Supplementary Information

Simple Purification of Small-Molecule-Labelled Peptides via Palladium Enolate Formation from $\boldsymbol{\beta}$-Ketoamide Tags

Kenji Hayamizu, ${ }^{\text {a }}$ Kota Koike, ${ }^{\text {ab }}$ Kosuke Dodo, *ab Miwako Asanuma, ${ }^{\text {ab }}$ Hiromichi Egami, ${ }^{\text {a }}$ and Mikiko Sodeoka*ab *To whom correspondence should be addressed. E-mail: dodo@riken.jp and sodeoka@riken.jp

${ }^{\text {a }}$ Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan

${ }^{\text {b }}$ RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan

Table of Contents

General Information S2
Preparation of TentaGel-Supported Pd Aqua Complex (Scheme S1) S3
NMR Measurement of Pd Enolate Formation in Aqueous Solution (Fig. S1) S7
Comparison of Tag Structures Based on Catch Efficiencies in Aqueous Solution (Fig. S2 and S3) S8
Synthesis of β-Ketoamide-Tagged Model Compounds (Scheme S2) S9
Synthesis of Bza-peptide (Fig. S4) S13
Investigation of Appropriate Solutions for the Purification of Bza-Peptide (Fig. S5 and S6) S14
Typical HPLC charts obtained from the purification experiment using Bza-peptide (Fig. S7) S15
Determination of dissociation constant (Kd) between Pd complex and ketoamide tag (Fig. S8-S11) S16
Estimation of essential amount of Pd complex for the efficient purification (Fig. S12) S18
Purification of Bza-peptide from Tryptic Digest of BSA (Fig. S13) S20
Assay System for Inhibitory Activities against Cathepsin B (Fig. S14) S21
Purification and Identification of Bza-FG-AOMK-labelled Peptide (Fig. S15-S17) S22
Synthesis of Bza-FG-AOMK (Scheme S3) S25
Comparison with Purification Method Using Biotin-Avidin System and Click Reaction (Fig. S18-S20) S28
Synthesis of AltBza-FG-AOMK (Scheme S4) S31
Purification and Identification of Bza-VAD(OMe)-FMK-labelled Peptide (Fig. S21-S24) S35
$\begin{array}{ll}\text { Synthesis of Bza-VAD(OMe)-FMK } & \text { S38 }\end{array}$
NMR Spectra S39
References S54

General Information

Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL JNM-ECS 400 spectrometer. The proton chemical shift values are reported in parts per million downfield from tetramethylsilane and referenced to the proton resonance of CHCl_{3}. Coupling constants (J) are reported in Hz . The carbon chemical shift values are reported in parts per million and referenced to the carbon resonance of $\mathrm{CDCl}_{3 .}{ }^{31} \mathrm{P}$ NMR data is reported as chemical shift relative to triphenylphosphine as an external standard. Multiplicities are reported using the following abbreviations: s , singlet; d, doublet; t, triplet; q; quartet; m, multiplet; br, broad. Mass spectra were recorded on a Bruker microTOF-QII-RSL. MALDI-TOF/MS was taken on a Bruker Daltonics autoflex speed with matrix dimer and external peptide calibration standards (including angiotensin I, angiotensin II, substance P, bonbesin, and ACTH clip 18-39). Optical rotations were measured on a JASCO P-2200 polarimeter at rt using the sodium D line. The purification efficiencies were quantified by HPLC (UltiMate 3000, Thermo Fisher Scientific). Flash column chromatography was done with standard silica gel (Silica gel 60N, spherical, neutral, $100 \sim 210 \mu \mathrm{~m}$, Kanto Chemical Co. Ltd.). Gel permeation chromatography (GPC) was performed with JAI LC-918. Dehydrated solvents (MeOH, EtOH, THF, and toluene) were purchased from Kanto Chemical Co. Ltd. and used as received, and other reagents were also used without any purification. TentaGel beads were mixed in an RT-30mini (Taitec Corp.).

Preparation of TentaGel-Supported Pd Aqua Complex (Scheme S1)

Scheme S1

Reagents and conditions: (a) pivaloyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{CN}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then $\mathrm{rt}, 4 \mathrm{~h}$; (b) $\mathrm{Br}_{2}, \mathrm{CH}_{3} \mathrm{CN}, 0^{\circ} \mathrm{C}$, 1 h then rt, 6 h ; (c) $\mathrm{KOH}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$, rt, $36 \mathrm{~h}, 91 \%$ in 3 steps; (d) $\mathrm{Tf}_{2} \mathrm{O}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 20 \mathrm{~h}$; (e) $\mathrm{CuCN}, \mathrm{NMP}, 180{ }^{\circ} \mathrm{C}, 4$ $\mathrm{h}, 73 \%$ in 2 steps; (f) NiCl_{2} (dppe) ($15 \mathrm{~mol} \%$), HPPh_{2}, DMF, $100^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (g) $\mathrm{P}(\mathrm{OEt})_{3}, \mathrm{HSiCl}_{3}, 100^{\circ} \mathrm{C}, 3 \mathrm{~h}, 90 \%$ in 2 steps; (h) KOH , dioxane/ $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, reflux, $46 \mathrm{~h}, 46 \%$; (i) TentaGel- NH_{2}, EDCI, HOBt, DMF, rt, 13 h ; (j) $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]^{2+}\left(\mathrm{TfO}^{-}\right)_{2}$, wet acetone, rt, $7 \mathrm{~h}, 96 \%$ in 2 steps.
(rac)-6-bromo-2,2'-dihydroxy-1,1'-binaphthyl (3) ${ }^{1}$

To a solution of (rac)-2, ' '-dihydroxy-1,1'-binaphthyl ($4.0 \mathrm{~g}, 14 \mathrm{mmol}$) and triethylamine ($5.8 \mathrm{~mL}, 42 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(22.0 \mathrm{~mL})$ was added dropwise a solution of pivaloyl chloride ($1.76 \mathrm{~mL}, 14.1 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(20.0 \mathrm{~mL})$ over a period of 1 h at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at rt , and then diluted with $\mathrm{Et}_{2} \mathrm{O}$. The organic solution was washed with aqueous $1 N \mathrm{HCl}$, saturated aqueous NaHCO_{3}, and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give (rac)-2-hydroxy-2'-pivaloyloxy-1,1'-binaphthyl (1).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.08(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 7.98(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.88(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.83(1 \mathrm{H}$, $\mathrm{d}, J=7.6 \mathrm{~Hz}), 7.51(1 \mathrm{H}, \mathrm{dd}, J=7.4,2.0 \mathrm{~Hz}), 7.39-7.23(6 \mathrm{H}, \mathrm{m}), 7.06(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 5.18(1 \mathrm{H}, \mathrm{s}), 0.77(9 \mathrm{H}, \mathrm{s})$.

