE
results we report is not multiplied by 100, and therefore denotes the fractional error. The annotated 95%
confidence intervals are calculated by bootstrapping the test set 1000 times to account for finite-size effects
in the composition of the test set.
A.4 Molecular dynamics simulation details
High-temperature MD simulations described in Section 2 were initialized using RDKit’s default conformer 
generator followed by energy minimization in OpenMM 7.5, with initial velocities assigned randomly to the 
target temperature. Vacuum trajectories were simulated without constraints using LangevinIntegrator 
from OpenMM [5] using a temperature of 500 K, collision rate of 1/picosecond, and a timestep of 1 fs. 500 
samples (5 ns) are collected with 10000 steps (10 ps) between each sample.
A.5 Alchemical free energy calculations
We used the perses 0.9.5 relative alchemical free energy calculation infrastructure [17] (based on OpenMM
7.7 [5] and openmmtools 0.21.2 [18]) to compare performance on the Tyk2 kinase:inhibitor benchmark
set from the Schrodinger JACS benchmark set [19] as curated by the OpenFF protein-ligand benchmark
0.2.0 [20]. In order to assess the impact of espaloma small molecule parameters and charges in isolation,
we used the Amber ff14SB protein force field [21], and performed simulations with either OpenFF 1.2.0
(openff-1.2.0) or the espaloma Joint model trained on OpenFF Gen2 Optimization and PepConf datasets
(espaloma-0.2.2) available through the openmmforcefields 0.11.0 package [22]. Notably, none of the lig-
ands appearing in this set appear in the training set for either force field. All systemswere explicitly solvated
with a 9 Åbuffer around the protein with TIP3P water [23] and use the Joung and Cheatham monovalent
counterion parameters [24] to model a neutral system with 300 mM NaCl salt. The same transformation
network provided in theOpenFF protein-ligand benchmark set was used to compute alchemical transforma-
tions, and absolute free energies up to an additive constant were estimated from a least-squares estimation
strategy [25] as implemented in the OpenFF arsenic package [26]. Both experimental and calculated abso-
lute free energies were shifted to their respective means before computing statistics, as in [19].

Alchemical free energy calculations used replica exchange among Hamiltonians with Gibbs sampling
complete mixing exchanges each iteration [27], simulating 5 ns/replica with 1 ps between exchange at-
tempts. 12 alchemical states were used. Simulations were conducted at 300 K and 1 atm using a Monte
Carlo Barostat and Langevin BAOAB integrator [28] with bonds to hydrogen constrained, a collision rate
of 1/ps, 4 fs timestep, and heavy hydrogen masses. Atom mappings were generated from the provided
geometries in the benchmark set, mapping atoms that were within 0.2Å and subsequently correcting the
maps to be valid with the use_given_geometries functionality of perses.
B Espaloma can generate fast and accurate partial charges and valence
parameters simultaneously

We integrated the charge equilibration approach into an espaloma model where parameters of the charge
equilibrationmodel {ei, si} and the bonded (bond, angle, and torsion) parameters are optimized jointly. The
resulting model is trained by augmenting the loss function to include a term that penalizes the deviation
from AM1-BCC partial charges for the molecules in the training set. On the one hand, one can calculate the
Coulomb energy term using this predicted set of charges and incorporate this directly into the energy MSE
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PhAlkEthOH experiment (combination of independent models) energy RMSE (kcal/mol) charge RMSE (e)
valence force field charge model Train Test Train Test

openff-1.2.0 AM1-BCC 1.60711.69151.5197 reference
openff-1.2.0 espaloma 1.62861.66281.5861 1.70721.79131.6361 0.00720.00730.0071 0.00720.00730.0070espaloma AM1-BCC 0.86560.91310.8225 1.13981.23321.0715 reference
espaloma espaloma 0.95961.01010.9100 1.22161.27661.1529 0.00720.00730.0071 0.00720.00730.0070

Joint Model, Loss=
MSE(Uqm(x), Ûvalence(x; ΦNN) + Ûcharge(x; ΦNN) + ULJ(x)) 0.86460.91800.8186 1.08391.12281.0462 0.32180.32580.3173 0.32300.32900.3184

MSE(Uqm(x), Ûvalence(x; ΦNN) + UAM1−BCC(x) + ULJ(x)) + MSE(q, q̂(ΦNN)) 0.83360.88770.7882 1.09871.16971.0318 0.00750.00770.0073 0.00760.00770.0075
MSE(Uqm(x), Ûvalence(x; ΦNN) + Ûcharge(x; ΦNN) + ULJ(x)) + MSE(q, q̂(ΦNN)) 0.99121.04430.9531 1.29211.33231.2403 0.01380.01400.0136 0.01370.01390.0135

0.0124

Table S1. Espaloma can jointly predict partial charges through a simple charge-equilibration model that learns 
electronegativity and hardness parameters. Using the OpenFF PhAlkEthOH dataset (244,036 snapshots over 7,408 molecules containing only carbon, oxygen, and hydrogen atoms), we compare the performance of indepdently trained and jointly trained espaloma models in reproducing snapshot potential energies and AM1-BCC partial charges. In the first two rows, we train two independent models to predict the energy of conformations and charges of atoms; in the third row, we use a joint model where the latent embedding is shared between these two tasks. As a reference, the RMSE between AM1-BCC charges assigned by two different chemoinformatics toolkits—Ambertools 21 [9] and OpenEyeToolkit—are 0.01260.0129 (e).

loss function (shown in the first row in the second half of Table S1). This approach, although it maintains a 
relatively accurate energy prediction, leads to a large charge RMSE, since no reference charge is provided. 
On the other hand, we can penalize the derivation from the reference charges by adding an MSE loss on 
the charges with a tunable weight as a hyperparameter (second row), which we tune on the validation set
to be 1e − 3. This setting results in satisfactory performance in both energy and charge prediction. Finally, if 
we combine both losses (third row), we observe worse performance on test set energy predictions, which 
could be attributed to the repeated strong regularization on charge parameters.
C A graph theoretic view of Class I molecular mechanics force fields
Consider a molecular graph  where atoms map to vertices  and covalent bonds map to edges  . In a classI molecular mechanics force field [29–35], the parameters ΦFF assigned to a molecule graph  define how 
the total potential energy of a conformation x ∈ ℝ||∗3 is computed from independent bond, angle, torsion, 
and nonbonded energy terms given the complete set of molecular mechanics parameters ΦFF.
UMM(x;,ΦFF) =

∑

(vi ,vj )∈bond
Ubond

(

r(x; vi, vj); kr(ΦFF; vi, vj), r0(ΦFF; vi, vj)
)

+
∑

(vi ,vj ,vk)∈angle
Uangle

(

�(x; vi, vj , vk);K�(ΦFF; vi, vj , vk), �0(ΦFF; vi, vj , vk)
)

+
∑

(vi ,vj ,vk ,vl )∈torsion
Utorsion

(

�(x; vi, vj , vk, vl); {K�,n(ΦFF; vi, vj , vk, vl)}
nmax
n=1 , �0(ΦFF; vi, vj , vk, vl)

)

+
∑

(vi ,vj )∈Coulomb
UCoulomb

(

r(x; vi, vj); q(ΦFF; vi), q(ΦFF; vj)
)

+
∑

(vi ,vj )∈van der Waals
Uvan der Waals

(

r(x; vi, vj); �(ΦFF; vi, vj), �(ΦFF; vi, vj)
) (1)

Here, the sets bond,angle,torsion denote the duples, triples, and quadruples of bonded atoms (vertices) in
, while Coulomb and van der Waals denotes the set of atom (vertex) pairs separated by at least three edges,
since interactions separated by fewer edges are generally excluded. �0 denotes the vacuum electric permit-
tivity. The potential terms depend on distances r(x; vi, vj), angles �(x; vi, vj , vk), and torsions (dihedral angles)
�(x; vi, vj , vk, vl) measured for the corresponding atoms from the positions vector x. The various parame-
ter functions—bond force constant kr and equilibrium distance r0, angle force constant K� and equilibriumangle �0, periodic torsion term barrier height K�,n and phase �0 for periodicity n, partial charge q, Lennard-Jones radius � and well depth �—extract the parameters corresponding to specific sets of atoms (vertices)
from the vector of molecular mechanics parameters ΦFF to compute that contribution to the total potential
energy.

