Supporting Information

Visible-Light-Induced Indole Synthesis via Intramolecular C-N Bond Formation:
 Desulfonylative C($\mathbf{s p}^{\mathbf{2}}$)-H Functionalization

Quanzhe Li, ${ }^{a}$ Xintao Gu, ${ }^{a}$ Yin Wei ${ }^{* a}$ and Min Shi ${ }^{*}{ }^{a, b}$

> ${ }^{a}$ State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China. E-mail: weiyin@sioc.ac.cn, mshi@mail.sioc.ac.cn.
> ${ }^{b}$ Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry \& Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. E-mail: mshi@mail.sioc.ac.cn.

CONTENTS

1. General Remarks S3
2. Optimization of Reaction Conditions S4
3. Reaction Setup S7
4. General Procedure for the Synthesis of Substrates S8
5. General Procedure for the Synthesis of Products S29
6. Mechanistic Investigations S34
7. KIE Experiment S60
8. Characterization Data of Substrates S62
9. Characterization Data of Products S192
10. Computational Studies S268
11. X-ray Data S281
12. References S282

1. General Remarks

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Mercury-400 spectrometer for solution in CDCl_{3} with tetramethylsilane (TMS) as an internal standard; coupling constants J are given in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Mercury-400 spectrophotometers (101 MHz) with complete proton decoupling spectrophotometers $\left(\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm}\right)$. Mass 1gand HRMS spectra were recorded by ESI, EI, DART or FI method. Organic solvents used were dried by standard methods when necessary. Infrared spectra were recorded on a Perkin-Elmer PE-983 spectrometer with absorption in cm^{-1}. Melting points were determined on a digital melting point apparatus and temperatures were uncorrected. The reactions were carried out in oil bath. Commercially obtained reagents were used without further purification. All these reactions were monitored by TLC with silica gel coated plates. Flash column chromatography was carried out using silica gel at increased pressure.

2. Optimization of Reaction Conditions

Table S1: Optimization of the catalysts for the production of 2a
entry
${ }^{\text {a }}$ Reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol})$ and $\mathbf{P C}(5.0 \mathrm{~mol} \%)$ were added in degassed $\mathrm{MeCN}(2.0 \mathrm{~mL})$ under Ar atmosphere for 12.0 h , in a sealed tube using 365 nm or 385 nm LED light irradiation. ${ }^{\text {b }}$ NMR yield using 1,3,5-trimethoxybenzene as an internal standard. ${ }^{\text {c }}$ Additive (0.2 mmol) was used.

Table S2: Optimization of the amount of PC 2 and optimal light source for the production of 2a

	 $1 a$		
entry ${ }^{\text {a }}$	PC 2 (mol\%)	LED	yield ${ }^{\text {b }}$ (\%)
1	5.0	365 nm	88
2	5.0	385 nm	90
3	5.0	blue (100 W)	88
4	5.0	blue (12 W)	-
5	1.0	385 nm	83
6	2.0	385 nm	91 (90) ${ }^{\text {c }}$
7	3.0	385 nm	81
8	4.0	385 nm	83
9	-	385 nm	-
$10^{\text {d }}$	2.0	-	-

${ }^{\text {a }}$ Reaction conditions: 1a (0.1 mmol) and PC 2 were added in degassed $\mathrm{MeCN}(2.0 \mathrm{~mL})$ under Ar atmosphere for 12.0 h , in a sealed tube using LED light irradiation. ${ }^{\mathrm{b}}$ NMR yield using 1,3,5-trimethoxybenzene as an internal standard. ${ }^{\text {c }}$ Yield of the isolated products. ${ }^{\text {d }}$ Under dark condition.

Table S3: Optimization of the solvents for the production of $\mathbf{2 a}$

entry ${ }^{\text {a }}$	LED	yield ${ }^{\text {b }}$ (\%)
1	DCM	51
2	DCE	66
3	THF	<5
4	DMF	-
5	MeCN	$91(90)^{\text {c }}$

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol})$ and PC $2(2.0 \mathrm{~mol} \%)$ were added in degassed solvent $(2.0 \mathrm{~mL})$ under Ar atmosphere for 12.0 h , in a sealed tube using 385 nm LED light irradiation. ${ }^{\mathrm{b}}$ NMR yield using 1,3,5-trimethoxybenzene as an internal standard. ${ }^{\mathrm{c}}$ Yield of the isolated products.

3. Reaction Setup

Photoreactor scaled as 12 W 385 nm LED.

Photoreactor scaled as 100 W BLUE LED.

4. General Procedure for the Synthesis of Substrates

General procedure for the synthesis of compounds $\mathbf{1 a}-1 \mathrm{~m}$ and $\mathbf{1 t - 1 y}$

The procedure of preparing substrates $\mathbf{S 3}$ was slightly modified according to the previous literature. ${ }^{1}$

To a stirred solution of $\mathbf{S} 1$ ($10.0 \mathrm{mmol}, 1.0$ equiv) and $\mathbf{S} \mathbf{2}$ (12.0 mmol, 1.2 equiv) in HFIP (20.0 mL) was added $\mathrm{Mg}\left(\mathrm{NTf}_{2}\right)_{2}(5.0 \mathrm{~mol} \%)$. The resulted mixture was stirred at $70^{\circ} \mathrm{C}$ for 24.0 h . After the filtration and the removal of solvent under reduced pressure, the residue was purified by a column chromatography on silica gel (petroleum ether / ethyl acetate $=10 / 1$) to afford the corresponding compounds S3.

To a solution of $\mathbf{S 3}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous DCM was added TsCl (1.2 equiv) and pyridine (1.2 equiv) at room temperature and the reaction mixture was stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to afford compounds $\mathbf{S 4}$.

To a solution of $\mathbf{S 4}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous THF was added NaH (1.2 equiv) at room temperature and the resulting mixture was stirred for 1.0 h and then was warmed up to $70{ }^{\circ} \mathrm{C}$. The resulted mixture was added with $\mathbf{S 5}$ benzyl bromide (1.5 equiv) and stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to afford compounds $\mathbf{1 a - 1 m}$ and $\mathbf{1 t - 1 y}$ in good yields ranging from $\mathbf{6 9 \%}$ to $\mathbf{9 3 \%}$.

General procedure for the synthesis of compounds $\mathbf{1 n} \mathbf{n} \mathbf{1 r}$

Compounds $\mathbf{S 9}$ was prepared according to the previous literature. ${ }^{2}$
To a solution of $\mathbf{S 6}$ ($20.0 \mathrm{mmol}, 1.0$ equiv) and CDI (20.0 mmol , 1.0 equiv) in THF (extra dry, 20.0 mL) was stirred at room temperature for 2.0 h , and then a solution of N, O-dimethylhydroxylamine hydrochloride ($20.0 \mathrm{mmol}, 1.0$ equiv) and NEt_{3} ($30.0 \mathrm{mmol}, 1.5$ equiv) in THF (extra dry, 20.0 mL) was added. The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for another 22.0 h . After completion of the reaction, the mixture was poured onto an equal volume of ice and saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}(50.0 \mathrm{~mL})$. Next, the mixture was extracted with EA ($3 \times 30.0 \mathrm{~mL}$), and the combined extracts were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the solution was filtered and the solvent was evaporated under vacuum, the residue was purified by a flash column chromatograph on silica gel (eluent: petroleum ether $/ \mathrm{EtOAc}=1 / 1$) to yield the products $\mathbf{S 7}$.
$\mathrm{n}-\mathrm{BuLi}$ (2.0 equiv) was added slowly to a mixture of $\mathbf{S 7}$ (1.0 equiv) and $\operatorname{ArBr} \mathbf{S 8}$ (1.0 equiv) in 20.0 mL extra dry THF over 1.0 h in a flamed-dried flask at $-78{ }^{\circ} \mathrm{C}$ under the protection of Ar atmosphere upon stirring, and then $1.0 \mathrm{~N} \mathrm{HCl}\left(32.0 \mathrm{~mL}, 2.0\right.$ equiv) was added carefully at $-78^{\circ} \mathrm{C}$, then the mixture was extracted with EA ($3 \times 20.0 \mathrm{~mL}$) , and the combined extracts were washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the solution was filtered and the solvent was evaporated under vacuum, the residue was purified by a flash column chromatograph on silica gel (eluent: petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to yield the products $\mathbf{S 9}$.

A solution of $\mathrm{PPh}_{3} \mathrm{CH}_{3} \mathrm{Br}$ (1.2 equiv) and t -BuOK (1.2 equiv) in THF (10.0 mL) was stirred at $70^{\circ} \mathrm{C}$ under argon atmosphere for 0.5 h . Afterwards, compounds $\mathbf{S 9}$ (1.0 equiv) in THF (30.0 mL) was added and the reaction solution was stirred at $70{ }^{\circ} \mathrm{C}$ for another 12.0 h . Upon completion, the reaction was cooled to room temperature and the mixture was filtered through a celite. The filtrate was concentrated under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=20 / 1$) to afford compounds $\mathbf{S 1 0}$.

To a solution of $\mathbf{S 1 0}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous DCM was added TsCl (1.2 equiv) and pyridine (1.2 equiv) at room temperature and the resulting mixture was stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=10 / 1)$ to afford compounds S11.

To a solution of $\mathbf{S 1 1}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous THF was added NaH (1.2 equiv) at room temperature and the resulting mixture was stirred for 1.0 h and then warmed up to $70^{\circ} \mathrm{C}$. The resulted mixture was added with $\mathbf{S 1 2 ~} \mathrm{BnBr}$ (1.5 equiv) for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether / $E t O A c=10 / 1)$ to afford compounds $\mathbf{1 n} \mathbf{- 1 r}$ in good yields ranging from 80% to 91%.

General procedure for the synthesis of compounds $1 \mathrm{~s}, 1 \mathrm{z}-1$ ai and 1ak

To a solution of $\mathbf{S 1 3}$ (3.0 mmol , 1.0 equiv) in 20.0 mL of freshly distilled anhydrous MeCN was added $\mathrm{R}-\mathrm{Br}$ or $\mathrm{R}-\mathrm{I}\left(6.0 \mathrm{mmol}, 2.0\right.$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(6.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Bu} 4 \mathrm{NI}(0.3 \mathrm{mmol}$, 0.1 equiv) and the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to afford compounds $\mathbf{1 s}, \mathbf{1 z}$-1ai and $\mathbf{1 a k}$ in good yields ranging from 71% to 94%.

General procedure for the synthesis of compounds 1aj and 1al

To a solution of $\mathbf{S 1 3}$ ($3.0 \mathrm{mmol}, 1.0$ equiv) in 20.0 mL of freshly distilled anhydrous THF was added NaH (3.6 mmol, 1.2 equiv) at room temperature for 1.0 h and the resulting mixture was warmed up to $70^{\circ} \mathrm{C}$. The resulted mixture was added with $\mathbf{S 1 4}$ ($4.5 \mathrm{mmol}, 1.5$ equiv) for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether / $\mathrm{EtOAc}=10 / 1)$ to afford compounds 1aj and 1al in 77% and 84% yields, respectively.

General procedure for the synthesis of compound 1am

The procedure of preparing substrate $\mathbf{S 1 8}$ was slightly modified according to the previous literature. ${ }^{6,7}$

A solution of $\mathrm{PPh}_{3} \mathrm{CH}_{2} \mathrm{OMeCl}(12.0 \mathrm{mmol} 1.2$ equiv) in THF (20.0 mL) was added n - BuLi ($12.0 \mathrm{mmol}, 1.2$ equiv) dropwise at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere for 0.5 h and the resulting mixtures was stirred for another 1.0 h . Afterwards compound $\mathbf{S 1 5}$ ($10.0 \mathrm{mmol}, 1.0$ equiv) in THF $(10.0 \mathrm{~mL})$ was added and the reaction solution was stirred at room temperature for overnight. The reaction mixture was neutralized by adding ice cold 1.0 N hydrochloric acid (35.0 mL) at $0{ }^{\circ} \mathrm{C}$ and the aqueous phase was extracted with ether ($3 \times 15.0 \mathrm{~mL}$). The combined organic extracts were washed with water, brine, dried over MgSO_{4} and concentrated to approximately 10.0 mL . A white solid (triphenylphosphine oxide) precipitated, and these solids were filtered and washed with hexanes. The filtrate was concentrated in vacuo, and the residue was re-dissolved in chloroform $(20.0 \mathrm{~mL})$ and $\mathrm{HCl}(12.0 \mathrm{~N}, 3.0 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature for 4.0 h (monitored by TLC). The chloroform was evaporated from the mixture, and the residue was diluted with water (15.0 mL) and extracted with diethyl ether (3×15.0 mL). The combined organic extracts were washed with brine (20.0 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude compound was purified by a silica gel flash
column chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=40 / 1$) to afford compound $\mathbf{S 1 6}$ in 74% yield.

The 2-aminostyrene $\mathbf{S 1 7}$ (1.0 equiv) was dissolved in ethyl acetate (0.25 M). The aldehyde S16 (1.5 equiv) was added and followed by adding trifluoroacetic acid (2.0 equiv). The resulting mixture was stirred for 0.5 h and then sodium triacetoxyborohydride (2.0 equiv) was added. The mixture was stirred for 2.0 h and then the reduction was quenched with 4.0 M NaOH aqueous solution. The reaction mixture was diluted with ethyl acetate and washed twice with brine. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by a flash column chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to afford compound $\mathbf{S 1 8}$ in 55% yield.

To a solution of $\mathbf{S 1 8}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous THF was added NaH (1.2 equiv) at room temperature for 1.0 h upon stirring and then was warmed up to $70^{\circ} \mathrm{C}$. The resulted mixture was added with TsCl and the resulting mixture was stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether / EtOAc $=10 / 1)$ to afford compound $\mathbf{1 a m}$ in 70% yield.

General procedure for the synthesis of compound 1an

The procedure of preparing substrate $\mathbf{S 2 0}$ was slightly modified according to the previous literature. ${ }^{8}$

Under argon atmosphere, to a solution of 2,6 -lutidine ($15.0 \mathrm{mmol}, 1.5$ equiv) in dry dichloromethane (35.0 mL) was added trifluoromethanesulfonic anhydride ($15.0 \mathrm{mmol}, 1.5$ equiv) at $-20^{\circ} \mathrm{C}$. After 5.0 min , a solution of 1,2:3,4-di- O-isopropylidene- α-d-galactopyranose $\mathbf{S 1 9}$ (10.0 $\mathrm{mmol}, 1.0$ equiv) in dichloromethane (40.0 mL) was added dropwise to the solution at $-20^{\circ} \mathrm{C}$. The resulting solution was stirred at $-20^{\circ} \mathrm{C}$ for 5.0 min , and then at $0{ }^{\circ} \mathrm{C}$ for another 30.0 min . The mixture was poured into ice-cooled water and extracted with dichloromethane. The solvent was removed under reduced pressure and the residue was purified on a silica gel column chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to give compound $\mathbf{S 2 0}$ as a colorless oil in 94% yield.

To a solution of $\mathbf{S 1 3}$ (1.0 equiv) in 20.0 mL of anhydrous DMF was added NaH (1.2 equiv) at $0{ }^{\circ} \mathrm{C}$ for 1.0 h . Afterwards compound $\mathbf{S 2 0}$ (1.0 equiv) in DMF (10.0 mL) was added dropwise at $0^{\circ} \mathrm{C}$ for 1.0 h . The resulted mixture was stirred for overnight at $0^{\circ} \mathrm{C}$. After the reaction completion monitored by TLC analysis, the mixture was filtered and washed with DCM. The filtrate was concentrated in vacuo and extracted with DCM ($3 \times 15.0 \mathrm{~mL}$). After above operation, the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=5 / 1$) to afford compound 1an in 51% yield.

General procedure for the synthesis of compound 1ao

A solution of $\mathrm{PPh}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{I}(10.0 \mathrm{mmol}, 1.0$ equiv) and t -BuOK ($12.0 \mathrm{mmol}, 1.2$ equiv) in THF (10.0 mL) was stirred at $70^{\circ} \mathrm{C}$ under argon atmosphere for 0.5 h . Afterwards compound $\mathbf{S 2 1}$ ($10.0 \mathrm{mmol}, 1.0$ equiv) in THF (10.0 mL) was added and the reaction solution was stirred at $70{ }^{\circ} \mathrm{C}$ for another 1.0 h . Upon completion, the reaction was cooled to room temperature and the mixture was filtered through a celite. The filtrate was concentrated under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to afford compound $\mathbf{S 2 2}$ in 65\% yield.

To a solution of $\mathbf{S 2 2}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous DCM was added TsCl (1.2 equiv) and pyridine (1.2 equiv) at room temperature and the resulting mixture was stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to afford compound $\mathbf{S 2 3}$ in 93% yield.

To a solution of $\mathbf{S 2 3}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous THF was added NaH (1.2 equiv) at room temperature for 1.0 h and the mixture was warmed up to $70{ }^{\circ} \mathrm{C}$. The resulted mixture was added with BnBr (1.5 equiv) and was stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether / EtOAc $=10 / 1$) to afford compound 1ao in 81% yield.

General procedure for the synthesis of compound 1ap

Compound $\mathbf{S} 24$ was prepared according to the previous literature. ${ }^{3}$
To a solution of $\mathbf{S 2 1}$ (10.0 mmol , 1.0 equiv) in 30.0 mL of freshly distilled anhydrous THF was added dropwise $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{MgBr}$ ($30.0 \mathrm{mmol}, 3.0$ equiv) at room temperature over 1.0 h . The mixture was stirred at $70^{\circ} \mathrm{C}$ for 24.0 h . After the reaction completion monitored by TLC analysis, the residue was added with $1.0 \mathrm{~N} \mathrm{HCl}(30.0 \mathrm{~mL})$, and then the resulting mixture was stirred for 1.0 h and then was extracted with EA ($3 \times 20.0 \mathrm{~mL}$), and the combined extracts were washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. A reaction mixture of the above crude tertiary alcohol and p - TsOH ($2.0 \mathrm{mmol}, 0.2$ equiv) in toluene (30.0 mL) was refluxed for 24.0 h . After cooling to room temperature, it was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 15.0 \mathrm{~mL})$ and brine $(2 \times 15.0 \mathrm{~mL})$ in sequence, and then extracted with EtOAc $(3 \times 15.0 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to afford compound $\mathbf{S 2 4}$ in 52% yield.

To a solution of $\mathbf{S 2 4}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous DCM was added TsCl (1.2 equiv) and pyridine (1.2 equiv) at room temperature for 12.0 h upon stirring. After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure
and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether / EtOAc $=10 / 1)$ to afford compound $\mathbf{S 2 5}$ in 85% yield.

To a solution of $\mathbf{S 2 5}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous THF was added NaH (1.2 equiv) at room temperature and was stirred for 1.0 h and then was warmed up to $70{ }^{\circ} \mathrm{C}$. The resulted mixture was added with BnBr (1.5 equiv) and was stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether / EtOAc $=10 / 1$) to afford compound 1ap in 79% yield.

General procedure for the synthesis of compounds 1aw-1aag

To a solution of $\mathbf{S 1 7}$ ($10.0 \mathrm{mmol}, 1.0$ equiv) in 20.0 mL of freshly distilled anhydrous DCM was added $\mathbf{S 2 6}$ ($12.0 \mathrm{mmol}, 1.2$ equiv) and pyridine ($12.0 \mathrm{mmol}, 1.2$ equiv) at room temperature and the resulting mixture was stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to afford compounds $\mathbf{S 2 7}$.

To a solution of $\mathbf{S 2 7}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous THF was added NaH (1.2 equiv) at room temperature for 1.0 h and the mixture was warmed up to $70{ }^{\circ} \mathrm{C}$. The resulted mixture was added with BnBr (1.5 equiv) and was stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether / EtOAc $=10 / 1$) to afford compounds 1aw-1aag in good yields ranging from 60% to 90%.

General procedure for the synthesis of compounds 1aah-1aak

To a solution of $\mathbf{S 1 7}$ ($5.0 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ (7.5 mmol , 1.5 equiv) in 20.0 mL of freshly distilled anhydrous DCM was added $\mathbf{S 2 8}$ ($7.5 \mathrm{mmol}, 1.5$ equiv) dropwise at room temperature for 20.0 min . The mixture was stirred for another 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to afford compounds S29.

To a solution of $\mathbf{S 2 9}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous THF was added NaH (1.2 equiv) at room temperature for 1.0 h and the mixture was warmed up to $70{ }^{\circ} \mathrm{C}$. The resulted mixture was added with BnBr (1.5 equiv) and was stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether / $\mathrm{EtOAc}=10 / 1$) to afford compounds 1aah-1aak in good yields ranging from 67% to 90%.

General procedure for the synthesis of compounds 1aq and 1as

The procedure of preparing substrates $\mathbf{S 3 2}$ was slightly modified according to the previous literature. ${ }^{5}$

Compounds S30 (10.0 mmol, 1.0 equiv), S31 ($15.0 \mathrm{mmol}, 1.5$ equiv), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10.0 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (30.0 mmol , 3.0 equiv) were mixed with toluene (50.0 mL) and $\mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{~mL}$). The resulting reaction mixture was stirred for 24.0 h at $100^{\circ} \mathrm{C}$. After completion of the reaction, the solution was concentrated in vacuo and the residue was purified by a column chromatography on silica gel (eluent: petroleum ether $/ \mathrm{EtOAc}=8 / 1$) to give the desired products $\mathbf{S 3 2}$.

To a solution of $\mathbf{S 3 2}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous DCM was added TsCl (1.2 equiv) and pyridine (1.2 equiv) at room temperature and the mixture was stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether / $\mathrm{EtOAc}=10 / 1)$ to afford compounds $\mathbf{S 3 3}$.

To a solution of $\mathbf{S 3 3}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous THF was added NaH (1.2 equiv) at room temperature and the resulting mixture was stirred for 1.0 h and then was warmed up to $70^{\circ} \mathrm{C}$. The resulted mixture was added with BnBr (1.5 equiv) and was stirred for 12.0 h. After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=5 / 1$) to afford compounds $\mathbf{1 a q}$ and $\mathbf{1 a s}$ in 92% and 90% yields, respectively.

General procedure for the synthesis of compound 1ar

The procedure of preparing substrate $\mathbf{S 3 5}$ was slightly modified according to the previous literature. ${ }^{9}$

The reaction mixture of compound $\mathbf{S 3 4}$ ($10.0 \mathrm{mmol}, 1.0$ equiv), styrene ($15.0 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10.0 \mathrm{~mol} \%), \mathrm{P}(o-\mathrm{Tol})_{3}(20.0 \mathrm{~mol} \%)$ and $\mathrm{Et}_{3} \mathrm{~N}(50.0 \mathrm{~mL})$ was stirred for 24.0 h at $125{ }^{\circ} \mathrm{C}$. After completion of the reaction, the solution was concentrated in vacuo and the residue was purified by a column chromatography on silica gel (eluent: petroleum ether / $\mathrm{EtOAc}=8 / 1$) to give the desired product $\mathbf{S 3 5}$ in 66% yield.

To a solution of $\mathbf{S 3 5}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous DCM was added TsCl (1.2 equiv) and pyridine (1.2 equiv) at room temperature and the resulting mixture was stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to afford compound $\mathbf{S 3 6}$ in 87% yield.

To a solution of $\mathbf{S 3 6}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous THF was added NaH (1.2 equiv) at room temperature for 1.0 h and the mixture was warmed up to $70{ }^{\circ} \mathrm{C}$. The resulted mixture was added with BnBr (1.5 equiv) and was stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=5 / 1$) to afford compound 1ar in 81% yield.

General procedure for the synthesis of compounds 1at and 1au

A solution of $\mathrm{PPh}_{3} \mathrm{CH}_{3} \mathrm{Br}(12.0 \mathrm{mmol}, 1.2$ equiv) and t - BuOK ($12.0 \mathrm{mmol}, 1.2$ equiv) in THF $(10.0 \mathrm{~mL})$ was stirred at $70^{\circ} \mathrm{C}$ under argon atmosphere for 0.5 h . Afterwards compounds $\mathbf{S 3 7}$ (10.0 mmol, 1.0 equiv) in THF (10.0 mL) was added and the reaction solution was stirred at $70{ }^{\circ} \mathrm{C}$ for another 1.0 h . Upon completion, the reaction was cooled to room temperature and the mixture was filtered through a celite. The filtrate was concentrated under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to afford compounds S38.

To a solution of $\mathbf{S 3 8}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous DCM was added TsCl (1.2 equiv) and pyridine (1.2 equiv) at room temperature and the resulting mixture was stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=5 / 1$) to afford compounds $\mathbf{S 3 9}$.

To a solution of $\mathbf{S 3 9}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous THF was added NaH (1.2 equiv) at room temperature for 1.0 h and the mixture was warmed up to $70{ }^{\circ} \mathrm{C}$. The resulted mixture was added with BnBr (1.5 equiv) and was stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether / EtOAc $=10 / 1$) to afford compounds 1at and $\mathbf{1 a u}$ in 77% and 90% yields, respectively.

General procedure for the synthesis of compound 1av

The procedure of preparing substrate $\mathbf{S 4 2}$ was slightly modified according to the previous literature. ${ }^{4}$

Compound $\mathbf{S 4 0}$ ($10.0 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Bu}_{4} \mathrm{NBr}_{3}$ ($30.0 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{NaH}(30.0 \mathrm{mmol}$, 3.0 equiv) were added in THF (40.0 mL). The reaction mixture was stirred for 24.0 h at $70^{\circ} \mathrm{C}$. After completion of the reaction, the solution was concentrated in vacuo and purified by a column chromatography on silica gel (eluent: petroleum ether / DCM / EtOAc $=30 / 1 / 1$) to give the desired product $\mathbf{S 4 1}$ in 50\% yield.

Compound $\mathbf{S 4 1}$ (1.0 equiv), potassium isopropenyltrifluoroborate (1.1 equiv), and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv) were mixed with THF (20.0 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(2.0 \mathrm{~mL})$ solvent. The reaction mixture was stirred for 24.0 h at $70^{\circ} \mathrm{C}$. After completion of the reaction, the organic phase was extracted with EtOAc $(3 \times 15.0 \mathrm{~mL})$ and then the solution was concentrated in vacuo and purified by a column chromatography on silica gel (eluent: petroleum ether $/ \mathrm{EtOAc}=8 / 1$) to give the desired product $\mathbf{S 4 2}$ in 71% yield .

To a solution of $\mathbf{S 4 2}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous DCM was added TsCl (1.2 equiv) and pyridine (1.2 equiv) at room temperature and the resulting mixture was stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=5 / 1$) to afford compound $\mathbf{S 4 3}$ in 90% yield.

To a solution of $\mathbf{S 4 3}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous THF was added NaH (1.2 equiv) at room temperature for 1.0 h and then was warmed up to $70^{\circ} \mathrm{C}$. The resulted mixture was added with BnBr (1.5 equiv) and was stirred for 12.0 h . After the reaction completion
monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=5 / 1$) to afford compound 1av in 80% yield.