To a solution of $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{CN}(67.0 \mathrm{~mL})$, bromine ($1.36 \mathrm{~mL}, 26.6 \mathrm{mmol}$) was slowly added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and 6 h at rt , and subsequently quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the organic solution was washed with saturated aqueous $\mathrm{NaHCO}_{3}, 1 \mathrm{~N} \mathrm{HCl}$, and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give (rac)-6-bromo-2-hydroxy-2'-pivaloyloxy-1,1'binaphthyl (2).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.08(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 7.98(2 \mathrm{H}, \mathrm{m}), 7.79(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 7.52(1 \mathrm{H}, \mathrm{t}, J=7.2$ $\mathrm{Hz}), 7.39-7.25(5 \mathrm{H}, \mathrm{m}), 6.93(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 5.26(1 \mathrm{H}, \mathrm{s}), 0.77(9 \mathrm{H}, \mathrm{s})$.

To a solution of $\mathbf{2}$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(3 / 2,70 \mathrm{~mL})$ was added potassium hydroxide ($2.36 \mathrm{~g}, 42 \mathrm{mmol}$). The reaction mixture was stirred for 36 h at rt and extracted with AcOEt. The organic solution was washed with aqueous 1 NHCl , saturated aqueous NaHCO_{3}, and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent; $\left.\mathrm{CHCl}_{3}\right)$ to give (rac)-6-bromo-2,2'-dihydroxy-1,1'-binaphthyl (3) (4.66 g, 91% in 3 steps) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.05(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.98(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.90(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.89(1 \mathrm{H}$, $\mathrm{d}, J=8.8 \mathrm{~Hz}), 7.42-7.30(5 \mathrm{H}, \mathrm{m}), 7.10(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 5.12(1 \mathrm{H}, \mathrm{s}), 5.02(1 \mathrm{H}, \mathrm{s})$; HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 386.9997$; Found 386.9985.
(rac)-6-cyano-2,2'-bis(trifluoromethanesulfonyloxy)-1,1'-binaphthyl (5) ${ }^{2}$

3

4

5
73% in 2 steps

To a solution of $3(4.58 \mathrm{~g}, 12.6 \mathrm{mmol})$ and pyridine ($3.0 \mathrm{~mL}, 37.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25.0 \mathrm{~mL})$ was added trifluoromethanesulfonic anhydride ($5.1 \mathrm{~mL}, 31.4 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 20 h at rt , and then the solvent was removed under reduced pressure. The residue was taken up in AcOEt , and washed with aqueous 1 NHCl , saturated aqueous NaHCO_{3}, and brine. The organic solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give (rac)-6-bromo-2,2'- bis(trifluoromethanesulfonyloxy)-1, 1'-binaphthyl (4).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.18(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 8.15(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 8.05(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 8.02(1 \mathrm{H}$, $\mathrm{d}, J=8.0 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.62-7.58(1 \mathrm{H}, \mathrm{m}), 7.47(1 \mathrm{H}, \mathrm{dd}, J=8.8 \mathrm{~Hz}, 2.0$ $\mathrm{Hz}), 7.43(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz})$.

A solution of 4 and cuprous cyanide ($2.26 \mathrm{~g}, 25.2 \mathrm{mmol}$) in 1-methyl-2-pyrrolidinone (28.5 mL) was stirred for 4 h at $180^{\circ} \mathrm{C}$. After cooling to $100^{\circ} \mathrm{C}$, the reaction mixture was slowly poured into 15% aqueous $\mathrm{NH}_{3}(100 \mathrm{~mL})$, and extracted with benzene. The organic solution was washed with 5% aqueous NH_{3} and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent; $\left.\mathrm{Et}_{2} \mathrm{O} / \mathrm{Hex}=1 / 4\right)$ to give (rac)-6-cyano-2,2'-bis(trifluoromethanesulfonyloxy)-1,1'-binaphthyl (5) (5.25 g, 73\%) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.41(1 \mathrm{H}, \mathrm{s}), 8.22(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 8.19(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 8.04(1 \mathrm{H}, \mathrm{d}, J=8.0$ $\mathrm{Hz}), 7.76(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.44(1 \mathrm{H}, \mathrm{t}$, $J=8.0 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ;$ HRMS (ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{11} \mathrm{~F}_{6} \mathrm{NO}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 597.9830; Found 597.9816.

(rac)-6-cyano-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (6) ${ }^{2,3}$

To a solution of NiCl_{2} (dppe) ($649 \mathrm{mg}, 1.23 \mathrm{mmol}$) in DMF (15.0 mL) was added diphenylphosphine ($1.05 \mathrm{~mL}, 6.12$ $\mathrm{mmol})$ at rt , and the reaction mixture was stirred for 30 min at $100^{\circ} \mathrm{C}$. Then DABCO $(3.68 \mathrm{~g}, 32.8 \mathrm{mmol})$ and a solution of $5(4.70 \mathrm{~g}, 8.20 \mathrm{mmol})$ in DMF $(25.0 \mathrm{~mL})$ were added. The reaction mixture was kept at $100^{\circ} \mathrm{C}$, and three additional portions of diphenylphosphine ($1.05 \mathrm{~mL} \times 3,18.4 \mathrm{mmol}$) were added at 1,3 , and 7 h later. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 24 h , and then cooled to rt , and acidified with $1 N \mathrm{HCl}$. The organic layer was extracted with AcOEt. The organic solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by recrystallization from MeOH to give (rac)-6-cyano-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl ($\mathbf{6}$) (3.45 $\mathrm{g}, 65 \%)$ and an oxidized product $(1.50 \mathrm{~g})$.
The oxidized product (1.50 g) and triethylphosphite ($3.80 \mathrm{~mL}, 21.9 \mathrm{mmol}$) were mixed in degassed THF/toluene ($1 / 1$, 60.0 mL) under a nitrogen atmosphere. Trichlorosilane ($8.65 \mathrm{~mL}, 87.5 \mathrm{mmol}$) was added to the solution at rt . The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 3 h , cooled to rt , diluted with $\mathrm{Et}_{2} \mathrm{O}$, and then quenched with aqueous 1 N NaOH at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min , then extracted with AcOEt. The organic solution was washed with saturated aqueous NaHCO_{3}, and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by recrystallization from MeOH to give $\mathbf{6}(1.31 \mathrm{~g}, 25 \%$ from 5 in 2 steps) as a white solid ${ }^{3}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.18(1 \mathrm{H}, \mathrm{s}), 7.91(2 \mathrm{H}, \mathrm{dd}, J=8.0,2.4 \mathrm{~Hz}), 7.83(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{dd}, J$ $=8.8,2.4 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.8 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.25-7.15(10 \mathrm{H}, \mathrm{m}), 7.11-7.07(6 \mathrm{H}, \mathrm{m}), 7.03-$ $6.95(4 \mathrm{H}, \mathrm{m}), 6.90-6.86(2 \mathrm{H}, \mathrm{m}), 6.74(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}-\mathrm{NMR}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ -14.0 (br-s); HRMS (ESI) Calcd. for $\mathrm{C}_{45} \mathrm{H}_{31} \mathrm{NP}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 670.1829$; Found 670.1856.

