Supporting Information

Kinetic Resolution of *tert*-alcohols through S_N2' Reaction Catalyzed by Chiral Bisphophoric Acid/Silver(I) Salt-Combined System

Satavisha Kayal, Jun Kikuchi, Naoya Shinagawa, Shigenobu Umemiya, Masahiro Terada*

e-mail: mterada@tohoku.ac.jp

Department of Chemistry, Graduate School of Science, Tohoku University,

Aoba-ku, Sendai 980-8578, Japan.

Contents

- 1. General Information
- 2. Kinetic Resolution of *tert*-alcohol through Intramolecular $S_N 2$ ' Reaction
- 3. Preparation of substrates
- 4. Determination of the relative and absolute configuration
- 5. Determination of the reaction pathway of the intramolecular $S_N 2$ ' reaction
- 6. Stereochemical assignment of *trans*-5t and calculation of conversion c in Table 2, entry 19
- 7. Large scale experiment
- 8. Derivatization
- 9. Main reaction using catalyst (*R*)-1b
- 10. DFT calculation
- 11. NMR spectra
- 12. HPLC chart
- 13. Reference

1. General Information

All reactions were carried out under nitrogen atmosphere in flame-dried glassware. Dichloromethane (CH₂Cl₂) and toluene were supplied from KANTO Chemical Co., Inc. as "Dehydrated solvent system". Other solvents and reagents were purchased from commercial suppliers and used without further purification. Purification of reaction products was carried out by flash column chromatography using silica gel 60 N ((Merck 40-63 µm). Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel 60 GF 254, 0.25 mm). ¹H NMR spectra were recorded on a JEOL ECA-600 (600 MHz) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane or solvent resonance as the internal standard (CDCl₃: 7.26 ppm, TMS: 0.00 ppm). ¹³C NMR spectra were recorded on a JEOL ECA-600 (151 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the solvent resonance as the internal standard (CDCl₃: 77.16 ppm). ¹⁹F NMR spectra were recorded on JEOL ECA-600 (565 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the C₆H₅CF₃ (-67.2 ppm) resonance as the external standard. Infrared spectra were recorded on a Jasco FT/IR-4100 spectrometer. Chiral stationary phase HPLC analysis was performed on a Jasco LC-2000 Plus Series system with DACIEL chiral analytical column (4.6 mmΦ* 250 mm length). Optical rotations were measured on a Jasco P-1020 digital polarimeter with a sodium lamp and reported as follows; $[\alpha]^{T^{\circ}C_{D}}(c = g/100 \text{ mL}, \text{ solvent}, \%)$ ee). High resolution mass spectra analysis was performed on a Bruker Daltonics solariX 9.4T FT-ICR-MS spectrometer and a JEOL JMS-T100GCV Time-of-Flight Mass Spectrometer at the Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University.

2. Enantioselective Reaction of

Representative procedure for the kinetic resolution of tert-alcohols

To a mixture of MS 5Å (40.0 mg), (*R*)-**1a** (12.4 mg, 0.01 mmol, 10 mol%) and Ag₂CO₃ (1.4 mg, 0.005 mmol, 5 mol%) was added Et₂O (0.5 mL). The reaction mixture was stirred at room temperature for 15 min and then cooled at 0 °C. To the reaction mixture was added a solution of racemic (*E*)-**4** (0.1 mmol) in Et₂O (0.5 mL) at the same temperature and the reaction mixture was stirred for 96 h. The reaction mixture was quenched with NEt₃ (10 μ L) and directly purified by flash column chromatography (Hexane/EtOAc = 10:1) to give **5** and (*R*,*E*)-**4**. The enantiomeric excess was determined by chiral stationary phase HPLC analysis.

(2S,3R)-2-methyl-2,3-diphenyl-3-vinyloxirane (5a)

 $\begin{array}{l} \begin{array}{l} \mbox{48\% yield (11.3 mg); colorless oil; $[\alpha]_D{}^{26}$ +69.5 (c 5.0, CHCl_3, 98\% ee); $R_f = 0.72$ (Hexane/EtOAc= 4/1); 1H \\ \mbox{Me} \end{array} \\ \begin{array}{l} \mbox{MR (600 MHz, CDCl_3): δ 7.15-7.11 (m, 4H), 7.08 (t, J = 7.6 Hz, 4H), 7.03-7.00 (m, 2H), 6.30 (dd, J = 17.2, $11.0 Hz, 1H), 5.40-5.33 (m, 2H), 1.80 (s, 3H); ^{13}C NMR (151 MHz, CDCl_3): δ 140.5, 137.6, 136.3, 127.6, $127.5, 127.5, 126.8, 126.7, 126.4, 118.9, 71.5, 69.5, 20.5; $IR (ATR): 2954, 2922, 2868, 2853, 1741, 1459, 1376, 803, 772 cm^{-1}; $HRMS(ESI) $m/z: $[M+Na]^+$ Calcd for $C_{17}H_{16}NaO$ 259.1093, found: 259.1092; $HPLC$ analysis: Chiralcel OD-3 column (Hexane: $PrOH = 99.5/0.5, 1.0 mL/min, 40 $^{\circ}C$, 220 nm) 5.7 min (minor), 6.2 min (major). Configuration Assignment: The relative and absolute configurations were assigned as $(2S,3R)$ by analogy with compound$ **5b** $. \\ \end{array}$

(*R*,*E*)-4-hydroxy-3,4-diphenylpent-2-en-1-yl 2,2,2-trichloroacetimidate (4a)

Ph HO Me^{*} Ph 4a 52% yield (20.7 mg); colorless oil; $[\alpha]_D^{25}$ -31.7 (*c* 0.79, CHCl₃, 88% ee); R_f = 0.32 (Hexane/EtOAc= 4/1); ¹H NMR (600 MHz, CDCl₃): δ 8.20 (s, 1H), 7.43-7.41 (m, 2H), 7.32 (td, *J* = 7.6, 1.8 Hz, 2H), 7.26 (tt, *J* = 7.1, 1.8 Hz, 1H), 7.23-7.17 (m, 3H), 6.77-6.75 (m, 2H), 6.28 (t, *J* = 6.9 Hz, 1H), 4.56 (d, *J* = 6.9 Hz, 2H), 2.02 (s, 1H), 1.72 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 162.7, 152.3, 145.5, 136.5, 129.5, 128.2, 128.1, 127.7, 127.3, 126.0, 120.5, 91.6, 77.05, 67.3, 28.9; IR (ATR): 3338, 2981, 1660, 1298, 1073, 977, 822, 796, 700, 648 cm⁻¹; HRMS(ESI) *m*/*z*: [M+Na]⁺ Calcd for C₁₉H₁₈Cl₃NNaO₂ 420.0295, found: 420.0295; HPLC analysis: Chiralpak IA-3 column (Hexane:ⁱPrOH = 95/5, 1.0 mL/min, 40 °C, 220 nm) 9.6 min (minor), 11.0 min (major). The absolute configurations were assigned as (*R*) by derivatization.

(2*S*,3*R*)-2-methyl-3-phenyl-2-(4-(trifluoromethyl)phenyl)-3-vinyloxirane (5b)

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} 34\% \ \text{yield} \ (10.3 \ \text{mg}); \ \text{colorless oil}; \ [\alpha]_{D}^{27} + 136.3 \ (c \ 0.82, \ \text{CHCl}_{3}, \ 94\% \ \text{ee}); \ \text{R}_{f} = 0.45 \ (\text{Hexane/EtOAc} = 10/1); \ ^{1}\text{H} \ \text{NMR} \ (600 \ \text{MHz}, \ \text{CDCl}_{3}): \ \delta \ 7.33 \ (d, \ J = 8.2 \ \text{Hz}, \ 2\text{H}), \ 7.26-7.24 \ (m, \ 2\text{H}), \ 7.10-7.07 \ (m, \ 4\text{H}), \ 7.04 \ (m, \ 2\text{H}), \ 7.10-7.07 \ (m, \ 4\text{H}), \ 7.04 \ (m, \ 2\text{H}), \ 7.10-7.07 \ (m, \ 4\text{H}), \ 7.04 \ (m, \ 2\text{H}), \ 7.10-7.07 \ (m, \ 4\text{H}), \ 7.04 \ (m, \ 2\text{H}), \ 7.10-7.07 \ (m, \ 4\text{H}), \ 7.04 \ (m, \ 2\text{H}), \ 1.79 \ (s, \ 3\text{H}); \ ^{13}\text{C} \ \text{NMR} \ (151 \ \text{MHz}, \ \text{CDCl}_{3}): \ \delta \ 144.6, \ 137.0, \ 135.7, \ 129.0 \ (q, \ J = 31.9 \ \text{Hz}), \ 127.8, \ 127.4, \ 127.2, \ 126.8, \ 124.6 \ (q, \ J = 4.4 \ \text{Hz}), \ 124.2 \ (q, \ J = 271.8 \ \text{Hz}), \ 119.5, \ 71.7, \ 69.0, \ 20.2; \ \text{IR} \ (\text{ATR}): \ 2954, \ 2922, \ 2868, \ 2853, \ 1734, \ 1459, \ 1376, \ 772 \ \text{cm}^{-1}; \ \text{HRMS}(\text{ESI}) \ m/z: \ [\text{M+Na}]^{+} \ \text{Calcd for } \ C_{18} \ \text{H}_{15} \ \text{F}_{3} \ \text{NaO} \ 327.0966; \ \text{HPLC} \ \text{analysis: Chiralcel OD-3 \ column \ (Hexane:^{i} \ \text{PrOH} = 99.9:0.1, \ 1.0 \ \text{mL/min}, \ 40 \ ^{\circ} \ \text{C}, \ 220 \ \text{nm}) \ 6.1 \ \text{min} \ (\text{minor}), \ 6.5 \ \text{min} \ (\text{major}). \ \text{Configuration} \ \text{Assignment: The relative and absolute} \ \text{configurations were assigned as} \ (2S, \ 3R) \ \text{by derivatization of } \ \textbf{4a} \ \text{and NOE analysis.} \ \ \text{Configuration} \ \text{Assignment: The relative} \ \text{and} \ \text{Assignment: The relative} \ \text{and} \ \text{Assignment: The} \ \text{PrOH} \ \text{Assignment: The} \ \text{Assignment: Assignment: The} \ \text{Assignment: Assignment: Assignment: The} \ \text{Assignment: Assignment: The} \ \text{Assignment: Assignment: Assignment:$

(*R*,*E*)-4-hydroxy-3-phenyl-4-(4-(trifluoromethyl)phenyl)pent-2-en-1-yl 2,2,2-trichloroacetimidate (4b)

Ph NH HO Me R^L 4b $(R^{L} = 4-CF_{3}C_{6}H_{4})$ NH $(R^{L} = 4-CF_{3}C_{6}H_{4})$ $(R^{L} = 4-CF_{3}C_{6}H_{4})$ NH $(R^{L} = 4-CF_{3}C_{6}H_{4})$ $(R^{L} =$

125.2 (q, J = 4.4 Hz), 121.9 (q, J = 273.5Hz), 121.5, 91.6, 67.0, 29.2, one carbon was not found due to overlapping; IR (ATR): 3340, 2981, 1661, 1324, 1164, 1123, 1072, 797, 772 cm⁻¹; HRMS(ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₇Cl₃F₃NNaO₂ 488.0169, found: 488.0168.; HPLC analysis: Chiralpak IA-3 column (Hexane:^{*i*}PrOH = 95/5, 1.0 mL/min, 40 °C, 220 nm) 8.5 min (minor), 10.1 min (major). The absolute configurations were assigned as (*R*) by analogy with compound **4a**.

(2S,3R)-2-(4-chlorophenyl)-2-methyl-3-phenyl-3-vinyloxirane (5c)

(*R*,*E*)-4-(4-chlorophenyl)-4-hydroxy-3-phenylpent-2-en-1-yl 2,2,2-trichloroacetimidate (4c)

45% yield (19.5 mg); colorless oil; $[α]_D^{25}$ –28.9 (*c* 1.58, CHCl₃, 92% ee); R_f = 0.35 (Hexane/EtOAc= 4/1); ¹H NMR (600 MHz, CDCl₃): δ 8.21 (s, 1H), 7.36 (td, *J* = 5.5, 3.2 Hz, 2H), 7.29 (dt, *J* = 8.9, 2.2 Hz, 2H), 7.25-7.20 (m, 3H), 6.77 (td, *J* = 4.8, 2.7 Hz, 2H), 6.26 (t, *J* = 6.5 Hz, 1H), 4.55 (dd, *J* = 6.9, 1.4 Hz, 2H), 1.99 (s, 1H), 1.71 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 162.6, 151.8, 144.1, 136.2,

133.2, 129.5, 128.4, 127.9, 127.5, 120.9, 91.5, 76.7, 67.1, 29.1; IR (ATR): 3338, 2978, 1661, 1490, 1300, 1219, 1091, 1013, 978, 771, 703, 649 cm⁻¹; HRMS(ESI) m/z: [M+Na]⁺Calcd for C₁₉H₁₇Cl₄NNaO₂ 453.9906, found: 453.9905; HPLC analysis: Chiralpak IA-3 column (Hexane:^{*i*}PrOH = 95/5, 1.0 mL/min, 40 °C, 220 nm) 9.8 min (minor), 11.8 min (major). The absolute configurations were assigned as (*R*) by analogy with compound **4a**.

(2*S*,3*R*)-2-methyl-3-phenyl-2-(p-tolyl)-3-vinyloxirane (5d)

(R,E)-4-hydroxy-3-phenyl-4-(p-tolyl)pent-2-en-1-yl 2,2,2-trichloroacetimidate (4d)

Ph NH HO NH Me^{R^{L}} 40% yield (16.5 mg); colorless oil; $[\alpha]_{D}^{25}$ -9.14 (*c* 1.44, CHCl₃, 85% ee); R_f = 0.36 (Hexane/EtOAc= 4/1); ¹H NMR (600 MHz, CDCl₃): δ 8.20 (s, 1H), 7.32-7.30 (m, 2H), 7.24-7.18 (m, 3H), 7.13 (d, J = 7.6 Hz, 2H), 6.78-6.77 (m, 2H), 6.28 (t, J = 6.9 Hz, 1H), 4.56 (d, J = 6.9 Hz, 2H), 2.36 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 162.7, 152.5, 142.5, 136.9, 136.6, 129.5, 128.9, 128.1, 127.7, 125.9, 128.9, 128.1, 127.9, 128.9, 128.1, 127.9, 128.9, 128.1, 127.9, 128.9, 128.1, 127.9, 128.9, 128.1, 127.9, 128.9, 128.1, 127.9, 128.9, 128.1, 127.9, 128.9, 128.1, 127.9, 128.9, 128.1, 127.9, 128.9, 128.1, 128.9, 128.1, 128.9, 128.1, 128.9, 128.1, 128.9, 128.1, 128.9, 128.1, 128.9, 128.1, 128.9, 128.1, 128.9, 128.9, 128.9, 128.9, 128.9, 128.9,

120.2, 91.6, 76.9, 67.3, 28.8, 21.2; IR (ATR): 3340, 2979, 1660, 1291, 1075, 976, 819, 794, 772, 703, 647 cm⁻¹; HRMS(ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₂₀Cl₃NNaO₂ 434.0452, found: 434.0451.; HPLC analysis: Chiralpak IA-3 column (Hexane:^{*i*}PrOH = 95:5, 1.0 mL/min, 40 °C, 220 nm) 9.5 min (minor), 11.6 min (major). The absolute configurations were assigned as (*R*) by analogy with compound **4a**.

3-(4-methoxyphenyl)-3-phenylpent-4-en-2-one (6e)

(*R*,*E*)-4-hydroxy-4-(4-methoxyphenyl)-3-phenylpent-2-en-1-yl 2,2,2-trichloroacetimidate (4e)

11% yield (4.7 mg); colorless oil; $[\alpha]_D^{25}$ –67.5 (*c* 0.98, CHCl₃, 67% ee); R_f = 0.30 (Hexane/EtOAc= 4/1); ¹H NMR (600 MHz, CDCl₃): δ 8.20 (s, 1H), 7.34 (td, *J* = 5.8, 3.7 Hz, 2H), 7.24-7.18 (m, 3H), 6.85 (td, *J* = 6.0, 3.7 Hz, 2H), 6.77-6.75 (m, 2H), 6.28 (t, *J* = 6.9 Hz, 1H), 4.55 (d, *J* = 6.9 Hz, 2H), 3.82 (s, 3H), 1.95 (s, 1H), 1.69 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 162.7, 158.8, 152.5, 137.5,

136.7, 129.5, 128.1, 127.7, 127.3, 120.1, 113.5, 91.5, 76.7, 67.3, 55.4, 28.8; IR (ATR): 3337, 2935, 2636, 2310, 1725, 1661, 1249, 1086, 772 cm⁻¹; HRMS(ESI) *m/z*: $[M+Na]^+$ Calcd for C₂₀H₂₀Cl₃NNaO₃ 450.0401, found: 450.0401.; HPLC analysis: Chiralpak IA-3 column (Hexane: PrOH = 95:5, 1.0 mL/min, 40 °C, 220 nm) 14.2 min (major), 17.7 min (minor). The absolute configurations were assigned as (*R*) by analogy with compound **4a**.

(2*S*,3*R*)-2-(3-chlorophenyl)-2-methyl-3-phenyl-3-vinyloxirane (5f)

40% yield (10.8 mg); colorless oil; $[\alpha]_D^{27}$ +80.1 (*c* 0.56, CHCl₃, 95% ee); R_f = 0.33 (Hexane/EtOAc= 10/1); ¹H NMR (600 MHz, CDCl₃): δ 7.14 (d, *J* = 1.4 Hz, 1H), 7.11 (d, *J* = 4.1 Hz, 4H), 7.05 (q, *J* = 4.4 Hz, 1H), (R^L = 3-ClC₆H₄) 7.00-6.98 (m, 3H), 6.26 (dd, *J* = 17.2, 11.0 Hz, 1H), 5.41-5.32 (m, 2H), 1.77 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 142.6, 137.1, 135.8, 133.6, 128.9, 127.7, 127.4, 127.1, 127.0, 126.7, 124.6, 119.4, 71.6, 68.8, 20.2; IR (ATR): 2957, 2923, 2869, 1733, 1459, 1261, 1081, 772 cm⁻¹; HRMS(ESI) *m/z*: [M+Na]⁺ Calcd for C₁₇H₁₅ClNaO 293.0704, found: 293.0703.; HPLC analysis: Chiralcel OD-3 column (Hexane:^{*i*}PrOH = 99.9/0.1, 1.0 mL/min, 40 °C, 220 nm) 9.3 min (minor), 11.8 min (major). Configuration Assignment: The relative and absolute configurations were assigned as (2*S*,3*R*) by analogy with compound **5b**.

(R,E)-4-(3-chlorophenyl)-4-hydroxy-3-phenylpent-2-en-1-yl 2,2,2-trichloroacetimidate (4f)

Ph NH HO NH Me^{R^{L}} 45% yield (19.5 mg); colorless oil; $[\alpha]_{D}^{21}$ -49.1 (*c* 1.7, CHCl₃, 85% ee); R_f = 0.34 (Hexane/EtOAc= 4/1); ¹H NMR (600 MHz, CDCl₃): δ 8.23 (s, 1H), 7.44 (s, 1H), 7.29 (qd, *J* = 4.4, 2.2 Hz, 1H), 7.26-7.21 (m, 5H), 6.79 (dd, *J* = 8.2, 1.4 Hz, 2H), 6.26 (t, *J* = 6.5 Hz, 1H), 4.57 (q, *J* = 3.4 Hz, 2H), 2.01 (s, 1H), 1.71 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 162.6, 151.6, 147.7, 136.1, 134.2, 129.5, 129.4,

128.2, 127.9, 127.4, 126.3, 124.2, 121.2, 91.5, 76.7, 67.1, 28.9; IR (ATR): 3339, 2980, 2310, 1725, 1661, 1076, 795, 703 cm⁻¹; HRMS(ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₇Cl₄NNaO₂ 453.9906, found: 453.9905.; HPLC analysis: Chiralpak IA-3 column (Hexane:^{*i*}PrOH = 98:2, 1.0 mL/min, 40 °C, 220 nm) 18.5 min (minor), 19.4 min (major). The absolute configurations were assigned as (*R*) by analogy with compound **4a**.

(2S,3R)-2-methyl-3-phenyl-2-(m-tolyl)-3-vinyloxirane (5g)

(*R*,*E*)-4-hydroxy-3-phenyl-4-(m-tolyl)pent-2-en-1-yl 2,2,2-trichloroacetimidate (4g)

Ph NH 43% yield (17.7 mg); colorless oil; $[\alpha]_D^{25}$ -59.1 (c 1.72, CHCl₃, 78% ee); R_f = 0.35 (Hexane/EtOAc= 4/1); ¹H NMR (600 MHz, CDCl₃): δ 8.19 (s, 1H), 7.25 (s, 1H), 7.24-7.17 (m, 5H), 7.09-7.07 (m, 1H), 6.77 (dt, J = 8.2, 1.7 Hz, 2H), 6.27 (t, J = 6.5 Hz, 1H), 4.56 (dd, J = 6.9, 1.4 Hz, 2H), 2.34 (s, 3H), 2.06 (s, 1H), 1.70 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 162.6, 152.4, 145.4, 137.8, 136.5,

129.5, 128.1, 128.1, 127.7, 126.6, 123.0, 120.4, 91.5, 76.9, 67.3, 28.9, 21.7; IR (ATR): 3341, 2954, 2923, 1661, 1294, 1077, 976, 821, 794, 704, 648 cm⁻¹; HRMS(ESI) *m*/*z*: [M+Na]⁺ Calcd for C₂₀H₂₀Cl₃NNaO₂ 434.0452, found: 434.0451.; HPLC

analysis: Chiralpak IA-3 column (Hexane: PrOH = 95:5, 1.0 mL/min, 40 °C, 220 nm) 8.7 min (minor), 9.7 min (major). The absolute configurations were assigned as (*R*) by analogy with compound **4a**.

