Electronic Supplementary Information

Calix[4]pyrrolato gallate: square planar-coordinated gallium(III) and its metal-ligand cooperative reactivity with CO₂ and alcohols

Lukas M. Sigmund, Nick Richert§, Eliane Engels§, Lutz Greb*

§ These authors contributed equally to this work.

Correspondence to: greb@uni-heidelberg.de

Table of Contents

S1.	Materials and methods	S3
S2.	Synthesis and characterization of the calix[4]pyrrolato ligands and of tetraphenylphosphonium tetrachloridogallate	S4
S3.	Synthesis and characterization of the calix[4]pyrrolato gallates	S7
S4.	Fluoride adduct formation	S9
S5.	Reactivity with CO ₂	S10
S6.	Reactivity with HNTf ₂ and isopropanol	S13
S7.	X-ray crystallography	S17
S8.	Computational details and results	S27
S9.	NMR spectra	S30
S10.	IR spectra	S52
S11.	Xyz coordinates and energies from DFT calculations	S53
S12.	References	S86

S1. Materials and methods

All reagents and solvents used within this research project were purchased from commercial sources. Carbon dioxide gas (99.998%) was obtained from Air Liquide and was used without further purification. Unless otherwise noted, all manipulations were carried out under inert conditions. Solvents were degassed prior to use with four freeze-pump-thaw cycles and were stored in sealed Schlenk ampulla over activated molecular sieve (3 or 4 Å, respectively) under a dry argon atmosphere. All reactions on preparative scale were carried out in flame-dried standard laboratory glassware under a dry argon or nitrogen atmosphere using Schlenk line techniques and were permanently magnetically stirred, if not stated differently. Syringes, magnetic stirring bars, and needles were dried and/or flushed with argon prior to use. Reactions on the NMR sample scale were done in dry J. Young NMR tubes under a dry nitrogen atmosphere. Compounds sensitive to ambient conditions were handled and stored in a Sylatech glove box filled with dry nitrogen gas. Removal of solvents *in vacuo* was performed using a Heidolph VV2000 rotary evaporator or a Schlenk line. Literature-known compounds were synthesized following published procedures. The respective publications are cited below. Analytical data of known compounds were compared to reference data and were found to be consistent in all cases. Novel compounds were characterized to the reported structures and compositions to the best of our knowledge.

Nuclear magnetic resonance (NMR) spectra were collected with a Bruker DPX200, a Bruker Avance II 400, or a Bruker Avance III 600 spectrometers at 295 K. The Bruker Avance machines were operated by the NMR facility of the Inorganic Chemistry Department at Heidelberg University. All spectra were acquired with field-frequency lock on the ²H signal of the used solvent prior to data collection. Chemical shifts δ of ¹H and ¹³C nuclei are given in parts per million (ppm) relative to the tetramethylsilane resonance; ¹⁹F and ³¹P chemical shifts (in ppm) are reported relative to the trichlorofluoromethane and the H₃PO₄ (85% aq) reference system, respectively. ¹H and ¹³C{¹H} spectra were calibrated after data processing on the solvent residual signals (CD₂Cl₂: ¹H: 5.32 ppm, ¹³C: 53.84 ppm, THF-d₈: ¹H: 3.58 ppm, ¹³C: 67.21 ppm, CD₃CN: ¹H: 1.94 ppm, ¹³C: 1.32 ppm).¹ ¹⁹F and ³¹P NMR spectra were not manually calibrated after processing. Signal multiplicities are reported as s (singlet), d (doublet), t (triplet), q (quartet), sept (septet), dd (doublet of doublets), tq (triplet of quartets), and m (multiplet); "br" stand for a broadened signal. The protons of the aromatic pyrrole rings of the calix[4]pyrrolato ligands are denoted "β-H", the directly attached carbon atoms "β-C". The quaternary carbon atoms of the aromatic pyrrole rings in the ligand are named "C_q-pyrrole". The atoms of the ligand's methyl and methylene (in case of the *meso*-octaethyl ligand) groups are called "α-Me" and "α-methylene", respectively. The quaternary carbon atoms to which they are bound are denoted "α-C". NMR spectra were processed with TopSpin 4.0.7² and plotted with MestReNova v14.0.1-23559³.

<u>High resolution mass spectrometry (HR-MS)</u> was done with a Bruker ApexQe FT-ICR instrument coupled to an electrospray ionization (ESI) source operating in negative ion mode. Samples were prepared with dichloromethane as solvent under inert conditions with an approximate analyte concentration of $c = 10^{-5}$ mol L⁻¹. They were immediately analyzed after being brought in contact with air.

<u>Fourier-transform attenuated total reflection infrared spectroscopy (FT-ATR-IR)</u> was done with an Agilent Cary 630 spectrometer with solid material at room temperature inside a dry nitrogen-filled glove box. The obtained spectra were manually baseline-corrected. Data is reported as: maximum wavenumber $\tilde{\nu}_{max}$ [cm⁻¹] of the respective absorption band, intensity (s = strong, m = medium, w = weak).

For data handling and plotting OriginPro 2020⁴ was used.

All <u>quantum chemical calculations</u> were done with Orca 5.0.1.⁵⁻⁶ Details on the applied computational methods are given in Chapter S8.

S2. Synthesis and characterization of the calix[4]pyrrolato ligands and of tetraphenylphosphonium tetrachloridogallate

meso-Octamethylcalix[4]pyrrole and *meso*-octaethylcalix[4]pyrrole were prepared as described below following modified procedures from literature (Scheme S1).⁷⁻⁸ Deprotonation was achieved with sodium bis(trimethylsilyl)amide (NaHMDS) as described in the literature.⁹ Tetraphenylphosphonium tetrachloridogallate was synthesized from tetraphenylphosphonium chloride and gallium(III)chloride following a reported procedure.¹⁰

Scheme S1. Synthetic schemes for the preparation of A) meso-octamethylcalix[4]pyrrole and B) meso-octaethylcalix[4]pyrrole and their subsequent deprotonation with sodium bis(trimethylsilyl)amide (NaHMDS) to give their tetrasodium salts.

meso-Octamethylcalix[4]pyrrole

Procedure.⁷⁻⁸ In a 500 mL round-bottom flask equipped with a reflux condenser, acetone (13.00 g, 16.5 mL, 223.6 mmol, 1.0 eq) was dissolved in methanol (160 mL). Pyrrole (15.00 g, 15.5 mL, 223.6 mmol, 1.0 eq), which was freshly distilled, was added in one portion. Methanesulfonic acid (4 drops) was added to the colorless solution. While the mixture was heated to 60 °C for 3 h, a colorless solid precipitated. The reaction mixture was allowed to cool down to room temperature. The solvent was removed under reduced pressure. A pale green solid was obtained as the crude reaction product, which was purified by flash column chromatography on silica gel with dichloromethane/petroleum ether (60:40, $R_f = 0.53$) as eluent. The solvent was removed from the combined product fractions and *meso*-octamethylcalix[4]pyrrole was isolated after drying under reduced pressure as a pale brown solid (13.7 g, 32.0 mmol, 57% yield), which is stable to ambient conditions.

 $\frac{1 \text{H NMR (399.9 MHz, CD}_2 \text{Cl}_2, 295 \text{ K})}{\delta_{1H}} \text{ [ppm]} = \textbf{7.02 (br s, 4H, N-H)}, \textbf{5.88 (d, }^3 J_{HH} = 2.8 \text{ Hz}, 8\text{H}, \beta\text{-H}), \textbf{1.49 (s, 24H, } \alpha\text{-Me}).$

 $\frac{{}^{13}\text{C}\{{}^{1}\text{H}\}\text{ NMR (100.1 MHz, CD}_{2}\text{CI}_{2}, 295 \text{ K})}{}: \delta_{13C} \text{ [ppm]} = \textbf{138.8 (s, C}_{q}, C_{q}\text{-pyrrole}), \textbf{103.1 (s, CH, \beta-C)}, \textbf{35.4 (s, C}_{q}, \alpha-C), \textbf{28.9 (s, CH}_{3}, \alpha-Me).$

Procedure.⁷⁻⁸ In a 1000 mL round-bottom flask equipped with a reflux condenser, pentan-3-one (25.7 g, 31.5 mL, 298.1 mmol, 1.0 eq) was dissolved in methanol (320 mL). Pyrrole (20.0 g, 20.1 mL, 298.1 mmol, 1.0 eq) and catalytic amounts of methanesulfonic acid (8 drops) were added. Upon stirring for 18 h at 60 °C, the reaction mixture turned dark brown, and a colorless solid precipitated. The crude product was separated by filtration and was washed with methanol (3 × 40 mL). The obtained beige solid was dried under reduced pressure. It was then purified by flash column chromatography on silica gel with dichloromethane/petroleum ether (40:60, R_f = 0.59) as eluent. The solvent was removed from the combined product fractions, and after drying under reduced pressure *meso*-octaethylcalix[4]pyrrole was obtained as a colorless solid (18.4 g, 34.0 mmol, 46% yield). It was previously recognized that over several weeks the color of the material changes to pale orange when stored under ambient conditions. Therefore, the compound was brought into a nitrogen-filled glovebox after completion of the synthesis and was stored there.

<u>¹H NMR (600.2 MHz, CD₂Cl₂, 295 K)</u>: δ_{1H} [ppm] = **6.90** (br s, 4H, N-H), **5.90** (d, ³J_{HH} = 2.6 Hz, 8H, β-H), **1.80** (br s, 16H, α-methylene), **0.58** (t, ³J_{HH} = 7.4 Hz, 24H, α-Me).

<u>1³C{1H} NMR (150.9 MHz, CD₂Cl₂, 295 K)</u>: δ_{13C} [ppm] = **136.5** (s, C_q, C_q-pyrrole), **105.1** (s, CH, β-C), **43.1** (s, C_q, α-C), **28.4** (s, CH₂, α-methylene), **8.0** (s, CH₃, α-Me).

Deprotonation of meso-octamethylcalix[4]pyrrole to give its tetrasodium salt

Procedure.⁹ *meso*-Octamethylcalix[4]pyrrole (1.0 g, 2.33 mmol, 1.0 eq) was dissolved in THF (20 mL) in a Schlenk tube. Sodium bis(trimethylsilyl)amide (1 M solution in THF, 9.6 mL, 9.57 mmol, 4.1 eq) was added dropwise to the rapidly stirring solution within 5 min at room temperature. After approximately four fifths of the solution were added, a colorless precipitate formed. After complete addition, the reaction was stirred for 1 h at room temperature. The mixture was filtered over a fritted glass filter inside a nitrogen-filled glove box. The obtained solid was washed with THF (3 × 7 mL). Drying for 30 min under reduced pressure afforded the desired product as a colorless solid (1.8 g, 2.23 mmol, 95% yield). The acquired ¹H NMR spectrum showed the presence of four equivalents of THF as well as slight contamination. However, the material was found sufficient for subsequent usage.

<u>¹H NMR (600.2 MHz, DMSO-*d*₆, 295 K)</u>: *δ*_{1H} [ppm] = **5.38** (s, 8H, β-H), **3.65-3.58** (m, 4 × 4H, THF), **1.80-1.74** (m, 4 × 4H, THF), **1.32** (s, 24H, α-Me).

<u>¹³C{¹H} NMR (150.9 MHz, DMSO-*d*₆, 295 K)</u>: δ_{13C} [ppm] = **148.8** (s, C_q, C_q-pyrrole), **96.5** (s, CH, β-C), **67.0** (s, CH, THF), **38.3** (s, C_q, α-C), **33.1** (s, CH₃, α-Me), **25.2** (s, CH, THF).

Procedure.⁹ *meso*-Octaethylcalix[4]pyrrole (600 mg, 1.11 mmol, 1.0 eq) was dissolved in THF (6 mL) in a Schlenk tube. Sodium bis(trimethylsilyl)amide (1 M solution in THF, 4.6 mL, 4.55 mmol, 4.1 eq) was added dropwise to the rapidly stirring solution within 5 min at room temperature. The clear solution was stirred for 1 h at room temperature, and the solvent was evaporated at reduced pressure. The obtained solid was suspended in *n*-hexane (6 mL) and was filtered over a fritted glass filter inside a nitrogen-filled glove box. The obtained solid was washed with *n*-hexane (4 × 4 mL). Further purification was achieved by dissolving the entire material in THF (5 mL) and subsequent precipitation with *n*-pentane (approximately 80 mL). The solid was isolated by filtration using a fritted glass filter. After drying *in vacuo* for 30 min, the desired product was obtained as colorless solid (566 mg, 0.62 mmol, 57% yield). The acquired ¹H NMR spectrum showed the presence of 3.7 equivalents of THF as well as slight contamination. However, the material was found sufficient for subsequent usage.

<u>¹H NMR (600.2 MHz, DMSO-*d*₆, 295 K)</u>: δ_{1H} [ppm] = **5.35** (s, 8H, β-H), **3.63-3.56** (m, 3.7 × 4H, THF), **1.80-1.73** (m, 3.7 × 4H, THF), **1.65** (br q, ³*J*_{HH} = 6.7 Hz, 16H, α-methylene), **0.45** (t, ³*J*_{HH} = 6.7 Hz, 24H, α-Me).

<u>¹³C{¹H} NMR (150.9 MHz, DMSO-*d*₆, 295 K)</u>: δ_{13C} [ppm] = **147.7** (s, C_q, C_q-pyrrole), **97.2** (s, CH, β-C), **67.0** (s, CH, THF), **45.4** (s, C_q, α-C), **28.7** (s, CH₂, α-methylene), **25.2** (s, CH, THF), **9.3** (s, CH₃, α-Me).

Tetraphenylphosphonium tetrachloridogallate(III) ([PPh₄][GaCl₄])

Procedure.¹⁰ Gallium trichloride (1.00 g, 5.68 mmol, 1.0 eq) was dissolved in ice-cold concentrated hydrochloric acid (35 mL). Dry tetraphenylphosphonium chloride (2.13 g, 5.68 mmol, 1.0 eq) was dissolved in ethanol (25 mL). The latter solution was added to the former. This caused the immediate precipitation of a colorless solid. The mixture was stirred for 10 min at room temperature. The solid was isolated by filtration using a Büchner funnel. It was washed with ethanol (in total 60 mL over several washing steps) and diethyl ether (in total 40 mL over several washing steps). The product was obtained as a colorless solid after drying *in vacuo* (2.87 g, 5.20 mmol, 92% yield).

1H NMR (600.2 MHz, CD₂Cl₂, 295 K): δ₁H [ppm] = **7.96-7.90** (m, 4H, [PPh₄]⁺), **7.80-7.72** (m, 8H, [PPh₄]⁺), **7.66-7.59** (m, 8H, [PPh₄]⁺).

 $\frac{{}^{13}\text{C}{}^{1}\text{H} \text{NMR} (151.9 \text{ MHz}, \text{CD}_{2}\text{Cl}_{2}, 295 \text{ K})}{134.8} (d, \text{CH}, {}^{2}J_{PC} = 3.0 \text{ Hz}, [\text{PPh}_{4}]^{+}), 134.8 (d, \text{CH}, {}^{2}J_{PC} = 10.3 \text{ Hz}, [\text{PPh}_{4}]^{+}), 131.0 (d, \text{CH}, {}^{3}J_{PC} = 12.9 \text{ Hz}, [\text{PPh}_{4}]^{+}), 117.9 (d, \text{C}_{q}, {}^{1}J_{PC} = 89.7 \text{ Hz}, [\text{PPh}_{4}]^{+}).$

<u>³¹P{¹H} NMR (243.0 MHz, CD₂Cl₂, 295 K)</u>, δ_{31P} [ppm] = **23.3** (s, [PPh₄]⁺).

⁷¹Ga{¹H} NMR (183.0 MHz, CD₂Cl₂, 295 K), δ_{71Ga} [ppm] = 250.9 (s, GaCl₄⁻).

S3. Synthesis and characterization of the calix[4]pyrrolato gallates

Tetraphenylphosphonium meso-octamethylcalix[4]pyrrolato gallate ([PPh₄][Me1])

Procedure. In a nitrogen-filled glove box, the tetrasodium salt of deprotonated *meso*-octamethylcalix[4]pyrrole (500 mg, 0.62 mmol, 1.0 eq) was dissolved in 1,2-dimethoxyethane (DME, 5 mL). [PPh₄][GaCl₄] (332 mg, 0.60 mmol, 0.97 eq) was added in one portion at room temperature. The reaction mixture turned intensively red. It was stirred for 3 h at room temperature. Over time, the color changed to pale orange and a colorless precipitate formed. The solid was separated from the orange solution by filtration over a fritted glass filter. It was washed with DME (3 × 2 mL) and *n*-pentane (2 × 2 mL) and was subsequently suspended in CH₂Cl₂ (5 mL). The suspension was stirred for 5 min at room temperature. It was filtered over a fritted glass filter covered with a pad of celite to remove NaCl. The product was isolated from its CH₂Cl₂ solution by precipitation with *n*-pentane (approximately 20 mL) and subsequent filtration. After drying *in vacuo*, it was obtained as a pale rose solid (390 mg, 0.43 mmol, 69% yield). The material was found to contain 0.9 equivalents of CH₂Cl₂ as determined by ¹H NMR spectroscopy using CDCl₃ as solvent. This is consistent with the obtained result from elemental analysis.

¹<u>H NMR (600.2 MHz, CD₂Cl₂, 295 K)</u>, δ_{1H} [ppm] = **7.89-7.84** (m, 4H, [PPh₄]⁺), **7.72-7.66** (m, 8H, [PPh₄]⁺), **7.60-7.53** (m, 8H, [PPh₄]⁺), **5.79** (s, 8H, β-H), **1.65** (s, 12H, α-Me), **1.46** (s, 12H, α-Me).

¹³C{¹H} NMR (151.9 MHz, CD₂Cl₂, 295 K), δ_{13C} [ppm] = 146.2 (s, C_q, C_q-pyrrole), 136.2 (d, CH, ⁴J_{PC} = 3.0 Hz, [PPh₄]⁺), 134.8 (d, CH, ²J_{PC} = 10.3 Hz, [PPh₄]⁺), 131.0 (d, CH, ³J_{PC} = 12.9 Hz, [PPh₄]⁺), 117.8 (d, C_q, ¹J_{PC} = 89.6 Hz, [PPh₄]⁺), 100.7 (s, CH, β-C), 42.4 (s, C_q, α-C), 35.6 (s, CH₃, α-Me), 25.0 (s, CH₃, α-Me).

³¹P{¹H} NMR (161.9 MHz, CD₂Cl₂, 295 K), δ_{31P} [ppm] = 23.2 (s, [PPh₄]⁺).

HR-MS (ESI, negative ion mode): m/z calculated for C₂₈H₃₂⁶⁹GaN₄ [M]⁻: 493.1888, found: 493.1877.

FT-ATR-IR (solid state, room temperature), \tilde{v}_{max} [cm⁻¹] = 3094 (w), 3040 (w), 2966 (m), 2937 (m), 2902 (m), 2867 (w), 2840 (w), 1613 (w), 1587 (w), 1485 (m), 1460 (w), 1435 (s), 1371 (s), 1348 (s), 1316 (w), 1303 (w), 1278 (s), 1263 (s), 1224 (m), 1213 (m), 1190 (w), 1153 (s), 1107 (s), 1064 (s), 994 (m), 929 (w), 890 (w), 854 (w), 807 (w), 756 (s), 723 (s), 688 (s).

<u>Elemental analysis</u>: calc. C 69.81, H 5.96, N 6.16 ([PPh₄][^{Me}1] \cdot 0.9 CH₂Cl₂), found: C 69.80, H 5.71, N 6.59 (content of CH₂Cl₂ was verified by ¹H NMR spectroscopy in CDCl₃).

Tetraphenylphosphonium meso-octaethylcalix[4]pyrrolato gallate ([PPh4][Et1])

Procedure. In a nitrogen-filled glove box, the tetrasodium salt of deprotonated *meso*-octaethylcalix[4]pyrrole (200 mg, 0.22 mmol, 1.0 eq) was dissolved in 1,2-dimethoxyethane (DME, 2 mL). [PPh₄][GaCl₄] (119 mg, 0.22 mmol, 0.97 eq) was added in one portion at room temperature. The reaction mixture turned intensively red. It was stirred for 3 h at room temperature. Over time, the color changed to pale orange and a colorless precipitate formed. The solid was separated from the orange solution by filtration over a fritted glass filter. It was washed with DME (3 × 0.5 mL) and *n*-pentane (2 × 1 mL) and was subsequently suspended in CH₂Cl₂ (3 mL). The suspension was stirred for 5 min at room temperature. It was filtered over a fritted glass filter covered with a pad of celite to remove NaCl. The product was isolated from its CH₂Cl₂ solution by precipitation with *n*-pentane (approximately 20 mL) and subsequent filtration. After drying *in vacuo*, it was obtained as a slightly pale rose solid (120 mg, 0.13 mmol, 57% yield).

¹<u>H NMR (600.2 MHz, CD₂Cl₂, 295 K)</u>, δ_{1H} [ppm] = **7.90-7.84** (m, 4H, [PPh₄]⁺), **7.73-7.66** (m, 8H, [PPh₄]⁺), **7.61-7.53** (m, 8H, [PPh₄]⁺), **5.77** (s, 8H, β-H), **2.04** (q, ³*J*_{HH} = 7.3 Hz, 8H, α-methylene), **1.48** (q, ³*J*_{HH} = 7.2 Hz, 8H, α-methylene), **1.07** (t, ³*J*_{HH} = 7.2 Hz, 12H, α-Me), **0.52** (t, ³*J*_{HH} = 7.2 Hz, 12H, α-Me).

¹³C{¹H} NMR (151.9 MHz, CD₂Cl₂, 295 K), δ_{73C} [ppm] = 143.2 (s, C_q, C_q-pyrrole), 136.2 (d, CH, ⁴J_{PC} = 3.0 Hz, [PPh₄]⁺), 134.7 (d, CH, ²J_{PC} = 10.3 Hz, [PPh₄]⁺), 131.0 (d, CH, ³J_{PC} = 12.9 Hz, [PPh₄]⁺), 117.8 (d, C_q, ¹J_{PC} = 89.6 Hz, [PPh₄]⁺), 102.4 (s, CH, β-C), 44.5 (s, C, α-methylene), 43.7 (s, C_q, α-C), 27.4 (s, CH₂, α-methylene), 10.5 (s, CH₃, α-Me), 10.2 (s, CH₃, α-Me).

³¹P{¹H} NMR (243.0 MHz, CD₂Cl₂, 295 K), δ_{31P} [ppm] = 23.3 (s, [PPh₄]⁺).

HR-MS (ESI, negative ion mode): m/z calculated for C₃₆H₄₈⁶⁹GaN₄ [M]⁻: 605.3135, found: 605.3154.

<u>FT-ATR-IR</u> (solid state, room temperature), ν_{max} [cm⁻¹] = 3087 (w), 3056 (w), 2959 (m), 2923 (m), 2869 (m), 2834 (w), 1587 (m), 1483 (m), 1454 (m), 1439 (s), 1374 (s), 1319 (s), 1292 (m), 1246 (m), 1188 (w), 1149 (m), 1108 (s), 1073 (s), 1026 (m), 996 (m), 971 (m), 924 (m), 883 (m), 858 (m), 749 (s), 719 (s), 688 (s).

Elemental analysis: calc. C 76.19, H 7.25, N 5.92, found: C 76.08, H 7.04, N 5.96.

S4. Fluoride adduct formation

[PPh₄][(ⁿBu)₄N][^{Me}1-F]

[ⁿBu₄N][PPh₄][^{Me}1-F]

Procedure. In a nitrogen-filled glove box, tetraphenylphosphonium *meso*-octamethylcalix[4]pyrrolato gallate (15.0 mg, 16.48 μ mol (0.9 eq of residual CH₂Cl₂ included), 1.0 eq) and tetrabutylammonium difluorotriphenylsilicate (8.9 mg, 16.48 μ mol, 1.0 eq) were placed in a 10 mL snap cap vial and were dissolved in acetonitrile (1 mL) at room temperature. A pale-orange solution was obtained, which was stirred at room temperature for 4 h. Diethyl ether (3 mL) was added. Upon further addition of *n*-pentane (10 mL) an orange oil formed, which was separated by centrifugation. The clear and colorless supernatant was removed. The oil was washed with *n*-pentane (4 × 1 mL), what transformed it into a dark-orange, sticky solid. Drying under reduced pressure over night at room temperature gave the desired product as an orange solid (14.6 mg, 13.33 μ mol, 80% yield).

A sample for mass spectrometry was prepared by mixing *meso*-octamethylcalix[4]pyrrolato gallate (7.0 mg, 7.69 µmol (0.9 eq of residual CH_2Cl_2 included), 1.0 eq) and tetrabutylammonium difluorotriphenylsilicate (12.5 mg, 23.07 µmol, 3.0 eq) in CH_2Cl_2 (0.5 mL). This solution was diluted with CH_2Cl_2 to approximately reach a concentration of c = 10⁻⁵ mol L⁻¹ and was subsequently analyzed. However, it was later noted that the fluorido adduct of [Me1]⁻ is significantly more stable in acetonitrile.

¹<u>H NMR (600.2 MHz, CD₃CN, 295 K)</u>, δ_{1H} [ppm] = **7.93-7.87** (m, 4H, [PPh₄]⁺), **7.76-7.70** (m, 8H, [PPh₄]⁺), **7.70-7.63** (m, 8H, [PPh₄]⁺), **5.66** (d, ³*J*_{HH} = 2.9 Hz, 4H, β-H), **5.61** (d, ³*J*_{HH} = 2.9 Hz, 4H, β-H), **3.12-3.03** (m, 8H, [ⁿBu₄N]⁺), **1.74** (d, *J*_{FH} = 3.1 Hz, 6H, α-Me), **1.64-1.56** (m, 8H, [ⁿBu₄N]⁺), **1.61** (s, 6H, α-Me), **1.60** (s, 6H, α-Me), **1.36** (tq, ³*J*_{HH} = 7.4, 7.4 Hz, 8H, [ⁿBu₄N]⁺), **1.22** (s, 6H, α-Me), **0.97** (t, ³*J*_{HH} = 7.4 Hz, 12H, [ⁿBu₄N]⁺).

¹³C{¹H} NMR (151.9 MHz, CD₃CN, 295 K), δ_{13C} [ppm] = 148.0 (s, C_q, C_q-pyrrole), 145.9 (s, C_q, C_q-pyrrole), 136.4 (d, CH, ⁴J_{PC} = 3.0 Hz, [PPh₄]⁺), 135.7 (d, CH, ²J_{PC} = 10.4 Hz, [PPh₄]⁺), 131.3 (d, CH, ³J_{PC} = 12.9 Hz, [PPh₄]⁺), 118.9 (d, C_q, ¹J_{PC} = 89.7 Hz, [PPh₄]⁺), 100.2 (s, CH, β-C), 98.6 (s, CH, β-C), 59.3 (t, CH₂, ¹J_{NC} = 2.9 Hz, [ⁿBu₄N]⁺), 42.0 (s, CH₃, α-Me), 36.8 (s, C_q, α-C), 36.6 (d, CH₃, J_{FC} = 18.3 Hz, α-Me), 36.4 (s, C_q, α-C), 31.7 (s, CH₃, α-Me), 26.9 (s, CH₃, α-Me), 24.3 (s, CH₂, [ⁿBu₄N]⁺), 20.3 (t, CH₂, ³J_{NC} = 1.5 Hz, [ⁿBu₄N]⁺), 13.8 (s, CH₃, [ⁿBu₄N]⁺).

¹⁹**F NMR** (376.3 MHz, CD₃CN, 295 K), δ_{19F} [ppm] = **-146.4** (br s, F-1).

³¹P{¹H} NMR (243.0 MHz, CD₃CN, 295 K), δ_{31P} [ppm] = **22.9** (s, [PPh₄]⁺).

HR-MS (ESI, negative ion mode): m/z calculated for C₂₈H₃₅F⁶⁹GaN₄O [M+H₃O]⁻: 531.2056, found: 531.2075.