(rac)-6-hydroxycarbonyl-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (7) ${ }^{2}$

To a solution of $6(460 \mathrm{mg}, 0.71 \mathrm{mmol})$ in dioxane $/ \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(7.0 \mathrm{~mL} / 7.0 \mathrm{~mL} / 2.6 \mathrm{~mL})$ was added $\mathrm{KOH}(478 \mathrm{mg}$, 8.5 mmol) at rt . The reaction mixture was refluxed for 46 h , then acidified with 1 N HCl at $0{ }^{\circ} \mathrm{C}$ and extracted with AcOEt. The organic solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \quad\right.$ eluent; $\left.\mathrm{AcOEt} / \mathrm{Hex}=1 / 1\right)$ to give (rac)-6-hydroxycarbonyl-2,2'bis(diphenylphosphino) -1,1'-binaphthyl (7) (218 mg, 46\%) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.67(1 \mathrm{H}, \mathrm{s}), 8.02(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.91(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.84(1 \mathrm{H}, \mathrm{d}, J=8.4$ $\mathrm{Hz}), 7.54(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}), 7.46(2 \mathrm{H}, \mathrm{td}, J=7.9,2.2 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.23-7.01(20 \mathrm{H}, \mathrm{m}), 6.89$ $(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 6.82(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}-\mathrm{NMR}\left(160 \mathrm{MHz}, \mathrm{CHCl}_{3}\right): \delta-14.2(\mathrm{br}-\mathrm{s}) ;$ HRMS (ESI) Calcd. for $\mathrm{C}_{45} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{P}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$667.1956; Found 667.1934.

TentaGel-supported Pd aqua complex (9) ${ }^{2,4}$

TentaGel ${ }^{\circledR} \mathrm{S}-\mathrm{NH}_{2}$ beads (HiPep Laboratories, $0.26 \mathrm{~g}, 0.070 \mathrm{mmol}$) were washed with $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL} \times 5)$ and CHCl_{3} ($5.0 \mathrm{~mL} \times 5$) prior to use. To a suspension of $7(61 \mathrm{mg}, 0.091 \mathrm{mmol}$) and TentaGel S-NH2 beads in DMF (3.0 mL) was added $\mathrm{EDCI} \cdot \mathrm{HCl}(22 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $\mathrm{HOBt}(19 \mathrm{mg}, 0.14 \mathrm{mmol})$. The progress of the reaction was monitored by means of the Kaiser test (ninhydrin test). The mixture was stirred for 13 h at rt , and then filtered. The beads were washed with DMF ($5.0 \mathrm{~mL} \times 5$) and $\mathrm{CHCl}_{3}(5.0 \mathrm{~mL} \times 5)$, and dried in vacuo to give TentaGel-supported (rac)-binap (8).
${ }^{31} \mathrm{P}-\mathrm{NMR}$ (160 MHz, THF): $\delta-14.7$ (s).
To a suspension of $\mathbf{8}$ in wet acetone (2.0 mL , containing $0.5 \mathrm{v} / \mathrm{v} \% \mathrm{H}_{2} \mathrm{O}$) was added $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]^{2+}\left(\mathrm{TfO}^{-}\right)_{2}(44 \mathrm{mg}$, 0.077 mmol) at rt . The mixture was stirred for 7 h at rt , and then filtered. The beads were washed with $\mathrm{CHCl}_{3}(5.0$ $\mathrm{mL} \times 5)$, and dried in vacuo to give TentaGel-supported Pd aqua complex (9) ($331 \mathrm{mg}, 96 \%$) as reddish black beads ${ }^{4}$. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 34.1$ (s).

NMR Measurement of Pd Enolate Formation in Aqueous Solution

Fig. S1
To a suspension of TentaGel-supported Pd aqua complex ($65 \mathrm{mg}, 13 \mu \mathrm{~mol}$) in $5 \% \mathrm{MeCN}(2.0 \mathrm{~mL})$ was added cyclic β-ketoamide $(7.2 \mathrm{mg}, 39 \mu \mathrm{~mol})$ at rt . The reaction mixture was rotated for 12 h at rt , and then the beads were collected by filtration and washed with $50 \% \mathrm{MeCN}^{(\mathrm{x} 3)}$ and CHCl_{3} (x 3). The washed beads were dried in vacuo, and the ${ }^{31} \mathrm{P}-$ NMR spectrum was measured in CDCl_{3}. The bottom chart shows the ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of the isolated Pd enolate complex derived from the same substrate ${ }^{5}$. The characteristic peaks precisely match the observed peaks indicated in the above chart.

Comparison of Tag Structures Based on Catch Efficiencies in Aqueous Solution

To compare the affinities of various compounds having β-ketoamide structure, model compounds Bka-1-4 were synthesized and their reaction with TentaGel-supported palladium complex was examined.

Fig. S2
To a solution of β-ketoamide-tagged model compounds (50 nmol) in $50 \% \mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{H}_{2} \mathrm{O}, 5 \% \mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{H}_{2} \mathrm{O}$, or 0.1% TFA in $5 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added TentaGel-supported Pd aqua complex ($5.0 \mathrm{mg}, 1 \mu \mathrm{~mol}$). The mixture was rotated for 1 h at rt , and then filtered. The beads were washed with the same solvent (3 times). The supernatant and washing solutions were analyzed by HPLC.
*HPLC conditions and calibration curves of model compounds

Solution: A: 0.1% TFA $5 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}, \mathrm{B}: 0.1 \%$ TFA $95 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$
Fig. S3

Synthesis of $\boldsymbol{\beta}$-Ketoamide-Tagged Model Compounds

Scheme S2

Reagents and conditions: (a) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{NaOH}$, dioxane $/ \mathrm{H}_{2} \mathrm{O}(2 / 1), 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 8 \mathrm{~h}$; (b) benzylamine, EDCI, HOBt, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 12 h ; (c) TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 / 4)$, rt, $2 \mathrm{~h}, 93 \%$ in 3 steps; (d) diketene, NaHCO_{3}, toluene, $0{ }^{\circ} \mathrm{C}$ to rt, 1 h ; (e) protected β-ketocarboxylic acid, EDCI, $\mathrm{HOBt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 13 \mathrm{~h}, 18 \%$; (f) $1 \mathrm{NHCl} / \mathrm{THF}(1 / 1), \mathrm{rt}, 24 \mathrm{~h}, 41 \%$ in 2 steps; (g) benzoylacetic acid, EDCI, $\mathrm{HOBt}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $12 \mathrm{~h}, 54 \%$; (h) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{NaOH}$, dioxane $/ \mathrm{H}_{2} \mathrm{O}(2 / 1), 0^{\circ} \mathrm{C}$ to rt, 14 h ; (i) benzylamine, EDCI, HOBt, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $15 \mathrm{~h}, 94 \%$ in 2 steps; (j) TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 / 4)$, rt, 1 h ; (k) diketene, NaHCO_{3}, toluene, $0^{\circ} \mathrm{C}$ to rt, $1 \mathrm{~h}, 56 \%$ in 2 steps.