(2*S*,3*R*)-2-(3-methoxyphenyl)-2-methyl-3-phenyl-3-vinyloxirane (5h)

(*R*,*E*)-4-hydroxy-4-(3-methoxyphenyl)-3-phenylpent-2-en-1-yl 2,2,2-trichloroacetimidate (4h)

 $\begin{array}{l} \begin{array}{c} \text{Ph} & \text{NH} \\ \text{CCI}_{3} \end{array} & \begin{array}{c} 37\% \text{ yield } (15.9 \text{ mg}); \text{ colorless oil}; [\alpha]_{D}^{25} - 10.2 \ (c \ 1.38, \text{CHCl}_{3}, 94\% \text{ ee}); \text{R}_{f} = 0.30 \ (\text{Hexane/EtOAc} = 4/1); \ ^{1}\text{H} \ \text{NMR} \ (600 \ \text{MHz}, \text{CDCl}_{3}): \delta \ 8.20 \ (s, \ 1\text{H}), 7.26 - 7.18 \ (m, \ 4\text{H}), 7.01 - 6.99 \ (m, \ 2\text{H}), 6.82 - 6.78 \ (m, \ 3\text{H}), 6.27 \ (t, \ J = 6.5 \ \text{Hz}, \ 1\text{H}), 4.56 \ (\text{dd}, \ J = 6.9, \ 1.4 \ \text{Hz}, \ 2\text{H}), 3.78 \ (s, \ 3\text{H}), 2.10 \ (s, \ 1\text{H}), 1.71 \ (s, \ 3\text{H}); \ ^{13}\text{C} \ \text{NMR} \ (151 \ \text{MHz}, \ \text{CDCl}_{3}): \ 162.6, \ 159.6, \ 152.12, \ 147.3, \ 136.4, \ 129.5, \ 129.2, \ 128.1, \ 127.8, \end{array}$

120.5, 118.4, 112.6, 111.8, 91.5, 76.9, 67.2, 55.4, 28.9; IR (ATR): 3338, 2938, 1661, 1598, 1486. 1288, 1252, 1074, 976, 794, 774, 703, 647 cm⁻¹; HRMS(ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₂₀Cl₃NNaO₃ 450.0401, found: 450.0400; HPLC analysis: Chiralcel OD-3 column (Hexane:^{*i*}PrOH = 95/5, 40 °C, 220 nm) 11.4 min (major), 14.2 min (minor). The absolute configurations were assigned as (*R*) by analogy with compound **4a**.

(2S,3R)-2-(2-chlorophenyl)-2-methyl-3-phenyl-3-vinyloxirane (5i)

Mè

 $\begin{array}{c} \mathsf{R}_{\mathsf{Me}}^{\mathsf{L}} \overset{\mathsf{O}}{\longrightarrow} \mathsf{Ph} \\ \mathsf{Me} \overset{\mathsf{O}}{\longrightarrow} \mathsf{I}^{\mathsf{N}} \\ \mathsf{Si} \\ (\mathsf{R}^{\mathsf{L}} = 2\text{-}\mathsf{ClC}_{6}\mathsf{H}_{4}) \end{array} \\ \begin{array}{c} 37\% \text{ yield } (10.3 \text{ mg}); \text{ colorless oil; } [\alpha]_{D}^{25} + 140.2 \ (c \ 0.1, \mathsf{CHCl}_{3}, 94\% \text{ ee}); \mathsf{R}_{\mathrm{f}} = 0.32 \ (\mathsf{Hexane/EtOAc} = 10/1); \\ \mathsf{I}^{\mathsf{H}} \text{ NMR} \ (600 \text{ MHz}, \mathsf{CDCl}_{3}): \delta \ 7.45 \ (\mathrm{dd}, J = 7.9, 1.7 \text{ Hz}, 1\mathrm{H}), 7.30\text{-}7.28 \ (\mathrm{m}, 2\mathrm{H}), 7.10\text{-}7.06 \ (\mathrm{m}, 3\mathrm{H}), 7.04\text{-} \\ \mathsf{(R}^{\mathsf{L}} = 2\text{-}\mathsf{ClC}_{6}\mathsf{H}_{4}) \end{aligned} \\ \begin{array}{c} \mathsf{6.97} \ (\mathrm{m}, 3\mathrm{H}), \ 6.44 \ (\mathrm{dd}, J = 17.2, 11.0 \ \mathrm{Hz}, 1\mathrm{H}), 5.48\text{-}5.45 \ (\mathrm{m}, 2\mathrm{H}), 1.76 \ (\mathrm{s}, 3\mathrm{H}); {}^{13}\mathrm{C} \text{ NMR} \ (151 \ \mathrm{MHz}, \mathrm{CDCl}_{3}): \\ \delta \ 138.7, \ 136.9, \ 134.7, \ 131.2, \ 128.9, \ 128.9, \ 128.5, \ 127.2, \ 127.0, \ 126.8, \ 126.3, \ 119.0, \ 70.7, \ 70.1, \ 19.4; \ \mathrm{IR} \ (\mathrm{ATR}): \ 2955, \ 2925, \\ 2854, \ 1733, \ 1446, \ 731, \ 699 \ \mathrm{cm}^{-1}; \ \mathrm{HRMS}(\mathrm{ESI}) \ m/z: \ [\mathrm{M}+\mathrm{Na}]^{+} \ \mathrm{Calcd} \ \mathrm{for} \ \mathrm{C}_{17}\mathrm{H}_{15}\mathrm{ClNaO:} \ 293.0704, \ \mathrm{found}: \ 293.0703.; \ \mathrm{HPLC} \\ \mathrm{analysis:} \ \mathrm{Chiralcel} \ \mathrm{OD-3} \ \mathrm{column} \ (\mathrm{Hexane:}^{!}\mathrm{PrOH} = 99.5:0.5, \ 1.0 \ \mathrm{mL/min}, \ 40 \ ^{\circ}\mathrm{C}, \ 220 \ \mathrm{nm}) \ 5.0 \ \mathrm{min} \ (\mathrm{minor}), \ 5.4 \ \mathrm{min} \ (\mathrm{major}). \\ \mathrm{Configuration} \ \mathrm{Assignment:} \ \mathrm{Th} \ \mathrm{relative} \ \mathrm{and} \ \mathrm{absolute} \ \mathrm{configurations} \ \mathrm{were} \ \mathrm{assigned} \ \mathrm{as} \ (2S, 3R) \ \mathrm{by} \ \mathrm{analogy} \ \mathrm{with} \ \mathrm{compound} \ \mathbf{5b}. \end{aligned}$

(S,E)-4-(2-chlorophenyl)-4-hydroxy-3-phenylpent-2-en-1-yl 2,2,2-trichloroacetimidate (4i)

 $\begin{array}{c} \begin{array}{c} \mbox{Ph} & \mbox{NH} & \mbox{49\% yield (20.0 mg); colorless oil; } [\alpha]_{D}{}^{25}-1.7 (c\ 1.01, CHCl_{3}, 56\% \ ee); R_{\rm f} = 0.34 (Hexane/EtOAc = 4/1); \ ^{1}{\rm H} \ {\rm NMR} \ (600 \ {\rm MHz}, \ {\rm CDCl}_{3}): \delta \ 8.17 \ ({\rm s}, \ 1{\rm H}), 7.50 \ ({\rm dd}, \ J = 7.2, \ 2.4 \ {\rm Hz}, \ 1{\rm H}), 7.36 \ ({\rm dd}, \ J = 7.2, \ 4/1); \ ^{1}{\rm H} \ {\rm NMR} \ (600 \ {\rm MHz}, \ {\rm CDCl}_{3}): \delta \ 8.17 \ ({\rm s}, \ 1{\rm H}), 7.50 \ ({\rm dd}, \ J = 7.2, \ 2.4 \ {\rm Hz}, \ 1{\rm H}), 7.36 \ ({\rm dd}, \ J = 7.2, \ 4/1); \ ^{1}{\rm H} \ {\rm NMR} \ (600 \ {\rm MHz}, \ {\rm CDCl}_{3}): \delta \ 8.17 \ ({\rm s}, \ 1{\rm H}), 7.50 \ ({\rm dd}, \ J = 7.2, \ 2.4 \ {\rm Hz}, \ 1{\rm H}), 7.36 \ ({\rm dd}, \ J = 7.2, \ 4/1); \ ^{1}{\rm H} \ {\rm NMR} \ (600 \ {\rm MHz}, \ {\rm CDCl}_{3}): \delta \ 8.17 \ ({\rm s}, \ 1{\rm H}), 7.03 \ ({\rm q}, \ J = 3.0 \ {\rm Hz}, \ 2{\rm H}), 6.05 \ ({\rm t}, \ J = 6.9 \ {\rm Hz}, \ 1{\rm H}), 4.56 \ ({\rm d}, \ J = 6.9 \ {\rm Hz}, \ 2{\rm H}), 3.04 \ ({\rm s}, \ 1{\rm H}), 1.79 \ ({\rm s}, \ 3{\rm H}); \ ^{13}{\rm C} \ {\rm NMR} \ (151 \ {\rm MHz}, \ {\rm CDCl}_{3}): \delta \ 162.6, \ 150.5, \ 142.2, \ 136.5, \ 132.3, \ 131.3, \ 129.5, \ 128.9, \ 128.4, \ 128.0, \ 127.7, \ 126.9, \ 122.1, \ 91.5, \ 76.9, \ 67.1, \ 27.3; \ {\rm IR} \ ({\rm ATR}): \ 3340, \ 120.5$

S7

2954, 2925, 1661, 1293, 1219, 1078, 796, 702 cm⁻¹; HRMS(ESI) m/z: [M+Na]⁺Calcd for C₁₉H₁₇Cl₄NNaO₂ 453.9906, found.: 453.9905; HPLC analysis: Chiralpak IA-3 column (Hexane:^{*i*}PrOH = 95:5, 1.0 mL/min, 40 °C, 220 nm) 10.8 min (minor), 12.3 min (major). The absolute configurations were assigned as (*R*) by analogy with compound **4a**.

(2S,3R)-2-isopropyl-2-methyl-3-phenyl-3-vinyloxirane (5j)

 $\begin{array}{l} & \overset{\text{Me}}{\text{Me}} & \overset{\text{Me}}{\text{Me}} & \overset{\text{32\% yield (7.9 mg); colorless oil; } [\alpha]_{D}^{27} + 74.4 (c \ 0.1, CHCl_{3}, 92\% \ ee); R_{f} = 0.72 (Hexane/EtOAc= 4/1); ^{1}H \\ & \overset{\text{Me}}{\text{Me}} & \overset{\text{Me}}{\text$

(*R*,*E*)-4-hydroxy-4,5-dimethyl-3-phenylhex-2-en-1-yl 2,2,2-trichloroacetimidate (4j)

^{Ph} ^{HO} ^{HO}

(2*S*,3*R*)-2-ethyl-2,3-diphenyl-3-vinyloxirane (5k)

Ph/, Ph Et 5k 49% yield (12.3 mg); colorless oil; $[\alpha]_D^{27}$ +15.0 (*c* 0.98, CHCl₃, 95% ee); R_f = 0.73 (Hexane/EtOAc= 4/1); ¹H NMR (600 MHz, CDCl₃): δ 7.12-7.11 (m, 4H), 7.07 (td, *J* = 7.6, 3.7 Hz, 4H), 7.02-6.99 (m, 2H), 6.35 (dd, *J* = 17.2, 11.0 Hz, 1H), 5.39-5.36 (m, 2H), 2.16 (td, *J* = 14.4, 7.1 Hz, 1H), 2.01 (td, *J* = 14.3, 7.1 Hz, 1H), 0.93 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 138.4, 138.0, 135.9, 129.9, 127.5, 127.5, 127.2, 126.7, 126.7, 118.6, 73.9, 71.8, 26.0, 9.5; IR (ATR): 2954, 2922, 2852, 1732, 1461, 1376, 1217, 759, 698 cm⁻¹; HRMS(ESI) *m/z*: [M+Na]⁺ Calcd for C₁₈H₁₈NaO 273.1250, found: 273.1249.; HPLC analysis: Chiralcel OD-3 column (Hexane: 'PrOH = 99.5/0.5, 1.0 mL/min, 40 °C, 220 nm) 4.6 min (minor), 5.1 min (major). Configuration Assignment: The relative and absolute configurations were assigned as (2*S*,3*R*) by analogy with compound **5**b.

(*R*,*E*)-4-hydroxy-3,4-diphenylhex-2-en-1-yl 2,2,2-trichloroacetimidate (4k)

 $\begin{array}{c} \text{Ph} & \text{NH} \\ \text{HO} & \text{CCl}_3 \\ \text{HO} & \text{CCl}_3 \\ \text{HO} & \text{CCl}_3 \\ \text{HO} & \text{CCl}_3 \\ \text{Hexane/EtOAc} = 10/1); \ ^1\text{H NMR} \ (600 \ \text{MHz}, \text{CDCl}_3): \delta 8.20 \ (s, 1\text{H}), 7.38-7.36 \ (m, 2\text{H}), 7.31 \ (t, J = 7.6 \ \text{Hz}, 2\text{H}), 7.27-7.21 \ (m, 2\text{H}), 7.17 \ (t, J = 7.6 \ \text{Hz}, 2\text{H}), 6.71 \ (d, J = 6.9 \ \text{Hz}, 2\text{H}), 6.27 \ (t, J = 6.5 \ \text{Hz}, 1\text{H}), 4.55 \ (d, J = 6.9 \ \text{Hz}, 2\text{H}), 2.06 \ (td, J = 7.9, 6.6 \ \text{Hz}, 2\text{H}), 1.91 \ (d, J = 2.1 \ \text{Hz}, 1\text{H}), 0.92 \ (t, J = 7.2 \ \text{Hz}, 3\text{H}); \ ^{13}\text{C NMR} \ (151) \end{array}$

MHz, CDCl₃): δ 162.6, 151.4, 144.3, 136.5, 129.5, 128.1, 128.1, 127.7, 127.2, 126.5, 120.8, 91.5, 79.2, 67.3, 32.4, 7.9; IR (ATR): 3340, 2955, 2925, 1661, 1291, 1076, 976, 795, 771, 700, 648 cm⁻¹; HRMS(ESI) *m/z*: [M+Na]⁺ Calcd for C₂₀H₂₀Cl₃NNaO₂ 434.0452, found: 434.0452.; HPLC analysis: Chiralpak IA-3 column (Hexane:^{*i*}PrOH = 95:5, 1.0 mL/min, 40 °C, 220 nm) 8.1 min (minor), 9.0 min (major). Configuration Assignment: The absolute configurations were assigned as (*R*) by analogy with compound **4a**.

(2*R*,3*S*)-2-(4-methoxyphenyl)-3-methyl-3-phenyl-2-vinyloxirane (5l)

^{Ph/, O}, Ar Me⁻ ^{SI} ^{Ar} ^{SI} ^{Af} ^{SI} ^{Af} ^{Af} ^{Af} ^{SI} ^{Af} ^{Af} ^{SI} ^{Af} ^{SI} ^{Af} ^{Af} ^{SI} ^{Af} ^{Af} ^{SI} ^{Af} ^A

(*R*,*E*)-4-hydroxy-3-(4-methoxyphenyl)-4-phenylpent-2-en-1-yl 2,2,2-trichloroacetimidate (4l)

Ar NH HO Me Ph (Ar = 4-MeOC₆H₄) 36% yield (15.4 mg); colorless oil; $[\alpha]_D^{25}$ -29.5 (c 1.15, CHCl₃, 84% ee); R_f = 0.30 (Hexane/EtOAc= 4/1); ¹H NMR (600 MHz, CDCl₃): δ 8.20 (s, 1H), 7.43-7.42 (m, 2H), 7.33-7.30 (m, 2H), 7.25-7.27 (m, 1H), 6.72 (td, J = 5.5, 3.2 Hz, 2H), 6.68-6.66 (m, 2H), 6.27 (t, J = 6.9 Hz, 1H), 4.58 (d, J = 6.2 Hz, 2H), 3.76-3.74 (m, 3H), 2.05 (s, 1H), 1.71 (s, 3H); ¹³C NMR (151 MHz,

CDCl₃): δ 162.7, 159.2, 152.0, 145.6, 130.7, 128.5, 128.2, 127.3, 125.9, 120.6, 113.6, 91.6, 67.4, 55.3, 28.9; IR (ATR): 3337, 2935, 2636, 2310, 1725, 1661, 1249, 1086, 772 cm⁻¹; HRMS(ESI) *m/z*: [M+Na]⁺ Calcd for C₂₀H₂₀Cl₃NNaO₃ 450.0401, found: 450.040; HPLC analysis: Chiralpak IA-3 column (Hexane:^{*i*}PrOH = 95/5, 1.0 mL/min, 40 °C, 220 nm) 12.1 min (minor), 14.7 min (major). The absolute configurations were assigned as (*R*) by analogy with compound **4a**.

(2*R*,3*S*)-2-(4-chlorophenyl)-3-methyl-3-phenyl-2-vinyloxirane (5m)

^{Ph}, O, Ar Me Sm (Ar = 4-ClC₆H₄) 34% yield (13.3 mg); colorless oil; $[\alpha]_D^{26}$ +123.8 (*c* 1.54, CHCl₃, 92% ee); R_f = 0.32 (Hexane/EtOAc= 10/1); ¹H NMR (600 MHz, CDCl₃): δ 7.13-7.08 (m, 4H), 7.06-7.03 (m, 5H), 6.25 (dd, *J* = 17.2, 10.3 Hz, 1H), (Ar = 4-ClC₆H₄) 5.40 (dd, *J* = 11.0, 1.4 Hz, 1H), 5.31 (dd, *J* = 16.8, 1.7 Hz, 1H), 1.78 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 140.1, 136.3, 135.7, 132.6, 128.9, 127.85, 127.82, 127.0, 126.3, 119.4, 70.9, 69.6, 20.5; IR (ATR): 2958, 2922, 2869, 1741, 1459, 1260, 1092, 1023, 802, 772 cm⁻¹; HRMS(ESI) *m*/*z*: [M+Na]⁺ Calcd for C₁₇H₁₅ClNaO 293.0704, found: 293.0703; HPLC analysis: Chiralcel OD-3 column (Hexane:^{*i*}PrOH = 99.5/0.5, 1.0 mL/min, 40 °C, 220 nm) 4.8 min (major), 5.1 min (minor). Configuration Assignment: The relative and absolute configurations were assigned as (2*R*,3*S*) by analogy with compound **5b**.

(*R*,*E*)-3-(4-chlorophenyl)-4-hydroxy-4-phenylpent-2-en-1-yl 2,2,2-trichloroacetimidate (4m)

49% yield (14.7 mg); colorless oil; $[\alpha]_D^{25}$ -7.1 (*c* 3.37, CHCl₃, 56% ee); R_f = 0.34 (Hexane/EtOAc= 4/1); ¹H NMR (600 MHz, CDCl₃): δ 8.22 (s, 1H), 7.40-7.38 (m, 2H), 7.33-7.31 (m, 2H), 7.28-7.26 (m, 1H), 7.16 (dt, *J* = 8.9, 2.1 Hz, 2H), 6.68 (dd, *J* = 8.6, 2.4 Hz, 2H), 6.32 (t, *J* = 6.9 Hz, 1H), 4.54 (d, *J* = 6.9 Hz, 2H), 2.03 (s, 1H), 1.71 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 162.6, 151.4, 144.9,

135.1, 133.8, 130.9, 128.4, 128.3, 127.5, 125.9, 120.8, 91.5, 76.9, 66.9, 28.7; IR (ATR): 3338, 2983, 1660, 1489, 1090, 829, 768, 701 cm⁻¹; HRMS(ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₇Cl₄NNaO 453.9906, found: 453.9905; HPLC analysis: Chiralpak IA-3 column (Hexane: PrOH = 95/5, 1.0 mL/min, 40 °C, 220 nm) 10.2 min (minor), 11.8 min (major). The absolute configurations were assigned as (*R*) by analogy with compound **4a**.