The individual potential energy terms are computed by functions that generally take simple harmonic
or periodic forms with respect to bond lengths and angles in terms of the parameters for those specific
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interactions:
Ubond(r; kr, r0) =

Kr

2
(r − r0)2 (2)

Uangle(�;K� , �0) =
K�

2
(� − �0)2 (3)

Utorsion(�; {K�,n}, �0) =
nmax
∑

n=1
K�,n [1 + cos(n�)] (4)

UCoulomb(r; qi, qj) = 1
4��0

qi qj
r

(5)
Uvan der Waals(r; �, �) = 4�

[

(�
r

)12
−
(�
r

)6
]

(6)
where kr and k� denote force constants for bonds and angles, r0 and �0 denote equilibrium bond lengths
and angles,K�,n denotes a torsion energy factor (which can be positive or negative) for periodicity n, �0 is thepermittivity of free space, and qi denote partial charges. For force fields like AMBER [21] and CHARMM [36],
the effective Lennard-Jones well depth �vi ,vj and radius �vi ,vj parameters for an interacting pair of atoms are
computed from atomic parameters for atoms vi and vj using Lorentz-Berthelot combining rules [37],

�(ΦFF; vi, vj) = 1
2
(�vi + �vj ) (7)

�(ΦFF; vi, vj) =√�vi�vj (8)
though alternative combining rules [38] or even pair-specific parameters [39] are also possible.

Typically, atom type based force field parameterization engines [40] such as those used in AMBER [21]
or CHARMM [36] assign parameters based on templates (for biopolymer residues or solvents) or through
chemical perception algorithms (as in the case of GAFF [9, 10] or CGenFF [41, 42]). More recently, an ap-
proach to assigning atom, bond, angle, and torsion parameters directly based on the common SMARTS/S-
MIRKS chemical perception language was introduced, which bypasses the need to define parameter classes
in terms of atom types, but still retains discrete interaction types [40]. Automatically fitting these type defi-
nitions still represents an intractable mixed discrete-continuous optimization problem. In the next section,
we will show how a continuous, differentiable model can assign parameters directly, without the use of
discrete atom or interaction types.
D A brief introduction to graph neural networks
In the context of molecular machine learning, molecules are modelled as undirected graphs of bonded
atoms, where each atom and bond can carry attributes reflecting their chemical nature fromwhich complex
chemical features can be learned. If we write this as a tuple of three sets,

 = { ,  , } (9)
Here,  is the set of the vertices (or nodes) (atoms),  the set of edges (bonds), and  = {u} the universal
(global) attribute.

In a graph neural network (GN) a set of functions (with learnable parameters ΦNN) govern the three
stages used in both training and inference of a graph neural network: initialization, propagation, and readout.
Following one of the most general description of the message-passing procedure in the propagation stage
in [43], we briefly review the message-passing steps in graph neural networks, where node attribuves v,
edge attributes e, and global attributes u are updated according to:

e(t+1)k = �e(e(t)k ,
∑

i∈ e
k

vi,u(t)), edge update (10)
ē(t+1)i = �e→v(E(t+1)

i ), edge-to-node aggregate (11)
v(t+1)i = �v(ē(t+1)i , v(t)i ,u

(t)), node update (12)
ē(t+1) = �e→u(E(t+1)), edge-to-global aggregate (13)
ū(t+1) = �v→u(V (t)), node-to-global aggregate (14)
u(t+1) = �u(ē(t+1), v̄(t+1),u(t)), global update (15)
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whereEi = {ek, k ∈ v
i } is the set of attributes of edges connected to a specific node,Ei = {ek, k ∈ 1, 2, ..., N e}

is the set of attributes of all edges, V is the set of attributes of all nodes, and  v and  e denote the set
of indices of entities connected to a certain node or a certain edge, respectively. �e, �v, and �u are update
functions that take the environment of the an entity as input and update the attribute of the entity, which
could be stateful or not; �e→v, �e→u, and �v→u are aggregation functions that aggregate the attributes of mul-
tiple entities into an aggregated attribute which shares the same dimension with each entity. Note that it
is common that the edges do not hold attribute but only pass messages onto neighboring nodes. For all
models we survey here, edge-to-global update does not apply and global attribute does not present until
the readout stage, when a sum function is applied to form the global representation (u = ∑

i vi). We review
the specifics of the graph neural network architectures that we considered here in the ESI (Table S2).
D.1 Training and inference
While traditional force fields based on discrete atom types are only differentiable with respect to the molec-
ular mechanics parameters they assign, our model is fully differentiable in all model parameters ΦNN thatgovern both the assignment of continuous atom embeddings ℎv (which replace discrete atom types) and 
subsequent assignment of MM parameters ΦFF. We can therefore use gradient-based optimization to tune 
all of these parameters to fit arbitrary differentiable target functions, such as energies and forces of snap-
shots of molecules, equilibrium physical property measurements, fluctuation properties, or experimentally 
measured free energy differences. In this way, straightforward gradient-based optimization simultaneously 
learns the continuous equivalent of atom typing simultaneous with parameter assignment strategies, effec-
tively solving the intractable traditional force field parmaeterization problem of mixed continuous-discrete 
optimization by replacing it with a fully continuous optimization problem.
D.1.1 A linear basis facilitates bond and angle parameter optimization

2

Figure S1. Linear basis parameterization of bonds and angles facilitates robust optimization. A one-dimensional 
harmonic oscillator system (u = K0 (x − b0)2) was simulated with K0 = 5, b0 = 5 as reference parameters.
Training set conformations xwere sampled from a uniform distribution with x ∼ Uniform(4, 6). The loss function (squaredenergy error) as a function of original MM parameters (K , b) shown in (a) is clearly more difficult to optimize due tothe large difference in gradient magnitudes between K and b parameters, while the linear basis parametrization (Sec-tion D.1.1) showing the loss as a function of transformed (K1, K2) in (b) is much simpler to optimize.

The harmonic functional form (Equation 6),
u(x;K, b) = K

2
(x − b)2, (16)

is frequently used in MM potentials for modeling bond and angle energies. Although one can directly opti-mize force constants K and equilibrium bond or angle values b, this empirically result in significant difficul-
ties in training (Figure S1). This can be seen through the loss function and its gradient for a simple toy 
model
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consisting of a single bond and reference parameters (K0, b0):
L(K, b) =

N
∑

n=1
[u(xn;K, b) − u(xn;K0, b0)]2 (17)

=
N
∑

n=1
[K
2
(xn − b)2 −

K0

2
(xn − b0)2]2 (18)

Qualitatively, the loss function landscape for K around K0 is relatively flat, while it is steeply varying for baround b0, frustrating efficient optimization; Figure S1a demonstrates this for a simple toy system. To 
circum-vent this issue, we use the approach described by Vanommeslaeghe et al. [44] and translate the harmonic functional form Equation 16 in which (K, b0) are optimized instead into a linear combination (K1, 
K2) of basis functions is optimized instead:

u(x;K1, K2) =
K1

2
(x − b1)2 +

K2

2
(x − b2)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
linear combination of basis

+
(

−K1b
2
1 −K2b

2
2 +

(K1b1 +K2b2)2

K1 +K2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
x-independent constant

(19)

where b1 and b2 are two positive constants chosen to be smaller and larger than any possible valid bond
or angle—they must satisfying b1 < x < b2 for ∀x that might be observed. Here, Stage III of the espaloma
pipeline would predict K1, K2, which would be used to compute the MM parameters (K, b) via

K = K1 +K2 (20)
b =

K1b1 +K2b2
K1 +K2

(21)
When training to fit energies, our loss function subtracts the mean from the training set energies and pre-
dicted energies for eachmolecule to remove the arbitrary offset constant introduced by this transformation
of variables.
D.1.2 Training by potential energies
Given a training set of molecules {m}, m = 1,… ,M , with corresponding n = 1,… , Nm conformational snap-
shots xm,n ∈ R(∣m ∣×3) for each molecule m, and reference potential energies {Uref(xm,n; ;m)}, the model pa-
rameters ΦNN can be optimized to minimize a measure of deviation between the reference energies and
model energies given by the composed force field ΦFF,Θ. For example, a squared loss function can be used
to quadratically penalize deviations:

(ΦNN) =
M
∑

m=1

Nm
∑

n=1
wm,n

[

Uref(xm,n;m) − UΦFF,Θ (xm,n;m)
]2 (22)

In this work, we took the weightswm,n = 1, butmore sophisticated weighting schemes can be used to empha-
size low-energy snapshots where MM potentials are intended to bemore accurate when fitting to quantum
chemical datasets, as in ForceBalance [45, 46]. In a Bayesian context, the loss function in Eq. 22 would corre-
spond to the negative log likelihood for a normal error model. Other loss or likelihood function forms may
also be useful in ensuring a minority of molecules or geometries for which the MM functional form poorly
reproduces quantum chemical energetics do not dominate the fit.