2-amino- N-benzylacetamide TFA salt (11) ${ }^{6}$

To a solution of glycine $(1.49 \mathrm{~g}, 19.8 \mathrm{mmol})$ in dioxane $/ \mathrm{H}_{2} \mathrm{O}(2 / 1,45.0 \mathrm{~mL})$ was added di-tert-butyl dicarbonate $(4.95 \mathrm{~mL}, 21.8 \mathrm{mmol})$ and $\mathrm{NaOH}(792 \mathrm{mg}, 19.8 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 8 h from $0^{\circ} \mathrm{C}$ to rt , and then the solvent was removed in vacuo. The resulting residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with AcOEt. The aqueous phase was acidified with 1 NHCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to afford N -(tert-butoxycarbonyl)glycine (3.6 g , quant.). To a solution of N -(tert-butoxycarbonyl)glycine ($3.6 \mathrm{~g}, 19.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added $\mathrm{EDCI} \cdot \mathrm{HCl}(5.69$ $\mathrm{g}, 29.7 \mathrm{mmol}), \operatorname{HOBt}(3.94 \mathrm{~g}, 25.7 \mathrm{mmol})$, and benzylamine $(4.33 \mathrm{~mL}, 39.6 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 13 h at rt and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic solution was washed with saturated aqueous NaHCO_{3} and brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent; $\mathrm{AcOEt} / \mathrm{Hex}=1 / 1$ to $\left.7 / 3\right)$ to afford tert-butyl (2-(benzylamino)-2-oxoethyl)carbamate (10) (5.55 g , quant in 2 steps) as a white solid.

To a solution of $\mathbf{1 0}(4.55 \mathrm{~g}, 17.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(64.0 \mathrm{~mL})$ was added $\mathrm{TFA}(14.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h at rt . The solvent was removed in vacuo, and residual TFA was removed azeotropically with CHCl_{3}. The residue was purified by recrystallization from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford 2-amino- N-benzylacetamide TFA salt (11) (4.09 g, 91\%) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 8.90(1 \mathrm{H}, \mathrm{t}, J=5.2 \mathrm{~Hz}), 8.14(3 \mathrm{H}, \mathrm{br}-\mathrm{s}), 7.36-7.26(5 \mathrm{H}, \mathrm{m}), 4.35(2 \mathrm{H}, \mathrm{d}, J=5.2$ Hz), 3.63 ($2 \mathrm{H}, \mathrm{s}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 166.0,138.7,128.4$ (2C), 127.4 (2C), 127.1, 42.3, 40.2; HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$165.1022; found 165.1026.

N -(2-(benzylamino)-2-oxoethyl)-3-oxobutanamide (Bka-1) ${ }^{7}$

To a solution of $11(1.00 \mathrm{~g}, 3.83 \mathrm{mmol})$ in $\mathrm{MeOH}(75.0 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(2.67 \mathrm{~mL}, 19.1 \mathrm{mmol})$ and diketene $(1.18 \mathrm{~mL}, 15.3 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 h at rt , and the solvent was removed in vacuo. The residue was purified by recrystallization from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford Bka-1 ($250 \mathrm{mg}, 26 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.39(2 \mathrm{H}, \mathrm{br}-\mathrm{s}), 7.33-7.23(5 \mathrm{H}, \mathrm{m}), 4.30(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 3.77(2 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz})$, $3.39(2 \mathrm{H}, \mathrm{s}), 2.16(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 203.5,168.7,166.6,139.3,128.3$ (2C), 127.2 (2C), 126.8, 51.1, 42.2, 42.0, 30.0; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$271.1053; found 271.1053.
N-(2-(benzylamino)-2-oxoethyl)- N-methyl-3-oxobutanamide (Bka-2)

To a solution of N-methylglycine $(2.00 \mathrm{~g}, 22.4 \mathrm{mmol})$ in dioxane $/ \mathrm{H}_{2} \mathrm{O}(2 / 1,50.0 \mathrm{~mL})$ was added di-tert-butyl dicarbonate $(5.39 \mathrm{~g}, 24.7 \mathrm{mmol})$ and $\mathrm{NaOH}(896 \mathrm{mg}, 3$ portions, 22.4 mmol$)$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 14 h from $0{ }^{\circ} \mathrm{C}$ to rt , and then the solvent was removed in vacuo. The residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with AcOEt . The aqueous phase was acidified with 1 NHCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford N-tert-butoxycarbonyl- N methylglycine. To a solution of N-tert-butoxycarbonyl- N-methylglycine (22.4 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(112 \mathrm{~mL}$) was added EDCI $\cdot \mathrm{HCl}(6.44 \mathrm{~g}, 33.6 \mathrm{mmol})$, $\mathrm{HOBt}(4.46 \mathrm{~g}, 29.1 \mathrm{mmol})$, and benzylamine $(4.90 \mathrm{~mL}, 44.8 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 h at rt , and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic solution was washed with saturated aqueous NaHCO_{3} and brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent; $\mathrm{AcOEt} / \mathrm{Hex}=3 / 7$ to $1 / 1$) to afford tert-butyl (2-(benzylamino)-2-oxoethyl)(methyl)carbamate (12) (5.89 g, 94\% in 2 steps) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.34-7.24(5 \mathrm{H}, \mathrm{m}), 4.46(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 3.89(2 \mathrm{H}, \mathrm{s}), 2.93(3 \mathrm{H}, \mathrm{s}), 1.40(9 \mathrm{H}, \mathrm{s}) ;$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 169.4,156.6,138.1,128.8$ (2C), 127.7 (3C), 81.0, 53.4, 43.4, 36.0, 28.3 (3C); HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$301.1523; found 301.1520.
To a solution of $\mathbf{1 2}(1.00 \mathrm{~g}, 3.60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14.4 \mathrm{~mL})$ was added TFA $(3.60 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at rt . The solvent was removed in vacuo, and residual TFA was removed azeotropically with CHCl_{3} to afford N-benzyl-2-(methylamino)acetamide TFA salt. To a solution of N-benzyl-2(methylamino)acetamide TFA salt (3.60 mmol) in toluene $\left(3.60 \mathrm{~mL}\right.$) was added $\mathrm{NaHCO}_{3}(605 \mathrm{mg}, 7.20 \mathrm{mmol})$ and diketene ($832 \mu \mathrm{~L}, 10.8 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 48 h at rt and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic solution was washed with saturated aqueous NaHCO_{3}, and brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent; $\mathrm{AcOEt} / \mathrm{Hex}=$ 1/1) to afford Bka-2 ($532 \mathrm{mg}, 56 \%$ in 2 steps) as a pale-yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30-7.21(5 \mathrm{H}, \mathrm{m}), 4.44(2 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 4.05(2 \mathrm{H}, \mathrm{br}-\mathrm{s}), 3.60(2 \mathrm{H}, \mathrm{s}), 2.98(3 \mathrm{H}$, s), $2.20(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 203.4,168.0,167.5,138.3,128.7$ (2C), 127.7 (2C), 127.3, 52.0, 49.9, 43.4, 37.4, 30.4; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 285.1210$; found 285.1209.