(2*R*,3*S*)-2-([1,1'-biphenyl]-4-yl)-3-methyl-3-phenyl-2-vinyloxirane (5n)

^{Ph}, O, Ar Me ^{Sn} (Ar = 4-PhC₆H₄) 26% yield (11.9 mg); colorless oil; $[\alpha]_D^{26}$ +164.1 (*c* 1.56, CHCl₃, 95% ee); R_f = 0.73 (Hexane/EtOAc= 4/1); ¹H NMR (600 MHz, CDCl₃): δ 7.47-7.45 (m, 2H), 7.37-7.35 (m, 2H), 7.33-7.31 (m, 2H), 7.29-7.26 (m, 1H), (Ar = 4-PhC₆H₄) 7.19-7.16 (m, 4H), 7.10-7.07 (m, 2H), 7.01 (dd, *J* = 8.2, 6.2 Hz, 1H), 6.33 (dd, *J* = 16.8, 10.7 Hz, 1H), 5.42-5.36 (m, 2H), 1.80 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 140.7, 140.4, 139.5, 136.7, 136.2, 128.7, 127.8, 127.7, 127.3, 127.0, 126.8, 126.4, 126.3, 119.0, 71.4, 69.6, 20.5; IR (ATR): 3028, 2957, 2924, 2868, 1740, 1487, 1446, 768, 698 cm⁻¹; HRMS(ESI) *m*/*z*: [M+Na]⁺ Calcd for C₂₃H₂₀NaO 335.1406, found: 335.1406; HPLC analysis: Chiralcel OD-3 column (Hexane:^{*i*}PrOH = 99.9/0.1, 1.0 mL/min, 40 °C, 220 nm) 12.8 min (minor), 13.2 min (major). Configuration Assignment: The relative and absolute configurations were assigned as (2*R*,3*S*) by analogy with compound **5**b.

(*R*,*E*)-3-([1,1'-biphenyl]-4-yl)-4-hydroxy-4-phenylpent-2-en-1-yl 2,2,2-trichloroacetimidate (4n)

HO Me^{2} Ph 4n $(Ar = 4-PhC_{6}H_{4})$ 71% yield (23.3 mg); colorless oil; $[\alpha]_D^{25}$ –27.2 (*c* 5.6, CHCl₃, 36% ee); $R_f = 0.33$ (Hexane/EtOAc= 10/1); ¹H NMR (600 MHz, CDCl₃): δ 8.23 (s, 1H), 7.54 (d, *J* = 8.2 Hz, 2H), 7.47-7.46 (m, 2H), 7.43-7.40 (m, 4H), 7.36-7.27 (m, 4H), 6.84-6.82 (m, 2H), 6.32 (t, *J* = 6.9 Hz, 1H), 4.63 (d, *J* = 6.9 Hz, 2H), 2.05 (s, 1H), 1.76 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 162.7, 152.0, 145.5, 140.5, 140.5,

135.5, 130.0, 128.9, 128.3, 127.5, 127.4, 127.1, 126.7, 126.0, 120.6, 91.5, 67.3, 29.0; IR (ATR, cm⁻¹): 3337, 2983, 1661, 1486, 1300, 1074, 771, 699; HRMS(ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₂₂Cl₃NNaO₂ 496.0608, found: 496.0607; HPLC analysis: Chiralpak IA-3 column (Hexane: PrOH = 95/5, 1.0 mL/min, 40 °C, 220 nm) 13.6 min (minor), 15.4 min (major). The absolute configurations were assigned as (*R*) by analogy with compound **4a**.

(2S,3R)-2-methyl-2-phenyl-3-(m-tolyl)-3-vinyloxirane (5p)

^{Ph}, Ar Me ^{Sp} ^{Sp} (Ar = 3-MeC₆H₄) 30% yield (7.5 mg); colorless oil; $[\alpha]_D^{26}$ +120.7 (*c* 1.1, CHCl₃, 96% ee); R_f = 0.44 (Hexane/EtOAc= 10/1); ¹H NMR (600 MHz, CDCl₃): δ 7.14-7.13 (m, 2H), 7.09-7.06 (m, 2H), 7.03-7.02 (m, 1H), 6.96-6.93 (m, (Ar = 3-MeC₆H₄) 2H), 6.88 (d, *J* = 7.9 Hz, 1H), 6.82 (d, *J* = 7.2 Hz, 1H), 6.29 (dd, *J* = 17.2, 10.7 Hz, 1H), 5.38-5.32 (m, 2H), 2.17 (s, 3H), 1.78 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 140.5, 137.5, 137.1, 136.4, 128.2, 127.5, 127.4, 126.7, 126.4, 124.5, 118.7, 71.5, 69.4, 21.4, 20.5; IR (ATR): 2954, 2922, 2868, 2853, 1741, 1460, 1376, 1081, 804, 770 cm⁻¹; HRMS(ESI) *m/z*: [M+Na]⁺ Calcd for C₁₈H₁₈NaO: 273.1250, found: 273.1249; HPLC analysis: Chiralcel OD-3 column (Hexane:^{*i*}PrOH = 99.5:0.5, 1.0 mL/min, 40 °C, 220 nm) 4.9 min (minor), 5.1 min (major). Configuration Assignment: The relative and absolute configurations were assigned as (2*S*,3*R*) by analogy with compound **5b**.

(*R*,*E*)-4-hydroxy-4-phenyl-3-(m-tolyl)pent-2-en-1-yl 2,2,2-trichloroacetimidate (4p)

 $\begin{array}{c} \text{Ar} & \text{NH} \\ \text{HO} & \text{CCl}_3 \\ \text{Me} & \text{Ph} \end{array} \\ \begin{array}{c} \text{As} & \text{NH} \\ \text{HO} & \text{CCl}_3 \\ \text{Me} & \text{Ph} \end{array} \\ \begin{array}{c} \text{G3\% yield (26.0 mg); colorless oil; } [\alpha]_D^{25} -118.9 (c \ 1.35, \text{ CHCl}_3, \ 56\% \text{ ee}); \ \text{R}_f = 0.35 \\ (\text{Hexane/EtOAc} = 4/1); \ ^1\text{H NMR (600 MHz, CDCl}_3): \delta \ 8.20 (s, 1\text{H}), \ 7.43 (d, J = 7.6 \text{ Hz}, 2\text{H}), \ 7.32 \\ (t, J = 7.6 \text{ Hz}, 2\text{H}), \ 7.28 - 7.25 (m, 1\text{H}), \ 7.07 - 7.02 (m, 2\text{H}), \ 6.59 (s, 1\text{H}), \ 6.52 (d, J = 6.9 \text{ Hz}, 1\text{H}), \ 6.24 \\ (t, J = 6.5 \text{ Hz}, 1\text{H}), \ 4.56 (d, J = 7.6 \text{ Hz}, 2\text{H}), \ 2.21 (s, 3\text{H}), \ 2.03 (s, 1\text{H}), \ 1.72 (s, 3\text{H}); \ ^{13}\text{C NMR (151)} \end{array}$

MHz, CDCl₃): δ 162.7, 152.5, 145.6, 137.6, 136.3, 130.4, 128.5, 128.2, 127.9, 127.3, 126.5, 126.0, 120.3, 91.7, 76.95, 67.3, 28.9, 21.5; IR (ATR): 3338, 2973, 1607, 1509, 1287, 1244, 1074, 796, 701, 648 cm⁻¹; HRMS(ESI) *m/z*: [M+Na]⁺ Calcd for C₂₀H₂₀Cl₃NNaO₂ 434.0452, found: 434.0452; HPLC analysis: Chiralpak IA-3 column (Hexane:^{*i*}PrOH = 95/5, 1.0 mL/min, 40 °C, 220 nm) 8.3 min (minor), 9.5 min (major). The absolute configurations were assigned as (*R*) by analogy with compound **4a**.

(2R,3S)-2-(3-chlorophenyl)-3-methyl-3-phenyl-2-vinyloxirane (5q)

^{Ph}, O, Ar Me⁻_{5q} (Ar = 3-ClC₆H₄) 30% yield (8.1 mg); colorless oil; $[\alpha]_D^{25}$ +131.0 (*c* 0.3, CHCl₃, 97% ee); R_f = 0.33 (Hexane/EtOAc= 10/1); ¹H NMR (600 MHz, CDCl₃): δ 7.14-7.09 (m, 5H), 7.06-7.03 (m, 1H), 6.99 (qd, *J* = 3.7, 2.1 Hz, 3H), 6.26 (dd, *J* = 17.2, 11.0 Hz, 1H), 5.43-5.33 (m, 2H), 1.77 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 139.9, 139.7, 135.4, 133.5, 128.9, 127.7, 127.7, 127.1, 127.1, 126.3, 125.6, 119.5, 71.2, 69.7, 20.4; IR (ATR): 2953, 2919, 2868, 2850, 1741, 1460, 1376, 772 cm⁻¹; HRMS(ESI) *m/z*: [M+Na]⁺ Calcd for C₁₇H₁₅ClNaO 293.0704, found: 293.0703; HPLC analysis: Chiralcel OD-3 column (Hexane: PrOH = 99.9:0.1, 1.0 mL/min, 40 °C, 220 nm) 11.0 min (minor), 12.0 min (major). Configuration Assignment: The relative and absolute configurations were assigned as (2*R*,3*S*) by analogy with compound **5b**.

(*R*,*E*)-3-(3-chlorophenyl)-4-hydroxy-4-phenylpent-2-en-1-yl 2,2,2-trichloroacetimidate (4q)

Ar NH HO Me° Ph 4q $(Ar = 3 - ClC_6H_4)$ 51% yield (21.7 mg); colorless oil; $[\alpha]_D^{25}$ -76.4 (*c* 2.04, CHCl₃, 47% ee); R_f = 0.33 (Hexane/EtOAc= 4/1); ¹H NMR (600 MHz, CDCl₃): δ 8.23 (s, 1H), 7.41-7.39 (m, 2H), 7.35-7.32 (m, 2H), 7.30-7.27 (m, 1H), 7.22-7.20 (m, 1H), 7.11 (t, *J* = 7.9 Hz, 1H), 6.78 (t, *J* = 2.1 Hz, 1H), 6.62-6.61 (m, 1H), 6.30 (t, *J* = 6.9 Hz, 1H), 4.54 (d, *J* = 6.9 Hz, 2H), 2.00 (t, *J* = 2.1 Hz, 1H), 1.72 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 162.6, 151.3, 144.8, 138.5, 133.9, 129.7, 129.3, 128.4, 127.9, 127.7, 127.5, 125.9, 121.0, 91.5, 76.8, 66.8, 28.7; IR (ATR): 3339, 1662, 1301, 1080, 771, 701, 649 cm⁻¹; HRMS(ESI) *m/z*: [M+Na]⁺ Calcd for C₁₉H₁₇Cl₄NNaO₂ 453.9906, found: 453.9905; HPLC analysis: Chiralpak IA-3 column (Hexane:[/]PrOH = 95:5, 1.0 mL/min, 40 °C, 220 nm) 10.3 min (minor), 11.2 min (major). The absolute configurations were assigned as (*R*) by analogy with compound **4a**.

(2*S*,3*R*)-2-methyl-3-(naphthalen-2-yl)-2-phenyl-3-vinyloxirane (5s)

 Chiralcel OD-3 column (Hexane: PrOH = 99.8:0.2, 1.0 mL/min, 40 °C, 220 nm) 10.4 min (minor), 10.8 min (major). Configuration Assignment: The relative and absolute configurations were assigned as (2S,3R) by analogy with compound **5b**.

(*R*,*E*)-4-hydroxy-3-(naphthalen-2-yl)-4-phenylpent-2-en-1-yl 2,2,2-trichloroacetimidate (4s)

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} & 34\% \text{ yield } (18.8 \text{ mg}); \text{ colorless oil; } [\alpha]_{D}^{21} - 23.1 \ (c \ 3.3, \text{ CHCl}_3, >99\% \text{ ee}); \text{R}_{\text{f}} = 0.32 \ (\text{Hexane/EtOAc} = \\ \begin{array}{c} & 4/1); \ ^{1}\text{H NMR} \ (600 \text{ MHz}, \text{ CDCl}_3): \\ \delta \ 8.17 \ (s, 1\text{H}), 7.77 - 7.76 \ (m, 1\text{H}), 7.64 \ (d, J = 8.2 \text{ Hz}, 2\text{H}), 7.46 \\ \hline & 7.41 \ (m, 4\text{H}), 7.33 \ (t, J = 7.6 \text{ Hz}, 2\text{H}), 7.30 - 7.27 \ (m, 1\text{H}), 7.25 \ (d, J = 5.5 \text{ Hz}, 1\text{H}), \\ 6.84 \ (d, J = 8.2 \text{ Hz}, 1\text{H}), \\ 6.84 \ (d, J = 8.2 \text{ Hz}, 1\text{H}), \\ 6.37 \ (t, J = 6.9 \text{ Hz}, 1\text{H}), \\ 4.58 \ (d, J = 6.9 \text{ Hz}, 2\text{H}), 2.12 - 2.10 \ (m, 1\text{H}), 1.76 \ (s, 3\text{H}); \\ 1^{3}\text{C NMR} \\ \hline (151 \text{ MHz}, \text{CDCl}_3): \\ \delta \ 162.6, 152.4, 145.4, 134.1, 132.8, 132.7, 128.7, 128.3, 128.2, 127.7, 127.5, 127.4, 126.3, 126.3, 126.1, \\ 120.8, 91.5, 67.2, 28.9; \text{ IR } (\text{ATR}): 3335, 2981, 1660, 1297, 1073, 820, 796, 700, 648 \ \text{cm}^{-1}; \text{ HRMS}(\text{ESI}) \ m/z: \ [\text{M}+\text{Na}]^{+} \text{ Calcd} \\ \text{for } \text{C}_{23}\text{H}_{20}\text{Cl}_3\text{NNaO}_2: 470.0452, \text{found}: 470.0451; \text{HPLC} \text{ analysis: Chiralpak IA-3 column (Hexane: \ PrOH = 95/5, 1.0 \ mL/min, \\ 40 \ ^{\circ}\text{C}, 220 \ nm) \ 13.8 \ min \ (minor), \ 15.1 \ min \ (major). \ \text{The absolute configurations were assigned as} (R) \ \text{by analogy with} \\ \text{compound} \ \textbf{4a}. \end{array}$

(2S,3S)-2-methyl-2-phenyl-3-(thiophen-2-yl)-3-vinyloxirane (5t)

^{Ph}, Ar Me 5t (Ar = 2-thiophenyl) (tt, J = 6.6 Hz, 1.2 Hz, 1H), 7.09-7.05 (m, 2H), 7.00-6.98 (m, 1H), 6.71-6.66 (m, 2H), 6.32 (dd, J = 16.8 Hz, 10.2 Hz, 1H), 5.53-5.44 (m, 3H), 5.19-5.11 (m, 2H), 1.74 (s, 3H), 1.49 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) for mixture of diastereomers: δ 141.3, 140.2, 136.0, 135.3, 128.3, 127.8, 127.5, 127.2, 126.8, 126.7, 126.6, 126.5, 126.22, 126.16, 125.1, 124.8, 120.5, 119.0, 71.2, 71.0, 68.3, 22.2, 21.1, some carbon could not be assigned due to presence of diastereomers; IR (ATR): 2955, 2922, 2869, 1741, 1436, 1376, 1219, 772 cm⁻¹; HRMS(ESI) *m*/*z*: [M+Na]⁺ Calcd for C₁₅H₁₆NaOS 265.0658, Found: 265.0657; HPLC analysis: Chiralcel OD-3 column (Hexane:'PrOH = 99.8/0.2, 1.0 mL/min, 40 °C, 220 nm) major diastereomer: 9.8 min (minor), 11.8 min (major), minor diastereomer: 7.8 min (major), 8.8 min (minor). Configuration Assignment: The relative and absolute configurations were assigned as (2*S*,3*S*) by analogy with compound **5b**.

(R,Z)-4-hydroxy-4-phenyl-3-(thiophen-2-yl)pent-2-en-1-yl 2,2,2-trichloroacetimidate (4t)

Ar NH HO Me Ph 4t (Ar = 2-thiophenyl)

49% yield (19.8 mg); colorless oil; $[\alpha]_D^{25}$ –6.84 (*c* 1.35, CHCl₃, 48% ee); R_f = 0.31 (Hexane/EtOAc= 4/1); ¹H NMR (600 MHz, CDCl₃): δ 8.29 (s, 1H), 7.49-7.47 (m, 2H), 7.36-7.34 (m, 2H), 7.31-7.28 (m, 1H), 7.20-7.19 (m, 1H), 6.90 (q, *J* = 2.7 Hz, 1H), 6.65 (t, *J* = 2.4 Hz, 1H), 6.40 (t, *J* = 6.5 Hz, 1H), 4.82 (d, *J* = 6.9 Hz, 2H), 2.14 (s, 1H), 1.76 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 162.7,

145.2, 144.9, 136.2, 129.0, 128.4, 127.6, 126.9, 126.6, 126.03, 123.6, 91.5, 67.3, 29.0; IR (ATR): 3450, 2983, 1719, 1220, 1067, 826, 770, 699 cm⁻¹; HRMS(ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₁₆Cl₃NNaO₂S 425.9860, found: 425.9859; HPLC analysis: Chiralpak IA-3 column (Hexane: PrOH = 95:5, 1.0 mL/min, 40 °C, 220 nm) 11.0 min (minor), 12.8 min (major). The absolute configurations were assigned as (*R*) by analogy with compound **4a**.

3. Preparation of Substrates

Allylic substrates **4** were prepared by following the literature procedure.¹

To a solution of **S1** (1.0 eq.) and trichloroacetonitrile (1.5 eq) in $CH_2Cl_2(0.2M)$ was added DBU (0.2 eq) at 0 °C. The resulting solution was stirred for 30 min at the same temperature. Then the residual crude was concentrated and purified by flash column chromatography on silica gel (Hexane/EtOAc = 20/1) to obtain **4** as a colorless oil.

¹ S. Kayal, J. Kikuchi, M. Shimizu, M. Terada, ACS Catal. 2019, 9, 6846–6850.

4. Determination of the relative and absolute configuration

4-1. The absolute configuration of recovered-4a

The absolute configuration on C4 position of recovered-**4a** was determined to be *R* by derivatization into the stereochemically known compound **S2**.² The stereochemistry of the remaining recovered **4** was assigned by analogy.

To a solution of *recovered*-**4a** (50 mg, 0.125 mmol, 95% ee) in CH₂Cl₂(2.0 mL) was bubbled with O₃ until the solution turned blue at -78 °C (10 min). To the blue solution was added Me₂S (1.0 mL) and the mixture was slowly warmed to rt. The mixture was concentrated in vacuo to give a residue, which was then washed with H₂O was added and extracted with EtOAc. The combined EtOAc extracts were washed with brine, dried over Na₂SO₄, and concentrated after filtration. The residual crude was purified by silica gel column chromatography (Hexane/EtOAc = 19/1) to give **S2** (22.6 mg, 80% yield).

(R)-2-hydroxy-1,2-diphenylpropan-1-one (S2)

 $\begin{array}{l} \begin{array}{l} & \text{Ph} \\ & \text{Me}^{\circ} \text{OH} \end{array} & \begin{array}{l} 80\% \text{ yield } (22.6 \text{ mg}); \text{ colorless oil; } [\alpha]_{D}^{26} + 174.5 \ (c \ 0.24, \text{ EtOH}, 98\% \text{ ee}); \\ & \text{R}_{\text{f}} = 0.42 \ (\text{Hexane/EtOAc} = 4/1); \\ & \text{NMR} \ (600 \text{ MHz}, \text{CDCl}_3): \\ & \delta \ 7.69 - 7.67 \ (\text{m}, 2\text{H}), \\ & 7.47 - 7.44 \ (\text{m}, 3\text{H}), \\ & 7.39 \ (\text{t}, J = 7.9 \text{ Hz}, 2\text{H}), \\ & 7.34 - 7.28 \ (\text{m}, 3\text{H}), \\ & 4.78 \ (\text{s}, 1\text{H}), \\ & 1.90 \ (\text{s}, 3\text{H}); \\ & ^{13}\text{C} \ \text{NMR} \ (151 \ \text{MHz}, \text{CDCl}_3): \\ & \delta \ 202.1, \\ & 142.5, \\ & 133.5, \\ & 133.1, \\ & 130.3, \\ & 129.1, \\ & 128.4, \\ & 128.3, \\ & 126.0, \\ & 79.2, \\ & 26.2; \\ & \text{IR} \ (\text{ATR}): \\ & 3448, \\ & 1673, \\ & 1447, \\ & 1255, \\ & 768, \\ & 700 \ \text{cm}^{-1}; \\ & \text{HRMS}(\text{ESI}) \ m/z: \\ & [\text{M}+\text{Na}]^{+} \ \text{Calcd for } C_{15}\text{H}_{14}\text{NaO}_2 \\ & 249.0886, \\ & \text{found: } 249.0886; \\ & \text{HPLC analysis: Chiralpak IC-3 column \ (\text{Hexane:}^{i}\text{PrOH} = 98:2, \\ & 1.0 \ \text{mL/min, } 40 \ ^{\circ}\text{C}, \\ & 220 \ \text{nm} \\ & 13.5 \ \text{min (major)}, \\ & 14.0 \ \text{min (minor)}. \end{array} \end{array}$

² S.-B. D. Sim, M. Wang, Y. Zhao, ACS Catal. 2015, 5, 3609-3612.

4-2. The absolute configuration of **5a**

According to the following NOE analysis of **51** and the absolute configuration of **4a**, the absolute configuration of **5a** was assigned to be (2S,3R). The stereochemistry of the remaining products **5** was assigned by analogy.