General procedure for the synthesis of compound $\left[D_{2}\right]-1$ a

To a solution of $\mathbf{S 2 1}$ ($10.0 \mathrm{mmol}, 1.0$ equiv) in 20.0 mL of freshly distilled anhydrous DCM was added TsCl ($12.0 \mathrm{mmol}, 1.2$ equiv) and pyridine ($12.0 \mathrm{mmol}, 1.2$ equiv) at room temperature and the resulting mixture was stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=8 / 1$) to afford compound $\mathbf{S 4 4}$ in 75% yield.

To a solution of $\mathbf{S 4 4}$ (1.0 equiv) in 20.0 mL of freshly distilled anhydrous THF was added NaH (1.2 equiv) at room temperature and the resulting mixture was stirred for 1.0 h and then was warmed up to $70^{\circ} \mathrm{C}$. The resulted mixture was added with BnBr (1.5 equiv) and was stirred for 12.0 h. After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=8 / 1$) to afford compound $\mathbf{S} 45$ in 92% yield.

A solution of $\mathrm{PPh}_{3} \mathrm{CD}_{3} \mathrm{I}$ (1.2 equiv) and t -BuOK (1.2 equiv) in THF (20.0 mL) was stirred at $70^{\circ} \mathrm{C}$ under argon atmosphere for 0.5 h . Afterwards, compound $\mathbf{S 4 5}$ (1.0 equiv) in THF (20.0 mL) was added and the reaction solution was stirred at $70^{\circ} \mathrm{C}$ for another 1.0 h . Upon completion, the reaction was cooled to room temperature and the mixture was filtered through a celite. The filtrate was concentrated under reduced pressure and the residue was purified by a silica gel flash
chromatography (eluent: petroleum ether / EtOAc $=10 / 1$) to afford compound $\left[D_{2}\right]-\mathbf{1 a}$ in 75% yield and the D containing content was 93%.

General procedure for the synthesis of compounds 1aal

A solution of (3-bromopropyl)triphenylphosphinium bromide ($12.0 \mathrm{mmol}, 1.2$ equiv) and tert-BuOK ($12.0 \mathrm{mmol}, 1.2$ equiv) in THF (10.0 mL) was stirred at $70^{\circ} \mathrm{C}$ under argon atmosphere for 0.5 h . Afterwards compound (2-aminophenyl)(phenyl)methanon ($10.0 \mathrm{mmol}, 1.0$ equiv) in THF $(10.0 \mathrm{~mL})$ was added and the reaction solution was stirred at $70^{\circ} \mathrm{C}$ for another 12.0 h . Upon completion, the reaction was cooled to room temperature and the mixture was filtered through a celite. The filtrate was concentrated under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=20 / 1$) to afford compounds $\mathbf{S} 46$ in 58% yield.

To a solution of $\mathbf{S 4 6}$ ($5.0 \mathrm{mmol}, 1.0$ equiv) in 20.0 mL of freshly distilled anhydrous DCM was added TsCl ($6.0 \mathrm{mmol}, 1.2$ equiv) and pyridine ($6.0 \mathrm{mmol}, 1.2$ equiv) at room temperature and the resulting mixture was stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=10 / 1$) to afford compounds $\mathbf{S 4 7}$ in 90% yield.

To a solution of $\mathbf{S 4 7}$ ($2.0 \mathrm{mmol}, 1.0$ equiv) in 20.0 mL of freshly distilled anhydrous THF was added NaH ($2.4 \mathrm{mmol}, 1.2$ equiv) at room temperature for 1.0 h and the mixture was warmed up to $70^{\circ} \mathrm{C}$. The resulted mixture was added with $\mathrm{BnBr}(3.0 \mathrm{mmol}, 1.5$ equiv) and was stirred for 12.0 h . After the reaction completion monitored by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether / $\operatorname{EtOAc}=10 / 1)$ to afford compound 1aal in 88% yield with 818 mg .

5. General Procedure for the Synthesis of Products

General procedure for the synthesis of compounds 2a-2ah, 2aj-2ao

To a stirred solution of 1a-1ah, 1aj-1ao and 1aw-1aai ($0.1 \mathrm{mmol}, 1.0$ equiv) was added PC $\mathbf{2}$ ($2.0 \mathrm{~mol} \%$) in degassed $\mathrm{MeCN}(2.0 \mathrm{~mL}$) under argon atmosphere and the mixture was irradiated with 385 nm LED or 100 W BLUE LED for 12.0-24.0 h. After the removal of solvent under reduced pressure, the residue was purified by a column chromatography on silica gel (petroleum ether $/$ ethyl acetate $=20 / 1$) to afford the corresponding compounds 2a-2ah and 2aj-2ao in the yields ranging from 37% to 98%.

General procedure for the synthesis of compounds 2ai and 2ap and the scale-up reaction of 2a

To a stirred solution of 1ai and 1ap ($0.1 \mathrm{mmol}, 1.0$ equiv) was added PC 2 ($2.0 \mathrm{~mol} \%$) in degassed DCM (2.0 mL) under argon atmosphere and the mixture was irradiated with 100 W BLUE LED for 24.0 h . After the removal of solvent under reduced pressure, the residue was purified by a column chromatography on silica gel (petroleum ether / ethyl acetate $=20 / 1$) to afford the corresponding compounds 2ai and 2ap in 32% and 21% yields, respectively.

2a, $232 \mathrm{mg}, 82 \%$ yield

To a stirred solution of $\mathbf{1 a}(439 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added PC $2(2.0 \mathrm{~mol} \%)$ in degassed MeCN $(20.0 \mathrm{~mL})$ under argon atmosphere and the mixture was irradiated with 100 W BLUE LED for 24.0 h. After the removal of solvent under reduced pressure, the residue was purified by a column chromatography on silica gel (petroleum ether / ethyl acetate $=20 / 1$) to afford the corresponding compound 2a in 82% yield with 232 mg .

General procedure for the synthesis of compound [D]-2a

To a stirred solution of $\left[D_{2}\right] \mathbf{- 1 a}(0.1 \mathrm{mmol}, 1.0$ equiv) was added PC $2(2.0 \mathrm{~mol} \%)$ in degassed MeCN (2.0 mL) under argon atmosphere and the mixture was irradiated with 385 nm LED light for 12.0 h . After the removal of solvent under reduced pressure, the residue was purified by a column chromatography on silica gel (petroleum ether / ethyl acetate $=20 / 1$) to afford the corresponding compound $[D]-2$ a in 83% D containing 93%.

General procedure for the synthesis of compound 11a

Compound 2a (2.0 mmol) was dissolved in DMSO (4 mL). While the solution was stirred at room temperature, $\mathrm{KOt}-\mathrm{Bu}$ (10 mL of a 1 M solution in THF, 10.0 mmol) was added. Oxygen was then bubbled into the resulting solution for 12 h . Upon completion (determined by TLC), the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The remaining residue was purified by a flash column chromatography on silica gel (petroleum ether / ethyl acetate $=10 / 1$) to afford $\mathbf{8 a}(290 \mathrm{mg}, 75 \%$ yield) as a yellow solid.

To a solution of the compound $\mathbf{8 a}(1.0 \mathrm{mmol})$ in $\mathrm{MeCN}(3 \mathrm{~mL})$ was added sodium hydroxide ($200 \mathrm{mg}, 5.0 \mathrm{mmol}$) and tetrabutylammonium hydrogen sulfate ($17 \mathrm{mg}, 0.05 \mathrm{mmol}$). After the solution was stirred at room temperature for 30 min , 2-chloroethylamine hydrochloride (139 mg , 1.2 mmol) was added. Then the reaction mixture was refluxed for 36 h . The resulting mixture was poured into water (10 mL), extracted with diethyl ether, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure to give a crude product. The crude was then purified by a flash column chromatography on silica gel (petroleum ether / acetone $=1 / 1$) to give the product $\mathbf{9 a}(144$
$\mathrm{mg}, 61 \%$ yield) as a yellow oil.
A solution of the $\mathbf{9 a}(0.2 \mathrm{mmol})$ in dichloromethane $(2 \mathrm{~mL})$ was treated with formaldehyde (37% aqueous solution, $328 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). Trifluoroacetic acid ($60 \mu \mathrm{~L}, 0.8 \mathrm{mmol}$) was then added at room temperature, and the resulting reaction mixture was stirred for 12 h . Saturated aqueous sodium hydrogen carbonate was added, and the organic phase was separated. The aqueous phase was extracted with dichloromethane (DCM), the organic extracts were combined together, washed with saturated aqueous sodium chloride, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent under reduced pressure left a residue which was purified by a column chromatography on silica gel (petroleum ether / ethyl acetate $=2 / 1$) to afford 11a $(38 \mathrm{mg}, 76 \%$ yield) as a light yellow solid.

6. Mechanistic Investigations

6.1 Radical Trapping Experiment

To a stirred solution of $\mathbf{1 a}(0.1 \mathrm{mmol}, 1.0$ equiv) was added PC $2(2.0 \mathrm{~mol} \%)$ and TEMPO (0.2 mmol, 2.0 equiv) in degassed $\mathrm{MeCN}(2.0 \mathrm{~mL})$ under argon atmosphere and the mixture was irradiated with 385 nm LED for 12.0 h . When the reaction finished, the mixture was concentrated in vacuo. The yield of product 2a was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.

6.2 Quantum Yield

To further investigate whether the chain process is involved upon light irradiation, we measured the quantum yields of the reaction of $\mathbf{1 a}, \mathbf{1 n}$ and $\mathbf{1 o}$ to $\mathbf{2 a}, \mathbf{2 n}$ and $\mathbf{2 0}$.

$$
\phi=\frac{n_{x}}{n_{p}}=\frac{n_{x}}{\frac{\Delta E \times S \times t}{N_{A} h v}}=\frac{n_{x} \times N_{A} \times h \times c}{\Delta E \times S \times t \times \lambda}
$$

n_{x} is the amount of photochemical or photophysical events x occurred during irradiation, n_{p} is the number of photons absorbed by the reactant. E is the radiant power. S is the irradiated area. t is the irradiated time. N_{A} is the Avogadro constant. h is the Planck constant. v is the frequency of incident light. n_{x} was analyzed by ${ }^{1} \mathrm{H}$ NMR, $D E$ was measured by ILT1400 Portable Radiometer/Photometer. ${ }^{10}$

2a: 19\%

A cuvette equipped with a magnetic stir bar was added substrate $\mathbf{1 a}(0.1 \mathrm{mmol}, 1.0$ equiv) and degassed acetonitrile (2.0 mL). Record the value of blank sample after which PC 2 ($2.0 \mathrm{~mol} \%$) was added at room temperature. The heterogeneous mixture was placed at a distance (app. 10.0 cm) from 100 W Blue LED irradiation for 22.0 min , The reaction mixture was concentrated in vacuo and analyzed by ${ }^{1} \mathrm{H}$ NMR spectrum using 1,3,5-trimethoxybenzene as an internal standard. The quantum yield is calculated to be 1.77 .

$$
\boldsymbol{母}=\frac{0.019 \times 10^{-3} \mathrm{~mol} \times 6.022 \times 10^{23} \times 6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \times 2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}}{\left(11.7 \times 10^{-4} \mathrm{~W} \cdot \mathrm{~cm}^{-2} \times 2 \mathrm{~cm}^{2}\right) \times 1320 \mathrm{~s} \times 415 \times 10^{-9} \mathrm{~m}}=1.77
$$

A cuvette equipped with a magnetic stir bar was added substrate $\mathbf{1 n}(0.1 \mathrm{mmol}, 1.0$ equiv) and degassed acetonitrile (2.0 mL). Record the value of blank sample after which PC 2 ($2.0 \mathrm{~mol} \%$) was added at room temperature. The heterogeneous mixture was placed at a distance (app. 10.0 cm) from 100 W Blue LED irradiation for 22.0 min , The reaction mixture was concentrated in vacuo and analyzed by ${ }^{1} \mathrm{H}$ NMR spectrum using 1,3,5-trimethoxybenzene as an internal standard. The quantum yield is calculated to be 0.17 .

$$
\mathbf{Q}=\frac{0.013 \times 10^{-3} \mathrm{~mol} \times 6.022 \times 10^{23} \times 6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \times 2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}}{\left(8.2 \times 10^{-3} \mathrm{~W} \cdot \mathrm{~cm}^{-2} \times 2 \mathrm{~cm}^{2}\right) \times 1320 \mathrm{~s} \times 415 \times 10^{-9} \mathrm{~m}}=0.17
$$

A cuvette equipped with a magnetic stir bar was added substrate $\mathbf{1 0}$ ($0.1 \mathrm{mmol}, 1.0$ equiv) and degassed acetonitrile (2.0 mL). Record the value of blank sample after which PC 2 ($2.0 \mathrm{~mol} \%$) was added at room temperature. The heterogeneous mixture was placed at a distance (app. 10.0 cm) from 100 W Blue LED irradiation for 22.0 min , The reaction mixture was concentrated in vacuo and analyzed by ${ }^{1} \mathrm{H}$ NMR spectrum using 1,3,5-trimethoxybenzene as an internal standard. The quantum yield is calculated to be 0.18 .

$$
\boldsymbol{\$}=\frac{0.015 \times 10^{-3} \mathrm{~mol} \times 6.022 \times 10^{23} \times 6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \times 2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}}{\left(8.9 \times 10^{-3} \mathrm{~W} \cdot \mathrm{~cm}^{-2} \times 2 \mathrm{~cm}^{2}\right) \times 1320 \mathrm{~s} \times 415 \times 10^{-9} \mathrm{~m}}=0.18
$$

6.3 Emission Quenching Studies

All the emission intensities were recorded by Varian Cary Eclipse spectrometer. Solutions of PC 2 $\left(5.0 \times 10^{-3} \mathrm{M}\right)$ was added with $\mathbf{1 a}(1.0 \mathrm{M})$ or $\mathbf{2 a}(1.0 \mathrm{M})$ or $\mathbf{2 m}(1.0 \mathrm{M})$ in dry MeCN upon excitation at 415 nm and the emission intensity was collected at $503-508 \mathrm{~nm}$. Solution was introduced to a 1.0 cm path length quartz cuvette equipped with a Teflon® septum.

Figure S1. Fluorescence quenching experiment of 1a

Figure S2. Fluorescence quenching experiment of 2a

Figure S3. Fluorescence quenching experiment of $\mathbf{2 m}$

Figure S4. Stern-Volmer experiments of 1a

Figure S5. Stern-Volmer experiments of 2a

Figure S6. Stern-Volmer experiments of $\mathbf{2 m}$

To get a more accurate result, Stern-Volmer experiments were repeated at a lower concentration. Solutions of PC $2\left(5.0 \times 10^{-5} \mathrm{M}\right)$ was added with $\mathbf{1 a}(1.0 \mathrm{M})$ or $\mathbf{2 a}(1.0 \mathrm{M})$ in dry MeCN upon excitation at 415 nm and the emission intensity was collected at $503-508 \mathrm{~nm}$. Solution was introduced to a 1.0 cm path length quartz cuvette equipped with a Teflon® septum. Similar results as mentioned above were obtained.

Figure S7. Fluorescence quenching experiment of 1a

Figure S8. Fluorescence quenching experiment of 2a

Figure S9. Stern-Volmer experiments of 1a

Figure S10. Stern-Volmer experiments of 2a

6.4 Cyclic Voltammetry Experiments

Cyclic Voltammetry was performed on a CH Instruments Electrochemical Workstation model CS350H. A solution of the substrates $\mathbf{1 a}$ in $\mathrm{MeCN}(0.2 \mathrm{M})$ was tested with $0.2 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as the supporting electrolyte, using a glassy carbon as the working electrode, a Pt as the counter electrode, and a saturated calomel electrode reference electrode. Ar was bubbled into the system for 20.0 min to degas the solution. Scan rate $=0.1 \mathrm{~V} / \mathrm{s}, 2$ sweep segments, a sample interval of 0.001 V .

Figure S11. Oxidative potential of 1a

Figure S12. Oxidative potential of 1n

Figure S13. Oxidative potential of 1q

Figure S14. Oxidative potential of 1at

Figure S15. Oxidative potential of 1az

Figure S16. Oxidative potential of 1aaj

6.5 Kinetic Experiment and Hammett plot

To a stirred solution of $\mathbf{1}$ ($0.1 \mathrm{mmol}, 1.0$ equiv) was added PC 2 ($2.0 \mathrm{~mol} \%$) in degassed $\mathrm{MeCN}(2.0 \mathrm{~mL})$ under argon atmosphere and the mixture was irradiated with 385 nm LED for 15.0 $\mathrm{min}, 20.0 \mathrm{~min}$ and 25.0 min . After the removal of solvent under reduced pressure, the yields of products 2 were measured by NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.

Figure S17. Rate constant of 1aac

Figure S18. Rate constant of 1aaa

Time (min)	$\mathbf{0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$
Yield (\%)	0	16	21	24

Figure S19. Rate constant of $\mathbf{1 a z}$

Figure S20. Rate constant of 1aw

Time (min)	$\mathbf{0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$
Yield (\%)	0	21	27	31

Figure S21. Rate constant of 1a

Figure S22. Rate constant of 1aab

Figure S23. Rate constant of 1n

Figure S24. Rate constant of 11

Figure S25. Rate constant of 1m

Figure S26. Rate constant of 10

substituent	k_{X}	$k_{\mathrm{X}} / k_{\mathrm{H}}$	$\log \left(k_{\mathrm{X}} / k_{\mathrm{H}}\right)$	σ_{p}
OMe	1.388	1.2572	0.0994	-0.27
CH_{3}	1.304	1.1812	0.0723	-0.17
H	1.104	-	-	-
F	1.008	0.9130	-0.0395	0.06
Cl	0.876	0.7935	-0.1005	0.23
CF_{3}	0.656	0.5942	-0.2261	0.54

Hammett plot on para-arylsulfonyl site

Figure S27. Hammett plot study on the para-arylsulfonyl site

6.6 The MS spectra of TsH and TsD

Figure S28.The MS spectra of TsH and TsD

6.7 NOE spectrum of remained 1ao after the reaction

Figure S29. The NOE spectrum of $\mathbf{1 a o}$ after the reaction

6.8 Radical clock experiment

Our Plan

To a stirred solution of 1aal ($0.1 \mathrm{mmol}, 1.0$ equiv) was added PC 2 ($2.0 \mathrm{~mol} \%$) in degassed $\mathrm{MeCN}(2.0 \mathrm{~mL})$ under argon atmosphere and the reaction mixture was irradiated with 385 nm LED 12. h. After the removal of solvent under reduced pressure, the residue was purified by a column chromatography on silica gel (petroleum ether / ethyl acetate $=10 / 1$). This result showed that the substrate 1aal did not undergo the expected reaction under the standard conditions, presumably due to the steric effect.

7. KIE Experiment

$\mathrm{KIE}=1.30$
To a stirred solution of $\mathbf{1 a}(0.1 \mathrm{mmol}, 1.0$ equiv) was added PC $2(2.0 \mathrm{~mol} \%)$ in degassed $\mathrm{MeCN}(2.0 \mathrm{~mL})$ under argon atmosphere in one sealed tube and $\left[D_{2}\right]-\mathbf{1 a}$ ($1.0 \mathrm{mmol}, 1.0$ equiv) was added PC $2(2.0 \mathrm{~mol} \%)$ in degassed $\mathrm{MeCN}(2.0 \mathrm{~mL})$ under argon atmosphere in another sealed tube and then the mixture was irradiated with 385 nm LED for $10.0 \mathrm{~min}, 15.0 \mathrm{~min}, 30.0 \mathrm{~min}$ and 40.0 min, respectively. After the removal of solvent under reduced pressure, the yields of products $\mathbf{2 a}$ and $[D]$-2a were measured by NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. The corresponding kinetic isotope effect outcomes were shown in Fig. S24.

Time (min)	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{3 0}$	$\mathbf{4 0}$
	18	23	46	62
Yield (\%)	14	21	36	46

Figure S30. The experiments on the kinetic isotope effect from 1a to 2a

8. Characterization Data of Substrates 1

Compound 1a: Yield: $1186 \mathrm{mg}, 90 \%$; a yellow oil; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.40(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.35(\mathrm{~m}, 13 \mathrm{H}), 7.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.5,54.6,117.2,127.0,127.6,127.8,127.9,128.0,128.06,128.14,129.2,129.4$, $130.8,132.0,135.5,137.3,137.4,140.8,142.3,143.2,145.9$; IR (neat): v 3060, 3028, 2921, 1596, 1493, 1342, 1154, 1089, 909, 813, $697 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$: 462.1498, found: 462.1508 .

守尔
Lil
$\left.\right|^{\text {M }}$

1a (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 1b: Yield: $1338 \mathrm{mg}, 80 \%$; a yellow oil; Eluent: PE/EA $=5 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.33(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 6.42-6.47$ $(\mathrm{m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.27(\mathrm{~m}, 7 \mathrm{H})$, $7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.2,54.5,54.9,113.8,115.9$, 116.7, 126.9, 127.3, 127.4, 127.84, 127.88, 127.91, 129.1, 129.2, 132.3, 134.3, 135.3, 137.2, 138.0, 141.1, 143.1, 145.5, 158.4; IR (neat): v 3029, 2928, 2835, 1602, 1493, 1341, 1235, 1193, 1028, 908, 813, $694 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$: 492.1604, found: 492.1596 .

Compound 1c: Yield: $1812 \mathrm{mg}, 88 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.39(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 6.81-6.87(\mathrm{~m}, 3 \mathrm{H})$, 7.04-7.22 (m, 9H), 7.24-7.31 (m, 3H), $7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta_{\mathrm{C}} 21.4,54.4,117.8,126.9,127.7,127.79,127.83,127.96,128.04,128.2,129.3,131.6,132.2$, 133.6, 135.0, 135.7, 136.9, 140.1, 143.4, 144.1, 144.8; IR (neat): v 3028, 2973, 1596, 1493, 1342, 1154, 1088, 1027, 845, 813, $695 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{NaSCl}[\mathrm{M}+\mathrm{Na}]^{+}$: 496.1109, found: 496.1117.

Compound 1d: Yield: $1506 \mathrm{mg}, 85 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.35(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.36(\mathrm{~m}$, $1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.3,54.3,117.7,121.7$, 126.7, 127.6, 127.7, 127.8, 127.9, 128.1, 129.18, 129.22, 130.7, 132.4, 134.4, 134.9, 136.2, 136.8, 139.9, 143.3, 144.3, 144.6; IR (neat): v 3059, 3029, 2922, 1596, 1493, 1343, 1154, 1089, 1027, 813, $694 \mathrm{~cm}^{-1} ;$ HRMS (ESI-TOF) Calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{NaSBr}[\mathrm{M}+\mathrm{Na}]^{+}: 540.0603$, found: 540.0600.

Compound 1e: Yield: $1581 \mathrm{mg}, 93 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.90-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 6.75-6.91(\mathrm{~m}, 5 \mathrm{H})$, 7.02-7.10 (m, 3H), 7.13-7.19 (m, 4H), 7.20-7.28 (m, 3H), 7.51 (d, J = 8.0 Hz, 2H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta_{\mathrm{C}} 21.2,54.5,114.4(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 117.5,118.3(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 126.8$, 127.56, 127.62, 127.8, 127.9, 128.1, 129.17, 129.25, 132.5 (d, $J=9.0 \mathrm{~Hz}$), 133.0 (d, $J=2.9 \mathrm{~Hz}$), 135.0, 136.9, 140.1, 143.3, 144.6 (d, $J=8.3 \mathrm{~Hz}$), $144.8(\mathrm{~d}, J=0.9 \mathrm{~Hz}), 161.2(\mathrm{~d}, J=247.8 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-112.6; IR (neat): v 3062, 3029, 2924, 1597, 1485, 1343, 1183, 1155, 1089, 939, 813, $698 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{28} \mathrm{H}_{2} \mathrm{NO}_{2} \mathrm{FNaS}[\mathrm{M}+\mathrm{Na}]^{+}: 480.1404$ found: 480.1404.

1e (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

夺

1e $\left({ }^{19} \mathrm{~F}\right.$ NMR, $\left.376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 1f: Yield: $1668 \mathrm{mg}, 90 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}, TMS $) \delta 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-7.00(\mathrm{~m}, 1 \mathrm{H}), 7.01-7.10(\mathrm{~m}$, $3 \mathrm{H}), 7.12-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 20.8$, $21.3,54.5,116.8,126.8,127.37,127.40,127.82,127.88,128.0,128.4,129.1,129.2,130.4,132.3$, $134.4,135.4,137.3,137.6,140.8,141.9,143.0,145.8$; IR (neat): v 3028, 2919, 2864, 1597, 1492, 1444, 1304, 1154, 1090, 906, 813, $698 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$: 476.1655, found: 476.1673 .

Compound 1g: Yield: $2142 \mathrm{mg}, 88 \%$; a yellow oil; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1 .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 1.24(\mathrm{~s}, 9 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 6.84-6.94$ $(\mathrm{m}, 3 \mathrm{H}), 6.99-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.2,30.9,34.2,54.6,116.6,124.5,126.7,127.26$, $127.32,127.7,127.8,127.9,128.8,128.97,129.04,130.0,134.6,135.5,137.4,140.6,141.3,142.8$, 146.1, 150.5; IR (neat): v 3029, 2960, 2867, 1597, 1493, 1454, 1343, 1155, 1090, 913, 853, 697 $\mathrm{cm}^{-1} ;$ HRMS (ESI-TOF) Calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 518.2124$, found: 518.2120.

1g (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1g (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 1h: Yield: $1866 \mathrm{mg}, 79 \%$ as a pair of rotamers with 1:1 ratio because it has two rotation axles; a dark yellow solid; Mp: $144-146{ }^{\circ} \mathrm{C}$; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 2.35(\mathrm{~s}, 6 \mathrm{H}), 3.76-4.60(\mathrm{~m}, 1.5 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 5.14-5.30(\mathrm{~m}, 1.5 \mathrm{H}), 6.00-6.16$ $(\mathrm{m}, 2 \mathrm{H}), 6.66-6.86(\mathrm{~m}, 3 \mathrm{H}), 6.94-7.27(\mathrm{~m}, 24 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, 7.57-7.67 (m, 4H), 7.75 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.4,53.9,119.0,126.25,126.28,126.4,127.0,127.47,127.59,127.61,127.7$, 127.8, 127.9, 128.3, 128.6, 129.2, 129.7, 129.9, 130.6, 132.7, 133.3, 134.3, 135.5, 139.7, 143.1; IR (neat): v 3061, 3029, 2931, 1596, 1493, 1359, 1279, 1217, 1150, 1066, 960, 817, $698 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 512.1655$, found: 512.1660.