N -(2-(benzylamino)-2-oxoethyl)-2-oxocyclopentane-1-carboxamide (Bka-3)

To a solution of $11(567 \mathrm{mg}, 2.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20.0 \mathrm{~mL})$ was added EDCI $\cdot \mathrm{HCl}(491 \mathrm{mg}, 2.56 \mathrm{mmol})$, HOBt ($400 \mathrm{mg}, 2.96 \mathrm{mmol}$), 1,4-dioxaspiro[4.4]nonane-6-carboxylic acid ($340 \mu \mathrm{~L}, 1.97 \mathrm{mmol}$), and triethylamine ($330 \mu \mathrm{~L}$, 2.40 mmol). The reaction mixture was stirred for 13 h at rt and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic solution was washed with saturated aqueous NaHCO_{3} and brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent; AcOEt/Hex = 7/3) to afford N-(2-(benzylamino)-2-oxoethyl)-1,4-dioxaspiro[4.4]nonane-6-carboxamide (13) ($507 \mathrm{mg}, 81 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32-7.23(5 \mathrm{H}, \mathrm{m}), 7.03(1 \mathrm{H}, \mathrm{br}-\mathrm{s}), 6.55(1 \mathrm{H}, \mathrm{br}-\mathrm{s}), 4.50(1 \mathrm{H}, \mathrm{dd}, J=6.4,14.6 \mathrm{~Hz})$, $4.35(1 \mathrm{H}, \mathrm{dd}, J=5.6,14.6 \mathrm{~Hz}), 4.20(1 \mathrm{H}, \mathrm{dd}, J=6.4,17.2 \mathrm{~Hz}), 3.91-3.75(3 \mathrm{H}, \mathrm{m}), 3.65-3.54(2 \mathrm{H}, \mathrm{m}), 2.80(1 \mathrm{H}, \mathrm{t}, J$ $=8.4 \mathrm{~Hz}), 2.15-2.05(1 \mathrm{H}, \mathrm{m}), 1.93-1.85(1 \mathrm{H}, \mathrm{m}), 1.80-1.60(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.7,169.2$, 138.1, 128.8 (2C), 128.0 (2C), 127.6, 117.8, 64.4, 51.9, 43.6, 43.6, 35.4, 25.5, 21.1.

To a solution of N-(2-(benzylamino)-2-oxoethyl)-1,4-dioxaspiro[4.4]nonane-6-carboxamide ($507 \mathrm{mg}, 1.60 \mathrm{mmol}$) in THF (20.0 mL) was added $1 \mathrm{NHCl}(20.0 \mathrm{~mL})$. The mixture was stirred for 24 h at rt . The aqueous layer was extracted with AcOEt , and the organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, and concentrated in vacuo. The product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent; $\mathrm{AcOEt} / \mathrm{Hex}=1 / 1$ to $\left.1 / 0\right)$ to afford $\mathbf{B k a - 3}$ $(179 \mathrm{mg}, 41 \%)$ as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31-7.21(6 \mathrm{H}, \mathrm{m}), 7.04(1 \mathrm{H}, \mathrm{br}-\mathrm{s}), 4.43(1 \mathrm{H}, \mathrm{dd}, J=6.0,14.9 \mathrm{~Hz}), 4.37(1 \mathrm{H}, \mathrm{dd}, J=$ $6.0,14.9 \mathrm{~Hz}), 4.04(1 \mathrm{H}, \mathrm{dd}, J=6.4,16.4 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{dd}, J=4.8,16.4 \mathrm{~Hz}), 2.99(1 \mathrm{H}, \mathrm{t}, J=9.4 \mathrm{~Hz}), 2.37-2.14(4 \mathrm{H}$, m), 2.07-1.99 (1H, m), 1.84-1.72 (1H, m); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 216.1,168.9,168.0,138.1,128.7$ (2C), 127.7 (2C), 127.5, 54.9, 43.5, 43.5, 38.6, 25.8, 20.6; HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 297.1210$; found 297.1235.
N-(2-(benzylamino)-2-oxoethyl)-3-oxo-3-phenylpropanamide (Bka-4)

To a solution of $1(650 \mathrm{mg}, 2.49 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ was added EDCI $\cdot \mathrm{HCl}(715 \mathrm{mg}, 3.74 \mathrm{mmol})$, HOBt ($496 \mathrm{mg}, 3.24 \mathrm{mmol}$), benzoylacetic acid ($347 \mathrm{mg}, 2.49 \mathrm{mmol}$), and triethylamine ($434 \mu \mathrm{~L}, 2.49 \mathrm{mmol}$). The reaction mixture was stirred for 12 h at rt and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic solution was washed with saturated aqueous NaHCO_{3} and brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent; $\mathrm{AcOEt} / \mathrm{Hex}=7 / 3$ to 1/0) to afford Bka-4 ($418 \mathrm{mg}, 54 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.52-8.40(2 \mathrm{H}, \mathrm{m}), 7.97(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.63-7.30(1 \mathrm{H}, \mathrm{m}), 7.53(1 \mathrm{H}, \mathrm{dd}, J=7.6$, $8.2 \mathrm{~Hz}), 7.50-7.46(1 \mathrm{H}, \mathrm{m}), 7.34-7.21(5 \mathrm{H}, \mathrm{m}), 4.32(2 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}), 4.01(2 \mathrm{H}, \mathrm{s}), 3.80(2 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-$ NMR (100 MHz, DMSO- d_{6}): $\delta 195.1,168.6,166.8,139.2,136.2,133.5,128.7$ (2C), 128.4 (2C), 128.3 (2C), 127.2 (2C), 126.8, 46.7, 42.3, 42.0; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 333.1210$; found 333.1210.

Synthesis of Bza-peptide

The peptides were prepared by solid-phase synthesis (433A Peptide Synthesizer, Applied Biosystems) using Fmocprotected amino acids. Bza-tagged glycine was used to introduce the Bza tag. Synthesized peptides were purified by HPLC (L-2000, Hitachi) to > 90\% purity. HPLC conditions: Inertsil ODS-3 ($250 \times 4.6 \mathrm{~mm}$ I.D.) column, 25-55\% MeCN (containing $0.1 \% \mathrm{TFA}$) (30 min) mobile phase, $1.0 \mathrm{~mL} / \mathrm{min}$ flow rate and UV (215 nm) light source.

HPLC Analysis

HPLC chromatogram of synthetic peptide Bza-GLYEIAR

Fig. S4
HPLC conditions
Column: Inertsil ODS-3 ($250 \times 4.6 \mathrm{~mm}$ I.D.)
Column temp.: $25^{\circ} \mathrm{C}$
Mobile phase: $25-55 \% \mathrm{MeCN}$ (containing 0.1% TFA), 30 min
Flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$
Detection: UV at 215 nm

MALDI TOF-MS analysis

Calcd. For $\mathrm{C}_{46} \mathrm{H}_{6} \mathrm{~N}_{10} \mathrm{O}_{13}[\mathrm{M}+\mathrm{H}]^{+} 967.5$
Found: $[\mathrm{M}+\mathrm{H}]^{+} \quad 967.2$

Investigation of Appropriate Solutions for the Purification of Bza-Peptide

Fig. S5

Solvent

Phosphate buffer: 25 mM phosphate-Na, pH 7.0
Phosphate-buffered saline (PBS): $137 \mathrm{mM} \mathrm{NaCl}, 2.7 \mathrm{mM} \mathrm{KCl}, 8.1 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}, 1.5 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}, \mathrm{pH} 7.4$

Catch

To a solution of Bza-peptide (50 nmol) in 1 mL of solvent (phosphate buffer or PBS buffer or $0.1 \% \mathrm{TFA}$ in 5% $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$) was added TentaGel-supported Pd aqua complex ($5.0 \mathrm{mg}, 1 \mu \mathrm{~mol}$). The mixture was rotated for 1 or 2 h at rt , and then filtered. The recovered beads were washed with the same solvent (1 mL , twice). The supernatant and combined washing solution were analyzed by HPLC.