Additional terms can be added to the loss function to regularize the choice of parameters, such as penal-
izing unphysical choices (such as unphysical magnitudes or parameter regions) or to provide more useful
models (such as penalizing bond vibrations with effective periods that are so short they would require ex-
tremely small timesteps).

When fitting to quantum chemical energies, an additive offset for each molecule m corresponding to
the heat of formation generally cannot be accounted for using standard MM functional forms. To address
this, we subtract the per-molecule mean potential energy for both predicted MM and reference quantum
chemical energies in formulating the loss function, with the goal of ensuring that relative conformational
energetics are accurately approximated even if the heat of formation cannot be computed.
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D.1.3 Other differentiable objectives
In quantum chemical calculations, nuclear potential energy gradients are often available at very low cost
once the wavefunction has been solved to compute the energy. To exploit the rich information available in
these gradients [47–50] ∇xU , it is possible to incorporate both energies and gradients into the loss function,with automatic differentiation used to compute partial derivatives of the espaloma energy function in terms
of both coördinates and parameters. Additional terms penalizing deviations in more complex quantum
chemical properties, such as polarizabilities or vibrational frequencies, could also be incorporated [45, 46].
In this work, however, we found that incorporation of gradient information does not significantly enhance
the performance of the model. We leave this topic to future study.

In addition to incorporating configuration-dependent properties, if the goal is to build a completemolec-
ular mechanics force field to model entire physical systems in the condensed phase, additional terms could
be added to the objective function to quantify the deviation in physical properties, such as densities, dielec-
tric constants, and enthalpies of vaporization [45, 46, 51–54], or even experimental transfer free energies.
D.1.4 Assigning espaloma parameters to molecules
In contrast with many quantum machine learning (QML) force fields that use a neural model to compute
the energy and gradient for every configuration [55–57], espaloma uses a neural model to assignmolecular
mechanics parameters once at the beginning of a simulation, using only the chemical information about all
components in a system. Once generated, the MM parametersΦFF for the system can be seamlessly ported
tomolecular mechanics packages that can exploit accelerated hardware [5, 58–60] to achieve high accuracy
for individual systems at the same speed as traditional force fields.
E Graph neural network (GNN) architectures considered in this paper
We considered the following graph neural network architectures available in DGL [2] in this paper:

Model Edge update �e Edge aggregate �e→v Node update �v

GCN Identity Mean NN
EdgeConv ReLU(W0(vi − vj) +W1vi) Max Identity
GraphSAGE Identity Mean∗ Normalize(NN([v ∶ e]))

GIN Identity Sum∗ NN((1 + �)v + e)
Table S2. Summary of representative graph neural network architectures by edge update, edge aggre-gate, and 
node update types. Models analyzed here include: GCN [14], EdgeConv [61], GraphSAGE [15], and GIN [13]. Other architectures evaluated—TAGCN [62] and SGC [63]—involve multi-step propagation, which could be expressed as a combination of these updates and aggregates.*: Multiple aggregation functions studied in the referenced publication.

F Code snippets for using espaloma
F.1 Designing and training espaloma model
import torch, dgl, espaloma as esp

# retrieve OpenFF Gen2 Optimization Dataset

dataset = esp.data.dataset.GraphDataset.load("gen2").view(batch_size=128)

# define espaloma stage I: graph -> atom latent representation

representation = esp.nn.Sequential(

layer=esp.nn.layers.dgl_legacy.gn("SAGEConv"), # use SAGEConv implementation in DGL

config=[128, "relu", 128, "relu", 128, "relu"], # 3 layers, 128 units, ReLU activation

)

# define espaloma stage II and III:

# atom latent representation -> bond, angle, and torsion representation and parameters
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readout = esp.nn.readout.janossy.JanossyPooling(

in_features=128, config=[128, "relu", 128, "relu", 128, "relu"],

out_features={ # define modular MM parameters espaloma will assign

1: {"e": 1, "s": 1}, # atom hardness and electronegativity

2: {"log_coefficients": 2}, # bond linear combination, enforce positive

3: {"log_coefficients": 3}, # angle linear combination, enforce positive

4: {"k": 6}, # torsion barrier heights (can be positive or negative)

},

)

# compose all three espaloma stages into an end-to-end model

espaloma_model = torch.nn.Sequential(

representation, readout, esp.nn.readout.janossy.ExpCoefficients(),

esp.mm.geometry.GeometryInGraph(), esp.mm.energy.EnergyInGraph(),

esp.nn.readout.charge_equilibrium.ChargeEquilibrium(),

)

# define training metric

metrics = [

esp.metrics.GraphMetric(

base_metric=torch.nn.MSELoss(), # use mean-squared error loss

between=[’u’, "u_ref"], # between predicted and QM energies

level="g", # compare on graph level

)

esp.metrics.GraphMetric(

base_metric=torch.nn.MSELoss(), # use mean-squared error loss

between=[’q’, "q_hat"], # between predicted and reference charges

level="n1", # compare on node level

)

]

# fit espaloma model to training data

results = esp.Train(

ds_tr=dataset, net=espaloma_model, metrics=metrics,

device=torch.device(’cuda:0’), n_epochs=5000,

optimizer=lambda net: torch.optim.Adam(net.parameters(), 1e-3), # use Adam optimizer

).run()

torch.save(espaloma_model, "espaloma_model.pt") # save model

Listing 1. Defining and training a modular espaloma model.

F.2 Deploying espaloma model

# define or load a molecule of interest via the Open Force Field toolkit

from openff.toolkit.topology import Molecule

molecule = Molecule.from_smiles("CN1C=NC2=C1C(=O)N(C(=O)N2C)C")

# create an espaloma Graph object to represent the molecule of interest

import espaloma as esp

molecule_graph = esp.Graph(molecule)

# apply a trained espaloma model to assign parameters

espaloma_model = torch.load("espaloma_model.pt")

espaloma_model(molecule_graph.heterograph)

# create an OpenMM System for the specified molecule

openmm_system = esp.graphs.deploy.openmm_system_from_graph(molecule_graph)

Listing 2. Using a trained espaloma model to assign parameters to a small molecule.
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Figure S2. (a) The data efficiency of espaloma was assessed in a typical use-case regime by exploring the test set energy RMSE as a function of the number of training molecules and snapshots per molecule. The standard deviation over three fitting experiments with different random seeds is shown in parenthesis. Once a sufficiently large number of molecules are available, doubling the number of snapshots per molecule does not reduce the error as rapidly as doubling the number of molecules. (b) The data efficiency of espaloma in a data-poor regime was assessed in the same manner as Figure ??, but for a small number of molecules and training snapshots per molecule. In the data-poor regime, increasing both the number of molecules and snapshots per molecule can deliver large decreases in test set error.

G Espaloma requires few conformations per molecule to achieve high accuracy
We examined the data efficiency of espaloma by repeating the MM fitting experiment with varying numbers 
of molecules and snapshots per molecule in an attempt to address whether molecular diversity or confor-
mational diversity is more important. In the typical data regime (Figure S2), once sufficient conformational 
diversity is reached (∼20 snapshots/molecule), increasing molecular diversity more effectively reduces er-
ror, though this meets with diminishing returns past a certain point. In the low data regime (Figure S2), 
both molecular and conformational diversity are important for reducing error to useful regimes, with a 
minimal threshold for each required to achieve reasonable errors.