Compound 1i: Yield: $1226 \mathrm{mg}, 81 \%$; a light yellow solid; Mp: $96-98{ }^{\circ} \mathrm{C}$; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.67(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.50(\mathrm{~m}, 1 \mathrm{H})$, $5.30(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.99-7.19(\mathrm{~m}, 10 \mathrm{H})$, $7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 20.7,21.2,54.0,120.7,125.5,127.16,127.24,127.5,127.8,128.0,128.2$, $129.0,129.78,129.84,130.2,130.9,132.0,135.2,135.5,136.3,136.9,141.5,143.0,143.6,147.6 ;$ IR (neat): v 3063, 3031, 1597, 1485, 1369, 1155, 1032, 949, 823, 771, $699 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 476.1655$, found: 476.1658 .

珹
$\stackrel{\infty}{\sim}$
ぶしてー—

1i（ $\left.{ }^{13} \mathrm{CNMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 1j: Yield: $1546 \mathrm{mg}, 69 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.27(\mathrm{~m}, 10 \mathrm{H}), 7.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.38,21.44,54.5,117.0,124.1,127.5,127.67$, $127.72,127.89,127.93,128.0,128.4,129.2,129.3,131.0,132.0,135.5,137.1,137.5,137.6,140.7$, 142.3, 143.2, 146.0; IR (neat): v 3029, 2920, 1597, 1485, 1445, 1400, 1341, 1304, 1155, 1040, 908, 767, $698 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 476.1655$, found: 476.1646.

Compound 1k: Yield: 1920 mg , 80\%; a light yellow solid; Mp: 113-115 ${ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H})$, $6.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.12(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.51(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta_{\mathrm{C}} 21.4,55.0,117.7,127.6,127.92,127.93$, $127.98,128.0,128.15,128.23,129.3,130.0,131.8,133.1,135.0,136.6,137.4,139.3,141.9,143.3$, 144.6; IR (neat): v 3066, 3029, 2902, 1593, 1455, 1395, 1309, 1258, 1148, 1066, 1016, 957, 877, $775 \mathrm{~cm}^{-1} ;$ HRMS (ESI-TOF) Calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{NaSCl}[\mathrm{M}+\mathrm{Na}]^{+}: 496.1109$, found: 496.1114.

Compound 11: Yield: $2214 \mathrm{mg}, 85 \%$; a light yellow solid; Mp: $108-110^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.39(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H})$, $6.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-7.02(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.4,55.0,117.8$, $121.4,127.6,127.93,127.96,128.02,128.5,129.26,129.33,130.0,131.0,131.9,135.0,136.6$, 137.4, 139.8, 141.8, 143.4, 144.7; IR (neat): v 2987, 2901, 1593, 1454, 1365, 1290, 1149, 1112, 1076, 1030, 927, 876, 774, $702 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{NaSBr}[\mathrm{M}+\mathrm{Na}]^{+}$: 540.0603, found: 540.0609.

$11\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 1m: Yield: 1628 mg , 93%; a light yellow solid; Mp: 104-106 ${ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.39(\mathrm{~s}, 3 \mathrm{H}), 4.20-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H})$, 6.84-6.96 (m, 5H), 7.02-7.26 (m, 10H), $7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta_{\mathrm{c}} 21.4,54.9,114.8(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 117.0,127.6,127.88,127.95,127.98,128.02,128.6(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}), 129.27,129.34,130.2,131.9,135.1,136.9,137.0(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 137.4,142.2,143.4$, 144.8, $162.2(\mathrm{~d}, J=243.7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.7$; IR (neat): v 2986, 2903, 1597, 1485, 1400, 1337, 1289, 1154, 1086, 1030, 953, 924, 868, 775, $705 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{FNaS}[\mathrm{M}+\mathrm{Na}]^{+}: 480.1404$, found: 480.1410 .

1m (${ }^{13} \mathrm{C}$ NMR, $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1m (${ }^{19} \mathrm{~F} \mathrm{NMR}, 376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 1n: Yield: $1338 \mathrm{mg}, 91 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.35(\mathrm{~s}, 3 \mathrm{H}), 4.35-4.45(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 6.95-7.04 (m, 3H), 7.05-7.14 (m, 2H), 7.16-7.26 (m, 6H), $7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta_{\mathrm{C}} 21.2,55.3,119.3,124.1(\mathrm{q}, J=270.3 \mathrm{~Hz}$), $124.8(\mathrm{q}, ~ J=3.8 \mathrm{~Hz}), 127.1,127.7,127.91,127.97,128.03,128.1,128.9(\mathrm{q}, J=32.0 \mathrm{~Hz}), 129.2$, 129.3, 129.5, 131.8, 134.8, 136.3, 137.6, 141.7, 143.5, 144.4 (q, $J=1.2 \mathrm{~Hz}$), 144.5; ${ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.1; IR (neat): v 3030, 2924, 1615, 1597, 1487, 1321, 1157, 1114, 1063, 913, 849, $726,698 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~F}_{3} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$: 530.1372, found: 530.1366.

1n (${ }^{19} \mathrm{~F} \mathrm{NMR}, 376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 1o: Yield: $1642 \mathrm{mg}, 80 \%$; a light yellow solid; $\mathrm{Mp}: 102-104{ }^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=10 / 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}$, $1 \mathrm{H}), 6.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.24(\mathrm{~m}, 12 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.0,21.3,54.5,116.1,126.7,127.4,127.6,127.78$, $127.87,127.95,128.7,129.1,129.3,130.8,131.9,135.5,137.20,137.24,137.3,137.9,142.3,143.1$, 145.6; IR (neat): v 3064, 3011, 2984, 2920, 1597, 1486, 1442, 1369, 1272, 1210, 1198, 1159, 991, 880, 771, 726, $700 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 476.1655$, found: 476.1662 .

Compound 1p: Yield: $1906 \mathrm{mg}, 89 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 1.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.00-4.60(\mathrm{~m}, 2 \mathrm{H})$, $5.06(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.25(\mathrm{~m}, 12 \mathrm{H})$, $7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 15.4,21.3,28.3,54.5,116.1$, $126.8,127.4,127.52,127.58,127.7,127.8,127.9,129.1,129.2,130.7,131.9,135.4,137.2,137.3$, 138.1, 142.3, 143.1, 143.6, 145.5; IR (neat): v 3062, 3028, 2962, 2868, 1597, 1509, 1343, 1156, 1090, 863, $767 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$: 428.1655 , found: 428.1652.

皆

कोा ไो ।

1p (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 1q: Yield: $2014 \mathrm{mg}, 88 \%$; a yellow oil; Eluent: PE/EA $=5 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, TMS $) \delta 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.70(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.27(\mathrm{~m}, 10 \mathrm{H}), 7.52(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.3,54.5,55.0,113.3,115.2,127.4,127.6$, $127.8,127.86,127.90,128.0,129.1,129.2,130.7,131.8,133.3,135.4,137.1,137.2,142.3,143.1$, 145.0, 159.1; IR (neat): v 3029, 2931, 2835, 1598, 1508, 1340, 1247, 1153, 1027, 835, 768, 697 $\mathrm{cm}^{-1} ;$ HRMS (ESI-TOF) Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 492.1604$, found: 492.1609.

Compound 1r: Yield: $1632 \mathrm{mg}, 80 \%$; a yellow oil; Eluent: PE/EA $=5 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.31(\mathrm{~s}, 3 \mathrm{H}), 4.10-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 6.94-7.04 (m, 4H), $7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.31(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.3,54.6,117.1$, $121.8,122.0,123.1,123.9,126.6,127.4,127.72,127.76,127.79,127.9,129.07,129.14,130.5$, $131.9,135.1,136.9,137.1,137.2,138.8,139.5,142.2,143.1,145.7$; IR (neat): v 3062, 3029, 2924, 2864, 1596, 1486, 1339, 1184, 1155, 1045, 1027, 832, 754, $696 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{NaS}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 518.1219$, found: 518.1214.
(T)

Compound 1s: Yield: $1030 \mathrm{mg}, 74 \%$; a light yellow solid; Mp: 107-109 ${ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 2.40(\mathrm{~s}, 3 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 7.02-7.09$ $(\mathrm{m}, 3 \mathrm{H}), 7.10-7.31(\mathrm{~m}, 10 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.4,53.3,111.9,116.9,117.4,126.5,127.3,127.9,128.0,128.1,128.3$, 129.3, 129.5, 130.7, 132.1, 132.3, 135.3, 137.6, 139.0, 140.3, 142.0, 143.8, 145.4; IR (neat): v 3061, 1596, 1488, 1445, 1345, 1184, 1156, 1051, 911, 868, 779, $709 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{29} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 487.1451$, found: 487.1452.

Compound 1t: Yield: $1237 \mathrm{mg}, 91 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=$ $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.64(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.96(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.25(\mathrm{~m}, 10 \mathrm{H}), 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta_{\mathrm{C}} 20.9,21.3,54.7,117.0,126.2,126.9,127.4,127.67$, $127.68,127.8$, 127.97, 128.0, 128.2, 129.1, 130.0, 130.5, 131.9, 135.1, 137.39, 137.42, 137.44, 140.7, 142.3, 143.1, 145.7; IR (neat): v 3025, 2919, 1596, 1486, 1379, 1184, 1089, 860, 765, 702 cm^{-1}; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 476.1655$, found: 476.1661.

1t (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 1u: Yield: $1210 \mathrm{mg}, 89 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, TMS $) \delta 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.25(\mathrm{~m}, 10 \mathrm{H}), 7.52(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 20.9,21.3,54.4,117.0,126.9,127.3,127.6$, 127.7, 128.0, 128.5, 129.1, 129.2, 130.6, 131.8, 132.1, 137.1, 137.2, 140.8, 142.3, 143.1, 145.7; IR (neat): v 3051, 2920, 2862, 1596, 1486, 1341, 1155, 1089, 865, 781, $705 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 476.1655$, found: 476.1656 .

Compound 1v: Yield: $1234 \mathrm{mg}, 90 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 6.78-6.84 (m, 2H), $6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.27(\mathrm{~m}, 10 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta_{\mathrm{C}} 21.3,53.9,114.7(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 117.1,126.7,127.5$, $127.8,128.0,128.1,129.2,130.5,131.0(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 132.0,136.9,137.1$, 140.6, 142.2, 143.3, 145.8, $162.1(\mathrm{~d}, J=244.9 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.3$; IR (neat): v 3055, 2922, 1599, 1508, 1444, 1342, 1220, 1089, 851, 814, 764, $705 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{FNaS}[\mathrm{M}+\mathrm{Na}]^{+}: 480.1404$, found: 480.1413 .

1v $\left.{ }^{1} \mathrm{H} \mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1v (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1v (${ }^{19} \mathrm{~F}$ NMR, $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 1w: Yield: $1126 \mathrm{mg}, 74 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.39(\mathrm{~s}, 3 \mathrm{H}), 4.30-4.45(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.33(\mathrm{~m}, 12 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.4,54.5,117.3,123.9(\mathrm{q}, J=270.6 \mathrm{~Hz}), 124.8(\mathrm{q}, J=3.7 \mathrm{~Hz}), 126.6,127.7$, 128.1, 128.2, 129.3, 129.4, 129.6 (q, $J=32.5 \mathrm{~Hz}$), 130.3, 132.2, 136.8, 137.5, 139.5, 140.5, 142.1, 143.6, 145.8; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.5; IR (neat): v 2923, 1596, 1493, 1419, 1321, 1157, 1113, 1089, 1018, 908, 828, 766, $706 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$: 476.1655, found: 476.1661 .

Compound 1x: Yield: $1212 \mathrm{mg}, 85 \%$; a light yellow solid; Mp: 118-120 ${ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.36(\mathrm{~s}, 3 \mathrm{H}), 4.30-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H})$, 6.53-6.63 (m, 2H), 7.00-7.09 (m, 1H), 7.12-7.31 (m, 11H), $7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.3,42.7,110.9\left(\mathrm{dd}, J_{1}=19.0 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}\right), 111.1(\mathrm{t}, J=19.2 \mathrm{~Hz})$, 117.1, 126.9, 127.3, 127.86, 127.90, 128.1, 128.4, 129.0, 129.6, $130.1(\mathrm{t}, J=10.3 \mathrm{~Hz}), 132.0,135.9$, 137.2, 140.7, 142.5, 143.4, 145.9, 161.7 (dd, $J_{1}=250.1 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}$); ${ }^{19}$ F NMR (376 MHz , CDCl_{3}) δ-111.9; IR (neat): v 3051, 2942, 1594, 1487, 1320, 1267, 1196, 1156, 1088, 947, 907, 814, $726 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~F}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 498.1310$, found: 498.1315.
$\stackrel{\sim}{\infty}$

Compound 1y: Yield: 1174 mg , 80\%; a light yellow solid; Mp: $123-125^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.28(\mathrm{~s}, 3 \mathrm{H}), 4.30-4.70(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H})$, $7.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.18(\mathrm{~m}, 11 \mathrm{H}), 7.29-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.59-7.64(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.4,55.0,117.2,125.77,125.80,126.8,126.9$, $127.4,127.51,127.60,127.66,127.8,127.9,128.01,128.05,128.3,129.2,130.5,132.0,132.6$, 132.74, 132.78, 137.3, 137.4, 140.6, 142.2, 143.2, 145.6; IR (neat): v 3053, 2921, 1596, 1489, 1441, 1361, 1305, 1156, 1037, 928, 816, 765, $705 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{NaS}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 512.1655$, found: 512.1653.

1y (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1y (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 1z: Yield: 1024 mg , 94%; a light yellow solid; Mp: $124-126^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.32(\mathrm{~m}, 9 \mathrm{H}), 7.37(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.2,38.1,116.5,126.7,127.1,127.2,127.7,128.0,128.2,129.1$, 131.3, 134.9, 139.6, 141.3, 142.9, 143.1, 147.4; IR (neat): v 3062, 3025, 2919, 1596, 1493, 1344, 1270, 1108, 1029, 900, 774, $708 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$: 400.1342, found: 400.1340 .

Compound 1aa: Yield: $904 \mathrm{mg}, 77 \%$; a light yellow solid; $\mathrm{Mp}: 119-121^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 0.83(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, $3.95-4.05(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.34(\mathrm{~m}, 10 \mathrm{H}), 7.56(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 20.7,21.4,22.6,53.4,118.2,127.2$, $127.4,127.5,128.0,128.1,129.3,131.8,132.6,135.3,138.0,141.2,143.1,143.5,145.9 ;$ IR (neat): v 3023, 2986, 2970, 2934, 1595, 1485, 1386, 1333, 1269, 1180, 1125, 1025, 922, 866, 767, 706 $\mathrm{cm}^{-1} ;$ HRMS (ESI-TOF) Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 414.1498$, found: 414.1501.

Compound 1ab: Yield: 1150 mg , 91%; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 1.28-1.38(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.32(\mathrm{~m}, 10 \mathrm{H}), 7.52(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta_{\mathrm{C}} 21.2,27.6,48.4,58.0,69.5,117.2,126.8$, 127.3, 127.7, 127.85, 127.88, 127.91, 129.0, 129.1, 131.9, 136.2, 137.7, 140.9, 142.4, 143.0, 146.3; IR (neat): v 3056, 2924, 2871, 1596, 1486, 1444, 1385, 1186, 1110, 910, 781, $706 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 444.1604$, found: 444.1610.

1ab (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 1ac: Yield: $1157 \mathrm{mg}, 92 \%$; a light yellow solid; Mp : $84-86^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 0.70(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.83-0.92(\mathrm{~m}, 2 \mathrm{H}), 0.96-1.08(\mathrm{~m}, 4 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}), 3.05-3.12(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.35(\mathrm{~m}$, $10 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 13.8,21.5,22.0,27.3$, $28.8,51.2,117.5,127.0,127.5,127.87,127.96,128.03,128.08,129.3,132.1,137.9,141.2,142.7$, 143.1, 146.5; IR (neat): v 3320, 3061, 2921, 1597, 1450, 1330, 1264, 1164, 1090, 1027, 873, 784, $703 \mathrm{~cm}^{-1} ;$ HRMS (ESI-TOF) Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 442.1811$, found: 442.1811.

(

1ac (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 1ad: Yield: $1199 \mathrm{mg}, 89 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 1.34-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.54(\mathrm{~s}, 3 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.35(\mathrm{~m}, 10 \mathrm{H}), 7.51(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta_{\mathrm{C}} 21.4,22.8,30.7,50.3,51.3,117.4,126.8$, $127.4,128.0,128.1,129.2,129.3,132.1,136.3,137.6,140.9,142.5,143.3,146.2,172.8$; IR (neat): $v 2950,1733,1596,1486,1438,1344,1304,1154,1088,911,815,732 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 472.1553$, found: 472.1553 .

Compound 1ae: Yield: $999 \mathrm{mg}, 71 \%$; a yellow oil; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1 .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}, TMS $) \delta 1.45-1.65(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.20-3.30(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{~s}$, $1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta_{\mathrm{C}} 21.5,30.5,30.6,50.1,117.7,126.8,127.6$, $128.19,128.25,128.27,128.9,129.4,132.3,135.8,138.0,141.1,142.6,143.5,146.5$; IR (neat): v 3056, 2969, 1596, 1485, 1444, 1379, 1290, 1153, 1088, 1055, 906, 814, 765, $705 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{NaSBr}[\mathrm{M}+\mathrm{Na}]^{+}: 492.0603$, found: 492.0611 .

レ

$\stackrel{\infty}{\stackrel{\infty}{\circ}}$

Compound 1af: Yield: $1177 \mathrm{mg}, 84 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 1.30-1.45(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.36(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.30(\mathrm{~m}, 13 \mathrm{H})$, $7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.3,28.9,32.6,50.5,117.3$, 125.6, 126.7, 127.4, 127.8, 127.90, 127.98, 127.99, 129.11, 129.15, 131.9, 136.4, 137.7, 140.7, 140.9, 142.4, 143.0, 146.3; IR (neat): v 3058, 3025, 2923, 2859, 1596, 1493, 1444, 1378, 1153, 1089, 1028, 909, 814, 767, $732 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$: 490.1811, found: 490.1817.

Compound 1ag: Yield: $1124 \mathrm{mg}, 90 \%$; a yellow oil; Eluent: PE/EA $=5 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, TMS $) \delta 1.15-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.80-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.00-3.40(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H})$, $5.75(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2 H) ${ }^{13}{ }^{1} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 14.1,21.2,23.6,50.0,117.5,118.6,126.4,127.5$, $127.9,128.08,128.11,128.16,128.4,129.2,132.1,135.1,137.7,140.7,142.4,143.5,146.1$; IR (neat): v 3055, 2924, 1596, 1486, 1444, 1346, 1156, 1089, 912, 815, $732 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 439.1451$, found: 439.1443.

TBSO

Compound 1ah: Yield: $1248 \mathrm{mg}, 82 \%$; a light yellow solid; $\mathrm{Mp}: 107-109{ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta-0.15(\mathrm{~s}, 6 \mathrm{H}), 0.74(\mathrm{~s}, 9 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.00-3.40(\mathrm{~m}, 4 \mathrm{H})$, $5.41(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.30(\mathrm{~m}, 6 \mathrm{H})$, $7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}}-5.6$, $17.9,21.3,25.6,52.6,60.1,117.7,126.9,127.5,127.92,127.97,128.0,128.1,129.19,129.21$, $131.9,136.4,138.1,141.2,142.5,143.2,146.5 ;$ IR (neat): $v 2954,2925,2882,2852,1596,1492$, $1443,1303,1273,1213,1166,1071,1036,950,832,774,705 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{NaSiS}[\mathrm{M}+\mathrm{Na}]^{+}: 530.2156$, found: 530.2151.

Compound 1ai: Yield: $1038 \mathrm{mg}, 76 \%$; a light yellow solid; Mp: $114-116^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.50-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.48(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{~s}$, $1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.4,27.7,52.8,117.6,126.6,127.6,128.0$, 128.2, 128.3, 128.4, 128.9, 129.3, 132.1, 135.1, 137.9, 141.1, 142.6, 143.7, 146.6; IR (neat): v 3063, 2971, 2917, 1595, 1492, 1444, 1355, 1304, 1233, 1156, 1083, 972, 876, 773, $707 \mathrm{~cm}^{-1}$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{SBr}[\mathrm{M}]^{+}: 455.0549$, found: 455.0553.

Compound 1aj: Yield: 1028 mg , 77\%; a light yellow solid; Mp: 104-106 ${ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 1.30-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.00-3.50(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{~s}$, $1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.35-7.49(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{c}} 21.4,32.3(\mathrm{q}, J=27.6 \mathrm{~Hz}), 45.0(\mathrm{q}, J=4.5 \mathrm{~Hz}), 117.7,125.4(\mathrm{q}, J=$ 274.7 Hz), 126.7, 127.6, 128.2, 128.33, 128.38, 128.45, 128.6, 129.4, 132.2, 134.5, 138.3, 141.5, 143.0, 143.9, 147.0; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-65.9; IR (neat): v 3094, 3001, 2941, 1597, 1487, 1445, 1392, 1306, 1259, 1238, 1184, 1115, 1074, 981, 787, $711 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~F}_{3} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 468.1216$, found: 468.1221.

0	-20	-40	-60	-80	-100	-120	PPM

Compound 1ak: Yield: 1150 mg , 91%; a light yellow solid; Mp: 96-98 ${ }^{\circ} \mathrm{C}$; Eluent: PE/EA $=5 / 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.95(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~s}$, $1 \mathrm{H}), 7.15-7.40(\mathrm{~m}, 10 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.5,51.5,51.8,117.5,126.9,127.8,127.9,128.3,128.6,129.1,131.3$, 131.7, 137.5, 137.6, 140.8, 142.1, 143.3, 146.3, 169.4; IR (neat): v 2983, 2953, 2928, 1750, 1594, 1445, 1346, 1238, 1163, 1089, 1023, 909, 786, $701 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 444.1240$, found: 444.1239.

Compound 1al: Yield: $1086 \mathrm{mg}, 84 \%$; a light yellow solid; $\mathrm{Mp}: 90-92{ }^{\circ}{ }^{\circ} \mathrm{C}$; Eluent: PE/EA = 10/1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.50(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.45(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~s}$, $1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 8 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta_{\mathrm{C}} 21.4,50.1(\mathrm{q}, J=33.8 \mathrm{~Hz}$), 117.6, 123.9 (q, $J=279.5 \mathrm{~Hz}$), 126.7, 127.93, 127.98, 128.2, 128.4, 128.7, 129.4, 130.80, 130.85, 132.1, 136.4, 137.4, 140.2, 141.0, 143.9, 145.0; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-68.5; IR (neat): v 3094, 3001, 2941, 1620, 1597, 1445, 1353, 1259, 1184, 1115, 1087, 1040, 981, 827, 768, $711 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~F}_{3} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 454.1059$, found: 454.1065.

Compound 1am: Yield: $1428 \mathrm{mg}, 70 \%$; a light yellow solid; $\mathrm{Mp}: 147-149{ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=$ $10 / 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 0.05-0.20(\mathrm{~m}, 1.33 \mathrm{H}), 0.25-0.45(\mathrm{~m}, 5.33 \mathrm{H}), 0.52-0.76$ $(\mathrm{m}, 11.97 \mathrm{H}), 0.85-1.00(\mathrm{~m}, 0.33 \mathrm{H}), 1.14-1.19(\mathrm{~m}, 1.33 \mathrm{H}), 1.32-1.55(\mathrm{~m}, 3.33 \mathrm{H}), 1.56-1.70(\mathrm{~m}$, 1.00 H), $1.84(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1.00 \mathrm{H}), 2.35-2.46(\mathrm{~m}, 3.99 \mathrm{H}), 2.90-3.06(\mathrm{~m}, 1.33 \mathrm{H}), 3.32-3.45(\mathrm{~m}$, $1.33 \mathrm{H}), 5.40(\mathrm{~s}, 0.33 \mathrm{H}), 5.69(\mathrm{~s}, 1.00 \mathrm{H}), 5.74(\mathrm{~s}, 0.33 \mathrm{H}), 6.02(\mathrm{~s}, 1.00 \mathrm{H}), 7.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1.00 \mathrm{H}), 7.20-7.40(\mathrm{~m}, 13.33 \mathrm{H}), 7.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2.00 \mathrm{H}), 7.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1.00 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta_{\mathrm{C}} 14.6,15.4,19.9,21.1,21.3,21.4,22.3,22.4,23.77$, $23.84,25.9,26.2,31.1,31.6,34.61,34.67,36.7,36.8,39.89,39.98,44.6,45.4,54.9,57.1,117.8$, 118.1, 126.7, 126.8, 127.44, 127.49, 127.7, 127.88, 127.95, 128.1, 128.2, 128.5, 128.6, 129.07, 129.13, 129.17, 130.3, 132.5, 135.9, 139.5, 140.4, 140.6, 142.0, 142.5, 143.0, 143.3, 144.9; IR (neat): v 2952, 2918, 2867, 1596, 1488, 1444, 1384, 1333, 1186, 1163, 1114, 983, 853, $715 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 524.2594$, found: 524.2593.

Compound 1an: Yield: $2834 \mathrm{mg}, 51 \%$; a yellow oil; Eluent: PE/EA $=5 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 1.02(\mathrm{~s}, 3.00 \mathrm{H}), 1.15-1.30(\mathrm{~m}, 11.20 \mathrm{H}), 1.36(\mathrm{~s}, 3.00 \mathrm{H}), 2.40(\mathrm{~s}, 4.20 \mathrm{H}), 3.22-3.34$ $(\mathrm{m}, 1.40 \mathrm{H}), 3.38-3.50(\mathrm{~m}, 2.00 \mathrm{H}), 3.73-4.00(\mathrm{~m}, 2.40 \mathrm{H}), 4.10-4.20(\mathrm{~m}, 1.40 \mathrm{H}), 4.34(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1.00 \mathrm{H}), 4.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.40 \mathrm{H}), 5.14(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1.00 \mathrm{H}), 5.29-5.34(\mathrm{~m}, 0.80 \mathrm{H}), 5.48(\mathrm{~s}$, $1.00 \mathrm{H}), 5.65(\mathrm{~s}, 0.40 \mathrm{H}), 5.81(\mathrm{~s}, 1.00 \mathrm{H}), 7.15-7.35(\mathrm{~m}, 15.40 \mathrm{H}), 7.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.80 \mathrm{H}), 7.67$ (d, $J=8.0 \mathrm{~Hz}, 2.00 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.4,24.3,24.7,24.9,25.4,25.6$, $25.8,25.9,49.5,50.6,64.6,66.7,69.98,70.03,70.5,71.0,71.4,95.9,96.2,108.1,108.4,108.96$, 109.04, 117.0, 117.5, 126.8, 127.2, 127.4, 127.61, 127.64, 127.70, 127.73, 128.00, 128.10, 128.15, $128.18,128.3,128.8,129.3,130.8,131.4,131.7,136.6,137.4,137.8,140.6,141.0,141.3,141.4$, 142.7, 143.1, 145.4, 145.7; IR (neat): v 3055, 2985, 2933, 1597, 1487, 1444, 1381, 1305, 1254, 1162, 1089, 1002, 961, 861, 782, $704 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{NO}_{7} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$: 614.2183, found: 614.2181.

