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Supplementary Text

1. Single-molecule FRET measurement

The single-molecule fluorescence resonance energy transfer (smFRET) data of SHP2 were taken in 
Dr. Cong Liu’s group.1,2 Detailed sample preparation and data analysis are described below. Through 
an engineered tRNA/aminoacyl-tRNA synthetase system, an E76A mutant of SHP2 with two Azido-p-
Phe incorporated at Q87/K266 was produced. The expressed protein was concentrated to 5 μM in 
labeling buffer (500 mM NaCl, 50 mM HEPES, 0.1mM TECP, 5% glycerol at PH 7.5). Then, a 
mixture of Sulfo-alkyne-Cy3 and Sulfo-alkyne-Cy5 (lumiprobe) 1:1.2 (cy3/cy5) was added into the 
protein solution with the ratio of 40:1 (dyes/protein). Adding 1.5 mM Tris and 300 μM CuSO4 into the 
solution, the FRET pair of dye molecules (Cy3 and Cy5) were conjugated to Azido-SHP2 87/266 via a 
click reaction.3 4 mM sodium ascorbate was added into the reaction mixture and followed by 30 ℃ for 
40 min. The fluorescently labeled protein was isolated by desalting column (Sephadex-G25, GE 
healthcare) using the isolation buffer (50 mM HEPES, 500 mM NaCl, 0.5 mM TCEP, and 5% glycerol, 
pH 7.5) to remove the free dyes and reduce hydrophobic binding of the fluorophores to SHP2. The 
dual-labeling efficiency was measured as 39.9 % for SHP2. More detailed protocols can be found in 
Ref. 1,2,4. The preparation of donor-only labeled SHP2 follows the same procedure described above, 
except the labeling reaction included only one dye molecule (Cy3).  

The control experiments used donor-only labeled protein, and single-stranded DNA (ssDNA, dT50) 
oligonucleotides (sequences in Supplementary Table 1) purchased from Sangon Biotech Co., Ltd 
(Shanghai, China). We used the T50 buffer (50mM NaCl, 10mM Tris-Cl at PH 8.0) for the smFRET 
experiment on the ssDNA experiment. All single-molecule studies were repeated at least three times, 
and no significant difference was shown among these experiments. The results for the two controls are 
presented in Fig. 1h-k and Fig. S1. 

We used prism-type total internal reflection fluorescence (TIRF) microscopy for measurement as 
described previously.1,2 Data were recorded with a time resolution of 100 ms for all cases (SHP2, 
Donor only, and ssDNA). The coverslip was coated with polyethylene glycol and biotinylated PEG 
(mPEG-SVA and Biotin-PEG-SVA, molar ratio 97∶3). Then, fluorescently labeled and 1D4 tagged 
proteins were immobilized via a biotinylated antibody (Fab-biotin, anti-1D4tag) attached through 
neutravidin to the passivated quartz slides (see Fig. 1a in the main text). This immobilization scheme 
has been reported for other proteins in studies of their dynamics and functions.5 The biotinylated 
ssDNA was directly immobilized through neutravidin to the coverslips. The smFRET experiments 
were performed at room temperature of 25 ℃. The protein sample was prepared in a working buffer 
(500 mM NaCl, 50 mM HEPES, 2mM TECP, 5% glycerol at PH 7.5). The experiment was incubated 
for 10 min before image acquisition started. Subsequent single-molecule videos were measured in 
imaging solution (75 mM NaCl, 75 mM KCl, 50 mM HEPES, 0.5 mM TCEP at pH 7.5) for protein, 
and T50 buffer for ssDNA. An enzymatic deoxygenation system (0.625% wt/vol glucose, 0.8 mg/ml 
glucose oxidase, 0.03 mg/ml catalase, 3 mM Trolox) was added into the buffer to alleviate the 
fluorescent photobleaching and blinking.1

Preprocessing of all single-molecule videos was performed with the iSMS package using the 
program’s default settings.6 Cy3 and Cy5 spots were detected using the intensity threshold of 100, and 
a 2-D Gaussian function fitting was used to identify the fluorescent spots on the EMCCD. The 
background signal, which was the average intensity of all pixels with a 2-pixel distance to the 
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fluorescent spot, was subtracted. We removed the blinking traces (due to the oxygen scavenger system, 
few blinking traces were observed) or the trajectories that showed a sudden multilevel drop from the 
analysis. Next, only the single-molecule trajectories with the anti-correlated fluorescence intensities 
between Cy3 and Cy5 confirming energy transfer between the two dyes were selected for further 
analysis. Additional examples of single-molecule traces of SHP2 are provided in Fig. S2. The FRET 
efficiency, EFRET, was calculated via the following equation:7