H Close examination of molecular mechanics (MM) fitting experiments
Ablation study: the role of energy centering, the inclusion of torsion energies, and the inclusion 
of small rings in datasets in the performance of MM fitting.
We closely examined several choices which appear to have significant impact on the ability to produce high-
quality generalizable models for the task of learning an MM potential: Concretely, we conduct an ablation 
study (Table S3) where we repeat the experiment shown in Figure 2 considering several variations of these 
choices:
Small rings (R): We consider whether molecules with small (3- or 4-membered) rings are included in the 
dataset, since these molecules assume geometries have near-degeneracies in equilibrium angles (Figure 
S4). Energy centering (C): We consider the role of energy centering in the loss function, where the average 
po-tential energy over all conformations for each molecule is subtracted for both reference and predicted 
energies in the loss function, such that only relative conformational energy errors are penalized. We eval-
uate the error both with and without centering. Torsion energies (T): We also consider whether torsion 
energies are included as well, since recovery of torsion profiles can be challenging due to both the near-
degeneracy of parameters and phases. Notably, while MM force fields generally specify a minimal set of a
few torsion periodicities with phases of 0 or � explicitly specified, we use a formulation where all periodic-
ities n = 1, 2, … , 6 are always fit and the sign of the torsion K parameter indicates whether the phase is 0 (K 
> 0) or � (K < 0).
Experiments for all combinations of these choices are shown in Table S3.

We summarize our findings as follow: First of all, best performance is only achieved when we center the 
predicted and reference energies in the loss function used in training, effectively training to fit only relative 
energies, suggesting this makes robust optimization easier. The rationalization could be found in Section 
D.1.1. We also examined the training trajectory of espaloma on this MM fitting task with and without the 
centering of predicted and reference energies (Figure S3) and noticed that centering alleviates, but not 
completely remedies the training difficulties of espaloma models.

Secondly, the inclusion of torsion energies deteriorates performance, especially if measured by uncen-
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R C T Part Utotal Ubond Uangle Utorsion Utotal Ubond Uangle Utorsion kr br k� b�RMSE (kcal/mol) Centered RMSE (kcal/mol) MAPE
000 test 0.87230.93340.8139 1.27251.44651.0575 1.22911.41020.9563 0.78290.84280.7025 0.6501

0.7308
0.5919 0.4553

0.4860
0.4245 0.12380.12650.1206 0.0026

0.0027
0.0025 0.0733

0.0744
0.0722 0.0067

0.0068
0.0066train 0.91830.98890.8343 1.31591.55141.0655 1.28441.53601.0052 0.86810.93300.7993 0.7209

0.7771
0.6639 0.4815

0.5097
0.4431 0.12930.13200.1253 0.0027

0.0028
0.0027 0.0726

0.0736
0.0712 0.0071

0.0073
0.0069

001 test 4.40334.61734.1317 13.716214.551512.9510 7.9210
8.4048
7.3953 0.03630.03840.0345 3.5238

3.6590
3.3984 3.0956

3.2187
2.9908 1.7086

1.7619
1.6367 0.0015

0.0017
0.0014 1.0000

1.0000
1.0000 0.0720

0.0740
0.0701 0.4734

0.4763
0.4712 0.0136

0.0138
0.0134train 4.23724.51293.9854 13.269514.221912.1669 8.0467

8.6800
7.4667 0.03530.03790.0330 3.5041

3.6277
3.3614 3.0241

3.1645
2.9115 1.7425

1.8182
1.6659 0.0016

0.0017
0.0014 1.0000

1.0000
1.0000 0.0705

0.0720
0.0686 0.4803

0.4831
0.4778 0.0137

0.0139
0.0135

010∗ test 0.04900.05850.0369 0.02060.02620.0158 0.04290.04970.0362 0.01750.01870.0163 0.0130
0.0140
0.0121 0.0117

0.0127
0.0105 0.00160.00170.0016 0.0001

0.0001
0.0001 0.0020

0.0020
0.0019 0.0006

0.0007
0.0006train 0.03940.04780.0315 0.01740.02060.0142 0.03320.03940.0271 0.01690.01780.0160 0.0128

0.0135
0.0118 0.0113

0.0121
0.0103 0.00160.00160.0016 0.0001

0.0001
0.0001 0.0020

0.0021
0.0020 0.0006

0.0006
0.0005

011 test 11.068812.82678.8832 0.02400.02840.0204 0.18010.21220.1535 0.01740.02030.0145 0.0346
0.0369
0.0324 0.0168

0.0180
0.0157 0.0270

0.0307
0.0226 0.0001

0.0001
0.0001 0.0020

0.0021
0.0020 0.0001

0.0001
0.0001 0.0020

0.0021
0.0020 0.0009

0.0009
0.0008train 11.781914.05939.4086 0.01900.02030.0179 0.18990.23350.1545 0.01850.02160.0152 0.0335

0.0357
0.0302 0.0161

0.0173
0.0150 0.0284

0.0321
0.0238 0.0001

0.0001
0.0001 0.0020

0.0021
0.0020 0.0001

0.0001
0.0001 0.0020

0.0021
0.0020 0.0009

0.0009
0.0008

100 test 0.62370.70490.5459 0.52240.57070.4774 0.66600.74980.5843 0.49700.55260.4483 0.3380
0.3614
0.3176 0.4654

0.5205
0.4084 0.04690.04790.0459 0.0012

0.0013
0.0012 0.0645

0.0662
0.0624 0.0111

0.0117
0.0107train 0.66150.75840.5706 0.61990.69050.5480 0.69390.77020.6107 0.56930.64940.4963 0.3916

0.4304
0.3473 0.5293

0.6160
0.4489 0.04820.04930.0473 0.0013

0.0013
0.0013 0.0659

0.0677
0.0637 0.0112

0.0117
0.0108

101 test 4.77194.90884.6354 9.59639.96849.1500 23.197224.219222.2922 0.05010.05190.0480 4.3643
4.4498
4.2759 2.6994

2.7756
2.6075 3.6263

3.6948
3.5347 0.0020

0.0022
0.0019 0.8410

0.8440
0.8386 0.0263

0.0267
0.0259 1.0000

1.0000
1.0000 0.9287

0.9294
0.9282train 4.80434.96174.6731 9.38079.85688.8160 23.249124.156322.4420 0.04950.05140.0481 4.4050

4.5169
4.2726 2.6971

2.7786
2.6393 3.5734

3.6850
3.4918 0.0019

0.0021
0.0018 0.8404

0.8428
0.8371 0.0267

0.0272
0.0263 1.0000

1.0000
1.0000 0.9281

0.9288
0.9275

110 test 89.0006102.210570.4894 0.03840.04400.0339 88.9808107.030464.5673 0.02230.02570.0200 0.0246
0.0269
0.0221 0.0278

0.0310
0.0247 0.00180.00190.0018 0.0001

0.0001
0.0001 0.0033

0.0035
0.0032 0.0074

0.0089
0.0064train 79.692799.190462.4512 0.11550.19240.0351 79.658998.958359.2236 0.02090.02360.0185 0.0815

0.1566
0.0243 0.0814

0.1351
0.0264 0.00180.00200.0017 0.0001

0.0001
0.0001 0.0031

0.0033
0.0029 0.0062

0.0076
0.0051

111 test 99.6155118.208975.0240 0.05860.06610.0520 91.7758115.409671.2381 0.02450.02700.0222 0.0297
0.0352
0.0262 0.0327

0.0371
0.0282 0.0438

0.0492
0.0398 0.0000

0.0001
0.0000 0.0017

0.0018
0.0016 0.0001

0.0001
0.0001 0.0034

0.0036
0.0032 0.0077

0.0087
0.0066train 90.1890113.643070.8691 0.16820.27890.0543 81.666498.107364.1198 0.02640.02900.0236 0.0279

0.0299
0.0258 0.1015

0.1693
0.0311 0.1043

0.1679
0.0440 0.0001

0.0001
0.0000 0.0017

0.0018
0.0017 0.0001

0.0001
0.0001 0.0033

0.0035
0.0031 0.0065

0.0075
0.0055

tered RMSE. This could be attributed to the fact that we use a slightly different functional form to express 
torsion energies than reference legacy force fields.