S5. Reactivity with CO₂

[PPh₄][Me1*-CO₂]

Procedure. In a nitrogen-filled glove box, tetraphenylphosphonium *meso*-octamethylcalix[4]pyrrolato gallate (15 mg) was placed in a J. Young NMR pressure tube and was dissolved in CD_2Cl_2 (0.5 mL). To the sample, gaseous CO_2 (5 bar) was applied at room temperature. The reaction mixture was shaken with a rocking shaker at room temperature for 10 h. Over the course of the reaction, the color of the solution turned to yellow. The sample was analyzed by NMR spectroscopy and mass spectrometry. The ratio between free [Me1]⁻ and [Me1*-CO₂]⁻ under the reaction conditions was determined to 1:24 by ¹H NMR spectroscopy. <u>CO₂ elimination</u>. The pressure was released from the sample, CH_2Cl_2 (1 mL) was added, and the solution was transferred by syringe to a normal J. Young NMR tube. The open NMR tube was placed inside a large Schlenk flask. The solvent was slowly evaporated at room temperature over the course of several hours. The obtained solid was kept under static vacuum overnight at room temperature and was analyzed by NMR spectroscopy. A 1:1 ratio between free [Me1]⁻ and [Me1*-CO₂]⁻ was observed. Subsequently, this process was repeated twice to achieve quantitative CO₂ removal as found by ¹H NMR spectroscopy (see Figure S1).

¹<u>H NMR (600.2 MHz, CD₂Cl₂, 295 K)</u>, δ_{1H} [ppm] = **7.87-7.80** (m, 4H, [PPh₄]⁺), **7.71-7.63** (m, 8H, [PPh₄]⁺), **7.65** (1H, H-2, identified by ¹H, ¹H COSY NMR spectroscopy, expected multiplicity is d), **7.60-7.53** (m, 8H, [PPh₄]⁺), **6.64** (d, ³*J*_{HH} = 5.0 Hz, 1H, H-3), **5.94** (d, ³*J*_{HH} = 3.1 Hz, 1H, β-H), **5.91** (d, ³*J*_{HH} = 3.1 Hz, 1H, β-H), **5.81** (d, ³*J*_{HH} = 3.1 Hz, 1H, β-H), **5.79** (d, ³*J*_{HH} = 3.0 Hz, 1H, β-H), **1.79** (s, 3H, α-Me), **1.78** (s, 3H, α-Me), **1.68** (s, 3H, α-Me), **1.66** (s, 3H, α-Me), **1.66** (s, 3H, α-Me), **1.38** (s, 3H, α-Me), **1.36** (s, 3H, α-Me), **0.95** (s, 3H, α-Me).

¹³C{¹H} NMR (151.9 MHz, CD₂Cl₂, 295 K), δ_{13C} [ppm] = 184.8 (s, C_q, C-4), 168.0 (s, C_q, C-5), 158.1 (s, CH, C-2), 149.0 (s, C_q, C_q-pyrrole), 148.3 (s, C_q, C_q-pyrrole), 146.2 (s, C_q, C_q-pyrrole), 146.1 (s, C_q, C_q-pyrrole), 145.6 (s, C_q, C_q-pyrrole), 140.0 (s, C_q, C_q-pyrrole), 136.2 (d, CH, ⁴*J*_{PC} = 3.0 Hz, [PPh₄]⁺), 134.8 (d, CH, ²*J*_{PC} = 10.3 Hz, [PPh₄]⁺), 131.0 (d, CH, ³*J*_{PC} = 12.9 Hz, [PPh₄]⁺), 126.6 (s, CH, C-3), 117.9 (d, C_q, ¹*J*_{PC} = 89.6 Hz, [PPh₄]⁺), 104.2 (s, CH, β-C), 102.5 (s, CH, β-C), 102.1 (s, CH, β-C), 101.9 (s, CH, β-C), 101.8 (s, CH, β-C), 100.1 (s, CH, β-C), 97.2 (s, C_q, C-1), 44.1 (s, C_q, α-C), 40.8 (s, CH₃, α-Me), 38.5 (s, C_q, α-C), 36.4 (s, C_q, α-C), 36.14 (s, CH₃, α-Me), 36.10 (s, C_q, α-C), 35.9 (s, CH₃, α-Me), 27.4 (s, CH₃, α-Me), 27.2 (s, CH₃, α-Me), 26.8 (s, CH₃, α-Me), 26.6 (s, CH₃, α-Me), 24.1 (s, CH₃, α-Me).

³¹P{¹H} NMR (243.0 MHz, CD₂Cl₂, 295 K), δ_{31P} [ppm] = 23.2 (s, [PPh₄]⁺).

HR-MS (ESI, negative ion mode): m/z calculated for C₂₉H₃₂⁶⁹GaN₄O₂ [M]⁻: 537.1781, found: 537.1769.

[PPh4][Et1*-CO2]

Procedure. In a nitrogen-filled glove box, tetraphenylphosphonium *meso*-octaethylcalix[4]pyrrolato gallate (15 mg) was placed in a J. Young NMR pressure tube and was dissolved in CD_2CI_2 (0.5 mL). To the sample, gaseous CO_2 (5 bar) was applied. The reaction mixture was shaken with a rocking shaker at room temperature for 10 h. Over the course of the reaction, the color of the solution turned to yellow. The sample was analyzed by NMR spectroscopy. The ratio between free [^{Et}1]⁻ and [^{Et}1*- CO_2]⁻ under the reaction conditions was determined to 2:1 by ¹H NMR spectroscopy. Detection of the addition product by mass spectrometry was not possible. <u>CO₂ elimination</u>. The pressure was released from the sample, CH_2CI_2 (1 mL) was added, and the solution was transferred by syringe to a normal J. Young NMR tube. The open NMR tube was placed inside a large Schlenk flask. The solvent was slowly evaporated under reduced pressure over the course of several hours at room temperature. The obtained solid was kept under static vacuum overnight at room temperature and was subsequently analyzed by ¹H NMR spectroscopy. Quantitative CO₂ removal was found (see Figure S2).

¹<u>H NMR (600.2 MHz, CD₂Cl₂, 295 K)</u>, δ_{1H} [ppm] = **7.89-7.82** (m, 4H, [PPh₄]⁺), **7.77** (d, ${}^{3}J_{HH}$ = 5.1 Hz, 1H, H-2), **7.72-7.65** (m, 8H, [PPh₄]⁺), **7.60-7.53** (m, 8H, [PPh₄]⁺), **6.54** (d, ${}^{3}J_{HH}$ = 5.1 Hz, 1H, H-3), **5.95** (d, ${}^{3}J_{HH}$ = 3.3 Hz, 1H, β-H), **5.89** (d, ${}^{3}J_{HH}$ = 3.1 Hz, 1H, β-H), **5.85** (d, ${}^{3}J_{HH}$ = 3.2 Hz, 1H, β-H), **5.81** (d, ${}^{3}J_{HH}$ = 3.0 Hz, 1H, β-H), **5.76** (d, ${}^{3}J_{HH}$ = 3.1 Hz, 1H, β-H), **5.74** (d, ${}^{3}J_{HH}$ = 3.0 Hz, 1H, β-H). Evaluation of the signals of the ethyl groups was not fully possible due to signal overlapping (with unreacted [^{Et}1]⁻) and diastereotopicity of the methylene protons. Six of the eight methyl triplets were well resolved: **1.03** (t, ${}^{3}J_{HH}$ = 7.4 Hz, 3H, α-Me), **1.00** (t, ${}^{3}J_{HH}$ = 7.3 Hz, 3H, α-Me), **0.65** (t, ${}^{3}J_{HH}$ = 7.3 Hz, 3H, α-Me), **0.56** (t, ${}^{3}J_{HH}$ = 7.4 Hz, 3H, α-Me), **0.48** (t, ${}^{3}J_{HH}$ = 7.4 Hz, 3H, α-Me), **0.39** (t, ${}^{3}J_{HH}$ = 7.3 Hz, 3H, α-Me).

¹³C{¹H}, NMR (151.9 MHz, CD₂Cl₂, 295 K), δ_{13C} [ppm] = Due to the low concentration of [^{Et}1*-CO₂]⁻, complete characterization by ¹³C{¹H} NMR spectroscopy was not possible. Only the well resolved and reliably assignable signals of [^{Et}1*-CO₂]⁻ are listed. Some of them were identified by two-dimensional experiments. **184.6** (s, Cq, C-4), **168.6** (s, Cq, C-5), **158.6** (s, CH, C-2), **126.5** (s, CH, C-3), **105.0** (s, CH, β-C), **104.5** (s, CH, β-C), **103.5** (s, CH, β-C), **103.5** (s, CH, β-C), **102.4** (s, CH, β-C), **101.4** (s, CH, β-C), **97.3** (s, Cq, C-1), **11.1** (s, CH₃, α-Me), **11.0** (s, CH₃, α-Me), **10.7** (s, CH₃, α-Me), **10.0** (s, CH₃, α-Me), **9.7** (s, CH₃, α-Me), **9.1** (s, CH₃, α-Me), **8.7** (s, CH₃, α-Me).

³¹**P**{¹**H**} **NMR** (243.0 MHz, CD₂Cl₂, 295 K), δ_{31P} [ppm] = **23.2** (s, [PPh₄]⁺).

Figure S1. ¹H NMR spectra (600.2 MHz, CD₂Cl₂, 295 K) of [PPh₄][^{Me}1] A) in the presence of CO₂ (5 bar) and B) after three cycles of vacuum application. The signal of CHDCl₂ and of residual CH₂Cl₂ is marked with a red asterisk.

Figure S2. ¹H NMR spectra (600.2 MHz, CD₂Cl₂, 295 K) of [PPh₄][^{Et}1] **A**) in the presence of CO₂ (5 bar) and **B**) after one cycles of vacuum application. The signal of CHDCl₂ is marked with a red asterisk.

S6. Reactivity with HNTf₂ and isopropanol

Reactivity with isopropanol without HNTf2 activation

Procedure. In a nitrogen-filled glove box, tetraphenylphosphonium *meso*-octamethylcalix[4]pyrrolato gallate and tetraphenylphosphonium *meso*-octaethylcalix[4]pyrrolato gallate (7 mg) were placed in two separate J. Young NMR tubes and were dissolved in CD_2Cl_2 (each 0.5 mL). To the samples, isopropanol ([PPh₄][^{Me}1]: 1.0 µL, [PPh₄][^{Et}1]: 0.7 µL) was added in one portion at room temperature using a piston pipette. No color change occurred in both cases. The samples were closed and were vigorously shaken. The samples were analyzed by ¹H NMR spectroscopy immediately after preparation and after standing 24 h at room temperature (Figure S3 and Figure S4). No reaction occurred.

Figure S3. ¹H NMR spectrum (399.9 MHz, CD₂Cl₂, 295 K) of [PPh₄][^{Me}1] in the presence of approximately one equivalent of isopropanol. The signal of CHDCl₂ and of residual CH₂Cl₂ is marked with a red asterisk.

Figure S4. ¹H NMR spectrum (600.2 MHz, CD₂Cl₂, 295 K) of [PPh₄][^{et}1] in the presence of approximately one equivalent of isopropanol. The signal of CHDCl₂ and is marked with a red asterisk.

<u>Reactivity with HNTf₂</u> Reaction with THF-d₈ as solvent

[H-^{Me}1*], dissolved in THF

Procedure. In a nitrogen-filled glove box, tetraphenylphosphonium *meso*-octamethylcalix[4]pyrrolato gallate (10.0 mg, 10.99 μ mol (0.9 eq of residual CH₂Cl₂ included), 1.0 eq) and bis(trifluoromethyl)sulfonimide (HNTf₂, 3.0 mg, 10.66 μ mol, 0.97 eq) were placed in a J. Young NMR tube. THF-d₈ (0.5 mL) was added, the sample was closed and was vigorously shaken. A yellow solution was obtained which was analyzed by NMR spectroscopy.

¹<u>H NMR (600.2 MHz, THF-d₈, 295 K)</u>, δ_{1H} [ppm] = **7.95-7.90** (m, 4H, [PPh₄]⁺), **7.85** (d, ³J_{HH} = 5.4 Hz, 1H, H-2), **7.80-7.74** (m, 16H, [PPh₄]⁺), **7.18** (dd, ³J_{HH} = 5.4 Hz, ⁴J_{HH} = 1.3 Hz, 1H, H-3), **6.08** (d, ³J_{HH} = 3.3 Hz, 1H, β-H), **5.96** (d, ³J_{HH} = 3.3 Hz, 1H, β-H), **5.95** (d, ³J_{HH} = 3.2 Hz, 1H, β-H), **5.92** (d, ³J_{HH} = 3.2 Hz, 1H, β-H), **5.81** (d, ³J_{HH} = 3.1 Hz, 1H, β-H), **5.79** (d, ³J_{HH} = 3.1 Hz, 1H, β-H), **5.02** (s, 1H, H-1), **1.77** (s, 3H, α-Me), **1.65** (s, 2 × 3H, α-Me), **1.56** (s, 3H, α-Me), **1.51** (s, 3H, α-Me), **1.47** (s, 3H, α-Me), **1.43** (s, 3H, α-Me), **0.86** (s, 3H, α-Me).

¹³C{¹H} NMR (151.9 MHz, THF-d₈, 295 K), δ_{13C} [ppm] = 190.3 (s, C_q, C-4), 156.6 (s, CH, C-2), 150.0 (s, C_q, C_q-pyrrole), 149.5 (s, C_q, C_q-pyrrole), 147.3 (s, C_q, C_q-pyrrole), 145.6 (s, C_q, C_q-pyrrole), 145.5 (s, C_q, C_q-pyrrole), 141.3 (s, C_q, C_q-pyrrole), 136.1 (d, CH, ⁴*J*_{PC} = 3.1 Hz, [PPh₄]⁺), 135.5 (d, CH, ²*J*_{PC} = 10.4 Hz, [PPh₄]⁺), 131.2 (d, CH, ³*J*_{PC} = 12.9 Hz, [PPh₄]⁺), 129.5 (s, CH, C-3), 121.0 (q, CF₃, ¹*J*_{FC} = 322.4 Hz, [NTf₂]⁻, the outer two peaks of the quartet were only barely visible), 118.9 (d, C_q, ¹*J*_{PC} = 89.5 Hz, [PPh₄]⁺), 106.4 (s, CH,

β-C), 103.8 (s, CH, β-C), 103.8 (s, CH, β-C), 103.6 (s, CH, β-C), 102.1 (s, 2 × CH, β-C), 87.6 (s, CH, C-1), 39.8 (s, C_q, α-C), 39.3 (s, C_q, α-C), 36.5 (s, C_q, α-C), 36.4 (s, C_q, α-C), 36.2 (s, CH₃, α-Me), 35.0 (s, CH₃, α-Me), 33.91 (s, CH₃, α-Me), 33.87 (s, CH₃, α-Me), 31.9 (s, CH₃, α-Me), 29.5 (s, CH₃, α-Me), 28.3 (s, CH₃, α-Me), 24.8 (s, CH₃, α-Me).

¹⁹**F NMR** (188.1 MHz, THF-d₈, 295 K), δ_{19F} [ppm] = **-79.9** (s, [NTf₂]⁻).

³¹P{¹H} NMR (243.0 MHz, THF-d₈, 295 K), δ_{31P} [ppm] = **21.1** (s, [PPh₄]⁺).

The ¹H, ¹H COSY NMR spectrum showed characteristic cross peaks between the signals at 5.02 (transferred proton) and 7.18 ppm (H-3) and between the signals at 7.18 (H-3) and 7.85 ppm (H-2) (see Figure S25).

Reaction with CD₂Cl₂ / diethyl ether (2:1 %vol) as solvent

[H-^{Me}1*], dissolved in CD₂Cl₂ / Et₂O (2:1 %vol)

Procedure. In a nitrogen-filled glove box, tetraphenylphosphonium *meso*-octamethylcalix[4]pyrrolato gallate (10.0 mg, 10.99 µmol (0.9 eq of residual CH_2Cl_2 included), 1.0 eq) were suspended in a mixture of CD_2Cl_2 and diethyl ether (2:1 %vol, 0.5 mL) in a 1 mL vial. bis(Trifluoromethyl)sulfonimide (HNTf₂, 2.8 mg, 10.66 µmol, 0.9 eq) was dissolved in the same solvent mixture (0.3 mL). The HNTf₂ solution was dropwise added to the gallate suspension over the course of 5 min at room temperature while shaking the latter. The reaction mixture turned yellow. It was filtered into a J. Young NMR tube and was analyzed by NMR spectroscopy.

¹<u>H NMR (600.2 MHz, CD₂Cl₂ / Et₂O (2:1 %vol), 295 K)</u>, spectrum was calibrated with the signal of CHDCl₂ to 5.32 ppm, δ_{1H} [ppm] = **7.92-7.86** (m, 4H, [PPh₄]⁺), **7.77-7.71** (m, 8H, [PPh₄]⁺), **7.73** (1H, H-2, identified by ¹H,¹H COSY NMR spectroscopy, expected multiplicity is d), **7.66-7.59** (m, 8H, [PPh₄]⁺), **7.05** (dd, ³J_{HH} = 5.4 Hz, ⁴J_{HH} = 1.3 Hz, 1H, H-3), **6.14** (d, ³J_{HH} = 3.3 Hz, 1H, β-H), **6.05** (d, ³J_{HH} = 3.3 Hz, 1H, β-H), **6.03** (d, ³J_{HH} = 3.3 Hz, 1H, β-H), **6.00** (d, ³J_{HH} = 3.2 Hz, 1H, β-H), **5.90** (s, 2 × 1H, β-H), **4.91** (s, 1H, H-1), **1.82** (s, 3H, α-Me), **1.63** (s, 3H, α-Me), **1.574** (s, 3H, α-Me), **1.568** (s, 3H, α-Me), **1.52** (s, 3H, α-Me), **1.46** (s, 3H, α-Me), **1.44** (s, 3H, α-Me), **0.81** (s, 3H, α-Me).

¹³C{¹H} NMR (151.9 MHz, CD₂Cl₂ / Et₂O (2:1 %vol), 295 K), spectrum was calibrated with the signal of CD₂Cl₂ to 53.84 ppm, δ_{13C} [ppm] = 190.0 (s, C_q, C-4), 156.6 (s, CH, C-2), 151.1 (s, C_q, C_q-pyrrole), 150.7 (s, C_q, C_q-pyrrole), 148.3 (s, C_q, C_q-pyrrole), 146.0 (s, C_q, C_q-pyrrole), 145.3 (s, C_q, C_q-pyrrole), 141.4 (s, C_q, C_q-pyrrole), 136.4 (d, CH, ${}^{4}J_{PC}$ = 3.1 Hz, [PPh₄]⁺), 135.1 (d, CH, ${}^{2}J_{PC}$ = 10.3 Hz, [PPh₄]⁺), 131.3 (d, CH, ${}^{3}J_{PC}$ = 12.9 Hz, [PPh₄]⁺), 129.8 (s, CH, C-3), 120.6 (q, CF₃, ${}^{1}J_{FC}$ = 321.2 Hz, [NTf₂]⁻, the outer two peaks of the quartet were only barely visible), 118.3 (d, C_q, ${}^{1}J_{PC}$ = 89.7 Hz, [PPh₄]⁺), 106.9 (s, CH, β-C), 104.7 (s, CH, β-C), 104.4 (s, CH, β-C), 104.1 (s, CH, β-C), 102.8 (s, CH, β-C), 102.4 (s, CH, β-C), 87.4 (s, CH, C-1), 42.7 (s, CH, α-Me), 40.5 (s, C_q, α-C), 39.1 (s, C_q, α-C), 37.5 (s, CH, α-Me), 36.43 (s, C_q, α-C), 36.38 (s, C_q, α-C), 35.5 (s, CH, α-Me), 32.2 (s, CH, α-Me), 31.7 (s, CH, α-Me), 26.7 (s, CH, α-Me), 25.3 (s, CH, α-Me).

<u>19F NMR (376.3 MHz, CD₂Cl₂ / Et₂O (2:1 %vol), 295 K)</u>, δ_{19F} [ppm] = **-79.8** (s, [NTf₂]⁻).

³¹P{¹H} NMR (243.0 MHz, CD₂Cl₂ / Et₂O (2:1 %vol), 295 K), δ_{31P} [ppm] = 23.2 (s, [PPh₄]⁺).

The identical pattern in the ¹H,¹H COSY NMR spectrum as for the reaction in THF-d₈ was found.

Procedure. In a nitrogen-filled glove box, tetraphenylphosphonium *meso*-octamethylcalix[4]pyrrolato gallate (10.0 mg, 10.99 µmol (0.9 eq of residual CH_2CI_2 included), 1.0 eq) was suspended in a mixture of CH_2CI_2 and diethyl ether (2:1 %vol, 2 mL) in a 10 mL snap cap vial and was vigorously stirred at room temperature. bis(Trifluoromethyl)sulfonimide (HNTf₂, 3.0 mg, 10.66 µmol, 0.97 eq) was dissolved in the same solvent mixture (0.5 mL). The HNTf₂ solution was added dropwise to the gallate suspension over the course of 5 min at room temperature. The reaction mixture turned yellow. Isopropanol (0.9 µL, 11.79 µmol, 1.07 eq) was added in one portion at room temperature using a piston pipette. It was continued to stir for 1 min. All volatiles were removed under reduced pressure. From the obtained solid, it was extracted with a *n*-pentane/diethyl ether mixture (4:1 %vol, 2.5 mL in total, used over three extraction cycles). After removing the solvent from the extract under reduced pressure and drying *in vacuo*, a pale-yellow solid was isolated, which was characterized to [HH-^{Me}1**-OⁱPr] by NMR spectroscopy (4.4 mg, 7.92 µmol, 72% yield).

It was noted by ¹H NMR spectroscopy (see Figure S28) that a small quantity (approximately 8% relative to the shown compound) of another molecule was formed. Based on the acquired NMR data, this is assigned to a constitutional isomer in which the two dearomatization-inducing protons are convertible into each other by means of a mirror plane. One proton is located at the 2- the other at the 5-position of the respective dearomatized pyrrole ring.

¹<u>H NMR (600.2 MHz, CD₂Cl₂, 295 K)</u>, δ_{1H} [ppm] = **7.61** (dd, ${}^{3}J_{HH}$ = 5.4, 0.7 Hz, 2H, H-2), **7.00** (dd, ${}^{3}J_{HH}$ = 5.4, ${}^{4}J_{HH}$ = 1.4 Hz, 2H, H-3), **6.09** (d, ${}^{3}J_{HH}$ = 3.3 Hz, 2H, β-H), **6.00** (d, ${}^{3}J_{HH}$ = 3.3 Hz, 2H, β-H), **4.87** (br s, 2H, H-1), **3.52** (sept, ${}^{3}J_{HH}$ = 6.0 Hz, 1H, H-5), **1.88** (s, 6H, α-Me), **1.84** (s, 6H, α-Me), **1.57** (s, 6H, α-Me), **0.89** (d, ${}^{3}J_{HH}$ = 6.0 Hz, 3H, H-6), **0.69** (d, ${}^{3}J_{HH}$ = 6.0 Hz, 3H, H-6'), **0.44** (s, 6H, α-Me).

<u>1³C{¹H} NMR (151.9 MHz, CD₂Cl₂, 295 K)</u>, δ_{13C} [ppm] = 188.4 (s, C_q, C-4), 155.3 (s, CH, C-2), 147.7 (s, C_q, C_q-pyrrole), 142.7 (s, C_q, C_q-pyrrole), 129.1 (s, CH, C-3), 104.7 (s, CH, β-C), 102.9 (s, CH, β-C), 87.1 (s, CH, C-1), 64.4 (s, CH, C-5), 39.4 (s, C_q, α-C), 38.8 (s, C_q, α-C), 32.4 (s, CH₃, α-Me), 28.7 (s, CH₃, α-Me), 28.4 (s, CH₃, α-Me), 27.2 (s, CH₃, C-6), 26.9 (s, CH₃, C-6'), 23.0 (s, CH₃, α-Me).

The ¹H,¹H COSY NMR spectrum showed characteristic cross peaks between the signals at 4.87 (protons at the 2-positions) and 7.00 ppm (H-3) and between the signals at 7.00 (H-3) and 7.61 ppm (H-2) (see Figure S30). Moreover, the ¹H,¹H NOESY NMR spectrum (see Figure S31) revealed spatial proximity of the isopropyl group and the ligand framework (both with the methyl groups and with the signal of the protons at the 2-positions). This further confirms the attachment of the ['PrO]⁻ group to the gallium center.

S7. X-ray crystallography

Crystals of the both gallates as their tetraphenylphosphonium salts ($[PPh_4][M^{e}1]$ and $[PPh_4][E^{t}1]$) were grown by gas phase diffusion of *n*-pentane into dichloromethane solutions (approximately 30 mg mL⁻¹) at -40 °C. The THF adduct of $[M^{e}1]^{-}$ as its tetraphenylphosphonium salt ($[PPh_4][M^{e}1-thf]$) crystallized at room temperature when the synthesis of $[PPh_4][M^{e}1]$ was attempted on NMR sample scale (J. Young NMR tube) in THF-d₈. However, not the sodium but rather the lithium salt of the deprotonated ligand (deprotonation carried out with *n*-butyllithium in THF)¹¹ was used in this reaction. Crystals formed overnight after mixing the deprotonated ligand (15.0 mg) and $[PPh_4][GaCl_4]$ (10.4 mg) in THF-d₈ (0.5 mL) at room temperature.

For SCXRD measurements, crystals were immersed in perfluorinated polyether oil. A suitable crystal was picked and was fixed on top of a cryo loop. A Bruker APEX-III CCD diffractometer with a low-temperature unit using Mo-K α radiation, chromated by mirror optics, was used for φ and ω scans. Data acquisition was done at 100.0 K. A strategy for data collection was calculated with Bruker's APEX3 software.¹²⁻¹³ This program was also used for processing of collected data. Data reduction, scaling, and absorption corrections were done with SAINT.¹⁴ SADABS-2016/2 was used for multi-scan absorption correction.¹⁵ Structures were solved with direct methods as implemented in the SheIXT 2018¹⁶⁻¹⁷ structure solution program. Structure refinement was carried out by full matrix least squares minimization on F² using the 2018/3 version of SheIXL¹⁸⁻²¹. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using a riding model. Handling of the structural data during refinement was performed with the SheIXIe (Rev: 1246)²² or Olex2 v1.3²³ graphical interface. Data finalization was done with FinalCif v104 (D. Kratzert, *FinalCif, V104*, https://dkratzert.de/finalcif.html).

For data visualization, Mercury 4.1.3 was used.²⁴⁻²⁶ The thermal displacement ellipsoids are shown at a probability level of 50% (Figure S5, Figure S6, Figure S7).

[PPh₄][^{Me}1]

Figure S5. A) Asymmetric unit of the crystal lattice which was found for $[PPh_4][Me1] \cdot 0.5 CH_2Cl_2$ (monoclinic, P2₁/c), and B) molecular structures of the anions $[Me1]^-$, with atom labels. All non-hydrogen thermal displacement ellipsoids are shown at a probability level of 50%.