COSY (600 MHz,

CDCl₃) spectra of **5**l

5. Determination of the reaction pathway of the intramolecular S_N2' reaction³

To elucidate the mechanism of the present intramolecular $S_N 2'$ reaction, enantioenriched (*S*,*E*)-*d*-2a containing deuterium at the allylic position was employed. In the proposed deuterated substrate study, the stereochemical relationship between the chirality at the deuterated carbon as well as the geometry of starting (*S*,*E*)-*d*-2a and the geometry of the migrated double bond, in combination with the newly generated stereogenic center, would offer important information of the reaction pathway. As shown in the following scheme, enantioenriched (*R*,*Z*)-*d*-3a (95% ee) was obtained in good yield with high (*Z*)-selectivity, clearly suggesting that the *anti*- $S_N 2'$ pathway is the rational mechanism for the present intramolecular $S_N 2'$ reaction.

In an oven and vacuum-dried reaction tube, MS 5Å (40.0 mg), catalyst (*R*)-**1a** (12.4 mg, 0.01 mmol, 10 mol%) and Ag₂CO₃ (1.4 mg, 0.005 mmol, 5 mol%) were taken with 0.5 mL of Et₂O. The reaction mixture was stirred at room temperature for 15 min and then cooled at -40 °C. To the reaction mixture was added a solution of *d*-**2a** (36.3 mg, 0.1 mmol) in Et₂O (0.5 mL) at the same temperature. The reaction mixture was stirred for 24 h. The reaction mixture was quenched with NEt₃ (10 μ L) and directly purified by flash column chromatography (Hexane/EtOAc = 10:1) to give *d*-**3a** (14.5 mg) in 72% yield (*E*/*Z* = 1:>20) with 95% ee.

(R,Z)-2-phenyl-2-(vinyl-2-d)-1-oxaspiro[2.4]heptane (d-3a)

72% yield (14.5 mg); colorless oil; $[\alpha]^{D}_{26}$ +57.9 (c 0.47, CHCl₃, 95% ee); R_f = 0.71 (Hexane/EtOAc= 4/1); ¹H NMR (C₆D₆, 600MHz) δ 7.38 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.20-7.00 (m, 4H), 6.05 (dt, *J* = 10.8, 2.4 Hz, 1H), 5.14 (d, *J* = 10.8 Hz, 1H), 1.92-1.84 (m, 1H), 1.78-1.68 (m, 1H), 1.65-1.55 (m, 1H), 1.54-1.44 (m, 1H), 1.42-1.20 (m, 4H); ¹³C NMR (C₆D₆, 151MHz) δ 139.4, 137.7, 130.8, 127.3 (4C), 117.8 (t, *J* = 27.5)

Hz, 1C), 76.9, 67.8, 31.9, 30.5, 25.4, 25.3; IR (ATR) 2922, 2360, 2309, 1732, 1459, 1218, 772 cm⁻¹; HRMS (FD+) m/z: [M] Calcd for C₁₄H₁₅DO 201.1264, Found 201.1262; HPLC analysis: Chiralpak OD-3 (Hexane:iPrOH = 99.3/0.7, 1.0 mL/min, 40 °C, 220 nm) 4.2 min (minor), 4.5 min (major).

³ S. Kayal, J. Kikuchi, N. Shinagawa, S. Umemiya, M. Terada, *Tetrahedron* **2021**, *98*, 132412.

6. Stereochemical assignment of trans-5t and calculation of conversion c in Table 2, entry 19

Absolute stereochemistry of *trans*-**5t** was assigned to be (2R,3S) based on the distribution of the stereochemical outcomes of *cis*- and *trans*-**5t** and recovered (*Z*)-**4t**, as shown in the following simulation. In this regard, conversion *c* was calculated using 51% ee for ee_{product} averaged at the 2-position of *cis*- and *trans*-**5t**. The calculation process was shown in the following scheme.

7. Large scale experiment

To a mixture of MS 5Å (400 mg), (*R*)-**1a** (124 mg, 0.1 mmol, 10 mol%) and Ag₂CO₃ (14 mg, 0.05 mmol, 5 mol%) was added Et₂O (5.0 mL). The reaction mixture was stirred at room temperature for 15 min and then cooled at 0 °C. To the reaction mixture was added a solution of racemic (*E*)-**4a** (0.40 g, 1.0 mmol) in Et₂O (5.0 mL) at the same temperature and the reaction mixture was stirred for 96 h. The reaction mixture was quenched with NEt₃ (100 μ L) and directly purified by flash column chromatography (Hexane/EtOAc = 10:1) to give **5a** (106 mg, 45%) with 98% ee and (*R*,*E*)-**4a** (200 mg, 50%) with 87% ee. The enantiomeric excess was determined by chiral stationary phase HPLC analysis.

8. Derivatization

To a solution of cis-(2*S*,3*R*)-**5a** (23.6 mg, 0.1 mmol, 98% ee) in THF (0.8 mL) and H₂O (0.2 mL) was added 10camphorsulfonic acid (CSA) (4.6 mg, 0.02 mmol). The reaction mixture was stirred at 50 °C for 3 h. The reaction was quenched with aq. NaHCO₃ (1 mL) and the aqueous phase was extracted with EtOAc (1 mL) three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated in *vacuo*. The crude was purified by flash column chromatography (Hexane/EtOAc = 2:1 to 1:1) to give (*S*,*E*)-**7** in 68% yield with 95% ee. The enantiomeric excess was determined by chiral stationary phase HPLC analysis.

(*S*, *E*)-3,4-diphenylpent-2-ene-1,4-diol (7)

To a solution of (R,E)-4a (39.8 mg, 0.1 mmol, 94% ee) in THF (1 mL) was added trifluoroacetic acid (TFA) (15 µL, 0.2 mmol) at room temperature. The reaction mixture was stirred at that temperature for 30 min. The reaction was quenched with aq. NaHCO₃ (2 mL) and the aqueous phase was extracted with EtOAc (1 mL) three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated in *vacuo*. To a solution of the crude in MeOH (1 mL) was added potassium carbonate (41 mg, 0.3 mmol) at room temperature. The reaction mixture was stirred at that temperature for 2 h. The reaction was quenched with aq. NH₄Cl (2 mL) and the aqueous phase was extracted with EtOAc (1 mL) three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated in *vacuo*. To a solution of the Crude in MeOH (1 mL) was added potassium carbonate (41 mg, 0.3 mmol) at room temperature. The reaction mixture was stirred at that temperature for 2 h. The reaction was quenched with aq. NH₄Cl (2 mL) and the aqueous phase was extracted with EtOAc (1 mL) three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The crude was purified by flash column chromatography (Hexane/EtOAc = 2:1 to 1:1) to give (*R*,*E*)-**7** in 72% yield with 94% ee. The enantiomeric excess was determined by chiral stationary phase HPLC analysis.

9. Main reaction using catalyst (R)-1b

9-1. Reaction of racemic (E)-4a using (R)-1b/phenylboronic acid co-catalyst system in chloroform

To a mixture of MS 5Å (40.0 mg), (*R*)-**1b** (5.9 mg, 0.01 mmol, 10 mol%) and PhB(OH)₂ (1.2 mg, 0.01 mmol, 10 mol%) was added chloroform (0.5 mL). The reaction mixture was stirred at room temperature for 15 min. To the reaction mixture was added a solution of (*E*)-**4a** (39.8 mg, 0.1 mmol) in chloroform (0.5 mL) at the same temperature and the reaction mixture was stirred for 4 h. The reaction mixture was quenched with NEt₃ (10 μ L) and directly purified by flash column chromatography (Hexane/EtOAc = 10:1) to give *cis*-**5a** and *trans*-**5a** (dr = 61 : 39) in 56% combined yield.

¹H NMR (600 MHz, CDCl₃) spectra of *cis*-**5a** and *trans*-**5a**

9-2. Reaction of racemic (E)-4a using (R)-1a/phenylboronic acid co-catalyst system in chloroform

To a mixture of MS 5Å (40.0 mg), (*R*)-**1a** (12.4 mg, 0.01 mmol, 10 mol%) and PhB(OH)₂ (1.2 mg, 0.01 mmol, 10 mol%) was added chloroform (0.5 mL). The reaction mixture was stirred at room temperature for 15 min. To the reaction mixture was added a solution of (*E*)-**4a** (39.8 mg, 0.1 mmol) in chloroform (0.5 mL) at the same temperature and the reaction mixture was stirred for 4 h. The reaction mixture was quenched with NEt₃ (10 μ L) and directly purified by flash column chromatography (Hexane/EtOAc = 10:1) to give *cis*-**5a** as a single diastereomer in 12 % yield along with the formation of a significant amount of vinylogous Wagner-Meerwein shift product **6a** in 51% yield.

¹H NMR (600 MHz, CDCl₃) spectra of rearrangement product 6a

10. DFT Calculation

To acquire mechanistic insights into the present reaction, we conducted DFT calculation (Gaussian 16 package). The model system of bisphosphoric acid (*R*)-**1b** and substrates (*S*,*E*)-**4a** or (*R*,*E*)-**4a** were employed. Geometries were optimized and characterized using frequency calculations at the B97D/6-31G(d) level. Gibbs free energies (kcal mol⁻¹) in solution phase were calculated using single-point energy calculations at the same level as those for the optimized structures according to the SCRF method based on CPCM ($\epsilon = 4.335$ for diethyl ether).

7.1 Energy profile of the intramolecular $S_N 2$ ' reaction of (S, E)-4a using (R)-1b

As illustrated in the Figure S1, the reaction energy profile shows that the present intramolecular $S_N 2$ ' reaction does not proceed in a synchronous concerted fashion but proceeds in a stepwise pathway, although the energy of the 2nd step is lower than the 1st step.

Figure S1. The potential energy for the sum of (*R*)-1b and (*S*,*E*)-4a was set to zero. Geometries were optimized and characterized using frequency calculations at the B97D/631G(d) level. Gibbs free energies (kcal/mol) in solution phase were calculated using single calculations at the same level as those for the optimized structures according to the SCRF method based on CPCM ($\epsilon = 4.335$ for diethyl ether).

3D structures of the transition states

Figure S2. Transition states of intramolecular S_N2' reaction of (*S*,*E*)-**4a** or (*R*,*E*)-**4a** catalyzed by (*R*)-**1b**. Geometries were optimized and characterized using frequency calculations at the B97D/631G(d) level. Gibbs free energies (kcal/mol) in solution phase were calculated using single calculations at the same level as those for the optimized structures according to the SCRF method based on CPCM (ϵ = 4.335 for diethyl ether).

Cartesian coordinates

(S, E)-4a B97D/6-31g(d);E(RB97D) = -2319.954205 hartree Zero-point Energy Correction = 0.322777 hartree Thermal Correction to Energy = 0.347134 hartree Ihermal Correction to Energy = 0.34/134 hartree Thermal correction to Enthalpy = 0.34/078 hartree Thermal correction to Gibbs Free Energy = 0.264879 hartree Sum of electronic and Zero-point Energies = -2319.631428 hartree Sum of electronic and thermal Energies = -2319.607071 hartree Sum of electronic and thermal Enthalpies = -2319.606127 hartree Sum of electronic and thermal Free Energies = -2319.689325 hartree cpcm(ether)/B97D/6-31g(d); E(RB97D) = -2319.961837 hartree Gibbs Free Energy in ether = -2319.696958 hartree The number of Imaginary freeunencies = 0 The number of Imaginary frequencies = 0

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Type	Λ	I	L		
1	8	0	3, 293136	-0.839389	-2.310657		
2	ĩ	Ő	2,751286	-0.804531	-3.119742		
3	6	0	1.286074	-0.057395	-1.192129		
4	6	0	1.695586	1.256823	-0.615306		
5	ĕ	Ő	0.882752	1.863668	0.368980		
6	6	0	2,901810	1,894679	-0.981059		
7	6	0	1,250754	3,082674	0.953649		
8	1	0	-0.030512	1.361373	0.685858		
9	6	Ō	3.266114	3.114005	-0.395190		
10	1	0	3.546658	1.424478	-1.720588		
11	6	0	2.443440	3.715044	0.571333		
12	1	0	0.607262	3.531161	1.713522		
13	1	0	4.199454	3.595928	-0.694287		
14	1	0	2.733967	4.663854	1.027388		
15	6	0	0.035027	-0.281833	-1.663156		
16	1	0	-0.249806	-1.282679	-1.989802		
17	6	0	-1.036655	0.756332	-1.799914		
18	1	0	-0.649153	1.782100	-1.765828		
19	1	0	-1.621157	0.625704	-2.723128		
20	8	0	-1.968878	0.584780	-0.668498		
21	6	0	-3.009289	-0.234365	-0.889198		
22	6	0	-3.925862	-0.213116	0.383964		
23	17	0	-4.594724	1.466598	0.598780		
24	17	0	-2.962991	-0.681591	1.847387		
25	17	0	-5.315345	-1.366685	0.215969		
26	7	0	-3.182766	-0.879139	-1.973877		
27	1	0	-4.034288	-1.445124	-1.952606		
28	6	0	2.367317	-1.168030	-1.241624		
29	6	0	3.152080	-1.210489	0.072498		
30	6	0	4.555784	-1.225176	0.105888		
31	6	0	2.436188	-1.289623	1.282119		
32	6	0	5.231860	-1.310117	1.333895		
33	1	0	5.116485	-1.163433	-0.825582		
34	6	0	3.110120	-1.375937	2.506564		
35	1	0	1.344473	-1.265497	1.259815		
36	6	0	4.514354	-1.385617	2.536543		
37	1	0	6.324080	-1.314652	1.347271		
38	1	0	2.539627	-1.428978	3.436233		
39	1	0	5.043063	-1.448237	3.489993		
40	6	0	1.814289	-2.586998	-1.510732		
41	1	0	1.098281	-2.890746	-0.733329		
42	1	0	1.316975	-2.640383	-2.493441		
43	1	0	2,660185	-3.288146	-1.510416		

(*R*)–1b

(*A*)-1b B97D/6-31g(d);E(RB97D) = -2514.837965 hartree Zero-point Energy Correction = 0.441700 hartree Thermal Correction to Energy = 0.474622 hartree Thermal correction to Enthalpy = 0.475566 hartree Thermal correction to Gibbs Free Energy = 0.378772 hartree Sum of electronic and Zero-point Energies = -2514.363243 hartree Sum of electronic and thermal Enthalpies = -2514.363243 hartree Sum of electronic and thermal Enthalpies = -2514.363243 hartree Sum of electronic and thermal Free Energies = -2514.363298 hartree cpcm(ether)/B97D/6-31g(d); E(RB97D) = -2514.855996 hartree Gibbs Free Energy in ether = -2514.477224 hartree The number of Imaginary frequencies = 0

Center	Atomic	Atomic	dinates (Ang	(Angstroms)	
Number	Number	Туре	Х	Y	Z
1	15	0	-1.910725	0.641295	-2.282350
2	15	0	1.702609	-2.050490	-0.899772
3	8	0	-2.377316	1.805651	-3.052087
4	8	0	-0.584512	-0.026226	-2.817025
5	1	0	-0.306968	-0.889275	-2.402008
6	8	0	-2.904846	-0.646360	-2.168448
7	8	0	-1.692573	1.059718	-0.716881
8	8	0	2.280211	-3.425805	-0.320555
9	1	0	1.926013	-4.182426	-0.817689
10	8	0	0.418376	-2.186038	-1.632661
11	8	0	2.823482	-1.374394	-1.835903
12	8	0	1.744249	-1.176998	0.442524
13	6	0	-0.591842	0.172800	1.186104
14	6	0	-1.715780	0.207659	0.373330

15	6	0	-2 923086	-0.482372	0 698520
16	6	õ	-2 932815	-1 233494	1 860254
17	1	0	-3 894157	-1 800210	2 11/11/
10	I C	0	1 0024101	1.000213	2.111111
10	0	0	-1.023019	-1.297001	2.730120
19	6	0	-1.872489	-2.055577	3.936790
20	1	0	-2. 782025	-2.605110	4.167503
21	6	0	-0.798214	-2.088094	4.794446
22	1	0	-0.846690	-2.667465	5.712246
23	6	0	0.373805	-1.358145	4.482495
24	1	0	1.217682	-1.379060	5.166713
25	6	0	0.455565	-0.622694	3.321228
26	1	0	1.359081	-0.066194	3.097122
27	6	0	-0.632526	-0.574702	2.407600
28	6	0	-4.156100	-0.402268	-0.127873
29	6	0	-4.136628	-0.502357	-1.530097
30	6	õ	-5 312186	-0.583076	-2 297325
31	6	õ	-6 534888	-0.506836	-1 612152
32	1	Ő	-7 453626	-0.547468	-2 189615
22	6	0	-6 595492	-0.252200	_0 220022
24	1	0	7 544049	0.333399	0.229032
34	1	0	-7. 544048	-0.267029	0.274628
35	6	0	-5.406290	-0.306027	0.505937
36	1	0	-5.440114	-0.180683	1.583771
37	6	0	0.642964	0.918408	0.786943
38	6	0	1.764918	0.228555	0.369094
39	6	0	2.978262	0.854562	-0.034088
40	6	0	3.017681	2.235701	-0.000372
41	1	0	3.916730	2.749668	-0.329099
42	6	0	1.913945	3.008258	0.432663
43	6	0	1.980167	4.427613	0.473277
44	1	0	2.897592	4.915098	0.152681
45	6	0	0.908464	5.169678	0.910005
46	1	0	0.968300	6.254034	0.936718
47	6	0	-0.277860	4.519902	1.326932
48	1	0	-1 120884	5 111388	1 672663
49	6	õ	-0.376528	3 147279	1 292444
50	1	õ	-1 291587	2 660606	1 610014
51	6	0	0 708471	2.340804	0.840175
52	6	0	4 170476	0.073106	-0.450352
52	6	0	4. 110410	-1 026711	_1 217008
55	6	0	4.000009 5.107107	1.020711	1. 317 900
54	0 C	0	5. 197107	-1.764081	-1.742000
22	0	0	6.401011	-1.359360	-1.207700
56	1	0	1.333658	-1.902109	-1.582128
57	6	0	6.576957	-0.272441	-0.396035
58	1	0	7.557826	0.021856	-0.034292
59	6	0	5.448064	0.435220	0.005445
60	1	0	5.541456	1.268805	0.694578
61	1	0	5.119329	-2.607935	-2.395270
62	1	0	-5.316863	-0.741661	-3.355497

CP-Rmodel

CP-Resolu B97D/G-31g(d);E(RB97D) = -4834.844722 hartree Zero-point Energy Correction = 0.766683 hartree Thermal Correction to Energy = 0.824459 hartree Thermal correction to Enthalpy = 0.825403 hartree Thermal correction to Gibbs Free Energy = 0.671314 hartree Sum of electronic and Zero-point Energies = -4834.078038 hartree Sum of electronic and thermal Energies = -4834.020263 hartree Sum of electronic and thermal Energies = -4834.031919 hartree Sum of electronic and thermal Free Energies = -4834.173407 hartree cpcm(ether)/B97D/6-31g(d); E(RB97D) = -4834.867098 hartree Gibbs Free Energy in ether = -4834.195784 hartree The number of Imaginary frequencies = 0

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	8	0	-2.135447	2.017079	-3.542179		
2	1	0	-1.451546	2.303176	-2.888366		
3	6	0	-2.943556	0.510256	-1.837492		
4	6	0	-2.432910	-0.784368	-2.373470		
5	6	0	-3.059665	-1.981416	-1.956746		
6	6	0	-1.312483	-0.869295	-3.229713		
7	6	0	-2.574687	-3.229601	-2.372056		
8	1	0	-3.931667	-1.920879	-1.303527		
9	6	0	-0.824437	-2.118949	-3.630942		
10	1	0	-0.817987	0.043620	-3.546906		
11	6	0	-1.449366	-3.302412	-3.206236		
12	1	0	-3.074780	-4.142443	-2.040365		
13	1	0	0.064460	-2.169071	-4.262453		
14	1	0	-1.051263	-4.271104	-3.512053		
15	6	0	-3.011846	0.713649	-0.494104		
16	1	0	-3.430804	1.637570	-0.099866		
17	6	0	-2.325867	-0.160858	0.476288		
18	1	0	-1.639081	-0.868841	0.008311		
19	1	0	-1.830903	0.413201	1.267409		
20	8	0	-3.330575	-1.064537	1.242925		
21	6	0	-2.822293	-1.921620	2.069179		
22	6	0	-3.865681	-2.948441	2.606898		
23	17	0	-4.136758	-4.120724	1.253072		
24	17	0	-5.390832	-2.102824	3.033739		
25	17	0	-3.251605	-3.833592	4.060146		
26	7	0	-1.561972	-1.990814	2.394333		