 $3 \pi|\pi|$

1an (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 1ao: Yield: $2219 \mathrm{mg}, 81 \%$; a light yellow solid; $\mathrm{Mp}: 116-118{ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 1.64(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2.70 \mathrm{H}), 1.70(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3.00 \mathrm{H}), 2.33$ $(\mathrm{s}, 2.70 \mathrm{H}), 2.36(\mathrm{~s}, 3.00 \mathrm{H}), 3.20-3.80(\mathrm{~m}, 1.90 \mathrm{H}), 4.30-4.65(\mathrm{~m}, 1.90 \mathrm{H}), 5.54(\mathrm{q}, J=7.2 \mathrm{~Hz}, 0.90 \mathrm{H})$, $6.14(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1.00 \mathrm{H}), 6.62-6.70(\mathrm{~m}, 2.90 \mathrm{H}), 6.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2.00 \mathrm{H}), 6.96-7.03(\mathrm{~m}, 3.00 \mathrm{H})$, 7.04-7.13 (m, 8.60H), 7.16-7.23 (m, 7.90H), 7.24-7.32 (m, 6.20H), 7.40-7.57 (m, 3.80H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta_{\mathrm{C}} 15.3,15.9,21.25,21.30,53.7,53.9,126.6,126.7,127.0$, $127.3,127.5,127.67,127.71,127.81,127.83,128.1,128.99,129.05,129.4,129.52,129.59,131.7$, 132.0, 132.6, 135.3, 135.7, 136.3, 137.6, 137.7, 139.2, 139.6, 140.0, 142.2, 142.8, 142.9, 145.1; IR (neat): $v 3059,3025,2977,2910,1597,1493,1444,1306,1181,1155,1028,917,816,727 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 476.1655$, found: 476.1655 .

1ao(${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 1ap: Yield: $1848 \mathrm{mg}, 79 \%$; a light yellow solid; $\mathrm{Mp}: 179-181{ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.36(\mathrm{~s}, 4.20 \mathrm{H}), 3.30-3.70(\mathrm{~m}, 4.20 \mathrm{H}), 4.25-4.60(\mathrm{~m}, 1.40 \mathrm{H})$, $5.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 0.40 \mathrm{H}), 6.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1.00 \mathrm{H}), 6.50-6.82(\mathrm{~m}, 4.20 \mathrm{H}), 6.94-7.30(\mathrm{~m}$, $25.20 \mathrm{H}), 7.38-7.58(\mathrm{~m}, 4.20 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.4,35.6,36.3,53.9$, $54.2,125.76,125.85,126.92,127.0,127.1,127.2,127.4,127.6,127.8,127.90,127.97,128.00$, $128.04,128.16,128.24,128.31,128.33,128.35,128.42,128.44,129.1,129.5,129.7,129.8,131.38$, $131.45,132.0,132.2,132.3,135.4,135.6,136.5,137.4,138.0,139.6,139.7,140.0,140.7,141.0$, $142.1,143.0,145.0$; IR (neat): v 3060, 3023, 1595, 1492, 1447, 1359, 1302, 1218, 1090, 1029, 994, 919, 878, 776, $703 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 552.1968$, found: 552.1974.

sintititi $71 /$

1ap (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 1aq: Yield: $2362 \mathrm{mg}, 92 \%$; a light yellow solid; $\mathrm{Mp}: 100-102{ }^{\circ} \mathrm{C}$; Eluent: PE/EA = 5/1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 4.48(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-6.03(\mathrm{~m}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J$ $=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta_{\mathrm{C}} 13.6,21.3,22.0,35.0,55.6,125.3,125.8,126.7,127.47,127.53,127.9,128.2,129.0$, 129.3, 129.6, 132.3, 135.4, 135.6, 136.4, 138.3, 143.2; IR (neat): v 3063, 3033, 2958, 2923, 2870, 1596, 1483, 1453, 1338, 1181, 1155, 1117, 1088, 1027, 964, 861, 765, $714 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 428.1655$, found: 428.1652 .

Compound 1ar: Yield: $2043 \mathrm{mg}, 81 \%$; a light yellow solid; Mp: 120-122 ${ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=5 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.31(\mathrm{~s}, 3 \mathrm{H}), 4.54(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.74-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.32(\mathrm{~m}, 14 \mathrm{H}), 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.4,55.9,124.1,125.8,126.6$, $127.55,127.57,127.70,127.71,128.1,128.3,128.5,129.1,129.5,129.9,130.4,135.4,136.5,136.6$, 137.0, 137.7, 143.5; IR (neat): v 3057, 3026, 2918, 1596, 1494, 1452, 1400, 1369, 1306, 1257, 1186, 1120, 1026, 980, 860, 776, $714 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$: 462.1498, found: 462.1494 .

(

$\boldsymbol{1 a r}\left({ }^{1} \mathrm{H}\right.$ NMR, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 1as: Yield: $2482 \mathrm{mg}, 90 \%$; a yellow oil; Eluent: $\mathrm{PE} / \mathrm{EA}=5 / 1 .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 0.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, $3.52(\mathrm{~s}, 3 \mathrm{H}), 4.45-4.85(\mathrm{~m}, 2 \mathrm{H}), 5.81-5.92(\mathrm{~m}, 1 \mathrm{H}), 6.10-6.25(\mathrm{~m}, 2 \mathrm{H}), 6.72\left(\mathrm{dd}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=\right.$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 13.7,21.4,22.3,35.0,55.0,55.6,114.6,114.9$, $124.8,126.6,127.6,127.7,128.0,129.2,129.4,130.4,131.0,135.5,136.4,136.6,143.3,158.1 ;$ IR (neat): v 3030, 2956, 2926, 2869, 2836, 1605, 1568, 1494, 1455, 1345, 1303, 1248, 1159, 1091, 1035, 966, 812, 754, $700 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$: 458.1760, found: 458.1758 .

Compound 1at: Yield: $1826 \mathrm{mg}, 77 \%$; a light red solid; Mp: 73-75 ${ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.34(\mathrm{~s}, 3 \mathrm{H}), 4.37(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.06(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.86(\mathrm{~m}, 1 \mathrm{H})$, $7.02(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta_{\mathrm{C}} 21.2,55.6,115.0,125.6,127.45$, $127.49,127.7,127.9,128.1,128.7,128.9,129.3,132.3,135.0,135.7,136.2,138.2,143.3$; IR (neat): $v 3029,1628,1597,1484,1411,1373,1289,1186,1107,1052,995,915,813,770,709 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 386.1185$, found: 386.1188 .

Compound 1au: Yield: $1992 \mathrm{mg}, 90 \%$; a light yellow solid; $\mathrm{Mp}: 80-82^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 1.87(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 4.30-4.90(\mathrm{~m}, 3 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H})$, $6.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-7.14(\mathrm{~m}, 6 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.63$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.2,23.9,55.4,116.2,127.0$, $127.5,127.78,127.82,128.4,129.2,129.4,129.6,134.9,136.1,136.5,142.5,143.2,144.6$; IR (neat): v 2978, 1642, 1597, 1489, 1438, 1366, 1343, 1200, 1182, 1157, 1089, 952, 858, 782, 703 cm^{-1}; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 400.1342$, found: 400.1340 .

Compound 1av: Yield: $1076 \mathrm{mg}, 80 \%$; a light yellow solid; Mp: $158-160^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=5 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 1.80(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 4.38(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}$, $1 \mathrm{H}), 4.71(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.10-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.4,24.1,55.7,101.6,108.6,109.0,116.4,127.7,128.1,129.2,129.5$, 129.7, 135.0, 136.8, 139.2, 142.4, 143.5, 146.2, 146.9; IR (neat): v 3029, 2970, 2921, 1595, 1507, 1489, 1452, 1377, 1329, 1279, 1242, 1205, 1152, 1082, 1028, 966, 873, 819, 719, $697 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 444.1240$, found: 444.1248.

Compound 1aw: Yield: $1957 \mathrm{mg}, 87 \%$; a light yellow solid; $\mathrm{Mp}: 98-100^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 4.00-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 54.5$, $117.1,126.8,127.5,127.7,127.80,127.90,127.93,128.1,128.5,129.2,130.9,131.9,132.4,135.2$, $137.0,140.2,140.7,142.2,145.8$; IR (neat): v 3060, 2987, 2926, 1614, 1487, 1446, 1355, 1321, $1273,1211,1176,1103,1088,1047,994,880,807,784,712 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 448.1342$, found: 448.1350 .

Compound 1ax: Yield: $1879 \mathrm{mg}, 90 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 4.00-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-7.00(\mathrm{~m}$, $2 \mathrm{H}), 7.03-7.32(\mathrm{~m}, 13 \mathrm{H}), 7.52(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 54.3(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 116.8,117.0(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 124.0(\mathrm{~d}, J=3.8 \mathrm{~Hz})$, 127.68, 127.72 (d, $J=20.6 \mathrm{~Hz}$), 128.1, 128.20, 128.24, 129.3, 131.1, 131.8, 133.4, 134.7 (d, $J=8.4$ $\mathrm{Hz}), 135.85,135.90,140.4,142.1,145.8,159.1(\mathrm{~d}, J=254.8 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -106.0; IR (neat): v 3059, 3028, 2917, 1617, 1597, 1474, 1447, 1345, 1264, 1211, 1153, 1123, 1073, 1027, 952, 827, $733 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{FNaS}[\mathrm{M}+\mathrm{Na}]^{+}: 466.1248$, found: 466.1256.

$\mathbf{1 a x}\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 1ay: Yield: $1702 \mathrm{mg}, 80 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, TMS $) ~ \delta 3.80-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.30(\mathrm{~m}, 14 \mathrm{H}), 7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right)$ $\delta_{\mathrm{C}} 54.8,115.1(\mathrm{~d}, J=24.3 \mathrm{~Hz}), 117.1,119.4(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 123.6(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 126.8,127.70$, 127.72, 127.9, 128.0, 128.17, 128.21, 129.3, 130.2 (d, $J=7.6 \mathrm{~Hz}), 130.9,132.0,135.0,136.9,140.5$, $142.2,142.4(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 146.0,161.9(\mathrm{~d}, J=249.3 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-109.9$; IR (neat): v 3063, 3029, 2918, 1589, 1494, 1433, 1348, 1269, 1222, 1150, 1083, 910, 862, 766, 697 $\mathrm{cm}^{-1} ;$ HRMS (ESI-TOF) Calcd for $\mathrm{C}_{2} 7 \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{FNaS}[\mathrm{M}+\mathrm{Na}]^{+}: 466.1248$, found: 466.1257.

$L L L|C| L \mid$

1ay (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1ay (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1ay (${ }^{19} \mathrm{~F}$ NMR, $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 1az: Yield: $1935 \mathrm{mg}, 92 \%$; a yellow oil; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1 .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 3.90-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-7.30(\mathrm{~m}, 11 \mathrm{H}), 7.50-7.57(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 54.8,115.6(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 117.0,126.8,127.65,127.66,127.9,128.0$, $128.13,128.18,129.3,130.6(\mathrm{~d}, ~ J=9.3 \mathrm{~Hz}), 130.8,132.1,136.4,(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 137.1,140.6$, 142.1, 146.6, $164.7(\mathrm{~d}, J=253.6 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-105.4$; IR (neat): v 3062, 3029, 2930, 1590, 1491, 1404, 1344, 1290, 1233, 1151, 1089, 1027, 910, 835, 766, $696 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{FNaS}[\mathrm{M}+\mathrm{Na}]^{+}: 466.1248$, found: 466.1238 .

Compound 1aaa: Yield: $1855 \mathrm{mg}, 86 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 3.90-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.30(\mathrm{~m}, 13 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS $)$ $\delta_{\mathrm{C}} 54.9,117.1,126.8,127.6,127.7,127.9,128.0,128.1,128.2,128.7,129.30,129.33,130.8,132.1$, 135.0, 137.0, 138.6, 138.9, 140.5, 142.1, 146.0; IR (neat): v 3060, 3027, 2987, 1583, 1493, 1445, 1346, 1276, 1211, 1158, 1085, 1012, 909, 824, 757, $697 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{NaSCl}[\mathrm{M}+\mathrm{Na}]^{+}: 482.0952$, found: 482.0961.

1aaa (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1aaa (${ }^{13} \mathrm{C} \mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 1aab: Yield: $1867 \mathrm{mg}, 83 \%$; a yellow oil; Eluent: PE/EA $=5 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 6.80-6.90(\mathrm{~m}, 4 \mathrm{H}), 6.97$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.28(\mathrm{~m}, 11 \mathrm{H}), 7.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta_{\mathrm{C}} 54.6,55.4,113.6,117.0,126.8,127.43,127.45,127.7,127.8,127.9,128.0,129.2,130.0$, 130.6, 131.7, 131.9, 135.3, 137.3, 140.7, 142.1, 145.8, 162.6 ; IR (neat): v 3059, 3029, 2942, 2839, 1594, 1494, 1441, 1341, 1257, 1150, 1110, 1025, 909, 831, 766, $697 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 478.1447$, found: 478.1460 .

Compound 1aac: Yield: 2082 mg , 85%; a light yellow solid; Mp : $109-111{ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=$ $10 / 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, ~ \mathrm{TMS}$) $\delta 3.90-4.70(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.35(\mathrm{~m}, 11 \mathrm{H}), 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 55.0,117.0,123.2(\mathrm{q}, J=271.5 \mathrm{~Hz}), 125.5$, (q, $J=3.6 \mathrm{~Hz}$, 126.7, 127.74, 127.75, 127.97, 127.99, 128.20, 128.28, 128.31, 129.3, 130.9, 132.1, $133.6(\mathrm{q}, J=32.7 \mathrm{~Hz}), 134.8,136.9,140.5,142.1,144.0,146.1 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -62.8 ; IR (neat): v 3103, 2982, 1608, 1487, 1443, 1374, 1352, 1321, 1201, 1121, 1108, 1061, 990, 880, 770, $697 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~F}_{3} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 516.1216$, found: 516.1216.

Compound 1aad: Yield: $1567 \mathrm{mg}, 78 \%$; a yellow oil; Eluent: PE/EA $=5 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, TMS $) ~ \delta 3.90-4.80(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 6.85-6.95(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.10-7.33(\mathrm{~m}, 9 \mathrm{H}), 7.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta_{\mathrm{C}} 55.3,117.1,123.5,126.6,127.76,127.85,128.0,128.2,128.4,128.8,129.4$, 130.8, 132.2, 134.6, 136.7, 140.2, 141.9, 145.97, 146.01, 149.3; IR (neat): v 3102, 3063, 3029, 2986, 1605, 1526, 1493, 1346, 1309, 1159, 1088, 1027, 910, 852, 767, $738 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 493.1193$, found: 493.1191 .

NC

Compound 1aae: Yield: $1315 \mathrm{mg}, 52 \%$; a yellow oil; Eluent: $\mathrm{PE} / \mathrm{EA}=5 / 1 .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 3.80-4.70(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 6.83-6.92(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.54-7.58(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 55.2,115.6,117.1,117.3,126.6,127.78,127.84,128.00,128.02,128.2,128.4$, $129.3,130.8,132.1,134.6,136.8,140.3,142.0,144.5,146.0 ;$ IR (neat): v 3028, 2987, 2231, 1595, $1486,1445,1347,1181,1157,1087,1027,910,829,766,698 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 473.1294$, found: 473.1303.

Compound 1aaf: Yield: $1809 \mathrm{mg}, 74 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 4.00-4.80(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.48-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.75-7.87(\mathrm{~m}, 3 \mathrm{H}), 8.20(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 54.8,117.1,123.2,126.9,127.2,127.57,127.60$, 127.64, 127.8, 127.9, 128.0, 128.1, 128.6, 128.7, 129.1, 129.2, 129.3, 131.0, 131.8, 132.0, 134.5, 135.3, 137.2, 137.3, 140.7, 142.3, 145.8; IR (neat): v 3053, 3026, 2986, 2920, 1596, 1509, 1441, 1361, 1305, 1276, 1212, 1156, 1115, 1085, 1037, 998, 891, 784, $705 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 498.1498$, found: 498.1504.

L
1aaf $\left(1 \mathrm{H} \mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

-.-

Compound 1aag: Yield: $1518 \mathrm{mg}, 60 \%$; a yellow oil; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1 .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 4.00-4.80(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-6.97(\mathrm{~m}$, $2 \mathrm{H}), 7.02-7.26(\mathrm{~m}, 11 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta_{\mathrm{C}} 54.6,117.2,126.9,127.0,127.5,127.65,127.75,127.95,128.02,128.04,129.2,130.3$, $131.87,131.91,132.7,134.9,136.9,140.6,141.0,142.3,145.6 ;$ IR (neat): v 3059, 3028, 2917, 1597, 1493, 1441, 1403, 1348, 1224, 1150, 1091, 1015, 909, 864, 766, $730 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{NaS}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 454.0906, found: 454.0911 .

1aag (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 1aah: Yield: $1015 \mathrm{mg}, 90 \%$; a light yellow solid; $\mathrm{Mp}: 80-82^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.31(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H})$, $7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.35(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ (101 MHz, $\mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta_{\mathrm{C}} 40.6,54.3,117.0,126.7,127.86,127.93,128.08,128.18,128.21,128.4$, 129.5, 131.7, 131.9, 135.4, 137.3, 140.8, 141.3, 147.7; IR (neat): v 3083, 3064, 3026, 3006, 2940, 1595, 1490, 1445, 1368, 1269, 1201, 1145, 1086, 1027, 964, 866, 785, 712, $699 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}: 386.1185$, found: 386.1194.

(3) Cls,

1aah (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 1aai: Yield: $1244 \mathrm{mg}, 67 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 3.90-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.48(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.40(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 55.5,118.4,119.8(\mathrm{q}, J=321.6 \mathrm{~Hz}), 127.1,128.2,128.25,128.39,128.48,128.49$, 129.2, 129.6, 131.8, 132.3, 133.8, 134.5, 140.2, 142.1, 145.9; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-74.2$; IR (neat): v 3063, 3031, 2926, 2859, 1600, 1494, 1389, 1223, 1186, 1139, 1040, 1027, 911, 765, $696 \mathrm{~cm}^{-1}$; HRMS (FI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~F}_{3} \mathrm{~S}[\mathrm{M}]^{+}: 417.1005$, found: 417.1007.

$$
\mathrm{CF}_{3}-\mathrm{S}^{\prime \prime}
$$

1aai (${ }^{19} \mathrm{~F}$ NMR, $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 1aaj: Yield: $1076 \mathrm{mg}, 81 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 1.64(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.65$ $(\mathrm{s}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.36(\mathrm{~m}, 6 \mathrm{H})$, $7.43(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 22.2,50.4,117.1,126.6,126.9$, 127.90, 127.95, 127.98, 128.2, 128.4, 128.6, 130.1, 131.4, 137.4, 139.9, 140.0, 140.5, 148.1, 169.9; IR (neat): v 3060, 3027, 2931, 1655, 1485, 1448, 1384, 1358, 1319, 1253, 1069, 1027, 907, 766, $699 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+}: 350.1515$, found: 350.1511.

岕

1aaj $\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 1aak: Yield: $1116 \mathrm{mg}, 83 \%$; a yellow oil; Eluent: PE/EA $=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 3.58(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1.00 \mathrm{H}), 4.26(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 0.15 \mathrm{H}), 4.85(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $0.15 \mathrm{H}), 5.21(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1.00 \mathrm{H}), 5.35-5.40(\mathrm{~m}, 1.15 \mathrm{H}), 5.72-5.80(\mathrm{~m}, 1.15 \mathrm{H}), 6.66-6.74(\mathrm{~m}$, $1.15 \mathrm{H}), 6.96-7.10(\mathrm{~m}, 2.30 \mathrm{H}), 7.11-7.46(\mathrm{~m}, 12.65 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}}$ $52.5,53.0,116.2(\mathrm{q}, J=287.0 \mathrm{~Hz}), 116.9,118.3,126.6,126.9,127.9,128.1,128.16,128.29,128.32$, $128.35,128.43,128.46,128.53,129.07,129.09,129.95,129.96,130.8,131.72,131.74,135.4$, 136.5, 139.6, 140.4, 146.8, 147.2, $157.1(\mathrm{q}, J=35.3 \mathrm{~Hz}) ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-68.1, -67.1; IR (neat): v 3062, 3030, 2950, 1687, 1487, 1449, 1418, 1357, 1201, 1174, 1146, 1078, 908, 766, 732, $696 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NOF}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 404.1233$, found: 404.1229.

Compound [D_{2}]-1a: Yield: $2283 \mathrm{mg}, 75 \%$, D containing 93\%; a yellow oil; Eluent: PE/EA = 30/1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.32(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.60(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.94$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.26(\mathrm{~m}, 10 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta_{\mathrm{C}} 21.2,54.5,126.8,127.38,127.42,127.6,127.7,127.81,127.84,128.0$, 129.1, 129.2, 130.6, 131.8, 135.2, 137.08, 137.13, 140.6, 142.1, 143.1, 145.5; IR (neat): v 3059, 3028, 2922, 1597, 1492, 1402, 1342, 1212, 1183, 1106, 1042, 912, 855, 814, 766, $725 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{NaSD}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 464.1624$, found: 464.1626.

Compound 1aal: Yield: $818 \mathrm{mg}, 88 \%$; a yellow solid; Mp: $139-141{ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H})$, $7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.67(\mathrm{~m}, 2 \mathrm{H})$, $4.15(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.00(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta_{\mathrm{C}} 142.9,141.9,140.6,138.0,137.9,135.6,132.5,131.5,129.4,129.1,128.2,128.0,127.8$, $127.7,127.4,127.1,127.0,126.954 .5,21.5,5.2,2.1$; IR (neat): v 2969, 1597, 1493, 1329, 1155, 1091, 856, 814, 720, 696, $653 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$: 488.1655, found: 488.1651 .

9. Characterization Data of Products.

Compound 2a: ${ }^{11}$ Yield: $25.5 \mathrm{mg}, 90 \%$; a yellow oil; Eluent: $\mathrm{PE} / \mathrm{EA}=20 / 1 .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 5.30(\mathrm{~s}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 50.1$, $110.0,117.3,120.0,120.1,122.1,125.8,125.9,126.4,126.9,127.3,127.7,128.72,128.78,135.5$, 137.1, 137.2.

Compound 2c: Yield: $25.7 \mathrm{mg}, 81 \%$; a yellow oil; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 5.27(\mathrm{~s}, 2 \mathrm{H}), 7.08-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.89-7.92(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 50.3,111.0,117.1$, 119.5, 122.4, 126.0, 126.1, 126.8, 127.1, 127.3, 127.4, 127.9, 128.8, 128.9, 134.8, 135.4, 136.7; IR (neat): v 3360, 2959, 2919, 2849, 1632, 1602, 1543, 1494, 1468, 1389, 1352, 1291, 1231, 1174, 1066, 1027, 970, 819, 792, 759, $694 \mathrm{~cm}^{-1}$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClN}[\mathrm{M}]^{+}: 317.0966$, found: 317.0972.

Compound 2d: Yield: $29.2 \mathrm{mg}, 81 \%$; a yellow oil; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, TMS) $\delta 5.20(\mathrm{~s}, 2 \mathrm{H}), 7.04-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 50.2,111.5,113.6,116.9$, $122.5,124.9,126.1,126.7,126.9,127.3,127.8,128.0,128.8,134.7,135.6,136.6$; IR (neat): v 3057, 3027, 2918, 2850, 1602, 1543, 1494, 1452, 1372, 1309, 1175, 1071, 1027, 969, 867, 790, 731, 694 $\mathrm{cm}^{-1} ;$ HRMS (EI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{BrN}[\mathrm{M}]^{+}: 361.0461$, found: 361.0474.

Compound 2e: Yield: $26.5 \mathrm{mg}, 88 \%$; a yellow oil; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, TMS $) \delta 5.27(\mathrm{~s}, 2 \mathrm{H}), 6.98\left(\mathrm{dd}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.09-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.20$ $(\mathrm{m}, 1 \mathrm{H}), 7.22-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.41(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.62(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 50.4,105.0(\mathrm{~d}, J=24.1 \mathrm{~Hz}), 110.5(\mathrm{~d}, J=26.2 \mathrm{~Hz}), 110.7(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 117.2(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}), 126.0,126.6(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 126.8,127.1,127.4,127.8,128.8(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 133.6$, 135.0, 136.8, 158.4 ($\mathrm{d}, J=233.7 \mathrm{~Hz}$); ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-124.1$; IR (neat): v 3061, 3028, 2918, 1621, 1601, 1544, 1480, 1441, 1354, 1253, 1176, 1104, 1072, 1001, 965, 871, 778, 735, $694 \mathrm{~cm}^{-1} ;$ HRMS (EI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{FN}[\mathrm{M}]^{+}: 301.1261$, found: 301.1271.

Compound 2f: Yield: 22.3 mg , 75\%; a light yellow solid; Mp: 89-91 ${ }^{\circ} \mathrm{C}$; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.46(\mathrm{~s}, 3 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.38-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.78(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta_{\mathrm{C}} 21.6,50.1,109.7,116.7,119.6,123.7,125.7,126.0$, $126.6,126.8,127.3,127.6,128.68,128.73,129.4,135.4,135.7,137.3$; IR (neat): v 3026, 2918, $2849,1600,1541,1483,1435,1378,1352,1238,1197,1139,1072,1027,863,791,761,738,696$ cm^{-1}; HRMS (EI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}[\mathrm{M}]^{+}: 297.1512$, found: 297.1519.

$2 f\left({ }^{13} \mathrm{CNMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 2g: ${ }^{12}$ Yield: 26.8 mg , 79%; a light yellow solid; $\mathrm{Mp}: 72-74{ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=20 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 1.39(\mathrm{~s}, 9 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.34$ $(\mathrm{m}, 7 \mathrm{H}), 7.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 31.9,34.7,50.1,109.5,115.6,117.3,120.4,125.7,126.0,126.1,127.0,127.4$, 127.6, 128.7, 135.3, 135.8, 137.3, 143.0.

Compound 2h: Yield: $26.3 \mathrm{mg}, 79 \%$; a light yellow solid; $\mathrm{Mp}: 141-143{ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=20 / 1$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 5.38(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.50$ $(\mathrm{m}, 9 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 50.2,111.4,120.2,120.3,123.2,123.3,123.5$, $125.4,125.8,126.7,126.8,127.7,128.3,128.7,128.8,129.6,130.1,133.3,137.1,137.3 ;$ IR (neat): $v 3061,3025,2920,2850,1603,1593,1540,1495,1438,1359,1300,1200,1160,1070,971,830$, $716 \mathrm{~cm}^{-1}$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}[\mathrm{M}]^{+}: 333.1512$, found: 333.1524.