   .                                                     (1) 
 60
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1E = I I +I =

1+ R / R

Here, ID and IA represent the raw data of donor and acceptor fluorescence intensities, respectively, 
where R is the inter-dye distance, and R0 is the characteristic distance at which EFRET = 0.5, R0 = 5 nm 
for a Cy3/Cy5 pair.7 As EFRET is closely related to the inter-dyes distance, the temporal evolution of 
EFRET can be used to monitor the distance fluctuation between the two labeled residues and thus 
between the two domains N-SH2 and PTP in SHP2 (see Fig. 1a in the main text). Further analysis 
of EFRET state sequences was performed using four-state hidden Markov models.8 

2. All-atom molecular dynamics (MD) simulations

The crystal structure of SHP2 with the E76A mutation can be found in the PDB data bank file 
5XZR4. The molecular mass of this multi-domain phosphatase is about 64.24 kD with ~530 residues, 
and the corresponding Rg is about 2.7 nm (Fig. S4a). All SHP2 simulations were carried out using 
GROMACS (Version 2016.3) with the CHARMM27 force field for this enzyme.9,10 The system was 
solvated in a rectangular water box (edge lengths 8.5×9.5×10.5 nm3) with periodic boundary conditions 
(PBC), leading to a total system size of about 83,000 atoms with a single SHP2 protein molecule and 
~25,000 water molecules. 77 Na+ and Cl- ions were added to mimic the experimental conditions. All 
simulations were carried out using the TIP3P water model 11 in the NVT ensemble using a Nośe-
Hoover thermostat at 300 K.12 The pressure coupling was performed using the Parrinello-Rahman 
algorithm with a coupling time of τ = 2 ps.13 Van der Waals interactions (VdW) were truncated at 1.0 
nm, with the LJ potential switched to zero gradually from 1.0 nm to 1.2 nm. The short-range 
electrostatic interactions within the cut-off distance of rc = 10 Å were treated as Coulombic.14,15 All 
bonds involving hydrogen atoms were constrained with the LINCS algorithm to allow a time step of 2 
fs.16 The system was first energy minimized using steepest descent steps with a maximum force of 10.0 
kJ⋅mol-1⋅nm-1 and a maximum of 5×106 steps, then equilibrated in the NVT ensemble at 300 K for 10 
ns, and then in the NPT ensemble at p = 1 bar for 10 ns. Then using the final structure of the protein 
molecule is obtained in the NPT equilibration as the starting structure. We performed 100 independent 
MD simulations with each being 100 ns long. One microsecond-long simulation was performed to 
produce the conformational transition cluster network (Fig. 5a). 

The single-stranded DNA (ssDNA) studied here is polyadenylic acid with 40 monomers of 
thymine (poly dT40, Fig. S4b), and its radius of gyration (Rg) is about 3.2 nm. The starting configuration 
for the MD study is generated by the x3dna module (http://web.x3dna.org). The GROMACS (version 
2016.3) tools package,17 was used in conjunction with the AMBER99SB-ILDN 96 force field to model 
ssDNA dynamics.18 ssDNA was solvated in a periodic box of dimensions 15.5×15.5×15.6 nm3 at 300 
K temperature and 1 bar pressure in an aqueous solution. This contained approximately 168,000 TIP3P 
models water molecules with the appropriate amount of Na+ counterions to neutralize the negative 
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phosphate charges,11 and the total system size was about 504,000 atoms. Periodic boundary conditions 
(PBC) were applied in all dimensions with long-range electrostatic interactions characterized by 
Particle Mesh Ewald (PME) method.14,15 The pressure/temperature coupling was performed using the 
Parrinello-Rahman algorithm,13 and Nosé-Hoover methods,19 respectively. MD simulation was carried 
out using the leap-frog algorithm for integrating Newton's equation of motion for 100 ns at constant 
temperature (300 K) and pressure (1 bar). Van der Waals interaction was truncated at 1.2 nm, with the 
LJ potential switched to zero gradually at 1.0 nm.15 The short-range electrostatic interactions within the 
cut-off distance of rc = 12 Å were treated as Coulombic.14,15 Following that, 10 independent 100 ns 
long and one 1μs long simulations were produced with a time step of 2 fs integration, and the 
coordinates of the system coordinates were saved at every 1 ps. The energy minimization, NVT, and 
NPT preparation follow the same procedure as protein. One 1 μs simulation were used to generate the 
transition network (Fig. 5b). We used the end-to-end distance of ssDNA to characterize its internal 
dynamics (Fig. 4b-d).  

