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Additional Information for Methods

Vanilla transformer We take the vanilla transformer as the backbone of our autoencoder.
Vanilla transformer! is an end-to-end model following a stepwise and autoregressive encoder-
decoder fashion. Taking the product SMILES and partially decoded reactant SMILES as
the input, it is trained to predict the next token of reactant SMILES.The key idea of the
vanilla transformer is the attention mechanism, which allows each token to capture the global

information and is quite suitable for SMILES representation. The encoder and decoder are



both composed of multiple stacked multihead attention layers consisting of a multihead
attention module and a position-wise feed forward module.

Before passing into the encoder, SMILES tokens are embedded to continuous vector
representations. The multihead attention module consists of multiple scaled-dot product

layers that run in parallel. A single scaled-dot product calculation works as follows:

Attention(Q. K. V) = softmaz( 25y
ention(Q, K, V) = softmaz(——=—
e
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where @), K, V represent query, key, value matrix, respectively; Wqg, Wi, Wy are all
trainable parameters; d; means the dimension of K. Depending on where @), K, V come
from, multihead attention can be the self-attention mechanism or cross-attention mechanism.

After the attention calculation of each head, they can be concatenated as follows:

7 = Concat(hg, hy, ... ) W°
(2)
h; = Attention(Q;, K;, V)

The position-wise feed forward module is a simple fully connected layer that utilizes the

concept of residual block and works as follows:

FFN(Z) :maI(O,W12+b1)W2+bQ (3)

After the calculation of feed forward module, updated token vectors can be passed to
another multihead attention layer. We use the vanilla transformer architecture composed of
6 layers for both encoder and decoder with 8 attention heads for all experiments. During
the inference stage, the transformer takes the product SMILES and decoded reactant as the

input to predict the probability of the next reactant SMILES token, which can be represented



by a conditional probability distribution:

p(ylX) = Hp(yilyq,X)

(4)

where m is the maximum number of reactant tokens. The “bos” (begin of sentence) token

is the beginning of reactant tokens. When the last predicted token is “eos” (end of sentence),

the decoding process completes.
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Figure S1: The workflow of model prediction with the beam search and data augmentation.
The example applies 3x augmentation, and sets beam size = 5, topk = 5.

Data augmentation with R-SMILES We successively perform data augmentation and

root alignment on the training data, and only perform data augmentation on the test data.

When inferring on the validation and test data, we input multiple SMILES of a molecule re-

spectively and get multiple sets of outputs correspondingly. After removing invalid SMILES

that cannot be recognized by Rdkit? and converting all outputs to canonical SMILES, we

refer to Tekto et al.’s approach?® that scores these outputs uniformly as follows:

augmentation topk

score(output) =



where augmentation represents the augmentation times of the test set, and beam represents
the beam size. After scoring uniformly, we can select outputs with top-K scores as the final
result.

Here we show an example of performing data augmentation for the test data in Fig-
ure S1. When the SMILES “C(COC(C=C)=0)(Cl)(Cl)Cl” was input, first we performed
SMILES enumeration to get three different SMILES representing the same molecule. Then
we started model prediction using the beam search strategy with the beam size of 5, and
got the top-5 prediction for each SMILES. To score uniformly, we converted them to the
canonical SMILES and removed those invalid SMILES. According to the ranking of the
initial results, we can give each output an initial score 1?0. For example, the rank-1 predic-
tion “C=CC(=0)OCC(Cl)C(C])(C])CI” of “C(COC(C=C)=0)(CIl)(Cl)Cl" was scored one.
If the prediction was an invalid SMILES, we would score it zero. After getting the scores
for each output, we can score them uniformly by adding the scores of the same output.
For example, since “C=CC(=0)CL.OCC(CI)(Cl)Cl” was the rank-1 prediction for two inputs
“O(C(=0)C=C)CCc(C(CHCI” and “O=C(C=C)OCC(CH(CHCI”, its final score was two.
Therefore, we can acquire the scores for all the output and got a uniform ranking, i.e, the
final result.

Table S1: The effect of choosing different values of o on the top-K single-step retrosynthesis.