97	1	0	-1 205199	-9 756694	2 066165						
21	6	0	-2 222049	1 697647	-2.9500103	1	0	0	-1 677101	9 744160	-2 249205
20	1	0	-3. 323940	1.027047	-2.000090	1	0	0	-1.077191	2.744109	-3.246303
29	1	0	-0.775333	-1.397320	1.932030	2	1	0	-0.952046	2.856998	-2. 578612
30	6	0	-3.999030	2.824297	-2.151267	3	6	0	-2.788362	1.312683	-1.659256
31	6	0	-3.320992	4.045131	-1.984620	4	6	0	-2.533941	-0.009973	-2.255349
32	6	0	-5.298828	2.698788	-1.619112	5	6	0	-3.269447	-1.124494	-1.773035
33	6	0	-3.928543	5.113622	-1.303837	6	6	0	-1.568544	-0.222034	-3.272838
24	1	0	0.015770	4 164760	0 202760	7	G	0	2.045065	9.405119	9 990169
04	1	0	2.010112	4.104700	2.000102	1	0	0	3.040000	2.403112	2.209100
30	0	0	-5.907424	3.703134	-0.939864	8	1	0	-4.028224	-0.967937	-1.007105
36	1	0	-5.831219	1.751199	-1.718802	9	6	0	-1.333540	-1.509698	-3.760862
37	6	0	-5.222007	4.978406	-0.777838	10	1	0	-0.988775	0.622463	-3.631919
38	1	0	-3.384060	6.053652	-1.188442	11	6	0	-2.069053	-2.604889	-3.277036
30	1	0	-6.015335	3 642021	-0 536189	19	1	0	-3 627730	-3 246440	-1 011124
10	1	0	0.010000	5.042521	0.030103	12	1	0	0.550074	1. 004450	1. 511124
40	1	0	-5.693584	5.810070	-0.249807	13	1	0	-0.556074	-1.664459	-4.510624
41	6	0	-4.247848	1.059635	-3.948707	14	1	0	-1.867513	-3.607888	-3.654322
42	1	0	-4.473806	1.859288	-4.668641	15	6	0	-2.837656	1.470106	-0.277967
43	1	0	-3.735182	0.237790	-4.466278	16	1	0	-3.139188	2.429425	0.136859
44	1	Ō	-5 188209	0 681479	-3 522833	17	6	0	-2 265353	0.531140	0 606958
45	1 5	0	0. 276927	9.001419	0.607504	10	1	0	1 741616	0.001140	0.106990
40	10	0	0.370637	2.094452	0.007304	18	1	0	1.741010	0.320332	0.190009
46	15	0	1.332836	-2.195819	1.029601	19	1	0	-1.933382	0.888079	1.579921
47	8	0	-0.054480	2.896569	-1.866924	20	8	0	-3.662205	-0.634535	1.462798
48	8	0	0.280825	0.534197	-0.861325	21	6	0	-3.212345	-1.619119	2.103719
49	1	0	0 426257	-0.022465	0 005544	22	6	0	-4 240767	-2 766565	2 447355
50	0	õ	-0.466011	2 255525	0 709610	22	17	Ő	_4 024722	-4 007086	1 120022
50	0	0	0.400911	2.00000	0.708010	23	17	0	4.034733	4.007500	1.125032
51	8	0	1.898957	2.491393	-0.242012	24	17	0	-5.917951	-2.141501	2.445448
52	8	0	1.220228	-3.236371	2.093691	25	17	0	-3.886285	-3.524221	4.054796
53	8	0	0.523248	-0.878382	1.238019	26	7	0	-1.954122	-1.808707	2.470988
54	8	0	0.797651	-2.681150	-0.469393	27	1	0	-1.624541	-2.702738	2.833576
55	8	0	2 899811	-1 805599	0 708493	28	6	0	-2 928853	2 552628	-2 592676
56	6	Ő	2 259547	0.085070	0.049472	20	1	0	-1 191650	-1 216964	2.000744
50	0	0	0. 410755	0. 0000010	0. 940473	25	1	0	1.101000	1.210004	2.033144
57	6	0	2.419755	2.016501	0.970906	30	6	0	-3.375902	3.809873	-1.821053
58	6	0	2.012910	2.679835	2.170703	31	6	0	-2.465501	4.841932	-1.529216
59	6	0	2.640184	2.314766	3.356949	32	6	0	-4.697928	3.920760	-1.343493
60	1	0	2 332736	2 790176	4 290682	33	6	0	-2 870115	5 958537	-0.779322
61	ĥ	õ	3 653466	1 321517	3 309345	34	1	Ő	-1 438101	4 778025	-1 881047
01	C	0	4 200017	0.074716	4 C1004C	34	1	0	L 102015	4.110020 E.0246E9	0.504040
62	6	0	4.308917	0.974716	4.610846	35	6	0	-5.103015	5.034652	-0.594840
63	1	0	4.014374	1.493071	5. 526560	36	1	0	-5.413756	3.120553	-1.539486
64	6	0	5.299031	0.007563	4.631812	37	6	0	-4.187781	6.060322	-0.308532
65	1	0	5,795502	-0.249747	5, 569495	38	1	0	-2.147957	6,749870	-0.566671
66	6	Ō	5 674275	-0.651432	3 428956	39	1	0	-6 132067	5 099602	-0 234991
67	1	0	6 450224	-1 400500	2 450599	10	1	0	-4 500455	6 020204	0.204001
07	1	0	0.4050040	1.409090	0.400022	40	1	0	4.000400	0.929304	0.274030
68	0	0	5.050349	-0.344001	2.230907	41	0	0	-3.928732	2.231110	-3.128891
69	1	0	5.338881	-0.854153	1.312949	42	1	0	-3.999484	3.120142	-4.380549
70	6	0	4.021085	0.639637	2.174529	43	1	0	-3.563048	1.380960	-4.309479
71	6	0	0.947273	3,711786	2, 157765	44	1	0	-4.926328	1,999958	-3.333888
72	6	õ	-0.241110	3 550762	1 408420	15	15	Ő	0 789510	2 123750	-0.476133
72	6	0	1 957160	4 511450	1.900923	40	15	0	0.0000015	2.125150	0.020166
15	0	0	1.207100	4.011400	1. 399732	40	15	0	0.029713	2. 323010	0.930100
74	6	0	-1.107297	5.672029	2.171849	47	8	0	0.461230	3.101611	-1.556687
75	1	0	-1.894330	6.428366	2.167997	48	8	0	0.350973	0.643745	-0.739507
76	6	0	0.054759	5.858707	2.938680	49	1	0	0.410786	-0.007551	0.109583
77	1	Ō	0 179502	6 763973	3 535441	50	8	0	0 112687	2 451484	0 995795
70	c I	0	1 067491	4 901149	0.000111	50	0	0	0.112001	0 160075	0.120125
10	0	0	1.007421	4.091142	2.924403	51	0	0	2. 300299	2.106270	-0.136123
79	1	0	1.983646	5.045333	3.497030	52	8	0	0.579879	-3.375889	1.960363
80	6	0	3.610309	0.249590	-0.326851	53	8	0	0.367534	-0.873428	1.233021
81	6	0	3.237323	-1.090447	-0.442767	54	8	0	0.079350	-2.617420	-0.533485
82	6	0	3.267294	-1.794695	-1.689400	55	8	0	2,416968	-2.303645	0.471443
83	6	Ō	3 763516	-1 125556	-2 803004	56	6	0	3 541120	0 274655	0.811554
0.0	1	0	2 760064	1 622706	2.000004	50	6	0	9 970907	1 402075	0.0011004
04	1	0	3.705004	1.033760	0.707000	57	0	0	2.070007	1.403073	0.001004
80	0	0	4.241871	0.207695	-2.121992	58	0	0	2.705152	2.112329	2.200348
86	6	0	4.781505	0.868179	-3.871120	59	6	0	3.316394	1.518724	3.359257
87	1	0	4.822885	0.322008	-4.816546	60	1	0	3.187094	1.964663	4.347539
88	6	0	5,246055	2.169139	-3.783796	61	6	0	4,081145	0.329243	3.236231
89	1	0	5 658175	2 665888	-4 664253	62	6	0	4 727244	-0.255922	4 365223
00	6	õ	5 190271	2 860507	-9 549716	62	1	Ő	4 624606	0.924522	5 226200
50	1	0	5.103271	2.000001	2. 042710	03	1	0	4.024000	1 410500	4 000203
91	1	0	0.000270	5.004004	-2.470708	04	0	0	5.470001	-1.410302	4.233137
92	6	0	4.660162	2.249910	-1.417298	65	1	0	5.960985	-1.856135	5.103522
93	1	0	4.618371	2.786960	-0.470300	66	6	0	5.596524	-2.038424	2.960704
94	6	0	4.164331	0.914934	-1.473532	67	1	0	6.186970	-2.951217	2.861825
95	6	0	2.758914	-3.181871	-1.815805	68	6	0	4,973295	-1.500476	1.846617
90	Ř	ñ	1 556677	-3 50/3/7	-1 10/2/0	00	1	ñ	5 060225	-1 989701	0.874779
07	6	0	1.040127	4 000147	1 262000	05	1	0	4 104940	0.211606	1 047991
91	0	0	1.049137	-4.000147	-1.302009	70	0	0	4.194640	-0.311000	1.947001
98	6	0	1.734809	-5.804332	-2.171369	71	6	0	1.890106	3.342867	2.410365
99	1	0	1.341136	-6.814295	-2.301290	72	6	0	0.645085	3.502224	1.757113
100	6	0	2.929895	-5.421456	-2.803123	73	6	0	-0.134025	4.654311	1.906422
101	1	Ō	3 475309	-6 132502	-3 426147	74	6	0	0 317194	5 684767	2 743028
101	ĥ	Ő	2 421026	-4 197222	-2 620660	75	1	0	-0.294705	6 597417	2.962662
102	0	0	3.431030	4.127000	2.020000	15	1	0	0.204790	0.007417	2.002002
103	1	0	4.370377	-3.831332	-3.092661	76	6	0	1.542636	5.553301	3.416659
104	1	0	-2.143925	4.339047	0.788958	77	1	0	1.902563	6.355128	4.063688
105	1	0	0.115926	-5.148087	-0.864039	78	6	0	2.316506	4.398586	3.244991
				·		79	1	0	3, 281681	4, 304305	3, 745551
						80	ĥ	ñ	3 504378	-0 399343	-0 521447
тс_ р						01	6	0	9 916691	-1 605072	-0 666564
I O Theodel	(1) D (DD0 7D)	1001.015	011 1			81	Ö	U	2.010081	1.000973	0.000004
B97D/6-31g	(a);E(RB97D) =	= -4834.840	UII hartree			82	6	0	2.572669	-2.205007	-1.944938
Zero-point	Energy Corre	ction = 0.7	65333 hartree			83	6	0	3.108027	-1.584515	-3.068458
Thermal Co	rrection to E	nergy = 0.8	22904 hartree			84	1	0	2.912730	-2.010098	-4.055067
Thermal co	rrection to F	n thal nv = 0	.823848 hartre	e		85	6	0	3. 886520	-0.402297	-2,974950
Thermal co	rrection to C	ibbs Eroo E	nergv = 0.6700	80 hartroc		00 02	e e	ň	4 458574	0 203800	-4 129207
finermal CO	riccilon to G	TODS LIGG E	mergy - 0.0700	A 074670 1		80	0	0	4.400074	0.203009	T. 102097
sum of ele	cironic and Z	ero-point E	mergies = -483	94. U/40/8 ha	ruree	87	1	U	4.285750	-0.204537	-5.104437
Sum of ele	ctronic and t	hermal Ener	$g_{1es} = -4834.0$	017107 hartr	ee	88	6	0	5.219674	1.355167	-4.026626
Sum of ele	ctronic and t	hermal Enth	alpies = -4834	.016163 har	tree	89	1	0	5.654279	1.810694	-4.918545
Sum of ele	ctronic and t	hermal Free	Energies = -4	834.169931	hartree	90	6	0	5.439888	1.944988	-2.751740
cncm(ether)/B97D/6-31g6	d) · E(RB97D) = -4834 8606	44 hartree		Q1	1	Ő	6.047003	2.848809	-2.672033
Gibbs Free	Fnergy in ot	her = -4834	190564 hartro			09	ĥ	ñ	4 888625	1 386112	-1 610226
The runt	of Imgring	froguers :	-1	~		92	1	0	-1.000020 5.050055	1 0/4070	-0 626714
ine number	of finaginary	rrequencie	5 - 1			93	1	0	0.0039900	1.0443/9	-0.030/14
	A	A		·····	· · · · · ·	94	6	0	4.091603	0.206847	-1.683600
Center	Atomic	Atomic	Coord	linates (Ang	stroms)	95	6	0	1.761020	-3. 438462	-2.082359
Number	Number	Туре	Х	Y	Z	96	6	0	0.563109	-3.628191	-1.352730

Center	Atomic	Atomic	Coordin	nates (Angst	roms)
Number	Number	Туре	Х	Y	Ζ

97	6	0	-0.212447	-4.784392	-1.505961
98	6	0	0.183416	-5.774186	-2.415386
99	1	0	-0.419588	-6.676828	-2.532511
100	6	0	1.359855	-5.604096	-3.164578
101	1	0	1.680209	-6.374049	-3.868740
102	6	0	2.137037	-4.452287	-2.990547
103	1	0	3.066857	-4.329040	-3.548785
104	1	0	-1.078648	4.725595	1.365983
105	1	0	-1.121502	-4.879715	-0.912507

CP' -R_{sodel} B97D/6-31g(d);E(RB97D) = -4834.843462 hartree B97D/6-31g(d);E(RB97D) = -4834.843462 hartree Zero-point Energy Correction = 0.76451 hartree Thermal Correction to Energy = 0.823457 hartree Thermal correction to Enthalpy = 0.824451 hartree Thermal correction to Gibbs Free Energy = 0.668608 hartree Sum of electronic and Zero-point Energies = -4834.079012 hartree Sum of electronic and thermal Energies = -4834.079012 hartree Sum of electronic and thermal Enthalpies = -4834.019061 hartree Sum of electronic and thermal Free Energies = -4834.174855 hartree cpcm(ether)/B97D/6-31g(d); E(RB97D) = -4834.864393 hartree Gibbs Free Energy in ether = -4834.195785 hartree The number of Imaginary frequencies = 0 The number of Imaginary frequencies = 0

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	8	0	-2. 887465	2.874819	2.775042		
2	1	Ő	-3.035529	2.067339	2. 206345		
3	6	0	-1.042802	3 280735	1 208139		
4	6	Ő	0.005793	2,564903	1.894672		
5	6	Ő	1.355015	2.690415	1. 424139		
6	ő	Ő	-0.230081	1 747908	3 045804		
7	6	Ő	2. 396174	2.019382	2.059856		
8	1	0	1 578743	3 356000	0.593436		
ğ	6	0	0 818977	1 066285	3 652602		
10	1	0	-1 247839	1 623113	3 397476		
11	6	0	2 134731	1 192640	3 164656		
12	1	0	3 413095	2 128706	1 686061		
12	1	0	0 610633	0 407293	4 495821		
14	1	0	2 951256	0.645160	3 636951		
15	6	0	-0.936600	3 544436	-0 195789		
16	1	0	-1 527876	4 364714	-0.602373		
17	6	0	-0.287703	2 719455	-1 060370		
18	1	0	0.173331	1 788150	-0.734909		
10	1	0	-0.307436	2 010280	-2 138758		
20	0	0	2 427506	2. 142046	_1 720470		
20	6	0	2.427300	2 240202	-9 120442		
21	6	0	5.104091 4 740110	2.249392	-2.139443		
22	17	0	4.740115 E 7214E2	2.403343	2.002021		
20	17	0	0.701400	0.901429	-2.172022		
24	17	0	0.120020 E 1604E0	0.200299 0.E04201	-0.476040		
20	17	0	0. 100409	3. 364391	-3.420213		
20	1	0	2.771133	1.125170	-2. 767531		
21	1	0	3.307020	0.302269	-2.848000		
28	0	0	-2.201940	3.809759	1.977080		
29	1	0	1. 111922	0.906057	-2.717859		
30	6	0	-3.297440	4.513507	1.024438		
31	0	0	-4.227092	3.08/038	0.359437		
32	6	0	-3. 322830	5.897193	0.767150		
33	6	0	-5.163844	4.237556	-0.526677		
34	1	0	-4.220320	2.011871	0. 527955		
35	6	0	-4.260887	6.448021	-0.122149		
36	1	0	-2.612703	6.562547	1.258416		
37	6	0	-5.186155	5.620204	-0.772540		
38	1	0	-5.879646	3. 578518	-1.022531		
39	1	0	-4.265584	7.525362	-0.300441		
40	1	0	-5.917553	6.046921	-1.461882		
41	6	0	-1.678349	4.896592	2.984464		
42	1	0	-2.516490	5.378373	3.507895		
43	1	0	-1.051317	4.357273	3.705451		
44	1	0	-1.068590	5.664648	2.487438		
45	15	0	-2.185248	-0.033851	0.271585		
46	15	0	2.029595	-1.504741	-0.975519		
47	8	0	-3.088694	0.714146	1.214563		
48	8	0	-0.671363	0.003629	0.458143		
49	1	0	0.107393	-0.437585	-0.664177		
50	8	0	-2.398030	0.426629	-1.320936		
51	8	0	-2.729098	-1.590905	0.222920		
52	8	0	3.046050	-1.793979	-2.020958		
53	8	0	0.748172	-0.717072	-1.465030		
54	8	0	2.535742	-0.540425	0.270706		
55	8	0	1.564753	-2.865382	-0.193274		
56	6	0	-1.211749	-3.357492	-0.396955		
57	6	0	-2.206322	-2.443438	-0.745846		
58	6	0	-2.771822	-2.371499	-2.057173		
59	6	0	-2.370313	-3.321034	-2.990484		
60	1	0	-2.770531	-3.275478	-4.005455		
61	6	0	-1.426133	-4.332079	-2.669461		
62	6	0	-1.040988	-5.318116	-3.625350		
63	1	0	-1.495671	-5.285881	-4.618393		
64	6	0	-0.114579	-6.295052	-3.302744		
65	1	Ō	0.172691	-7.044952	-4.042352		
66	6	0	0.464635	-6.324179	-2.004486		
67	1	0	1, 191438	-7.099388	-1.754273		
68	6	Ō	0.118657	-5.375417	-1.056045		
69	1	Ō	0.566612	-5.399623	-0.063037		

70	6	0	-0.825865	-4.352053	-1.356668
71	6	0	-3.735240	-1.300645	-2.413667
72	6	0	-3.541855	0.047458	-2.018437
73	6	0	-4.433542	1.057928	-2.400105
74	6	0	-5.547006	0.743051	-3.190706
75	1	0	-6.241829	1.531498	-3.487339
76	6	0	-5.764360	-0.584128	-3.595410
77	1	0	-6.633670	-0.839282	-4.204037
78	6	0	-4.867255	-1.587005	-3.207064
79	1	0	-5.040776	-2.622901	-3.504197
80	6	0	-0.535003	-3.214757	0.926938
81	6	0	0.802787	-2.824350	0.979780
82	6	0	1.459743	-2.462139	2.196711
83	6	0	0.733287	-2.563814	3.379577
84	1	0	1.202917	-2.267948	4.319850
85	6	0	-0.606519	-3.025518	3.402100
86	6	0	-1.328533	-3.151426	4.625972
87	1	0	-0.824070	-2.886733	5.558714
88	6	0	-2.635662	-3.606104	4.632414
89	1	0	-3.180076	-3.700559	5.573988
90	6	0	-3.271559	-3.955923	3.409281
91	1	0	-4.300579	-4.319995	3.420569
92	6	0	-2.600163	-3.834235	2.203905
93	1	0	-3.093740	-4.098365	1.269462
94	6	0	-1.257136	-3.360003	2.159287
95	6	0	2.856259	-1.966808	2.224513
96	6	0	3.362592	-1.058098	1.264295
97	6	0	4.662999	-0.544280	1.348426
98	6	0	5.492950	-0.919669	2.412176
99	1	0	6.505354	-0.517246	2.477389
100	6	0	5.019594	-1.820408	3.381431
101	1	0	5.663271	-2.130746	4.206305
102	6	0	3.723562	-2.338812	3.277000
103	1	0	3.361621	-3.057324	4.014135
104	1	0	-4.232235	2.078863	-2.075633
105	1	0	4.998981	0.152652	0.581780

TS' -Rest B97D/6-31g(d);E(RB97D) = -4834.833519 hartree Zero-point Energy Correction = 0.758745 hartree Thermal Correction to Energy = 0.817934 hartree Thermal correction to Enthalpy = 0.818878 hartree Thermal correction to Gibbs Free Energy = 0.660303 hartree Sum of electronic and Zero-point Energies = -4834.074773 hartree Sum of electronic and thermal Energies = -4834.015585 hartree Sum of electronic and thermal Enthalpies = -4834.014640 hartree Sum of electronic and thermal Free Energies = -4834.173215 hartree cpcm(ether)/B97D/6-31g(d); E(RB97D) = -4834.853541 hartree Gibbs Free Energy in ether = -4834.13238 hartree The number of Imaginary frequencies = 1