Lastly, with energy centering, including three- and four-membered rings in our training set results in very 
large uncentered RMSE without drastically changing the centered RMSE (relative conformational energy 
errors). We study this effect in detail in the next section.
Case Study: Parametrization of Cyclopropane
We use the model trained on PhAlkEthOH dataset with the inclusion of small rings but without torsion 
energies (experiment 110 in Table S3) and apply this model to cyclopropane (SMILES: C1CC1) As shown in 
(b) in Figure S4, when trained with centered energy loss function, espaloma assigned equilibrium angle
value �0 ≈ 122.1◦ to the CCC angle in cyclopropane while the equilibrium angle is 60◦ in the reference
GAFF-1.81 force field. With a shift in angle force constant, while this would drastically change the energies
of individual CCC angles, the sum of energies of the three CCC angles (whose angle values would sum up to
180◦) would remain very close to the reference value up to a constant. We furthermore compared (in Figure
S4-(e) ) the sum of CCC angle energies in these two parametrizations on a wide range of geometries of
cyclopropane with three CCC angles �0, �1, �2 satisfying 50◦ < Θ0 < 70◦, −10◦ < �1 − �2 < 10◦ and noticed that the
difference is always a constant with fluctuations within 1 kcal/mol.
I Espaloma can easily parameterize complex heterogeneous biomolecular
systems

Because biomolecular systems of interest are often highly heterogeneous environments, it is often practi-
cally incredibly difficult tomodel systems that consist of more than the simplest protein-ligand-solvent com-
binations. For example, the latest Amber 20 release [64] recommends a set of independently developed
(but loosely coupled) set of force fields and complex parameterizationmachinery for proteins [21], DNA [65],
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Table S3. Best performance of MM fitting on PhAlkEthOH dataset only when centering is deployed and torsion 
energy and small rings are excluded. A comparison of espaloma MM fitting experiments on PhAlkEthOH dataset with/without fitting torsions, centering energies, and including three- and four-membered rings. The R C T col-umn summarizes the experimental conditions: R indicates whether small (3- and 4-membered) rings were included in the dataset (1 small rings included, 0 excluded); (C) indicates whether the potential energies for sampled snapshots of each molecule were centered by subtracting off the mean energy for that molecule in the loss function (1 centered, 0 uncentered); (T) indicates whether torsion energies were included in the fitting (1 included, 0 excluded). The rest of theexperimental setting is identical with Figure 2. Force field parameters (ΦFF): kr: bond force constant; br: equilibrium bond length; k� : angle force constant; b� : equilibrium angle value. The root mean squared error (RMSE) and correlation coeffi-
cient (R2) between reference and predicted MM energies, as well as mean absolute percentage error (MAPE) (as a fraction
rather as a percentage, i.e. not multiplied by 100), and correlation coefficient (R2) between reference and predicted force field parameters. The sub- and superscripts report the 95% confidence interval of each statistics estimated from 1000bootstrapped replicates on the molecule set. *: Same experiment as Figure 2.



w/ centering w/o centering
Rep. ES Epoch RMSE at ES (kcal/mol) Rep. ES Epoch RMSE at ES (kcal/mol)Train Validation Test Train Validation Test
0 9602 0.0456 0.0523 0.0834 0 2447 0.7331 0.6937 0.77051 8938 0.0381 0.0500 0.0815 1 1902 1.2449 1.1950 1.19102 9967 0.0438 0.0503 0.0545 2 1424 1.1646 1.1351 1.15373 9696 0.0411 0.0342 0.0714 3 2422 0.9849 0.9121 0.98054 9879 0.0377 0.0470 0.0714 4 2446 0.8727 0.8006 0.8460

Figure S3. espaloma models are difficult to train, especially when attempting to fit to absolute (rather than 
relative) conformation energies. We compare the training trajectory of espaloma without torsion energy on PhAlkEthOH dataset excluding three- and four-membered rings with and without centering (experiments 010 and 000 in Table S3). Example training trajectories with the same setting as Figure 2. Various repetitions are plotted in different 
colors.

Figure S4. A comparison of reference and espaloma-learned parametrization of cyclopropane. (a): KDEplot of CCC angle in cyclopropane. (b): Individual reference and predicted angle energy (Uangle and Ûangle, energy of each CCC angle) plotted against CCC angle values in the snapshots generated. (c): Predicted plotted against reference 
individual CCC energy. (d): Predicted plotted against reference sum CCC energy. (e): Distribution of difference betweenreference ΣUangle and predicted ΣÛangle sum CCC energy.
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Figure S5. espaloma parametrizes covalent inhibitor adduct system. Heavy atom bond equilibrium length (in angstrom) and partial charge (in elemental charge) prediction for (a) ibrutinib; (b) capped GCL peptide; and (c) their covalent adduct.

RNA [66], water [23], monovalent [24, 67] and divalent [68–70] counterions, lipids [71], carbohydrates [72], 
glycoconjugates [73, 74], small molecules [9, 10], post-translational modifications [75], and nucleic acid mod-
ifications [76], collectively representing hundreds of human-years of effort. Despite this, even seemingly 
simple common tasks—such as modeling irreversible covalent inhibitors—represent a mind-bending tech-
nical challenge for parameterization [77].

Espaloma operates on only the chemical graph of components of the system, which enables it to solve 
many issues with these legacy approaches: In generating parameters, there is no practical difference be-
tween any of the biopolymer, biomolecule, organic molecule, solvent, ion, or covalently modified species 
that previously required enormous effort to separately build parameter sets to cover; espaloma will sim-
ply interpolate the parameters from observed examples in a continuous manner. Instead of separately 
curating distinct datasets and philosophies for parameterizing each of these different classes of chemical 
species, extending an espaloma model to a new class of chemical species is simply a matter of extending 
the training datasets of quantum chemical and/or physical property data. As we have seen, building an 
elementary model capable of simulating solvated protein-ligand complexes simply required incorporating 
quantum chemical datasets used to parameterize a small molecule force field alongside quantum chemical 
data for short peptides.

This espaloma model should also provide sufficient coverage to model more complex protein-ligand co-
valent conjugates, since the relevant chemistry to model this complex already exists in the training dataset. 
To demonstrate that this leads to stable, sensible parameters, we considered the pre-reactive form of the co-
valent kinase inhibitor ibrutinib and the terminally-blocked form of the Val-Cys-Gly sequence that it reacts 
with in its target kinase BTK (Figure S5, left). Espaloma is able to rapidly parameterize the covalent conju-
gate of ibrutinib to this BTK target sequence, resulting in minor changes to parameters and partial charges 
around the covalent warhead, but minimally perturbing the remainder of the system (Figure S5, right). Un-
like legacy approaches to parameterizing covalently-modified residues, no expensive parameter or charge 
refinement procedure was needed for this task.
J Espaloma approximates quantum chemical minima
We examined whether the espaloma force field described in Section 3 not only quantitatively reproduced 
quantum chemical equilibrium conformational energetics, but was able to also qualitatively preserve quan-
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Figure S6. Espaloma-derived molecular mechanics force fields preserve the location of quantum chem-ical 
minima. Kernel density estimate (KDE) plot of root mean square deviation (RMSD) between quantum chemical min-ima and MM-optimized minima using parameters from either espaloma-generated molecular mechanics or legacy force 
fields.

Figure S7. Espaloma models fitted to a legacy molecular mechanics potential show small relative er-rors. Signed 
energy and parameter errors for the experiment shown in Figure 3, where an espaloma model was trained to reproduce 
GAFF 1.81 energies, are shown. Relative error magnitudes are small, and the signed errors show little relative systematic 
bias in recovered parameters.

tum chemical local minima. To assess this, we initiated MM energy minimizations from QM-optimized con-
formations from the test set of OpenFF Gen 2 Optimization dataset. Specifically, we selected the minimum 
quantum chemical energy snapshot for each molecule in the Parsley dataset and minimized with espaloma-
derived force field, OpenFF 1.2.0, GAFF 1.81, or GAFF 2.11 MM force fields using an L-BFGS optimizer with a 
0.1 kJ/mol convergence tolerance. Figure S6 shows a kernel density estimate (KDE) of the root mean 
squared distance (RMSD) from the quantum chemical minimum produced by each force field. We notice 
that despite the competitive results in the energy prediction tasks, there is space for improvements when it 
comes to recover the QM minima. We expect that incorporating forces in the training process could greatly 
alleviate this pathology. We leave this for future study.