USPTO-50K top-K Accuracy (%) USPTO-MIT top-K Accuracy (%) USPTO-FULL top-K Accuracy (%)

o K=1 3 5 10 K=1 3 5 10 K=1 3 5 10
0.001  54.2 75.7  85.0 89.5 59.4 76.0 813 86.0 474 635 69.5 74.8
0.01 54.1 75.7 851 89.5 58.8 4T 79.2 84.3 47.8 63.7  68.3 73.4

0.1 55.1 776 84.0 90.0 59.3 76.6 819 86.4 48.8 649 70.1 76.0

1 56.0 79.4 86.2 91.2 60.4 78.4 834 87.6 49.0 66.4 718 76.4

10 55.9 79.2  86.1 91.1 60.2 78.4 83.5 87.5 489 66.5 716 76.4
100 55.9 79.1 86.2 91.2 60.3 782 834 87.5 489 66.5 71.9 76.4

There is a scoring trade-off in the test set data augmentation, that is, how to weigh the
number of prediction occurrences against the ranking of predictions. Suppose there are two
predictions, one that is predicted by one input and ranks first, and the other that is predicted

by two different inputs and ranks second and third respectively, which of them should get a



higher final score? This problem can be expressed by the following equation:

augmentation topk

score(output) = Z:; 2}; 7o *1(/<; Y (6)

where « is the weighing parameter. The higher «, the more important the ranking and
the less important the number of appearances, and vice versa. We tested different values
of o and show the accuracy of the validation set in the Table S1. It can be seen that for
all datasets, the best results are obtained when the « value is equal to or greater than
one, which demonstrates the ranking is more important than the number of occurrences.
Moreover, when the « value is one, most of the top-K accuracies are the highest. In fact,

Eq. 5 is the case where « takes the value of one in Eq. 6.

Table S2: Training time and steps for different tasks. “R2P” denotes the forward reaction
prediction, and “P2R” denotes the retrosynthesis prediction. “From Scratch” denotes the
model is trained without pretraining.

Dataset USPTO-50K USPTO-MIT USPTO-Full
Pretrain - - 130 hours / 1,000,000 steps
Finetune - R2P - 30 hours / 500, 000 steps -
Finetune - P2R 20 hours / 300,000 steps 50 hours / 500,000 steps 50 hours / 500,000 steps
From Scratch - R2P - 60 hours / 100,000 steps -
From Scratch - P2R 30 hours / 600,000 steps 110 hours / 2,000,000 steps 120 hours / 1,500,000 steps

Training settings We use the same data split as previous researchers*® for all the datasets.
During the pretraining stage. Depending on whether it is a forward or retrosynthesis predic-
tion, products or reacatants in the training set of USPTO-FULL are used for self-supervised
training, where molecules in the test set of USPTO-50K and USPTO-MIT are removed. We
apply 20x augmentation at training and test sets of USPT0-50K, and 5x augmentation
at training and test sets of USPTO-MIT and USPTO-FULL. We set the embedding and
hidden size as 512 except that the dimension of ) , K , V is 64. We also use the Adam
optimizer and a varied learning rate with 8,000 warm up steps. The input and output share
the same vocabulary, but their embedding layers are independent. We conducted all exper-

iments with one NVIDIA GeForce RTX 3090 GPU, and the approximate training time and



steps for different tasks are displayed in Fig. S2. The more detailed settings can be found at

https://github.com/otori-bird /retrosynthesis.
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Figure S2: Training steps with/without the pretrained model on USPTO-50K for the P2R
stage. The training set of USPTO-50K is applied 20x augmentation.

Analysis of Pretrained Transformer

We used a similar approach to the masked language model of BERT for pretraining. Specif-
ically, 15% of tokens in SMILES are masked. Every masked token has an 80% probability
of being replaced with the “unknown” token, a 10% probability of being replaced with any
token in the vocabulary, and keeps unchanged for the rest of the cases. After pretraining,
we can see in Figure S2 and Table S2 that the training time has been dramatically reduced,

which helps a lot in the case of very limited computational resources.



Table S3: The edit distance and top-K accuracy of single-step retrosynthesis for ring and
non-ring reactions on the USPTO-MIT and USPTO-FULL datasets.