Table S1. Crystal data and structure refine	ent for [PPh ₄][^{Me} 1] • 0.5	5 CH ₂ Cl ₂ (mo_lm	.snr006_ii_02a).
---	---	--	------------------

2175982
C _{52.50} H ₅₃ ClGaN ₄ P
876.13
100.0
monoclinic
$P2_{1}/c$ (14)
25.4110(18)
16.6359(13)
23.7139(18)
90
107.797(3)
90
9545.0(12)
8
1.219
0.704
3672
0.144×0.113×0.086
colourless
block

Radiation	Mo <i>K</i> _α (λ=0.71073 Å)
2⊖ range [°]	4.11 to 54.00 (0.78 Å)
	-32 ≤ h ≤ 32
Index ranges	-20 ≤ k ≤ 21
	-30 ≤ I ≤ 30
Reflections collected	141733
	20825
Independent reflections	$R_{\rm int} = 0.0912$
	$R_{\text{sigma}} = 0.0553$
Completeness to	99.9 %
Θ = 25.242°	33:3 /0
Data / Restraints /	20825/0/1088
Parameters	20020/0/1000
Goodness-of-fit on F ²	1.027
Final <i>R</i> indexes	$R_1 = 0.0463$
[<i>I</i> ≥2σ(<i>I</i>)]	wR ₂ = 0.1083
Final <i>R</i> indexes	<i>R</i> ₁ = 0.0735
[all data]	wR ₂ = 0.1219
Largest peak/hole [eÅ-3]	1.47/-0.81

 $\label{eq:constraint} \mbox{Table S2. Solid state bond lengths found for [PPh_4][\mbox{$^{Me}1$]$} \bullet 0.5\ \mbox{$CH_2Cl_2$} (mo_lmsnr006_ii_02a).$

Atoms		Length [Å]	Atoms		Length [Å]
Ga1	N3	1.938(2)	C119	C118	1.371(4)
Ga1	N2	1.946(2)	C302	C303	1.388(4)
Ga1	N1	1.935(2)	C302	C301	1.385(4)
Ga1	N4	1.929(2)	C22	C5	1.542(4)
Ga10	N101	1.928(2)	C307	C312	1.386(4)
Ga10	N103	1.938(2)	C307	C308	1.399(4)
Ga10	N104	1.951(2)	C7	C6	1.370(4)
Ga10	N102	1.935(2)	C3	C2	1.432(4)
P301	C313	1.790(3)	C6	C5	1.515(4)
P301	C319	1.798(3)	C21	C5	1.532(3)
P301	C307	1.807(3)	C14	C13	1.369(4)
P301	C301	1.791(3)	C14	C15	1.510(4)
P201	C213	1.791(3)	C206	C201	1.389(4)
P201	C219	1.797(3)	C206	C205	1.383(4)
P201	C201	1.792(3)	C101	C102	1.371(4)
P201	C207	1.796(3)	C111	C110	1.513(4)
CI40	C401	1.764(3)	C111	C112	1.369(4)
CI1	C401	1.748(3)	C17	C18	1.409(4)
N3	C11	1.384(3)	C17	C16	1.376(4)
N3	C14	1.388(3)	C216	C217	1.378(4)
N2	C9	1.388(3)	C18	C19	1.374(4)
N2	C6	1.384(3)	C201	C202	1.391(4)
N1	C4	1.392(3)	C303	C304	1.383(4)
N1	C1	1.384(3)	C205	C204	1.381(4)
N101	C101	1.380(4)	C321	C322	1.385(4)
N101	C104	1.382(4)	C301	C306	1.399(4)
N103	C111	1.389(4)	C19	C20	1.500(4)
N103	C114	1.388(4)	C204	C203	1.382(4)
N104	C119	1.387(4)	C323	C322	1.382(4)
N104	C116	1.382(4)	C323	C324	1.385(4)
N4	C19	1.396(3)	C109	C110	1.510(4)
N4	C16	1.377(3)	C109	C108	1.366(4)
N102	C109	1.386(4)	C110	C124	1.552(4)
N102	C106	1.390(4)	C110	C123	1.535(4)
C313	C314	1.400(4)	C15	C16	1.513(4)
C313	C318	1.399(4)	C15	C25	1.527(4)
C11	C10	1.500(4)	C315	C316	1.379(4)
C11	C12	1.377(4)	C106	C107	1.371(4)
C9	C10	1.511(4)	C106	C105	1.516(4)
C9	C8	1.377(4)	C104	C105	1.509(4)
C218	C213	1.398(4)	C104	C103	1.364(4)
C218	C217	1.394(4)	C118	C117	1.421(4)

C319	C320	1.399(4)	C114	C113	1.365(4)
C319	C324	1.390(4)	C114	C115	1.510(5)
C224	C219	1.389(4)	C116	C117	1.377(4)
C224	C223	1.386(4)	C116	C115	1.514(4)
C10	C23	1.551(4)	C312	C311	1.391(4)
C10	C24	1.529(4)	C304	C305	1.375(4)
C220	C219	1.392(4)	C202	C203	1.375(4)
C220	C221	1.385(4)	C102	C103	1.422(4)
C213	C214	1.394(4)	C112	C113	1.416(5)
C314	C315	1.380(4)	C208	C207	1.397(4)
C215	C214	1.384(4)	C208	C209	1.384(4)
C215	C216	1.388(4)	C317	C316	1.378(4)
C4	C3	1.368(4)	C20	C28	1.536(4)
C4	C5	1.510(4)	C20	C27	1.552(4)
C320	C321	1.388(4)	C107	C108	1.423(5)
C8	C7	1.419(4)	C207	C212	1.390(4)
C1	C2	1.372(4)	C105	C122	1.527(4)
C1	C20	1.511(4)	C105	C121	1.557(4)
C221	C222	1.381(4)	C308	C309	1.395(5)
C26	C15	1.545(4)	C212	C211	1.385(5)
C12	C13	1.414(4)	C306	C305	1.387(4)
C223	C222	1.382(4)	C309	C310	1.389(5)
C120	C119	1.519(4)	C209	C210	1.383(5)
C120	C101	1.510(4)	C210	C211	1.373(5)
C120	C128	1.548(4)	C311	C310	1.364(5)
C120	C127	1.535(4)	C115	C126	1.537(4)
C318	C317	1.386(4)	C115	C125	1.551(5)

 $\label{eq:constraint} \mbox{Table S3. Solid state bond angles found for [PPh_4][Me1] \bullet 0.5 \ \mbox{CH}_2\mbox{Cl}_2 \ (mo_lmsnr006_ii_02a).$

Atoms	;		Angle	Atoms	;		Angle
N3	Ga1	N2	89.36(9)	N101	C101	C120	120.7(2)
N1	Ga1	N3	178.59(10)	C102	C101	N101	108.9(3)
N1	Ga1	N2	89.93(9)	C102	C101	C120	130.2(3)
N4	Ga1	N3	90.33(9)	N103	C111	C110	121.0(3)
N4	Ga1	N2	178.42(10)	C112	C111	N103	108.5(3)
N4	Ga1	N1	90.41(9)	C112	C111	C110	130.2(3)
N101	Ga10	N103	178.92(11)	C14	C13	C12	107.8(2)
N101	Ga10	N104	89.81(10)	C16	C17	C18	107.5(2)
N101	Ga10	N102	90.14(10)	C217	C216	C215	121.1(3)
N103	Ga10	N104	89.70(10)	C19	C18	C17	107.7(3)
N102	Ga10	N103	90.37(10)	C206	C201	P201	121.3(2)
N102	Ga10	N104	178.95(10)	C206	C201	C202	120.5(3)
C313	P301	C319	109.86(13)	C202	C201	P201	118.1(2)
C313	P301	C307	110.55(13)	C304	C303	C302	120.1(3)
C313	P301	C301	109.23(13)	C4	C5	C22	108.9(2)
C319	P301	C307	108.21(13)	C4	C5	C6	111.3(2)
C301	P301	C319	108.18(13)	C4	C5	C21	110.3(2)
C301	P301	C307	110.77(13)	C6	C5	C22	108.5(2)
C213	P201	C219	111.50(13)	C6	C5	C21	109.5(2)
C213	P201	C201	106.86(13)	C21	C5	C22	108.2(2)
C213	P201	C207	112.30(13)	C1	C2	C3	107.2(2)
C201	P201	C219	110.26(13)	C216	C217	C218	119.9(3)
C201	P201	C207	108.94(13)	C204	C205	C206	120.2(3)
C207	P201	C219	106.97(13)	C322	C321	C320	120.2(3)
C11	N3	Ga1	125.90(17)	C302	C301	P301	118.9(2)
C11	N3	C14	108.2(2)	C302	C301	C306	120.4(3)
C14	N3	Ga1	125.64(18)	C306	C301	P301	120.4(2)
C9	N2	Ga1	125.23(17)	N4	C19	C20	120.5(2)
C6	N2	Ga1	126.23(18)	C18	C19	N4	108.2(3)
C6	N2	C9	107.8(2)	C18	C19	C20	131.0(3)
C4	N1	Ga1	125.67(18)	C205	C204	C203	120.4(3)

C1	N1	Ga1	125.68(17)	C322	C323	C324	120.3(3)
C1	N1	C4	108.2(2)	N102	C109	C110	119.8(2)
C101	N101	Ga10	126.67(19)	C108	C109	N102	109.0(3)
C101	N101	C104	107.6(2)	C108	C109	C110	130.9(3)
C104	N101	Ga10	125.70(19)	C111	C110	C124	108.8(3)
C111	N103	Ga10	125.59(19)	C111	C110	C123	109.8(3)
C114	N103	Ga10	126.7(2)	C109	C110	C111	112.1(2)
C114	N103	C111	107.6(2)	C109	C110	C124	108.7(3)
C119	N104	Ga10	125.33(19)	C109	C110	C123	109.6(3)
C116	N104	Ga10	126.8(2)	C123	C110	C124	107.9(3)
C116	N104	C119	107.7(2)	C323	C322	C321	120.3(3)
C19	N4	Ga1	125.91(18)	C14	C15	C26	108.8(2)
C16	N4	Ga1	126.13(18)	C14	C15	C16	112.2(2)
C16	N4	C19	107.8(2)	C14	C15	C25	109.6(2)
C109	N102	Ga10	126.71(19)	C16	C15	C26	108.7(2)
C109	N102	C106	107.5(2)	C16	C15	C25	108.8(2)
C106	N102	Ga10	125.7(2)	C25	C15	C26	108.7(2)
C314	C313	P301	119.9(2)	C316	C315	C314	120.4(3)
0318	0313	P301	119.9(2)	N102	0106	C105	120.1(3)
U318	C313	C10	120.2(3)	C107	C106	N102	120.9(3)
N3	011		120.5(2)		C100	C15	120.0(3)
012	C11	C10	131 1/2)	017	C16	N/4	108 9(2)
N2	CQ	C10	120 0(2)	C17	C16	C15	130 8(3)
C8	C9	N2	108 4(2)	C323	C324	C319	119 5(3)
C8	C9	C10	130 4(2)	N101	C104	C105	120 5(3)
C217	C218	C213	119 0(3)	C103	C104	N101	109 2(3)
C320	C319	P301	118 8(2)	C103	C104	C105	130 0(3)
C324	C319	P301	1207(2)	C119	C118	C117	107.6(3)
C324	C319	C320	120.4(3)	N103	C114	C115	120.4(3)
C223	C224	C219	119.6(3)	C113	C114	N103	108.7(3)
C11	C10	C9	111.5(2)	C113	C114	C115	130.6(3)
C11	C10	C23	107.7(2)	N104	C116	C115	120.3(3)
C11	C10	C24	110.7(2)	C117	C116	N104	109.1(3)
C9	C10	C23	109.5(2)	C117	C116	C115	130.6(3)
C9	C10	C24	109.3(2)	C307	C312	C311	119.5(3)
C24	C10	C23	108.1(2)	C305	C304	C303	120.4(3)
C221	C220	C219	119.8(3)	C203	C202	C201	119.6(3)
C218	C213	P201	121.1(2)	C101	C102	C103	107.1(3)
C214	C213	P201	118.2(2)	C111	C112	C113	107.5(3)
C214	C213	C218	120.7(3)	C209	C208	C207	119.7(3)
C315	C314	C313	119.5(3)	C316	C317	C318	120.7(3)
C224	C219	P201	121.6(2)	C1	C20	C28	109.6(2)
C224	C219	C220	120.0(3)	C1	C20	C27	108.9(2)
C220	C219	P201	118.4(2)	C19	C20	C1	111.4(2)
C214	C215	0216	119.7(3)	C19 C10	C20	028	109.9(2)
N1 C2	C4	C5	120.9(2)	C19 C29	C20	027	109.0(2)
C3	C4	1N I	100.4(Z)	020 C106	C107	C100	100.0(3)
C321	C320	C310	110.0(2)	C317	C316	C315	120 2(2)
C9	C8	C7	107 5(2)	C208	C207	P201	119 3(2)
N1	C1	C20	120.3(2)	C212	C207	P201	121.2(2)
C2	C1	N1	108.7(2)	C212	C207	C208	119.4(3)
C2	C1	C20	130.9(3)	C106	C105	C122	110.0(3)
C222	C221	C220	120.2(3)	C106	C105	C121	108.7(3)
C11	C12	C13	107.5(2)	C104	C105	C106	110.9(2)
C222	C223	C224	120.4(3)	C104	C105	C122	110.0(3)
C119	C120	C128	108.0(2)	C104	C105	C121	109.0(3)
C119	C120	C127	109.4(2)	C122	C105	C121	108.2(3)
C101	C120	C119	112.4(2)	C309	C308	C307	119.0(3)
C101	C120	C128	108.8(2)	C104	C103	C102	107.1(3)
C101	C120	C127	109.7(2)	C211	C212	C207	120.0(3)
C127	C120	C128	108.4(2)	C202	C203	C204	120.1(3)

C317	C318	C313	118.9(3)	C109	C108	C107	107.6(3)
N104	C119	C120	121.0(2)	C116	C117	C118	106.9(3)
C118	C119	N104	108.7(3)	C305	C306	C301	119.1(3)
C118	C119	C120	129.8(3)	C304	C305	C306	120.4(3)
C301	C302	C303	119.5(3)	CI1	C401	Cl40	110.81(17)
C312	C307	P301	121.8(2)	C310	C309	C308	119.9(3)
C312	C307	C308	120.4(3)	C210	C209	C208	120.4(3)
C308	C307	P301	117.7(2)	C211	C210	C209	120.0(3)
C6	C7	C8	107.3(2)	C114	C113	C112	107.6(3)
C4	C3	C2	107.5(2)	C310	C311	C312	120.6(3)
C215	C214	C213	119.5(3)	C311	C310	C309	120.6(3)
C221	C222	C223	120.1(3)	C210	C211	C212	120.4(3)
N2	C6	C5	119.6(2)	C114	C115	C116	110.7(3)
C7	C6	N2	108.9(2)	C114	C115	C126	110.2(3)
C7	C6	C5	131.3(2)	C114	C115	C125	109.1(3)
N3	C14	C15	120.5(2)	C116	C115	C126	109.3(3)
C13	C14	N3	108.3(2)	C116	C115	C125	109.0(3)
C13	C14	C15	131.0(2)	C126	C115	C125	108.6(3)
C205	C206	C201	119.1(3)				

[PPh₄][^{Et}1]

Figure S6. A) Asymmetric unit of the crystal lattice which was found for [PPh₄][^{Et}1] (monoclinic, P2₁/n), and B) molecular structures of the anion [^{Et}1]⁻, with atom labels. All non-hydrogen thermal displacement ellipsoids are shown at a probability level of 50%.

CCDC number	2175981
Empirical formula	C ₆₀ H ₆₈ GaN₄P
Formula weight	945.87
Temperature [K]	100.0
Crystal system	monoclinic
Space group (number)	$P2_{1}/n$ (14)
a [Å]	11.5827(6)
b [Å]	15.4151(5)
c [Å]	27.0610(12)
α [°]	90
β [°]	90.708(2)
γ [°]	90
Volume [Å ³]	4831.3(4)
Ζ	4
$ ho_{ m calc}$ [gcm ⁻³]	1.300
μ [mm ⁻¹]	0.648

Table S4. Crystal data and structure refinement for [PPh4][Et1] (mo_lmsee025_0m_a).

F(000)	2008
Crystal size [mm ³]	0.231×0.182×0.113
Crystal colour	colourless
Crystal shape	block
Radiation	Mo <i>K</i> _α (λ=0.71073 Å)
2⊖ range [°]	4.40 to 57.61 (0.74 Å)
Index ranges	-15 ≤ h ≤ 15 -20 ≤ k ≤ 19 -36 ≤ l ≤ 36
Reflections collected	38808
Independent reflections	12354 R _{int} = 0.0785 R _{sigma} = 0.0785
Completeness to $\Theta = 25.242^{\circ}$	98.7 %
Data / Restraints / Parameters	12354/0/617
Goodness-of-fit on F ²	1.042
Final <i>R</i> indexes	$R_1 = 0.0547$
[<i>I</i> ≥2σ(<i>I</i>)]	wR ₂ = 0.1224
Final <i>R</i> indexes	<i>R</i> ₁ = 0.0791
[all data]	wR ₂ = 0.1368
Largest peak/hole [eÅ ⁻³]	0.63/-0.56

 $\label{eq:constraint} \mbox{Table S5. Solid state bond lengths found for [PPh_4][\mbox{Et1}](mo_lmsee025_0m_a).$

Atoms	Length [Å]	Atoms	Length [Å]
Ga1_1-N1_1	1.954(2)	C20_1-C21_1	1.519(6)
Ga1_1-N2_1	1.944(2)	C21A_1-C20A_1	1.497(13)
Ga1_1-N3_1	1.943(2)	C22_1-C23_1	1.543(3)
Ga1_1-N4_1	1.957(2)	C22_1-C35_1	1.567(3)
N1_1-C1_1	1.394(3)	C23_1-C24_1	1.534(4)
N1_1-C4_1	1.397(3)	C25_1-C26_1	1.526(3)
C1_1-C2_1	1.378(3)	C27_1-C28_1	1.532(3)
C1_1-C9_1	1.513(3)	C29_1-C30_1	1.523(4)
N2_1-C5_1	1.392(3)	C31_1-C32_1	1.526(4)
N2_1-C8_1	1.390(3)	C33_1–C34_1	1.526(4)
C2_1-C3_1	1.422(4)	C35_1-C36_1	1.525(4)
N3_1-C10_1	1.396(3)	P1_2-C1_2	1.801(3)
N3_1-C11_1	1.395(3)	P1_2-C7_2	1.789(3)
C3_1-C4_1	1.374(3)	P1_2-C13_2	1.796(3)
N4_1-C15_1	1.399(3)	P1_2-C19_2	1.802(3)
N4_1-C16_1	1.389(3)	C1_2-C2_2	1.397(4)
C4_1-C14_1	1.510(3)	C1_2-C6_2	1.399(4)
C5_1-C6_1	1.376(3)	C2_2-C3_2	1.392(4)
C5_1-C19_1	1.513(3)	C3_2-C4_2	1.378(4)
C6_1-C7_1	1.425(3)	C4_2-C5_2	1.386(4)
C7_1-C8_1	1.371(3)	C5_2-C6_2	1.389(4)
C8_1-C22_1	1.520(3)	C7_2-C8_2	1.393(4)
C9_1-C10_1	1.512(3)	C7_2-C12_2	1.398(3)
C9_1-C25_1	1.545(3)	C8_2-C9_2	1.392(4)
C9_1-C27_1	1.561(3)	C9_2-C10_2	1.392(4)
C10_1-C13_1	1.378(3)	C10_2-C11_2	1.384(4)
C11_1-C12_1	1.377(3)	C11_2-C12_2	1.388(4)
C11_1-C22_1	1.513(3)	C13_2-C14_2	1.399(4)
C12_1-C13_1	1.421(4)	C13_2-C18_2	1.394(4)
C14_1-C15_1	1.503(3)	C14_2-C15_2	1.390(4)
C14_1-C29_1	1.554(3)	C15_2-C16_2	1.384(4)
C14_1-C31_1	1.559(4)	C16_2-C17_2	1.388(4)
C15_1-C18_1	1.377(4)	C17_2-C18_2	1.388(4)
C16_1-C17_1	1.377(4)	C19_2-C20_2	1.398(4)
C16_1-C19_1	1.511(4)	C19_2-C24_2	1.397(4)
C17_1-C18_1	1.423(4)	C20_2-C21_2	1.386(4)
C19_1-C20_1	1.547(5)	C21_2-C22_2	1.383(4)
C19_1-C20A_1	1.651(10)	C22_2-C23_2	1.387(4)

Atoms	Angle [°]	Atoms	Angle [°]
N1 1-Ga1 1-N4 1	89.10(8)	C5 1-C19 1-C20 1	111.5(2)
N2 1-Ga1 1-N1 1	177.82(8)	C5 1–C19 1–C20A 1	104.2(4)
N2 1-Ga1 1-N4 1	90.20(8)	C5 1–C19 1–C33 1	110.2(2)
N3 1-Ga1 1-N1 1	90.41(8)	C16 1–C19 1–C5 1	111.6(2)
N3 1-Ga1 1-N2 1	90.28(8)	C16 1–C19 1–C20 1	101.8(2)
N3 1-Ga1 1-N4 1	179.48(9)	C16 1-C19 1-C20A 1	121.3(4)
C1 1-N1 1-Ga1 1	126.29(16)	C16 1–C19 1–C33 1	109.6(2)
C1 1-N1 1-C4 1	107.31(19)	C33 1–C19 1–C20 1	111.8(2)
C4 1-N1 1-Ga1 1	126.40(16)	C33 1-C19 1-C20A 1	98.9(4)
N1_1-C1_1-C9_1	120.7(2)	C21_1-C20_1-C19_1	114.1(3)
C2_1-C1_1-N1_1	108.9(2)	C21A_1-C20A_1-C19_1	113.7(7)
C2_1-C1_1-C9_1	130.2(2)	C8_1-C22_1-C23_1	110.27(19)
C5_1-N2_1-Ga1_1	125.79(16)	C8_1-C22_1-C35_1	109.6(2)
C8_1-N2_1-Ga1_1	126.66(16)	C11_1-C22_1-C8_1	110.89(19)
C8_1-N2_1-C5_1	107.41(19)	C11_1_C22_1_C23_1	110.5(2)
C1_1-C2_1-C3_1	107.3(2)	C11_1_C22_1_C35_1	107.58(19)
C10_1-N3_1-Ga1_1	126.04(16)	C23_1-C22_1-C35_1	107.88(19)
C11_1-N3_1-Ga1_1	126.78(17)	C24_1-C23_1-C22_1	117.8(2)
C11_1-N3_1-C10_1	107.2(2)	C26_1-C25_1-C9_1	118.1(2)
C4 1–C3 1–C2 1	107.7(2)	C28 1-C27 1-C9 1	116.1(2)
C15_1-N4_1-Ga1_1	126.09(17)	C30_1–C29_1–C14_1	117.3(2)
C16_1-N4_1-Ga1_1	126.54(17)	C32_1–C31_1–C14_1	117.2(2)
C16_1-N4_1-C15_1	107.3(2)	C34_1–C33_1–C19_1	116.2(2)
N1_1-C4_1-C14_1	121.8(2)	C36_1-C35_1-C22_1	116.5(2)
C3_1-C4_1-N1_1	108.8(2)	C1_2-P1_2-C19_2	110.69(12)
C3_1-C4_1-C14_1	129.2(2)	C7_2-P1_2-C1_2	108.31(12)
N2_1-C5_1-C19_1	122.7(2)	C7_2-P1_2-C13_2	107.14(12)
C6_1-C5_1-N2_1	108.7(2)	C7_2-P1_2-C19_2	110.08(12)
C6_1-C5_1-C19_1	128.2(2)	C13_2-P1_2-C1_2	111.43(12)
C5_1-C6_1-C7_1	107.5(2)	C13_2-P1_2-C19_2	109.13(12)
C8_1-C7_1-C6_1	107.1(2)	C2_2-C1_2-P1_2	120.45(19)
N2_1-C8_1-C22_1	121.7(2)	C2_2-C1_2-C6_2	119.9(2)
C7_1-C8_1-N2_1	109.3(2)	C6_2-C1_2-P1_2	119.68(19)
C7_1-C8_1-C22_1	128.8(2)	C3_2-C2_2-C1_2	119.7(2)
C1_1-C9_1-C25_1	110.31(19)	C4_2-C3_2-C2_2	120.3(3)
C1_1-C9_1-C27_1	107.78(19)	C3_2-C4_2-C5_2	120.3(2)
C10_1-C9_1-C1_1	111.2(2)	C4_2-C5_2-C6_2	120.4(3)
C10_1-C9_1-C25_1	110.6(2)	C5_2-C6_2-C1_2	119.5(2)
C10_1-C9_1-C27_1	108.85(19)	C8_2-C7_2-P1_2	120.92(19)
C25_1-C9_1-C27_1	108.0(2)	C8_2-C7_2-C12_2	119.8(2)
N3_1-C10_1-C9_1	120.8(2)	C12_2-C7_2-P1_2	119.3(2)
C13_1-C10_1-N3_1	109.0(2)	C9_2-C8_2-C7_2	119.8(2)
C13_1-C10_1-C9_1	129.2(2)	C8_2-C9_2-C10_2	120.0(2)
N3_1-C11_1-C22_1	121.8(2)	C11_2-C10_2-C9_2	120.3(2)
C12_1-C11_1-N3_1	108.9(2)	C10_2-C11_2-C12_2	119.9(2)
C12_1-C11_1-C22_1	128.9(2)	C11_2-C12_2-C7_2	120.2(2)
C11_1-C12_1-C13_1	107.5(2)	C14_2-C13_2-P1_2	119.2(2)
C10_1-C13_1-C12_1	107.3(2)	C18_2-C13_2-P1_2	121.7(2)
C4_1-C14_1-C29_1	109.9(2)	C18_2-C13_2-C14_2	119.0(2)
C4_1-C14_1-C31_1	110.6(2)	C15_2-C14_2-C13_2	120.4(3)
C15_1-C14_1-C4_1	112.0(2)	C16_2-C15_2-C14_2	119.9(3)
C15_1-C14_1-C29_1	109.3(2)	C15_2-C16_2-C17_2	120.4(3)
C15_1-C14_1-C31_1	109.7(2)	C18_2-C17_2-C16_2	119.9(3)
C29_1-C14_1-C31_1	105.1(2)	C17_2-C18_2-C13_2	120.5(3)
N4_1-C15_1-C14_1	122.2(2)	C20_2-C19_2-P1_2	120.5(2)
C18_1-C15_1-N4_1	108.8(2)	C24_2-C19_2-P1_2	119.1(2)
C18_1–C15_1–C14_1	128.9(2)	C24_2-C19_2-C20_2	120.2(2)

N4_1-C16_1-C19_1	121.4(2)	C21_2-C20_2-C19_2	119.4(2)
C17_1-C16_1-N4_1	109.2(2)	C22_2-C21_2-C20_2	120.6(3)
C17_1-C16_1-C19_1	129.1(2)	C21_2-C22_2-C23_2	120.0(3)
C16_1-C17_1-C18_1	107.3(2)	C22_2-C23_2-C24_2	120.5(3)
C15_1-C18_1-C17_1	107.4(2)	C23_2-C24_2-C19_2	119.4(2)

[PPh₄][^{Me}1-thf]

Figure S7. A) Asymmetric unit of the crystal lattice which was found for [PPh₄][^{Me}1-thf] (monoclinic, P2₁/c), and B) molecular structures of the anion [^{Me}1-thf]⁻, with atom labels. All non-hydrogen thermal displacement ellipsoids are shown at a probability level of 50%.

CCDC number	2175983
Empirical formula	C ₅₆ H ₆₀ GaN₄OP
Formula weight	905.77
Temperature [K]	100(2)
Crystal system	monoclinic
Space group (number)	$P2_{1}/c$ (14)
a [Å]	13.0677(6)
b [Å]	21.4060(11)
c [Å]	17.1423(7)
α [°]	90
β [°]	108.630(2)
γ [°]	90
Volume [Å ³]	4543.9(4)
Ζ	4
$ ho_{calc}$ [gcm ⁻³]	1.324
μ [mm ⁻¹]	0.687
F(000)	1912
Crystal size [mm ³]	0.694×0.453×0.342
Crystal colour	yellow
Crystal shape	block
Radiation	MoK _α (λ=0.71073 Å)
2⊖ range [°]	3.80 to 55.15 (0.77 Å)
	-16 ≤ h ≤ 16
Index ranges	-27 ≤ k ≤ 27
	-22 ≤ I ≤ 22
Reflections collected	302121
	10488
Independent reflections	$R_{\rm int} = 0.0585$
	R _{sigma} = 0.0183
Completeness to $\Theta = 25.242^{\circ}$	99.8 %
Data / Restraints /	10488/0/576

Table S7. Crystal data and structure refinement for [PPh4][Me1-thf] (mo_LMSEE019_0m).

