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S1. Continuous flow limitations 

Despite the benefits, continuous flow chemistry still shows some disadvantages for medicinal 

chemistry such as the synthesis scale (relatively high), requiring to pump large reagent volumes 

to achieve steady state conditions [1], with unnecessary environmental and economic costs 

(e.g. when using hazardous or expensive reagents) [2]. For small volumes (microreactors), the 

use of dedicated and expensive equipment is necessary to achieve low flow rates required for 

relatively long residence times [3]. Figure S1 illustrate some of these limitations.

Figure S1. Limitations of continuous flow chemistry of interest for drug discovery.



S2. Stopped-flow reactor operation

The reactor used was a 1000 μL coil (0.04 mm diameter) twisted around and in full contact of 

an aluminium cylinder block (Figure 1b, 5-8). The inlet of the reactor was connected to cross 

piece linked to each of the sampling loops lines, while the reactor outlet was connected to a 

stainless-steel back pressure regulator (BPR), equipped with a cartridge for 750 psi (Figure 1b, 

8). The reactor temperature was externally controlled by a Eurotherm temperature controller, 

connected to a k-type thermocouple and heated up by a pair of cylindrical heating cartridges, 

all elements embedded into the centre of the aluminium block (Figure 1b, 5). In addition, fast 

reactor cooling between experiments was achieved by using a cooper pipe twisted around the 

external aluminium cylinder (in contact with the inner reactor coil), connecting to a cooling 

water supply which was automatically triggered at the end of each reaction. Finally, the reactor 

block was thermally insulated with a cotton jacket covering all external parts.





Figure S2. Photos of reactor with heating elements and cooling jacket. Graphs showing 

temperature profiles of subsequent experiments.



S3. SNOBIFT Optimisation

The first approach applied was searching for the optimum reaction conditions i.e. temperature 

and reaction time, using an automated self-optimisation algorithm. In this case, an iterative 

single-objective self-optimisation method was programmed (SNOBFIT [37]; Figure S3, a), 

minimising the ratio of the internal standard to the product (using their respective HPLC UV 

response peak signal areas), when varying temperature and reaction time. A summary of the 

results obtained for two amide coupling reactions is discussed (Figure S3, b and e). For these 

reactions, the self-optimisation method was successful to identify the best reaction conditions, 

when chemical variables were kept constant (Figure S3, c and f). The HPLC-MS data provided 

an in-depth visualisation of the interactions between species (products and side-products), 

revealing their influence in the reaction path to synthesise the target molecule. These 

interactions were aligned with the optimum reaction conditions identified from the self-

optimisation (Figure S3, d and g).

In the library synthesis context, the experimental process driven by the algorithm was a relative 

time-consuming task, requiring a large number of experiments i.e. ~45 conditions tested for 

each reaction requiring a total of 10 hours (similar to other self-optimisation algorithms 

implemented [28]). An unrestricted large number of experiments can be particularly 

problematic when the search diverges e.g. when the reaction does not proceed under any 

circumstance. In addition, the random exploration path differs from reaction to reaction, 

making it difficult to compare and frustrating the identification and modelling of global 

underlying trends of the whole library. Finally, the algorithm implementation also required the 

use of an internal standard to calculate the relative increase of the target molecule, and prior 

knowledge of the chromatographic retention characteristics of the target product. 

Consequently, we found that applying self-optimisation methods more applicable when 



towards the end of the DMTA cycle, at the hit-to-lead optimisation stage when libraries are 

small.

Figure S3. Automated self-optimisation reaction sequences driven by SNOBFIT algorithm (a). 

Two amide coupling reactions subjected to a self-optimisation algorithm (b and e), designed to 

identify the best reaction conditions (temperature and reaction time) for the targeted product 

molecule. (c) and (f) illustrate their respective contour plots, obtained by minimising a function 

value (the ratio between the internal standard to the product peak areas, calculated from the 

HPLC DAD 254 nm signal). In both cases, the maximum yield was obtained when the target 



molecule was competing with the generation of side-products under a strong temperature 

dependency (d and g), and with minimal effect of the reaction time (all Rt points are plotted).