2h (${ }^{19}$ F NMR, $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2h (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 2i: Yield: $25.3 \mathrm{mg}, 85 \%$; a yellow oil; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}, TMS $) \delta 2.33(\mathrm{~s}, 3 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 7.05-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.40-7.50(\mathrm{~m}, 1 \mathrm{H})$, 7.51-7.60 (m, 1H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 20.8,50.0,109.8,116.5,119.6$, $120.3,121.8,125.6,126.6,126.7,126.9,127.6,127.8,128.7,130.3,130.8,134.3,136.3,136.6$, 137.4; IR (neat): v 3027, 2919, 1602, 1548, 1463, 1452, 1329, 1174, 937, 769, 724, $695 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 298.1590$, found: 298.1595 .

Compound 2j: Yield: 24.7 mg , 83\%; a light yellow solid; Mp: 86-88 ${ }^{\circ} \mathrm{C}$; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 7.02-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.24(\mathrm{~m}, 7 \mathrm{H})$, $7.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.94-7.99(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta_{\mathrm{C}} 21.5,49.9,109.9,117.3,120.0,120.1,122.0,124.4,125.9,126.4,126.6,126.8,127.6$, 128.0, 128.6, 128.7, 135.4, 137.0, 137.2, 138.2; IR (neat): v 3023, 2916, 1602, 1538, 1494, 1391, 1189, 1072, 959, 830, 779, 729, $694 \mathrm{~cm}^{-1}$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}[\mathrm{M}]^{+}: 297.1512$, found: 297.1524.

Compound 2k: Yield: $26.0 \mathrm{mg}, 82 \%$; a light yellow solid; $\mathrm{Mp}: 92-94{ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=20 / 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 5.19$ (s, 2H), 7.07 (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.12-7.19 (m, 3H), $7.20-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 50.0,110.1,116.0,119.7,120.3,122.3,125.9,126.1$, 126.8, 127.7, 128.4, 128.7, 128.8, 131.3, 134.0, 136.95, 137.02; IR (neat): v 3027, 2922, 2852, 1593, 1556, 1491, 1467, 1410, 1355, 1296, 1202, 1139, 1020, 969, 827, 763, $716 \mathrm{~cm}^{-1}$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClN}[\mathrm{M}]^{+}: 317.0966$, found: 317.0976.

Compound 21: Yield: 30.0 mg , 83\%; a light yellow solid; Mp: 103-105 ${ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=20 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 5.28(\mathrm{~s}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.33(\mathrm{~m}, 7 \mathrm{H})$, 7.47-7.54 (m, 4H), $7.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 50.1,110.1$, 116.1, 119.3, 119.7, 120.3, 122.3, 125.9, 126.1, 126.8, 127.7, 128.7, 128.8, 131.7, 134.4, 136.9, 137.1; IR (neat): v 2988, 2965, 2908, 2885, 1587, 1494, 1441, 1378, 1332, 1264, 1199, 1140, 1099, 1029, 950, 832, 785, 727, $698 \mathrm{~cm}^{-1}$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{BrN}[\mathrm{M}]^{+}: 361.0461$, found: 361.0472.

Compound 2m: Yield: 22.9 mg , 76%; a light yellow solid; Mp: 106-108 ${ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=20 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 5.20(\mathrm{~s}, 2 \mathrm{H}), 7.02-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.29(\mathrm{~m}, 7 \mathrm{H}), 7.50-7.58$ $(\mathrm{m}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 50.0,110.0,115.5(\mathrm{~d}$, $J=21.5 \mathrm{~Hz}), 116.3,119.7,120.2,122.2,125.7,126.3,126.8,127.7,128.7(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 128.8$, $131.5(\mathrm{~d}, ~ J=2.9 \mathrm{~Hz}), 137.0,137.1,161.3(\mathrm{~d}, J=242.8 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.9$; IR (neat): v 2924, 1543, 1503, 1468, 1436, 1356, 1333, 1226, 1187, 1156, 1097, 1070, 968, 835, 809, 728, $695 \mathrm{~cm}^{-1}$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{FN}[\mathrm{M}]^{+}: 301.1261$, found: 301.1270.

Compound 2n: Yield: $27.4 \mathrm{mg}, 78 \%$; a light yellow solid; $\mathrm{Mp}: 92-94{ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=20 / 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 5.32(\mathrm{~s}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.37(\mathrm{~m}, 7 \mathrm{H}), 7.65(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 50.2,110.3,116.0,119.8,120.6,122.5,124.5(\mathrm{q}, J=270.3 \mathrm{~Hz}), 125.7(\mathrm{q}, J=4.0$ $\mathrm{Hz}), 126.1,126.6,126.9,127.1,127.5(\mathrm{q}, J=32.2 \mathrm{~Hz}), 127.9,128.9,136.8,137.2,139.3 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.1$; IR (neat): v 3028, 2920, 2850, 1614, 1544, 1509, 1495, 1454, 1388, 1324, 1237, 1158, 1104, 1027, 966, 838, 785, 728, $696 \mathrm{~cm}^{-1}$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}$ $[\mathrm{M}]^{+}: 351.1229$, found: 351.1243.

Compound 2o: ${ }^{13}$ Yield: 23.8 mg , 80%; a light yellow solid; Mp: 75-77 ${ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=20 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.30$ $(\mathrm{m}, 9 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right)$ $\delta_{\mathrm{C}} 21.1,50.0,109.9,117.2,119.95,120.03,122.0,125.6,126.4,126.8,127.2,127.6,128.7,129.4$, 132.5, 135.4, 137.0, 137.2.

Compound 2p: Yield: $25.8 \mathrm{mg}, 83 \%$; a light yellow solid; $\mathrm{Mp}: 74-76{ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=20 / 1 .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 1.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.69(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H})$, $7.12-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 15.7,28.6,50.0,109.9,117.3,119.9,120.1,122.0$, 125.7, 126.4, 126.8, 127.3, 127.6, 128.2, 128.8, 132.8, 137.0, 137.2, 141.8; IR (neat): v 3026, 2959, 2923, 1612, 1543, 1467, 1436, 1384, 1332, 1299, 1181, 1070, 1070, 1018, 938, 831, 808, 726, 694 $\mathrm{cm}^{-1} ;$ HRMS (EI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}[\mathrm{M}]^{+}: 311.1669$, found: 311.1676.

Compound 2s: Yield: $21.3 \mathrm{mg}, 69 \%$; a yellow oil; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 5.51(\mathrm{~s}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.39(\mathrm{~m}, 7 \mathrm{H}), 7.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 48.0$, 109.7, 110.6, 117.1, 118.0, 120.2, 120.46, 120.53, 125.8, 126.0, 126.4, 127.3, 127.4, 128.1, 128.7, 132.9, 133.3, 135.0, 136.8, 140.9; IR (neat): v 3026, 2924, 2222, 1600, 1546, 1479, 1450, 1376, 1331, 1235, 1179, 1072, 968, 910, 808, 736, $696 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 309.1386$, found: 309.1388 .

Compound 2t: Yield: 24.4 mg , 82%; a light yellow solid; Mp: 77-79 ${ }^{\circ} \mathrm{C}$; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, TMS) $\delta 2.26(\mathrm{~s}, 3 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H})$, $7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.65$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 21.4,50.0$, $110.0,117.2,120.0,120.1,122.1,124.0,125.7,125.9,126.4,127.3,127.6,128.5,128.66,128.71$, 135.5, 137.08, 137.11, 138.5; IR (neat): v 3045, 2972, 2923, 1601, 1539, 1491, 1468, 1435, 1374, 1302, 1238, 1088, 1035, 968, 904, 790, 727, $693 \mathrm{~cm}^{-1}$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}[\mathrm{M}]^{+}$: 297.1512, found: 297.1518.

Compound 2u: ${ }^{12}$ Yield: 26.4 mg , 89%; a yellow oil; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.25(\mathrm{~s}, 3 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.12-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta_{\mathrm{C}} 21.0,49.8,110.0,117.1,119.96,120.03,122.0,125.7$, $125.8,126.3,126.9,127.3,128.7,129.4,134.1,135.5,137.0,137.3$.

 $\underset{6}{5} \underset{\sim}{\infty} \underset{\sim}{\infty}$

2u (${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left.\right|_{\mid} ^{\stackrel{\circ}{\stackrel{\circ}{\circ}}}$
$\stackrel{i}{\stackrel{\pi}{N}}$

Compound 2v: Yield: 24.4 mg , 81%; a yellow oil; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, TMS $) \delta 5.28(\mathrm{~s}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.43(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 49.4,109.9,115.7(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 117.5,120.1,120.2,122.2,125.7,125.9,126.5$, 127.3, $128.6(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 128.7,132.9(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 135.4,136.9,162.2(\mathrm{~d}, J=244.0 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-114.6; IR (neat): v 3047, 2924, 1601, 1546, 1508, 1464, 1350, 1220, 1177, 1155, 1073, 972, 819, 737, $696 \mathrm{~cm}^{-1}$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{FN}[\mathrm{M}]^{+}: 301.1261$, found: 301.1271.

Compound 2w: Yield: $30.5 \mathrm{mg}, 87 \%$; a yellow oil; Eluent: $\mathrm{PE} / \mathrm{EA}=20 / 1 .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 5.36(\mathrm{~s}, 2 \mathrm{H}), 7.16-7.31(\mathrm{~m}, 7 \mathrm{H}), 7.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.95-8.00(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 49.6,109.8$, $117.8,120.2,120.4,122.4,124.0(\mathrm{q}, J=270.7 \mathrm{~Hz}), 125.7,125.8(\mathrm{q}, J=3.8 \mathrm{~Hz}), 126.0,126.5,126.9$, $127.4,128.8,129.9(\mathrm{q}, J=32.0 \mathrm{~Hz}), 135.2,136.9,141.3 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.5$; IR (neat): v 3049, 1602, 1546, 1464, 1418, 1320, 1161, 1064, 1016, 936, 819, 738, $697 \mathrm{~cm}^{-1}$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}]^{+}: 351.1229$, found: 351.1240 .

Compound 2x: Yield: $27.1 \mathrm{mg}, 85 \%$; a light yellow solid; $\mathrm{Mp}: 89-91{ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=20 / 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 5.33$ (s, 2H), 6.85 (t, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.13-7.31 (m, 4H), 7.36-7.44 (m, 3H), $7.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 63.5(\mathrm{t}, J=3.5 \mathrm{~Hz}), 109.7(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 111.6\left(\mathrm{dd}, J_{1}\right.$ $\left.=19.4 \mathrm{~Hz}, J_{2}=6.1 \mathrm{~Hz}\right), 113.0(\mathrm{t}, J=19.7 \mathrm{~Hz}), 117.5,119.8,120.1,122.2,125.8,126.2,127.4$, $128.7,130.2(\mathrm{t}, J=10.4 \mathrm{~Hz}), 135.4,136.7,161.4\left(\mathrm{dd}, J_{1}=248.7 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}\right) ;{ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-113.8; IR (neat): v 3053, 2920, 2852, 1623, 1598, 1545, 1466, 1390, 1352, 1304, 1231, 1145, 1017, 967, 902, 816, 790, 728, $698 \mathrm{~cm}^{-1}$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{~N}[\mathrm{M}]^{+}$: 319.1167, found: 319.1174.

Compound 2y: Yield: $25.3 \mathrm{mg}, 76 \%$; a light yellow solid; $\mathrm{Mp}: 135-137^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=20 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 5.49(\mathrm{~s}, 2 \mathrm{H}), 7.16-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.33-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 50.4,110.0,117.4,120.07,120.15,120.19,124.9$, $125.7,125.8,125.9,126.1,126.4,126.5,127.4,127.7,127.8,128.7,132.9,133.3,134.6,135.5$, 137.2; IR (neat): v 3054, 3023, 2922, 2852, 1666, 1599, 1544, 1508, 1466, 1433, 1386, 1334, 1261, 1158, 1014, 972, 910, 815, 769, $698 \mathrm{~cm}^{-1}$; HRMS (FI-TOF) Calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}[\mathrm{M}]^{+}: 333.1512$, found: 333.1516 .

Compound 2z: ${ }^{14}$ Yield: $18.4 \mathrm{mg}, 89 \%$; a yellow oil; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 3.70(\mathrm{~s}, 3 \mathrm{H}), 7.12-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101 \mathrm{MHz}$, CDCl_{3}, TMS) $\delta_{\mathrm{C}} 32.7,109.5,116.5,119.8,121.9,125.6,126.1,126.5,127.2,128.7,135.6,137.4$.

Compound 2aa: ${ }^{15}$ Yield: $18.3 \mathrm{mg}, 78 \%$; a yellow oil; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, TMS $) \delta 1.51(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 4.60-4.70(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 22.7,47.0,109.7,116.8,119.8,119.9,121.4,121.6,125.6,126.2,127.3$, 128.7, 135.8, 136.3.

Compound 2ab: Yield: $21.5 \mathrm{mg}, 81 \%$; a yellow oil; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.00-2.10(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta_{\mathrm{C}} 30.2,42.8,58.6,68.9,109.7,116.7,119.8$, $119.9,121.8,125.6,125.7,126.2,127.2,128.7,135.7,136.8$; IR (neat): v 2922, 2873, 1601, 1545, 1478, 1372, 1226, 1113, 1016, 940, 908, 766, 737, $696 \mathrm{~cm}^{-1}$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}$ $[M]^{+}: 265.1461$, found: 265.1465 .

Compound 2ac: Yield: $21.6 \mathrm{mg}, 82 \%$; a light yellow solid; Mp: $73-75^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=20 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.86(\mathrm{~m}, 2 \mathrm{H})$, $4.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101 \mathrm{MHz}$, CDCl_{3}, TMS) $\delta_{\mathrm{C}} 13.9,22.3,29.1,29.9,46.3,109.7,116.5,119.7,119.9,121.7,125.5,125.6,126.2$, 127.2, 128.7, 135.7, 136.7; IR (neat): v 3046, 2927, 2857, 1601, 1544, 1465, 1391, 1371, 1333, 1219, 1184, 1016, 940, 810, 765, 735, $696 \mathrm{~cm}^{-1}$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}[\mathrm{M}]^{+}$: 263.1669, found: 263.1673 .

Compound 2ad: Yield: $24.6 \mathrm{mg}, 84 \%$; a yellow oil; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.12-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.17(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.65$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 25.3,30.8$, $45.2,51.6,109.6,117.0,119.9,120.0,122.0,125.4,125.7,126.3,127.3,128.7,135.5,136.7,173.1$; IR (neat): v 2948, 1731, 1601, 1545, 1465, 1391, 1334, 1196, 1161, 1017, 766, 737, $697 \mathrm{~cm}^{-1}$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}]^{+}: 293.1410$, found: 293.1414 .

Compound 2ae: Yield: $16.9 \mathrm{mg}, 54 \%$; a yellow oil; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.30-2.40(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.22(\mathrm{~m}$, $1 \mathrm{H}), 7.23-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta_{\mathrm{C}} 30.5,32.6,44.0,109.6,117.2,120.09,120.12,122.1$, $125.6,125.8,126.4,127.3,128.8,135.4,136.6$; IR (neat): v 3047, 2920, 1600, 1545, 1478, 1390 , 1373, 1283, 1262, 1245, 1216, 1072, 1016, 940, 766, 737, $696 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NBr}[\mathrm{M}+\mathrm{H}]^{+}: 314.0539$, found: 314.0543.

Compound 2af: Yield: $24.0 \mathrm{mg}, 77 \%$; a yellow oil; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.11-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.30(\mathrm{~m}$, $10 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ (101 MHz, CDCl_{3}, TMS) $\delta_{\mathrm{C}} 31.3,32.9,45.6,109.7,116.7,119.8,120.0,121.8,125.4,125.6,126.1$, 126.2, 127.3, 128.3, 128.4, 128.7, 135.6, 136.7, 140.8; IR (neat): v 3024, 2917, 2850, 1600, 1544, 1494, 1465, 1391, 1372, 1260, 1162, 1085, 1016, 938, 808, 766, 736, $695 \mathrm{~cm}^{-1}$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}[\mathrm{M}]^{+}: 311.1669$, found: 311.1680.

Compound 2ah: Yield: $27.0 \mathrm{mg}, 77 \%$; a yellow oil; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta-0.13(\mathrm{~s}, 6 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 3.93(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.13-7.20 (m, 1H), 7.21-7.29 (m, 2H), $7.31(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}}$ $-5.7,18.2,25.8,48.7,62.3,109.6,116.7,119.8,119.9,121.8,125.6,126.3,126.4,127.3,128.7$, 135.8, 136.9; IR (neat): v 2951, 2927, 2855, 1602, 1547, 1464, 1375, 1333, 1253, 1194, 1107, 936, 915, 829, 765, 736, $696 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{30}$ NOSi $[\mathrm{M}+\mathrm{H}]^{+}: 352.2091$, found: 352.2088 .

Compound 2ai: Yield: 9.6 mg , 32%; a light yellow solid; $\mathrm{Mp}: 80-82{ }^{\circ} \mathrm{C}$; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 3.58(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.35(\mathrm{~m}$, $5 \mathrm{H}), 7.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 29.6,47.8,109.2,117.5,120.2,120.3,122.3,125.4,126.0,126.4,127.4$, 128.8, 135.1, 136.3; IR (neat): v 3042, 2921, 2849, 1599, 1543, 1478, 1464, 1374, 1328, 1209, 1145, 1072, 1016, 983, 914, 764, 733, $694 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NBr}[\mathrm{M}+\mathrm{H}]^{+}$: 300.0382, found: 300.0382.

Compound 2aj: Yield: 16.2 mg , 56%; a light yellow solid; $\mathrm{Mp}: 46-48{ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=20 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.45-2.65(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H})$, 7.15-7.21 (m, 1H), 7.22-7.30 (m, 3H), 7.40 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 34.3(\mathrm{q}, J=28.3 \mathrm{~Hz}), 39.4(\mathrm{q}, J=4.1 \mathrm{~Hz})$, $109.0,117.8,120.3,120.4,122.4,125.0,125.7$ (q, $J=275.7 \mathrm{~Hz}$), 126.0, 126.5, 127.3, 128.8, 135.1, 136.2; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-65.4; IR (neat): v 3052, 2922, 1600, 1545, 1468, 1391, 1336, 1302, 1239, 1199, 1130, 1107, 1069, 988, 848, 764, 736, $696 \mathrm{~cm}^{-1}$; HRMS (FI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NF}_{3}[\mathrm{M}]^{+}: 289.1073$, found: 289.1077.

4

2aj $\left({ }^{19} \mathrm{~F}\right.$ NMR, $\left.376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 2am: Yield: $15.9 \mathrm{mg}, 46 \%$; a light yellow solid; $\mathrm{Mp}: 148-150^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=20 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $0.63(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.74(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.79-0.91(\mathrm{~m}$, $1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.66-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.22(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.67(\mathrm{~m}, 1 \mathrm{H}), 4.52\left(\mathrm{dd}, J_{1}=14.0 \mathrm{~Hz}\right.$, $\left.J_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.14-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 15.6,21.5,22.5$, $24.1,26.9,32.0,34.9,39.43,39.45,46.2,50.1,109.8,116.3,119.7,119.9,121.7,125.6,126.1$, 126.6, 127.2, 128.7, 135.7, 137.0; IR (neat): v 2953, 2916, 2839, 1599, 1545, 1478, 1394, 1260, 1141, 1070, 1001, 921, 821, 735, $696 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}:$ 346.2529, found: 346.2535 .

Compound 2an: Yield: 32.6 mg , 75%; a light yellow solid; Mp: 109-111 ${ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.50(\mathrm{~m}, 4 \mathrm{H}), 4.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, 1 H) ${ }^{13}{ }^{1} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 24.4,24.8,25.97,26.01,45.8,65.9,70.46,70.56$, 96.4, 108.7, 109.4, 109.6, 117.0, 119.96, 120.02, 122.0, 125.7, 126.3, 127.3, 128.7, 135.6, 137.0; IR (neat): v 2988, 2918, 2849, 1644, 1601, 1546, 1468, 1395, 1334, 1252, 1165, 1037, 999, 917, 885, $765,699 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 436.2119$, found: 436.2120.

Compound 2ao: ${ }^{16}$ Yield: $12.8 \mathrm{mg}, 43 \%$; a yellow oil; Eluent: PE/EA $=20 / 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.41(\mathrm{~s}, 3 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.33(\mathrm{~m}$, $5 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 11.0,46.6,109.2,114.6,118.8,119.9,121.4,125.8,126.0,127.2,127.3$, 128.4, 128.8, 129.7, 133.2, 135.6, 136.5, 137.7.

Compound 2ap: Yield: $7.8 \mathrm{mg}, 21 \%$; a light yellow solid; $\mathrm{Mp}: 131-133{ }^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=20 / 1$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 4.15(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 6.84-6.92(\mathrm{~m}, 2 \mathrm{H}), 7.03-7.10(\mathrm{~m}$, $2 \mathrm{H}), 7.12-7.30(\mathrm{~m}, 10 \mathrm{H}), 7.34-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.81(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 30.8,46.7,109.5,116.7,119.4,120.0,121.9,125.9,126.1,126.4$, 127.2, 127.3, 127.9, 128.6, 128.7, 129.4, 134.4, 135.2, 136.9, 137.7, 138.9; IR (neat): v 3024, 2915, $1600,1555,1494,1431,1407,1306,1205,1093,1001,936,874,772,716 \mathrm{~cm}^{-1} ;$ HRMS (EI-TOF) Calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}[\mathrm{M}]^{+}: 373.1825$, found: 373.1840 .

Compound [D]-2a: Yield: $23.6 \mathrm{mg}, 83 \%$, D containing 93\%; a light yellow solid; $\mathrm{Mp}: 65-67{ }^{\circ} \mathrm{C}$; Eluent: PE/EA = 20/1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 5.21(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.13-7.29 (m, 7H), $7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 49.9,110.0,117.1,120.0,120.1,122.1,125.7,126.4$, 126.8, 127.3, 127.6, 128.70, 128.73, 135.5, 137.0, 137.1; IR (neat): v 3028, 2922, 1598, 1520, 1464, 1385, 1297, 1069, 940, 890, 770, 749, 727, $694 \mathrm{~cm}^{-1}$; HRMS (DART-LTQFTICR) Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{DN}[\mathrm{M}+\mathrm{H}]^{+}: 285.1497$, found: 285.1495 .

Compound 11a: Yield: $37.7 \mathrm{mg}, 76 \%$; a light yellow solid; Mp : $98-100^{\circ} \mathrm{C}$; Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.25(\mathrm{~m}$, $2 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 1 \mathrm{H}), 3.15(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta_{\mathrm{C}} 136.1,135.0,130.9,128.8,128.6,126.9,125.7,121.3$, 120.4, 119.1, 111.6, 108.8, 49.5, 48.2, 41.9; IR (neat): v 3668, 3397, 2970, 1602, 1455, 1320, 1260, 1074, 747, $701 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 249.1386$, found: 249.1389.

11a (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCF}_{3}$)

11a (${ }^{13} \mathrm{C}$ NMR, $101 \mathrm{MHz}, \mathrm{CDC}_{3}$)

10. Computational details

All quantum mechanical calculations have been performed with Gaussian 16. The geometries of all species have been optimized at B3LYP/6-31G(d) level. The subsequent frequency calculations on the stationary points were carried out at the same level of theory to ascertain the nature of the stationary points as minima on the respective potential energy surfaces. The conformational space of flexible systems has first been searched manually and checked by xtb 6.0 program. ${ }^{17}$ Thermochemical corrections to 298.15 K have been calculated for all minima from unscaled vibrational frequencies obtained at this same level. The thermochemical corrections have been combined with single-point energies calculated at the SMD/B3LYP/6-311+G(d,p)// B3LYP/6-31G(d) level to yield free energy G_{298} at 298.15 K . The solvent effect was estimated by the IEFPCM method with radii and nonelectrostatic terms for SMD salvation model in acetonitrile ($\varepsilon=35.688$).

The Gibbs activation energy of SET process is obtained based on Marcus-Hush theory. ${ }^{18}$
Table S4. The total energies, enthalpies and free energies of all species in acetonitrile shown in Scheme 7a.