USPTO-MIT USPTO-FULL

Reaction Type edit distance K=1 3 5 10 edit distance K=1 3 5 10
Overall® 26.7 53.8 704 751 T7.7 29.2 44.7 61.0 65.8 68.7
Non-ring reaction® 25.9 559 73.6 785 81.3 27.3 49.6 67.7 729 76.0
Ring-opening reaction® 33.5 39.7 48.0 50.4 52.0 39.1 253 333 358 378
Ring-forming reaction® 23.7 379 51.6 56.1 58.7 28.4 34.1 492 543 57.5
Overall’ 13.5 (-49%) 60.4 78.0 83.0 86.9 16.6 (-43%) 489 66.5 T1.8 76.7
Non-ring reaction® 12.5 (-52%) 62.8 80.5 853 89.4  13.9 (-49%) 54.1 72,6 779 83.0
Ring-opening reaction®  21.8 (-35%) 433 572 629 672 284 (-28%) 273 39.1 439 488

Ring-forming reaction®  15.2 (-36%) 46.8 638 704 76.8 208 (-27%) 39.3 56.7 63.2 69.6
¢ Without root alignment; * With root alignment.

Limitations for ring-opening and ring-forming reactions

The root alignment strategy does not always work well. Taking the ring-opening reaction
“[CH2:1|1|CH:2|(|[NH2:3])[CH:4|(|OH:5])[O:6][CH2:7|1>> [CH2:1|(|CH:2|([NH2:3])[CH:4|=

[O:5])[CH2:7]” as an example, where the bond between “[O:6]” and “|CH:4]” is split, we can
get both the reasonable aligned result and largely unaligned one. Aligning at the root atom
“lO:6]” yields reasonable results “O1CCC(N)C10” and “OCCC(N)C=0”, whereas aligning at
root atom “|O:5]” yields largely unaligned strings “OC10OCCCIN” and “O=CC(N)CCO”. This
obviously increases the edit distance between inputs and outputs, which leads to a decrease
in prediction performance for this type of data.We calculated the accuracy of retrosynthesis
for ring-opening and forming reactions in different datasets. Results are shown in Table S3.
It can be seen that the accuracy of R-SMILES, as pointed out by the reviewer, is not so high
as that of other reactions. To make it clearer, we also calculated the edit distance between
the input and the output SMILES for these reactions. Compared with that of non-ring
reaction R-SMILES, the edit distance of ring reactions is significantly larger. These results
again verify our main motivation in this work that large distance between input and output
strings will degrade the reaction prediction performance. We will be devoted to dealing with

this problem in our future work by trying to align more than one atom.
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Figure S3: Visualization of the cross-attention obtained by the canonical SMILES (Left)
and the proposed R-SMILES (Right) in the forward reaction prediction. (a, ¢, e, g) The
attention maps obtained by the model trained with canonical SMILES. (b, d, f, h) The
attention maps obtained by the model trained with R-SMILES. The input tokens are along
the x axis, and the output tokens are along the y axis. Each row in the attention map
represents the attention over the input tokens for predicting the next output token. Each
column represents the attention between an input token with each output token. The “bos”
token is the beginning of output tokens and will be removed after the decoding process
completes.



a) Attention map with canonical SMILES  b) Attention map with R-SMILES c) Attention map with canonical SMILES d) Attention map with R-SMILES
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Figure S4: Comparison of the attention of the all the layers. (a, c) are the attention maps
obtained by the model trained with canonical SMILES. (b, d) are the attention maps ob-
tained by the model trained with R-SMILES.



Comparison of the attention of all layers

To give a more detailed discussion about attention mechanism, we fed the reactant or the
product of the reaction “C=CC(=0)CLOCC(CI)(Cl)Cl>>C=CC(=0)OCC(CI)(C1)CI” to
four different models and visualized attention maps of all layers in Fig. S4. For these four
models, one is trained with R-SMILES for forward reaction, one trained with R-SMILES
for retrosynthesis, one trained with canonical SMILES for forward reaction, and one trained
with SMILES for retrosynthesis. With SMILES (Fig. S4a, c), much attention is paid to
syntactic tokens at the shallow layers. However, for R-SMILES, the attention maps are
always cleaner and nearly diagonal at different layers. Attention maps of the 200 examples

can be found at https://github.com/otori-bird /retrosynthesis.
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Figure S5: Extra top-K accuracy (%) for complex reactions. a, c, e, Top-1, top-3, and
top-H accuracies according to the number of new atoms in reactants. The red and blue lines
represent the performance with/without R-SMILES. The gray bar means the percentage of
this kind of reaction in the test set. b, d, f, Top-1, top-3, and top-5 accuracies for reactions
involving with or without chirality. The red and blue bars represent the performance with
or without R-SMILES.
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