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Extended Methods

Copolymer dataset
For each copolymer considered, we generated up to 32 sequences and 8 conformers per sequence.
Sequences were generated at random using custom RDKit1 (v2021.03) scripts, while maintaining the
specified chain architecture and monomer ratio. When more than 32 sequences were possible, only
32 at random were kept. Conformers were generated using the ETKDG approach2 as implemented in
RDKit, while automatically falling back to ETDG2 in rare failure cases. All conformers were then
minimized with the MMFF94 force field3–7, also via RDKit.

All the octamer structures generated as described above were further minimized with GFN2-xTB8

using the xtb program9, with energy tolerance of 5 × 10⁻⁵ Eh and gradient tolerance of 4 × 10⁻³ Eh/α.
Vertical IP and EA properties were then computed with IPEA-xTB10, a specially reparameterized
version of GFN1-xTB11. All xTB calculations used the analytical linearized Poisson-Boltzmann model
for implicit solvation12,13 with the default parameters for benzene in the xtb code. The IP and EA values
were Boltzmann averaged across the 8 conformers at 298.15 K, and then averaged across all
sequences associated with a specific copolymer. Finally, IP and EA were adjusted to reflect their
relative values with respect to the standard hydrogen electrode potential (4.44 V), and then corrected
according to the DFT calibration in a low dielectric environment performed by Wilbraham et al.14.

Architecture of the wD-MPNN
Consider a molecular graph with vertices , edges , node features , and edge
features , where and . Node features are initialized as a one-hot encoding of the
atomic number, degree, formal charge, chirality, number of hydrogens, hybridization, and aromaticity
of the atom, and scaled atomic mass of each atom. Bond features are initialized as a one-hot
encoding of the bond type (singe, double, triple, or aromatic), whether the bond is conjugated, in a

ring, and contains stereochemical information. The hidden features of directed edges are built by
concatenating the features and (i.e., those of each atom and its outgoing edge) and passing
the resulting vector through a single neural network layer

,

where is the an activation function (here chosen to be ReLU), and is a learned matrix
with being a user-defined hidden size (here chosen to be 300) and the size of .
These hidden features are then updated via repeated message passing operations. Here we will use
a total of message passing steps. At very step , updated features are obtained as

,

where is a learned matrix, are the neighbors of aside from , and are
user-provided directed edge weights according to the probability of being a neighbor of in the

polymer graph (Figure 1). The addition of at every step acts as a skip connection. For a standard
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molecule, , but for a polymer these weights allow us to distinguish between

different monomer sequences, as they weigh the messages according to
the relevance of each incoming edge.

After message passing iterations, atoms representations are obtained by summing over all

incoming edge representation , concatenating them with the original atomic features , and
passing the resulting vector through a single neural network layer,

,

where is a learned matrix, is the size of the concatenated vector, and are the
weights of the incoming edges. In such a way, the output atom features depend on the probability of
each incoming edge being present in the molecule ensemble. Finally, a molecule feature vector is
obtained as an average (or sum) of all atom feature vectors,

,

where are weights reflecting the stoichiometric ratio between different monomers. The learned
representation is then used as the input of a feed-forward neural network to predict the molecular or
polymer properties of interest. In our tests, we use a shallow network with two layers, where the first is
the input layer with hidden dimension , and the second is the output layer with dimension matching
the number of labels being predicted.

Baseline representations and models
The predictive performance of wD-MPNN developed was compared to that of established ML
approaches. These included the base D-MPNN model (standard Chemprop15), and random forest
(RF) and fully-connected neural network (NN) models trained on fingerprint representations. All
models were trained as multi-task models aimed at predicting both EA and IP.