Release

The recovered beads were exposed to 0.5 mL of acidic solution ($0.1 \% \mathrm{TFA}$ in $50 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ or 0.3% TFA in $50 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ or $0.5 \% \mathrm{TFA}$ in $50 \% \mathrm{CH}_{3} \mathrm{CN}$) for 30 min at rt. The mixture was filtered, and the recovered beads were washed with 0.5 ml of the same solvent. The obtained solutions were analyzed by HPLC. 0.1% TFA in 50% $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ and 0.5% TFA in $50 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ were similarly investigated.

HPLC conditions and calibration curve of Bza-peptide

Figure S6

Typical HPLC charts obtained from the purification experiment using Bza-peptide

Fig. $\mathbf{S 7}$
To a solution of Bza-peptide (50 nmol) in 1 mL of phosphate buffer (pH 7.0) was added TentaGel-supported Pd aqua complex ($12.5 \mathrm{mg}, 2.5 \mu \mathrm{~mol}$). The mixture was rotated for 1 h at rt , and then filtered. The recovered beads were washed with the same solvent (1 mL , twice). The supernatant and washing solutions were analyzed by HPLC: the catch efficiency was $>94 \%$. The recovered beads were exposed to 0.5 mL of 0.3% TFA in $50 \% \mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{H}_{2} \mathrm{O}$ for 30 min at rt . The mixture was filtered, and the recovered beads were washed with 0.5 ml of the same solvent. The obtained solutions were analyzed by HPLC: the elution efficiency was 98%. HPLC analysis was performed in the same way as for Figure $\mathbf{S 5}$.

Determination of dissociation constant (Kd) between Pd complex and ketoamide tag.

NMR experiment of Pd aqua complex and Bka-4 in acetone.
We examined the dissociation constant of Pd complex and simple ketoamide compound Bka-4 in organic solvent. To a solution of Pd aqua complex ($3.2 \mathrm{mg}, 3.0 \mu \mathrm{~mol}$) and trimethoxybenzene (internal standard, $6.5 \mu \mathrm{~mol}$) in acetone$d_{6}(400 \mu \mathrm{~L})$, different amounts of Bka-4 (1.5, 2.4, 4.5, 6.0, or $12.0 \mu \mathrm{~mol}, 0.5-4$ eq.) were added in the solvent (200 $\mu \mathrm{L}$). After more than 1 h at rt , the ${ }^{1} \mathrm{H}$ NMR spectra were measured. The amount of Pd enolate complex was determined based on the integration of signal 5.73 ppm , which was quantified using the internal standard (Fig. S8).

Fig. S8

Using the quantified [Pd enolate complex], we made the Scatchard plot with [bound Bka-4] and [bound/free Bka-4]. The Kd value was calculated as 1.12×10^{-3} from the slope of the approximate line (Fig. S9).

Scatchard Plot

Fig. S9

Analysis of the Kd value between Tentagel-supported Pd aqua complex and Bza-peptide in aqueous solution.

To estimate the Kd value in aqueous solution, the water-solubilities of Pd aqua complex and Bka-4 were insufficient. Instead, we analyzed the dissociation constant between Pd complex immobilized on TentaGel and ketoamide-tagged peptide. To a suspension of different amounts of TentaGel-supported Pd aqua complex in phosphate buffer (1 mL), Bza-tagged peptide (68.0 nmol) at rt was added. The mixture was rotated for 1 h at rt , subsequently filtered, and the recovered beads were washed with 1 mL of phosphate buffer (x 2). The washed beads were exposed to 0.3% TFA $50 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(250 \mu \mathrm{~L})$ for 30 min at rt . The mixture was filtered, and the recovered beads were washed with $250 \mu \mathrm{~L}$ of the same solvent. The obtained solutions (initial solution, supernatant, washing solution, and eluted solution) were analyzed by HPLC (Fig. S10). HPLC analysis was performed in the same way as for Fig. S6.

Fig. S10

Using the quantified [Pd enolate complex], we made the Scatchard plot with [bound Pd complex] and [bound/free Pd complex]. The Kd value was calculated as 9.98×10^{-5} from the slope of the approximate line (Fig. S11).

Fig. S11

Estimation of essential amount of Pd complex for the efficient purification.

To estimate the essential conditions for the purification, the following equation were derived from the dissociation constant (Kd)

$$
K d=\frac{[\mathrm{Pd}] \cdot[\text { ketoamide }]}{[\mathrm{Pd}-\text { ketoamide }]}=\frac{\left([\mathrm{Pd}]_{0}-[\mathrm{Pd} \text { - ketoamide }]\right) \cdot\left([\text { ketoamide }]_{0}-[\mathrm{Pd}-\text { ketoamide }]\right)}{[\mathrm{Pd}-\text { ketoamide }]}
$$

[Pd]: concentration of palladium complex
[ketoamide]: concentration of ketoamide
[Pd-ketoamide]: concentration of palladium-ketoamide complex
$[\mathrm{Pd}]_{0}$: initial concentration of palladium complex
[ketoamide] $]_{0}$ initial concentration of ketoamide
Considering the experimental conditions, we can introduce the following approximation, which means excess amount of Pd complex compared with labeled peptides.

$$
\begin{aligned}
& {[\mathrm{Pd}]_{0} \gg[\text { ketoamide }]_{0} \geq[\mathrm{Pd} \text { - ketoamide }]} \\
& {[\mathrm{Pd}]_{0}-[\mathrm{Pd} \text { - ketoamide }] \cong[\mathrm{Pd}]_{0}}
\end{aligned}
$$

Using the above approximation, the following equation can estimate the catch efficiency.

$$
\begin{aligned}
& \mathrm{Kd}=\frac{[\mathrm{Pd}]_{0} \cdot\left([\text { ketoamide }]_{0}-[\mathrm{Pd} \text {-ketoamide }]\right)}{[\mathrm{Pd} \text { - ketoamide }]} \\
& \frac{\mathrm{Kd}}{[\mathrm{Pd}]_{0}}=\frac{[\text { ketoamide }]_{0}-[\mathrm{Pd} \text { - } \text { ketoamide }]}{[\mathrm{Pd}-\text { ketoamide }]}=\frac{[\text { ketoamide }]_{0}}{[\mathrm{Pd} \text { - ketoamide }]}-1 \\
& \frac{\mathrm{Kd}+[\mathrm{Pd}]_{0}}{[\mathrm{Pd}]_{0}}=\frac{[\text { ketoamide }]_{0}}{[\mathrm{Pd} \text { - ketoamide }]} \\
& \text { Catch Efficiency }=\frac{[\mathrm{Pd} \text { - } \text { ketoamide }]}{[\text { ketoamide }]_{0}}=\frac{[\mathrm{Pd}]_{0}}{\mathrm{Kd}+[\mathrm{Pd}]_{0}}
\end{aligned}
$$

Based on the above equation, if higher concentration of palladium complex than Kd value is used, the catch efficiency is constant and approaches quantitative. To confirm this, we examined the catch efficiency with excess concentration of $\operatorname{Pd}\left(2.5 \times 10^{-3} \mathrm{M}\right)$ and different concentration of ketoamide-tagged peptide (Fig. S12).