Parameters	
Goodness-of-fit on F ²	1.061
Final <i>R</i> indexes	$R_1 = 0.0254$
[<i>I</i> ≥2σ(<i>I</i>)]	wR ₂ = 0.0689
Final <i>R</i> indexes	R ₁ = 0.0272
[all data]	wR ₂ = 0.0700
Largest peak/hole [eÅ ⁻³]	0.43/-0.37

Table S8.	Solid state	bond lengths	found for	[PPh₄][Me1-thf]	(mo	LMSEE019	0m).
					•		

Atoms	Length [Å]	Atoms	Length [Å]
Ga1_1-N2_1	1.9841(10)	C18_1-C19_1	1.3757(16)
Ga1_1–N1_1	1.9853(10)	C19_1-C28_1	1.5064(16)
Ga1_1–N3_1	1.9992(10)	C20_1-C21_1	1.5273(17)
Ga1_1–N4_1	2.0041(9)	C21_1-C22_1	1.5239(18)
Ga1_1–O1_1	2.0230(8)	C22_1-C23_1	1.5173(16)
O1_1-C20_1	1.4611(14)	C24_1-C25_1	1.5485(16)
O1_1-C23_1	1.4673(14)	C24_1-C31_1	1.5513(15)
N1_1-C4_1	1.3851(15)	C28_1-C29_1	1.5371(16)
N1_1-C1_1	1.3916(14)	C28_1-C32_1	1.5473(16)
C1_1-C2_1	1.3763(17)	P1_2-C7_2	1.7895(12)
C1_1-C9_1	1.5086(16)	P1_2-C13_2	1.7933(12)
N2_1-C5_1	1.3857(15)	P1_2-C1_2	1.7933(12)
N2_1-C8_1	1.3926(14)	P1_2-C19_2	1.7986(12)
C2_1-C3_1	1.4139(18)	C1_2-C6_2	1.3991(16)
N3_1-C11_1	1.3851(14)	C1_2-C2_2	1.4053(16)
N3_1-C10_1	1.3923(14)	C2_2-C3_2	1.3848(17)
C3_1-C4_1	1.3755(17)	C3_2-C4_2	1.3928(17)
N4_1-C19_1	1.3855(15)	C4_2-C5_2	1.3905(17)
N4_1-C16_1	1.3935(15)	C5_2-C6_2	1.3890(17)
C4_1-C14_1	1.5051(16)	C7_2-C12_2	1.3917(17)
C5_1-C6_1	1.3762(16)	C7_2-C8_2	1.4010(17)
C5_1-C14_1	1.5083(16)	C8_2-C9_2	1.3868(17)
C6_1-C7_1	1.4121(18)	C9_2-C10_2	1.3868(18)
C7_1–C8_1	1.3800(17)	C10_2-C11_2	1.384(2)
C8_1-C24_1	1.5159(16)	C11_2-C12_2	1.3938(18)
C9_1-C10_1	1.5178(16)	C13_2-C14_2	1.3908(18)
C9_1-C26_1	1.5441(16)	C13_2-C18_2	1.3991(18)
C9_1-C27_1	1.5468(17)	C14_2-C15_2	1.3948(17)
C10_1-C13_1	1.3773(16)	C15_2-C16_2	1.385(2)
C11_1-C12_1	1.3739(16)	C16_2-C17_2	1.382(2)
C11_1-C28_1	1.5082(16)	C17_2-C18_2	1.3861(19)
C12_1-C13_1	1.4185(17)	C19_2-C24_2	1.3882(18)
C14_1-C15_1	1.5344(16)	C19_2-C20_2	1.3999(17)
C14_1-C30_1	1.5496(16)	C20_2-C21_2	1.3887(19)
C16_1-C17_1	1.3805(16)	C21_2-C22_2	1.380(2)
C16_1-C24_1	1.5160(16)	C22_2-C23_2	1.383(2)
C17_1–C18_1	1.4203(18)	C23_2-C24_2	1.3928(19)

Atoms	Angle [°]	Atoms	Angle [°]
N2_1-Ga1_1-N1_1	90.87(4)	N4_1-C16_1-C24_1	125.41(10)
N2_1-Ga1_1-N3_1	166.32(4)	C16_1-C17_1-C18_1	107.24(10)
N1_1-Ga1_1-N3_1	87.48(4)	C19_1-C18_1-C17_1	106.83(10)
N2_1-Ga1_1-N4_1	87.00(4)	C18_1-C19_1-N4_1	110.03(10)
N1_1-Ga1_1-N4_1	166.66(4)	C18_1-C19_1-C28_1	129.57(11)
N3_1-Ga1_1-N4_1	91.48(4)	N4_1-C19_1-C28_1	120.23(10)
N2_1-Ga1_1-O1_1	99.73(4)	O1_1-C20_1-C21_1	105.04(10)
N1_1-Ga1_1-O1_1	100.57(4)	C22_1-C21_1-C20_1	103.24(10)
N3_1-Ga1_1-O1_1	93.92(4)	C23_1-C22_1-C21_1	103.46(10)
N4_1-Ga1_1-O1_1	92.76(4)	O1_1-C23_1-C22_1	104.04(9)
C20_1-O1_1-C23_1	110.86(9)	C8_1-C24_1-C16_1	114.64(9)

C20_1–O1_1–Ga1_1	129.65(7)	C8_1-C24_1-C25_1	110.41(10)
C23_1-O1_1-Ga1_1	119.41(7)	C16_1-C24_1-C25_1	110.02(10)
C4_1-N1_1-C1_1	106.57(9)	C8_1-C24_1-C31_1	107.05(10)
C4_1-N1_1-Ga1_1	127.06(8)	C16_1-C24_1-C31_1	107.58(9)
C1_1-N1_1-Ga1_1	125.84(8)	C25_1-C24_1-C31_1	106.76(9)
C2_1-C1_1-N1_1	109.30(11)	C19_1-C28_1-C11_1	110.08(9)
C2_1-C1_1-C9_1	125.75(11)	C19_1-C28_1-C29_1	109.96(10)
N1_1-C1_1-C9_1	124.94(10)	C11_1-C28_1-C29_1	109.87(10)
C5_1-N2_1-C8_1	106.73(9)	C19_1-C28_1-C32_1	109.12(10)
C5_1-N2_1-Ga1_1	127.04(8)	C11_1-C28_1-C32_1	109.80(10)
C8_1-N2_1-Ga1_1	125.92(8)	C29_1-C28_1-C32_1	107.97(10)
C1_1-C2_1-C3_1	107.35(11)	C7_2-P1_2-C13_2	110.07(6)
C11_1-N3_1-C10_1	106.75(9)	C7_2-P1_2-C1_2	106.00(5)
C11_1-N3_1-Ga1_1	127.16(8)	C13_2-P1_2-C1_2	112.09(6)
C10_1-N3_1-Ga1_1	124.52(8)	C7_2-P1_2-C19_2	110.26(6)
C4_1-C3_1-C2_1	106.97(11)	C13_2-P1_2-C19_2	106.39(6)
 C16_1–N4_1–Ga1_1	121.67(8)	C1_2_P1_2_C19_2	112.08(6)
C3_1-C4_1-N1_1	109.79(11)	C6_2-C1_2-C2_2	120.61(11)
C3 1–C4 1–C14 1	128.17(11)	C6 2-C1 2-P1 2	122.36(9)
N1_1-C4_1-C14_1	121.35(10)	C2_2-C1_2-P1_2	116.95(9)
C6 1-C5 1-N2 1	109.73(10)	C3 2-C2 2-C1 2	119.46(11)
C6_1-C5_1-C14_1	128.06(11)	C2_2-C3_2-C4_2	119.84(11)
N2 1-C5 1-C14 1	121.85(10)	C5 2-C4 2-C3 2	120.78(11)
C5_1-C6_1-C7_1	107.02(11)	C6_2-C5_2-C4_2	120.06(11)
C8_1-C7_1-C6_1	107.48(11)	C5_2-C6_2-C1_2	119.25(11)
C7_1-C8_1-N2_1	109.03(10)	C12_2-C7_2-C8_2	120.37(11)
C7_1-C8_1-C24_1	125.27(11)	C12_2-C7_2-P1_2	122.17(10)
N2_1-C8_1-C24_1	125.69(10)	C8_2-C7_2-P1_2	117.44(9)
C1_1-C9_1-C10_1	113.55(9)	C9_2-C8_2-C7_2	119.81(11)
C1_1-C9_1-C26_1	107.90(10)	C10_2-C9_2-C8_2	119.67(12)
C10_1-C9_1-C26_1	107.81(10)	C11_2-C10_2-C9_2	120.73(12)
C1_1-C9_1-C27_1	109.75(10)	C10_2-C11_2-C12_2	120.20(12)
C10_1-C9_1-C27_1	110.90(10)	C7_2-C12_2-C11_2	119.23(12)
C26_1-C9_1-C27_1	106.63(10)	C14_2-C13_2-C18_2	120.27(12)
C13_1-C10_1-N3_1	109.06(10)	C14_2-C13_2-P1_2	120.60(9)
C13_1-C10_1-C9_1	125.62(10)	C18_2-C13_2-P1_2	119.04(10)
N3_1-C10_1-C9_1	125.31(10)	C13_2-C14_2-C15_2	119.55(12)
C12_1-C11_1-N3_1	109.91(10)	C16_2-C15_2-C14_2	120.02(13)
C12_1-C11_1-C28_1	128.85(11)	C17_2-C16_2-C15_2	120.30(12)
N3_1-C11_1-C28_1	121.18(10)	C16_2-C17_2-C18_2	120.49(13)
C11_1-C12_1-C13_1	106.77(10)	C17_2-C18_2-C13_2	119.36(13)
C10_1-C13_1-C12_1	107.50(10)	C24_2-C19_2-C20_2	120.14(12)
C4_1-C14_1-C5_1	112.36(9)	C24_2-C19_2-P1_2	121.38(10)
C4_1-C14_1-C15_1	109.74(10)	C20_2-C19_2-P1_2	118.46(10)
C5_1-C14_1-C15_1	109.60(10)	C21_2-C20_2-C19_2	119.80(12)
C4_1-C14_1-C30_1	107.97(10)	C22_2-C21_2-C20_2	119.92(12)
C5_1-C14_1-C30_1	109.03(10)	C21_2-C22_2-C23_2	120.40(12)
C15_1-C14_1-C30_1	108.03(9)	C22_2-C23_2-C24_2	120.45(13)
C17_1-C16_1-N4_1	109.29(10)	C19_2-C24_2-C23_2	119.28(12)
C17_1-C16_1-C24 1	125.16(11)		

S8. Computational details and results

All quantum chemical calculations were carried out with Orca 5.0.1⁵⁻⁶ making use of the computational resources of the bwForClusters JUSTUS2 at Ulm University within the Baden-Württemberg High Performance Computing program (bwHPC). Ball and stick representations and isodensity surfaces were rendered with Chemcraft 1.8²⁷. xyz Coordinates and computed energies are given in Chapter S11.

General remarks

Conformational spaces, especially of structures of the ethyl version of the ligand, were initially explored with the conformer-rotamer ensemble sampling tool (<u>CREST</u>)²⁸ for the xtb program package²⁹ using the following command line input. The lowest-energy conformer was then reoptimized as described below.

crest [file_name].xyz --alpb CH2Cl2 --chrg [charge] --noreftopo > [file_name].out

<u>Structure optimizations</u> on the Kohn-Sham DFT level were done with the r²SCAN-3c composite method.³⁰ The RIJCOSX Fockmatrix formation algorithm was used along with the respective automatically generated auxiliary basis sets (AutoAux)³¹. The RIJCOSX scheme combines the chain of spheres exchange approximation (COSX)³² for the computation of the exchange matrix with the split-RI-J algorithm³³ for the calculation of the Coulomb matrix. All equilibrium structures were confirmed to possess only positive Hessian matrix eigenvalues by analytic frequency calculations. The following Orca keyword line was used.

! r2SCAN-3c RIJCOSX AutoAux VeryTightSCF Opt Freq

Transition structures were optimized toward a single negative Hessian matrix eigenvalue using the OptTS keyword. It was ensured that the correct first-order saddle point on the potential energy surface was located by animation of the imaginary frequency in Chemcraft and by following the intrinsic reaction coordinate (IRC) by invoking the IRC keyword. ToIRMSG was set to 3e-5 a.u. and ToIMaxG to 1e-4 a.u..

<u>Structural constraints</u> (for the structural optimization of [Me1]⁻ with a tetrahedral configuration around gallium) were introduced with the Constraints option inside the %geom block.

<u>Final single point energies</u> were calculated with the RI-DSD-PBEP86/2013 spin-component-scaled double hybrid functional³⁴⁻³⁵, including the D3(BJ) correction³⁶⁻³⁷. The def2-QZVPP set of basis functions was used.³⁸ Again, the RIJCOSX combined with the AutoAux keywords were included. The VeryTightSCF convergence settings were kept, and the integration grid was changed to DefGrid3. The keyword line was:

! RI-DSD-PBEP86/2013 D3BJ def2-QZVPP RIJCOSX AutoAux DefGrid3 VeryTightSCF

<u>Enthalpies and Gibbs free energies</u> at 298.15 K and 1 atm were calculated with the electronic energies from the double hybrid functional calculations combined with the corrections to enthalpies and Gibbs free energies³⁹, respectively, from the frequency calculations.

Finally, <u>solvent influences</u> were included implicitly at T = 298.15 K with the conductor like screening model for real solvents $(COSMO-RS)^{40-42}$ as it is implemented⁴³ in the Amsterdam Modeling suite (ADF 2019.304)⁴⁴. The ADF-preset parameters were used, except for the maximum number of iterations, which were set to zero. COSMO-RS corrections for enthalpies were achieved by calculating Δ G-corrections at five different temperatures (278.15, 288.15, 298.15, 308.15, 318.15 K) and with help of Δ G = Δ H – T Δ S.

<u>Natural population analysis</u> were done on the PBE0/def2-TZVPP level of theory interfacing Orca 5.0.1 with the NBO6 program.⁴⁵ To get the molecular orbitals within a natural atomic orbital basis, the NAOMO keyword was included inside the <code>%nbo</code> block.

```
! PBE0 def2-TZVPP NoRI VeryTightSCF DefGrid3 NBO %nbo
```

```
NBOKEYLIST = "$NBO NAOMO $END"
end
```

Assessment of structural strain

Figure S8. Energetic characteristics for A) the deformation of tetrapyrrolato gallate ([Ga(pyrrolato)₄]⁻ toward square planarity, and of B) [^{Me}1]⁻ toward a tetrahedral arrangement around the gallium center. The calculations were done on the RI-DSD-PBEP86/2013-D3(BJ)/def2-QZVPP//r²SCAN-3c level of theory. All numbers are given in kJ mol⁻¹.

Fluoride ion affinities

Fluoride ion affinities (FIA, Δ_r H values) were calculated as described in the literature using the fluorotrimethylsilane anchoring system.⁴⁶ The anchoring enthalpy (952.5 kJ mol⁻¹, reaction enthalpy for the dissociation of fluorotrimethylsilane into the trimethylsilyl cation and the fluoride anion) was taken from the cited paper. To account for the solvation influences (CH₂Cl₂), the COSMO-RS scheme was used as described above for the fluoride adduct formation reaction of the molecule under investigation. The COSMO-RS correction to the enthalpy of the fluoride ion was calculated explicitly to -341.75 kJ mol⁻¹.

	FIAgasphase	FIA _{solution}
[^{Me} 1] ⁻	80.1	149.0
[^{Et} 1] ⁻	90.8	131.8
[^{Me} 1(AI)]⁻	129.5	196.4
[H- ^{Me} 1*]	383.9	190.7
[Ga(pyrrolato)₄]⁻	-41.4	57.7
Ph₃SiF	263.2	85.1

Table S10. Calculated gas and solution (CH₂Cl₂) phase fluoride ion affinities (FIA). The calculations were done on the RI-DSD-PBEP86/2013-D3(BJ)/def2-QZVPP//r²SCAN-3c, COSMO-RS(CH₂Cl₂) level of theory. All numbers are given in kJ mol⁻¹.

Reactivity with CO2

The addition reaction of CO_2 to $[Me1]^-$ was studied by quantum chemical calculations. In the case of the analogous aluminum compound ($[Me1(AI)]^-$), a transition state accounting for the entrance of CO_2 into the coordination sphere of AI and the subsequent intermediate in which CO_2 is coordinating to AI was located.⁴⁷ Such structures are not accessible for $[Me1]^-$. Structural optimization of the coordination intermediate resulted in constant dissociation of the two reactants. This was also found with various other DFT methods than the one described above (r²SCAN-3c). The inclusion of the SMD model for dichloromethane did not change this outcome either.

The transition states for the C-C bond formation/cleavage and the gallium-ligand cooperative addition products were readily located for [Me1]⁻ and [Et1]⁻. The conformational space of [Et1*-CO₂]⁻ was analyzed by CREST (see above for details) and the lowest-energy

conformer was reoptimized with the r^2 SCAN-3c method. The ethyl group conformations as found for $[^{Et}1^*-CO_2]^-$ were kept for the transition structure optimization.

Following the IRC in the C-C cleavage direction with the [Me1]⁻ system also suggested the above-described non-existence of the coordination intermediate.

Table S11. Activation energies / enthalpies / Gibbs free energies in the gas phase and in solution (CH_2Cl_2) for the C-C bond formation/cleavage transition state for the element ligand cooperative addition of CO₂ (top part) and the respective reaction energies / enthalpies / Gibbs free energies. The calculations were done on the RI-DSD-PBEP86/2013-D3(BJ)/def2-QZVPP//r²SCAN-3c, COSMO-RS(CH₂Cl₂) level of theory. All numbers are given in kJ mol⁻¹.

$[^{R}1]^{-}$ or $[^{Me}1(AI)]^{-}$ + CO ₂ \rightarrow C-C bond formation/cleavage transition state						
	$\mathbf{\Delta E^{\ddagger}_{gasphase}}$	$\Delta H^{\ddagger}_{gasphase}$	$\Delta G^{\ddagger}_{gasphase}$	$\Delta H^{\ddagger}_{solution}$	$\Delta G^{\ddagger}_{solution}$	
[^{Me} 1] ⁻	30.6	31.6	79.8	50.7	90.3	
[^{Et} 1] ⁻	30.5	30.0	79.7	51.6	92.5	
[^{Me} 1(AI)]⁻	20.8	20.9	68.8	35.6	76.2	
	$[^{R}1]^{-}$ or $[^{Me}1(AI)]^{-}$ + $CO_2 \rightarrow [^{R}1^*-CO_2]^{-}$ or $[^{Me}1(AI)^*-CO_2]^{-}$					
	$\Delta_r E_{gasphase}$	$\Delta_r H_{gasphase}$	$\Delta_r G_{gasphase}$	$\Delta_r H_{solution}$	$\Delta_r G_{solution}$	
[^{Me} 1] ⁻	-39.2	-34.1	20.1	-46.0	5.9	
[^{Et} 1]⁻	-32.7	-28.7	25.9	-33.8	17.8	
[^{Me} 1(AI)]⁻	-68.2	-62.9	-8.7	-74.9	-23.1	

Reactivity after protonation

The reactivity of [Me1]⁻ after protonation (to give [H-Me1*]) was studied (Figure S9). An energetically low-lying transition state (**TS-1**) accounting for the cleavage of the exopyrrolic C-C bond originating from the proton-bearing carbon atom was found. The subsequently obtained intermediate (**Int-1**) is essentially Gibbs free isoenergetic with [H-Me1*].

Figure S9. Reactivity of [H-^{Me}1*] as suggested by calculations on the RI-DSD-PBEP86/2013-D3(BJ)/def2-QZVPP//r²SCAN-3c, COSMO-RS(CH₂Cl₂) level of theory. All numbers are given in kJ mol⁻¹. The scaled displacement vectors illustrating the single imaginary mode of **TS-1** are shown in red.

The obtained results were then compared to calculations which included THF donor molecules explicitly coordinating to the gallium center (Figure S10). THF coordinating *syn* to the dearomatization-inducing proton was found energetically more favorable than *anti* coordination. The association of a second THF donor was calculated endergonic by 18 kJ mol⁻¹. The transition state searches for the C-C bond cleavage based on [H-^{Me}1*-thf]_{syn} and [H-^{Me}1*-(thf)₂] as preceding intermediates remained unsuccessful. The transition structure optimizations did not converge. Only with THF coordinating *anti* to the proton resulted in a successful optimization (**TS-2**). Comparing [H-^{Me}1*-thf]_{syn} and **TS-2** gives a Gibbs free energy difference of 131 kJ mol⁻¹.

Figure S10. Reactivity of [H-^{Me}1*] in the presence of THF as donor as suggested by calculations on the RI-DSD-PBEP86/2013-D3(BJ)/def2-QZVPP//r²SCAN-3c, COSMO-RS(CH₂Cl₂) level of theory. All numbers are given in kJ mol⁻¹. The scaled displacement vectors illustrating the single imaginary mode of **TS-2** are shown in red.

S9. NMR spectra

Figure S11. ¹H NMR spectrum (600.2 MHz, CD₂Cl₂, 295 K) of [PPh₄][^{Me}1]. The signal of CHDCl₂ and of residual CH₂Cl₂ is marked with a red asterisk.

Figure S12. ${}^{13}C{}^{1}H$ NMR spectrum (150.9 MHz, CD₂Cl₂, 295 K) of [PPh₄][^{Me}1]. The signal of CD₂Cl₂ is marked with a red asterisk.

Figure S13. ³¹P{¹H} NMR spectrum (161.9 MHz, CD₂Cl₂, 295 K) of [PPh₄][^{Me}1].

Figure S14. ¹H NMR spectrum (600.2 MHz, CD₂Cl₂, 295 K) of [PPh₄][^{Et}1]. The signal of CHDCl₂ is marked with a red asterisk.

Figure S15. ¹³C{¹H} NMR spectrum (150.9 MHz, CD₂Cl₂, 295 K) of [PPh₄][^{Et}1]. The signal of CD₂Cl₂ is marked with a red asterisk.

Figure S16. ³¹P{¹H} NMR spectrum (243.0 MHz, CD₂Cl₂, 295 K) of [PPh₄][^{Et}1].

Figure S17. ¹H NMR spectrum (600.2 MHz, CD₃CN, 295 K) of ["Bu₄N][PPh₄][^{Me}1-F]. The signal of CHD₂CN is marked with a red asterisk. The small singlet at 5.47 corresponds to a slight residual amount of CH₂Cl₂.

Figure S18. ¹³C{¹H} NMR spectrum (150.9 MHz, CD₃CN, 295 K) of [ⁿBu₄N][PPh₄][^{Me}1-F]. The signals of CD₃CN are marked with red asterisks.

Figure S19. ¹⁹F NMR spectrum (376.3 MHz, CD₃CN, 295 K) of [^{*n*}Bu₄N][PPh₄][^{Me}1-F].

Figure S20. ¹H NMR spectrum (600.2 MHz, CD₂Cl₂, 295 K) of [PPh₄][^{Me}1] in the presence of CO₂ (5 bar). One well visible signal of free [^{Me}1]⁻ is marked with a green square. The ratio between [^{Me}1]⁻ and [^{Me}1*-CO₂]⁻ was determined to 1:24 using this resonance. The signal of CHDCl₂ and residual CH₂Cl₂ is marked with a red asterisk.

Figure S21. ¹³C{¹H} NMR spectrum (150.9 MHz, CD₂Cl₂, 295 K) of [PPh₄][^{Me}1] in the presence of CO₂ (5 bar). The signal of CD₂Cl₂ is marked with a red asterisk, that of free CO₂ with an orange square.

Figure S22. ¹H NMR spectrum (600.2 MHz, CD₂Cl₂, 295 K) of [PPh₄][^{Et}1] in the presence of CO₂ (5 bar). The signals of free [^{Et}1]⁻ are marked with green squares. The ratio between [^{Et}1]⁻ and [^{Et}1*-CO₂]⁻ was determined to 2:1 using the resonances of the β-protons of the pyrrole rings. The signal of CHDCl₂ is marked with a red asterisk.

Figure S23. ¹H NMR spectrum (600.2 MHz, THF-d₈, 295 K) of [PPh₄][^{Me}1] in the presence of HNTf₂ (one equivalent). The signal of CH₂Cl₂, which is contained in [PPh₄][^{Me}1], is marked with a green square, those of THF-d₇ with red asterisks.

Figure S24. ¹³C¹H} NMR spectrum (150.9 MHz, THF-d₈, 295 K) of [PPh₄][^{Me}1] in the presence of HNTf₂ (one equivalent). The signal of CH₂Cl₂, which is contained in [PPh₄][^{Me}1], is marked with a green square, those of THF-d₈ with red asterisks.

Figure S25. ¹H, ¹H COSY NMR spectrum (600.2 MHz, THF-d₈, 295 K) of [PPh₄][^{Me}1] in the presence of HNTf₂ (one equivalent). The signal of CH₂Cl₂, which is contained in [PPh₄][^{Me}1], is marked with a green square, those of THF-d₇ with red asterisks.

Figure S26. ¹H NMR spectrum (600.2 MHz, CD₂Cl₂ / Et₂O (2:1 %vol), 295 K) of [PPh₄][^{Me}1] in the presence of HNTf₂ (0.9 equivalents). The signals of unreacted [^{Me}1]⁻ are marked with green squares. Due to the donor properties of Et₂O, the methyl groups of [^{Me}1]⁻ resonate at the same frequency. The signal of CHDCl₂ and residual CH₂Cl₂ is marked with a red asterisk, those of diethyl ether with orange triangles. The spectrum was calibrated on the signal of CHDCl₂ (5.32 ppm).

Figure S27. ¹³C{¹H} NMR spectrum (150.9 MHz, CD₂Cl₂ / Et₂O (2:1 %vol), 295 K) of [PPh₄][^{Me}1] in the presence of HNTf₂ (0.9 equivalents). The signals of unreacted [^{Me}1]⁻ are marked with green squares. The signal of CD₂Cl₂ is marked with a red asterisk, those of diethyl ether with an orange triangle. The spectrum was calibrated on the signal of CD₂Cl₂ (53.84 ppm).

Figure S28. ¹H NMR spectrum (600.2 MHz, CD₂Cl₂, 295 K) of [HH-^{Me}1**-OⁱPr]. The signal of CHDCl₂ is marked with a red asterisk. The small signals at 7.66, 6.95, 6.16, 5.19, 3.30, 1.71, 1.70, 1.69, and 0.64 ppm of an additional specie are ascribed to a constitutional isomer of the shown compound in which the two dearomatization-inducing protons are convertible into each other by means of a mirror plane. Its amount is estimated to approximately 8% relative to the main isomer.

Figure S29. ¹³C{¹H} NMR spectrum (150.9 MHz, CD₂Cl₂, 295 K) of [HH-^{Me}1**-OⁱPr]. The signal of CD₂Cl₂ is marked with a red asterisk.

Figure S30. ¹H, ¹H COSY NMR spectrum (600.2 MHz, CD₂Cl₂, 295 K) of [HH-Me1**-O'Pr]. The signal of CHDCl₂ is marked with a red asterisk.

Figure S31. ¹H, ¹H NOESY NMR spectrum (600.2 MHz, CD₂Cl₂, 295 K) of [HH-^{Me}1^{**}-OⁱPr]. The signal of CHDCl₂ is marked with a red asterisk.

S10. IR spectra

Figure S32. Solid state FT-ATR-IR spectrum of, [PPh4][Me1]. The spectrum was acquired at room temperature.

Figure S33. Solid state FT-ATR-IR spectrum of, [PPh4][Et1]. The spectrum was acquired at room temperature.