	$\mathrm{E}_{\text {tot }}$	H_{298}	G_{298}
1a	-1685.724311	-1685.23542	-1685.327013
$1 \mathrm{a}^{+}$	-1685.517362	-1685.02848	-1685.120565
TS1	-1685.508294	-1685.0199	-1685.109127
INT1	-1685.539571	-1685.04901	-1685.138892
INT2	-1685.767508	-1685.767508	-1685.767508
TS2	-1685.75244	-1685.26924	-1685.361068
TsH	-820.2882496	-820.139865	-820.1866468
2a	-865.4799819	-865.141256	-865.2064329
PC	-1875.859578	-1875.13736	-1875.260156
PC	-1875.727313	-1875.00228	-1875.121490
$1 \mathrm{n}^{+}$	-2022.665044	-2022.16788	-2022.270353
TS1-1n	-2022.654569	-2022.1579	-2022.257285
19 ${ }^{+}$	-1800.085154	-1799.56066	-1799.658583
TS1-1q	-1800.071513	-1799.54742	-1799.642378

Archive entries

1a

```
1\1\GINC-OMC-1-819\SP\RB3LYP\6-311+G(d,p)\C28H25N102S1\SHIMGRP\04-Dec-
    2021\0\\#p scrf=(iefpcm,smd,solvent=acetonitrile) b3lyp/6-311+G(d,p)\\
    YL-freq\\0,1\C,0,-2.068524,3.786283,0.624296\C,0,-0.762822,3.855009,0.
    132837\C,0,0.16732,2.872569,0.469294\C,0,-0.188804,1.799978,1.305598\C
    ,0,-1.514623,1.722612,1.762232\C,0,-2.440373,2.712946,1.435976\H,0,-2.
    790307,4.558672,0.371339\н,0,-0.466946,4.676122,-0.515339\H, 0,1.177588
    ,2.920314,0.07379\H,0,-1.815444,0.892124,2.39403\H,0,-3.454775,2.64690
    8,1.821594\C,0,0.837106,0.823547,1.765384\C,0,0.457745,-0.614601,1.964
```

$343 \backslash C, 0,0.124859,-1.038681,3.261068 \backslash C, 0,0.471078,-1.57531,0.930607 \backslash C, 0$ $,-0.201359,-2.36527,3.538131 \backslash \mathrm{H}, 0,0.131934,-0.303511,4.060863 \backslash \mathrm{C}, 0,0.174$ $405,-2.91615,1.221084 \backslash \mathrm{C}, 0,-0.175982,-3.308022,2.511935 \backslash \mathrm{H}, 0,-0.459002,-$ $2.660117,4.551821 \backslash \mathrm{H}, 0,0.214273,-3.646022,0.420368 \backslash \mathrm{H}, 0,-0.411746,-4.349$ $494,2.713236 \backslash \mathrm{C}, 0,2.066574,1.22924,2.114748 \backslash \mathrm{H}, 0,2.818082,0.528119,2.462$ $256 \backslash \mathrm{H}, 0,2.361323,2.272849,2.055467 \backslash \mathrm{~N}, 0,0.878351,-1.182156,-0.405442 \backslash \mathrm{C}$, $0,2.308655,-1.491009,-0.751842 \backslash$ Н $, 0,2.679013,-2.224324,-0.028949 \backslash H, 0,2$. $329956,-1.977913,-1.732109 \backslash C, 0,3.223106,-0.284172,-0.785994 \backslash C, 0,4.4122$ $52,-0.288229,-0.050046 \backslash C, 0,2.938127,0.815595,-1.606863 \backslash C, 0,5.299709,0$. $788859,-0.117434 \backslash \mathrm{H}, 0,4.648203,-1.141353,0.583126 \backslash \mathrm{C}, 0,3.820382,1.893303$ $,-1.672119 \backslash \mathrm{H}, 0,2.026521,0.8123,-2.196148 \backslash \mathrm{C}, 0,5.003144,1.885311,-0.9262$ $94 \backslash H, 0,6.218456,0.76972,0.46318 \backslash H, 0,3.590545,2.738754,-2.315978 \backslash H, 0,5$. $690177,2.725728,-0.981754 \backslash S, 0,-0.169555,-1.617203,-1.705986 \backslash 0,0,0.3886$ $62,-0.929171,-2.877889 \backslash 0,0,-0.371963,-3.074914,-1.772774 \backslash \mathrm{C}, 0,-1.740455$ $,-0.869129,-1.296375 \backslash C, 0,-2.001778,0.431964,-1.732043 \backslash C, 0,-2.727111,-1$ $.633198,-0.672874 \backslash C, 0,-3.266945,0.970684,-1.524445 \backslash \mathrm{H}, 0,-1.229991,1.000$ $137,-2.238153 \backslash \mathrm{C}, 0,-3.985435,-1.070672,-0.464125 \backslash \mathrm{H}, 0,-2.517652,-2.65466$ $,-0.377061 \backslash C, 0,-4.275297,0.233095,-0.885594 \backslash H, 0,-3.474837,1.982138,-1$. $862611 \backslash \mathrm{H}, 0,-4.758498,-1.661555,0.020603 \backslash \mathrm{C}, 0,-5.637565,0.841912,-0.6554$ $54 \backslash \mathrm{H}, 0,-6.356219,0.098062,-0.298505 \backslash \mathrm{H}, 0,-5.587182,1.643602,0.09267 \backslash \mathrm{H}, 0$, $-6.036979,1.285645,-1.574735 \backslash \backslash$ Version=ES $64 L-G 16$ RevA. $03 \backslash$ State $=1-A \backslash H F=-$ $1685.7243107 \backslash \mathrm{RMSD}=1.224 \mathrm{e}-09 \backslash \mathrm{Dipole}=-1.3117081,1.0382005,2.1689965 \backslash \mathrm{Quad}$ rupole $=17.0078131,-1.6619372,-15.3458759,-2.8060782,2.3483826,-16.5859$ $383 \backslash \mathrm{PG}=\mathrm{C01}$ [X(C28H25N1O2S1)]
@

$1 \mathbf{a}^{+}$

$1 \backslash 1 \backslash G I N C-O M C-1-811 \backslash S P \backslash U B 3 L Y P \backslash 6-311+G(d, p) \backslash C 28 H 25 N 102 S 1(1+, 2) \backslash S H I M G R P \backslash 2$ 3-Nov-2021 \0
\#p b3lyp/6-311+G(d,p) scrf=(iefpcm,smd, solvent=acetonitr ile) $\backslash \backslash$ LQZ-TS1
1, 2\C, 0,5.022707,-2.077492, 0.119901 \C, 0, 5.25478, -3.2543 $47,0.836701 \backslash C, 0,4.17569,-3.9872,1.343036 \backslash C, 0,2.873955,-3.543126,1.1424$ $1 \backslash C, 0,2.621524,-2.352095,0.429465 \backslash C, 0,3.720283,-1.634735,-0.08996 \backslash C, 0$, $1.243394,-1.847441,0.253954 \backslash C, 0,0.891819,-1.133752,-0.993654 \backslash C, 0,0.273$ $072,-2.079859,1.180647 \backslash C, 0,1.277256,-1.678341,-2.231188 \backslash C, 0,0.800996,-$ $1.155926,-3.425693 \backslash C, 0,-0.053094,-0.039591,-3.413441 \backslash C, 0,-0.420557,0.5$ $54339,-2.217904 \backslash C, 0,0.064427,0.042525,-0.992428 \backslash N, 0,-0.208226,0.687102$, 0.219597\C,0,0.89946,1.194994,1.10098\S,0,-1.820642,1.456641,0.537666 $\backslash C, 0,1.323178,2.58334,0.674386 \backslash C, 0,0.903644,3.71122,1.398606 \backslash C, 0,1.335$ $477,4.98286,1.027113 \backslash C, 0,2.173797,5.142891,-0.078944 \backslash C, 0,2.587734,4.02$ 5204,-0.813056\C, 0, 2.159947, 2.754662,-0.441817\0, 0,-1.710854,1.831541, $1.943383 \backslash 0,0,-2.071647,2.438044,-0.512892 \backslash C, 0,-2.952378,0.096623,0.376$ $14 \backslash C, 0,-3.202774,-0.706454,1.495856 \backslash C, 0,-4.134137,-1.734108,1.386905 \backslash C$ $, 0,-4.826919,-1.966343,0.186849 \backslash C, 0,-4.561373,-1.133597,-0.91183 \backslash C, 0,-$ $3.634306,-0.098643,-0.828925 \backslash C, 0,-5.862869,-3.057253,0.094629 \backslash \mathrm{H}, 0,5.85$ $7368,-1.504223,-0.272017 \backslash \mathrm{H}, 0,6.270809,-3.602665,0.99629 \backslash \mathrm{H}, 0,4.352296,-$ $4.910441,1.886411 \backslash \mathrm{H}, 0,2.042931,-4.135363,1.512758 \backslash \mathrm{H}, 0,3.551597,-0.7155$
$1,-0.643216 \backslash \mathrm{H}, 0,-0.760422,-1.807911,1.006944 \backslash \mathrm{H}, 0,0.497551,-2.590397,2$. $111716 \backslash \mathrm{H}, 0,1.913171,-2.556979,-2.238701 \backslash \mathrm{H}, 0,1.08128,-1.616622,-4.36783$ $3 \backslash \mathrm{H}, 0,-0.399468,0.388493,-4.349228 \backslash \mathrm{H}, 0,-1.010111,1.461881,-2.215346 \backslash \mathrm{H}$, $0,0.535348,1.181015,2.126856 \backslash \mathrm{H}, 0,1.718173,0.481514,1.014747 \backslash \mathrm{H}, 0,0.2446$ $81,3.58746,2.252107 \backslash \mathrm{H}, 0,1.017286,5.848625,1.599817 \backslash \mathrm{H}, 0,2.503758,6.1353$ $52,-0.371561 \backslash \mathrm{H}, 0,3.245246,4.148694,-1.668456 \backslash \mathrm{H}, 0,2.488144,1.889151,-1$. $013086 \backslash H, 0,-2.698672,-0.509605,2.436187 \backslash H, 0,-4.340395,-2.357045,2.2528$ $48 \backslash \mathrm{H}, 0,-5.099343,-1.288896,-1.842826 \backslash \mathrm{H}, 0,-3.462304,0.55937,-1.672857 \backslash \mathrm{H}$ $, 0,-5.629279,-3.891616,0.762715 \backslash \mathrm{H}, 0,-6.849598,-2.673345,0.384637 \backslash \mathrm{H}, 0,-$ $5.950591,-3.443724,-0.9251 \backslash \backslash$ Version=ES64L-G16RevA. $03 \backslash$ State $=2-A \backslash H F=-168$ $5.517362 \backslash \mathrm{~S} 2=0.761802 \backslash \mathrm{~S} 2-1=0 . \backslash \mathrm{S} 2 \mathrm{~A}=0.750098 \backslash \mathrm{RMSD}=2.052 \mathrm{e}-09 \backslash$ Dipole=0.6002 97,-3.4886729,-1.1767134 \Quadrupole=13.4625597,-6.6924137,-6.7701459,9 $.1252655,-0.9079049,-6.6914338 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 28 \mathrm{H} 25 \mathrm{~N} 102 \mathrm{~S} 1)] \backslash \backslash @$

TS1

$1 \backslash 1 \backslash G I N C-O M C-1-801 \backslash S P \backslash U B 3 L Y P \backslash 6-311+G(d, p) \backslash C 28 H 25 N 1 O 2 S 1(1+, 2) \backslash S H I M G R P \backslash 2$ 3-Nov-2021 \0
\#p b3lyp/6-311+G(d,p) scrf=(iefpcm,smd,solvent=acetonitr ile) $\backslash \backslash$ Tilte Card Required $\backslash 1,2 \backslash C \backslash C, 1,1.39960322 \backslash C, 2,1.40047154,1,120.0$ $3663439 \backslash C, 3,1.38705101,2,120.07884049,1,0.0123483,0 \backslash C, 4,1.41884812,3,1$ $20.84249689,2,-0.17811761,0 \backslash C, 1,1.38829325,2,120.23820671,3,-0.0851685$ $5,0 \backslash C, 5,1.44815785,4,120.12224872,3,-179.73118389,0 \backslash C, 7,1.46437628,5,1$ $24.42956725,4,-165.89685623,0 \backslash C, 7,1.41080159,5,123.33570972,4,25.75950$ $864,0 \backslash C, 8,1.4017232,7,127.28007022,5,41.070046,0 \backslash C, 10,1.39369726,8,119$ $.72182123,7,-177.68363516,0 \backslash C, 11,1.39766923,10,120.25363448,8,1.790894$ $49,0 \backslash C, 12,1.39982694,11,121.05629676,10,-0.84739851,0 \backslash C, 13,1.3930719,1$ $2,118.69316505,11,-1.35038744,0 \backslash N, 14,1.45289793,13,124.7589509,12,178$. $50476093,0 \backslash C, 15,1.52801336,14,115.75641591,13,-86.45009403,0 \backslash \mathrm{~S}, 15,1.83$ $933507,14,117.43128534,13,48.46865846,0 \backslash C, 16,1.50784777,15,115.9772388$ $6,14,63.68278098,0 \backslash C, 18,1.40278653,16,120.48301461,15,92.76721891,0 \backslash C$, $19,1.39385802,18,120.32221656,16,178.05868942,0 \backslash C, 20,1.39657187,19,120$ $.12685087,18,-0.13602399,0 \backslash C, 21,1.39660311,20,119.97187129,19,-0.34322$ $374,0 \backslash C, 22,1.3943304,21,119.92420535,20,0.33516832,0 \backslash 0,17,1.46042429,1$ $5,101.95095073,14,178.54690653,0 \backslash 0,17,1.45972136,15,106.84027009,14,-5$ $1.82564614,0 \backslash C, 17,1.77876701,15,105.29399498,14,64.04022791,0 \backslash C, 26,1.4$ $0049089,17,118.71177984,15,98.70086703,0 \backslash C, 27,1.39164004,26,118.717867$ $03,17,176.03809017,0 \backslash C, 28,1.40441288,27,121.28609417,26,-0.43666493,0 \backslash$ $C, 29,1.40440705,28,118.50603053,27,-0.08029257,0 \backslash C, 30,1.3914253,29,121$ $.37848696,28,-0.19846104,0 \backslash C, 29,1.5072853,28,120.74268767,27,-178.2333$ $6776,0 \backslash \mathrm{H}, 1,1.08566127,6,119.73710666,5,-179.01319971,0 \backslash \mathrm{H}, 2,1.08583554$, $1,119.99947118,6,179.88616439,0 \backslash \mathrm{H}, 3,1.08557526,2,120.07788808,1,179.35$ $500676,0 \backslash \mathrm{H}, 4,1.08583693,3,119.48328446,2,177.63227045,0 \backslash \mathrm{H}, 6,1.08442988$, 1, 119.58653549, 2, 178.03404414, 0\H, 9, 1.08272789, 7,119.63343832,5,-141. $17591012,0 \backslash \mathrm{H}, 9,1.08781159,7,121.18741239,5,16.19866958,0 \backslash \mathrm{H}, 10,1.085232$ $98,8,119.72959895,7,4.34299725,0 \backslash \mathrm{H}, 11,1.08556391,10,119.7717591,8,-178$ $.38093565,0 \backslash \mathrm{H}, 12,1.08574971,11,119.87217555,10,178.45505777,0 \backslash \mathrm{H}, 13,1.0$
$8232284,12,120.76632737,11,178.52548243,0 \backslash H, 16,1.09035697,15,105.28179$ $682,14,-172.36776843,0 \backslash \mathrm{H}, 16,1.09347223,15,103.99262246,14,-58.29358698$, $0 \backslash \mathrm{H}, 19,1.08624401,18,119.84607756,16,-1.51362189,0 \backslash \mathrm{H}, 20,1.08584611,19$, 119.71669182,18,-179.71595173,0\H,21,1.08614336,20,120.02619406,19,-1 $79.70401902,0 \backslash \mathrm{H}, 22,1.08614442,21,120.17107215,20,-178.94725925,0 \backslash \mathrm{H}, 23$, $1.08752477,22,119.65744485,21,-178.76466886,0 \backslash \mathrm{H}, 27,1.08488211,26,120.2$ $9121184,17,-2.51581499,0 \backslash H, 28,1.08643959,27,119.17943636,26,-179.49784$ $972,0 \backslash \mathrm{H}, 30,1.08641337,29,119.4720524,28,-179.22374577,0 \backslash \mathrm{H}, 31,1.0838891$ $7,30,120.64962832,29,-177.85770254,0 \backslash \mathrm{H}, 32,1.0940928,29,111.57681794,28$, $-150.99859604,0 \backslash H, 32,1.09399919,29,111.58891586,28,-29.45947052,0 \backslash \mathrm{H}, 3$ $2,1.09774179,29,110.37676068,28,89.78425046,0 \backslash \backslash V e r s i o n=E S 64 L-G 16 R e v A .0$ $3 \backslash$ State $=2-A \backslash H F=-1685.5082936 \backslash S 2=0.761314 \backslash S 2-1=0 . \backslash S 2 A=0.750114 \backslash R M S D=3.7$ $85 \mathrm{e}-09 \backslash$ Dipole $=-1.467687,3.0252723,1.6835278 \backslash$ Quadrupole $=9.9083635,-12.4$ $691282,2.5607647,11.1507652,2.5331243,3.7474036 \backslash \mathrm{PG}=\mathrm{C} 01$ [X(C28H25N1O2S1) $] \backslash \backslash @$

INT1

$1 \backslash 1 \backslash G I N C-O M C-1-802 \backslash S P \backslash U B 3 L Y P \backslash 6-311+G(d, p) \backslash C 28 H 25 N 1 O 2 S 1(1+, 2) \backslash S H I M G R P \backslash 2$ 3-Nov-2021 \0
\#p b3lyp/6-311+G(d,p) scrf=(iefpcm, smd, solvent=acetonitr ile)
int2
1,2\C,0,0.242698,2.22692,3.087886\C, 0,1.471574,1.565997,2. $936815 \backslash C, 0,1.798345,0.932165,1.732746 \backslash C, 0,0.864862,0.982192,0.705688 \backslash C$ $, 0,-0.414903,1.586007,0.847572 \backslash C, 0,-0.699414,2.243676,2.066536 \backslash N, 0,0.9$ $94522,0.380625,-0.612047 \backslash \mathrm{C}, 0,-0.245055,0.81875,-1.376251 \backslash \mathrm{C}, 0,-1.169699$ $, 1.42222,-0.351671 \backslash S, 0,0.948722,-1.673638,-0.454226 \backslash C, 0,-2.536673,1.73$ $7531,-0.663615 \backslash C, 0,-2.956291,1.813971,-2.017562 \backslash C, 0,-4.269176,2.12422$, $-2.347406 \backslash C, 0,-5.212962,2.356269,-1.341571 \backslash C, 0,-4.828309,2.26291,0.000$ $39 \backslash C, 0,-3.516573,1.957198,0.338548 \backslash C, 0,2.246895,0.739628,-1.462896 \backslash 0,0$, 1.173823,-2.058427,-1.846752\0,0,1.887616,-1.927368,0.629808\C,0,-0.6 $99152,-2.057169,0.047783 \backslash C, 0,-1.016599,-2.019626,1.41236 \backslash C, 0,-2.303606$ $,-2.375337,1.798681 \backslash C, 0,-3.267813,-2.771462,0.856147 \backslash C, 0,-2.909899,-2$. $803008,-0.502938 \backslash C, 0,-1.632947,-2.450265,-0.921681 \backslash C, 0,-4.645976,-3.19$ $2297,1.294477 \backslash C, 0,3.623885,0.475491,-0.918149 \backslash C, 0,4.318748,1.506097,-0$ $.265136 \backslash C, 0,5.628082,1.311869,0.171621 \backslash C, 0,6.26195,0.087433,-0.051155 \backslash$ $\mathrm{C}, 0,5.58763,-0.935153,-0.721311 \backslash \mathrm{C}, 0,4.278397,-0.741543,-1.159404 \backslash \mathrm{H}, 0,0$ $.023331,2.738052,4.020494 \backslash \mathrm{H}, 0,2.184568,1.552396,3.754578 \backslash \mathrm{H}, 0,2.742197$, $0.41893,1.616663 \backslash \mathrm{H}, 0,-1.627776,2.785276,2.196603 \backslash \mathrm{H}, 0,0.079728,1.54716$, $-2.128906 \backslash \mathrm{H}, 0,-0.663907,-0.032873,-1.918123 \backslash \mathrm{H}, 0,-2.238407,1.659327,-2$. $818297 \backslash \mathrm{H}, 0,-4.558748,2.192231,-3.391881 \backslash \mathrm{H}, 0,-6.238533,2.600946,-1.6005$ $98 \backslash \mathrm{H}, 0,-5.560399,2.421253,0.786931 \backslash \mathrm{H}, 0,-3.255543,1.839545,1.383349 \backslash \mathrm{H}, 0$, 2.081797, 0.203693,-2.399865 $\mathrm{H}, 0,2.11848,1.809797,-1.644562 \backslash \mathrm{H}, 0,-0.270$ $944,-1.73922,2.147654 \backslash \mathrm{H}, 0,-2.562719,-2.357461,2.853369 \backslash \mathrm{H}, 0,-3.640122$, -$3.120471,-1.241761 \backslash \mathrm{H}, 0,-1.35267,-2.508361,-1.967906 \backslash \mathrm{H}, 0,-4.922675,-2.7$ $35549,2.248909 \backslash \mathrm{H}, 0,-5.402162,-2.927584,0.549245 \backslash \mathrm{H}, 0,-4.687378,-4.28131$ $6,1.427554 \backslash \mathrm{H}, 0,3.835552,2.467032,-0.10531 \backslash \mathrm{H}, 0,6.156345,2.118228,0.6715$ $65 \backslash \mathrm{H}, 0,7.284353,-0.063545,0.282646 \backslash \mathrm{H}, 0,6.084389,-1.881177,-0.913992 \backslash \mathrm{H}$,
$0,3.77041,-1.534217,-1.699901 \backslash \backslash$ Version=ES64L-G16RevA.03\State=2-A $\backslash H F=-$ $1685.5395715 \backslash \mathrm{~S} 2=0.77838 \backslash \mathrm{~S} 2-1=0 . \backslash \mathrm{S} 2 \mathrm{~A}=0.750722 \backslash \mathrm{RMSD}=2.012 \mathrm{e}-09 \backslash \mathrm{Dipole}=-1$. 6667847,0.7581056,0.0789834 \Quadrupole=16.2419609,-12.5451055,-3.69685 $54,12.6479931,0.4438761,0.290466 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 28 \mathrm{H} 25 \mathrm{~N} 1 \mathrm{O} 2 \mathrm{~S} 1)] \backslash \backslash @$

INT2

$1 \backslash 1 \backslash G I N C-O M C-1-801 \backslash S P \backslash R B 3 L Y P \backslash 6-311+G(d, p) \backslash C 21 H 18 N 1(1+) \backslash S H I M G R P \backslash 23-N o v-$ $2021 \backslash 0 \backslash \backslash \# p$ b3lyp/6-311+G(d,p) scrf=(iefpcm,smd, solvent=acetonitrile)
 int $3 \backslash \backslash 1,1 \backslash C, 0,-2.023586,3.5796,0.655429 \backslash C, 0,-0.735148,4.085346,0.28817$ $5 \backslash C, 0,0.280941,3.277331,-0.165711 \backslash C, 0,0.012345,1.890654,-0.280335 \backslash C, 0$, $-1.304356,1.363438,0.035681 \backslash C, 0,-2.310858,2.247525,0.538415 \backslash N, 0,0.8327$ $66,0.8976,-0.653336 \backslash C, 0,0.111046,-0.365232,-0.628929 \backslash \mathrm{C}, 0,-1.280755,-0$. $011824,-0.181164 \backslash C, 0,-2.335036,-0.997291,-0.064523 \backslash C, 0,-2.021814,-2.34$ $4071,0.23269 \backslash C, 0,-3.02711,-3.295715,0.346712 \backslash C, 0,-4.362611,-2.932024,0$ $.14542 \backslash C, 0,-4.688714,-1.610269,-0.173795 \backslash C, 0,-3.689774,-0.649851,-0.27$ $4963 \backslash C, 0,2.242367,0.993655,-1.07217 \backslash C, 0,3.123694,-0.035084,-0.393643 \backslash C$ $, 0,3.702823,-1.067762,-1.13909 \backslash C, 0,4.524269,-2.011833,-0.518512 \backslash C, 0,4$. $766212,-1.931423,0.852824 \backslash C, 0,4.189684,-0.902953,1.604247 \backslash \mathrm{C}, 0,3.374355$, $0.042154,0.984195 \backslash \mathrm{H}, 0,-2.767184,4.268826,1.040914 \backslash \mathrm{H}, 0,-0.551349,5.151$ $345,0.387678 \backslash \mathrm{H}, 0,1.24828,3.692263,-0.423237 \backslash \mathrm{H}, 0,-3.273776,1.858426,0.8$ $46824 \backslash \mathrm{H}, 0,0.614727,-1.074805,0.039407 \backslash \mathrm{H}, 0,0.096984,-0.819682,-1.629145$ $\backslash H, 0,-0.991995,-2.637219,0.412921 \backslash H, 0,-2.772981,-4.321417,0.594901 \backslash H, 0$, - $5.146257,-3.678967,0.22887 \backslash \mathrm{H}, 0,-5.722331,-1.332992,-0.355733 \backslash \mathrm{H}, 0,-3$. $947984,0.358721,-0.577735 \backslash \mathrm{H}, 0,2.289886,0.878304,-2.161784 \backslash \mathrm{H}, 0,2.575075$, $2.007321,-0.836071$ \H, $0,3.524263,-1.128406,-2.2104 \backslash \mathrm{H}, 0,4.976054,-2.804$ $347,-1.107647 \backslash \mathrm{H}, 0,5.407395,-2.662744,1.335931 \backslash \mathrm{H}, 0,4.384724,-0.83207,2$. $67029 \backslash \mathrm{H}, 0,2.939276,0.848025,1.571652 \backslash$ VVersion=ES64L-G16RevA.03\State=1 $-A \backslash H F=-865.9055679 \backslash \mathrm{RMSD}=9.644 \mathrm{e}-09 \backslash \mathrm{Dipole}=-0.6892637,1.0439994,-0.59793$ $58 \backslash$ Quadrupole=6.496685,9.4668289,-15.9635139,0.1329181,-2.5008401,0.66 $59563 \backslash \mathrm{PG}=\mathrm{C} 01$ [X(C21H18N1)]
@

TS2

$1 \backslash 1 \backslash G I N C-O M C-1-822 \backslash S P \backslash R B 3 L Y P \backslash 6-311+G(d, p) \backslash C 28 H 25 N 102 S 1 \backslash S H I M G R P \backslash 19-F e b-$ $2022 \backslash 0 \backslash \backslash \# p$ b3lyp/6-311+G(d,p) scrf=(iefpcm,smd, solvent=acetonitrile)
 int $2 \backslash \backslash 0,1 \backslash C, 0,4.601063,2.343794,0.04249 \backslash C, 0,4.84832,0.962124,-0.205663$ $\backslash C, 0,3.838201,0.051995,-0.420997 \backslash C, 0,2.50031,0.530149,-0.418422 \backslash C, 0,2$. $239816,1.937618,-0.21024 \backslash C, 0,3.318228,2.829483,0.049066 \backslash \mathrm{~N}, 0,1.326217,-$ $0.118601,-0.580414 \backslash C, 0,0.241137,0.817965,-0.42669 \backslash C, 0,0.853151,2.13224$ $1,-0.274993 \backslash S, 0,-1.794761,-1.068382,2.044431 \backslash C, 0,0.098713,3.379017,-0$. $172813 \backslash \mathrm{C}, 0,-1.163941,3.398355,0.45467 \backslash \mathrm{C}, 0,-1.880787,4.588794,0.548768 \backslash$ $C, 0,-1.368382,5.771126,0.009631 \backslash C, 0,-0.125193,5.759958,-0.627291 \backslash C, 0,0$ $.604667,4.577782,-0.715642 \backslash C, 0,1.015882,-1.5315,-0.886476 \backslash 0,0,-1.33384$ $2,0.402322,1.760797 \backslash 0,0,-0.736672,-2.08428,1.633551 \backslash C, 0,-3.087666,-1.2$ $97669,0.760025 \backslash C, 0,-3.27038,-2.558497,0.191145 \backslash C, 0,-4.293848,-2.758934$,-0.735797\C,0,-5.154912,-1.715192,-1.101539\C,0,-4.954973,-0.455906,$0.517877 \backslash C, 0,-3.935366,-0.245444,0.410435 \backslash C, 0,-6.288475,-1.945351,-2.0$
$74353 \backslash C, 0,2.076583,-2.545064,-0.521111 \backslash C, 0,2.869195,-3.13986,-1.510758$ $\backslash C, 0,3.837314,-4.087321,-1.171866 \backslash C, 0,4.016502,-4.450203,0.164292 \backslash C, 0$, $3.213798,-3.876096,1.153636 \backslash C, 0,2.242709,-2.933206,0.816232 \backslash H, 0,5.4387$ $25,3.005643,0.240134 \backslash \mathrm{H}, 0,5.876314,0.609503,-0.210837 \backslash \mathrm{H}, 0,4.061423,-0.9$ $91718,-0.586453 \backslash \mathrm{H}, 0,3.115986,3.872639,0.266336 \backslash \mathrm{H}, 0,-0.511181,0.727519$, $-1.21808 \backslash \mathrm{H}, 0,-0.400595,0.554809,0.558364 \backslash \mathrm{H}, 0,-1.553512,2.489653,0.9052$ $26 \backslash \mathrm{H}, 0,-2.844392,4.592786,1.050794 \backslash \mathrm{H}, 0,-1.935377,6.695266,0.08174 \backslash \mathrm{H}, 0$, $0.273356,6.671984,-1.063283 \backslash \mathrm{H}, 0,1.55152,4.569092,-1.246232 \backslash \mathrm{H}, 0,0.11035$ $5,-1.761244,-0.309758 \backslash \mathrm{H}, 0,0.786598,-1.594983,-1.958486 \backslash \mathrm{H}, 0,-2.594327,-$ $3.364284,0.461773 \backslash \mathrm{H}, 0,-4.424955,-3.741014,-1.186203 \backslash \mathrm{H}, 0,-5.605183,0.37$ $0885,-0.797866 \backslash \mathrm{H}, 0,-3.783084,0.735079,0.852149 \backslash \mathrm{H}, 0,-6.537843,-1.034009$ $,-2.6295 \backslash \mathrm{H}, 0,-6.039444,-2.726386,-2.800535 \backslash \mathrm{H}, 0,-7.200779,-2.265489,-1$. $553155 \backslash \mathrm{H}, 0,2.73074,-2.856706,-2.552341 \backslash \mathrm{H}, 0,4.445815,-4.542405,-1.94900$ $5 \backslash \mathrm{H}, 0,4.768934,-5.187557,0.431816 \backslash \mathrm{H}, 0,3.335292,-4.173364,2.191861 \backslash \mathrm{H}, 0$, $1.582377,-2.516666,1.571581 \backslash$ Version=ES64L-G16RevA. $03 \backslash$ State $=1-A \backslash H F=-16$ $85.7536664 \backslash \operatorname{RMSD}=6.686 \mathrm{e}-09 \backslash \mathrm{Dipole}=1.7175232,1.9972122,-3.2436771 \backslash$ Quadru pole=15.5554119,4.3722891,-19.9277009,-1.5046153,5.4953449,5.1807557\P $\mathrm{G}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 28 \mathrm{H} 25 \mathrm{~N} 1 \mathrm{O} 2 \mathrm{~S} 1)] \backslash \backslash @$