Baselines for the EA and IP dataset
The D-MPNN baseline used a model with the same architecture described in Figure 2, but without
information on monomer stoichiometry or the partial bonds connecting repeating units. The input for
this model was a disconnected graph of the separate monomeric units. In Table 1, this model is
referred to as “Monomer”, because it only captures the chemical structure of the monomeric units. The
extension of this model in which weighted edges are used is referred to as “Monomer + Chain
architecture”. The extension of this model in which weighted atomic embeddings are used is referred
to as “Monomer + Stoichiometry”. The proposed wD-MPNN includes both these features and is thus
referred to in Table 1 as “Monomer + Chain architecture + Stoichiometry”.

Extended-Connectivity Fingerprints (ECFP)16 were used as input representations for RF and NN
models, as implemented in scikit-learn17 (v1.0). These were obtained with RDKit1 using 2048 bits and
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radius 2. We tested both binary and count fingerprints, constructed from the monomeric units alone,
as well as from an ensemble of oligomeric sequences sampled uniformly at random. In the first case,
the monomeric units were converted to a single RDKit molecule object and the fingerprints computed.
This is the fingerprint equivalent of the representation provided to the baseline D-MPNN model. In the
second case, we sampled up to 32 octameric sequences, while satisfying the stoichiometry and chain
architecture of the polymer (Figure 3), computed fingerprints for all resulting oligomers, and used their
average as input for the RF and NN models. This fingerprint representation of polymers, which is
proposed in this study, attempts to capture the ensemble nature of the polymeric material. Despite the
sampling procedure, binary fingerprints are not able to capture information on stoichiometry, while
count fingerprints can. As shown in the Results section, this latter approach was found to be the most
competitive among all baselines considered. Patel et al.18 and Kuenneth et al.19 proposed the use of a
weighted sum of the binary fingerprints of each monomer to capture the stoichiometry of different
monomer units in a copolymer. This approach is somewhat similar to ours based on count fingerprints
and multiple sampled sequences, however, ours captures information on chain architecture in addition
to stoichiometry.

All models were evaluated on the same cross-validation splits, which included train, validation, and
test sets. Both random and monomer splits were evaluated, as discussed in the Results. No
hyperparameter optimization was performed for the D-MPNN and wD-MPNN models and the
validation set was used only for early stopping. The NN models used 1 or 2 hidden layers with 128
nodes, ReLU activation functions, layer normalization, a batch size of 256, and dropout rate between
0% and 50% (choices informed by previous work20). Parameters were optimized with Adam and a
learning rate between 10–5 and 10–2. Training was performed with early stopping, based on validation
set performance, for up to 200 epochs and a patience of 50. The number of hidden layers, dropout
rate, and learning rate were tuned against the validation set with 20 iterations of Bayesian optimization
using Hyperopt21. The RF models were trained in two ways that differed in how the validation set was
used. In the first approach, RF models with default scikit-learn parameters (100 trees) were trained on
the concatenation of the training and validation sets. In the second approach, the RF hyperparameters
were tuned against the validation set with 20 iterations of Bayesian optimization using Hyperopt21, in
which the number of trees (100 to 500), the maximum tree depth (5 to 20), the minimum number of
samples required to split a node (2 to 6), and the minimum number of samples required to be at a leaf
node (1 to 5), were optimized. Because the first approach was found to provide higher test-set
performance overall (Table S2), we discuss only those results in the main text. While this selection
does slightly inflate the estimated performance of the RF baselines, we found these to still be
significantly inferior to those obtained with the wD-MPNN model.

Baselines for the diblock copolymer phases dataset
The D-MPNN baselines used in these experiments are the same as those used for the EA and IP
prediction tasks, as described above. However, in the wD-MPNN we also introduced information on
polymer size by scaling the molecular embeddings by , where is the degree of
polymerization. We thus considered an additional baseline model, referred to as “Monomers + Size” in
Figure 5, in which the base D-MPNN also scales its molecular vector representations by chain length.
The degree of polymerization for the diblock copolymer, as well as average chain lengths for each
block, were obtained from the number-average molar mass of the copolymer, the volume fractions of
each block, and the bulk densities of each block. Molar mass and volume fractions are reported for all
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dataset entries in the Block Copolymer Phase Behavior Database22, while bulk densities were taken
from Table S1 of Arora et al.23 for all entries in which they were missing.