K Additional figures
L Proof that Janossy pooling is sufficiently expressive
Now we prove that such formulation is expressive enough to distinguish bonds consisting of distinct atoms. 
An equivalent proof for angles and torsions follows similarly.
Lemma 1. There exists a neural function NNr, such that,

NNr([ℎvi ∶ ℎvj ]) + NNr([ℎvj ∶ ℎvi ]) = NNr([ℎvk 
∶ ℎvl ]) + NNr([ℎvk 

∶ ℎvl ])

if and only if ℎvi = ℎvl and ℎvj = ℎvk 
or ℎvi = ℎvl and ℎvj = ℎvk 

.

Proof. We first prove that there is a function fr satisfying the condition in Lemma 1. With finite possible 
initial conditions and finite rounds of message passing, the possible values of ℎv is finite (corresponding to
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Figure S8. Confusion Matrix: Reference vs Learned Atom Types. Continuation of the confusion matrix shown in Figure 2, to include not just carbon types. The blank entries are because the dataset does not cover some of the rare atom types.
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the finite number of unique labels in Weisfeiler-Leman [78] test). We use c to denote the maximum value
of the hash of ℎv:

c = max{hash(ℎv)} (23)
Thus, one example of such fr ∶ ℝD → ℕ satisfying the condition in Lemma 1 is:

fr(ℎvi , ℎvj ) =

⎧

⎪

⎨

⎪

⎩

0, hash(ℎvi ) ≥ hash(ℎvj );

(c + 1) hash(ℎvi ) + hash(ℎvi ), hash(ℎvi ) < hash(ℎvj ).
(24)

Following the universal approximation theorem [79, 80], there exists a neural function NNr that approxi-mates fr arbitrarily well and thus satisfies the condition in Lemma 1.
References[1] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, AlbanDesmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.
[2] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai,et al. Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv preprint

arXiv:1909.01315, 2019.
[3] David L Mobley, Caitlin C Bannan, Andrea Rizzi, Christopher I Bayly, John D Chodera, Victoria T Lim, Nathan M Lim,Kyle A Beauchamp, Michael R Shirts, Michael K Gilson, et al. Open force field consortium: Escaping atom types usingdirect chemical perception with smirnoff v0. 1. BioRxiv, page 286542, 2018.
[4] Jeff Wagner, David L. Mobley, Caitlin Bannan, John Chodera, Andrea Rizzi, Matt Thompson, Josh Horton, David Dot-son, Jaime Rodríguez-Guerra, Camila, Christopher Bayly, JoshHorton, trevorgokey, Nathan M. Lim, Victoria Lim, Pa-van Behara, SimonBoothroyd, Sukanya Sasmal, Daniel Smith, Lee-Ping, and Yutong Zhao. openforcefield/openforce-field: 0.7.2 Bugfix and minor feature release, September 2020. URL https://doi.org/10.5281/zenodo.4057038.
[5] Peter Eastman, Jason Swails, John D Chodera, Robert T McGibbon, Yutong Zhao, Kyle A Beauchamp, Lee-Ping Wang,Andrew C Simmonett, Matthew P Harrigan, Chaya D Stern, et al. Openmm 7: Rapid development of high perfor-mance algorithms for molecular dynamics. PLoS computational biology, 13(7):e1005659, 2017.
[6] An informal amber small molecule force field: parm@frosst, 2010. URL http://www.ccl.net/cca/data/parm_at_

Frosst/.
[7] Trevor Gokey. Openff sandbox cho phalkethoh v1.0, 2020. URL https://github.com/openforcefield/

qca-dataset-submission/tree/master/submissions/2020-09-18-OpenFF-Sandbox-CHO-PhAlkEthOH.
[8] Junmei Wang, Romain M. Wolf, James W. Caldwell, Peter A. Kollman, and David A. Case. Development and testing ofa general amber force field. Journal of Computational Chemistry, 25(9):1157–1174, 2004. doi: 10.1002/jcc.20035. URL

https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20035.
[9] Junmei Wang, Romain MWolf, James W Caldwell, Peter A Kollman, and David A Case. Development and testing of ageneral amber force field. Journal of computational chemistry, 25(9):1157–1174, 2004.
[10] Junmei Wang, Wei Wang, Peter A Kollman, and David A Case. Automatic atom type and bond type perception inmolecular mechanical calculations. Journal of molecular graphics and modelling, 25(2):247–260, 2006.
[11] Daniel GA Smith, Doaa Altarawy, Lori A Burns, Matthew Welborn, Levi N Naden, Logan Ward, Sam Ellis, Benjamin PPritchard, and T Daniel Crawford. Themolssi qcarchive project: An open-source platform to compute, organize, andshare quantum chemistry data. Wiley Interdisciplinary Reviews: Computational Molecular Science, page e1491, 2020.
[12] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
[13] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? arXiv preprint

arXiv:1810.00826, 2018.
[14] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. CoRR,abs/1609.02907, 2016. URL http://arxiv.org/abs/1609.02907.
[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Advances in

neural information processing systems, pages 1024–1034, 2017.

15 of 19

https://doi.org/10.5281/zenodo.4057038
http://www.ccl.net/cca/data/parm_at_Frosst/
http://www.ccl.net/cca/data/parm_at_Frosst/
https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-09-18-OpenFF-Sandbox-CHO-PhAlkEthOH
https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-09-18-OpenFF-Sandbox-CHO-PhAlkEthOH
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20035
http://arxiv.org/abs/1609.02907


[16] Felix Wu, Tianyi Zhang, Amauri H. Souza Jr., Christopher Fifty, Tao Yu, and Kilian Q. Weinberger. Simplifying graphconvolutional networks. CoRR, abs/1902.07153, 2019. URL http://arxiv.org/abs/1902.07153.
[17] John Chodera, Andrea Rizzi, Levi Naden, Kyle Beauchamp, Patrick Grinaway, Josh Fass, Alex Wade, Bas Rustenburg,Gregory A. Ross, Andreas Krämer, Hannah BruceMacdonald, Jaime Rodríguez-Guerra, MikeHenry, Andy Simmonett,David W.H. Swenson, Iván Pulido, hb0402, Sander Roet, Mark J. Williamson, SimonBoothroyd, Ana Silveira, anddominicrufa. choderalab/openmmtools: Bugfix release v0.21.2, February 2022. URL https://doi.org/10.5281/zenodo.

6260174.
[18] John Chodera, Andrea Rizzi, Levi Naden, Kyle Beauchamp, Patrick Grinaway, Josh Fass, Alex Wade, Bas Rustenburg,Gregory A. Ross, Andreas Krämer, Hannah Bruce Macdonald, Jaime Rodríguez-Guerra, dominicrufa, Andy Simmon-ett, David W. H. Swenson, hb0402, Mike Henry, Sander Roet, and Ana Silveira. Choderalab/openmmtools: 0.20.3Bugfix Release. Zenodo, March 2021.
[19] Lingle Wang, Yujie Wu, Yuqing Deng, Byungchan Kim, Levi Pierce, Goran Krilov, Dmitry Lupyan, Shaughnessy Robin-son, Markus KDahlgren, JeremyGreenwood, et al. Accurate and reliable prediction of relative ligand binding potencyin prospective drug discovery by way of a modern free-energy calculation protocol and force field. Journal of the