TsH

$1 \backslash 1 \backslash G I N C-O M C-1-820 \backslash S P \backslash R B 3 L Y P \backslash 6-311+G(d, p) \backslash C 7 H 802 S 1 \backslash S H I M G R P \backslash 16-F e b-2022$ $\backslash 0 \backslash \ \# p$ b3lyp/6-311+G(d,p) geom=check scrf=(iefpcm,smd, solvent=acetonit rile)
int1
0,1\S,0,-2.1413670203,0.197987653,0.5001718518\0,0,-2.612 $1906049,-1.1879091228,0.2082148399 \backslash 0,0,-2.4889086683,1.2292882046,-0.7$ $88786527 \backslash \mathrm{C}, 0,-0.3394719758,0.1492021191,0.2526934335 \backslash \mathrm{C}, 0,0.2906682991$, $-1.0850679717,0.1137680073 \backslash C, 0,1.678148667,-1.1296756002,-0.029053956 \backslash$ $C, 0,2.4456775866,0.0420819645,-0.0192626228 \backslash C, 0,1.7854430041,1.2728296$ $613,0.1284080838 \backslash C, 0,0.4017163726,1.3343789375,0.2688310291 \backslash C, 0,3.9502$ $286004,-0.0125906034,-0.139601739 \backslash \mathrm{H}, 0,-0.3103564161,-1.9894564995,0.10$ $70400364 \backslash \mathrm{H}, 0,2.1727348181,-2.0908103851,-0.1483237348 \backslash \mathrm{H}, 0,2.3647843433$, 2. 1933030476, 0.1301426414\H, 0, -0.0990760921,2.2935210042, 0.3696268523 $\backslash H, 0,4.2833263781,-0.958313899,-0.5783068973 \backslash H, 0,4.3328250818,0.804350$ $1725,-0.7612095364 \backslash \mathrm{H}, 0,4.4280777475,0.0793587553,0.8446778895 \backslash \mathrm{H}, 0,-2.1$ $437929311,0.8242677921,-1.6100445217 \backslash$ VVersion=ES64L-G16RevA. $03 \backslash$ State=1 $-A \backslash H F=-820.3161228 \backslash R M S D=3.864 e-09 \backslash D i p o l e=2.3486104,0.6567008,-0.331131$ $8 \backslash Q u a d r u p o l e=-2.4554964,0.8809517,1.5745448,-2.9817253,0.3578745,0.748$ $5925 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 7 \mathrm{H} 802 \mathrm{~S} 1)] \backslash \backslash @$

2a

$1 \backslash 1 \backslash G I N C-O M C-1-820 \backslash S P \backslash R B 3 L Y P \backslash 6-311+G(d, p) \backslash C 21 H 17 N 1 \backslash S H I M G R P \backslash 10-D e c-2021$ $\backslash 0 \backslash \ \# p$ scrf=(iefpcm, smd, solvent=acetonitrile) b3lyp/6-311+G(d,p)
CW-D J-Freq $\backslash \backslash 0,1 \backslash N, 0,0.679017,-0.119825,-1.003563 \backslash \mathrm{C}, 0,0.447251,1.162762,-0$. $533932 \backslash C, 0,1.313604,2.259653,-0.462863 \backslash C, 0,0.797667,3.454708,0.024405 \backslash$ $\mathrm{C}, 0,-0.549494,3.55647,0.425463 \backslash \mathrm{C}, 0,-1.403632,2.462827,0.359158 \backslash \mathrm{C}, 0,-0$. $909387,1.233973,-0.113029 \backslash C, 0,-1.495223,-0.070857,-0.341342 \backslash C, 0,-0.491$
$581,-0.843634,-0.882271 \backslash C, 0,-2.870143,-0.516531,-0.067237 \backslash C, 0,-3.56584$ $9,-0.077476,1.073912 \backslash C, 0,-4.862715,-0.517018,1.336802 \backslash C, 0,-5.493821,-1$ $.413,0.47206 \backslash C, 0,-4.814542,-1.862377,-0.662401 \backslash C, 0,-3.52293,-1.414133$, $-0.931928 \backslash C, 0,1.939984,-0.626996,-1.515785 \backslash C, 0,3.021283,-0.838241,-0.4$ $65064 \backslash \mathrm{C}, 0,2.705806,-1.261564,0.830989 \backslash \mathrm{C}, 0,3.717094,-1.495459,1.763019 \backslash$ $C, 0,5.055914,-1.312428,1.410617 \backslash C, 0,5.377963,-0.888816,0.1206 \backslash C, 0,4.36$ $4605,-0.649826,-0.808983 \backslash H, 0,2.352785,2.18037,-0.767434 \backslash H, 0,1.444425,4$ $.324955,0.09538 \backslash \mathrm{H}, 0,-0.925175,4.508334,0.791012 \backslash \mathrm{H}, 0,-2.443237,2.559732$, $0.657027 \backslash \mathrm{H}, 0,-0.513042,-1.885126,-1.174816 \backslash \mathrm{H}, 0,-3.073092,0.592301,1.7$ $72222 \backslash \mathrm{H}, 0,-5.377954,-0.16512,2.22709 \backslash \mathrm{H}, 0,-6.504316,-1.755493,0.678193 \backslash$ H, 0, -5. $297157,-2.554457,-1.348027 \backslash H, 0,-3.014858,-1.74289,-1.834861 \backslash H, 0$, $2.308856,0.056054,-2.29125 \backslash H, 0,1.715751,-1.574846,-2.019715 \backslash \mathrm{H}, 0,1.665$ $425,-1.397068,1.113432 \backslash \mathrm{H}, 0,3.457938,-1.818975,2.767631 \backslash \mathrm{H}, 0,5.842165,-1$ $.49332,2.138524 \backslash \mathrm{H}, 0,6.416364,-0.735471,-0.161099 \backslash \mathrm{H}, 0,4.620866,-0.31241$ $9,-1.811502 \backslash \backslash$ Version=ES64L-G16RevA. $03 \backslash$ State $=1-A \backslash H F=-865.4799819 \backslash$ RMSD $=6$ $.087 e-09 \backslash$ Dipole $=1.0585731,-0.8204678,-0.6137553 \backslash$ Quadrupole=5.2071772,-$4.9027439,-0.3044333,2.1045142,-5.3107375,4.0031686 \backslash \mathrm{PG}=\mathrm{C01} \quad[\mathrm{X}(\mathrm{C} 21 \mathrm{H} 17 \mathrm{~N} 1$)]
@

PC•

$1 \backslash 1 \backslash G I N C-B 2167 \backslash S P \backslash U B 3 L Y P \backslash 6-311+G(d, p) \backslash C 36 H 40 B 1 F 4 N 1(1-, 2) \backslash R O O T \backslash 20-J a n-2$ $022 \backslash 0 \backslash \backslash \# p$ geom=check scrf=(iefpcm,smd,solvent=acetonitrile) b3lyp/6-31 $1+G(d, p) \backslash \backslash$ Title Card Required $\backslash \backslash-1,2 \backslash C, 0,-1.78269258,3.6458657207,0.114$ $7452203 \backslash \mathrm{C}, 0,-0.6654490866,2.8368928125,-0.1485033365 \backslash \mathrm{C}, 0,-0.7471291682$, $1.4416837349,-0.2297875745 \backslash C, 0,-2.0024724215,0.789402775,-0.003573129$ $6 \backslash C, 0,-3.1188476423,1.6217636121,0.251742571 \backslash C, 0,-3.0168903353,3.00613$ $74924,0.3054016602 \backslash C, 0,-2.0832175492,-0.6339548472,-0.0336779516 \backslash C, 0,-$ $0.8921846592,-1.3950916349,-0.2491107535 \backslash C, 0,0.3521271006,-0.737878989$, $-0.4897633265 \backslash C, 0,1.5194979004,-1.4874608007,-0.6908706888 \backslash \mathrm{H}, 0,2.4523$ 634205,-0.9660133263,-0.8370251325\C,0,1.521200862,-2.8848946315,-0.65 $8003711 \backslash C, 0,0.2915252579,-3.5318211299,-0.423521364 \backslash \mathrm{C}, 0,-0.8739220893$, $-2.8113511915,-0.2300460993 \backslash н, 0,0.3028585846,3.298675592,-0.2907996652$ \H, 0, -4.0826380095,1.1492932014, 0.4148596053\H,0,-3.9138454973,3.58254 $41473,0.5053954994$ प $, 0,0.2455989881,-4.6157886491,-0.3761329654 \backslash \mathrm{H}, 0,-1$ $.8078088777,-3.334817692,-0.0483063374 \backslash N, 0,0.3830840661,0.6695725687,-$ $0.5262108811 \backslash C, 0,1.5996475297,1.3425493729,-0.9177909792 \backslash C, 0,1.6791938$ $118,1.8950514145,-2.2021376902 \backslash C, 0,2.679722502,1.4336280116,-0.0395685$ $635 \backslash C, 0,2.8421905874,2.5526047306,-2.6000693136 \backslash \mathrm{H}, 0,0.8293889086,1.807$ $3701359,-2.8734705372 \backslash \mathrm{C}, 0,3.8529609543,2.0713125872,-0.4536671212 \backslash \mathrm{H}, 0$, $2.6503929886,0.9636706355,0.9371697589 \backslash C, 0,3.9298986732,2.6389084565,-$ $1.7252756622 \backslash \mathrm{H}, 0,2.9034727182,2.9828903449,-3.5971838497 \backslash \mathrm{H}, 0,4.6910609$ $295,2.0764508051,0.2331182307 \backslash H, 0,4.843527463,3.1350127725,-2.04436311$ $26 \backslash C, 0,2.8233735561,-3.6928363819,-0.7924919533 \backslash C, 0,3.9868368937,-2.84$ $84219442,-1.3527695412 \backslash C, 0,3.2249701878,-4.1940804282,0.617352833 \backslash C, 0$, $2.6124100638,-4.9002851869,-1.7355529303 \backslash \mathrm{H}, 0,3.7261548239,-2.400272254$
$6,-2.320472531 \backslash \mathrm{H}, 0,4.3016522021,-2.0569856177,-0.666989169 \backslash \mathrm{H}, 0,4.85709$ $61825,-3.497272615,-1.513054322 \backslash$ Н, $0,2.4404871552,-4.8249434889,1.05443$ $08417 \backslash \mathrm{H}, 0,4.1462891344,-4.7893015052,0.5602213116 \backslash \mathrm{H}, 0,3.4045376516,-3$. $3414595542,1.2786372296 \backslash \mathrm{H}, 0,3.5488952527,-5.4635705864,-1.8328728904 \backslash \mathrm{H}$ $, 0,1.8514230878,-5.5967630262,-1.3661900316 \backslash \mathrm{H}, 0,2.3096880728,-4.572610$ $7306,-2.7380575781 \backslash \mathrm{C}, 0,-1.6045241628,5.1725796133,0.1859881801 \backslash \mathrm{C}, 0,-0$. $6115902721,5.5281437987,1.3186310856 \backslash C, 0,-1.0479209812,5.6958480437,-1$ $.1601019086 \backslash \mathrm{C}, 0,-2.931418435,5.9027735591,0.4684356677 \backslash \mathrm{H}, 0,-0.98676580$ $43,5.1807430215,2.2881173184 \backslash \mathrm{H}, 0,0.3683226567,5.0678181127,1.158906917$ $8 \backslash \mathrm{H}, 0,-0.4670831771,6.6151049489,1.3772870044 \backslash \mathrm{H}, 0,-1.7415814036,5.4750$ 03039,-1.9801026375\H, 0,-0.9018378867, 6.7834259086,-1.120087547\H, 0,-0 $.0851290857,5.2371570354,-1.4063799476 \backslash$ н $, 0,-2.7583769337,6.9850270736$, $0.5079713451 \backslash \mathrm{H}, 0,-3.6746804389,5.7133307308,-0.3148134892 \backslash \mathrm{H}, 0,-3.36461$ $31701,5.6007615494,1.4288688782 \backslash C, 0,-3.3918473068,-1.320930355,0.19591$ $42525 \backslash C, 0,-4.2288971703,-1.6394368718,-0.8950013145 \backslash \mathrm{C}, 0,-3.7991716328$, $-1.6620544784,1.5043902474 \backslash C, 0,-5.4485551721,-2.284502533,-0.662387727$ $9 \backslash C, 0,-5.0261337154,-2.3069140517,1.6954841387 \backslash C, 0,-5.8682344871,-2.62$ $4278958,0.6262946645 \backslash \mathrm{H}, 0,-6.0850374285,-2.5292290639,-1.5117810556 \backslash \mathrm{H}, 0$,-5.3289477801,-2.5702410124,2.7080335672\C,0,-2.9194534396,-1.3420542 $784,2.6915688482 \backslash \mathrm{H}, 0,-1.9361081648,-1.8169847254,2.5996576657 \backslash \mathrm{H}, 0,-2.7$ $407446412,-0.2638114733,2.7761204866 \backslash \mathrm{H}, 0,-3.3790569525,-1.6856586223,3$ $.624389363 \backslash \mathrm{C}, 0,-3.8133760922,-1.294245773,-2.3073065067 \backslash \mathrm{H}, 0,-3.6555737$ $458,-0.2155959958,-2.4236755667 \backslash \mathrm{H}, 0,-2.868568544,-1.7817590859,-2.5744$ $048544 \backslash \mathrm{H}, 0,-4.575736959,-1.6077433756,-3.0287318926 \backslash \mathrm{C}, 0,-7.2044869211$, $-3.292083349,0.8599183486 \backslash \mathrm{H}, 0,-7.9982898977,-2.5535243079,1.0399791356$ $\backslash \mathrm{H}, 0,-7.5107311547,-3.8905285218,-0.0055552738 \backslash \mathrm{H}, 0,-7.1755870692,-3.95$ $28654933,1.7338053728 \backslash B, 0,4.9904288763,-0.4530684172,1.8287941202 \backslash \mathrm{~F}, 0$, $5.7794664735,-1.0919471837,2.7816410246 \backslash \mathrm{~F}, 0,5.5958938487,-0.5129112199$ $, 0.5558057884 \backslash \mathrm{~F}, 0,4.7972622279,0.9056487979,2.1814909072 \backslash \mathrm{~F}, 0,3.7141553$ 479,-1.0762157983,1.750154325
Version=ES64L-G16RevA.03\State=2-A $\backslash H F=-$ $1875.8595775 \backslash S 2=0.769385 \backslash S 2-1=0 . \backslash S 2 A=0.75032 \backslash R M S D=4.791 e-09 \backslash$ Dipole=-7. 8513611,1.2452701,-3.3196979\Quadrupole=-45.9727702,29.8487193,16.1240 509,12.6136744,-32.2598247,-1.1653238\PG=C01 [X(C36H40B1F4N1)]
@

PC

$1 \backslash 1 \backslash G I N C-B 2074 \backslash S P \backslash R B 3 L Y P \backslash 6-311+G(d, p) \backslash C 36 H 40 B 1 F 4 N 1 \backslash R O O T \backslash 19-J a n-2022 \backslash 0 \backslash$
\#p geom=check scrf=(iefpcm,smd,solvent=acetonitrile) b3lyp/6-311+G(d, p)
Title Card Required
0,1\C,0,1.8972236085,2.8717488699,-0.80488218 $5 \backslash C, 0,2.0153084859,1.4969741238,-0.8438661405 \backslash C, 0,0.8795037591,0.66329$ $03607,-0.7890772431 \backslash C, 0,-0.4293246782,1.2447999313,-0.7195221881 \backslash C, 0,-$ $0.5277133705,2.6665746094,-0.8056939716 \backslash C, 0,0.5901354081,3.4463901181$, $-0.8584145298 \backslash C, 0,-1.550640028,0.4282966286,-0.5127911277 \backslash C, 0,-1.37520$ 3397,-0.9746274534,-0.4450795801 \C, 0, -0.0684910955,-1.5392936778,-0.57 $13582245 \backslash C, 0,0.0962179686,-2.940119109,-0.5007083361 \backslash \mathrm{H}, 0,1.0945911343$, $-3.344758489,-0.5897131665 \backslash C, 0,-0.9767363505,-3.794455727,-0.298329048$
$4 \backslash C, 0,-2.273267603,-3.2252869125,-0.1691257263 \backslash C, 0,-2.4618973513,-1.86$ $72115603,-0.2363895862 \backslash$ н, $0,2.9894012086,1.0378349714,-0.808642269 \backslash \mathrm{H}, 0$, $-1.5149400014,3.1139945228,-0.7907897327 \backslash \mathrm{H}, 0,0.4817552622,4.5252680167$, -0. $8853058641 \backslash \mathrm{H}, 0,-3.132643346,-3.8642073876,-0.0073130649 \backslash \mathrm{H}, 0,-3.455$ 208702,-1.446645205,-0.1258933644\N, 0,1.0121139478,-0.7056087243,-0.76 $13034549 \backslash \mathrm{C}, 0,2.3440694627,-1.2911570014,-0.8100819965 \backslash \mathrm{C}, 0,2.8591669091$, $-1.7059806386,-2.0386829265 \backslash C, 0,3.0646201705,-1.4287128078,0.37646867$ $15 \backslash C, 0,4.129146251,-2.2835442377,-2.0795837802 \backslash \mathrm{H}, 0,2.2731249355,-1.578$ 9315382,-2.9444201152\C, 0, 4.3344974269,-2.0058469553,0.3177426161 \H, 0, $2.6388000588,-1.0533836515,1.2996028598 \backslash C, 0,4.8645440655,-2.4348721389$,-0.9013742092\H, 0, 4.5416520881,-2.6109189122,-3.0296418445\H,0,4.9114 $449236,-2.1100225931,1.2318456428 \backslash \mathrm{H}, 0,5.8541988104,-2.8820475942,-0.93$ $57207971 \backslash \mathrm{C}, 0,-0.7296066645,-5.3114468593,-0.2081586798 \backslash \mathrm{C}, 0,-0.06548949$ $35,-5.8026804713,-1.5171342799 \backslash C, 0,0.2098411832,-5.6019541461,0.987680$ $6676 \backslash \mathrm{C}, 0,-2.0331227295,-6.1069195639,-0.0023817081 \backslash \mathrm{H}, 0,-0.710727314,-5$ $.6125428355,-2.3825387065 \backslash \mathrm{H}, 0,0.8954742683,-5.3108429384,-1.6992526429$ \H, 0, 0.118335526,-6.8820479868,-1.4622139676\H, 0, -0.2347042948, -5. 2620 $657407,1.929449724$ \H, $0,0.393634113,-6.6799600805,1.0668354922 \backslash \mathrm{H}, 0,1.17$ $8562904,-5.1043423983,0.8777269044 \backslash \mathrm{H}, 0,-1.8028400918,-7.1764554525,0.0$ $494144901 \backslash \mathrm{H}, 0,-2.5366542624,-5.8347927375,0.9319468197 \backslash \mathrm{H}, 0,-2.73789418$ $88,-5.9622375014,-0.8292797608 \backslash C, 0,3.1115959775,3.7862710894,-0.621360$ $418 \backslash C, 0,2.881825714,4.6044855778,0.6772230333 \backslash C, 0,4.4169671251,2.98777$ $39104,-0.4489731521 \backslash C, 0,3.2483938347,4.735287315,-1.8341411535 \backslash \mathrm{H}, 0,2.0$ $44926812,5.3041443512,0.577846025 \backslash \mathrm{H}, 0,2.6649406166,3.9344233268,1.5132$ $703524 \backslash \mathrm{H}, 0,3.7795693936,5.1911935722,0.905431243 \backslash \mathrm{H}, 0,4.6585147106,2.39$ $35676297,-1.3390493162 \backslash \mathrm{H}, 0,5.2487208959,3.6816926532,-0.2850351547 \backslash \mathrm{H}, 0$, 4.3498626929,2.3229194579, 0.4178454893\H, 0,4.0881188914,5.4221764358, $-1.6763089907 \backslash \mathrm{H}, 0,3.4388279721,4.1752890758,-2.7575962405 \backslash \mathrm{H}, 0,2.349498$ $2559,5.3428410823,-1.987532038 \backslash C, 0,-2.9025861141,1.0326100066,-0.30546$ $96638 \backslash \mathrm{C}, 0,-3.7850130931,1.1971342368,-1.3921514095 \backslash \mathrm{C}, 0,-3.2720755961,1$ $.4320907102,0.9988108003 \backslash C, 0,-5.0404367549,1.7659081432,-1.156664512 \backslash C$ $, 0,-4.5419094354,1.9913882265,1.1792256111 \backslash C, 0,-5.4371010039,2.1719129$ $203,0.1207709394 \backslash \mathrm{H}, 0,-5.7237349577,1.8937427562,-1.9938799239 \backslash \mathrm{H}, 0,-4.8$ $357168895,2.2953148906,2.1818032998 \backslash C, 0,-2.33422539,1.2717461682,2.173$ $1878773 \backslash \mathrm{H}, 0,-1.9366678782,0.2544784227,2.2530712116 \backslash \mathrm{H}, 0,-1.4523207152$, $1.9183383844,2.0992116238 \backslash \mathrm{H}, 0,-2.8503297889,1.5089618395,3.1081840792 \backslash$ $\mathrm{C}, 0,-3.3950783781,0.774937829,-2.7920388315 \backslash \mathrm{H}, 0,-2.4829456252,1.282327$ $3204,-3.12918371 \backslash \mathrm{H}, 0,-3.2015627677,-0.3031696905,-2.8538475015 \backslash \mathrm{H}, 0,-4$. $1903234046,1.0108870492,-3.5051789102 \backslash C, 0,-6.7868286158,2.8116591296,0$ $.3485747134 \backslash \mathrm{H}, 0,-6.7161543621,3.9070913847,0.3166673662 \backslash \mathrm{H}, 0,-7.5091619$ $339,2.5094630925,-0.4169595897 \backslash \mathrm{H}, 0,-7.1968723033,2.5436022024,1.328173$ $2471 \backslash B, 0,1.4869976106,1.1427832977,2.5858188463 \backslash \mathrm{~F}, 0,1.4982609272,1.095$ $1206992,3.9655968856 \backslash \mathrm{~F}, 0,2.8069668514,1.1440497934,2.0666279227 \backslash \mathrm{~F}, 0,0$. 8175495759,2.2984721743,2.1177781968\F,0,0.8148662331,-0.0043505897,2. $0562300829 \backslash \backslash$ Version=ES64L-G16RevA.03\State=1-A $\backslash H F=-1875.7273153 \backslash$ RMSD $=3$
$.200 e-09 \backslash$ Dipole=-1. $837792,-2.5039071,-5.1920543 \backslash$ Quadrupole=13.6230767, $14.8551365,-28.4782132,-8.560363,-14.0109051,-7.4795307 \backslash \mathrm{PG}=\mathrm{C01} \quad[\mathrm{X}(\mathrm{C} 36 \mathrm{H}$ 40B1F4N1)]
@