RF models (Figure S4) as implemented in scikit-learn17 (v1.0) were used with count-vector
Extended-Connectivity Fingerprints16 with radius 2 and 2048 bits using RDKit1. Fingerprint
representations in which only the chemical structure of the monomers was considered are referred to
as “Monomers” in Figure S4, consistently with naming used for the D-MPNN tests. In this case, the
count fingerprints of the homopolymers or copolymers constituting each block were obtained
separately and then summed. The effect of chain architecture was captured by building 32 cyclic
dodecameric sequences by sampling from the available monomers uniformly at random, for each of
the two polymer blocks separately. The average of the count fingerprints across the 32 sequences
was then taken as the representation of each block. The averaged fingerprints from each of the two
blocks was then summed to obtain the final diblock copolymer representation. This input
representation is referred to as “Monomers + Chain architecture”. The effect of block stoichiometry
was captured by scaling the count fingerprints of each block by the block’s mole ratio. This input
representation is referred to as “Monomers + Stoichiometry”. The effect of copolymer size was
considered by scaling the fingerprint representation of the diblock copolymer (i.e., after summing the
fingerprints of each block) by , as it was done for the D-MPNN representations. This input
representation is referred to as “Monomers + Size” in Figure S4. The richest fingerprint-based
representation considered was called “Monomers + Chain architecture + Size + Stoichiometry”, and
used all of the above transformations of the base fingerprints representation. That is, for each block,
count fingerprints averaged across 32 sampled sequences were obtained. These were then scaled by
the mole fractions of the blocks, then summed, and then scaled proportionally to chain length.

In addition to the above, also pure descriptor-based representations that disregard the chemistry of
the copolymer blocks were tested in conjunction with RF models. These are tagged as “no chem” in
Figure S4. In this case, the input for the RF was the mole fraction of block A (“Stoichiometry”) only, the
average chain length of the copolymer (“Size”) only, or both of these (“Size + Stoichiometry”).

All models for this task were evaluated on the same stratified 10-fold cross-validation splits, in which
the fraction of positive labels for each class were approximately preserved across folds. As for the
EA/IP regression task, each fold included train, validation, and test set. For the D-MPNN models, the
validation set was used only for early stopping, while RF models were trained on both training and
validation sets together. RF classification models used 100 trees (n_estimators=100), the Gini
criterion to evaluate node split quality (criterion=“gini”), balanced class weights
(class_weight=“balanced”), and nodes were expanded until all leaves were pure
(max_depth=None).

S5

https://paperpile.com/c/35dmK3/v7Kr0
https://paperpile.com/c/35dmK3/iT0Rt
https://paperpile.com/c/35dmK3/rqoW8
https://paperpile.com/c/35dmK3/DWpIR
https://paperpile.com/c/35dmK3/vlQOR
https://www.codecogs.com/eqnedit.php?latex=1%20%2B%20log(N)#0