S4. Function values for optimisation

For the self-optimisation (Figure S3), the ratio between internal standard to the desired product 

was calculated using the HPLC signal at 254 nm. For each reaction the acquired data is 

presented in table S4.1 and S4.2 respectively.

Table S4.1. Sequence of experimental points driven by SNOBFIT algorithm, obtained for the 

Reaction 7 using PyCIU as the coupling agent.

Experimental 
point

Function value 
(I.S./COMP) Reaction time (s) Temperature (oC)

1 0.034 660 60
2 0.020 240 135
3 0.020 120 145
4 0.019 450 180
5 0.020 660 185
6 0.024 540 195
7 0.044 450 60
8 0.035 660 65
9 0.029 120 95

10 0.019 570 140
11 0.023 390 195
12 0.025 270 200
13 0.023 660 120
14 0.020 300 120
15 0.020 510 120
16 0.019 660 135
17 0.020 300 185
18 0.023 360 200
19 0.024 300 85
20 0.021 180 120
21 0.020 570 130
22 0.020 390 130
23 0.019 240 145
24 0.020 660 150
25 0.024 240 100
26 0.020 420 120
27 0.020 270 130
28 0.019 600 140
29 0.020 360 150
30 0.019 540 170
31 0.025 240 75
32 0.020 480 130
33 0.020 210 130
34 0.020 480 150
35 0.020 480 155
36 0.019 240 175
37 0.024 270 65
38 0.019 510 145



39 0.019 660 145
40 0.020 390 155
41 0.019 630 160
42 0.019 420 170

Table S4.2. Sequence of experimental points driven by SNOBFIT algorithm, obtained for the 

Reaction 10 using TCFH as the coupling agent.

Experimental 
point

Function value 
(I.S./COMP) Reaction time (s) Temperature (oC)

1 0.2216 450 50
2 0.1250 240 65
3 0.0375 570 85
4 0.0281 180 135
5 0.0234 390 165
6 0.0323 120 200
7 0.0429 180 50
8 0.0266 570 105
9 0.0297 240 115

10 0.0243 570 115
11 0.0355 150 115
12 0.0241 480 165
13 0.0486 270 50
14 0.0241 630 115
15 0.0247 300 135
16 0.0219 570 145
17 0.0251 510 180
18 0.0314 480 195
19 0.0290 480 100
20 0.0257 360 120
21 0.0238 360 130
22 0.0221 570 140
23 0.0231 270 145
24 0.0229 600 160
25 0.0340 300 105
26 0.0230 660 135
27 0.0229 540 150
28 0.0257 150 150
29 0.0223 330 165
30 injection missed injection missed injection missed
31 0.0471 180 105
32 0.0256 570 120
33 0.0235 630 145
34 0.0236 450 160
35 0.0290 480 185
36 0.0289 180 185
37 0.0352 480 75
38 0.0268 540 110
39 0.0249 570 125
40 0.0234 270 160
41 0.0250 450 165
42 0.0296 360 185



43 0.0339 450 85
44 0.0365 450 90
45 0.0263 600 110
46 0.0244 510 140
47 0.0236 360 155
48 0.0244 630 155



S5. Machine learning modelling

S5.1 Feed-Forward Neural Net Model architecture

The feed forward neural network (FFNN) consists in 1-3 hidden layers (will be set by the 

hyperparameters optimization), see “def build_keras_model” in the provided code in Github 

(github.com/MolecularAI/HTE_Publication_Avila_et_al). ‘Dropout’ is applied at each layer. 

The output layer consists in sigmoid activation function. The ‘binary_accuracy’ has been 

chosen as metric to access the performance as the two classes are balanced. The learning 

function is the ‘rmsprop’ (in some initial testing, adam optimizer has been used but did not lead 

to significantly different results). 

S5.2 Hyperparameters optimization

Table S5.1. Hyperparameters that have been used in this study.