3. The experimental and simulation protein inter-domain distance x(t) distributions

 We plot the simulation and experimental inter-domain distance distributions P(x) in Fig. S5. The 
mean values and standard deviations of measured x(t) are displayed in the insert. P(x) of the experiment 
(Fig. S5b) is much broader than that of the simulation data (Fig. S5a), where the width of the 
distribution is 0.68 in the experiment, about three times that in the simulation (s.d. = 0.19). And the 
average distance in the protein SHP2 obtained experimentally is 4.91 nm, much larger than the 
simulation's x(t) (mean = 2.49). We note that the time scale of the smFRET experiment is much longer 
(~ 100 s) than that accessed by the MD (~ 1 μs), and thus the conformational space explored by the 
experiment is expected to be much broader. Moreover, the distance measured in MD is the neat 
distance between the two residues of the protein, while the x(t) in the experiment is between the two 
labeled dye molecules, whose size is ~ 1 nm. The latter will significantly enlarge the absolute distance 
and its flexibility measured by experiment compared to MD. 

4. Definition of different types of mean-squared displacement

Given that the distance between the two selected residues (Q87 and K266) in the protein varies 
with time as x, one can calculate the corresponding time-averaged mean-square displacement (TA-
MSD) for a given kth trajectory as:20
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where Δ is the lag-time, and overline “-” denotes the time average over the observation time, t. If more 
than one trajectory is available, one can derive the time-ensemble-averaged mean-squared displacement 
(TEA-MSD) as:20
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where N is the number of the simulation trajectories, and the bracket ⟨ ⟩ corresponds to the ensemble 
average. Note that we use overlines throughout the paper to represent time averages and brackets ⟨ ⟩ to 
indicate averages over an ensemble of trajectories. 
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Moreover, one can also calculate the ensemble-averaged mean-square displacement (EA-MSD) 
without time averaging as: 

.                                                    (4)      20k k
2 x x   

Fig. 3b in the main text compares TEA-MSD with the EA-MSD for the inter-domain motions in SHP2. 

When we examined the TEA-MSD at a shorter timescale, as shown in Fig. S6, the crossover 
behavior emerged for these two systems of protein SHP2 and ssDNA. The high power-law exponent, αt 
> 1, at a short time scale is often attributed to the ballistic motion of the atoms. 

5. Different subdiffusive models and their (non-)ergodic or aging behavior

The subdiffusive motion can be attributed to either a non-ergodic scenario,20,21 which means 
that the time-averaged dynamics of a single-molecule are not equivalent to the ensemble-averaged 
motions, or the ergodic scenario.20,21 The most popular non-ergodic model is the continuous-time 
random walk (CTRW),22 where the particle is trapped by energy basins that obey a power-law 
distribution of waiting times without a finite mean. Fractional Brownian motion (FBM),23 where 
subjective movements of the particle are anti-correlated, and random walk on a fractal structure 
(RWF),24 are two popular models for the ergodic scenario.20,21 CTRW can be separated from FBM and 
RWF by examining the ergodicity and aging phenomenon.21 Aging means the effective mobility of the 
studied particle moves slower when observed longer21, which is a typical feature for CTRW, but not for 
the FBM or RWF. The difference between FBM and RWF can be separated by characterizing the 
Gaussianity of the displacement, as it is the feature of FBM.21 

6. The simulation and experimental waiting-time distributions of protein conformational states

We found our observed aging behavior has been reported in various biological components.25-30 
These studies have been commonly modeled with the continuous-time random walk (CTRW) 
framework to elucidate non-ergodic parts, sometimes mixed with ergodic models. Thus, we have 
evaluated the simulation and experimental waiting-time distributions, and displayed these results in 
Fig. S7. 