S11. Xyz coordinates and energies from DFT calculations

[^{Me}1(AI)]^{_}

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH_2CI_2 , enthalpy): COSMO-RS correction (CH_2CI_2 , Gibbs free energy): 1492.6775 kJ/mol 218.5914 kJ/mol -4058925.9228 kJ/mol -4057430.7663 kJ/mol -4057649.3577 kJ/mol -218.67 kJ/mol -202.68 kJ/mol

	abarra, 1 m	aultiplicity 1	
xyz,	charge1, h		0.040400
N	-0.138209	-2.216123	0.210180
С	-0.767462	-3.242779	0.893120
С	0.388090	-2.757013	-0.950417
С	-0.646370	-4.412331	0.173399
Ĥ	-1 048990	-5 378744	0 444614
Ċ	0 101364	-4 104644	_0 0078/5
ц	0.101304	4 707605	1 77/7/0
	0.394290	-4.797005	-1.774749
N O	-0.104342	-0.947039	2.590129
C	0.452540	-0.290646	3.674230
С	-0.739512	-2.076806	3.075875
С	0.179376	-0.997069	4.826108
С	-0.591616	-2.131227	4.445474
Н	-0.991214	-2.889168	5.105397
Ν	0.101322	1.424022	1.322255
С	-0.336557	2 529515	0.613355
Ĉ	0 640786	1 885344	2 510679
č	0.040700	3 670706	1 3///87
ц	-0.004091	1 694744	1.044407
П	-0.327303	4.004744	1.056074
C	0.550195	3.260398	2.550531
н	0.900700	3.904963	3.345077
Ν	0.068704	0.155001	-1.057089
С	0.577546	-0.580661	-2.113582
С	-0.364877	1.365222	-1.570784
С	0.472545	0.154211	-3.275243
н	0.799387	-0.150038	-4.260222
C	-0 139712	1 391850	-2 930623
й	-0 387038	2 198044	-3 607702
ц	0.506213	2,130044	3 703080
C .	1 4 5 9 9 9 0	2.031303	2 109070
č	1.400000	-2.044770	-3.190970
C	2.624039	-1.686385	-1.214915
C	1.236764	-1.915537	-1.870648
н	3.11/602	-2.646006	-1.021380
Н	1.958959	-3.603332	-3.026171
Н	2.526549	-1.165189	-0.255226
Н	-2.676431	-1.290126	1.274873
С	-2.868999	-2.240655	1.786474
С	-1.902085	-4.270969	2.860741
С	-1.543972	-2.959875	2.154835
H	-0.998227	-4.817282	3 147104
н	-3 465760	-2 864394	1 110670
н	-2 502775	_4 905440	2 200941
н	2 562963	-0.001283	1 920480
C	2.002000	0 502200	2 996500
č	2.002132	1 600404	2.000009
Č	1.507094	1.028491	4.810063
C	1.310484	0.933058	3.470062
н	2.077911	0.947676	5.499345
Н	3.183054	-0.196872	3.565733
Н	0.627452	1.951731	5.267137
С	-1.077782	2.360840	-0.689738
С	-2.512621	1.847767	-0.397454
С	-1.198854	3.708889	-1.406646
Н	-3.068683	1.716912	-1.333270
H	-1.759766	3.592912	-2.339774
н	-2 491948	0 877279	0 112512
н	-0 200031	4 11573/	-1 638040
Ц	-3.044211	2 552215	0.252012
п	-0.044211	4 406044	0.20012
	-1.100209	4.420041	1 962965
н	3.200105	-1.008982	-1.003005
Н	2.095671	-2.046253	-3.858595

Н	-2.490275	-4.067883	3.761697
н	-3.446563	-2.018225	2.691310
н	2.207772	2.504669	4.664295
Н	3.319412	1.381016	2.725005
н	0.496046	-0.740302	5.827837
AI	-0.016213	-0.396149	0.766926

[^{Me}1]^{_}

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy): COSMO-RS correction (MeCN, Gibbs free energy): 1490.2337 kJ/mol 222.5634 kJ/mol -8474889.7485 kJ/mol -8473397.0358 kJ/mol -8473619.5992 kJ/mol -217.23 kJ/mol -201.56 kJ/mol -206.20 kJ/mol

V/17	oborgo: 1 n	aultiplicity: 1	
xyz,	charge1, I		0 405005
N	-0.141494	-2.261592	0.195305
С	-0.738193	-3.286689	0.902939
С	0.351656	-2.783719	-0.984628
С	-0 628291	-4 453412	0 173479
й	1 010740	5 425584	0.453412
	-1.010740	-0.420004	0.400412
C	0.073489	-4.135267	-1.023269
Н	0.344220	-4.825797	-1.810412
Ν	-0.105155	-0.960354	2.636057
С	0.419415	-0.277535	3.715852
č	0.709616	2 110276	2 105070
č	-0.706010	-2.110270	3.100070
C	0.155248	-0.994050	4.865/9/
С	-0.570612	-2.155564	4.478662
Н	-0.949971	-2.924384	5.138049
Ν	0.106963	1.470982	1.336285
Ċ	_0 207072	2 560035	0.60/132
č	-0.231312	2.000000	0.004102
C	0.609623	1.918072	2.542197
С	-0.057305	3.710128	1.344124
Н	-0.279634	4.726855	1.049885
С	0.528830	3.296420	2.573355
Ĥ	0.856581	3 942033	3 376797
N	0.000001	0.160751	1 102702
N O	0.074212	0.109/51	-1.103763
C	0.546663	-0.587471	-2.157738
С	-0.325598	1.395166	-1.599878
С	0.452230	0.156053	-3.316973
Ĥ	0 756234	-0 154873	-4 307228
Ċ	0.111605	1 /1/172	2.062455
	-0.111005	1.414173	-2.903455
н	-0.337484	2.228077	-3.638919
Н	0.407821	-2.841270	-3.741908
С	1.371767	-2.666216	-3.254322
С	2.586569	-1.726755	-1.291008
Č	1 183168	-1 937063	-1 920007
ŭ	2 071022	2 602605	1 112560
	3.07 1033	-2.093095	-1.113309
н	1.864539	-3.630330	-3.092817
Н	2.513896	-1.209557	-0.327253
Н	-2.666928	-1.362877	1.309274
С	-2.838079	-2.314357	1.825896
Ċ	-1 822361	-4 326995	2 890063
č	1 /05296	2 000020	2.000000
	-1.495560	-3.009030	2.100493
н	-0.905858	-4.856753	3.167462
Н	-3.430775	-2.952101	1.159665
Н	-2.417940	-4.972187	2.236340
н	2,553799	0.043088	1,993397
C	2 648086	0 547759	2 961923
č	2.040000	1 660101	4 960070
Č	1.401000	1.003131	4.000970
C	1.258594	0.963072	3.516480
Н	1.985570	0.988791	5.560863
Н	3.140686	-0.146615	3.652667
н	0.529120	1,976756	5 299229
Ċ	_1 010814	2 /02/5/	-0 712858
č	-1.013014	4 040050	0.112000
C	-2.405944	1.912059	-0.433371
С	-1.113489	3.752536	-1.431063
Н	-3.014597	1.789973	-1.374712

Н	-1.667444	3.644963	-2.369163
Н	-2.463345	0.942218	0.077582
Н	-0.116404	4.144577	-1.654178
Н	-2.991753	2.626446	0.210913
Н	-1.644966	4.477801	-0.806557
Н	3.211885	-1.114533	-1.951316
Н	2.002806	-2.073412	-3.924256
Н	-2.405294	-4.134415	3.796494
Н	-3.408549	-2.101116	2.737408
Н	2.115074	2.545668	4.726652
Н	3.277992	1.433081	2.816079
Н	0.450566	-0.727659	5.871588
Ga	-0.013878	-0.395363	0.766606

[Me1]- (tetrahedral configuration around gallium)

Final single point energy:

-8474308.9351 kJ/mol

Ga -0.307682 -0.217675 0.701340 N -1.449020 -1.530017 0.027451 N 0.821547 -0.973996 1.977396 N 0.711688 0.490224 -0.690632 N -1.315620 1.140128 1.486998	6
N -1.449020 -1.530017 0.027451 N 0.821547 -0.973996 1.977396 N 0.711688 0.490224 -0.690632 N -1.315620 1.140128 1.486998 O -1.69275 0.700000 7.500000	
N 0.821547 -0.973996 1.977396 N 0.711688 0.490224 -0.690632 N -1.315620 1.140128 1.486998 O -4.649675 0.700000 0.750000	
N 0.711688 0.490224 -0.690632 N -1.315620 1.140128 1.486998	
N -1.315620 1.140128 1.486998	
C -1.0180/5 -2./02809 0./56942	
C -1.112135 -1.958964 -1.302766	
C -1.875777 -3.741172 -0.120894	
H -2.115907 -4.763258 0.138178	
H -1.499108 -3.887262 -2.301410	
C = 1.003044 - 0.237040 - 3.141007 C = 0.400126 - 2.274266 - 2.421542	
C = 0.400120 - 2.274300 - 2.421342 C = 1.307764 - 1.151128 - 4.173827	
C = 0.893328 = 2.425045 = 3.710877	
H 0 774560 -3 297556 4 339500	
C -1.511766 2.319827 0.775585	
C -0.819992 1.552759 2.771681	
C -1.629047 3.367266 1.672301	
H -1.851783 4.398923 1.436684	
C -1.209126 2.875873 2.933779	
H -1.015642 3.495477 3.799402	
C 0.818732 -0.232922 -1.874384	
C 0.302481 1.808926 -1.089902	
C 0.972585 0.653474 -2.926042	
H 1.146145 0.402694 -3.963550	
C 0.663684 1.942625 -2.424063	
H 0.51/54/ 2.821130 -3.038406	
H -0.418667 -1.534439 -3.980658	
C = 1.320947 - 2.302090 - 1.174933 C = 0.334625 - 1.668447 - 1.038372	
H = 1.0504023 - 1.000447 - 1.930372	
H 0.078197 -3.169134 -3.493102	
H 1.366302 -2.356894 -0.105711	
H -1.983367 -0.896462 2.874811	
C -2.004683 -1.962627 3.116638	
C -1.178148 -4.267284 2.621377	
C -1.097619 -2.800405 2.177450	
H -0.501631 -4.893437 2.032858	
H -3.040650 -2.305273 3.002370	
H -2.202044 -4.636632 2.496877	
H 1.537055 1.840989 1.316178	
C 1.618817 2.068174 2.382813	
C 0.830920 1.635029 4.712831	
$U_{10071702} = 1.197010 = 3.250219$	
Π 1.000044 1.440000 0.049070	
H 0.135820 1.007414 2.003000	
C -1 138670 2 396631 -0 692102	
C -2 172954 1 599405 -1 529967	
C -1.203823 3.866237 -1.129509	
H -1.977021 1.712399 -2.600584	

н	-1.047550	3.955931	-2.207061
Н	-2.160620	0.530028	-1.302188
Н	-0.446968	4.463542	-0.613266
Н	-3.177424	1.974677	-1.297924
Н	-2.194313	4.276596	-0.903989
Н	2.335771	-2.424578	-1.581006
Н	1.307245	-1.955415	-3.854044
Н	-0.918678	-4.367088	3.678049
Н	-1.693821	-2.073274	4.159903
Н	0.647532	2.707021	4.816691
Н	1.398015	3.131876	2.513258
н	1.600190	-0.909641	5.186560

<u>CO2</u>

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH_2CI_2 , enthalpy): COSMO-RS correction (CH_2CI_2 , Gibbs free energy): 37.574 kJ/mol 63.7135 kJ/mol -494668.7862 kJ/mol -494628.7332 kJ/mol -494692.4467 kJ/mol -10.78 kJ/mol -4.79 kJ/mol

xyz, charge: 0, multiplicity: 1

С	0.000000	-0.000000	-0.000000
0	-0.000000	0.000000	1.163425
0	-0.000000	0.000000	-1.163425

[Me1(AI)*-CO2]_

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH_2CI_2 , enthalpy): COSMO-RS correction (CH_2CI_2 , Gibbs free energy): 1538.0601 kJ/mol 228.1614 kJ/mol -4553662.9081 kJ/mol -4552122.369 kJ/mol -4552350.5304 kJ/mol -241.45 kJ/mol -221.84 kJ/mol

xyz, charge: -1, multiplicity: 1

· <i>y</i> –,	undige. I, I	nanapitony. I	
N	1.027226	-1.301385	0.944647
С	1.812849	-1.498191	3.215071
С	1.838531	-2.529802	4.346359
Н	2.388766	-3.425594	4.035700
Н	0.825394	-2.817527	4.644340
Н	2.343865	-2.111357	5.221285
С	3.267297	-1.101635	2.865195
Н	3.848778	-1.974790	2.541577
Н	3.740163	-0.661302	3.748770
Н	3.286888	-0.361292	2.060578
Ν	0.593920	0.670042	2.684922
С	-0.052100	1.664577	3.395680
С	1.001082	-0.278339	3.607045
С	-0.049086	1.348317	4.743316
Н	-0.486009	1.929832	5.542779
С	0.621682	0.108636	4.878636
Н	0.809358	-0.425899	5.800126
С	-0.742379	2.827668	2.711292
С	-2.116636	2.368108	2.157862
Н	-2.735028	1.978608	2.975972
Н	-2.013964	1.585043	1.404509
Н	-2.627893	3.220389	1.694615
С	-1.015624	3.931774	3.743129
Н	-1.529252	4.772392	3.266164
Н	-0.084984	4.294361	4.190419
Н	-1.667586	3.553952	4.537275
Ν	0.809946	2.563287	0.725874
С	1.515761	3.382765	-0.135562
С	0.120158	3.384736	1.601615
С	1.254595	4.703279	0.171423
Н	1.672280	5.573240	-0.316617
С	0.361842	4.704379	1.274683

Н	-0.040489	5.575736	1.772626
С	2.584585	2.828494	-1.049108
С	2.941645	3.859978	-2.124922
Н	3.298664	4.783716	-1.659617
н	2.070876	4.096764	-2.744233
н	3.740457	3.476489	-2.768912
С	3.856820	2.563058	-0.199409
Н	4.653354	2.139199	-0.823689
Н	3.638595	1.853906	0.605607
Н	4.204371	3.496749	0.257891
Ν	1.733597	0.468502	-0.933662
С	1.491933	-0.582311	-1.817820
С	2.164313	1.534177	-1.696718
С	1.768715	-0.168470	-3.106999
Н	1.680798	-0.761873	-4.006985
С	2.206546	1.175800	-3.030106
н	2.504690	1.803077	-3.858530
С	1.153022	-1.997612	-1.397330
С	0.403373	-2.732565	-2.515306
н	1.040550	-2.787452	-3.402671
н	-0.526419	-2.225209	-2.778273
н	0.168764	-3.759187	-2.213826
С	2.464352	-2.760161	-1.105138
Н	3.064557	-2.777336	-2.019901
Н	2.270848	-3.793145	-0.789473
Н	3.050181	-2.255035	-0.332541
С	1.162130	-2.064032	1.982630
С	0.276278	-1.984576	-0.083002
С	0.531388	-3.358972	1.752056
Н	0.479937	-4.171214	2.465231
С	-0.021186	-3.311701	0.520915
Н	-0.612919	-4.075893	0.034807
AI	0.736874	0.664178	0.732350
0	-0.913718	0.103904	0.070459
С	-1.030983	-1.122003	-0.330227
0	-1.997111	-1.637173	-0.859611

[Me1*-CO2]

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH_2CI_2 , enthalpy): COSMO-RS correction (CH_2CI_2 , Gibbs free energy):

xyz, charge: -1, multiplicity: 1 1.051056 -1.350948 0.951458 Ν С 1.750108 -1.535900 3.255557 C 4.383753 1.737938 -2.571474 2.285178 -3.472090 4.082117 0.715021 -2.849628 4.656501 Н н Н 2.227236 -2.162006 5.271874 3.216758 -1.151882 2.943959 3.795818 -2.028954 2.626799 С Н Н 3.673063 -0.724015 3.842315 Н 3.262169 -0.405368 2.146377 2.732556 Ν 0.588797 0.668527 С -0.039259 1.678110 3.431943 C C 0.950536 -0.304930 3.642761 -0.070188 1.346855 4.776825 H C 1.932896 -0.503449 5.575119 0.558201 0.084811 4.911112 Н 0.712182 -0.462331 5.831464 С -0.694555 2.859183 2.739784 С -2.057699 2.415959 2.146435 Н -2.699987 2.023237 2.944134 н -1.942898 1.637243 1.389583 Н -2.550265 3.275556 1.676677 С -0.981450 3.954752 3.776179 н -1.475048 4.805184 3.295443 1535.4599 kJ/mol 232.1462 kJ/mol -8969597.7595 kJ/mol -8968059.8206 kJ/mol -239.96 kJ/mol -220.49 kJ/mol

Н	-0.058093	4.303686	4.248998
Н	-1.654798	3.575391	4.551315
Ν	0.829111	2.616369	0.734465
С	1.535475	3.422174	-0.133385
С	0.186271	3.426742	1.649242
С	1.323956	4.742936	0.215313
Н	1.751551	5.612329	-0.265211
С	0.463674	4.745897	1.344877
Н	0.101281	5.618320	1.870987
С	2.551452	2.853472	-1.100939
С	2.857802	3.886326	-2.191867
Н	3.243040	4.807234	-1.743969
Н	1.956791	4.129806	-2.763392
Н	3.619723	3.500221	-2.877511
С	3.863507	2.581576	-0.316095
Н	4.624938	2.153619	-0.980026
Н	3.684645	1.873339	0.499129
Н	4.237978	3.514376	0.121114
Ν	1.770365	0.465131	-0.966047
С	1.489599	-0.582959	-1.839566
С	2.103301	1.559532	-1.737368
С	1.660326	-0.142944	-3.138817
Н	1.526885	-0.726332	-4.039541
С	2.058095	1.215356	-3.074965
Н	2.280889	1.858036	-3.915318
С	1.216468	-2.007702	-1.400205
С	0.518117	-2.791518	-2.517469
Н	1.162761	-2.814718	-3.401039
Н	-0.439780	-2.343124	-2.786755
Н	0.344524	-3.827916	-2.208569
С	2.556503	-2.705631	-1.081085
Н	3.158023	-2.737700	-1.994933
Н	2.399195	-3.732418	-0.726322
Н	3.122181	-2.151938	-0.327445
С	1.132669	-2.101147	2.003010
С	0.322269	-2.021935	-0.095497
С	0.502647	-3.394125	1.752979
Н	0.413045	-4.202462	2.467054
С	0.005994	-3.351062	0.497485
Н	-0.574861	-4.112125	-0.006220
Ga	0.756979	0.678705	0.738498
0	-0.959580	0.039573	0.039203
C	-1.004056	-1.184626	-0.371070
0	-1.930896	-1.734469	-0.938527

<u>C-C bond formation/cleavage transition structure between CO_2 and [Me1(AI)]⁻</u>

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy): 1532.8285 kJ/mol 234.4021 kJ/mol -4553573.8917 kJ/mol -4552038.5842 kJ/mol -4552272.9863 kJ/mol -214.77 kJ/mol -200.13 kJ/mol

xyz, charge: -1, multiplicity: 1

Al	2.050345	7.999915	12.964976
0	3.191684	7.780519	11.240846
Ν	3.682885	7.537810	13.959969
Ν	0.333842	8.471385	12.240288
Ν	2.557028	9.847652	13.164760
Ν	1.463876	6.154005	13.091634
С	1.713785	10.936340	13.056443
С	-0.506407	7.655677	11.491535
С	1.881039	5.197116	14.004011
С	3.851486	10.327264	13.027744
С	2.812520	5.544902	15.137993
С	-0.309108	9.692814	12.368690
С	3.947876	6.359738	14.587083
С	2.054738	6.371112	16.206433
н	1.652527	7.296623	15.782104
н	2.725036	6.645272	17.030243

Н	1.214006	5.787781	16.597899
С	-1.515311	9.657956	11.703688
Н	-2.238226	10.459456	11.641155
С	4.899695	8.044567	13.492861
С	0.534224	5.533699	12.265602
Ĉ	2 449990	12.082673	12.841839
Ĥ	2 062274	13 085014	12 724116
C	0.392663	4 213075	12 644002
й	-0 254074	3 478988	12 184490
C	3 81128/	11 602/06	12.104400
ŭ	1 664803	12 344601	12.014400
\hat{c}	4.004093	7 100651	12.070939
č	4.230437	2 000791	12 754224
L L	1.240033	3.999701	13.734334
П	1.307031	3.079903	14.309740
Č	-0.156177	6.235187	11.11/829
C	0.234571	10.773239	13.266675
C	-1.63/6/6	8.362987	11.139613
н	-2.467681	7.996979	10.551647
С	5.911168	7.146651	13.848541
Н	6.968811	7.274015	13.653889
С	5.313138	6.083974	14.539832
Н	5.805533	5.206699	14.935650
С	-1.448544	5.472929	10.775559
Н	-2.124001	5.441926	11.635224
н	-1.214357	4.448258	10.470373
н	-1.961564	5.955625	9.938175
С	5.118692	9.519285	13.204976
С	-0.028686	10.381492	14.745237
н	0.458313	9.431856	14.991997
Н	-1.104419	10.261145	14.919026
Н	0.370770	11.147950	15.420389
С	0.719716	6.204766	9.837079
н	0.165521	6.648309	9.001365
н	0.982568	5.169576	9.587820
Н	1.639468	6.774084	9.964569
С	3.342558	4.273615	15.806719
н	2.516885	3.707751	16.249451
н	4.045893	4.533704	16.605500
н	3.851857	3.630568	15.082257
С	-0.485985	12.097872	12.997849
H	-0.096011	12.879534	13.658337
H	-1.557815	11.993226	13,193438
н	-0.349380	12,412994	11,958707
C	5.862394	10.099783	14,443068
Ĥ	6 022639	11 176297	14 323897
н	6 830242	9 604021	14 580322
н	5 259231	9 939481	15 341977
Ċ	6 037332	9 701852	11 977868
й	5 515643	9 44 1702	11 051032
н	6 934154	9 077045	12 061356
н	6 351706	10 7469/1	11 801582
0	5 110087	6 536341	10 843001
-	0.1100007	0.0000-11	10.040001

C-C bond formation/cleavage transition structure between CO₂ and [Me1]⁻

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy): 1531.267 kJ/mol 238.0944 kJ/mol -8969527.9306 kJ/mol -8967994.1847 kJ/mol -8968232.2791 kJ/mol -208.91 kJ/mol -195.80 kJ/mol

xyz, charge: -1, multiplicity: 1 Ga 2.015080 7.964577 12.985070 O 3.225496 7.620702 11.130081 N 3.743350 7.491287 13.931448 N 0.252475 8.464681 12.243857 N 2.591441 9.872700 13.103380 N 1.397829 6.077518 13.154366 C 1.768354 10.933338 12.780196 C -0.648302 7.618683 11.611745

С	1.868093	5.121423	14.036793
С	3.898749	10.287095	12.873584
С	2.962038	5.416137	15.030683
С	-0.339414	9.714769	12.308764
С	4.030734	6.234053	14.362914
С	2.388409	6.215998	16.227676
н	1.931085	7.152191	15.894052
н	3.182355	6.464729	16.942790
н	1.617846	5.621413	16.730578
С	-1.585016	9.664307	11.721111
Н	-2.284876	10.483131	11.628573
С	4.909756	8.030006	13.386310
С	0.362886	5.493956	12.437774
С	2.527974	11.995080	12.335139
н	2.160436	12.961280	12.018239
С	0.191493	4.192559	12.867577
Н	-0.529970	3.481828	12.490055
С	3.883760	11.581324	12.389812
н	4.748210	12.182804	12.142944
С	4.404829	7.759439	11.015068
С	1.146768	3.956260	13.886285
н	1.285133	3.039226	14.442305
С	-0.339151	6.178710	11.290515
С	0.292839	10.858194	13.056809
С	-1.779047	8.333562	11.273811
н	-2.650906	7.951112	10.762062
С	5.919667	7.062214	13.486344
н	6.947116	7.185442	13.169344
С	5.365509	5.928522	14.100815
н	5.866996	4.995305	14.315988
С	-1.650166	5.435655	10.987460
н	-2.319386	5.445427	11.853040
Н	-1.439755	4.397483	10.712977
Н	-2.160202	5.902947	10.139764
С	5.088536	9.536264	13.417371
С	0.079120	10.651219	14.580354
н	0.528670	9.711391	14.916876
н	-0.992823	10.613689	14.806370
н	0.545744	11.467765	15.144777
С	0.528417	6.093215	10.006920
н	-0.010804	6.545816	9.166252
Н	0.748223	5.044190	9.774617
Н	1.473375	6.621745	10.126474
С	3.556923	4.111223	15.570490
Н	2.795898	3.544628	16.115627
Н	4.379163	4.330502	16.260483
Н	3.933860	3.484444	14.756525
С	-0.381176	12.177675	12.665715
Н	0.076569	13.009267	13.211863
Н	-1.445162	12.149126	12.919982
Н	-0.285321	12.363696	11.591449
С	5.228152	9.923267	14.920345
Н	5.384399	11.004236	15.011719
Н	6.074120	9.391772	15.373979
Н	4.316422	9.655918	15.461365
С	6.378719	9.967386	12.709954
Н	6.346714	9.765365	11.637551
Н	7.240718	9.448207	13.141273
Н	6.536770	11.040164	12.854597
0	5.426232	7.848296	10.448626

[Et1*-CO₂]-

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH_2CI_2 , enthalpy): COSMO-RS correction (CH_2CI_2 , Gibbs free energy):

xyz, charge: -1, multiplicity: 1

2159.3781 kJ/mol 288.7068 kJ/mol -9794157.1075 kJ/mol -9791995.2504 kJ/mol -9792283.9572 kJ/mol -225.03 kJ/mol -211.94 kJ/mol

N	-1.715939	0.702610	-0.058000
C	-1.240228	2.816484	1.015391
н	-1.070591	4.209235	1.100540
н	-2.047322	4.622170	0.166408
С	-1.062665	2.121125	2.396341
Н	-2.049535	1.938757	2.842786
Н	-0.625498	1.133753	2.220468
Ν	0.830831	1.789797	-0.007941
C	2.046000	2.209043	-0.506921
C	0.100435	2.91/1/5	0.311493
С Ц	2.072392	3.595913	-0.522640
C	0.838847	4.219002	0.001183
н	0.545967	5.075726	0.157663
С	3.098767	1.262051	-1.058004
С	2.783228	1.062567	-2.579114
Н	2.820062	2.054651	-3.050733
Н	1.748838	0.718036	-2.672908
C	4.490/11	1.930907	-0.935314
H L	4.492847	2.823092	-1.575894
N	1 978214	-0 757072	0.009855
c	2.343707	-1.947411	0.605488
С	3.125387	-0.073759	-0.346892
С	3.726722	-2.028929	0.599473
Н	4.325515	-2.831167	1.009678
С	4.218636	-0.851040	-0.008915
Н	5.259117	-0.606861	-0.174545
c	1.411794	-2.075592	1.339101
н	1.301584	-4.994660	1.790621
H	2.930845	-4.410903	1.514857
С	1.550267	-2.560535	2.884783
Н	2.607182	-2.679674	3.159365
Н	0.970379	-3.312536	3.438710
N	-0.668160	-1.///169	0.319764
c	-2.020779	-2.002582	0.235947
č	-2.261276	-3.263951	0.881349
Ĥ	-3.214290	-3.773449	0.950092
С	-1.021759	-3.736026	1.364726
Н	-0.857651	-4.652905	1.914840
C	-3.058523	-1.313278	-0.584078
С	-3.511434	-2.185898	-1.798452
н	-3.987350	-1.550050	-2.544719
c	-4.324523	-1.101992	0.298665
Ĥ	-4.695500	-2.104231	0.543405
Н	-5.104728	-0.631475	-0.318021
С	-2.084351	1.930578	0.134964
C	-2.532683	0.084925	-1.081010
С Ц	-3.2000/3	2.242771	-0.081801
C	-3 546590	1 136224	-0.730302
Ĥ	-4.315909	1.023053	-2.146934
Ga	0.186845	-0.093727	-0.256463
0	-0.340237	-0.157185	-2.132553
C	-1.603259	-0.053902	-2.381080
0	-2.129/11	-0.056290	-3.478952
С Ц	3.094937	0.087349	-3.320320
н	4 732534	0 437146	-3 364505
н	3.691326	-0.892541	-2.831992
С	4.925136	2.313737	0.480043
Н	5.938870	2.732907	0.469251
Н	4.249560	3.057728	0.911230
Н	4.921179	1.440317	1.138253
н	1.024270	-4.012/10	-0.291390 -0.660858
н	2.439286	-4.177312	-0.942672
н	2.179291	-5.846069	-0.387941
С	1.071615	-1.165206	3.269227

Н	0.006067	-1.051405	3.037305
Н	1.204338	-0.985096	4.342312
Н	1.630034	-0.394879	2.724336
С	-2.432784	-3.038183	-2.467940
Н	-2.867710	-3.575657	-3.318671
Н	-1.598159	-2.447571	-2.849880
Н	-2.030821	-3.769186	-1.760253
С	-4.141635	-0.331153	1.604381
Н	-3.253373	-0.692220	2.133095
Н	-4.033912	0.743535	1.441585
Н	-5.011848	-0.483223	2.253375
С	-3.171529	4.236270	1.982371
Н	-2.985149	4.034871	3.042044
Н	-3.646398	5.221228	1.913479
Н	-3.896391	3.491898	1.634079
С	-0.165302	2.893621	3.356098
Н	0.019871	2.301661	4.258493
Н	0.798469	3.111094	2.883635
Н	-0.612036	3.844969	3.666767

[^{Et}1]⁻

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy):

xyz, charge: -1, multiplicity: 1

N	1.901688	-0.235062	-0.092758
С	2.283303	1.907805	-1.377948
С	3.475516	2.841844	-1.682175
н	4.130285	2.322830	-2.395215
Н	3.090753	3.722928	-2.208741
С	1.618662	1.492733	-2.736119
Н	2.396642	1.028420	-3.358013
Н	0.894033	0.693671	-2.521669
Ν	0.186264	1.947963	0.014885
С	-0.662902	2.877426	0.589723
С	1.259672	2.623565	-0.531500
С	-0.120422	4.136417	0.407720
н	-0.539691	5.073545	0.748225
С	1.087198	3.976942	-0.316161
Н	1.736550	4.772059	-0.656427
С	-1.880043	2.507012	1.404557
С	-1.458945	2.290074	2.895535
Н	-2.377037	2.132729	3.478894
Н	-0.990166	3.219458	3.247866
С	-2.872564	3.698999	1.403516
Н	-2.363991	4.564801	1.846985
Н	-3.695022	3.454083	2.087500
Ν	-1.987438	0.273772	0.162278
С	-2.932033	-0.697652	-0.100149
С	-2.595551	1.273493	0.901719
С	-4.128261	-0.330895	0.482240
Н	-5.060701	-0.877347	0.445272
С	-3.912345	0.916598	1.123934
Н	-4.654484	1.498397	1.654658
С	-2.549093	-1.910168	-0.915034
С	-3.750958	-2.862615	-1.073628
Н	-4.158090	-3.052718	-0.073116
Н	-3.379770	-3.826606	-1.439869
С	-2.044532	-1.446154	-2.315861
Н	-1.231226	-0.720209	-2.175276
Н	-2.847000	-0.881615	-2.807307
Ν	-0.262716	-1.948788	0.099521
С	0.635345	-2.859145	0.629783
С	-1.428828	-2.626930	-0.199544
С	0.023360	-4.094758	0.697117
Н	0.462616	-5.009458	1.072457