Feed-forward Neural Network
Hyperparameters tuned in this study

List of values

batch_size One of [32, 64]

learning rate Loguniform values between (0.00001, 0.005)

numepochs One of [10,15,20,30]

num_hidden_layers One of [1, 2, 3]

dropout Uniform between (0.0, 0.9)

hidden_size One of [128, 256, 512, 1024, 2048] for models 

with feature vectors of ~2048 bits size

One of [128, 256, 512, 1024] for models with 

feature vectors of ~1024 bits size

One of [4, 8 ,16] for models with feature vectors 



of 14 bits size

One of [32, 64, 128, 256] for models with feature 

vectors of ~200 bits size

S5.3 Model features

Table S5.2. Model features that have been used in this study. 

Model 

number

Reaction 

Fingerprint

(number of bits)

Product 

fingerprint

(number of 

bits)

Oeselma + 

ACD labs 

pKa

(number 

of values)

Fingerprint 

types

Coupling 

agents, 

temperatures 

and times (see 

Figure) 

(number of 

bits)

Total 

number of 

features 

(features 

length)

#1 0 (no considered) 0 0 - 14 14

#2 0 0 196 - 14 210

#3 1024 0 0 14 1038

#4 2048 0 0 14 2062

#5 512 512 0 14 1038

#6 1024 1024 0

ECFP6

14 2062

#7 1024 (512 + 512) 0 0 14 1038

#8 2048 (1024+1024) 0 0 14 2062

#9 512 (256+256) 512 (256+256) 0 14 1038

#10 1024 (512 + 512) 1024 (512 + 

512)

0 14 2062

#11 512 (256+256) 512 (256+256) 196 14 1234

#12 1024 (512 + 512) 1024 (512 + 

512)

196

ECFP6+

RDkit 

fingerprint

e.g. half of 

the bits size 

for each 

type 14 2258



The different fingerprint component (e.g. reaction fingerprint, product fingerprint, oeselma, 

…) have been defined in the main manuscript. ‘Oeselma’ is an internal AstraZeneca set of 

versatile molecular descriptors describing a set of physchem properties. Here, we added the 

pKa computed using ACDPK Labs tool (4 values). For the current modelling, a subset of 

‘oeselma’ descriptors (94 descriptors) and pKa have been calculated (4 values per molecules) 

for the acids and amines, their corresponding values have been concatenated leading to a vector 

of 196. Scaling the model features matrices have showed to lead to the more consistent results, 

it was done separately for the training and test set using the ‘np.scale(X_train)’ and 

‘np.scale(X_test)’ function available in numpy. The coupling agent, temperature and time have 

been encoded in 3 separated ‘one hot vector’ as illustrated in Table S5.3.

Table S5.3. Feature bits description corresponding to the set of conditions encoding. For 

example, experiment made with condition: CA4 at 120 degree Celsius during 360 seconds is 

encoded as a vector of 14 bits: 0 1 0 0 0 0 1 0 0 0 0 1 0 0



S5.4 Cross-validation study results and best model selection

In this section we present the cross-validation study that has been made on the primary set of 

experiments of 836 data. The followed strategy is described in the main manuscript (see Figure 

8). This study aims to select which model best classifies between the “successful” and “failed” 

reaction among the 836 experiments dataset. Hopefully, its performance will hold on the 

temporal test which is based on 234 experiments. This evaluation can be used to guide new 

experiments to enrich the current training dataset and improve the overall performance of the 

current model.

The average ‘ROC AUC’ score (computed using the roc_auc_score function in scikit-learn) on 

the 3 cross-validation sets (60% Train/40% Test splits) and 5 ‘one-amine-out’ on the training 

sets and for the ‘hold-on’ test sets for the different feature models (and corresponding random 

models based on the same training/test sets, those based on shuffled label training data) are 

presented at Figure S5.1. The higher the ROC AUC is, the better the performance of the model 

at distinguishing between the ‘successful’ and ‘failed’ reactions. The analysis discussed below 

on the average ROC_AUC hold for the different models for which the detailed performances 

are provided in the excel files (“Model_performances.xlss”).