Figure S1 | Performance of the wD-MPNN and baseline models for the prediction of electron affinity (EA)
and ionization potential (IP) on a monomer 9-fold cross-validation split. Each parity plot shows the
computed DFT values against the ones predicted by the ML models. The parity line is shown as a black dashed
line. The scatter/density plots display the predictions of each model for all folds of the 9-fold cross validation.
Each fold contains a monomer A (Figure 3) that is absent from all other folds. The color intensity is proportional
to the probability density, with brighter colors indicating areas with higher density of points. The average
coefficient of determination (R2) and root-mean-square error (RMSE, in eV) across all folds are shown. (a)
Performance of the baseline D-MPNN model, which used a graph representation of the monomeric units as
input. (b) Performance of the wD-MPNN model, which is augmented with information about chain architecture
and monomer stoichiometry. (c) Performance of a random forest (RF) model that used a binary fingerprint (FP)
representation of the monomeric units as input. (d) Performance of a RF model that used a binary fingerprint
representation of the polymer as input, which was obtained as the average fingerprint of a set of oligomeric
sequences sampled uniformly at random, while satisfying the correct stoichiometry and chain architecture of the
specified polymer. (e) Performance of a RF model that used a count fingerprint representation of the monomeric
units as input. (f) Performance of a RF model that used a count fingerprint representation of the polymer as
input.
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Figure S2 | Performance of the NN baseline for the prediction of electron affinity (EA) and ionization
potential (IP). Each parity plot shows the computed DFT values against the ones predicted by the NN model
trained on fingerprints. The parity line is shown as a black dashed line. The scatter/density plots display the
predictions of each model for all folds. The color intensity is proportional to the probability density, with brighter
colors indicating areas with higher density of points. The average coefficient of determination (R2) and
root-mean-square error (RMSE, in eV) across all folds are shown. (a) Results obtained on a random 10-fold
cross-validation split and using binary fingerprints. (b) Results obtained on a random 10-fold cross-validation
split and using count fingerprints. (c) Results obtained on a monomer 9-fold cross-validation split and using
binary fingerprints. (d) Results obtained on a monomer 9-fold cross-validation split and using count fingerprints.
Results obtained with wD-MPNN, D-MPNN, and RF models on the same data are shown in Figure 4 and Figure
1.
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Figure S3 | Performance of the wD-MPNN model and baselines at different levels of data availability for
training. Among the RF baselines, only results for the approach that used a count fingerprint representation of
the polymer as input (i.e., the most competitive RF baseline found) are shown. The plots show the test set
performance of these three models for multiple random splits, in which the size of the training set was increased
from 0.1% (43) to 80% (34,373) of the whole dataset. The size of the validation set was kept constant at 10%
(4,296). All remaining data was used as part of the test set, which thus had size between 89.9% (38,626) to 10%
(4,296). 10 random splits were used. The markers in the plots show the mean test set performance across these
repeated splits. Standard errors of the mean are not shown because they are small and would not be visible.
The largest R2 error is 0.03, and the largest RMSE error is 0.01 eV. Overall, these results show a cross-over
point, at a training set size of 2% (859), in terms of performance between the wD-MPNN and RF approaches.
While RF has better performance in the lower-data regime, the wD-MPNN overtakes RF when more data is
available. Similarly, the performance of D-MPNN and wMPNN starts diverging after 1% (430) of the data is
available for training. Note that the logarithmic scale on the x-axis gives the impression of an inflection point for
the RF model performance at larger training set sizes; in reality, the rate of improvement decreases, resulting in
diminishing returns as more data is provided, as for all other models.
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Figure S4 | Performance of multiple models and input representations on the classification of diblock
copolymer phases. Performance is measured as the average area under the precision-recall curve (PRC)
across the five labels (phases) to be predicted. Each marker reflects the average PRC value, for one fold of a
10-fold cross validation, across the five classification labels. The boxes show the first, second, and third
quartiles of the data, and the whiskers extend to up to 1.5 times the interquartile range. Models are grouped into
(i) D-MPNN, in which the one labeled as “Monomers + Chain arch. + Size + Stoichiometry” corresponds to the
full wD-MPNN, (ii) RF (no chem.), in which only one or two descriptors are used as input, without considering
the chemical structure of the constituting monomers, and (iii) RF, in which the chemical structure of the
monomers, as well as different aspects of the polymer, are considered. A detailed explanation of each model
and input is provided in the SI Extended Methods.
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Table S1 | Performance of wD-MPNN and ablated architectures for the prediction of copolymer EA and IP
values on the original and artificially inflated datasets. The average R2 and RMSE values obtained from
10-fold cross validation based on random splits, for the prediction of IP and EA, are shown. The standard error
of the mean is reported in parenthesis and it applies to the least significant digits (e.g., 0.917(1) is equivalent to
0.917 ± 0.001). Under the header “Representation”, “monomers” indicates the model was provided with the
graph structure of separate monomer units (i.e., the baseline D-MPNN); “chain architecture” indicates the model
was provided with information on how the monomer units may connect to one another to form an ensemble of
possible sequences, via the definition of edge weights, used as shown in Figure 2b and 2c; “stoichiometry”
indicates the model was provided with information on monomer stoichiometry, which was used to weigh learnt
node representations as shown in Figure 2d. The model using all this information altogether corresponds to the
wD-MPNN. Under the header “Dataset”, results for three different datasets are reported. The original dataset
used EA and IP values as they were computed. In the dataset with inflated chain architecture importance, the
standard deviation of EA and IP values was increased by a factor of 5 for any combination of monomer pair and
stoichiometry. In the dataset with inflated chain architecture importance, the standard deviation of EA and IP
values was increased by a factor of 5 for any combination of monomer pairs and chain architecture.