2115.313 kJ/mol 279.5584 kJ/mol -9299455.5947 kJ/mol -9297337.8027 kJ/mol -9297617.3611 kJ/mol -209.14 kJ/mol -199.11 kJ/mol

С	-1.283257	-3.951237	0.156917
Н	-2.013751	-4.738586	0.032565
С	2.001942	-2.446836	1.127568
С	1.816788	-1.908286	2.586719
н	1.426571	-2.735264	3.196137
н	1 021733	-1 153589	2 561455
Ċ	2 935341	-3 678400	1 175533
й	2 516045	_4 385939	1 903682
н	3 000521	-3.360583	1.505002
C	2 772213	0.636005	0 723156
č	2.112213	1 26/1/2	0.725150
č	2.014455	-1.304142	0.272300
	4.024374	0.050571	-0.700007
Н	4.914128	0.479383	-1.213891
C	3.928558	-1.201874	-0.119130
Н	4.742197	-1.892677	0.055807
Ga	-0.040450	0.004339	0.046132
С	-0.510984	1.120512	3.127528
Н	-0.968606	0.180149	2.792539
Н	0.439569	1.272137	2.601686
Н	-0.278428	1.003828	4.192199
С	-3.438200	4.071053	0.035487
Н	-2.635195	4.339906	-0.657185
Н	-3.987729	3.227854	-0.394059
Н	-4.122701	4.923683	0.119711
С	-4.860661	-2.381040	-2.012042
Н	-5.159479	-1.351274	-1.796497
Н	-4.547528	-2.423067	-3.060921
н	-5.745293	-3.020480	-1.911036
C	-1.534112	-2.571009	-3.210552
Ĥ	-1.138581	-2.167777	-4.149442
н	-0 734734	-3 126221	-2 708393
н	-2 327332	-3 284093	-3 462061
Ċ	3 053501	-0.204000	3 235002
ŭ	3 861000	2 022374	3 350882
ц	3 / 30100	0 468360	2 626560
ц Ц	2 90/117	-0.400309	1 220300
	2.004117	4 206062	4.220420
	3.109010	-4.390903	-0.154075
п	2.231003	-4.775850	-0.507968
н	3.607265	-3.723397	-0.896059
Н	3.852827	-5.243677	-0.013279
C	4.295487	3.299672	-0.4/3/4/
Н	5.092163	3.982879	-0.792652
Н	3.667207	3.819850	0.253642
Н	4.753523	2.450874	0.039528
С	0.904074	2.605473	-3.497725
Н	1.595264	3.390983	-3.821890
Н	0.419889	2.200810	-4.393887
Н	0.137925	3.071677	-2.870194

C-C bond formation/cleavage transition structure between CO2 and [Et1]-

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy): xyz, charge: -1, multiplicity: 1 Ga 2.044038 7.996140 13.021553

 O
 3.264583
 7.476879
 11.244518

 N
 3.727382
 7.546216
 14.054527

 N
 0.343796
 8.493036
 12.185629

 N
 2.594988
 9.891907
 13.193043

 N
 1.401503
 6.118033
 13.191927

 C
 1.730279
 10.969251
 13.272790

 C
 -0.519750
 7.643059
 11.509090

 C
 1.937998
 5.135058
 14.001487

 C
 3.853865
 10.343440
 13.560884

 C
 2.877071
 5.487693
 15.129376

 C
 -0.250858
 9.743586
 12.237563

2154.8513 kJ/mol 293.5869 kJ/mol -9794093.8576 kJ/mol -9791936.5273 kJ/mol -9792230.1142 kJ/mol -198.32 kJ/mol -191.13 kJ/mol

С	3.992339	6.298564	14.522283
С	2.132642	6.352453	16.188125
Н	1.781698	7.267462	15.700437
Н	2.851993	6.683683	16.948576
С	-1.467207	9.685568	11.583009
Н	-2.172822	10.496202	11.464127
С	4.890035	8.046914	13.471305
С	0.545260	5.493870	12.298246
С	2.435021	12.084062	13.690987
Н	2.032797	13.074992	13.852312
С	0.565967	4.131628	12.537204
Н	-0.002819	3.379399	12.007171
С	3.778402	11.688642	13.866979
Н	4.605863	12.329603	14.141703
С	4.455969	7.377251	11.174541
С	1.443506	3.903631	13.623275
Н	1.667920	2.949257	14.078855
С	-0.226127	6.195494	11.200090
С	0.236286	10.895818	13.081200
С	-1.631421	8.364334	11.116393
Н	-2.475809	7.987937	10.555781
С	5.885756	7.062034	13.596797
Н	6.913305	7.159253	13.268008
С	5.321779	5.962248	14.254835
Н	5.812995	5.028600	14.491288
С	-1.568941	5.443995	10.987608
Н	-1.332705	4.432345	10.633012
Н	-2.110306	5.925342	10.166632
С	5.130532	9.548661	13.448390
С	-0.444784	10.807139	14.488271
Н	-1.532530	10.807855	14.333228
Н	-0.180979	11.719515	15.041948
С	0.604598	6.068885	9.877307
Н	0.773379	4.997263	9.703256
Н	1.588030	6.509561	10.057057
С	3.427955	4.200517	15.771592
Н	2.581461	3.552955	16.026209
Н	4.001770	3.659469	15.009461
С	-0.247185	12.225337	12.441796
Н	0.014169	13.045435	13.121345
Н	-1.343310	12.210039	12.404191
С	6.023271	9.861543	14.692166
Н	6.181366	10.946900	14.734713
н	7.007934	9.406668	14.513598
С	5.945459	10.004955	12.195277
н	6.638978	9.200666	11.916735
Н	6.568464	10.857366	12.498851
0	5.470826	7.173770	10.624024
С	5.122327	10.442211	10.984042
н	5.775579	10.613241	10.120828
н	4.366795	9.710241	10.688013
Н	4.581469	11.366874	11.206424
C	4.283917	4.414625	17.020958
н	3.681834	4.761360	17.867470
н	4.760945	3.474821	17.321678
Н	5.071863	5.155149	16.849224
C	0.938975	5.655099	16.831889
н	0.250328	5.292106	16.061224
н	1.241247	4.797796	17.444339
Н	0.394609	6.350745	17.479883
C	-0.006846	6.716346	8.636352
н	0.691239	6.646933	7.793988
н	-0.939245	6.229115	8.331028
Н	-0.222913	7.774300	8.81/165
С	-2.478964	5.363256	12.211871
н	-3.410369	4.839440	11.964101
н	-1.98/629	4.825838	13.028237
Н	-2.733666	6.364656	12.5/1591
C	-0.043970	9.588186	15.310862
н	-0.325430	8.65/004	14.804468
H	1.038148	9.583948	15.490201
H	-0.540188	9.594649	16.288236
C	0.318402	12,506822	11 052866

Н	1.411465	12.554332	11.088460
н	0.035507	11.714338	10.353167
н	-0.056861	13.461671	10.665681
С	5.458367	9.372141	16.020763
н	4.44443	9.758412	16.168952
н	5.414143	8.278778	16.055194
н	6.083679	9.715377	16.853352

[Me1(AI)-F]²⁻

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy):

1497.7336 kJ/mol 224.3199 kJ/mol -4321015.6096 kJ/mol -4319515.397 kJ/mol -4319739.7169 kJ/mol -627.36 kJ/mol -597.38 kJ/mol

xyz,	charge: -2, n	nultiplicity: 1	
Ν	-0.275580	-2.249291	0.227659
С	-0.808187	-3.318247	0.920913
С	0.261339	-2.751327	-0.935184
С	-0.626305	-4.482625	0.188555
Н	-0.935917	-5.480024	0.472572
С	0.062981	-4.121421	-0.996500
Н	0.387027	-4.788895	-1./84/16
N	-0.242362	-0.978070	2.611141
C	0.324155	-0.298196	3.004412
C	-0.770872	-2.143801	3.123900
č	0.143024	-1.009120	4.040097
ц	-0.303740	-2.107010	4.494040 5 171110
N	-0.003070	1 480438	1 296877
C	-0.358810	2,613691	0.580064
Č	0.517293	1.902609	2.487290
С	-0.043653	3.741426	1.324078
Н	-0.185730	4.772541	1.027334
С	0.522258	3.287295	2.542000
Н	0.900862	3.902716	3.348063
Ν	-0.059088	0.208972	-1.086240
С	0.455524	-0.550729	-2.111008
C	-0.391830	1.437598	-1.621956
С	0.440003	0.1/339/	-3.292361
Н	0.793159	-0.15/6/1	-4.260577
	-0.107516	1.443205	-2.979933
	-0.237944	2.204371	-3.000/03
C	1 35851/	-2.613017	-3.094415
C C	2 473006	-1 646235	-1 162878
č	1.098791	-1.888432	-1.845038
Ĥ	2.971635	-2.603079	-0.959722
Н	1.864502	-3.572113	-2.981492
Н	2.334180	-1.127010	-0.210526
Н	-3.113027	-1.874941	1.601953
С	-2.989104	-2.832697	2.107479
С	-1.426025	-4.537581	2.993592
С	-1.484254	-3.178319	2.270629
Н	-0.390732	-4.857438	3.149011
н	-3.481591	-3.615823	1.515166
н	-1.948207	-5.299540	2.404493
	2.309791	-0.008138	1.009209
Ĉ	2.020000	1 620402	1 775806
ĉ	1 169082	0 930148	3 438150
н	1.100002	0.931282	5 452979
H	3.031691	-0.222075	3.501519
Н	0.533679	1.952865	5.253173
С	-0.979869	2.569369	-0.802261
С	-2.525143	2.451149	-0.714214
С	-0.684139	3.901205	-1.518422
Н	-2.952838	2.462149	-1.726052
Н	-1.142842	3.903298	-2.513215

н	-2.813535	1.524514	-0.217732
Н	0.393667	4.060255	-1.624253
Н	-2.925497	3.300723	-0.144541
Н	-1.112920	4.736177	-0.953563
Н	3.111475	-1.022016	-1.801674
Н	2.003430	-2.012779	-3.814752
Н	-1.926624	-4.470037	3.965790
Н	-3.462048	-2.778897	3.097466
Н	2.107804	2.490886	4.617778
Н	3.172633	1.360478	2.662675
Н	0.491741	-0.729937	5.826343
Al	-0.550865	-0.354351	0.752231
F	-2.267535	-0.228664	0.706682

[^{Me}1-F]²⁻

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy): COSMO-RS correction (MeCN, Gibbs free energy):

1495.2033 kJ/mol 228.5276 kJ/mol -8736930.021 kJ/mol -8735432.3387 kJ/mol -8735660.8663 kJ/mol -627.87 kJ/mol -597.73 kJ/mol -616.80 kJ/mol

xyz,	charge: -2, n	nultiplicity: 1	
N	-0.281186	-2.289109	0.219082
С	-0.779816	-3.357406	0.932003
С	0.229404	-2.774621	-0.960211
С	-0.600197	-4.519622	0.193676
Н	-0.886930	-5.521830	0.484943
С	0.049154	-4.148982	-1.011466
Н	0.360768	-4.814995	-1.805997
Ν	-0.246949	-0.993182	2.648726
С	0.293619	-0.290350	3.697938
С	-0.747990	-2.175309	3.149195
С	0.131204	-1.012378	4.871114
С	-0.538663	-2.212497	4.521308
Н	-0.819600	-3.009617	5.197428
Ν	-0.027505	1.520109	1.305287
С	-0.324530	2.647430	0.570465
С	0.487957	1.929952	2.510753
С	-0.012106	3.773426	1.320272
Н	-0.130337	4.805862	1.017485
С	0.511619	3.316160	2.556297
Н	0.877419	3.932150	3.367909
N	-0.060498	0.223884	-1.124218
C	0.424376	-0.554991	-2.146500
C	-0.359000	1.463630	-1.646036
C	0.426845	0.1/69//	-3.324690
н	0.766476	-0.158655	-4.296242
	-0.078405	1.463243	-3.005890
	-0.205755	2.209723	-3.093008
	1 202707	-2.020141	-3.723022
č	1.292/9/	-2.033070	-3.207729
Č	2.434032	-1.009207	1 000700
Ц	2 020145	-1.903475	-1.000722
п	2.930143	3 580001	3 027044
н	2 300/27	-1 1511/3	-0.258020
н	-3 073085	-1.016//5	1 620205
Ċ	-2 0/7006	-2 8738/3	2 128/82
č	-2.347300	-4 574558	3 012442
C C	-1 442452	-3 216132	2 290024
й	-0.336423	-4 888844	3 165334
н	-3 439979	-3 658583	1 537971
н	-1.893075	-5.339180	2,424290
H	2.348748	0.020273	1.917008
С	2.493167	0.517303	2.880506
C	1.395379	1.645293	4.812411
C	1.123035	0.951916	3.471618
Н	1.908882	0.960018	5.495750

Н	2.992239	-0.188061	3.557790
н	0.459966	1.972018	5.278770
С	-0.932365	2.600208	-0.819508
С	-2.477965	2.487693	-0.733721
С	-0.624801	3.929306	-1.534655
н	-2.904371	2.500074	-1.746087
Н	-1.079855	3.933825	-2.530978
Н	-2.769992	1.560719	-0.237625
Н	0.454517	4.081395	-1.636985
Н	-2.876214	3.337883	-0.163501
Н	-1.049748	4.767136	-0.971349
Н	3.068657	-1.047162	-1.858519
Н	1.933663	-2.031009	-3.860360
Н	-1.872317	-4.509818	3.985872
Н	-3.419723	-2.817639	3.118860
Н	2.037937	2.519398	4.661157
Н	3.132336	1.395280	2.719664
н	0.467009	-0.727164	5.859958
Ga	-0.562016	-0.353541	0.752045
F	-2.387891	-0.218946	0.705247

<u>(CH₃)₃SiF</u>

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy):

xyz, charge: 0, multiplicity: 1 -5.642239 С 3.687375 -0.530028 Si -5.671513 2.051753 0.368791 н -4.614951 4.002335 -0.742713 Н -6.118826 4.473277 0.065811 Н -6.176497 3.620442 -1.484709 -7.410243 1.540490 0.815579 С -7.902916 2.307397 Н 1.422973 Н -7.412011 0.605938 1.386926 Н -8.017058 1.384398 -0.083680 С -4.785190 0.719337 -0.591992 Н -5.284747 0.526555 -1.548321 -4.761257 -0.221323 -0.031271 н -3.751059 1.009483 -0.806893 н -4.861674 2.256250 1.759516 F

[Ga(pyrrolato)₄]⁻

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy):

xyz, charge: -1, multiplicity: 1 Ga -1.892794 -1.204080 0.247673 -1.764846 0.605904 0.849135 Ν Ν -3.577685 -1.384546 -0.637065 -0.455860 -1.626493 -0.940365 -1.772806 -2.413628 1.723538 Ν Ν С -4.145728 -0.467392 -1.490819 С -4.383474 -2.498284 -0.624365 -5.461967 -2.291629 -1.461593 -5.309902 -0.992444 -2.016194 С С Н -5.976398 -0.497280 -2.710035 Н -3.684366 0.500283 -1.643332 -4.131052 -3.349893 -0.004950 -6.268511 -2.988770 -1.646345 н н

318.1492 kJ/mol 107.9297 kJ/mol -1335564.7624 kJ/mol -1335244.1342 kJ/mol -1335352.0639 kJ/mol -25.15 kJ/mol -18.37 kJ/mol

802.053 kJ/mol 182.1274 kJ/mol -7250598.4355 kJ/mol -7249793.9035 kJ/mol -7249976.0309 kJ/mol -203.76 kJ/mol -188.09 kJ/mol

С	-2.780077	1.344483	1.411523
С	-0.615899	1.358050	0.913465
С	-2.281532	2.563265	1.827686
С	-0.897023	2.571837	1.508739
Н	-3.787576	0.950019	1.454444
Н	-2.847420	3.356801	2.297634
Н	-0.192291	3.373494	1.685829
Н	0.314247	0.972385	0.515043
С	0.829569	-1.947364	-0.569361
С	-0.488011	-1.551404	-2.312650
С	0.768265	-1.827184	-2.815029
С	1.611451	-2.080207	-1.699869
С	-1.482728	-3.756246	1.644777
С	-2.082390	-2.129619	3.032563
С	-1.602305	-4.323714	2.897959
С	-1.985512	-3.282821	3.785778
Н	-1.194586	-4.201619	0.700750
Н	-1.426550	-5.361889	3.147140
Н	-2.335333	-1.119382	3.329275
Н	-2.161261	-3.365703	4.850150
Н	-1.412143	-1.319896	-2.827403
Н	1.045367	-1.852287	-3.860602
Н	1.083809	-2.075930	0.475303
Н	2.662228	-2.337469	-1.721699

[(CH₃)₃Si]⁺

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy):

xyz, charge: 1, multiplicity: 1

	•		
С	-5.666800	3.729659	-0.565179
Si	-5.966278	1.978068	-0.138811
Н	-4.766510	4.076462	-0.034370
Н	-6.500850	4.384755	-0.300888
Н	-5.439680	3.831731	-1.634764
С	-7.457745	1.510707	0.808541
Н	-7.591877	2.175029	1.672157
Н	-7.448413	0.469096	1.139670
Н	-8.342818	1.664962	0.171418
С	-4.775268	0.693119	-0.658519
Н	-5.294126	-0.083353	-1.238933
Н	-4.375136	0.181456	0.229180
Н	-3.944889	1.090263	-1.247703

[Ga(pyrrolato)₄]⁻ (square planar configuration)

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy:

xyz, charge: -1, multiplicity: 1 Ga -1.900395 -1.195733 0.248885 -0.715414 0.072300 1.191045 Ν -3.085355 -2.463743 -0.693258 -1.064199 -0.702071 -1.468806 Ν Ν -2.736660 -1.689436 1.966716 Ν С -3.707632 -2.257971 -1.906172 -3.444773 -3.722037 -0.259351 -4.279953 -4.310258 -1.185719 С С -4.456542 -3.367679 -2.236538 С Н -5.059419 -3.486397 -3.127481 -3.548078 -1.341746 -2.458473 -3.098481 -4.096166 0.694629 н н

799.4109 kJ/mol 171.5899 kJ/mol -7250432.5802 kJ/mol -7249630.6904 kJ/mol -7249802.2803 kJ/mol

305.1236 kJ/mol 105.7794 kJ/mol -1072644.0722 kJ/mol -1072336.4696 kJ/mol -1072442.249 kJ/mol -242.78 kJ/mol -226.40 kJ/mol

н	-4.711542	-5.300287	-1.115636
С	-1.069400	0.908396	2.228443
С	0.622013	0.286284	0.933584
С	0.026266	1.647506	2.621918
С	1.113095	1.241280	1.798639
Н	-2.074463	0.895371	2.627957
Н	0.043144	2.391788	3.407460
Н	2.132201	1.603833	1.834575
Н	1.120006	-0.241771	0.131674
С	-0.686966	0.564622	-1.861610
С	-0.744558	-1.560429	-2.499457
С	-0.167595	-0.850263	-3.531137
С	-0.139859	0.513252	-3.126385
С	-4.077495	-1.924796	2.185566
С	-2.090236	-1.864011	3.171991
С	-4.281600	-2.239756	3.512492
С	-3.006440	-2.210720	4.142584
Н	-4.785597	-1.876424	1.369420
Н	-5.234493	-2.463599	3.974275
Н	-1.024205	-1.700624	3.253979
Н	-2.785073	-2.418727	5.181373
Н	-0.977893	-2.614323	-2.430923
Н	0.191945	-1.262997	-4.464804
Н	-0.812660	1.408129	-1.196397
н	0.234717	1.356193	-3.692515

[H-^{Me}1*]

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH_2CI_2 , enthalpy): COSMO-RS correction (CH_2CI_2 , Gibbs free energy):

xyz, charge: 0, multiplicity: 1 1.187635 -2.102603 2.205296 Ν С 4.059692 2.703864 -1.331381 3.081413 -1.785765 3.594662 -2.750238 С 5.473843 Н 5.432685 2.192191 -1.889726 6.102466 н Н 3.763683 -1.068054 5.939300 4.012992 -1.195126 4.536180 -2.156389 С 3.233075 Н 3.200203 4.666699 -0.435662 Н 3.676705 Н 3.800281 -0.901179 2.198043 Ν 1.378716 0.575666 3.030284 С 1.826092 3.407397 0.913814 С 2.031423 0.018749 4.123524 Ċ 2.070143 4.708120 1.297415 Н 1.069581 2.949653 5.293429 С 2.007394 0.927994 5.158137 Н 2.444299 0.795006 6.136986 2.596671 С -0.116350 2.578413 С -1.502904 1.897577 2.752665 Н 1.945620 -1.800176 3.803924 Н -1.461186 0.844364 2.459512 -2.262094 2.398552 2.139982 Н С -0.229745 4.027227 3.085862 Н -0.993056 4.571152 2.519917 Н 0.726018 4.553922 3.004438 4.134760 Н -0.533579 4.036453 Ν 0.440041 1.402537 0.508544 C C 0.717134 1.694708 -0.907642 2.533611 1.137686 0.245969 С 3.176841 0.658848 -0.981852 Н 0.796503 3.742068 -1.894749 С 0.374366 3.667801 0.237763 Н 0.252960 4.704983 0.517018 С 1.005482 -1.448157 2.028374 С 1.521634 -2.864219 2.303295

1525.3991 kJ/mol 222.2992 kJ/mol -8476188.4437 kJ/mol -8474660.5656 kJ/mol -8474882.8648 kJ/mol -96.39 kJ/mol -83.77 kJ/mol

Н	2.607622	2.572409	-2.850226
н	1.427386	1.409716	-3.512116
Н	3.121917	0.946478	-3.305846
С	3.223946	1.360596	-0.549086
Н	4.132104	0.916123	-0.966477
н	3.120702	0.980652	0.474001
н	3.362186	2.446152	-0.481494
Ν	1.224249	-1.090790	-0.370722
С	0.914403	-2.398124	-0.700612
С	1.744533	-0.468100	-1.487609
С	1.251145	-2.599300	-2.023532
Н	1.123294	-3.514286	-2.584325
С	1.776154	-1.375594	-2.525130
Н	2.126451	-1.196184	-3.532025
С	0.144505	-3.282870	0.263156
С	-1.299499	-2.730936	0.391814
Н	-1.789421	-2.705898	-0.587945
Н	-1.307883	-1.708988	0.793842
Н	-1.881435	-3.357652	1.076018
С	0.061540	-4.707914	-0.289518
Н	-0.452112	-4.712877	-1.255838
Н	-0.504434	-5.344870	0.396857
Н	1.060245	-5.135207	-0.418987
С	1.841786	-2.383356	3.392815
С	0.809504	-3.292897	1.617604
С	1.833441	-3.750594	3.573386
Н	2.285370	-4.293602	4.391548
С	1.171865	-4.327194	2.451283
Н	1.005944	-5.381398	2.278970
Ga	1.055309	-0.382707	1.401043
Н	-0.105241	1.267206	-1.505774

[H-Me1*-F]-

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH_2CI_2 , enthalpy): COSMO-RS correction (CH_2CI_2 , Gibbs free energy): 1532.4477 kJ/mol 228.558 kJ/mol -8738534.5514 kJ/mol -8736999.6248 kJ/mol -8737228.1828 kJ/mol -244.91 kJ/mol -225.28 kJ/mol

xyz, charge: -1, multiplicity: 1 1.152201 -2.191795 2.175602 2.610616 -1.361130 4.028267 Ν С С 3.028713 -1.819386 5.431137 Н 3.565457 -2.770526 5.367807 Н 2.153480 -1.953154 6.074672 3.700242 -1.088637 Н 5.893274 С 3.903158 -1.160803 3.187151 Н 4.467325 -2.099565 3.136346 Н 4.529402 -0.376693 3.630995 3.649444 -0.866952 2.163816 н Ν 1.225712 0.549178 3.058655 С 0.854932 1.823669 3.455370 С 1.904320 -0.026811 4.118575 С 1.301504 2.049570 4.745238 Н 1.167431 2.948121 5.331193 С 0.875413 5.164712 1.966312 Н 2.444998 0.719441 6.120842 С -0.018521 2.761623 2.646946 С -1.523500 2.428839 2.844175 н 3.903008 -1.768827 2.563308 Н -1.727500 1.396044 2.554054 Н -2.151225 3.103395 2.245839 С 4.210255 0.208034 3.112740 Н -0.465473 4.895872 2.587024 Н 1.244508 4.527987 2.957241 -0.018016 4.291978 н 4.177941 0.405025 0.563068 Ν 1.513997 С 0.611064 1.760013 -0.857981 С 0.268144 2.650511 1.172223

С	0.578097	3.244400	-0.987964
Н	0.683719	3.782509	-1.921592
С	0.361064	3.769528	0.228533
Н	0.272929	4.817167	0.482469
С	1.886253	1.017753	-1.381291
С	2.194683	1.515483	-2.798450
Н	2.511863	2.563507	-2.782305
Н	1.327000	1.411668	-3.459821
Н	3.013094	0.927732	-3.223389
С	3.087960	1.339802	-0.474407
Н	3.987116	0.879479	-0.896259
Н	2.953768	0.946258	0.536554
Н	3.248463	2.423324	-0.397617
Ν	0.986614	-1.101816	-0.342543
С	0.838449	-2.431721	-0.693361
С	1.576298	-0.455000	-1.409292
С	1.319944	-2.614038	-1.978677
Н	1.343508	-3.543638	-2.529590
С	1.787924	-1.358451	-2.436334
Н	2.225985	-1.152494	-3.403508
С	0.197570	-3.465718	0.217952
С	-1.338462	-3.263738	0.267861
Н	-1.754719	-3.338002	-0.745057
Н	-1.603452	-2.292491	0.687844
Н	-1.786337	-4.043558	0.896017
С	0.446774	-4.866766	-0.361398
Н	-0.007012	-4.952797	-1.354511
Н	-0.016424	-5.620822	0.282814
Н	1.517249	-5.081226	-0.437139
С	1.799760	-2.445763	3.359208
С	0.816124	-3.394814	1.600053
С	1.846669	-3.815995	3.561136
Н	2.312286	-4.334616	4.388385
С	1.215722	-4.419800	2.441873
Н	1.100036	-5.481194	2.268207
Ga	0.532791	-0.457586	1.491289
Н	-0.240815	1.322095	-1.405793
F	-1.278233	-0.470086	1.681184

[^{Et}1-F]²⁻

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy): 2118.6879 kJ/mol 286.6686 kJ/mol -9561504.9524 kJ/mol -9559383.7855 kJ/mol -9559670.4541 kJ/mol -591.91 kJ/mol -568.99 kJ/mol

ху	z, charge: -2, r	nultiplicity: 1	
١	1.542167	1.293756	-0.091926
C	0.204158	3.212862	0.794157
C	0.155201	2.595593	2.225150
H	0.160039	1.508213	2.114257
H	1.085577	2.846273	2.753154
C	0.290362	4.751233	0.879803
H	0.476606	5.130217	-0.132751
H	-0.691880	5.136972	1.177388
٩	- 1.338884	1.488604	-0.153170
C	-2.604822	1.419437	-0.692305
C	-1.055380	2.817540	0.061060
C	-3.105376	2.703638	-0.851297
H	-4.081494	2.972832	-1.236241
C	-2.121163	3.596646	-0.358707
H	-2.201445	4.674580	-0.305488
C	-3.306795	0.120661	-1.035030
C	-4.831539	0.312181	-0.806354
H	-5.345776	-0.614162	-1.087793
H	-5.178872	1.076174	-1.515356
C	-3.080548	-0.166982	-2.557468
H	-2.000317	-0.179367	-2.727049
H	-3.483159	0.693883	-3.111705