Center	Atomic	Atomic	Coord	stroms)		
Number	Number	Туре	Х	Y	Z	
1	8	0	-1.347146	3.064593	1.384964	
2	1	0	-2.028619	2.649053	0.547030	
3	6	0	0.230811	3.517757	0.482388	
4	6	0	1.380302	2.906649	1.194884	
5	6	0	2.674756	3.125451	0.667277	
6	6	0	1.241485	2.153581	2.382800	
7	6	0	3.803806	2.633045	1.334461	
8	1	0	2.793793	3.681536	-0.261469	
9	6	0	2.374571	1.660097	3.035745	
10	1	0	0.244581	1.924489	2.751403	
11	6	0	3.658887	1.903514	2.521883	
12	1	0	4.791600	2.806539	0.907107	
13	1	0	2.257385	1.050354	3.931100	
14	1	0	4.533265	1.495627	3.029367	
15	6	0	0.109510	3.363350	-0.958589	
16	1	0	-0.569353	4.041604	-1.474917	
17	6	0	0.747944	2.386429	-1.646967	
18	1	0	1.391540	1.657843	-1.161460	
19	1	0	0.632246	2.304548	-2.728924	
20	8	0	3.643031	1.287784	-2.361537	
21	6	0	4.011863	0.123883	-2.451636	
22	6	0	5.571647	-0.192906	-2.302729	
23	17	0	5.944044	-1.920600	-1.841597	
24	17	0	6.282338	0.889978	-1.045461	
25	17	0	6.320790	0.163417	-3.917405	
26	7	0	3.239669	-0.930575	-2.795906	
27	1	0	3.500780	-1.888321	-2.572010	
28	6	0	-0.774512	4.380256	1.200830	
29	1	0	2.234626	-0.764442	-2.796332	
30	6	0	-1.597606	5.354326	0.377647	
31	6	0	-2.985157	5.197759	0.234845	
32	6	0	-0.956975	6.463112	-0.207493	
33	6	0	-3.725842	6.144557	-0.490216	
34	1	0	-3.481694	4.332692	0.672092	
35	6	0	-1.697146	7.404758	-0.934499	
36	1	0	0.124433	6.579452	-0.100815	
37	6	0	-3.086411	7.247529	-1.075479	
38	1	0	-4.803871	6.013217	-0.600549	
39	1	0	-1.191238	8.257577	-1.391368	
40	1	0	-3.664654	7.979560	-1.642595	
41	6	0	-0.392920	5.003733	2.542929	
42	1	0	-1.316957	5.264577	3.079359	

43	1	0	0.205276	4.317816	3.154258	16	1	0	-1.154256	3.917217
10	1	0	0.1500210	5.000010	0.101200	10	1	0	1.101200	0.017217
44	1	0	0.179828	5.926949	2.368487	17	6	0	0.558090	2.837626
45	15	0	-2 265000	0 663033	-0 701079	18	1	0	1 /00800	2 350004
40	10	0	2.205000	0.000000	0.101013	10	1	0	1.433000	2.000004
46	15	0	1.375731	-2.269354	-0.459467	19	1	0	0.261425	2.831169
477		-	0.700000	0.047400	0.000750		-	-	0,00005	1 500440
47	8	0	-2.786033	2.047480	-0.288758	20	8	0	3.828895	1.589449
48	8	0	-0 814065	0 344837	-0.415562	21	6	0	4 095822	0 408309
-10	0	0	0.014000	0.011001	0.410002	21	0	0	4.000022	0.400000
49	1	0	-0.073628	-0.734903	-1.115562	22	6	0	5.620634	-0.051166
50	-	-	0.500700	0 100070	0.010000		17	-	5 045017	1 045000
50	8	0	-2.523799	0.409078	-2.310003	23	17	0	5.845217	-1.845302
51	8	0	-3 280865	-0 420861	-0.015419	94	17	0	6 377913	0 825533
01	0	0	5.200005	0.425001	0.015415	24	17	0	0.011210	0.020000
52	8	0	2. 287928	-3.299332	-1.016695	25	17	0	6. 440450	0.415875
50	ő	ő	0.540400		1.010000	20	11		0.110100	0. 110010
53	8	0	0.518108	-1.479161	-1.535697	26	7	0	3.237304	-0.548679
54	0	0	2 001066	-1 097979	0 262242	97	1	0	2 410202	-1 549971
04	0	0	2.091900	1.021212	0.303242	21	1	0	5.419092	1.04441
55	8	0	0 366675	-2 902713	0 671706	28	6	0	-0.649913	4 603936
= 0		ő	0.000010	0.011555	0.000000	20	š		0.010010	
56	6	0	-2.423848	-2.641577	0.423878	29	1	0	2.252010	-0.295558
57	6	0	-2 117192	-1 764011	-0 406192	20	6	0	-1 559910	5 599455
57	0	0	5.117165	1.704011	0.400105	30	0	0	1.004419	0.000400
58	6	0	-3.734116	-2.165704	-1.630927	31	6	0	-2.940301	5.382402
=0	ő	ő	0,001110	2.100101	1.000021	01	ő		0.001100	0.000101
59	6	0	-3.696321	-3.515281	-1.963360	32	6	0	-0.991193	6.747674
60	1	0	-4 140495	-2 946440	-2 004255	22	6	0	-2 750159	6 225017
00	1	0	4.140425	3.040449	2. 904200	00	0	0	5.759156	0.323917
61	6	0	-3.067283	-4.473164	-1.124813	34	1	0	-3.379009	4.485132
01	ő	ő	0.001200		1. 12 10 10	01	-		1 000150	
62	6	0	-3.053829	-5.858554	-1.463841	35	6	0	-1.809158	7.688073
62	1	0	-2 549901	-6 179704	-9 200002	26	1	0	0 088050	6 002101
05	1	0	5. 542601	0.172794	2. 300993	50	1	0	0.000950	0.902101
64	6	0	-2.437536	-6.784048	-0.639248	37	6	0	-3.196691	7.479467
01	0	0	2. 101000	0.101010	0.000210	01	0		0.100001	1. 110 101
65	1	0	-2.432647	-7.841981	-0.908598	38	1	0	-4.836394	6.156581
CC	G	0	1 200560	6 957599	0 560000	20	1	0	1 262000	0 570015
00	6	0	-1.809569	-0.337333	0.002928	39	1	0	-1.363909	8.079910
67	1	0	-1 328568	-7 092253	1 211358	40	1	0	-3 833964	8 211312
01	1	0	1. 520500	1.032200	1.211000	10	1	0	0.000004	0.211012
68	6	0	-1.797563	-5.018084	0.916694	41	6	0	-0.063898	5.112877
C0	1	0	1 010405	4 000770	1 007000	40	1	0	0.000007	E 9C4114
69	1	0	-1.312485	-4.090770	1.837629	42	1	0	-0.882837	0.304114
70	6	0	-2 414640	-4 037742	0 087269	43	1	0	0 589576	4 360112
10	0	0	2.111010	1.001112	0.001203	40	1	0	0.000010	4.000112
71	6	0	-4.383987	-1.168770	-2.515624	44	1	0	0.516770	6.028718
70	G	0	2 202500	0 000602	9 709997	4 5	15	0	9 919755	0 624040
12	0	0	-3.191099	0.090085	-2.192021	40	15	0	-2.312700	0.034040
73	6	0	-4 414257	1 017623	-3 640669	46	15	0	1 346347	-2 213519
	0	0	1. 11 1201	1.011020	0.010000	10	10		1.010011	2.210010
74	6	0	-5.638056	0.700028	-4.245638	47	8	0	-3.012321	1.937161
75	1	0	-6 110092	1 492499	-4 006520	19	0	0	_0 97/199	0 440006
10	1	0	0.119065	1.423420	4.900520	40	0	0	0.074102	0.440090
76	6	0	-6.239176	-0.544178	-3.996118	49	1	0	-0.021221	-0.533855
	1	ő	7 105000	0. 500005	4 450170	10	Â	ő	0 404500	0.017471
((1	0	-7.195209	-0.796387	-4.458179	50	8	0	-2.484732	0.617471
79	6	0	-5 617167	-1 450460	-2 129210	51	0	0	-2 220000	-0 525557
10	0	0	5.017107	1.400400	5.156510	51	0	0	5. 550999	0. 000007
79	1	0	-6.091327	-2.418199	-2.921001	52	8	0	2.214611	-3.149609
00	ĉ	ő	1 000050	0 105944	1 000004	50	0	ő	0 470000	1 000040
80	6	0	-1.690052	-2.105344	1.609024	53	8	0	0.478290	-1.235242
81	6	0	-0.296148	-2 150674	1 643629	54	8	0	2 087149	-1 134176
01	0	0	0.230140	2.100014	1.040025	04	0	0	2.001143	1. 104110
82	6	0	0.469814	-1.560416	2.699318	55	8	0	0.348611	-3.022997
0.0	G	0	0 991129	0 097097	2 797200	EG	C	0	9 429970	0 777000
00	0	0	-0.221132	-0.927037	3.121399	90	0	0	-2.436270	-2.111338
84	1	0	0 343494	-0 446806	4 529046	57	6	0	-3 131553	-1 803880
01	1	0	0.010101	0.110000	1.020010	01	0		0.101000	1.000000
85	6	0	-1.637182	-0.875996	3.765626	58	6	0	-3.710549	-2.025425
96	6	0	-9 222471	-0.925775	4 926555	50	6	0	-2 645091	-2 212704
00	0	0	2.320471	0.235115	4.020000	09	0	0	3.043301	5.512194
87	1	0	-1.740556	0.227252	5.632995	60	1	0	-4.058096	-3.508337
00	ĉ	õ	0.711040	0.000040	4.970000	00	-	0	2,000505	4 974199
88	ь	U	-3. (11849	-0.209349	4.870096	61	6	0	-3.023595	-4.3/4138
89	1	0	-4.232705	0.281279	5.694705	69	6	Ω	-2 981830	-5.696068
00	-	~	1. 202.00	0.001010	0.001.00	02	0	0	2.001000	5. 000000
90	6	0	-4.457784	-0.830308	3.830751	63	1	0	-3.447305	-5.880841
0.1	1	0	E E40010	0.016006	2 0662000	G A	C	0	9 266004	6 791595
91	1	0	-5.548818	-0.810090	3.800200	04	0	0	-2.300094	-0.721080
92	6	0	-3.814683	-1.451195	2.772392	65	1	0	-2.338886	-7.729608
02		0	0.011000	1. 101100	1.050/50	00	1	0	2.000000	1.120000
93	1	0	-4.393971	-1.922433	1.979478	66	6	0	-1.766869	-6.464145
0.4	G	0	9 201497	1 402005	9 607457	67	1	0	1 905070	7 979090
34	0	0	2. 391407	1.403503	2.097457	07	1	0	1.200010	1.216029
95	6	0	1.950588	-1.600209	2.721254	68	6	0	-1.782400	-5.189505
00	c	ő	0. 504055	1.050005	1.507500	00		0	1.010005	4.000000
96	6	0	2.724657	-1.350395	1.567538	69	1	0	-1.319225	-4.996332
07	6	0	4 191809	-1 397894	1 603254	70	G	Λ	-2 400002	-4 100749
31	U	U	4.121092	1.02/024	1.003204	70	0	0	2.400992	4.109/42
98	6	0	4,785342	-1.546351	2.817424	71	6	0	-4.330187	-0.912574
00	1	ő	5.050005	1 500752	0.040001	11	0	0	0.500101	0.071021
99	1	0	5.876327	-1.530753	2.846901	72	6	0	-3.738600	0.371061
100	6	0	4 044914	-1 702965	2 095257	70	C	0	-4 212602	1 /12502
100	0	U	4.044214	1.192000	5. 200001	13	0	0	4.010003	1.410000
101	1	0	4, 554190	-1.977238	4.932590	74	6	0	-5,508705	1.189623
100	ĉ	õ	0. 045504	1 004000	2.020205	71	*	0	E 000704	0.000055
102	6	0	2.645534	-1.824333	3.930395	75	1	0	-5.960724	2.000955
103	1	0	2 065462	-2 030575	4 820451	76	G	Λ	-6 117599	-0.074895
109	1	U	2.000402	2.039010	4.029401	10	0	0	0.11/083	0.014000
104	1	0	-3.917360	1.971220	-3.819506	77	1	0	-7.051296	-0.254559
105	1	õ	4 660940	1 100050	0.005404	70	-	0	E E00750	1 100055
105	1	U	4.669348	-1.123656	0.685424	78	6	0	-5.533753	-1.106255
						70	1	0	-6.015086	-2 083061
						15	1	0	0.010000	2.000001

Product-Ress: B97D/6-31g(d);E(RB97D) = -4834.847522 hartree Zero-point Energy Correction = 0.762498 hartree Thermal Correction to Energy = 0.822376 hartree Thermal correction to Enthalpy = 0.823321 hartree Thermal correction to Gibbs Free Energy = 0.662454 hartree Sum of electronic and Zero-point Energies = -4834.085024 hartree Sum of electronic and thermal Energies = -4834.025146 hartree Sum of electronic and thermal Enthalpies = -4834.025146 hartree Sum of electronic and thermal Free Energies = -4834.185068 hartree cpcm(ether)/B97D/6-31g(d); E(RB97D) = -4834.865840 hartree Gibbs Free Energy in ether = -4834.203386 hartree The number of Imaginary frequencies = 0

Center	Atomic	Atomic	Coordinates (Angstroms)					
Number	Number	Туре	Х	Y	Z			
1	8	0	-1.127617	3.231491	1. 428720			
2	1	0	-2.325051	2.528294	0.630370			
3	6	0	0.059970	3.526129	0.575667			
4	6	0	1.347177	2.951703	1.098173			
5	6	0	2.569010	3.459943	0.619627			
6	6	0	1.350148	1.937721	2.073305			
7	6	0	3.782510	2.953973	1.104953			
8	1	0	2.567730	4.233611	-0.149432			
9	6	0	2.565689	1.448920	2.571410			
10	1	0	0.402791	1.533525	2.425444			
11	6	0	3.782954	1.951179	2.086036			
12	1	0	4.722987	3.334460	0.704811			
13	1	0	2.563910	0.657095	3. 321107			
14	1	0	4.725685	1.548710	2.460509			
15	6	0	-0.223114	3.439921	-0.889428			

25	17	0	6. 440450	0.415875	-3. 691722
26	7	0	3. 237304	-0.548679	-2.699128
21	6	0	-0.649913	4. 603936	1. 366636
29	1	0	2.252010	-0.295558	-2.694233
30 21	6	0	-1.552219	5.588455	0.670145
32	6	0	-0. 991193	6.747674	0. 101397
33	6	0	-3.759158	6.325917	-0.046422
34 35	1	0	-3.379009 -1.809158	4.485132	1.030161
36	1	0	0.088950	6.902101	0.150341
37	6	0	-3.196691	7.479467	-0.613849
38 39	1	0	-4.836394	6.156581 8.579915	-0.100991
40	1	Ő	-3. 833964	8. 211312	-1.114107
41	6	0	-0.063898	5.112877	2.674837
42 43	1	0	-0.882837 0.589576	5. 364114 4. 360112	3. 300873
44	1	0	0.516770	6.028718	2.484923
45 46	15	0	-2. 312755	0.634040	-0.403448
40 47	8	0	-3.012321	1.937161	0. 163513
48	8	0	-0.874182	0.440096	-0.034549
49 50	1	0	-0.021221 -2484732	-0.533855 0.617471	-0.947383
51	8	Ő	-3. 330999	-0. 535557	0.082065
52	8	0	2.214611	-3.149609	-1.335156
53 54	8 8	0	2.087149	-1.235242 -1.134176	-1.489810
55	8	0	0.348611	-3.022997	0.444335
56 57	6	0	-2.438270 -2.121552	-2.777338	0.211731
58	6	0	-3.710549	-2.025425	-1.786064
59	6	0	-3.645981	-3.312794	-2.307929
60 61	1	0	-4.058096 -3.023595	-3.508337 -4.374138	-3.299764
62	6	0	-2.981830	-5. 696068	-2.133027
63	1	0	-3. 447305	-5.880841	-3. 103914
64 65	6	0	-2.366094 -2.338886	-6.721585 -7.729608	-1.436390 -1.854353
66	6	0	-1.766869	-6.464145	-0.172964
67 68	1	0	-1.285878 -1.782400	-7.278029 -5.189505	0.372541
69	1	0	-1.319225	-4. 996332	1. 336338
70	6	0	-2.400992	-4.109742	-0.323362
71 72	6	0	-4.330187 -3.738600	-0.912574 0.371061	-2.544213
73	6	0	-4. 313603	1. 413583	-3. 348768
74 75	6	0	-5. 508705	1.189623	-4. 046353
75 76	6	0	-5.960724 -6.117583	2.000955	-4.019301 -4.001675
77	1	0	-7.051296	-0.254559	-4.537078
78 79	6	0	-5. 533753	-1.106255 -2.083961	-3.256120
80	6	0	-1.725269	-2.401780	1. 469053
81	6	0	-0.330614	-2.425070	1.507528
82 83	6	0	-0.292150	-1.967326 -1.482414	2.638371 3.732405
84	1	0	0.258338	-1.095515	4.592149
85 86	6	0	-1.709528 -2.419811	-1.469143 -0.993652	3.767463
80 87	1	0	-1.846093	-0.624718	5. 762940
88	6	0	-3.803610	-1.007292	4.938308
89 90	1	0	-4.338649 -4.531489	-0.643809 -1.503401	5.817733
91	1	0	-5. 622560	-1.522204	3.853424
92	6	0	-3.870220	-1.961810	2.694015
93 94	6	0	-4.435437 -2.446501	-2.339608 -1.949039	2,624858
95	6	0	1.900317	-2.000876	2.677729
96 07	6	0	2.695286	-1.613985	1.577315
98	6	0	4. 733086	-1.936541	2.836754
99	1	0	5.822719	-1.910232	2.891813
100	6 1	0	3. 972234 4 465481	-2.327496 -2.615932	3.951313 4.881190
102	6	0	2. 575477	-2. 362877	3.865342
103	1	0	1.981335	-2.685958	4.721742
104	1	0	-3. 809555 4. 652271	2. 379828 -1. 257080	-3. 369727 0. 769859
103 104 105 	1 1 1 	-4834_841	1. 981335 -3. 809555 4. 652271	-2. 065958 2. 379828 -1. 257080	4. 721742 -3. 369727 0. 769859

-1.202716

-1. 799814 -1. 543758

-1. 543758 -2. 850882 -2. 109366 -2. 280265 -2. 140257

-1. 868348 -0. 756985

CP-Social B97D/G-31g(d);E(RB97D) = -4834.841664 hartree Zero-point Energy Correction = 0.766233 hartree Thermal Correction to Energy = 0.824040 hartree Thermal correction to Enthalpy = 0.824984 hartree

Thermal correction to Gibbs Free Energy = 0.669815 hartree Sum of electronic and Zero-point Energies = -4834.075430 hartree Sum of electronic and thermal Energies = -4834.017624 hartree Sum of electronic and thermal Enthalpies = -4834.016680 hartree Sum of electronic and thermal Free Energies = -4834.171849 hartree cpcm(ether)/B97D/6-31g(d); E(RB97D) = -4834.864911 hartree Gibbs Free Energy in ether = -4834.195096 hartree The number of Imaginary frequencies = 0