American Chemical Society, 137(7):2695–2703, 2015.
[20] David F. Hahn and Jeff Wagner. openforcefield/protein-ligand-benchmark: 0.1.2. Release to create Zenodo record,May 2021. URL https://doi.org/10.5281/zenodo.4813735.
[21] James AMaier, CarmenzaMartinez, Koushik Kasavajhala, LaurenWickstrom, Kevin E Hauser, and Carlos Simmerling.ff14sb: improving the accuracy of protein side chain and backbone parameters from ff99sb. Journal of chemical

theory and computation, 11(8):3696–3713, 2015.
[22] John Chodera, RafalWiewiora, Chaya Stern, and peastman. openmm/openmm-forcefields: Fix GAFF AM1-BCC charg-ing bug for some molecules, January 2020. URL https://doi.org/10.5281/zenodo.3627391.
[23] William L Jorgensen, Jayaraman Chandrasekhar, Jeffry D Madura, Roger W Impey, and Michael L Klein. Comparisonof simple potential functions for simulating liquid water. The Journal of chemical physics, 79(2):926–935, 1983.
[24] In Suk Joung and Thomas E Cheatham III. Determination of alkali and halide monovalent ion parameters for use inexplicitly solvated biomolecular simulations. The journal of physical chemistry B, 112(30):9020–9041, 2008.
[25] Huafeng Xu. Optimal measurement network of pairwise differences. Journal of Chemical Information and Modeling,59(11):4720–4728, 2019.
[26] Hannah Bruce Macdonald, dfhahn, Mike Henry, John Chodera, David Dotson, William Glass, and Iván Pulido.openforcefield/openff-arsenic: v0.2.1, February 2022. URL https://doi.org/10.5281/zenodo.6210305.
[27] John D Chodera and Michael R Shirts. Replica exchange and expanded ensemble simulations as gibbs sampling:Simple improvements for enhanced mixing. The Journal of chemical physics, 135(19):194110, 2011.
[28] Benedict Leimkuhler and Charles Matthews. Efficient molecular dynamics using geodesic integration and solvent–solute splitting. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2189):20160138, 2016.
[29] Jon R Maple, M-J Hwang, Thomas P. Stockfisch, Uri Dinur, Marvin Waldman, Carl S Ewig, and Arnold T. Hagler.Derivation of class ii force fields. i. methodology and quantum force field for the alkyl functional group and alkanemolecules. Journal of Computational Chemistry, 15(2):162–182, 1994.
[30] Mj J Hwang, TP Stockfisch, and AT Hagler. Derivation of class ii force fields. 2. derivation and characterization of aclass ii force field, cff93, for the alkyl functional group and alkanemolecules. Journal of the American Chemical Society,116(6):2515–2525, 1994.
[31] JRMaple, M-J Hwang, TP Stockfisch, and ATHagler. Derivation of class ii force fields. iii. characterization of a quantumforce field for alkanes. Israel Journal of Chemistry, 34(2):195–231, 1994.
[32] Zhengwei Peng, Carl S Ewig, Ming-Jing Hwang, Marvin Waldman, and Arnold T Hagler. Derivation of class ii forcefields. 4. van der waals parameters of alkali metal cations and halide anions. The Journal of Physical Chemistry A, 101(39):7243–7252, 1997.
[33] JR Maple, M-J Hwang, Karl James Jalkanen, Thomas P Stockfisch, and Arnold T Hagler. Derivation of class ii forcefields: V. quantum force field for amides, peptides, and related compounds. Journal of computational chemistry, 19(4):430–458, 1998.

16 of 19

http://arxiv.org/abs/1902.07153
https://doi.org/10.5281/zenodo.6260174
https://doi.org/10.5281/zenodo.6260174
https://doi.org/10.5281/zenodo.4813735
https://doi.org/10.5281/zenodo.3627391
https://doi.org/10.5281/zenodo.6210305


[34] Pnina Dauber-Osguthorpe and Arnold T Hagler. Biomolecular force fields: where have we been, where are we now,where do we need to go and how do we get there? Journal of computer-aided molecular design, 33(2):133–203, 2019.
[35] Arnold T Hagler. Force field development phase ii: Relaxation of physics-based criteria. . . or inclusion of morerigorous physics into the representation of molecular energetics. Journal of computer-aided molecular design, 33(2):205–264, 2019.
[36] Robert B Best, Xiao Zhu, Jihyun Shim, Pedro EM Lopes, Jeetain Mittal, Michael Feig, and Alexander D MacKerell Jr.Optimization of the additive charmm all-atom protein force field targeting improved sampling of the backbone �,  and side-chain �1 and �2 dihedral angles. Journal of chemical theory and computation, 8(9):3257–3273, 2012.
[37] Jérôme Delhommelle and Philippe Millié. Inadequacy of the lorentz-berthelot combining rules for accurate predic-tions of equilibrium properties by molecular simulation. Molecular Physics, 99(8):619–625, 2001.
[38] Marvin Waldman and Arnold T Hagler. New combining rules for rare gas van der waals parameters. Journal of

computational chemistry, 14(9):1077–1084, 1993.
[39] Christopher M Baker, Pedro EM Lopes, Xiao Zhu, Benoît Roux, and Alexander DMacKerell Jr. Accurate calculation ofhydration free energies using pair-specific lennard-jones parameters in the charmm drude polarizable force field.

Journal of chemical theory and computation, 6(4):1181–1198, 2010.
[40] David L Mobley, Caitlin C Bannan, Andrea Rizzi, Christopher I Bayly, John D Chodera, Victoria T Lim, Nathan M Lim,Kyle A Beauchamp, David R Slochower, Michael R Shirts, et al. Escaping atom types in force fields using directchemical perception. Journal of chemical theory and computation, 14(11):6076–6092, 2018.
[41] Kenno Vanommeslaeghe and Alexander D MacKerell Jr. Automation of the charmm general force field (cgenff) i:bond perception and atom typing. Journal of chemical information and modeling, 52(12):3144–3154, 2012.
[42] Kenno Vanommeslaeghe, E Prabhu Raman, and Alexander DMacKerell Jr. Automation of the charmm general forcefield (cgenff) ii: assignment of bonded parameters and partial atomic charges. Journal of chemical information and

modeling, 52(12):3155–3168, 2012.
[43] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski,Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive biases, deep learning, andgraph networks. arXiv preprint arXiv:1806.01261, 2018.
[44] Kenno Vanommeslaeghe, Mingjun Yang, and Alexander D. MacKerell Jr. Robustness in the fitting of molecular me-chanics parameters. Journal of Computational Chemistry, 36(14):1083–1101, 2015. doi: https://doi.org/10.1002/jcc.23897.URL https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23897.
[45] Lee-Ping Wang, Jiahao Chen, and Troy Van Voorhis. Systematic parametrization of polarizable force fields fromquantum chemistry data. Journal of chemical theory and computation, 9(1):452–460, 2013.
[46] Lee-PingWang, Todd J Martinez, and Vijay S Pande. Building force fields: An automatic, systematic, and reproducibleapproach. The journal of physical chemistry letters, 5(11):1885–1891, 2014.
[47] Anders S. Christensen and O. Anatole von Lilienfeld. On the role of gradients for machine learning of molecularenergies and forces, 2020.
[48] Stefan Chmiela, Huziel E. Sauceda, Igor Poltavsky, Klaus-RobertMüller, and Alexandre Tkatchenko. sgdml: Construct-ing accurate and data efficientmolecular force fields usingmachine learning. Computer Physics Communications, 240:38–45, 2019. doi: 10.1016/j.cpc.2019.02.007.
[49] Huziel E. Sauceda, Stefan Chmiela, Igor Poltavsky, Klaus-Robert Müller, and Alexandre Tkatchenko. Molecular forcefields with gradient-domain machine learning: Construction and application to dynamics of small molecules withcoupled cluster forces. The Journal of Chemical Physics, 150(11):114102, 2019. doi: 10.1063/1.5078687.
[50] Huziel E. Sauceda, Michael Gastegger, Stefan Chmiela, Klaus-Robert Müller, and Alexandre Tkatchenko. Molecularforce fields with gradient-domain machine learning (gdml): Comparison and synergies with classical force fields,2020.
[51] Hans W Horn, William C Swope, Jed W Pitera, Jeffry DMadura, Thomas J Dick, Greg L Hura, and Teresa Head-Gordon.Development of an improved four-site water model for biomolecular simulations: Tip4p-ew. The Journal of chemical

physics, 120(20):9665–9678, 2004.