Dataset

Original dataset Inflated chain architecture
importance

Inflated stoichiometry
importance

Representation Prop. R2 RMSE (eV) R2 RMSE (eV) R2 RMSE (eV)

Monomers
EA 0.917(1) 0.173(1) 0.735(3) 0.343(2) 0.355(4) 0.760(3)

IP 0.883(1) 0.165(1) 0.647(3) 0.333(2) 0.265(4) 0.737(2)

Monomers
+ Chain

arch.

EA 0.929(1) 0.159(1) 0.890(1) 0.221(1) 0.356(4) 0.759(3)

IP 0.898(1) 0.154(1) 0.861(1) 0.208(1) 0.266(3) 0.736(2)

Monomers
+ Stoichiometry

EA 0.987(0) 0.069(0) 0.788(2) 0.307(2) 0.971(0) 0.161(1)

IP 0.982(0) 0.065(1) 0.714(2) 0.299(2) 0.972(0) 0.144(1)

Monomers
+ Chain arch.

+ Stoichiometry

EA 0.997(0) 0.035(0) 0.978(1) 0.098(1) 0.985(0) 0.115(1)

IP 0.997(0) 0.027(0) 0.981(0) 0.077(1) 0.988(0) 0.094(1)
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Table S2 | Performance of RF models with and without hyperparameter optimization. Average
cross-validated RMSE values are shown. The standard error of the mean is reported in parenthesis and it
applies to the least significant digits (e.g., 0.327(25) is equivalent to 0.327 ± 0.025). The use of hyperparameter
optimization is indicated by the “w/ opt.” label. In this case 20 optimization iterations with Hyperopt were
performed. The use of a fixed set of hyperparameters is indicated by the “w/o opt.” label. For this task, and a
search limited to 20 iterations, there did not seem to be a performance gain with hyperparameter tuning. In fact,
default hyperparameters returned slightly better performance on average.

Cross-validation split

Random split Monomer split

Approach EA (eV) IP (eV) EA (eV) IP (eV)

RF, Binary FPs
Monomer Repr.

w/o opt. 0.188(1) 0.179(1) 0.327(25) 0.362(18)
w/ opt. 0.190(1) 0.181(1) 0.354(32) 0.399(36)

RF, Count FPs
Monomer Repr.

w/o opt. 0.188(1) 0.179(1) 0.306(24) 0.353(34)
w/ opt. 0.187(1) 0.178(1) 0.323(26) 0.378(47)

RF, Binary FPs
Polymer Repr.

w/o opt. 0.151(1) 0.145(1) 0.311(19) 0.340(23)
w/ opt. 0.163(1) 0.154(1) 0.355(15) 0.388(41)

RF, Count FPs
Polymer Repr.

w/o opt. 0.086(1) 0.083(1) 0.251(25) 0.273(32)
w/ opt. 0.107(1) 0.104(1) 0.273(30) 0.297(50)
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