Figure S5.1. Average ROC AUC values on the 12 feature set models with respect to the 8 

cross-validation datasets with (“random”, red bars) and without (“Model”, blue bars) shuffling 

the training labels. Set_AMINE_1, Set_AMINE_2, … correspond to the ‘leave-one-amine-out’ 

cross-validation dataset. Set_1, Set_2, … correspond to the 60%/40% cross-validation datasets.

Firstly, the average ROC_AUC for the ‘hold-on’ test set is very similar than for the ones for 

the training sets in the case of the three 60/40% cross-validation models (see Set_1, Set_2, and 

Set_3 in Figure S5.1 and “Model_performance.xlsx” table). In first approximation, this 

demonstrates that these models do not ‘overfit’ the training data. Indeed, much poorer 

performances on the test sets often witness that the models fit the training in a way that it cannot 

generalize well for external or new data as the test set ones. Secondly, all the 60/40% based 

models led to better performance than their corresponding random models and for the ‘leave-

one-amine-out’ models. For the latter, the models performances on the training sets are much 

higher than for the ‘hold-on’ test sets. This has important consequences. The results on the 

‘leave-one-amine-out’ models revealing that: (i) the amine structure has a great influence on 

model quality as the one in the test set seems not be well predicted by the ones in the training, 



(ii) training model on only randomized data may lead to a overestimation of the model in 

prediction new experiments which might be based on very different amine types. The amine 

not present in the Set_AMINE_3 dataset (see structures in Table S5.4) is in overall not well 

predicted by the different model features types, in fact, the average ROC AUC is lower for the 

models than the corresponding random models. The presence of the nitro group seems to make 

the ‘one-out-amine’ in Set_AMINE_3 unique and not well covered by the property profile of 

the other amines. However, it should be stressed that the training and test set size dataset 

slightly differ between the different ‘leave one-amine-out’ as all experiments could be collected 

Table S5.4 also show the number of training and ‘on-hold’ test set data points for the different 

datasets.

Table S5.4. Structures of the amines that have been considered in the ‘on hold’ test set for the 

5 different Set_AMINE_1, Set_AMINE_2, … model datasets as well as the number of data 

points for the different training and test sets.

The ROC AUC gave useful information about the modelling quality but as all the models seem 

to perform similarly on this score, other quality measure have been used to select the best model 

to be applied on the temporal test set. This measures is the ‘precision’ (defined in the main 

manuscript, Figure 5). This values is strongly correlated to the ROC AUC score but maximizes 

it could help to reduce the number of failed experiments. 

Thorough analysis of the performance results presented in “Model_performance.xlsx” showed 

that the performance differences between many models are subtle. Reassuringly, the model 



based on only the conditions as features (Model #1, see Model_performance.xlsx) presents the 

weakest performance compared to model implying the molecular structures in different 

manners.  We observe that model #11 is among the model set up leading to, overall, high 

ROC_AUC and precision. The fact that its features set is made of different components such 

the reaction fingerprint, the product fingerprint and physico-chemical properties made us 

believe that it has better chance to better predict new data while this was not clearly showed in 

the cases of the different ‘leave-one-amine-out’ model though. 

As a technical note, the model #11 optimal hyperparameters are: 'batch_size': 32; 'lr': 

0.00030645969762385465; 'numepochs': 30; 'num_hidden_layers': 1; 'dropout': 

0.0004887962267077486; 'hidden_size': 1024

S5.5 Model analysis

The first observation that can be made is that the performance in predicting the temporal test 

set is significantly better than the ones from random models which show erratic behaviours. 

For example, the ‘precision’ which reflects the capability of the model to find the successful 

reactions (e.g. true positive) without inflating too many failed reactions (e.g. false positive) is 

significantly higher for the model versus random models, and it is combined to a high ‘recall’ 

which measures how the model is able to retrieve the successful reactions. The latter is higher 

for the ‘Random 1’ model but, in this case, the accuracy and precision is poor which translate 

that the model is overestimating the chance to have productive reaction. However, the 

performance is lower than the ones observed during the cross-validation study indicating that 

the current modelling could not generalize enough from the training dataset to lead to highly 

accurate temporal test prediction. We found understandable that a model based on only 5 

different amines and 6 acids would be not be able to predict any amide coupling with high 

accuracy. Indeed, quite different level of performances have been observed for the various 