$1 n^{+}$

$1 \backslash 1 \backslash G I N C-O M C-1-810 \backslash S P \backslash U B 3 L Y P \backslash 6-311+G(d, p) \backslash C 29 H 24 F 3 N 1 O 2 S 1(1+, 2) \backslash S H I M G R P$ \16-Feb-2022\0
\#p b3lyp/6-311+G(d,p) geom=check scrf=(iefpcm, smd, solv ent=acetonitrile)
int1-pcf3
1, 2\c, 0, -4.4592512807,0.1260518725,0.324 $0979318 \backslash C, 0,-5.183167683,-0.8920373175,-0.3008413396 \backslash C, 0,-4.5160655618$ $,-1.9995890298,-0.8336283308 \backslash C, 0,-3.1317345049,-2.0854832049,-0.745682$ $598 \backslash C, 0,-2.3836921244,-1.0656141807,-0.1266657373 \backslash C, 0,-3.0743249394,0$. $0350968075,0.4167842069 \backslash C, 0,-0.9024163486,-1.1295715429,-0.0750094669 \backslash$ C, 0, - $0.2077647559,-0.607248239,1.1254055351 \backslash C, 0,-0.1817354364,-1.71674$ $7868,-1.0633113207 \backslash \mathrm{C}, 0,-0.6773196663,-0.9707162106,2.3978461106 \backslash \mathrm{C}, 0,0$. $0493163393,-0.6820071401,3.5462537283 \backslash \mathrm{C}, 0,1.2664451535,0.0156048421,3$. $4525695684 \backslash C, 0,1.7450444788,0.4298455948,2.2229425351 \backslash C, 0,1.008260608$, $0.1602937442,1.0428270112 \backslash N, 0,1.4266966438,0.6698157196,-0.1860444632 \backslash$ $C, 0,0.5332844818,1.5247264264,-1.0371958979 \backslash S, 0,3.1985217521,0.7694032$ $658,-0.6282956451 \backslash C, 0,0.7000459486,2.9790651139,-0.6521627483 \backslash C, 0,1.43$ $25146045,3.8544848585,-1.4711147225 \backslash C, 0,1.5344085434,5.2031240588,-1.1$ $377037964 \backslash \mathrm{C}, 0,0.926023924,5.6858427965,0.0242491332 \backslash \mathrm{C}, 0,0.2062400653,4$ $.8171299236,0.85347426 \backslash C, 0,0.1005973544,3.4710347079,0.5208953518 \backslash 0,0$, $3.1367421014,1.1531016631,-2.0336266632 \backslash 0,0,3.863170755,1.5884005566,0$ $.3789256068 \backslash C, 0,3.7343232001,-0.9173309317,-0.4961847562 \backslash C, 0,3.5663857$ $946,-1.7643421991,-1.599243247 \backslash C, 0,4.0410746702,-3.0692287157,-1.51751$ $42193 \backslash C, 0,4.6895450759,-3.5386674783,-0.3626463805 \backslash C, 0,4.8532171235,-2$ $.6581349763,0.7188677984 \backslash C, 0,4.3867929711,-1.3480796388,0.6634612309 \backslash C$ $, 0,5.2351725738,-4.9421246579,-0.3030492985 \backslash \mathrm{H}, 0,-4.9778837063,0.989122$ $3549,0.7272523829 \backslash \mathrm{H}, 0,-5.0814112144,-2.7918340755,-1.3125078274 \backslash \mathrm{H}, 0,-2$ $.6276804957,-2.9629244887,-1.13815649 \backslash \mathrm{H}, 0,-2.5235188771,0.8363438093,0$ $.9004663241 \backslash \mathrm{H}, 0,0.8898458504,-1.8552675133,-0.9859518702 \backslash \mathrm{H}, 0,-0.664164$ $558,-2.1071946618,-1.9537303532 \backslash \mathrm{H}, 0,-1.5994644175,-1.5372832459,2.4702$ $810011 \backslash \mathrm{H}, 0,-0.3193671107,-1.0057758403,4.5146140125 \backslash \mathrm{H}, 0,1.818755828,0$. $2673622307,4.3527072744 \backslash \mathrm{H}, 0,2.6361647586,1.0407351084,2.1600662147 \backslash \mathrm{H}, 0$, 0.7964111327,1.3494321681, -2.0789163607\H, 0, -0.4859974051,1.178180099 $2,-0.8739385343 \backslash \mathrm{H}, 0,1.9128470271,3.4768376996,-2.3679765089 \backslash \mathrm{H}, 0,2.0886$ $86294,5.8775000512,-1.7831778609 \backslash \mathrm{H}, 0,1.0137907083,6.7359255452,0.28691$ $45299 \backslash \mathrm{H}, 0,-0.2713937011,5.1938799108,1.7529016567 \backslash \mathrm{H}, 0,-0.4610064889,2$. $80039076,1.1673554109 \backslash \mathrm{H}, 0,3.1008881396,-1.3978266299,-2.508113436 \backslash \mathrm{H}, 0$, $3.9222940451,-3.7311186297,-2.3708104684 \backslash \mathrm{H}, 0,5.3667342635,-2.999497904$ $4,1.613265335 \backslash \mathrm{H}, 0,4.5489355736,-0.6672738872,1.491125984 \backslash \mathrm{H}, 0,4.6455710$ $292,-5.629601373,-0.9168161541 \backslash \mathrm{H}, 0,6.2651997307,-4.9678540007,-0.68194$ $3911 \backslash \mathrm{H}, 0,5.2556806552,-5.3228126331,0.7223438031 \backslash \mathrm{C}, 0,-6.6921038789,-0$. $8279326348,-0.3452277242 \backslash \mathrm{~F}, 0,-7.2297653658,-1.4234819863,0.739748168 \backslash \mathrm{~F}$ $, 0,-7.1296366041,0.4465097447,-0.3657469358 \backslash \mathrm{~F}, 0,-7.1786850739,-1.45446$

45977,-1.4337770397
Version=ES64L-G16RevA.03\State=2-A\HF=-2022.66504 $45 \backslash S 2=0.762014 \backslash S 2-1=0 . \backslash S 2 A=0.750112 \backslash R M S D=3.764 e-09 \backslash$ Dipole=2.3700569,-2 .5205852,1.6295956\Quadrupole=-19.3999668,14.1912665,5.2087003,-21.454 $1111,1.7490241,6.6713878 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 29 \mathrm{H} 24 \mathrm{~F} 3 \mathrm{~N} 1 O 2 \mathrm{~S} 1)] \backslash \backslash @$

TS1-1n

$1 \backslash 1 \backslash G I N C-O M C-1-812 \backslash S P \backslash U B 3 L Y P \backslash 6-311+G(d, p) \backslash C 29 H 24 F 3 N 1 O 2 S 1(1+, 2) \backslash$ SHIMGRP \18-Feb-2022 \0
\#p b3lyp/6-311+G(d,p) geom=check scrf=(iefpcm, smd, solv ent=acetonitrile)
Tilte Card Required
1,2\C,0,-4.4353402307,-3.32655 $77808,0.1034344196 \backslash C, 0,-4.3677350293,-4.2717519668,-0.9262245531 \backslash \mathrm{C}, 0,-$ $3.1882484558,-4.4251695938,-1.6648356889 \backslash C, 0,-2.0826870679,-3.64131713$ $35,-1.3723150211 \backslash C, 0,-2.1265931788,-2.6775134169,-0.3347234785 \backslash C, 0,-3$. $3302569796,-2.5414860145,0.3997383177 \backslash C, 0,-0.9610312175,-1.8608005875$, $-0.0474818581 \backslash C, 0,-0.7856996996,-1.0818247778,1.1783436058 \backslash C, 0,0.01994$ $25057,-1.5525228482,-1.0095628615 \backslash C, 0,-1.1133157912,-1.4746703698,2.48$ $40786055 \backslash C, 0,-0.914943441,-0.5896251725,3.5415672016 \backslash \mathrm{C}, 0,-0.4278151198$, 0.6984446116,3.2996528745\C,0,-0.1138776413,1.1209816967,2.0027569728 $\backslash C, 0,-0.2705299196,0.2222571768,0.949630632 \backslash N, 0,-0.0196387205,0.532938$ $1335,-0.4452007623 \backslash C, 0,-1.1911770711,1.1393546185,-1.2163195742 \backslash S, 0,1$. $5664512568,1.3752913712,-0.8578618743 \backslash \mathrm{C}, 0,-1.6524447301,2.4955828009,-$ $0.746366099 \backslash C, 0,-1.1409629956,3.663278438,-1.3322526716 \backslash C, 0,-1.6001233$ $934,4.9143403723,-0.9239562006 \backslash C, 0,-2.5751779328,5.0126521849,0.071062$ $1126 \backslash C, 0,-3.0972689526,3.8554853421,0.6536848947 \backslash C, 0,-2.6385937828,2.6$ $037774462,0.2457069659 \backslash 0,0,1.4789994788,1.4848015575,-2.3111913691 \backslash 0,0$, 1. $6603678801,2.5419032931,0.0140826232 \backslash C, 0,2.8402735599,0.2150806207$, $-0.41875439 \backslash C, 0,3.4043037711,-0.5781297578,-1.4261413972 \backslash C, 0,4.4577668$ $607,-1.426027059,-1.0981013814 \backslash C, 0,4.9628911522,-1.489221548,0.2110036$ $722 \backslash C, 0,4.3814871462,-0.6717744615,1.1939715938 \backslash C, 0,3.3308052175,0.189$ $0114921,0.8919831072 \backslash \mathrm{C}, 0,6.1302617484,-2.3825831547,0.5437415243 \backslash \mathrm{H}, 0,-$ $5.358951033,-3.1980996609,0.6572843169 \backslash \mathrm{H}, 0,-3.1415486245,-5.1597076126$,-2.4613588196\H, 0,-1.1627931101,-3.7944920582,-1.9278953549\H,0,-3.40 $5860073,-1.7908532561,1.1784365644 \backslash \mathrm{H}, 0,1.0627767089,-1.5158621667,-0.7$ $215055008 \backslash \mathrm{H}, 0,-0.1693603172,-1.689712187,-2.0719816662 \backslash \mathrm{H}, 0,-1.48616493$ $09,-2.4772589412,2.6673927055 \backslash \mathrm{H}, 0,-1.1422477389,-0.9018987244,4.556036$ $5423 \backslash \mathrm{H}, 0,-0.3007797304,1.3919211491,4.1253706978 \backslash \mathrm{H}, 0,0.2383896378,2.12$ $76222334,1.8183654705 \backslash \mathrm{H}, 0,-0.8693113664,1.1620030238,-2.2577495451 \backslash \mathrm{H}, 0$ $,-1.9890003423,0.3987449315,-1.1141679754 \backslash \mathrm{H}, 0,-0.3891994023,3.59195566$ $47,-2.1130486634 \backslash \mathrm{H}, 0,-1.2015196469,5.811631473,-1.3875922316 \backslash \mathrm{H}, 0,-2.93$ $51275443,5.988207991,0.3846911513 \backslash \mathrm{H}, 0,-3.8683506153,3.9279408633,1.415$ $1350914 \backslash$ Н, $0,-3.0631561069,1.7052018249,0.6873922341 \backslash$ н, $0,3.0389463199,-$ $0.5102900928,-2.4454221794$ \H, $0,4.9065284057,-2.0383382861,-1.875283686$ \H, 0, 4.7687033731, -0.6982859678,2.2086594312\H, 0, 2. $9144891399,0.840354$ $1906,1.6517791665 \backslash \mathrm{H}, 0,6.0995177013,-2.7136100147,1.5860279343 \backslash \mathrm{H}, 0,6.15$ $71244604,-3.2664680746,-0.100393472 \backslash \mathrm{H}, 0,7.0761760013,-1.8445536783,0.3$ $995019059 \backslash C, 0,-5.553931879,-5.1681517963,-1.2054880539 \backslash \mathrm{~F}, 0,-5.58901234$
$21,-5.544357468,-2.4974013582 \backslash \mathrm{~F}, 0,-6.7134472215,-4.5480908486,-0.91647$ $9194 \backslash \mathrm{~F}, 0,-5.4894541198,-6.2859675139,-0.4549159843 \backslash \backslash$ Version=ES64L-G16R evA. $03 \backslash$ State $=2-A \backslash H F=-2022.654569 \backslash S 2=0.761898 \backslash S 2-1=0 . \backslash S 2 A=0.750127 \backslash$ RMSD $=1.833 \mathrm{e}-09 \backslash$ Dipole=2.3467984,-1.33462,1.5821673\Quadrupole=10.7896187,-$14.1501914,3.3605727,-22.2250729,-3.7259557,7.4172032 \backslash \mathrm{PG}=\mathrm{C} 01 \quad[\mathrm{X}(\mathrm{C} 29 \mathrm{H} 24$ F3N1O2S1)]
@

$1{ }^{+}+$

$1 \backslash 1 \backslash G I N C-B 2156 \backslash S P \backslash U B 3 L Y P \backslash 6-311+G(d, p) \backslash C 29 H 27 N 103 S 1(1+, 2) \backslash R O O T \backslash 14-J a n-2$ $022 \backslash 0 \backslash \backslash \# p$ scrf=(iefpcm, smd, solvent=acetonitrile) b3lyp/6-311+G(d,p)
i $n t 1 \backslash \backslash 1,2 \backslash C, 0,-4.850826,-0.070291,0.408228 \backslash C, 0,-5.533099,-1.090711,-0.2$ $9545 \backslash C, 0,-4.799818,-2.158536,-0.860325 \backslash C, 0,-3.424653,-2.18729,-0.72671$ $\backslash C, 0,-2.717207,-1.171705,-0.032997 \backslash C, 0,-3.48134,-0.119298,0.542032 \backslash C, 0$,-1.260729,-1.195348, 0.077855\C, 0, -0.599691,-0.515592,1.216499\C, 0, -0. $480155,-1.863465,-0.829667 \backslash C, 0,-1.051135,-0.750924,2.528019 \backslash \mathrm{C}, 0,-0.369$ $302,-0.235094,3.622599 \backslash C, 0,0.762454,0.565007,3.421651 \backslash C, 0,1.212454,0.8$ $48263,2.136207 \backslash C, 0,0.541528,0.320477,1.020167 \backslash \mathrm{~N}, 0,0.924761,0.629745,-0$ $.31121 \backslash C, 0,0.033664,1.518136,-1.137728 \backslash S, 0,2.640939,0.693339,-0.760222$ $\backslash C, 0,0.148767,2.980387,-0.767969 \backslash C, 0,1.014039,3.827746,-1.478104 \backslash C, 0,1$ $.102826,5.179357,-1.148522 \backslash C, 0,0.336773,5.6977,-0.102414 \backslash C, 0,-0.525582$, 4.860777, 0.612906\C,0,-0.615651,3.510628, 0.282639\0,0, 2.596529, 0.9637 $83,-2.196329 \backslash 0,0,3.352443,1.577686,0.16176 \backslash \mathrm{C}, 0,3.197611,-0.97953,-0.49$ $9683 \backslash C, 0,3.125579,-1.886797,-1.562849 \backslash C, 0,3.614663,-3.177052,-1.379125$ $\backslash C, 0,4.182504,-3.574099,-0.157542 \backslash C, 0,4.249528,-2.636675,0.884719 \backslash C, 0$, $3.770133,-1.339274,0.723786 \backslash \mathrm{C}, 0,4.74659,-4.961875,0.015459 \backslash \mathrm{H}, 0,-5.4331$ $81,0.744981,0.823998 \backslash \mathrm{H}, 0,-5.304152,-2.959874,-1.38669 \backslash \mathrm{H}, 0,-2.883031,-3$ $.032315,-1.13854 \backslash$ Н $, 0,-2.975342,0.676675,1.077563 \backslash$ Н, $0,0.58652,-1.970511$,-0.687022 \H, 0, -0.907313,-2.337424,-1. $707604 \backslash \mathrm{H}, 0,-1.917988,-1.38596,2$. $680125 \backslash \mathrm{H}, 0,-0.712615,-0.455368,4.628589 \backslash \mathrm{H}, 0,1.280365,0.997276,4.272657$ $\backslash \mathrm{H}, 0,2.053186,1.512431,1.983022 \backslash \mathrm{H}, 0,0.299154,1.346588,-2.180113 \backslash \mathrm{H}, 0,-0$ $.9825,1.152146,-0.978925 \backslash \mathrm{H}, 0,1.614488,3.42498,-2.288154 \backslash \mathrm{H}, 0,1.769625,5$ $.827596,-1.709182 \backslash H, 0,0.408595,6.750416,0.155181 \backslash H, 0,-1.129775,5.26359$ $5,1.420729 \backslash \mathrm{H}, 0,-1.295678,2.866695,0.836191 \backslash \mathrm{H}, 0,2.718546,-1.575017,-2.5$ $19052 \backslash \mathrm{H}, 0,3.571007,-3.883826,-2.203437 \backslash \mathrm{H}, 0,4.698307,-2.92188,1.832288 \backslash$
 $803483,-4.986578,-0.280101 \backslash H, 0,4.692337,-5.291306,1.057461 \backslash 0,0,-6.8583$ $58,-0.954067,-0.367857 \backslash \mathrm{C}, 0,-7.647127,-1.927194,-1.069316 \backslash \mathrm{H}, 0,-8.675332$ $,-1.577737,-0.986084 \backslash \mathrm{H}, 0,-7.354946,-1.975164,-2.123308 \backslash \mathrm{H}, 0,-7.551162,-$ $2.912798,-0.602369 \backslash \backslash$ Version=ES64L-G16RevA.03\State=2-A $\backslash H F=-1800.085154$ $7 \backslash S 2=0.764151 \backslash S 2-1=0 . \backslash S 2 A=0.750085 \backslash R M S D=2.833 e-09 \backslash$ Dipole=-5.341184,-4. $7301094,0.4357614$ \Quadrupole=29.1018704, -6.7088234,-22.393047,3.105429 $9,12.6234194,12.052934 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 29 \mathrm{H} 27 \mathrm{~N} 103 \mathrm{~S} 1)] \backslash \backslash @$

TS1-1q

$1 \backslash 1 \backslash G I N C-B 2173 \backslash S P \backslash U B 3 L Y P \backslash 6-311+G(d, p) \backslash C 29 H 27 N 103 S 1(1+, 2) \backslash R O O T \backslash 15-J a n-2$
$022 \backslash 0 \backslash \backslash \# p$ scrf=(iefpcm,smd,solvent=acetonitrile) geom=check b3lyp/6-31 $1+G(d, p) \backslash \backslash T i l t e ~ C a r d ~ R e q u i r e d \backslash \backslash 1,2 \backslash C, 0,-4.2986197223,-3.4851355527,0.5$ $534749496 \backslash \mathrm{C}, 0,-4.3026474941,-4.4148358232,-0.5115221262 \backslash \mathrm{C}, 0,-3.1758079$ $235,-4.50911179,-1.3545586461 \backslash C, 0,-2.0820166196,-3.6936416089,-1.12760$ $80444 \backslash C, 0,-2.053570325,-2.7483721983,-0.0669558855 \backslash C, 0,-3.2045743274,-$ $2.6792722439,0.7712778483 \backslash C, 0,-0.8997860926,-1.9178032639,0.142231492 \backslash$ $C, 0,-0.6801091966,-1.0681116526,1.3193117768 \backslash C, 0,0.0366259925,-1.59947$ $95902,-0.8715937734 \backslash C, 0,-0.9280482405,-1.3769613746,2.6624808299 \backslash \mathrm{C}, 0,-$ $0.7217930541,-0.4089386545,3.6455275394 \backslash C, 0,-0.3008836305,0.875391579$, $3.2932966666 \backslash C, 0,-0.0594480633,1.2119802137,1.9558871363 \backslash C, 0,-0.218451$ $8813,0.2301335932,0.9813090399 \backslash N, 0,-0.0204292924,0.4350783391,-0.44759$ $05249 \backslash \mathrm{C}, 0,-1.2261798743,0.991631478,-1.2040902298 \backslash \mathrm{~S}, 0,1.5314145009,1.2$ 693512969,-0.9687812766\C,0,-1.7134292752,2.3551259172,-0.7830791691 \C , 0, -1. $2395544865,3.5096909652,-1.4230124374 \backslash C, 0,-1.7227948799,4.765408$ $8483,-1.0588748582 \backslash \mathrm{C}, 0,-2.6870640465,4.8814787737,-0.055267633 \backslash \mathrm{C}, 0,-3$. $1733122957,3.7370232907,0.5799341505 \backslash C, 0,-2.6901240829,2.4805998727,0$. $215559478 \backslash 0,0,1.4100680307,1.2542852076,-2.4246683228 \backslash 0,0,1.6258129386$, $2.5099029117,-0.2049865427 \backslash C, 0,2.8457586458,0.1797419783,-0.466677541$ $9 \backslash C, 0,3.4175691586,-0.6692148943,-1.4221015148 \backslash C, 0,4.5010768647,-1.460$ $1523385,-1.0514285252 \backslash C, 0,5.0274372561,-1.4122034552,0.2494472227 \backslash C, 0$, $4.4367903477,-0.541662438,1.1797667331 \backslash C, 0,3.3566243917,0.2641331365,0$ $.8335536402 \backslash \mathrm{C}, 0,6.2255526304,-2.2451228216,0.6277430727 \backslash \mathrm{H}, 0,-5.1826883$ $423,-3.4180325178,1.1787497614 \backslash \mathrm{H}, 0,-3.1502635726,-5.2232073959,-2.1688$ $614358 \backslash \mathrm{H}, 0,-1.2092478448,-3.8092717493,-1.7631137616 \backslash \mathrm{H}, 0,-3.2384447911$,-1.9531545583,1.575650729 $\mathrm{H}, 0,1.0928296789,-1.5877496677,-0.631027966$ $2 \backslash H, 0,-0.1949194393,-1.7576199569,-1.9228708389 \backslash$ н $, 0,-1.2504445701,-2.3$ $768536328,2.9349610483 \backslash \mathrm{H}, 0,-0.8922259195,-0.6566182776,4.6887471961 \backslash \mathrm{H}$, $0,-0.1629865625,1.63020422,4.0614066796 \backslash \mathrm{H}, 0,0.2503519524,2.2128354684$, $1.6839280902 \backslash \mathrm{H}, 0,-0.9368536747,0.9760074192,-2.2555173163 \backslash \mathrm{H}, 0,-2.00231$ $53781,0.2372592672,-1.0463983163 \backslash \mathrm{H}, 0,-0.4966223155,3.4247976386,-2.210$ $9573557 \backslash \mathrm{H}, 0,-1.3513595248,5.6522085777,-1.5636431967 \backslash \mathrm{H}, 0,-3.0661921491$, $5.86036645,0.2237204906 \backslash \mathrm{H}, 0,-3.9350907437,3.8216223573,1.3495626918 \backslash \mathrm{H}$ $, 0,-3.0855472504,1.5907038941,0.6996528391 \backslash \mathrm{H}, 0,3.0332558891,-0.6883035$ $921,-2.4364007402 \backslash \mathrm{H}, 0,4.9554555435,-2.115706304,-1.7891120142 \backslash \mathrm{H}, 0,4.83$ $90043128,-0.4831041021,2.1873157806 \backslash \mathrm{H}, 0,2.9306983872,0.9556474031,1.55$ $12424596 \backslash \mathrm{H}, 0,6.204399676,-2.5224424455,1.6859857045 \backslash \mathrm{H}, 0,6.284515935,-3$ $.1600670284,0.0309113716 \backslash \mathrm{H}, 0,7.1523955998,-1.6824360786,0.4564017154 \backslash 0$ $, 0,-5.4137962739,-5.1514616374,-0.6329043012 \backslash \mathrm{C}, 0,-5.5177477838,-6.1152$ $24873,-1.6881083455 \backslash \mathrm{H}, 0,-6.5027249192,-6.5661227047,-1.5721360016 \backslash \mathrm{H}, 0$, $-5.4461691718,-5.6306066567,-2.6677753142 \backslash \mathrm{H}, 0,-4.7452369008,-6.8855796$ 983,-1.5904849679
Version=ES64L-G16RevA. $03 \backslash$ State=2-A $\backslash H F=-1800.0715125$ $\backslash S 2=0.760044 \backslash S 2-1=0 . \backslash S 2 A=0.750084 \backslash R M S D=5.051 e-09 \backslash$ Dipole=-0.043281,-3.9 $030606,0.4313444 \backslash$ Quadrupole=12.1701859,-0.1244937,-12.0456922,4.148047 $6,6.9333098,18.2818632 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 29 \mathrm{H} 27 \mathrm{~N} 103 \mathrm{~S} 1)] \backslash \backslash @$

11. X-ray Data

Single crystals suitable for XRD were obtained by vapor diffusion experiment:
Compounds $\mathbf{2 k}$ was separately dissolved in 0.5 mL of dichloromethane and 10.0 mL of n -pentane in three glass vials, which were then placed in sealed glass container. Crystals were obtained in about 4-7 days with the evaporation of the solvent.

The crystal data of $\mathbf{2 k}$ have been deposited in CCDC with number 2108706. Empirical Formula: $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClN}$; Formula Weight: 317.80; Crystal Color, Habit: colorless; Crystal Dimensions: 0.20 x $0.160 \times 0.120 \mathrm{~mm}^{3}$; Crystal System: Monoclinic; Lattice Parameters: $\mathrm{a}=10.7317(3) \AA \mathrm{A}, \mathrm{b}=$ $5.5110(2) \AA, \mathrm{c}=27.4878(9) \AA, \alpha=90^{\circ}, \beta=99.3610(10)^{\circ}, \gamma=90^{\circ}, V=1604.05(9) \AA^{3}$; Space group: P 21/n; Z $=4 ; \mathrm{D}_{\text {calc }}=1.316 \mathrm{~g} / \mathrm{cm}^{3} ; \mathrm{F}_{000}=664$; Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})] \mathrm{R} 1=0.0630$, $\mathrm{wR} 2=$ 0.1706; ; the thermal ellipsoids are set at a 30% probability level.

12. References

1) Chatupheeraphat, A.; Rueping, M. \& Magre, M. Org. Lett. 2019, 21, 9153-9157.
2) Li, Q.; Yu, L.; Wei, Y. \& Shi, M. J. Org. Chem. 2019, 84, 9282-9296.
3) Fang, B.; Hou, J.; Tian, J.; Yu, W. \& Chang, J. Org. Biomol. Chem. 2020, 18, 3312-3323.
4) Zhang, Z.; Kvasovs, N.; Dubrovina, A. \& Gevorgyan, V. Angew. Chem. Int. Ed. 2022, 61, e202110924.
5) Ortgies, S. \& Breder, A. Org. Lett. 2015, 17, 2748-2751.
6) Trân, K.; Hauwe, R. V. D.; Sainsily, X.; Couvineau, P.; Côté, J.; Simard, L.; Echevarria, M.; Murza, A.; Serre, A.; Théroux, L.; Saibi, S.; Haroune, L.; Longpré, J. -M.; Lesur, O.; Auger-Messier, M.; Spino, C.; Bouvier, M.; Sarret, P.; Ballet, S. \& Marsault, É. J. Med.Chem. 2021, 64, 5345-5364.
7) Sun, W.; Chen, C.; Qi, Y.; Zhao, J.; Bao, Y. \& Zhu, B. Org. Biomol. Chem. 2019, 17, 8358-8363.
8) Hill, J.; Hettikankanamalage, A. A. \& Crich, D. J. Am. Chem. Soc. 2020, 142, 14820-14825.
9) Jang, Y. H. \& Youn, S. W. Org. Lett. 2014, 16, 3720-3723.
10) Liu, J.; Wei, Y. \& Shi, M. Angew. Chem. Int. Ed. 2021, 60, 12053-12059.
11) Guo, Z. -Q.; Xu, H.; Wang, X.; Wang, Z. -Y.; Ma, B. \& Dai, H. -X. Chem. Commun. 2021, 57, 9716-9719.
12) Ghorai, J.; Reddy, A. C. S. \& Anbarasan, P. Chem. Asian J. 2018, 13, 2499-2504.
13) Barluenga, J.; Fernández, M. A.; Aznar, F.; Valdés, C. Chem. Eur. J. 2005, 11, 2276-2283.
14) Bering, L.; Paulussen, F. M. \& Antonchick, A. P. Org. Lett. 2018, 20, 1978-1981.
15) Ghorai, J.; Reddy, A. C. S. \& Anbarasan, P. Chem. Eur. J. 2016, 22, 16042-16046.
16) Dou, X.; Yao, W.; Wen S. \& Lu, Y. Chem. Commun. 2014, 50, 9469-9472.
17) Grimme, xtb 6.0; Mulliken Center for Theoretical Chemistry, University of Bonn, 2019; available upon request via e-mail to xtb@thch.uni-bonn.de.
18) Marcus, R. A. J. Chem. Phys. 1957, 26, 872-876.