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Center Number	Atomic Number	Atomic Type	Coore X	dinates (Ang Y	stroms) Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	8	0	-2.081060	-3.907321	-0. 478717
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	0	-1.211142	-3.680893	-0.889840
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	6	0	-2.756021	-1.615423	-0.820121
	5	6	0	-3.615553	-0.071001	0.938239
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	6	0	-2.041747	-1.792051	1.621617
\circ 1 0 -1.247420 0.391410 0.130024 10 1 0 -2.27344 -0.23053 2.24953 11 6 -2.297344 -0.23053 2.249533 12 1 0 -4.329840 1.244595 2.498239 13 1 0 -4.329840 1.244525 4.285884 15 6 0 -2.493999 -1.62242 -2.860889 15 6 0 -2.745966 1.819994 16 1 0 -2.751629 1.750507 1.793357 12 6 0 -2.280688 2.924002 -1.15171 22 6 0 -2.280868 3.81251 0.096530 24 17 0 -4.628829 3.73197 -2.85581 24 17 0 -2.231784 -3.118710 -2.245930 23 10 0.792929 <	7	6	0	-3.684136	0.397118	2.257202
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	6	0	-4.214420 -2.107316	-1.314199	2. 935559
11 6 -2.27394 -0.223053 3.261930 12 1 0 -1.432840 1.244595 2.49829 13 1 0 -1.2958956 0.51228 4.285844 15 6 0 -2.493909 -1.662242 -2.860895 16 1 0 -1.484473 0.665709 -0.515373 18 1 0 -1.484473 0.665709 -0.515373 19 1 0 -0.57886 0.737851 -2.245053 21 6 0 -2.286868 2.924002 -1.51571 22 6 0 -3.381602 4.034904 -1.4793357 23 17 0 -2.2660011 5.99119 -2.8558181 24 17 0 -4.222378 3.186075 -1.1933547 27 1 0 -0.77583 3.186075 -1.1934543 27 1 0 -0.262974 -1.048786 3.186075 -1.1048786 28 6 0 <td>10</td> <td>1</td> <td>Ő</td> <td>-1.397349</td> <td>-2.628498</td> <td>1. 371291</td>	10	1	Ő	-1.397349	-2.628498	1. 371291
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	6	0	-2.927394	-0.223053	3.261930
14 1 0 -2 258958 0. 151228 4.285884 15 6 0 -2.447829 -0. 745694 -1.819694 16 1 0 -2.493909 -1.06224 -2.860889 17 6 0 -1.783773 0.547203 -1.55233 18 1 0 -1.484473 0.665709 -1.1793357 20 8 0 -2.751629 1.750507 -1.793357 21 6 0 -2.2858688 2.924002 -1.151571 22 6 0 -3.381602 3.793197 -2.85581 23 17 0 -4.528829 3.793197 -2.85581 25 17 0 -1.044786 3.18075 -1.193954 25 17 0 -0.277583 4.117325 -0.877856 28 6 0 -3.074843 -3.027827 -1.042949 30 15 0 1.047662 -2.455904 -1.045949 31 0 0.338121 -0.028287	12	1	0	-4.329840 -1.498265	-1.787092	2.498239
	14	1	Ő	-2.958958	0.151228	4.285884
	15	6	0	-2.447829	-0.745696	-1.819694
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 17	1	0	-2.493909 -1.789773	-1.062242	-2.860889 -1.556293
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	1	Ő	-1.484473	0.665709	-0. 515373
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	1	0	-0.957868	0.737851	-2.245053
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20 21	8	0	-2.751629 -2.286868	1.750507	-1.793357
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	6	0	-3. 381602	4. 034904	-1.497630
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	17	0	-4.222378	3.851251	0.096530
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	17	0	-4.528829	3.793197	-2.855581
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 26	7	0	-1.048786	3. 186075	-1.018403 -1.193954
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	1	0	-0.777583	4.117325	-0.877856
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	6	0	-3.078483	-3. 102752	-1.111110
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29 30	15	0	-0.290299	-1 824477	-1.004246 -1.366920
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	15	Ő	1.047660	2. 251794	1.018938
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	8	0	0.438023	-3.184890	-1.530578
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	8	0	0.381221	-0.928974 0.082722	-0.245990 -0.285863
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	8	0	0.942647	-0.847233	-2.701272
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	8	0	2.633641	-1.905000	-1.102562
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37	8	0	1.076352	3.743014	1.040447
40802. 356482 1. 591985 1. 769871 41603. 804092 -0. 161035 0. 993289 42603. 393644 -0. 725697 -1. 113581 43603. 765856 -0. 199983 -2. 389228 44604. 657038 0. 866979 -2. 417460 45104. 991220 1. 301950 -3. 378417 46605. 188947 1. 426342 -1. 226573 47606. 40339 3. 035732 -0. 098230 50107. 361449 3. 854412 -0. 139763 51606. 6227349 2. 520274 1. 1287733 52106. 637226 2. 944689 2. 079280 53605. 306394 1. 488037 1. 233729 54104. 991285 1. 098811 2. 2079280 53601. 827840 -1. 866941 -3. 745255 56603. 197753 -0. 752525 -3. 642281 57601. 827840 -1. 866941 -3. 755919 59602. 116320 -1. 742549 -6. 075363 60101. 878543 -1. 415267 -5. 989388 62104. 131550 -1. 544420 -6. 853765 63601. 278947 -0. 028907 -4. 786566 64<	30 39	8	0	-0.205867	1.557804 1.585252	1. 890801
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40	8	0	2.356482	1.591985	1.769871
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	6	0	3.804092	-0.161035	0.093289
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	6	0	3.393044 3.765856	-0.125697 -0.199983	-1.113581 -2.389228
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	6	Ő	4.657038	0.866979	-2.417460
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	1	0	4.939120	1.301950	-3.378417
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46 47	6	0	5. 188947 6. 130133	1.426342 2.497340	-1.226573 -1.266872
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48	1	0	6. 441858	2. 880334	-2.241564
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49	6	0	6.640399	3.035732	-0.098230
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	1	0	7.361449	3.854412	-0.139763
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52	1	0	6.637226	2. 944689	2.079280
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53	6	0	5.306394	1.488037	1.233729
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	54	1	0	4.991285	1.098881	2.201033
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56 56	6	0	4. 754956 3. 197753	-0.752525	-3.642281
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	6	0	1.827840	-1.086941	-3.763518
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58	6	0	1.288504	-1.580513	-4.955919
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	59 60	ю 1	0	2.116320	-1.742549 -2.130656	-0.075363
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	61	6	Ő	3. 478543	-1.412502	-5. 989388
	62	1	0	4. 131550	-1.544420	-6.853765
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	64	0	0	4.006519 5.069397	-0.928907	-4.786086
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65	6	Ő	3. 197875	-0.629496	1. 375611
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	66	6	0	2.381294	0.236483	2.106460
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	67 68	6	0	1.626619	-0.190816 -1.512357	3.245879
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69	1	0	1. 175798	-1.866745	4. 507388
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	6	0	2.629820	-2.420510	2.998236
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71	6	0	2.781443	-3.764264	3.451724
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	73	6	0	2.200784	-4.636763	4. 322969 2. 806336
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74	1	Ő	3. 749907	-5. 663361	3. 161192
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75	6	0	4.386927	-4.194092	1.679925
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76 77	1	0	5.069854 4 252784	-4.883235 -2.898365	1.179519
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78	1	0	4. 825951	-2. 566561	0. 343544
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79	6	0	3. 367191	-1.977688	1.840347
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80	6	0	0.714260	0.728744	3.966926
83 6 0 -1.080827 2.425857 5.362186 84 1 0 -1.766779 3.086122 5.86234 85 6 0 -0.24597 5.362186 5.36234	81 82	0 6	0	-0.147902 -1.027496	2,461295	3.279905 3.962698
84 1 0 -1.766779 3.086122 5.896384 85 6 0 -0.242587 1.542152 6.070065	83	ő	Õ	-1.080827	2. 425857	5.362186
	84	1	0	-1.766779	3.086122	5.896384 6.070065

86	1	0	-0.279455	1.513698	7.161564
87	6	0	0.639765	0.712578	5.376668
88	1	0	1.308019	0.045238	5.923849
89	1	0	-1.670743	3.120476	3.380228
90	1	0	0.226808	-1.826297	-4.988440
91	6	0	-4.441770	-3.426035	-0.486668
92	6	0	-4.595945	-4.437468	0.474749
93	6	0	-5.569978	-2.686606	-0.890573
94	6	0	-5.862594	-4.708066	1.017445
95	1	0	-3.723228	-5.003757	0.795049
96	6	0	-6.833366	-2.954838	-0.348598
97	1	0	-5.449552	-1.885883	-1.624229
98	6	0	-6.984115	-3.970757	0.609704
99	1	0	-5.970039	-5.497095	1.765308
100	1	0	-7.698001	-2.369915	-0.670455
101	1	0	-7.967002	-4.181743	1.036657
102	6	0	-3.109614	-3.455190	-2.616129
103	1	0	-3.877114	-2.882628	-3.158714
104	1	0	-2.123003	-3.266812	-3.067261
105	1	0	-3.339342	-4.525864	-2.704651

TS-Secti B97D/6-31g(d);E(RB97D) = -4834.838141 hartree Zero-point Energy Correction = 0.764903 hartree Thermal Correction to Energy = 0.822408 hartree Thermal correction to Enthalpy = 0.82352 hartree Thermal correction to Gibbs Free Energy = 0.670063 hartree Sum of electronic and thermal Energies = -4834.015733 hartree Sum of electronic and thermal Energies = -4834.015733 hartree Sum of electronic and thermal Energies = -4834.014789 hartree Sum of electronic and thermal Free Energies = -4834.168077 hartree Gibbs Free Energy in ether = -4834.189493 hartree The number of Imaginary frequencies = 1

Center	Atomic	Atomic	Coore	dinates (Ang	stroms)
Number	Number	Туре	X	Y	Z
1	8	0	-1.661477	-4.056900	-0.028488
2	1	0	-0.792661	-3.832793	-0.454661
3	6	0	-2.552359	-1.945297	-0.777226
4	6	0	-2.711539	-1.267357	0.521325
5	6	0	-3.529625	-0.109828	0.579432
6	6	0	-2.106352	-1.731567	1.715233
7	6	0	-3.742280	0.553622	1.791972
8	1	0	-4.018441	0.240548	-0.329134
10	0	0	-2.308272	-1.048134	2.910389
10	1	0	-1.409004 -2.197441	-2.001212	2 064920
12	1	0	-4 383125	1 436212	1 817933
12	1	0	-1 806802	-1 396302	3 820226
14	1	0	-3.263378	0.628178	3. 904191
15	6	Ő	-2.264927	-1.233160	-1.932245
16	1	0	-2.283047	-1.739889	-2.895367
17	6	0	-1.656070	0.046207	-1.882754
18	1	0	-1.406898	0.453069	-0.907530
19	1	0	-0.994030	0.318180	-2.704769
20	8	0	-2.905947	1.476454	-2.286972
21	6	0	-2.478230	2.642757	-2.065843
22	6	0	-3.574791	3.772539	-1.995574
23	17	0	-4.094879	3.816161	-0.252493
24	17	0	-4.965976	3.366163	-3.048226
25	17	0	-2.921509	5.393967	-2.474250
26	1	0	-1.222113	2.986793	-1.834757
27	1	0	-0.971004	3.918570	-1.506786
28	0	0	-2.097391	-3.491343	-0.827012
29	15	0	1 273448	-1 950068	-1 133076
30	15	0	0 832807	2 305226	0 544284
32	8	0	0.754505	-3 350300	-1 172081
33	8	õ	0.474693	-0.940975	-0.242577
34	1	Ő	0. 684046	0.099158	-0.422157
35	8	0	1.329638	-1.188970	-2.601015
36	8	0	2.840683	-1.924427	-0.671110
37	8	0	0.815340	3.871265	0.329167
38	8	0	0.823910	1.469601	-0.704862
39	8	0	-0.496365	1.828118	1.384718
40	8	0	2.060093	1.941909	1.553304
41	6	0	3.781277	0.037268	0.384721
42	6	0	3.555484	-0.719905	-0.763466
43	6	0	4.072046	-0.366072	-2.047793
44	6	0	4.924389	0.729557	-2.125951
45	1	0	5.313539	1.035416	-3.099150
40	6	0	5.277135	1.483166	-0.976231
47	0	0	6. 180230 6. 605602	2.083941	-1.000328
40	6	0	6 512511	2.033170	0.067203
50	1	0	7 205432	4 155160	-0.007203
51	6	0	5. 951758	2.970412	1. 327536
52	1	ŏ	6, 220841	3. 547136	2. 214441
53	6	ŏ	5, 063059	1.913744	1. 440131
54	ĭ	ŏ	4.633764	1.656586	2. 407637
55	6	0	4.693788	1.144246	0.299403
56	6	0	3.684103	-1.119851	-3.264108
57	6	0	2.350553	-1.532702	-3.499960
58	6	0	1.983120	-2.214728	-4.664679

59	6	0	2.950776	-2.494146	-5.639454
60	1	0	2.666477	-3.028452	-6.547654
61	6	0	4.280825	-2.091764	-5.437520
62	1	0	5.042101	-2.313201	-6.187463
63	6	0	4,636549	-1.418212	-4.262671
64	1	Ō	5,673271	-1.124003	-4.090729
65	6	Ō	3.023010	-0.262599	1.636349
66	6	Ō	2.090503	0.663743	2.109748
67	6	ŏ	1.214467	0.383487	3. 208017
68	6	Ō	1.339013	-0.847455	3.842969
69	1	ŏ	0.665565	-1.090650	4.667371
70	6	ŏ	2, 307296	-1.804618	3, 445661
71	6	Ō	2, 439889	-3.052432	4. 123714
72	1	ŏ	1. 770632	-3.263408	4.961439
73	6	Ő	3 398099	-3 972198	3 734049
74	1	õ	3. 491971	-4.924373	4. 259822
75	6	Ő	4 267176	-3 674345	2 648695
76	1	Ő	5 027345	-4 398933	2 350603
77	6	Ő	4 156298	-2 475439	1 963461
78	1	Ő	4 824044	-2 254506	1 131562
79	6	Ő	3 171726	-1 511716	2 328414
80	6	Ő	0 199355	1 364092	3 661107
81	6	Ő	-0.592696	2 093209	2 743957
82	6	Ő	-1 554442	3 014385	3 175356
83	6	Ő	-1 771312	3 203376	4 546515
84	1	0	-2 521319	3 921364	4 884135
85	6	õ	-1 018727	2 471008	5 480231
86	1	0	-1 177279	2.616180	6 550338
87	6	0	-0.041453	1 570943	5.036520
88	1	Ő	0.569320	1.025397	5 758174
89	1	0	-2 128483	3 554955	2 423291
90	1	0	0 941668	-2 511612	-4 790774
91	6	õ	-4 057562	-3 842403	-0.210916
92	6	õ	-4 162643	-4 653279	0.930365
93	6	Ő	-5 228695	-3 329428	-0.801422
94	6	Ő	-5 425142	-4 953900	1 465902
95	1	õ	-3,257387	-5 044276	1 391337
96	6	Ő	-6 487865	-3 625395	-0.263849
97	1	Ő	-5 150439	-2.684543	-1 679955
98	6	õ	-6 589870	-4 442124	0.874132
99	1	Ő	-5 496085	-5 588855	2 351790
100	1	õ	-7 386918	-3 217637	-0.730830
101	1	Ő	-7 569521	-4 674657	1 296794
102	6	0	-2.604503	-4.091587	-2.248336
103	1	õ	-3 394781	-3 709949	-2.912326
104	1	0	-1 617254	-3 877395	-2 684984
105	1	0	-2.720733	-5. 179719	-2.153735
100	1	~	2.120.00	5. 1. 5. 15	2.100.00

CP' -Smoot B97D/6-31g(d);E(RB97D) = -4834.843434 hartree Zero-point Energy Correction = 0.763655 hartree Thermal Correction to Energy = 0.822731 hartree Thermal Correction to Energy = 0. 822731 hartree Thermal correction to Enthalpy = 0. 823675 hartree Thermal correction to Gibbs Free Energy = 0. 665168 hartree Sum of electronic and Zero-point Energies = -4834. 079779 hartree Sum of electronic and thermal Energies = -4834. 020704 hartree Sum of electronic and thermal Enthalpies = -4834. 109759 hartree Sum of electronic and thermal Free Energies = -4834. 109759 hartree cpcm(ether)/B97D/6-31g(d); E(RB97D) = -4834. 865041 hartree Gibbs Free Energy in ether = -4834. 199873 hartree The number of Imaginary freeuncies = 0 The number of Imaginary frequencies = 0

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	8	0	-0.602015	-4.287883	0.029483
2	1	0	0.218897	-3.904001	-0.409471
3	6	0	-1.941660	-2.606977	-1.041290
4	6	0	-2.360927	-1.826421	0.098536
5	6	0	-3.274555	-0.741570	-0.098289
6	6	0	-1.970759	-2.146866	1.435549
7	6	0	-3.771776	-0.024931	0.988639
8	1	0	-3.631332	-0.509184	-1.099398
9	6	0	-2.464988	-1.412227	2.505663
10	1	0	-1.237375	-2.932790	1.583669
11	6	0	-3.367194	-0.350974	2.292812
12	1	0	-4.470641	0.793179	0.816306
13	1	0	-2.129006	-1.642558	3.516540
14	1	0	-3.734732	0.229040	3.139650
15	6	0	-1.805900	-2.003820	-2.332264
16	1	0	-1.828975	-2.651933	-3.207452
17	6	0	-1.466973	-0.689382	-2.509793
18	1	0	-1.288568	-0.032208	-1.666041
19	1	0	-1.289105	-0.293457	-3. 509332
20	8	0	-3.285984	1.494366	-2.646715
21	6	0	-2.954466	2.604660	-2.237849
22	6	0	-4.103961	3.646681	-1.864431
23	17	0	-3.585082	4.907839	-0.653919
24	17	0	-5.521462	2.757906	-1.188074
25	17	0	-4.573413	4.464738	-3.413225
26	7	0	-1.697525	3.084434	-2.180983
27	1	0	-1.436103	3.889598	-1.614082
28	6	0	-1.674984	-4.133400	-0.887731
29	1	0	-0.941745	2.415636	-2.319537
30	15	0	1.676283	-1.708554	-1.130317
31	15	0	0.321069	2.498992	0.333393

8

8

1

8 8

8

8

8 8

6

6

6

6

6

6

6

1 6

6

1 6

6

6

6

6 6

6

1

6 6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

1

1

6

6

6

6

6

1

6

6

1

1

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

Ő

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0 0

0 Ő

0

0

0 0

0

0

0

0

 $\begin{array}{c} 0 \\ 0 \end{array}$

0

0

0

0

0

0

0

0

0

0 0

0

0 0

0

0

0

0

0

0

1.441735

0.623853

0.667602

1.934116

3.145493

0.178769

0.618282

-1.025064

1,438710

3.607969

3,695260

4. 388577 5. 086452

5.605529

5.116510

5.861463

6,421903

5.876851

6.451037

5.144061

5.163164

4.402554

3.842053

4.359316

4.337972

3. 134250 3. 090554

4.251947 4.216050

5.456121

6.366725

5.492106

6.430005

2.688470 1.559288

0.567371 0.763143

0.010929 1.907038

2. 099556 1. 337776

3.228964 3.367982

4.214995

5. 107506

4. 052228 4. 808648

2.894801

-0.631766

-1.363762 -2.501243

-2. 956386 -3. 842627

-2.265491

-2.608400

-1. 115139 -0. 556045

-3. 019926 2. 139868

-2.948490

-2. 928335

-4 162152

-4. 109065

-1.989145 -5.341571

-4.185107

-5. 317835

-4.081770

-6.276043

-6.234532

-1.310230

-2.131163

-0.399185

-1.114921

-3.191050

-0. 837901 0. 546001

-0.974944

-1.486716

3.953807

1.595394

1.758080 2.202412

0.584248

-0.206792

0.211705

1.413069

1.763429

2.216045

3. 431298

3.732726 4. 209935 5. 138151

3.799766

4.414655

2. 629492 2. 321083

1.807495

-0.601352

-1.194584

-1.937270

-2. 094869 -2. 675678

-1.510874

-1.635752

-0.778338

-0.341650

0. 179999 0. 952824

0.573028

-0.613768

-0.935581

-1.426148

-2. 633135 -2. 928490

-3. 408588 -4. 330842

-3.000803

-1. 838678 -1. 534537

-1.023962

1. 404248

2.013449 2.791188

2. 953793 3. 560062

2.339460

2. 466694

1 584357

1.135935

3.241670 -2.375745

-4.761139

-5.453533

-4 637487

-6. 020589

-5.551117 -5.197030

-4.093335

-5.892421

-6.565032

-5.089760

-6.330590

-4. 849992

-4.814605

-4.408621

-5.901523

-3.612118

-1.271179

-0. 445220

-2.605228

-0.407259

0.064471

-0.927843

0.955756

0.738605

-0.406360

-1. 585784 -1. 540362

2.434890

-0.369732

-0.322592 -1.210819

0.822016

0.847343

1.969183

2.871082

1.952016 2.834040

0.789007

-2.824487

-3.281016

-4.467170

-5. 235604 -6. 159238

-4.810276

-5.398885

-3. 617476 -3. 269471

1.843817 2.113434

3.072121

3,771700

4.494525

3.569346

4. 304896 5. 030797

4.108473 4.675938

3.168290 3.022441

2. 432126 1. 710117

2.597853

3. 328771

2,283041 2. 531424

3.8462484.042090

4.904708

5.933010

4 643535

5.466482

1 686426

4. 771401

-0.303551

0.917359

-1 007370

1.422680

1.459374

-0.498774

-1.954690

0.720950

2,369040

1.053169

1 120546

-2.207545

-2.939774

-2.636131

-1.957511

002	c
15	-Daod

103

104

105

TS' - S_boot B97D/6-31g(d);E(RB97D) = -4834.835787 hartree Zero-point Energy Correction = 0.759004 hartree Thermal Correction to Energy = 0.818024 hartree Thermal correction to Enthalpy = 0.818968 hartree Thermal correction to Gibbs Free Energy = 0.662505 hartree Sum of electronic and Zero-point Energies = -4834.076782 hartree Sum of electronic and thermal Energies = -4834.01762 hartree Sum of electronic and thermal Enthalpies = -4834.016818 hartree Sum of electronic and thermal Energies = -4834.016818 hartree Sum of electronic and thermal Free Energies = -4834. 173282 hartree cpcm(ether)/B97D/6-31g(d); E(RB97D) = -4834. 856516 hartree Gibbs Free Energy in ether = -4834. 194011 hartree The number of Imaginary frequencies = 0

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	8	0	0.160702	2.936929	-1.134683
2	1	0	-0.666655	2.459768	-1.797342
3	6	0	1.777319	2.377996	-1.840694
4	6	0	2.711177	2.051793	-0.735531