‘leave’one-amine-out’ dataset during the cross-validation study and can be explained by the 



following analysis. The classification accuracy for the different amines is displayed at Figure 

S5.2. It can be observed that for 2 out of 5 amines, a significant amount of the related 

experiments were not well predicted, the diaryl-amine, and the ortho-pyridine amine are related 

to failed reaction (Figure S5.2, bars marked ‘A’). Interestingly, the wrong prediction mainly 

corresponds to ‘false negative’ which can be considered less problematic if one wants to 

maximize the number of produced products. More problematically, the prediction for the 

experiments using the aryl-piperazine failed in ~34% of the cases, as the model predicts the 16 

experiments to fail while they turned to have succeeded. 

On the other hand, this type of observations can be considered useful to guide new experiments 

in order to improve the model.  These results clearly demonstrate the need to extent the amine 

diversity in the training dataset. Nevertheless, some amines, as the benzyl-methyl amine or the 

‘bi-cyclic’ seem to be already well handled by the current model. For example, all failed 

reactions engaging these amines have been correctly predicted to fail (Figure S5.2, peaks 

marked ‘B’), which demonstrates that the model does not necessary over-estimate the chance 

for a reaction to succeed, revealing a relatively acceptable ‘precision’.



 

Figure S5.2. Accuracy of the model prediction with respect to the amine. Blue bars represent 

the number of experiments where the outcome (successful or failed reaction) have been 

properly predicted by the model. Conversely, red bars represent the number of wrong 

predictions. The X-axis further informs if the well or badly predicted experiments belongs to 

successful or failed reactions.

S5.6 Coupling-agent prediction analysis

The coupling agent plays a major role in the amide coupling reaction. Similarly to the amine 

analysis discussed above, the classification accuracy for the different coupling agents is 

depicted at Figure S5.3. As for the amine case, some good trends as well as some key learning 

for improvement can be made. Firstly, there is no coupling agent for which the related 

experiment are systematically badly predicted by the model. However, failed prediction 

surpasses good predictions in the case of failed experiments reaction using CA2 meaning the 



model had the tendency to overestimate the success of the reaction when this coupling agent is 

employed (see peak “a” in Figure S5.3). The opposite trend is observed for CA4 where the 

model preferred to predict those experiments to fail and then wrongly predict 18 experiments 

(see peak “b” in Figure S5.3). This can be explained by the fact that the dataset is not enriched 

enough in successful reactions using this coupling agent, in order words, the dataset is 

somehow unbalanced which has direct consequence on the model learning.

Figure S5.3. Accuracy of the prediction with respect to the coupling agent. The blue bars 

represent the number of experiments where the outcome (successful or failed reaction) have 



been properly predicted by the model. Oppositely, the red bar represents the number of wrong 

predictions. The X-axis further informs if the well or badly predicted experiments belongs to 

successful (‘success’) or failed reactions (‘failed’).

S5.7 Percentage of conversion analysis

In the Figure S5.4 below, the average conversion percentage with respect to the products and 

two different predicted score thresholds, ‘Score >0.0’ (e.g. meaning no limitation using the 

score), ‘Score>0.8’ means that only the experiments having a score equal or greater than 0.80 

are kept and would have been then considered experimentally. For clarity reason, the picture 

has been divided into Fig S5.4a and Fig S5.4b that represent 2 sets of 15 product correspond 

to 3 distinct acid each). Apart from some exceptions, it is clear that considering only higher 

scored experiments leads to an increase of the average conversion for most of the products. For 

some products, the average conversion largely increased when considering the higher ‘Score 

>0.80’ compared to no applying a threshold on the score. e.g. ‘Score > 0.00’. However, in two 

cases only, the products would have not been synthesized as none of the experiments received 

a ‘Score > 0.80’. 



Figure S4.4a. Set 1: average conversion percentage with respect to the products at two 

different predicted score thresholds.

Figure S4.4b. Set 2: average conversion percentage with respect to the products at two 

different predicted score thresholds.
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