Ν	-1.500036	-1.272618	0.125530
С	-1.436416	-2.464524	0.810632
С	-2.824106	-1.044547	-0.196863
С	-2.716050	-2.992741	0.928172
Н	-2.993768	-3.915706	1.421226
С	-3.592765	-2.097144	0.280679
Н	-4.662493	-2.218839	0.169916
С	-0.199505	-3.037362	1.465657
С	-0.213903	-2.650386	2.980654
Н	0.633580	-3.158037	3.465367
Н	-1.143021	-3.043710	3.419612
С	-0.284332	-4.588737	1.405491
Н	-1.192025	-4.906699	1.934563
Н	0.557959	-5.001864	1.975028
Ν	1.340022	-1.460467	0.147724
С	2.693066	-1.381422	-0.118577
С	1.123216	-2.609963	0.870237
Ċ	3 327474	-2 485749	0.433807
Ĥ	4 383062	-2 718770	0.380339
c	2 334580	-3 260757	1 070036
й	2.004000	-4 187172	1.607862
Ċ	3 32/188	-0.307658	-0.078812
č	1 852112	-0.265212	-0.695427
ŭ	5 306572	0 /17633	1 426503
ц Ц	5.300372	1 25/05/	-1.420303
	2 100571	-1.204904	-0.904120
С Ц	3.122371	0 171554	-2.490039
	3.000047	0.171554	-3.007909
	2.050199	-0.507591	-2.700344
Č	1.405045	2.003407	0.009598
C	2.755211	1.071240	-0.705971
C	2.509588	3.298903	-0.463892
Н	2.693864	4.365546	-0.482963
C	3.367492	2.287985	-0.965963
Н	4.342331	2.436717	-1.414885
Ga	0.011237	-0.030501	-0.386397
С	-5.243533	0.709150	0.611952
н	-4.793251	1.668414	0.884110
н	-6.336057	0.798293	0.688750
н	-4.903969	-0.038746	1.334672
С	-3.686604	-1.467463	-3.084698
н	-3.330740	-2.319485	-2.495506
Н	-4.783602	-1.469500	-3.048251
Н	-3.389812	-1.624653	-4.129446
С	-0.122176	-1.149865	3.229713
Н	-0.965350	-0.628119	2.762669
Н	-0.133884	-0.923894	4.303471
Н	0.804877	-0.746793	2.806516
С	-0.281558	-5.159499	-0.009629
Н	-0.327419	-6.256593	0.007158
Н	-1.141648	-4.780910	-0.571135
Н	0.628911	-4.854521	-0.535782
С	5.244026	0.168931	0.716919
Н	4.875754	1.180039	0.916456
Н	4.805720	-0.502815	1.461138
Н			
С	6.336081	0.160752	0.838191
-	6.336081 3.643601	0.160752 -1.995508	0.838191 -2.955782
Ĥ	6.336081 3.643601 4.736333	0.160752 -1.995508 -2.074371	0.838191 -2.955782 -2.890885
н Н	6.336081 3.643601 4.736333 3.212680	0.160752 -1.995508 -2.074371 -2.794778	0.838191 -2.955782 -2.890885 -2.342752
H H H	6.336081 3.643601 4.736333 3.212680 3.360688	0.160752 -1.995508 -2.074371 -2.794778 -2.174274	0.838191 -2.955782 -2.890885 -2.342752 -4.000967
H H H C	6.336081 3.643601 4.736333 3.212680 3.360688 -1.066714	0.160752 -1.995508 -2.074371 -2.794778 -2.174274 2.998616	0.838191 -2.955782 -2.890885 -2.342752 -4.000967 3.046439
H H H C H	6.336081 3.643601 4.736333 3.212680 3.360688 -1.066714 -1.983279	0.160752 -1.995508 -2.074371 -2.794778 -2.174274 2.998616 2.740557	0.838191 -2.955782 -2.890885 -2.342752 -4.000967 3.046439 2.504483
H H H C H H	6.336081 3.643601 4.736333 3.212680 3.360688 -1.066714 -1.983279 -1.074252	0.160752 -1.995508 -2.074371 -2.794778 -2.174274 2.998616 2.740557 2.473656	0.838191 -2.955782 -2.890885 -2.342752 -4.000967 3.046439 2.504483 4.009805
H H H C H H H H H	6.336081 3.643601 4.736333 3.212680 3.360688 -1.066714 -1.983279 -1.074252 -1.092666	0.160752 -1.995508 -2.074371 -2.794778 -2.174274 2.998616 2.740557 2.473656 4.076790	0.838191 -2.955782 -2.890885 -2.342752 -4.000967 3.046439 2.504483 4.009805 3.250709
нннснннс	6.336081 3.643601 4.736333 3.212680 3.360688 -1.066714 -1.983279 -1.074252 -1.092666 1.340987	0.160752 -1.995508 -2.074371 -2.794778 -2.174274 2.998616 2.740557 2.473656 4.076790 5.302535	0.838191 -2.955782 -2.890885 -2.342752 -4.000967 3.046439 2.504483 4.009805 3.250709 1.848909
нннснннсн	6.336081 3.643601 4.736333 3.212680 3.360688 -1.066714 -1.983279 -1.074252 -1.092666 1.340987 2.309031	0.160752 -1.995508 -2.074371 -2.794778 -2.174274 2.998616 2.740557 2.473656 4.076790 5.302535 4.812143	0.838191 -2.955782 -2.890885 -2.342752 -4.000967 3.046439 2.504483 4.009805 3.250709 1.848909 1.711049
нннснннснн	6.336081 3.643601 4.736333 3.212680 3.360688 -1.066714 -1.983279 -1.074252 -1.092666 1.340987 2.309031 1.476366	0.160752 -1.995508 -2.074371 -2.794778 -2.174274 2.998616 2.740557 2.473656 4.076790 5.302535 4.812143 6.381132	0.838191 -2.955782 -2.890885 -2.342752 -4.000967 3.046439 2.504483 4.009805 3.250709 1.848909 1.711049 1.694782
нннснннсннн	6.336081 3.643601 4.736333 3.212680 3.360688 -1.066714 -1.983279 -1.074252 -1.092666 1.340987 2.309031 1.476366 1.038659	0.160752 -1.995508 -2.074371 -2.794778 -2.174274 2.998616 2.740557 2.473656 4.076790 5.302535 4.812143 6.381132 5.155973	0.838191 -2.955782 -2.890885 -2.342752 -4.000967 3.046439 2.504483 4.009805 3.250709 1.848909 1.711049 1.694782 2.892301
Ph₃SiF

С

С

С

С

С

С

Н

н н

н

Н Si

С

С

C C C

С

Н

Н

Н

н

Н

С

F

С

Ĉ

С

С

С

Н

Н

н

Н н

It was not possible to remove a slight imaginary mode (7 i*cm⁻¹) from the structure with the applied computational method (r²SCAN-3c, see Chapter S8 for details). Therefore, for the calculation of the reaction Gibbs free energy of the fluoride exchange reaction between [Ph₃SiF₂]⁻ and [Me1]⁻ a value of 11.21 kJ mol⁻¹ was subtracted from the Gibbs free energy obtained from Orca, to approximately account for the missing low real mode during the calculation of the entropy term. Below, the uncorrected value is given.

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy): COSMO-RS correction (MeCN, Gibbs free energy):

xyz, charge: 0, multiplicity: 1 -2.789124 0.252226 -0.813474 -2.823907 -0.719677 0.184293 -1.593105 0.892385 -1.117279 -0.410244 0.570993 -0.433864 -0.463990 -0.409720 0.564726 -1.661443 -1.049753 0.873716 -3.695691 0.509329 -1.354224 -3.758515 -1.219994 0.422767 -1.577781 1.651183 -1.897422 0.442378 -0.678301 1.103231 -1.686300 -1.808993 1.650426 1.173305 1.470702 -0.837792 1.068319 3.271083 -0.361423 1.993500 4.190049 -0.879257 0.108826 3.733222 0.548526 0.074850 5.071041 0.932845 1.958469 5.527436 -0.501146 0.999102 5.968622 0.407659 -0.623022 3.039452 0.957153 -0.676024 5.413804 1.639292 2.747684 3.855998 -1.589137 2.678843 6.227922 -0.914336 0.972014 0.704665 7.013471 2.646402 0.646882 -0.043486 1.383118 1.398602 -2.441465 3.134853 -0.568100 -0.546819 1.086146 3.265556 1.197219 4.337332 0.553044 1.698130 4.208343 -1.211022 0.059603 4.809490 -0.650861 1.184654 2.909434 2.143984 1.487189 4.807931 0.993385 2.572762 2.673115 -1.013561 -1.425832 4.578416 -2.149052 -0.344775

765.3287 kJ/mol 162.0527 kJ/mol -2843686.9781 kJ/mol -2842919.1704 kJ/mol -2843081.2231 kJ/mol -54.65 kJ/mol -46.92 kJ/mol -41.12 kJ/mol

[Ph₃SiF₂]⁻

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy): COSMO-RS correction (MeCN, Gibbs free energy):

1.658997

xyz, charge: -1, multiplicity: 1 -2.581602 -0.992168 -0.123090 С С -2.257529 -1.499285 1.132524 С -1.686216 -0.164161 -0.797495 С -0.432271 0.165365 -0.259600 С -0.126567 -0.369543 1.001529 С -1.025271 -1.177685 1.695525 -3.539970 -1.237831 -0.577069 н

5.648167 -1.153098

772.8796 kJ/mol 169.9684 kJ/mol -3105912.9102 kJ/mol -3105137.5516 kJ/mol -3105307.52 kJ/mol -218.25 kJ/mol -202.65 kJ/mol -213.19 kJ/mol

н	-2.957870	-2.138282	1.666745
Н	-1.958797	0.243077	-1.766427
Н	0.840015	-0.142923	1.441228
Н	-0.759775	-1.563851	2.677955
Si	0.810795	1.298288	-1.206155
С	1.194431	3.070215	-0.546238
С	2.451912	3.404110	-0.019857
С	0.229415	4.089208	-0.568937
С	0.497023	5.367272	-0.082037
С	2.737957	4.686263	0.445518
С	1.757682	5.674838	0.422812
Н	-0.750595	3.867361	-0.980536
Н	-0.280105	6.129086	-0.102813
Н	3.217744	2.635495	0.023213
Н	3.729025	4.913215	0.834226
Н	1.973855	6.674446	0.794625
С	1.673307	0.666490	-2.812951
F	-0.496004	1.935898	-2.157003
С	2.637738	-0.352496	-2.780998
С	1.370194	1.208413	-4.071745
С	2.002849	0.769707	-5.233415
С	3.258196	-0.815625	-3.939787
С	2.947757	-0.251093	-5.174096
Н	0.619763	1.990686	-4.133320
Н	1.751889	1.222465	-6.191047
Н	2.903158	-0.786268	-1.821637
Н	3.991556	-1.617680	-3.879090
Н	3.437129	-0.603235	-6.079996
F	2.116667	0.660462	-0.255097

[Ga(pyrrolato)₄-F]²⁻

It was not possible to remove a slight imaginary mode ($18 i^{*} \text{cm}^{-1}$) from the structure with the applied computational method (r^{2} SCAN-3c, see Chapter S8 for details). This was not a problem, as this structure was only used for the calculation of the FIA (enthalpy scale) of [Ga(pyrrolato)₄]⁻.

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy): 803.5672 kJ/mol 181.7155 kJ/mol -7512513.7257 kJ/mol -7511707.6796 kJ/mol -7511889.3951 kJ/mol -644.61 kJ/mol -611.61 kJ/mol

xyz, charge: -2, multiplicity: 1 0.106452 -0.168528 0.483900 Ga 0.076610 -0.012802 -1.597809 Ν Ν -1.366249 -1.522884 0.387897 -0.525341 1.698159 0.684385 Ν 2.100510 -0.373030 0.420541 Ν С -1.817678 -2.260655 1.455716 С -2.159895 -1.839882 -0.687592 -3.110345 -2.774987 -0.312116 С С -2.889205 -3.047301 1.066884 Н -3.442904 -3.731993 1.699920 -1.337361 -2.147911 Н 2.416904 Н -1.992020 -1.380407 -1.652716 Н -3.869163 -3.205122 -0.955924 C C -0.605649 0.910418 -2.342054 0.522423 -0.972614 -2.463853 C C -0.590984 0.549155 -3.683836 0.138851 -0.667891 -3.762606 н -1.059879 1.770661 -1.865076 Н -4.501203 -1.044156 1.098545 Н 0.357796 -1.248757 -4.651505 Н -2.097019 1.090950 -1.819154 С -1.795402 2.076351 1.015213 Ĉ 2.833713 0.190308 0.431349 C C -0.619019 3.948630 0.602228 3.460259 -1.899775 0.977135 C C 0.043605 2.964820 -0.561484 2.863540 -0.888286 1.437965

С	4.272526	-0.207240	-0.178106
С	4.206864	-0.811832	1.107769
Н	2.584484	0.477590	-1.476248
Н	5.161580	0.019009	-0.755714
н	2.378060	-1.246518	2.334557
Н	5.036788	-1.145169	1.720830
Н	1.230632	2.769286	0.134895
н	-0.322225	4.982753	0.472490
н	-2.541930	1.328266	1.254024
н	-2.787785	4.042913	1.192263
F	0.188320	-0.467323	2.345442

<u>THF</u>

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH_2CI_2 , enthalpy): COSMO-RS correction (CH_2CI_2 , Gibbs free energy): 317.5197 kJ/mol 88.5177 kJ/mol -609538.3066 kJ/mol -609218.3079 kJ/mol -609306.8256 kJ/mol -24.62 kJ/mol -16.44 kJ/mol

xyz, charge: 0, multiplicity: 1 -5.717755 1.102332 -0.233116 С С -5.575460 -0.367071 0.156899 С -4.369997 1.667028 0.225294 С -3.423676 0.525371 -0.141115 Ο -4.182452 -0.687411 0.004586 н -4.375276 1.827697 1.309935 н -4.104089 2.609538 -0.262381 Н -2.542436 0.467310 0.508762 н -3.081794 0.615207 -1.184523 Н -6.576495 1.585382 0.242318 -5.821594 1.201851 -1.320155 н Н -6.160172 -1.043943 -0.477016 -5.873495 -0.526931 1.205652 Н

[^{Me}1-thf]⁻

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy): 1818.2677 kJ/mol 252.391 kJ/mol -9084508.268 kJ/mol -9082687.5214 kJ/mol -9082939.9124 kJ/mol -219.28 kJ/mol -204.05 kJ/mol

xyz, charge: -1, multiplicity: 1 -0.414273 -2.170128 0.382199 Ν С -1.259318 -3.032702 1.064112 -0.335515 -2.620210 -0.918036 С -1.718826 -4.001795 0.186450 С Н -2.354916 -4.842468 0.431669 -1.125814 -3.742590 -1.075685 -1.253937 -4.320816 -1.980640 С Н -0.216189 -0.816384 2.790889 Ν С 0.105927 0.024682 3.834753 С -1.036979 -1.808382 3.300427 С -0.515948 -0.405539 4.990645 С -1.248339 -1.570799 4.649211 Н -1.813504 -2.193431 5.330737 N C 0.084500 1.670634 1.395266 2.801285 -0.121058 0.617223 C C 0.645669 2.094031 2.584989 3.916587 1.322338 0.293471 Н 0.253001 4.943152 0.986005 С 0.784282 3.466771 2.571363 Н 4.079304 3.359695 1.199680 Ν -0.153702 0.324310 -1.039861 С 0.117257 -0.508450 -2.107473 -0.431325 1.579465 -1.561023 С

С	-0.001110	0.194757	-3.288749
Н	0.162926	-0.189571	-4.286073
С	-0.354087	1.520947	-2.941522
Н	-0.514658	2.338600	-3.630355
Н	-0.435254	-2.682008	-3.683880
С	0.563255	-2.683443	-3.235127
С	2.019348	-1.936096	-1.355176
С	0.568960	-1.930438	-1.901454
Н	2.358695	-2.964520	-1.181228
Н	0.879185	-3.720846	-3.081339
Н	2.083739	-1.395501	-0.406171
Н	-3.531240	-2.856761	2.697778
С	-2.763373	-3.581534	2.985572
С	-0.325105	-4.149051	3.043452
С	-1.365699	-3.089203	2.570227
н	0.680503	-3.827018	2.755805
н	-2.997248	-4.539699	2.511543
н	-0.527885	-5.117595	2.571351
H	2.337780	-0.049054	2.232542
Ċ	2 457658	0 487239	3 178970
č	1 365455	1 851389	4 956014
č	1 115847	1 120286	3 632986
й	1 701816	1 140920	5 718544
н	2 813694	-0 230692	3 928012
н	0 454646	2 344819	5 310029
Ċ	-0.7003/0	2.344013	-0 732280
č	-0.733536	2.730432	-0.732200
č	-2.000000	1 058120	-0.547770
ŭ	2 834503	2 883870	1 526427
ц	-2.034393	2.005079	2 471506
Ľ	2 705157	2 02/010	-2.471300
п	-2.705157	2.024919	1 677290
п	0.092970	4.070707	-1.077309
	-2.599110	3.793490	-0.003022
	-0.074210	4.904070	-0.940200
	2.009190	-1.440072	-2.070033
	1.200400	-2.213343	-3.937900
п	-0.337730	-4.204004	4.134113
п	-2.810347	-3.724243	4.009274
	2.144000	2.010423	4.030409
п	3.210942	1.270308	3.033047
	-0.438180	0.044047	0.000214
Ga	-0.349190	-0.215034	0.000314
0	-2.397099	-0.058043	0.900103
Č	-3.177493	0.405131	2.040739
C	-3.241587	-0.650900	-0.133362
C	-4.601559	-0.788015	0.536304
C	-4.615448	0.373393	1.539995
н	-2.810072	1.402139	2.303901
н	-2.995820	-0.282505	2.877019
н	-4.866226	1.312489	1.032140
н	-5.324692	0.221206	2.359125
н	-2.794692	-1.604496	-0.427494
н	-3.252588	0.038700	-0.986664
Н	-5.419519	-0.735771	-0.188346
н	-4.661321	-1.749165	1.058639

<u>TS-1</u>

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH_2Cl_2 , enthalpy): COSMO-RS correction (CH_2Cl_2 , Gibbs free energy):

xyz, charge: 0, multiplicity: 1 N 1.100760 -2.108044 2.215271 C 2.646588 -1.392188 4.085628 C 2.953446 -1.848767 5.516975 H 3.410640 -2.841743 5.505682 H 2.042089 -1.889309 6.120578 1520.3926 kJ/mol 220.7647 kJ/mol -8476125.7934 kJ/mol -8474602.9218 kJ/mol -8474823.6865 kJ/mol -86.90 kJ/mol -75.95 kJ/mol

Н	3.663803	-1.166132	5.992622
С	3.986714	-1.357907	3.296254
Н	4.453938	-2.348303	3.302004
Н	4.669847	-0.627153	3.743630
Н	3.821317	-1.077012	2.249150
Ν	1.452995	0.573466	3.008861
С	1.075467	1.864737	3.345462
С	2.073043	0.003268	4.112388
С	1.491313	2.118414	4.635287
н	1.322742	3.023946	5.200801
С	2.125041	0.944685	5.116820
H	2.556441	0.812201	6.098328
C	0.037887	2,636922	2,559987
č	-1 371757	2 151767	3 010343
й	-1 495854	2 359569	4 077130
н	-1 477149	1 073329	2 858297
н	-2 160367	2 663167	2.000207
Ċ	0 152150	1 135374	2.440000
Ц	0.152159	4.155574	2.000720
	-0.000000	4.090470	2.379139
	1.119002	4.00000	2.040079
	0.054359	4.300138	3.943023
N	0.160755	1.1/1/82	0.523760
C	0.192094	1.337815	-0.877579
C	0.109723	2.406795	1.074412
C	0.023562	2.714013	-1.154133
Н	-0.054345	3.146168	-2.142//2
С	0.024773	3.384319	0.053811
н	-0.017048	4.452948	0.204539
С	2.231608	0.916397	-1.390174
С	2.446614	1.600712	-2.716939
Н	2.492581	2.684853	-2.592133
н	1.662521	1.355554	-3.437349
Н	3.405556	1.267529	-3.135913
С	2.968306	1.558840	-0.251885
Н	3.992914	1.759084	-0.592345
Н	3.054929	0.932566	0.640258
Н	2.528594	2.521816	0.034753
Ν	1.550001	-1.155571	-0.313094
С	1.092739	-2.377584	-0.708729
С	2.040309	-0.495084	-1.427948
С	1.362571	-2.540792	-2.077291
H	1.157310	-3.424047	-2.664598
С	1.928263	-1.348749	-2.534785
Ĥ	2,250283	-1.129923	-3.543954
C	0 216479	-3 246008	0 183806
č	-1 206911	-2 627632	0 181125
н	-1 604682	-2 572083	-0.838404
н	-1 215638	-1 611702	0.596905
н	-1 872871	-3 239064	0.708430
Ċ	0 122137	-4 664084	-0 386998
й	-0.336602	-4.004004	-0.0000000
ц	0.503062	5 281805	0.263821
Li li	1 111220	5 125722	0.203021
\hat{c}	1.111330	2 100176	3 100717
č	0.774504	2 206245	J.400/4/ 1 500604
Č	1 764064	-3.200313	1.002024
	1.701201	-3.783712	3.540851
Н	2.208395	-4.342029	4.351093
С	1.139866	-4.340787	2.390011
Н	1.006206	-5.392784	2.180214
Ga	1.034062	-0.382513	1.419732
Н	-0.168693	0.532226	-1.504079

<u>Int-1</u>

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy):

1523.3881 kJ/mol 228.1835 kJ/mol -8476179.1563 kJ/mol -8474653.2892 kJ/mol -8474881.4727 kJ/mol -94.70 kJ/mol -82.58 kJ/mol

xyz, (charge: 0, m	nultiplicity: 1	
Ň	-0.861215	-1.731906	-0.498853
С	-2.817616	-0.567826	-1.490834
С	-2.105986	-0.005513	-2.745696
н	-2.565308	0.935327	-3.070579
н	-2.193941	-0.740122	-3.551922
н	-1.039104	0.178026	-2.586136
С	-4.270637	-0.875229	-1.873906
н	-4.278587	-1.671415	-2.622863
Н	-4.756331	0.001067	-2.313747
Н	-4.851913	-1.211475	-1.010007
Ν	-1.698856	0.752416	0.360464
С	-2.021658	1.848832	1.185066
С	-2.778571	0.473999	-0.379286
С	-3.394706	2.196218	0.935667
С	-3.862050	1.346145	-0.018625
С	-1.143231	2.487877	2.013209
С	0.264924	2.058503	2.199942
Н	0.889092	2.528489	1.419935
н	0.412633	0.976348	2.139385
н	0.650324	2.398244	3.166057
С	-1.526088	3.723042	2.755762
н	-0.796418	4.510865	2.527542
Н	-1.454133	3.541875	3.835922
Н	-2.522497	4.095310	2.523249
N	0.794127	1.467771	-1.013008
С	2.052175	1.948652	-0.670221
С	0.031758	2.550250	-1.417406
C	2.065652	3.317268	-0.876982
С	0.785489	3.696700	-1.353617
C	3.220626	1.103756	-0.191084
C	4.377132	1.288654	-1.196979
н	4.624016	2.349605	-1.291913
н	4.093989	0.908664	-2.182697
Н	5.275542	0.762496	-0.859960
C	3.705589	1.621808	1.188676
н	4.010340	1.08/0/9	1.476830
	2.903207	1.438840	1.901019
	3.919330	2.093732	1.104269
	1.709002	-0.047002	0.409933
Č	2 000780	-2.237 141	0.041002
Č	2.909700	-2 6000/1	0.000140
й	3 457494	-2.003941	0.120127
C	3 759730	-1 429719	-0 257280
й	4 775139	-1.429719	-0.237200
C	0.661265	-3 091700	0.994304
č	1.090321	-4.561712	1.056259
Ĥ	1.949941	-4.676067	1.724060
H	1.359250	-4.935145	0.063993
н	0.275786	-5.178237	1.447101
С	0.229121	-2.650817	2.418519
Н	1.076056	-2.726013	3.109815
Н	-0.592581	-3.279671	2.776755
н	-0.119665	-1.611884	2.420790
С	-2.145910	-1.812753	-0.984571
С	-0.540352	-2.944721	0.081177
С	-2.629956	-3.087335	-0.768805
Н	-3.602447	-3.466865	-1.049954
С	-1.605577	-3.806632	-0.100434
Н	-1.659588	-4.834254	0.229975
Ga	0.085184	-0.108312	-0.189955
н	0.463459	4.689222	-1.638444
н	2.913597	3.972120	-0.727272
Н	-1.001166	2.427762	-1.711142
Н	-4.857441	1.317221	-0.435955
н	-3.952658	2.977008	1.431573

[H-^{Me}1*-(thf)₂]

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy): 2180.5152 kJ/mol 286.2873 kJ/mol -9695439.8223 kJ/mol -9693256.8282 kJ/mol -9693543.1155 kJ/mol -96.37 kJ/mol -86.17 kJ/mol

xyz,	charge: 0, n	nultiplicity: 1	
Ν	1.962521	-0.533119	0.141265
С	1 692636	-3 050747	0 163861
č	2.269501	4 026447	0.000001
	2.200001	-4.230447	-0.035205
н	2.102311	-4.100700	-1.708404
н	1.793275	-5.171585	-0.329705
н	3 343200	-4 335572	-0 453052
	4.002572	2 2052072	1 664640
C	1.993573	-3.305207	1.004040
н	3.074922	-3.376495	1.826164
н	1.514866	-4.230931	2.003751
н	1 611544	-2 476628	2 264127
N	0.569601	1 007000	0.272756
IN O	-0.000091	-1.907269	-0.372750
С	-1.888466	-2.341510	-0.4//4/2
С	0.189363	-3.019582	-0.037425
С	-1 951122	-3 691963	-0 192356
ŭ	2 925621	1 21/666	0.221020
	-2.030031	-4.314000	-0.221920
С	-0.640011	-4.119588	0.090779
н	-0.334908	-5.128388	0.332735
С	-3.077843	-1.522344	-0.934574
č	3 801084	2 268736	2 072020
	-3.001004	-2.200750	-2.072929
н	-4.137622	-3.247355	-1.724287
н	-3.128961	-2.432773	-2.921605
н	-4.686242	-1.720158	-2.414119
С	-4 069353	-1 299431	0 221308
ŭ	3 620000	0.700014	1 010529
	-3.020900	-0.700914	1.019556
н	-4.345232	-2.268130	0.647019
н	-4.982312	-0.797117	-0.119658
Ν	-1.857091	0.578829	-0.493267
С	-2 445510	1 717376	-0 282411
č	2.505104	0.160224	1 507/22
č	-2.393104	-0.100224	-1.307432
C	-3.600017	1.880216	-1.16/035
Н	-4.245889	2.746034	-1.208048
С	-3.683532	0.769179	-1.916267
н	-4.419546	0.554650	-2.680458
C	-2 032667	2 668/30	0.800515
č	-2.032007	2.000409	0.000010
	-2.579890	4.077305	0.492896
н	-3.674409	4.078754	0.453860
Н	-2.182647	4.458258	-0.453172
Н	-2.283255	4.768680	1.282941
С	-2 731866	2 156470	2 091417
ŭ	2.101000	2.100470	2.001417
	-2.400900	2.033703	2.910020
н	-2.380233	1.152800	2.338613
Н	-3.821554	2.130938	1.967354
Ν	0.400372	1.879309	0.413863
С	1.655635	2.349324	0.763091
č	-0 527633	2 7//107	0 073073
č	-0.527055	2.144131	1 545000
C	1.515045	3.483222	1.545028
н	2.312408	4.096336	1.941799
С	0.134376	3.734081	1.676395
н	-0.313145	4.564382	2,205971
Ċ	2 055817	1 820184	0 105035
č	2.3330017	0.740000	1 010050
C	3.338000	2.712282	-1.018858
н	4.293817	2.392120	-1.448640
Н	3.424214	3.759565	-0.710796
Н	2.574399	2.644678	-1.798377
С	4.065265	1,989221	1.263638
й	A 172502	3 033366	1 577809
11	F 000405	1 654660	0.056000
н	5.023425	1.004000	0.000302
Н	3.836535	1.379886	2.143681
С	2.404236	-1.790615	-0.245265
С	2.942002	0.375868	-0.219973
Ċ	3,646058	-1.672491	-0.839409
й	4 261258	-2 476460	-1 217817
	1.201200	2.770703	1.211011