For MD simulation, since all conformational states in the conformational cluster transition network 
(CCTN) can be identified, one can quickly determine the trapping time τ of each state, i.e., the duration 
of the protein molecule staying at one state before jumping out. Fig. S7a presents the distribution of 
waiting times, P(τ), for the protein molecule to reside in each state. As can be seen, P(τ) presents a 
fractional power-law as τ-(1+α) with an exponent of α = 0.8. 

For the single-molecule experiment, we use the hidden Markov modeling (HMM) method 8 to 
define the observed four FRET states. One representative single-molecule trajectory is plotted in Fig. 
S7b, where the gray line is the HMM-defined states, and τ1 and τ2 are the waiting times. The obtained 
waiting time distribution of all FRET states is plotted in Fig. S7c. Due to limited transition events 
occurring at the measured time window (0.1 - 200 s), this distribution displays a significant degree of 
scattering. Nevertheless, a power-law fit gives that τ-(1+α) with α = 0.8.
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Overall, the distributions of the thus-obtained P(τ), for simulation and experimental states (Fig. S7) 
exhibit a fractional power-law scaling as τ-(1+α), where α is ~ 0.8. This analysis indicates that the 
waiting time obeys a broad distribution without a finite mean. However, we note that, as the time 
window analyzed is not broad enough, one can not decisively conclude whether the distribution obeys a 
fractional power-law or multi exponentials. 

7. FBM noise subordinated to CTRW

The protein’s TEA-MSD shows aging and subdiffusion (αt  < 1), which indicates the combination 
of non-ergodic CTRW and ergodic models. 

To dissect this mixed origin of protein internal dynamics, we further analyzed the detailed aging 
behavior of inter-domain distance x(t). In Fig. S8a, the TEA-MSD is plotted against observational time 
t at 13 different lag times Δ (color gradient). As can be seen, the aging phenomenon diminishes as one 
reduces the lag time (Δ). We plot the aging exponent (α) as a function of lag time, whose absolute value 
is reduced from ~0.4 to 0 when reducing the Δ from 10 ns to 1 ps. This observation cannot be 
elucidated by a simple confined CTRW,6 but is consistent with the theory of noisy CTRW.7

To further reveal which kind of noise was coupled with CTRW, we analyzed the Gaussianity of the 
step size. The probability of step size exhibited a Gaussian shape for the SHP2 protein, evidenced by 
the best Gaussian fits (Fig. S8c; blacked line), suggesting Gaussian noise rooted in SHP2 dynamics. 

We also calculated the velocity autocorrelation function (VCF) to further dissect the noise type. 
The VCF is defined as follows: 1,8

.                                   (5)           0v 2

1C = x + -x x x     


 

Where the velocity v(τ) = δ-1[x(τ+δ) - x(τ)] at time τ is characterized during time periods δ. We plotted 
the normalized VCF of the SHP2 over different δ, using a color gradient for clarity (Fig. S8d). The 
VCF appeared to have anti-correlated behaviors, and this shape of VCF is strongly associated with 
FBM.31 Hence, anti-correlated step motions together with Gaussian step size suggested that an ergodic 
FBM noise coupled with CTRW in protein dynamics. 

8.  Autocorrelation function and characteristic relaxation time

For any physical parameter, e.g., x(t'), whose value fluctuates over time, the normalized autocorrelation 
function (ACF) obtained at different observation times is given by C(Δ,t)36. 
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where Δ is the lag time, t is the length of the time window used for analysis, δx(t') represents the x(t') 
fluctuation away from its time average. To improve the statistics of the simulation results, the 
autocorrelation function is averaged over 100 single-molecule simulation trajectories. As seen in Fig. 
4a, b, C(Δ,t) does not converge and slows down upon an increase of t. Hence, the internal dynamics of 
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two molecules (protein SHP2 and single-stranded DNA, Fig. 4a, b) are not converging, slowing down 
upon the increase of observation time, t. 

We calculated the experimental and simulation normalized autocorrelation function (ACF) C(∆;t) 
of the inter-domain distance in the protein and presented the results in Fig. S9a and Fig. S9b. One also 
can estimate the characteristic correlation time (τc) as a function of the measurement time (t) (see Fig. 
S9c). As can be seen, ACF shifts towards longer lag times with increasing observation time t.  
Accordingly,  τc increases in a linear relationship with the trajectory lengths, i.e., τc(t) ~ t, showing no 
sign of convergence (Fig. S9c) over fourteen orders of magnitudes in time. 