17 of 19

https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23897


[52] Lee-Ping Wang, Keri A McKiernan, Joseph Gomes, Kyle A Beauchamp, Teresa Head-Gordon, Julia E Rice, William CSwope, Todd J Martínez, and Vijay S Pande. Building a more predictive protein force field: a systematic and repro-ducible route to amber-fb15. The Journal of Physical Chemistry B, 121(16):4023–4039, 2017.
[53] Eliot Boulanger, Lei Huang, Chetan Rupakheti, Alexander D MacKerell Jr, and Benoît Roux. Optimized lennard-jonesparameters for druglike small molecules. Journal of chemical theory and computation, 14(6):3121–3131, 2018.
[54] SimonBoothroyd, Owen Madin, Jeff Wagner, Jeffry Setiadi, Jaime Rodríguez-Guerra, Matt Thompson, and David Dot-son. openforcefield/openff-evaluator: 0.3.0, October 2020. URL https://doi.org/10.5281/zenodo.4153484.
[55] Justin S Smith, Olexandr Isayev, and Adrian E Roitberg. Ani-1: an extensible neural network potential with dft accu-racy at force field computational cost. Chemical science, 8(4):3192–3203, 2017.
[56] Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network for modeling quantum interactions. In

Advances in neural information processing systems, pages 991–1001, 2017.
[57] Kun Yao, John E. Herr, David W. Toth, Ryker Mckintyre, and John Parkhill. The tensormol-0.1 model chemistry: aneural network augmented with long-range physics. Chem. Sci., 9:2261–2269, 2018. doi: 10.1039/C7SC04934J. URL

http://dx.doi.org/10.1039/C7SC04934J.
[58] Matt J Harvey, Giovanni Giupponi, and G De Fabritiis. Acemd: accelerating biomolecular dynamics in the microsec-ond time scale. Journal of chemical theory and computation, 5(6):1632–1639, 2009.
[59] Romelia Salomon-Ferrer, Andreas W Gotz, Duncan Poole, Scott Le Grand, and Ross C Walker. Routine microsecondmolecular dynamics simulations with amber on gpus. 2. explicit solvent particle mesh ewald. Journal of chemical

theory and computation, 9(9):3878–3888, 2013.
[60] David Van Der Spoel, Erik Lindahl, Berk Hess, Gerrit Groenhof, Alan E Mark, and Herman JC Berendsen. Gromacs:fast, flexible, and free. Journal of computational chemistry, 26(16):1701–1718, 2005.
[61] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon. Dynamic graph cnnfor learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12, 2019.
[62] Jian Du, Shanghang Zhang, Guanhang Wu, Jose M. F. Moura, and Soummya Kar. Topology Adaptive Graph Convolu-tional Networks. arXiv:1710.10370 [cs, stat], February 2018.
[63] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q Weinberger. Simplifyinggraph convolutional networks. arXiv preprint arXiv:1902.07153, 2019.
[64] D.A. Case, K. Belfon, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E. Cheatham, III, V.W.D. Cruzeiro, T.A. Darden,R.E. Duke, G. Giambasu, M.K. Gilson, H. Gohlke, R Harris A.W. Goetz, S. Izadi, S.A. Izmailov, K. Kasavajhala, A. Ko-valenko, R. Krasny, T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, V. Man, K.M. Merz, Y. Miao,O.Mikhailovskii, G. Monard, H. Nguyen, A. Onufriev, F. Pan, S. Pantano, R. Qi, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling, N.R. Skrynnikov, J. Smith, J. Swails, R.C. Walker, J. Wang, L. Wilson, R.M. Wolf, X. Wu,Y. Xiong, Y. Xue, D.M. York, and P.A. Kollman. Amber 2020, 2020.
[65] Rodrigo Galindo-Murillo, James C Robertson, Marie Zgarbova, Jiri Sponer, Michal Otyepka, Petr Jurecka, andThomas E Cheatham III. Assessing the current state of amber force field modifications for dna. Journal of chem-

ical theory and computation, 12(8):4114–4127, 2016.
[66] Alberto Pérez, Iván Marchán, Daniel Svozil, Jiri Sponer, Thomas E Cheatham III, Charles A Laughton, and ModestoOrozco. Refinement of the amber force field for nucleic acids: improving the description of �/
 conformers. Bio-

physical journal, 92(11):3817–3829, 2007.
[67] In Suk Joung and Thomas E Cheatham III. Molecular dynamics simulations of the dynamic and energetic propertiesof alkali and halide ions using water-model-specific ion parameters. The Journal of Physical Chemistry B, 113(40):13279–13290, 2009.
[68] Pengfei Li, Benjamin P Roberts, Dhruva K Chakravorty, and Kenneth M Merz Jr. Rational design of particle meshewald compatible lennard-jones parameters for+ 2 metal cations in explicit solvent. Journal of chemical theory and

computation, 9(6):2733–2748, 2013.
[69] Pengfei Li and Kenneth M Merz Jr. Taking into account the ion-induced dipole interaction in the nonbonded modelof ions. Journal of chemical theory and computation, 10(1):289–297, 2014.

18 of 19

https://doi.org/10.5281/zenodo.4153484
http://dx.doi.org/10.1039/C7SC04934J


[70] Pengfei Li, Lin Frank Song, and Kenneth M Merz Jr. Parameterization of highly charged metal ions using the 12-6-4lj-type nonbonded model in explicit water. The Journal of Physical Chemistry B, 119(3):883–895, 2015.
[71] Callum J Dickson, Benjamin D Madej, Åge A Skjevik, Robin M Betz, Knut Teigen, Ian R Gould, and Ross C Walker.Lipid14: the amber lipid force field. Journal of chemical theory and computation, 10(2):865–879, 2014.
[72] Karl N Kirschner, Austin B Yongye, SarahM Tschampel, Jorge González-Outeiriño, Charlisa R Daniels, B Lachele Foley,and Robert J Woods. Glycam06: a generalizable biomolecular force field. carbohydrates. Journal of computational

chemistry, 29(4):622–655, 2008.
[73] Mari L DeMarco and Robert J Woods. Atomic-resolution conformational analysis of the gm3 ganglioside in a lipidbilayer and its implications for ganglioside–protein recognition at membrane surfaces. Glycobiology, 19(4):344–355,2009.
[74] Mari L DeMarco, Robert JWoods, JamesHPrestegard, and Fang Tian. Presentation ofmembrane-anchored glycosph-ingolipids determined from molecular dynamics simulations and nmr paramagnetic relaxation rate enhancement.

Journal of the American Chemical Society, 132(4):1334–1338, 2010.
[75] George A Khoury, Jeff P Thompson, James Smadbeck, Chris A Kieslich, and Christodoulos A Floudas. Forcefield_ptm:Ab initio charge and amber forcefield parameters for frequently occurring post-translational modifications. Journal

of chemical theory and computation, 9(12):5653–5674, 2013.
[76] Dazhi Tan, Stefano Piana, Robert M Dirks, and David E Shaw. Rna force field with accuracy comparable to state-of-the-art protein force fields. Proceedings of the National Academy of Sciences, 115(7):E1346–E1355, 2018.
[77] Shama Khan, Imane Bjij, Fisayo AOlotu, Clement Agoni, Emmanuel Adeniji, andMahmoud E S Soliman. Covalent sim-ulations of covalent/irreversible enzyme inhibition in drug discovery: a reliable technical protocol. Future medicinal

chemistry, 10(19):2265–2275, 2018.
[78] B Weisfeiler and A Leman. The reduction of a graph to canonical form and the algebgra which appears therein.1968.
[79] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–257, 1991.
[80] Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. Multilayer feedforward networks are universal approxima-tors. 1991.

19 of 19


	Detailed Methods
	Code and Parameter Availability
	Datasets
	Machine learning experimental details
	Molecular dynamics simulation details
	Alchemical free energy calculations

	Espaloma can generate fast and accurate partial charges and valence parameters simultaneously
	A graph theoretic view of Class I molecular mechanics force fields
	A brief introduction to graph neural networks
	Training and inference
	A linear basis facilitates bond and angle parameter optimization
	Training by potential energies
	Other differentiable objectives
	Assigning espaloma parameters to molecules


	Graph neural network (GNN) architectures considered in this paper
	Code snippets for using espaloma
	Designing and training espaloma model
	Deploying espaloma model

	Espaloma requires few conformations per molecule to achieve high accuracy
	Close examination of molecular mechanics (MM) fitting experiments
	Espaloma can easily parameterize complex heterogeneous biomolecular systems
	Espaloma approximates quantum chemical minima
	Additional figures
	Proof that Janossy pooling is sufficiently expressive