6	0	3.936404	1.418365	-1.056044
6	0	2.464235	2.419128	0.605319
6	0	4.887336	1.164526	-0.058884
6	0	4. 145170 3. 409649	1.142209 2.143519	-2.088390
1	0	1. 512350	2. 872250	0.862426
6	0	4.623268	1.516170	1.272156
1	0	5.828761	0.681400	-0.326020
1	0	3. 191917	2.396291	2.632681
1	0	5.346935	1.290663	2.056130
6	0	1. 598207	1. 423234	-2.927519
6	0	1.290007	0.087249	-2 734637
1	0	1. 929458	-0.329050	-1.754005
1	0	1.552175	-0.626229	-3.543706
8	0	2.215956	-3.084905	-2.971858
6	0	2.466242	-3.704537	-1.946487
6	0	3.998035	-3.813792	-1.510016
17	0	4.313134	-4.845221	-0.028962
17	0	4.935415	-4 494008	-2 891558
7	Ő	1.564917	-4.331494	-1.160562
1	0	1.768203	-4.618795	-0.206589
6	0	1.105798	3.724187	-1.897898
1	0	0.593986	-4.070547	-1.324042
15	0	-1.895858	0.517394	-1.798919
10	0	-1 500705	-2.040700	-2 455170
8	0	-0.721593	-0.230384	-1.210841
1	0	-0.719362	-1.589206	-0.653941
8	0	-2.663969	-0.484474	-2.849254
8	0	-3.065480	0.833198	-0.689225
8	0	0.397993	-3.899132	1.717992
8	0	-0.632880	-2.532825	-0.221858
8	0	-0.852004	-1 686853	2 246551
6	0	-3,235193	-0.491327	1. 310169
6	Ō	-3.616199	-0.255162	-0.008653
6	0	-4.610345	-1.021437	-0.691038
6	0	-5.236868	-2.040995	0.018195
l	0	-5. 982922	-2.660354	-0.483667
6	0	-4.923349	-2.309415	2 008585
1	0	-6. 344446	-3. 938281	1.578202
6	Ő	-5.291572	-3.585256	3. 428457
1	0	-5.807475	-4.379524	3.971373
6	0	-4.312523	-2.795791	4.091705
1	0	-4.085066	-2.987274	5. 142053
6	0	-3.640547	-1.789688 -1.100027	3.416740
6	0	-3 913554	-1 522051	2 044283
6	Ő	-4.986704	-0.710362	-2.092530
6	Ō	-4.037620	-0.399173	-3.097319
6	0	-4.425675	-0.111610	-4.411155
6	0	-5.782846	-0.134177	-4.758609
l	0	-6.083126	0.090981	-5.783536
0	0	-7 807023	-0.443693	-3.780000
6	0	-6.347128	-0.721476	-2.473692
1	0	-7.094078	-0.936136	-1.707542
6	0	-2.129222	0.317390	1.905638
6	0	-0.923327	-0.293832	2.249375
6	0	0.209300	0.444656	2.719641
0	0	0.070790	2 403001	2.808348
6	0	-1.128870	2. 497188	2. 557105
6	0	-1.235301	3.913600	2.689780
1	0	-0.362373	4.470183	3.039863
6	0	-2.417145	4.565851	2.381845
1	0	-2. 491293	5.650342	2.485996
0	0	-3. 343044	0.017040 4 332682	1.941707
6	0	-3. 466676	2. 441765	1. 795981
1	Ő	-4.334935	1.879361	1. 455473
6	0	-2.258177	1.739647	2.077590
6	0	1.506702	-0.207454	3.006453
6	0	2.058767	-1.172692	2.135660
6	0	3.316106	-1.739495	2.305184
0	0	4.001048 5.042106	-1. 550702	3.461070
6	0	3. 538276	-0.380552	4. 367215
1	0	4.106491	-0.076709	5.248326
6	0	2.273677	0.170376	4.129680
1	0	1.851499	0.899360	4.823831
1	0	3.693888	-2.482329	1.665936
1	0	-3.050994 1 698706	0.113368 4 851678	-0.144187 -1 078345
6	0	0.930975	5. 477333	-0. 082243
6	õ	3.002532	5. 300490	-1.343851
6	0	1.471371	6.545874	0.648181
1	0	-0.071545	5.105922	0.134854
6	0	3. 540792	6.369434	-0.613677
1	0	3.003020 2.775540	4.191549	-2.100340 0 384389
1	0	0.873579	7. 025557	1. 426289
1	ŏ	4. 558750	6. 707591	-0. 816952
1	0	3.196391	7.823819	0.956601

 $\begin{smallmatrix} 5 & 67 & 78 & 99 \\ 100 & 111 & 122 \\ 113 & 41 & 155 \\ 161 & 171 & 188 \\ 190 & 212 & 232 \\ 425 & 526 & 272 \\ 288 & 230 & 311 \\ 222 & 324 & 256 \\ 223 & 244 & 256 \\ 233 & 344 & 336 \\ 336 & 377 & 336 \\ 336 & 377 & 336 \\ 336 & 377 & 336 \\ 336 & 377 & 336 \\ 336 & 377 & 336 \\ 336 & 377 & 336 \\ 336 & 377 & 336 \\ 336 & 377 & 336 \\ 336 & 377 & 336 \\ 336 & 377 & 336 \\ 336 & 377 & 336 \\ 336 & 377 & 336 \\ 336 & 377 & 336 \\ 336 & 377 & 336 \\ 336 & 377 & 336 \\ 336 & 377 & 336 \\ 336 & 377 & 374 \\ 336 & 377 & 374 \\ 337 & 374 & 377 \\ 337 & 374 & 377 \\ 337 & 374 & 377 \\ 337 & 374 & 377 \\ 337 & 374 & 377 \\ 337 & 374 & 377 \\ 337 & 374 & 377 \\ 337 & 374 & 377 \\ 337 & 374 & 377 \\ 337 & 374 & 377 \\ 337 & 377 & 377 \\ 337 & 37$

101

102 103 104	6 1 1	0 0 0	0.552055 1.377154 -0.013831 -0.122576	4. 243179 4. 611782 3. 470984 5. 085247	-3. 228356 -3. 856815 -3. 764551 -2. 016208
105	1	0	-0.122576	5.085247	-3.016398
$103 \\ 104 \\ 105$	1 1 1	0 0 0	1. 377154 -0. 013831 -0. 122576	4. 611782 3. 470984 5. 085247	-3.856 -3.764 -3.016

product=Sasti B97D/6-31g(d);E(RB97D) = -4834.848332 hartree Zero-point Energy Correction = 0.762403 hartree Thermal Correction to Energy = 0.822321 hartree Thermal correction to Enthalpy = 0.823265 hartree Thermal correction to Gibbs Free Energy = 0.663665 hartree Sum of electronic and Zero-point Energies = -4834.026011 hartree Sum of electronic and thermal Energies = -4834.026061 hartree Sum of electronic and thermal Energies = -4834.025066 hartree Sum of electronic and thermal Free Energies = -4834.184666 hartree cpcm(ether)/B97D/6-31g(d); E(RB97D) = -4834.868272 hartree Gibbs Free Energy in ether = -4834.204607 hartree The number of Imaginary frequencies = 1

Center Number	Atomic Number	Atomic Type	Coore X	dinates (Ang Y	stroms) Z
1	8	0	0.774158	2.803614	-1.210962
2	1	0	-0.548912	2.489075	-2.048564
3	6	0	2.009502	2.317267	-1.899769
4	6	0	3.025386	1.682583	-0.986442
5	6	0	4.327078	1.475098	-1.480926
6	6	0	2.729457	1.362094	0.347738
7	6	0	5.327930	0.962985	-0.644752
8	1	0	4.548627	1.707824	-2.523682
9	6	0	3.733636	0.852518	1.184286
10	1	0	1.717725	1.508416	0.720054
11	6	0	5.032664	0.654246	0.693617
12	1	0	6.333578	0.802485	-1.038542
13	1	0	3.501052	0.602295	2.218259
14	1	0	5.807879	0.251808	1.348742
15	6	0	1.749082	1.645930	-3.209387
16	1	0	1.322291	2.258299	-4.005253
17	6	0	1.960183	0.336163	-3.418689
18	1	0	2.356760	-0.322486	-2.647187
19	1	0	1.720170	-0.124309	-4.378550
20	8	0	1.778717	-2.884653	-2.841913
21	6	0	2.014147	-3.656259	-1.923586
22	6	0	3.540033	-3.864261	-1.507904
23	17	0	3.813652	-5.088261	-0.156611
24	17	0	4.180699	-2.265330	-0.970242
25	17	0	4.436230	-4.440142	-2.969913
26	7	0	1.092944	-4.392547	-1.258314
27	1	0	1.281598	-4.810780	-0.352509
28	6	0	1.723203	3.787613	-1.709270
29	1	0	0.130240	-4.094400	-1.399919
30	15	0	-1.783768	0.767256	-1.772370
31	15	0	-0.374212	-2.634625	1.140901
32	8	0	-1.419315	2.145885	-2.460667
33	8	0	-0.633211	0.001407	-1.195449
34	1	0	-0.803637	-1.468209	-0.692257
35	8	0	-2.587734	-0.126706	-2.867512
36	8	0	-2.944836	1.195890	-0.710890
37	8	0	-0.332868	-4.052074	1.573758
38	8	0	-0.970090	-2.400681	-0.313399
39	8	0	1.071068	-1.846033	1.053994
40	8	0	-1.216461	-1.698095	2.202517
41	6	0	-3. 372191	-0.160794	1.233051
42	6	0	-3.661728	0.158756	-0.089904
43	6	0	-4.709471	-0.452997	-0.842223
44	6	0	-5.495978	-1.399895	-0. 193990
45	1	0	-6.288410	-1.905508	-0.749092
40	6	0	-5.285113	-1.741682	1.167629
47	6	0	-6.113648	-2.698047	1.826173
48	1	0	-6.914835	-3.173690	1.255799
49	6	0	-5.909253	-3.013358	3.158317
50	1	0	-6.548489	-3. 747039	3.652926
51	6	0	-4.865809	-2.379553	3.887217
92 50	1	0	-4. (12959	-2.028993	4.938782
03 E4	6	0	-4.037665	-1.403104	3.2/4/05
04 FF	1	0	-3.23/353	-0.974050	3.836960
55	6	0	-4.212480	-1.113058	1.902368
50	6	0	-4.965198	-0.074435	-2.253577
57	6	0	-3.930775	0.126923	-3. 197620
58	6	0	-4. 194334	0.474792	-4. 526059
59	6	0	-5.520866	0.627226	-4.951318
60	1	0	-5.728957	0.899001	-5. 987482
61	6	0	-6.571983	0.431319	-4.041366
02	1	U	-1.00/124	0.000000	-4.301/14
63	6	0	-6.291021	0.090650	-2. /13170
64 C7	1	0	-7.103607	-0.037085	-1.996228
65	6	0	-2. 194416	0.4/1704	1.898424
66	6	0	-1.096876	-0.309730	2.258845
67	6	0	0.107429	0.252701	2.790144
68	6	0	0.163000	1.630926	2.968479
69	1	0	1.087760	2.082786	3. 331944
70	6	0	-0.936206	2.4/1968	2.662391
(1	6	0	-0.868473	3.881936	2.867556
(2	1	0	0.054278	4.303121	3.273137
13	6	U	-1.947969	4.094/42	2. 200323
74	1	0	-1.882992	5.772988	2.725384

75	6	0	-3.145279	4.120548	2.057812
76	1	0	-3.999136	4.762442	1.833021
77	6	0	-3.240005	2.754480	1.845069
78	1	0	-4.162621	2.324252	1.457172
79	6	0	-2.141200	1.890314	2.124818
80	6	0	1.282501	-0.583593	3.122869
81	6	0	1.734506	-1.609082	2.264055
82	6	0	2.891404	-2.344530	2.536802
83	6	0	3.636581	-2.055632	3.687298
84	1	0	4.543094	-2.625066	3.899220
85	6	0	3.211970	-1.042897	4.563474
86	1	0	3.782240	-0.821503	5.467229
87	6	0	2.044756	-0.322650	4.282707
88	1	0	1.700308	0.455630	4.965667
89	1	0	3.202322	-3.115950	1.835689
90	1	0	-3.354588	0.607171	-5.208005
91	6	0	2.449362	4.534133	-0.620126
92	6	0	1.828067	4.767315	0.617965
93	6	0	3.747530	5.019127	-0.853131
94	6	0	2.503666	5.483180	1.616422
95	1	0	0.827473	4.373955	0.798365
96	6	0	4.423441	5.730208	0.148375
97	1	0	4.235059	4.820272	-1.809959
98	6	0	3.801992	5.965033	1.385836
99	1	0	2.015768	5.663578	2.577208
100	1	0	5.436903	6.093382	-0.033635
101	1	0	4.329597	6.516768	2.166544
102	6	0	1.205034	4.683303	-2.826278
103	1	0	2.050490	5.150852	-3.354229
104	1	0	0.586846	4.134299	-3.548450
105	1	0	0.595342	5.487112	-2.385069

11. NMR Charts

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) spectra of **4b**

 1 H NMR (600 MHz, CDCl₃) and 13 C NMR (151 MHz, CDCl₃) spectra of 4c

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) spectra of **4d**

 1 H NMR (600 MHz, CDCl₃) and 13 C NMR (151 MHz, CDCl₃) spectra of **4f**

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) spectra of 4g

4.0

3.780 -

3.0

1.0

0

000.0

2.0

2.101 .705

5.0

4.569 4.567 4.558 4.556

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) spectra of **4h**

6.0

abur 0

10.0

X : parts per Million : Proton

9.0

8.0

8.196

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) spectra of **4i**

abundance 0 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Ph NH ΗΟ CCI₃ Me 4j 130.0 120.0 110.0 100.0 24.183 0.007 0.007 0.007 0.002 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 90.0 60.0 50.0 40.0 10.0 0 30.0 33.911 152.820 137.558 -91.618 162.682 X : parts per Million : Carbon13

 1 H NMR (600 MHz, CDCl₃) and 13 C NMR (151 MHz, CDCl₃) spectra of **4**j

 ^1H NMR (600 MHz, CDCl₃) and ^{13}C NMR (151 MHz, CDCl₃) spectra of 4k

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) spectra of **4**I

 ^1H NMR (600 MHz, CDCl₃) and ^{13}C NMR (151 MHz, CDCl₃) spectra of 4m

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) spectra of **4p**

 ^1H NMR (600 MHz, CDCl₃) and ^{13}C NMR (151 MHz, CDCl₃) spectra of 4q

 ^1H NMR (600 MHz, CDCl₃) and ^{13}C NMR (151 MHz, CDCl₃) spectra of 4t

 1 H NMR (600 MHz, CDCl₃) and 13 C NMR (151 MHz, CDCl₃) spectra of **5b**

 ^1H NMR (600 MHz, CDCl₃) and ^{13}C NMR (151 MHz, CDCl₃) spectra of 5c

S51

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) spectra of **5d**

 1 H NMR (600 MHz, CDCl₃) and 13 C NMR (151 MHz, CDCl₃) spectra of 5g

 1 H NMR (600 MHz, CDCl₃) and 13 C NMR (151 MHz, CDCl₃) spectra of **5h**

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) spectra of **5**i

 1 H NMR (600 MHz, CDCl₃) and 13 C NMR (151 MHz, CDCl₃) spectra of **5**j

 1 H NMR (600 MHz, CDCl₃) and 13 C NMR (151 MHz, CDCl₃) spectra of **5n**

 ^1H NMR (600 MHz, CDCl₃) and ^{13}C NMR (151 MHz, CDCl₃) spectra of **5p**

 1 H NMR (600 MHz, CDCl₃) and 13 C NMR (151 MHz, CDCl₃) spectra of **5**q

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) spectra of **5s**

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) spectra of **6e**

12. HPLC Charts

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac-</i> 4a	9.3	10.8	50.1	49.9
(<i>R</i> , <i>E</i>)- 4a	9.6	11.0	2.7	97.3

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac</i> - 5 b	6.0	6.5	50.0	50.0
(2 <i>S</i> ,3 <i>R</i>)- 5 b	6.1	6.5	2.8	97.2

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac-</i> 4b	8.5	10.2	49.6	50.4
(<i>R</i> , <i>E</i>)- 4b	8.5	10.1	9.5	90.5

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
rac-5c	8.3	9.3	49.6	50.4
(2 <i>S</i> ,3 <i>R</i>)- 5 c	8.4	9.1	3.2	96.8

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac-</i> 4c	9.8	11.8	50.0	50.0
(<i>R</i> , <i>E</i>)- 4 c	9.8	11.8	3.9	96.1

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac</i> - 5d	4.6	4.8	49.2	50.8
(2 <i>S</i> ,3 <i>R</i>)- 5 d	4.6	4.8	2.9	97.1

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac-</i> 4d	9.5	11.7	50.3	49.7
(<i>R</i> , <i>E</i>)- 4d	9.5	11.6	7.5	92.5

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac-</i> 4e	14.0	16.8	49.6	50.4
(<i>R</i> , <i>E</i>)- 4 e	14.2	16.8	16.5	83.5

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
rac- 5f	9.0	12.3	49.6	50.4
(2 <i>S</i> ,3 <i>R</i>)- 5 f	9.3	11.8	2.4	97.6

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac-</i> 4f	18.8	19.8	49.2	50.8
(<i>R</i> , <i>E</i>)- 4f	18.5	19.4	7.5	92.5

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
rac-5g	4.9	5.6	50.1	49.9
(2 <i>S</i> ,3 <i>R</i>)- 5 g	4.9	5.4	2.8	97.2

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac-</i> 4g	8.9	9.9	50.4	49.6
(<i>R</i> , <i>E</i>)- 4 g	8.7	9.7	10.8	89.2

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac</i> - 5h	6.5	7.3	50.2	49.8
(2 <i>S</i> ,3 <i>R</i>)- 5 h	6.8	7.4	4.2	95.8

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac-</i> 4h	11.4	14.1	49.9	50.1
(<i>R</i> , <i>E</i>)- 4h	11.4	14.2	97.9	2.1

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac-</i> 5i	5.1	5.5	50.2	49.8
(2 <i>S</i> ,3 <i>R</i>)- 5 i	5.0	5.4	3.1	96.9

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac-</i> 4i	10.7	12.2	49.6	50.4
(<i>R</i> , <i>E</i>)- 4i	10.8	12.3	21.8	78.2

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
rac- 5j	10.3	12.0	49.9	50.1
(2 <i>S</i> ,3 <i>R</i>)- 5 j	10.0	11.6	4.6	95.4

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
rac- 4 j	6.6	7.1	49.6	50.4
(<i>R</i> , <i>E</i>)- 4 j	6.6	7.1	76.1	23.9

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac-</i> 5 k	4.6	5.2	49.9	50.1
(2 <i>S</i> ,3 <i>R</i>)- 5 k	4.6	5.1	2.3	97.7

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac-</i> 4k	7.6	9.0	50.2	49.8
(<i>R</i> , <i>E</i>)- 4 k	8.1	9.0	1.1	98.9

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
rac- 5l	6.9	7.1	49.6	50.4
(2 <i>S</i> ,3 <i>R</i>)- 5 1	7.2	7.4	7.2	92.8

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
rac- 41	12.1	14.5	50.0	50.0
(<i>R</i> , <i>E</i>)- 4 l	12.1	14.7	6.7	93.3

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac</i> - 5m	4.8	5.1	49.7	50.3
(2 <i>S</i> ,3 <i>R</i>)- 5 m	4.8	5.1	96.1	3.9

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac-</i> 4m	10.2	11.8	50.3	49.7
(<i>R</i> , <i>E</i>)- 4m	10.2	11.8	21.2	78.8

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac</i> - 5n	13.0	13.7	49.6	50.4
(2 <i>S</i> ,3 <i>R</i>)- 5 n	12.8	13.2	2.7	97.3

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac-</i> 4n	13.8	15.5	50.1	49.9
(<i>R</i> , <i>E</i>)- 4n	13.6	15.4	31.9	68.1

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac-</i> 5 p	4.9	5.2	49.8	50.2
(2 <i>S</i> ,3 <i>R</i>)- 5 p	4.9	5.1	2.2	97.8

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac-</i> 4p	8.3	9.5	50.0	50.0
(<i>R</i> , <i>E</i>)- 4 p	8.3	9.5	23.7	76.3

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
rac-5q	10.6	11.5	49.7	50.3
(2 <i>S</i> ,3 <i>R</i>)- 5 q	11.0	12.0	1.0	99.0

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
rac-4q	10.4	11.3	49.9	50.1
(<i>R</i> , <i>E</i>)- 4q	10.3	11.2	26.7	73.3

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac</i> -5s	10.5	11.1	49.6	50.4
(2 <i>S</i> ,3 <i>R</i>)- 5 s	10.4	10.8	9.9	90.1

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac-</i> 4 s	13.8	15.1	50.0	50.0
(<i>R</i> , <i>E</i>)- 4 s	13.8	15.1	0.1	99.9

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
rac-5t major	9.2	10.6	50.5	49.5
(2 <i>S</i> ,3 <i>S</i>)- 5 t	9.8	11.8	92.9	7.1

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
rac-5t minor	7.9	8.8	49.9	50.1
(2 <i>S</i> ,3 <i>S</i>)- 5 t	7.8	8.8	94.0	6.0

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac-</i> 4t	11.1	12.9	50.4	49.6
(<i>R</i> , <i>Z</i>)-4t	11.0	12.8	26.0	74.0

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
rac- 7	16.1	17.8	49.7	50.3
(<i>S</i> , <i>E</i>)- 7	15.8	17.5	97.6	2.4

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
rac- 7	16.1	17.8	49.7	50.3
(<i>R</i> , <i>E</i>)- 7	17.3	19.7	97.2	2.8

	Retention time (1)	Retention time (2)	% Area (1)	% Area (2)
<i>rac</i> - S2	13.4	14.1	49.7	50.3
(<i>R</i>)- S2	13.3	14.0	98.9	1.1

13. Reference

Complete Reference of Gaussian 16 (Ref. 22)

Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V.
Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F.
Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng,
A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J.
J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K.
Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M.
Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B.
Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.