9. Log-normal distributed degree distribution

We calculate the degree distribution, P(d), to examine the topological feature of the transition 
networks. P(d) is defined as the probability of a vertex linked to d direct neighbors. We plot the degree 
distribution P(d) in Fig. 5c, which a log-normal distribution can well represent: 

.                                                        (8) 
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where σ and μ are the standard deviation and mean of the distribution, respectively. Notably, all P(d) 
almost overlap on different trajectory lengths or RMSD cutoff, indicating topological self-similarity.37 
Log-normal degree distribution is characteristic of random multiplicative processes,38 and is easily 
observed in scale-free networks and self-similar systems.39

10. Box covering algorithm for the estimation of the fractal dimension

We extract information from the energy landscape that is represented by the conformational cluster 
transition network (CCTN). Particularly, we are interested in the fractal scaling of the CCTN graph. 
Therefore, a version box covering algorithm for the complex networks, the so-called compact-box-
burning (cbb) algorithm,37,40 was applied to the CCTN to derive the fractal dimension. Here, the 
“distance” rf of a graph is defined as the shortest number of edges connecting two vertices, and 
considering the graph average “mass” M is proportional to the number of nodes (Nv). If the geometry of 
the network is fractal, the average mass, ⟨M⟩ covered by different box length lb, should follow the 
power-law relationship: 

.                                                        (9)
  fdb b
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For a given box length lb, an integer, Nb is the least number of boxes that can fully cover this network, 
Nv is the total number of vertices for normalization, and power-law exponent df represents the fractal 
dimension. The examination of the fractal is presented in Fig. S11. 
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Supplementary Figures

Fig. S1 | Control experiment. single-molecule FRET experiment of the donor only labeled 
protein. (a) Schematic diagram of the SHP2 protein labeled by a donor (cy3, green) only and its 
experimental setup. (b) Example intensity trace of the donor-only sample (green, ID), where the rather 
low intensity of the acceptor (red, IA) results from the leakage of the donor fluorescence into the 
detecting channel of the acceptor. The intensity of IA and ID are positively correlated and disappear at 
the same time (arrow). (c) The resulting P(EFRET) is narrowly distributed and centered below 0.1. 
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Fig. S2 | Representative single-molecule FRET trajectories of SHP2. The energy transfer of two dye 
molecules’ fluorescence intensities is present. Here, green and red curves are associated with Cy3 
(Donor, ID) and Cy5 (Acceptor, IA) intensity. The blue line is the corresponding FRET efficiency, 
which is directly calculated by the intensity ratio, EFRET =IA/(IA+ID). The grey-colored region highlights 
the data after photobleaching which is removed before analysis. The coarse-grained FRET-state 
sequences (solid black lines) are derived using hidden Markov modeling (HMM), i.e., a widely used 
standard method to model the smFRET trajectories by discretized states 8.
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Fig. S3 | Transition density plot for the SHP2 protein derived from the HMM on the corresponding 
smFRET results. A total of 120 transitions were identified, and the color bar denotes the counts of 
transitions. 
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Fig. S4 | The structures of globular protein SHP2 and single-stranded DNA. (a). The crystal 
structure of protein tyrosine phosphatase SHP2, which contains two Src homology-2 domains (N-SH2, 
gray; C-SH2, blue) and a protein-tyrosine phosphatase (PTP, gold) domain, PDB code: 5XZR. (b). A 
single chain of 40 monomers of single-stranded DNA (ssDNA) poly dT40 from the simulation 
snapshots. 
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Fig. S5 | Protein SHP2 inter-domain distance x(t) distributions. The simulation (a) and 
experimental (b) histograms of x(t). The mean and standard deviation of the inter-domain distance 
distributions are shown in the inset.
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Fig. S6 | Subdiffive internal dynamics of protein SHP2 and ssDNA. (a) TEA-MSD averaged over 
four observational times, t = 100 ps, and t = 100 ns. Gray reference lines indicating power laws with 
different exponents are plotted as a visual guide. (b) The same way visualized TEA-MSD vs. Δ for 
ssDNA dynamics. 
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Fig. S7 | The waiting time distributions P(τ) of protein SHP2. (a) Distribution of waiting times for 
the protein molecule to stay in all states of Fig. 5a (main text). Here, we define the trapping time as the 
time interval when the protein conformation is located in one conformational cluster. (b) Example 
trajectory shows the method to analyze waiting times in the smFRET experiment. The initial and 
ending parts were not considered for the analysis of dwelling times. (c) The waiting time distribution 
from all FRET states. The data is scattering, due to the limited amount of state transition occurring in 
trajectory over the observed time window. The blacked lines in (a, c) are power-fits for guidance.
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Fig. S8｜The mixed origin of CTRW and FBM in protein SHP2 internal dynamics. (a) The aging 
TEA-MSD are plotted against observation time, t (i.e., the time used in the moving average), with 13 
different fixed lag times Δ (1 ps - 5 ns) as indicated (colored bar). The power-law fit (dashed line) 
represents the scaling of TEA-MSD ~ tα, with slope α = - 0.3 at Δ = 5 ns. This exponent indicates aging 
behavior at the observed timescale. (b) The curve of the aging exponent shows that α is dependent on 
lag time Δ, consistent with the theory of noisy CTRW model 22. (c) The step-size distribution of protein 
SHP2 was obtained from all simulated trajectories with a time step of 1 ps. The overlap between the 
data (marker) and the fit (line) demonstrates that the noise is Gaussian distributed. (d) Normalized 
velocity correlation function (VCF) for the protein SHP2. The plot consists of 13 different time steps of 
δ (1 ps - 16 ns) over which the velocity was calculated. δ is visualized as a color gradient for clarity. 
The observed anti-persistency motions further reveal the existence of fractional Gaussian noise in the 
protein fluctuation. 
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Fig. S9 | Autocorrelation functions and characteristic times (τc) of SHP2 protein internal 
dynamics. (a-b) The normalized autocorrelation functions (ACF) of inter-domain distance fluctuation 
were obtained from protein simulation and experimental data for different observational times (i.e.,100 
ps, 1 ns, 10 ns, 100 ns, 1 μs, 10 s, 30 s, 100 s). (c) The characteristic relaxation times τc of the protein 
inter-domain distance fluctuation, are plotted against the observation time, t. Here, τc obtained from 
MD simulations and experiments is defined as the time at which the normalized ACF decays to 0.1. A 
reference line for the linear scaling τc(t) ~ t is plotted as a visual guide.
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Fig. S10 | The dependence of the distribution of the characteristic distance in (a) SHP2 and (b) 
ssDNA on the observation time, t, derived from MD. Here, the characteristic distance in the protein 
is defined as the inter-domain distance, while it is the end-to-end distance in the ssDNA. The mean and 
standard deviation of the distributions are shown in the legend. As can be seen, the distribution, its 
mean, and standard deviations vary significantly with the observation times, t, indicating the internal 
dynamics in both the protein and ssDNA are not converged on the MD time window of 100 ns.