To a suspension of TentaGel-supported Pd aqua complex ($12.5 \mathrm{mg}, 2.5 \mu \mathrm{~mol}$) in phosphate buffer (1 mL), different equivalents of Bza-tagged peptide ($3.5,7.1,14.9,30.8,37.5$, or 76.5 nmol) at rt were added. The mixture was rotated for 1 h at rt , subsequently filtered, and the recovered beads were washed with 1 mL of phosphate buffer (x 2). The washed beads were exposed to 0.3% TFA $50 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(500 \mu \mathrm{~L})$ for 30 min at rt. The mixture was filtered, and the recovered beads were washed with $500 \mu \mathrm{~L}$ of the same solvent. The obtained solutions (initial solution, supernatant, washing solution, and eluted solution) were analyzed by HPLC (Fig. S12). HPLC analysis was performed in the same way as for Fig. S6.

HPLC carts

Fig. S12
Consequently, the catch efficiency was consistently quantitative, supporting the above hypothesis. Therefore, we estimated the minimum essential amount of Pd complex as $10^{-3} \mathrm{M}$.

Purification of Bza-Peptide from Tryptic Digest of BSA

Preparation of BSA tryptic digest

Bovine serum albumin (10 mg) was dissolved in 1 mL of denaturing buffer (7 M guanidine hydrochloride, 1 M Tris- $\mathrm{HCl}(\mathrm{pH} 8.5), 65 \mathrm{mM}$ dithiothreitol (DTT)) and incubated for 10 min at $95^{\circ} \mathrm{C}$ and 1 h at $37{ }^{\circ} \mathrm{C}$. After addition of 162.5 mM iodoacetamide (IAM), the sample solution was incubated for 1 h at rt . The protein solution was desalted by a Zeba Desalt Spin column 7K MWCO (BIO-RAD), and then digested with trypsin (sequencing grade modified trypsin, Promega) at $37{ }^{\circ} \mathrm{C}$ overnight. The solution was lyphilized and resolved in water before use. The amount of peptide was determined by amino acid analysis.

Procedure for the purification of Bza-peptide from tryptic digest of BSA

To a solution of Bza-peptide (500 pmol) and BSA tryptic digest (540 pmol BSA) in $0.1 \% \mathrm{TFA}$ in $5 \% \mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{H}_{2} \mathrm{O}$ $(1.00 \mathrm{~mL})$ was added TentaGel-supported Pd aqua complex $(10.0 \mathrm{mg}, 2 \mu \mathrm{~mol})$. The mixture was rotated for 1 h at rt , then filtered, and the recovered beads were washed with 2.00 mL of $0.1 \% \mathrm{TFA} 5 \% \mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{H}_{2} \mathrm{O}(\mathrm{x} 10)$. The washed beads were exposed to $0.3 \% \mathrm{TFA} 50 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(500 \mu \mathrm{~L})$ for 30 min at rt . The obtained solutions (initial solution, supernatant, washing solution, and eluted solution) were analyzed by MALDI-TOF-MS. Among various BSA peptides, $\mathrm{BSA}_{347-359}$ (blue, Fig. S13) showed specific binding to TentaGel-supported Pd aqua complex (Figure 5c).


```
5 1 ~ F S Q Y L Q Q C P F D E H V K L V N E L T E F A K T C V A D E S H A G C E K S L H T L F G D E L C K ~
101 VASLRETYGDMADCCEKQEPERNECFLSHKDDSPDLPKLKPDPNTLCDEF
151 KADEKKFWGKYLYEIARRHPYFYAPELLYYANKYNGVFQECCQAEDKGAC
201 LLPKIETMREKVLASSARQRLRCASIQKFGERALKAWSVARLSQKFPKAE
251 FVEVTKLVTDLTKVHKECCHGDLLECADDRADLAKYICDNQDTISSKLKE
301 CCDKPLLEKSHCIAEVEKDAIPENLPPLTADFAEDKDVCKNYQEAKDAFL
351 GSFLYEYSRRHPEYAVSVLLRLAKEYEATLEECCAKDDPHACYSTVFDKL
401 KHLVDEPQNLIKQNCDQFEKLGEYGFQNALIVRYTRKVPQVSTPTLVEVS
451 RSLGKVGTRCCTKPESERMPCTEDYLSLILNRLCVLHEKTPVSEKVTKCC
501 TESLVNRRPCFSALTPDETYVPKAFDEKLFTFHADICTLPDTEKQIKKQT
551 ALVELLKHKPKATEEQLKTVMENFVAFVDKCCAADDKEACFAVEGPKLVV
601 STQTALA
```

Fig. S13 Amino acid sequence of BSA (UniprotKB - P02769)
$\mathrm{BSA}_{161-167}$ and $\mathrm{BSA}_{347-359}$ are shown in red and blue, respectively. Bza-peptide was designed from $\mathrm{BSA}_{161-167}$.

Assay System for Inhibitory Activities against Cathepsin B

Fig. S14
The cathepsin-inhibitory activities of compounds were measured by using a cathepsin B activity fluorometric assay kit (K140-100, BioVision). Briefly, test compound and substrate were mixed in a 96 -well plate ($50 \mu \mathrm{~L} / \mathrm{well}$), and human liver cathepsin B (Calbiochem, catalog No. 219362) was added ($0.050 \mu \mathrm{~g}, 50 \mu \mathrm{~L} /$ well). The plate was incubated at $37^{\circ} \mathrm{C}$ for 10 min , and the activity of cathepsin B was determined based on the increase of fluorescence (Ex $400 \mathrm{~nm} / E m 505 \mathrm{~nm}$) measured with a 96 -well plate reader (Spectra Max M2e, Molecular Devices). The doseresponse curves and IC_{50} values of compounds were calculated by Origin 9.0 software, and data are presented as mean \pm S.D. $(\mathrm{n}=3)$.