С	3.983337	-0.297880	-0.828284
Н	4.913167	0.134364	-1.175004
Ga	0.072857	-0.046197	0.002387
Н	-1.918033	-0.388924	-2.344591
0	-0.401218	-0.329284	2.137364
С	-0.416869	-1.644143	4.141783
С	0.725942	-0.614291	4.168543
С	0.255626	0.437372	3.182389
Н	0.890710	-0.196279	5.165814
Н	-0.475412	1.121961	3.634826
С	-1.055175	-1.480912	2.749920
Н	-1.148790	-1.420789	4.924483
Н	-2.130493	-1.273555	2.816651
Н	1.665833	-1.053865	3.821551
Н	-0.897787	-2.337640	2.090260
Н	1.051379	1.022549	2.716638
Н	-0.056888	-2.664651	4.298465
Н	0.370705	2.434503	-2.112615
0	0.350328	0.379403	-2.193913
С	1.084289	-0.483257	-3.098291
С	1.921555	0.480137	-3.918773
С	0.968216	1.669974	-4.106777
С	0.104091	1.657317	-2.835286
Н	1.666388	-1.177828	-2.487676
Н	0.366127	-1.040921	-3.720479
Н	2.248394	0.046964	-4.868387
Н	2.804001	0.764683	-3.338058
Н	0.343388	1.522151	-4.994205
Н	1.499585	2.618717	-4.223747
Н	-0.967669	1.743451	-3.063804

[H-^{Me}1*-thf]_{anti}

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy):

1855.2126 kJ/mol 249.7951 kJ/mol -9085842.1888 kJ/mol -9083984.4973 kJ/mol -9084234.2924 kJ/mol -81.88 kJ/mol -73.67 kJ/mol

XV7	charge: 0, n	nultiplicity: 1	
N	1.924156	-0.203707	0.725066
С	2.523975	2.247512	0.798392
Č	2.490863	2.383058	2.347855
H	1.711359	1.742186	2.769135
Н	2.282247	3.420904	2.632144
Н	3.454625	2.076510	2.768969
С	3.635198	3.163337	0.272570
Н	4.597274	2.869895	0.700668
Н	3.447173	4.198795	0.569301
Н	3.712296	3.120075	-0.818812
Ν	0.018375	1.977144	0.490817
С	-1.036628	2.821124	0.148984
С	1.186212	2.704898	0.278775
С	-0.538999	4.027533	-0.297561
Н	-1.116954	4.887418	-0.609262
С	0.870185	3.952702	-0.218739
Н	1.565337	4.743615	-0.460081
С	-2.496996	2.504925	0.362682
С	-3.174476	3.680133	1.090972
Н	-2.727185	3.844624	2.076851
Н	-4.250807	3.511835	1.205796
Н	-3.047000	4.598510	0.514170
С	-3.207995	2.273143	-0.982201
Н	-4.272638	2.045249	-0.855362
Н	-2.738409	1.464539	-1.547849
Н	-3.121366	3.184857	-1.580262
Ν	-2.013031	0.103073	0.603228
С	-2.950859	-0.773039	0.374697
С	-2.600769	1.248867	1.290278
С	-4.209730	-0.361873	0.991556

Н	-5.127902	-0.931737	0.982558
С	-3.998880	0.830790	1.569271
Н	-4.717053	1.423799	2.120496
С	-2.776151	-1.972427	-0.506757
С	-3.852631	-3.025676	-0.172922
Н	-3.714725	-3.903174	-0.805815
Н	-4.859711	-2.641478	-0.366237
Н	-3.779294	-3.347971	0.870188
С	-3.025842	-1.477821	-1.961203
Н	-2.978885	-2.341514	-2.631264
Н	-2.256647	-0.762106	-2.259206
Н	-4.011975	-1.007789	-2.060720
Ν	-0.319154	-1.997076	0.262939
С	0.695081	-2.941774	0.276912
С	-1.404585	-2.591449	-0.368003
С	0.269456	-4.091872	-0.354350
н	0.834151	-5.004677	-0.477203
С	-1.064550	-3.868437	-0.766713
Ĥ	-1.705143	-4.585096	-1.262304
С	1.974630	-2.705448	1.030709
C	1.653262	-2.655040	2.547699
H	2.571964	-2.488238	3.120935
н	1.193728	-3.597809	2.865564
н	0.957824	-1.841099	2.771414
С	2.946627	-3.864666	0.790711
н	3.207760	-3.953878	-0.268694
н	2.499939	-4.806834	1.121790
Н	3.864205	-3.707823	1.364885
С	2.841232	0.812975	0.478032
С	2.615618	-1.405365	0.630720
С	4.072646	0.256894	0.208535
Ĥ	4.988743	0.792174	0.003152
С	3.929642	-1.151890	0.307586
н	4.712643	-1.886154	0.182190
Ga	0.035486	-0.025078	0.257956
н	-2.034166	1.478042	2.204961
0	0.039452	0.034694	-1.821563
С	1.793766	1.097377	-3.027767
С	2.084412	-0.419209	-2.899626
С	0.733883	-1.031411	-2.553823
Н	2.488980	-0.852356	-3.818817
Н	0.128273	-1.245426	-3.444930
С	0.336123	1.249310	-2.587372
Н	1.927689	1.467750	-4.048359
Н	-0.353597	1.250112	-3.442298
н	2.794139	-0.601604	-2.086892
н	0.139539	2.112183	-1.951735
н	0.776915	-1.914930	-1.914946
н	2.451158	1.665014	-2.364930

[H-Me1*-thf]_{syn}

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy):

xyz, charge: 0, multiplicity: 1 1.845960 -0.733073 0.349844 Ν 1.212603 -2.920997 1.355390 1.707200 -4.369806 1.360524 С С Н 2.738433 -4.406456 1.724552 Н 1.679813 -4.805516 0.356844 1.088835-4.9818592.0242121.281696-2.3805482.8047212.314703-2.4147913.167509 Н С н $0.646308 \ -2.983913 \ \ 3.462766$ Н 0.940437 -1.342688 2.855530 -0.912689 -1.662079 0.770235 Н Ν

1853.8786 kJ/mol 251.5532 kJ/mol -9085844.7664 kJ/mol -9083988.4089 kJ/mol -9084239.9621 kJ/mol -94.00 kJ/mol -83.86 kJ/mol

С	-2.206570	-1.992931	0.345543
C	-0.214581	-2.860270	0.871268
C	-2.289603	-3.359328	0.170950
Н	-3.166731	-3.918309	-0.121897
C	-1.030938	-3.908290	0.508298
Н	-0.765097	-4.955238	0.500332
C	-3.371134	-1.037965	0.351337
C	-4.598697	-1.688726	-0.298733
н	-4.405365	-1.963763	-1.341249
н	-5.459617	-1.014904	-0.262806
	-4.8/3180	-2.394377	0.240402
L L	-3.7 19024	-0.050490	1.001700
	2 079077	1 569162	2.311001
н	-4 572604	0.03102	1 8/50/7
N	-4.372004	0.001020	0 120403
C	-2 225715	2 103420	0.120400
č	-3 012323	0 242805	-0 482403
č	-3 594576	2 395538	0.088433
н	-4 110228	3 332133	0.250568
c	-4.068663	1.291376	-0.514743
Ĥ	-5.053323	1.155778	-0.943791
C	-1.285690	2.995874	1.258819
C	-1.850556	4.414060	1.380509
н	-1.134608	5.047599	1.910621
н	-2.784402	4.410150	1.952316
н	-2.039870	4.859713	0.398925
С	-1.115049	2.409207	2.681095
Н	-2.076847	2.371326	3.206106
н	-0.423906	3.041455	3.246447
Н	-0.700499	1.397091	2.652025
Ν	0.757782	1.840813	0.355213
С	1.919800	2.189694	-0.326800
С	0.022830	3.000339	0.515715
С	1.887691	3.546033	-0.599015
H	2.662802	4.119583	-1.087330
C	0.685094	4.062065	-0.063446
Н	0.363847	5.093979	-0.080752
C	3.125086	1.289595	-0.489241
С Ц	3.877196	1.053472	-1.779488
	4.775000	1.039400	-1.0030000
п	4.190001	2.090001	2 662453
Ċ	1 063673	1.5862/1	0 718600
й	4.005075	0.085025	0.710033
н	3 558875	1 326934	1 654166
н	4.325374	2.649748	0.745916
C	2.094368	-2.083142	0.470180
C	2.841712	-0.193276	-0.454004
С	3.223702	-2.411375	-0.250888
Н	3.676480	-3.389740	-0.331883
С	3.694870	-1.210699	-0.844433
Н	4.599080	-1.104552	-1.428340
Ga	0.033671	0.003072	0.232063
Н	-2.749087	-0.105832	-1.492228
0	-0.188596	-0.303071	-1.790936
С	0.160074	-1.419176	-3.821073
С	0.683314	0.014116	-3.970351
С	0.032614	0.739870	-2.799471
Н	1.773007	0.022572	-3.860624
Н	0.652638	1.527457	-2.357351
C	0.219061	-1.617234	-2.319509
H	0.774832	-2.152541	-4.349582
H U	1.236/01	-1.826182	-1.9/0231
п	0.423513	0.4/31/6	-4.928108
	-0.402297	-2.330009	-1.909360
Н	-0.900100	1.140303	-3.000201
11	-0.011110	-1.400004	-+.100010

<u>TS-2</u>

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy): 1848.2505 kJ/mol 250.1719 kJ/mol -9085753.3809 kJ/mol -9083902.6515 kJ/mol -9084152.8234 kJ/mol -81.88 kJ/mol -73.67 kJ/mol

xyz,	charge: 0, n	nuitiplicity: 1	
Ν	1.858244	-0.075700	0.863548
С	2.232627	2.320791	1.517870
č	1 6962/1	2 096904	2 052210
	1.000341	2.000004	2.952310
н	0.847839	1.383509	2.946461
н	1.344601	3.031429	3.389852
н	2 476942	1 662561	3 580236
	2.200404	2.244726	1 606002
U.	3.399494	3.311/30	1.000993
н	4.209037	2.874149	2.197949
н	3.086199	4.234338	2.103284
н	3 787152	3 562889	0 614773
N	0.111645	0.002000	0.014770
IN O	0.111045	2.151500	0.173330
С	-0.879274	3.039315	-0.261928
С	1.108524	2.907290	0.699917
С	-0 447698	4 355552	-0 012084
ŭ	0.004220	5 256702	0.252005
	-0.994220	5.250702	-0.255905
C	0.816718	4.275127	0.552578
н	1.450446	5.099227	0.844898
С	-2 203105	2 665672	-0 606892
č	3 246453	3 75/381	0.552461
	-3.240433	3.734301	-0.552401
н	-3.197673	4.328673	0.374728
н	-4.246032	3.325448	-0.654994
н	-3.095315	4.447785	-1.391658
C	-2 546458	1 578657	-1 566131
ŭ	2.010100	1 001000	1.000101
	-3.410141	1.001009	-1.223291
н	-1.719260	0.907346	-1.783548
Н	-2.847384	2.064055	-2.505910
Ν	-1.896420	0.310222	0.901707
С	-2 932810	-0 532369	0 678194
č	2.002010	1 501016	1 2/2665
č	-2.442201	1.521010	1.040000
C	-4.145467	0.098167	1.049735
н	-5.132418	-0.337078	0.975684
С	-3.828678	1.367609	1.501154
н	-4.505846	2.120544	1.881611
С	-2 862608	-1 928603	0 115161
č	2 202700	2 070050	1 007670
	-3.393709	-2.070002	1.22/0/0
н	-3.411850	-3.905378	0.851048
Н	-4.404267	-2.597850	1.543391
Н	-2.732375	-2.842915	2.098382
С	-3 809900	-2 029717	-1 102545
ŭ	2 926647	2 050020	1 470522
	-3.030047	-3.030020	-1.470333
н	-3.461289	-1.388276	-1.91/569
н	-4.831424	-1.740752	-0.837959
Ν	-0.305806	-1.856916	0.182292
С	0.716291	-2.728805	-0.150647
Ĉ	_1 488999	-2 412140	-0 276106
č	0.106160	2.412140	0.016462
	0.100102	-3.010011	-0.010403
н	0.728258	-4.679299	-1.180563
С	-1.212263	-3.616027	-0.899755
н	-1.931124	-4.304054	-1.324495
C	2 100613	-2 564235	0 426226
č	2.100010	2.004200	1 020467
	2.020594	-2.990100	1.920407
н	3.014175	-2.900448	2.387013
Н	1.679449	-4.026556	1.998584
Н	1.327070	-2.347595	2.461829
С	3.083886	-3.501758	-0.282770
й	3 101/21	-3 2/08/9	_1 3/291/
11	0.101401	4 526005	0.005070
н	2.740458	-4.536905	-0.205370
Н	4.068461	-3.44/831	0.190065
С	2.709014	1.015064	0.951821
С	2.615424	-1.146405	0.392033
Ċ	3,973020	0.649697	0.543958
Ĥ	4.851472	1.279011	0.523883
			0.020000

С	3.911113	-0.721530	0.184005
Н	4.741213	-1.332161	-0.141472
Ga	0.007086	0.087042	0.280369
Н	-1.817599	2.243102	1.850446
0	0.387681	0.176514	-1.819744
С	2.012127	0.386128	-3.557872
С	1.539361	-1.064774	-3.435503
С	0.178678	-0.892068	-2.796437
Н	1.488197	-1.587993	-4.394461
Н	-0.569008	-0.540831	-3.523716
С	1.520901	1.017117	-2.258503
Н	1.548130	0.865398	-4.427752
Н	1.153798	2.041486	-2.370252
Н	2.187398	-1.625715	-2.752766
Н	2.278576	0.979082	-1.470886
Н	-0.194262	-1.770261	-2.270207
Н	3.097695	0.476402	-3.651660

[^{Et}1-thf]⁻

Total correction: Final entropy term: Final single point energy: Final enthalpy: Final Gibbs free enthalpy: COSMO-RS correction (CH₂Cl₂, enthalpy): COSMO-RS correction (CH₂Cl₂, Gibbs free energy):

xyz, charge: -1, multiplicity: 1					
Ga	0.019631	0.020973	0.129704		
0	-0.002949	0.256230	-1.914545		
Ν	1.596651	-1.242224	0.146994		
Ν	-1.284454	-1.518153	0.088304		
Ν	1.296831	1.501318	0.511089		
Ν	-1.525102	1.229958	0.461384		
С	-0.923385	-2.850480	0.098046		
С	1.490561	-2.619379	0.141718		
С	1.031236	2.644109	1.242631		
С	2.653170	1.499517	0.218767		
С	-3.619941	2.055889	0.516326		
Н	-4.684031	2.173774	0.364486		
С	-1.496622	2.427007	1.152028		
С	2.204761	3.358851	1.409409		
Н	2.321043	4.293884	1.939900		
С	3.225824	2.639987	0.756331		
Н	4.264159	2.933444	0.683871		
С	-2.776435	2.952727	1.200542		
Н	-3.078686	3.875837	1.675529		
С	-3.492322	0.157369	-2.230409		
Н	-3.867965	-0.742644	-2.735958		
Н	-2.484611	0.322694	-2.620873		
С	-1.851295	-3.592494	-0.605537		
Н	-1.842292	-4.662765	-0.759029		
C	-2.837495	1.000434	0.075426		
C	2.760369	-0.920270	-0.531268		
С	-3.341313	-0.186827	-0.713366		
C	-2.474967	-1.423715	-0.612671		
С	-0.298372	2.389666	3.349958		
Н	0.524455	2.873962	3.894884		
Н	-1.242238	2.699128	3.820718		
C	0.323021	-3.289263	0.820241		
C	2.548053	-3.165334	-0.559466		
Н	2.741500	-4.216370	-0.725512		
С	0.192364	1.205253	-4.066003		
н	1.258973	1.3248/1	-4.284216		
Н	-0.369613	1.859013	-4.739639		
C	3.404354	0.875461	-2.119661		
н	2.377313	0.811874	-2.485253		
Н	3.967585	0.103071	-2.6613/3		
C	0.450974	-4.823672	0.740662		
н	-0.514664	-5.261250	1.021116		
Н	0.615594	-5.095232	-0.309219		

2443.1009 kJ/mol 309.2535 kJ/mol -9909082.7783 kJ/mol -9906637.1984 kJ/mol -9906946.4519 kJ/mol -206.33 kJ/mol -197.52 kJ/mol

С	-0.218360	-0.270756	-4.198672	
Н	0.313132	-0.779862	-5.007923	
Н	-1.293809	-0.355676	-4.386751	
С	3.369556	0.462872	-0.612693	
С	-0.091084	1.533658	-2.602125	
н	0.638246	2.209497	-2.143454	
н	-1.097778	1.935749	-2.438363	
С	-0.293756	2.958539	1.890342	
С	-2.832535	-2.681867	-1.068681	
Н	-3.734799	-2.934704	-1.611193	
С	-4.748007	-0.572131	-0.159313	
н	-5.169365	-1.345218	-0.815142	
Н	-5.417421	0.292348	-0.230856	
С	0.127304	-0.866539	-2.839257	
н	-0.568702	-1.642839	-2.504367	
н	1.160025	-1.233101	-2.774376	
С	3.352267	-2.083505	-0.993561	
н	4.295259	-2.157862	-1.520474	
С	-0.429348	4.497497	2.035607	
Ĥ	0.394827	4.852086	2.666287	
н	-1.344449	4,705637	2.603415	
C	4.839343	0.351286	-0.107010	
Ĥ	5.379129	-0.311144	-0.795830	
Н	5.324803	1.331201	-0.180667	
C	0.255711	-2.831223	2.304695	
Ĥ	0.217640	-1.738312	2.327290	
н	1.198715	-3.101622	2.796760	
C	3,969051	2.255971	-2.444460	
Ĥ	5.029963	2.337389	-2.183572	
н	3.879724	2,460305	-3.518721	
н	3 432192	3 036542	-1 895764	
c	4 968136	-0 178180	1 318482	
н	4 450156	0 481212	2 021809	
н	4 524749	-1 176337	1 396205	
н	6 021741	-0 242638	1 615844	
C	-4 722099	-1 076974	1 280221	
н	-4 123340	-1 990784	1 354654	
н	-4 279792	-0.323401	1 940216	
н	-5 735675	-1 297077	1.635862	
Ċ	-4 370930	1 353423	-2 588121	
н	-4 361269	1 517538	-3 672676	
н	-5 413783	1 199845	-2 289850	
н	-4 013755	2 263831	-2 096661	
c	1 545400	-5 437084	1 616989	
й	1 280795	-5 395069	2 679066	
н	1 693802	-6 492214	1 358754	
н	2 400048	-4 917631	1 491764	
Ċ	-0.940505	-3 375954	3 079935	
й	-0.906568	-4 466838	3 181673	
н	-0.900000	-2 948296	4 088437	
н	-0.07 1070	-3 116561	2 569885	
Ċ	-0 148598	0 877052	3 453000	
й	-0 977030	0.364618	2 949777	
н	0.707643	0 547766	3 007300	
н	-0 149663	0.554200	4 500584	
Ċ	-0 444603	5 270101	0 724303	
й	-1 282326	4 963216	0 004872	
н	-0 543288	6 354698	0 915786	
н	0.482000	5.112698	0.166268	
H H	-1.282326 -0.543288	4.963216 6.354698	0.094872 0.915786	
н	0.482000	5.112698	0.166268	

S12. References

- Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I., NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29 (9), 2176-2179.
- 2. Bruker TopSpin 4.0.7, 2019, https://www.bruker.com/products/mr/nmr/software/topspin.html.
- 3. Mestrelab Research S.L. MestReNova v14.0.1-23559, 2019, https://mestrelab.com/.
- 4. OriginPro 64-bit, Version 2020, OriginLab Corporation, Northampton, MA, USA.
- 5. Neese, F., The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2 (1), 73-78.
- 6. Neese, F., Software update: the ORCA program system, version 4.0. *Wiley Interdiscip. Rev. Comput. Mol. Sci.* 2018, 8 (1), e1327.
- 7. Baeyer, A., Ueber ein Condensationsproduct von Pyrrol mit Aceton. Ber. Dtsch. Chem. Ges. 1886, 19 (2), 2184-2185.
- 8. Depraetere, S.; Smet, M.; Dehaen, W., N-Confused Calix[4]pyrroles. Angew. Chem. Int. Ed. 1999, 38 (22), 3359-3361.
- 9. Transue, W. J.; Dai, Y.; Riu, M.-L. Y.; Wu, G.; Cummins, C. C., 31P NMR Chemical Shift Tensors: Windows into Ruthenium Phosphinidene Complex Electronic Structures. *Inorg. Chem.* **2021**, *60* (13), 9254-9258.
- 10. Maelia, L. E.; Koch, S. A., Gallium Analogues of Iron-Sulfide-Thiolate Compounds. Analysis of the Structural Parameters in Gallium(III) and Iron(III) Chalcogenide Compounds. *ChemInform* **1986**, *17*.
- 11. Jacoby, D.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C., Zirconium meso-octaethylporphyrinogen as a carrier for sodium hydride in toluene: zirconium-sodium bimetallic hydride and alkyls. J. Am. Chem. Soc. **1993**, *115* (9), 3595-3602.
- 12. APEX3, Bruker AXS Inc., Madison, Wisconsin, USA, <u>https://www.bruker.com/content/bruker/int/en/products-and-solutions/diffractometers-and-scattering-systems/single-crystal-x-ray-diffractometers/sc-xrd-software/apex3-proteum3.html.</u>
- Otwinowski, Z.; Minor, W., Processing of X-ray diffraction data collected in oscillation mode. *Methods Enzymol.* 1997, 276, 307-26.
- 14. SAINT, Bruker AXS GmbH, Karlsruhe, Germany, 2016.
- 15. Sheldrick, G. M., SADABS, Bruker AXS GmbH, Karlsruhe, Germany, 2016.
- 16. Sheldrick, G. M., SHELXT, Program for Crystal Structure Solution, University of Göttingen, Germany, 2014.
- 17. Sheldrick, G. M., SHELXT Integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, (71), 3-8.
- 18. Robinson, W.; Sheldrick, G. M., Crystallographic Computing 4. Isaaks, N. W.; Taylor, M. R., Eds. Ch. 22, IUCr and Oxford University Press, Oxford, UK, 1988.
- 19. Sheldrick, G. M., A short history of SHELX. Acta Crystallogr. A 2008, 64 (1), 112-122.
- 20. Sheldrick, G. M., SHELXL-20xx, University of Göttingen and Bruker AXS GmbH, Karlsruhe, Germany, 2012.
- 21. Sheldrick, G. M., Crystal structure refinement withSHELXL. Acta Crystallogr. C 2015, 71 (1), 3-8.
- 22. Hubschle, C. B.; Sheldrick, G. M.; Dittrich, B., ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44 (6), 1281-1284.
- 23. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **2009**, *42* (2), 339-341.
- Bruno, I. J.; Cole, J. C.; Edgington, P. R.; Kessler, M.; Macrae, C. F.; McCabe, P.; Pearson, J.; Taylor, R., New software for searching the Cambridge Structural Database and visualizing crystal structures. *Acta Crystallogr. B* 2002, 58 (3 Part 1), 389-397.
- 25. Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; van de Streek, J., Mercury: visualization and analysis of crystal structures. *J. Appl. Crystallogr.* **2006**, *39* (3), 453-457.

- Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A., Mercury 4.0: from visualization to analysis, design and prediction. *J. Appl. Crystallogr.* 2020, 53 (1), 226-235.
- 27. Andrienko, G. A. https://www.chemcraftprog.com.
- 28. Pracht, P.; Bohle, F.; Grimme, S., Automated exploration of the low-energy chemical space with fast quantum chemical methods. *Phys. Chem. Chem. Phys.* **2020**, *22* (14), 7169-7192.
- 29. Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, S.; Grimme, S., Extended tight-binding quantum chemistry methods. *Wiley Interdiscip. Rev. Comput. Mol. Sci.* **2021**, *11* (2), e1493.
- 30. Grimme, S.; Hansen, A.; Ehlert, S.; Mewes, J.-M., r2SCAN-3c: A "Swiss army knife" composite electronic-structure method. J. Chem. Phys. **2021**, *154* (6), 064103.
- 31. Stoychev, G. L.; Auer, A. A.; Neese, F., Automatic Generation of Auxiliary Basis Sets. J. Chem. Theory Comput. 2017, 13 (2), 554-562.
- 32. Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U., Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A 'chain-of-spheres' algorithm for the Hartree–Fock exchange. *Chem. Phys.* **2009**, *356* (1), 98-109.
- 33. Neese, F., An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. *J. Comput. Chem.* **2003**, *24* (14), 1740-1747.
- 34. Kozuch, S.; Martin, J. M. L., DSD-PBEP86: in search of the best double-hybrid DFT with spin-component scaled MP2 and dispersion corrections. *Phys. Chem. Chem. Phys.* **2011**, *13* (45), 20104-20107.
- 35. Kozuch, S.; Martin, J. M. L., Spin-component-scaled double hybrids: An extensive search for the best fifth-rung functionals blending DFT and perturbation theory. *J. Comput. Chem.* **2013**, *34* (27), 2327-2344.
- 36. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, *132* (15).
- 37. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the Damping Function in Dispersion Corrected Density Functional Theory. *J. Comput. Chem.* **2011**, *32* (7), 1456-1465.
- 38. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7* (18), 3297-3305.
- 39. Grimme, S., Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. *Chem. Eur. J.* **2012**, *18* (32), 9955-9964.
- 40. Klamt, A., Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. **1995**, *99* (7), 2224-2235.
- 41. Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J. C. W., Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A **1998**, 102 (26), 5074-5085.
- 42. Klamt, A., COSMO-RS From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design. Elsevier Science Amsterdam, 2005.
- 43. Pye, C. C.; Ziegler, T.; van Lenthe, E.; Louwen, J. N., An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package Part II. COSMO for real solvents. *Can. J. Chem.* **2009**, *87* (7), 790-797.
- Baerends, E. J.; Ziegler, T.; Atkins, A. J.; Autschbach, J.; Bashford, D.; Baseggio, O.; Brces, A.; Bickelhaupt, F. M.; Bo, C.; Boerritger, P. M.; Cavallo, L.; Daul, C.; Chong, D. P.; Chulhai, D. V.; Deng, L.; Dickson, R. M.; Dieterich, J. M.; Ellis, D. E.; van Faassen, M.; Ghysels, A.; Giammona, A.; van Gisbergen, S. J. A.; Goez, A.; Gtz, A. W.; Gusarov, S.; Harris, F. E.; van den Hoek, P.; Hu, Z.; Jacob, C. R.; Jacobsen, H.; Jensen, L.; Joubert, L.; Kaminski, J. W.; van Kessel, G.; Knig, C.; Kootstra, F.; Kovalenko, A.; Krykunov, M.; van Lenthe, E.; McCormack, D. A.; Michalak, A. M., M.; Morton, S. M.; Neugebauer, J.; Nicu, V. P.; Noodleman, L.; Osinga, V. P.; Patchkovskii, S.; Pavanello, M.; Peeples, C. A.; Philipsen, P. H. T.; Post, D.; Pye, C. C.; Ramanantoanina, H.; Ramos, P.; Ravenek, W.; Rodrguez, J. I.; Ros, P.; Rger, R.; Schipper, P. R. T.; Schlns, D.; van Schoot, H.; Schreckenbach, G.; Seldenthuis, J. S.; Seth, M.; Snijders, J. G. SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, <u>https://www.scm.com</u>.
- 45. Glendening, E. D.; Landis, C. R.; Weinhold, F., NBO 6.0: Natural bond orbital analysis program. J. Comput. Chem. 2013, 34 (16), 1429-1437.
- 46. Erdmann, P.; Leitner, J.; Schwarz, J.; Greb, L., An Extensive Set of Accurate Fluoride Ion Affinities for p-Block Element Lewis Acids and Basic Design Principles for Strong Fluoride Ion Acceptors. *ChemPhysChem* **2020**, *21* (10), 987-994.

47. Ebner, F.; Sigmund, L. M.; Greb, L., Metal–Ligand Cooperativity of the Calix[4]pyrrolato Aluminate: Triggerable C–C Bond Formation and Rate Control in Catalysis. *Angew. Chem. Int. Ed.* **2020**, *59* (39), 17118-17124.