17



Fig. S11 | Analysis of conformational transition network obtained by using different RMSD 
cutoff and trajectory lengths (100 ns or 1 μs). (a) The degree distribution P(d) of the protein (top) 
ssDNA (bottom) transition networks. The blue and purple lines represent log-normal fits 
(Supplementary Equation 8) for protein and ssDNA, where the μ and σ are fit parameters of the log-
normal function. We show the data vanish at the degree of 10 (gray dashed line) for ssDNA, while the 
distribution of the protein extends to much larger values of d. (b) We applied a box covering 
algorithm36,37,40 to the CCTN to derive the fractal dimension of three different protein transition 
networks. The number of boxes (Nb) required to cover the CCTN normalized by the total number of 
nodes (Nv) in the network is plotted as a function of the box’s length, lb. The power-law fit (blacked) 
suggests the underlying protein energy landscape is a self-similar fractal with a dimension ~1.7. The 
number of boxes (Nb) shows a linear relationship with box length (lb) for single-stranded DNA 
(ssDNA, bottom panel), indicating the energy landscape of ssDNA is relatively flat with the one-
dimensional geometry of CCTN rather than fractal. 
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Supplementary Tables

Table S1. The sequence of single-stranded DNA (ssDNA, dT50) was studied by smFRET. The single 
strand of ssDNA is labeled with cy3 and cy5 dye at 50 monomer separations. The letters marked by 
green and red (underlined) are the corresponding labeling sites on the strand, respectively. The 
oligonucleotides were purchased from Sangon Biotech Co., Ltd (Shanghai, China)

Sample Donor/Acceptor Sequence

single-stranded 
DNA (ssDNA) Cy3/Cy5

biotin-5'- 
CAGCGGACTGCAGTCTCAGCTTTTTTTTTTTTTTT
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3'
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