Purification and Identification of Bza-FG-AOMK-labelled peptide

Preparation of tryptic digest of labelled cathepsin B

Fig. S15
Human liver cathepsin B ($6.5 \mu \mathrm{~g}$, Calbiochem, catalog No. 219362) was dissolved in 1.0 mL of buffer (50 mM sodium acetate (pH 5.6), $5 \mathrm{mM} \mathrm{MgCl} 2,2 \mathrm{mM}$ DTT). Then $5 \mu \mathrm{~L}$ of 6 mM Bza -FG-AOMK in DMSO was added (final concentration $30 \mu \mathrm{M}$), and the mixture was incubated for 30 min at $37^{\circ} \mathrm{C}$. After incubation, cathepsin B was precipitated by adding trichloroacetic acid (TCA). The precipitate was washed with acetone and dissolved in denaturing buffer (trifluoroethanol $15 \mu \mathrm{~L}, 100 \mathrm{mM}$ ammonium bicarbonate $15 \mu \mathrm{~L}$, and 200 mM DTT $1.5 \mu \mathrm{~L}$). The solution was incubated for 1 h at $60^{\circ} \mathrm{C}$. After addition of $6 \mu \mathrm{~L}$ of 200 mM iodoacetamide (IAM), incubation was continued for 1 h at rt , and then $1 \mu \mathrm{~L}$ of 200 mM DTT was added to quench excess IAM. The solution was diluted with $240 \mu \mathrm{~L}$ of 25 mM ammonium bicarbonate buffer containing n-decyl- β-D-glucopyranoside (DG, final concentration: $0.05 \mathrm{w} / \mathrm{v} \%$). After addition of trypsin (200 ng), the sample solution was incubated overnight at $37^{\circ} \mathrm{C}$ and used as the tryptic digest of cathepsin B ($240 \mathrm{pmol} / 280 \mu \mathrm{~L}$, approximately).

```
            1 ~ M W Q L W A S L C C L L V L A N A R S R P S F H P L S D E L V N Y V N K R N T T W Q A G H N F Y N V ~
                51 DMSYLKRLCGTFLGGPKPPQRVMFTEDLK:CPASFDARM,
                            light chain 4\cdots..: \cdots\cdots`> heavy chain
101 DQGSCGSCWAFGAVEAISDRICIHTNAMVSVEVSAEDLLTCCGSMCGDGC
1 5 1 ~ N G G Y P A E A W N F W T R K G L V S G G L Y E S H V G C R P Y S I P P C E H H V N G S R P P C T G ~
201 EGDTPKCSKICEPGYSPTYKQDKHYGYNSYSVSNSEKDIMAEIYKNGPVE
251 GAFSVYSDFLLYKSGVYQHVTGEMMGGHAIRILGWGVENGTPYWLVANSW
    matured cathepsin B
301 NTDWGDNGFFKILRGQDHCGIESEVVAGIPRTDQYWEKI
```

Fig. S16 Amino acid sequence of human cathepsin B (UniprotKB - P07858)
Catalytic cysteine residue (Cys108) and $\mathrm{CatB}_{246-263}$ are shown in red and blue, respectively.

Purification of the peptide labelled by Bza-FG-AOMK

To a solution of tryptic digest of BzaFG-AOMK-labelled cathepsin B (250 pmol) in $0.1 \% \mathrm{TFA}$ in $5 \% \mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{H}_{2} \mathrm{O}$ $(1.0 \mathrm{~mL})$ was added TentaGel-supported Pd aqua complex ($500 \mathrm{nmol}, 2000 \mathrm{eq}$.). The mixture was rotated for 1 h at rt , then filtered. The recovered beads were washed with 2.0 mL of $0.1 \% \mathrm{TFA}$ in $5 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ (5 times), and then the beads were exposed to $0.3 \% \mathrm{TFA}$ in $50 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(500 \mu \mathrm{~L})$ for 30 min at rt . After filtration, the beads were washed with 0.3% TFA in $50 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(500 \mu \mathrm{~L})$. The obtained solutions, initial solution, supernatant, washing solution, and eluted solution, were analyzed by MALDI-TOF-MS (Fig. 6c and S17 left).

MALDI-TOF-MS analysis

Fig. S17
Purification was also performed using the tryptic digest of non-labelled cathepsin B as an initial solution (Fig. S17 right). In this case, the target peptide was not observed in the eluate. However, a strong signal of $\mathrm{CatB}_{246-263}$ was detected in the same way as in the Bza-labelled sample (Fig. S17 left). Based on this observation, CatB ${ }_{246-263}$ (blue in Fig. S16) appears to have some affinity with TentaGel-supported Pd aqua complex. One possible explanation is hydrophobic interaction with the polystyrene regions of TentaGel. Another is coordination of some specific sequence
of amino-acid residues of $\mathrm{CatB}_{246-263}$ to the Pd complex. In addition, the region from 1200 to $1800 \mathrm{~m} / \mathrm{z}$ contains many peaks related to polyethylene glycol (PEG), which is thought to be derived from the PEG linker of TentaGel.

LC-ESI-MS/MS analysis for the identification of the binding site

The eluted solution was also analyzed by LC-ESI-MS/MS to identify the binding site. Mass spectra were acquired using a LTQ Orbitrap XL source (Thermo Fisher Scientific) equipped with a nano electrospray ionization (nanoESI) source (Nikkyo Technos Co, Ltd.). Full mass scan was acquired in the FT mode (resolution 60,000) and MS/MS scan (CID) was acquired in the iontrap (IT) mode or FT mode. On a nanoflow HPLC system (nanoLC) (UltiMate 3000 nano LC system, Thermo Fisher Scientific), Acclaim PepMap100 C18 nanoViper ($75 \mu \mathrm{~m}$ i. d. x $150 \mathrm{~mm}, 3 \mu \mathrm{~m}, 100$ \AA, Thermo Fisher Scientific) and μ-precolumn cartridge (Acclaim PepMap100 C18, $300 \mu \mathrm{~m}$ i. d. x $5 \mathrm{~mm}, 100 \AA, 5$ $\mu \mathrm{m}$, Thermo Fisher Scientific) were used as the analytical column and trap column, respectively. For the analytical column, mobile-phase A consisted of $0.1 \% \mathrm{FA}, 4 \% \mathrm{MeCN}$ in distilled water; mobile-phase B consisted of 100% MeCN containing 0.1% FA. For the trap column, mobile-phase C consisted of 0.1% TFA in distilled water. The gradient method was used with mobile-phase A and mobile-phase B at a flow rate of $250 \mathrm{~nL} / \mathrm{min}$. A representative gradient was as follows; $0 \% \mathrm{~B}(0-10 \mathrm{~min}), 0-40 \% \mathrm{~B}(10-40 \mathrm{~min}), 40-70 \% \mathrm{~B}(40-45 \mathrm{~min}), 70-100 \% \mathrm{~B}(45$ - 46 min), total 60 min run. The MS and MS/MS data were searched against protein database using Proteome Discoverer (Thermo Fisher Scientific) with MASCOT (Matrix Science). Theoretical peptide mass value was calculated by a Xcalibur Qual Browser (Thermo Fisher Scientific).

Synthesis of Bza-FG-AOMK

Scheme S3

Reagents and conditions: (a) $\mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} \%), \mathrm{H}_{2}, \mathrm{EtOH}, \mathrm{rt}, 1 \mathrm{~h}$; (b) benzoyl acetic acid, $\mathrm{EDCI}, \mathrm{HOBt}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $10 \mathrm{~h}, 66 \%$ in 2 steps; (c) $\mathrm{LiOH}, \mathrm{THF} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 2 \mathrm{~h}$; (d) isobutyl chloroformate, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF},-40^{\circ} \mathrm{C}, 30 \mathrm{~min}$ then $0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (e) diazald, $\mathrm{KOH}, \mathrm{Et} 2 \mathrm{O} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (f) $48 \% \mathrm{HBraq} . / \mathrm{AcOH}(1 / 1), 0^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (g) 2,6-dimethylbenzoic acid, KF, DMF, rt, $14 \mathrm{~h}, 50 \%$ in 5 steps.

Bza-FG-OMe (15)

To a solution of Cbz-FG-OMe (14) $)^{8}(2.5 \mathrm{~g}, 6.7 \mathrm{mmol})$ in $\mathrm{EtOH}(68.0 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(250 \mathrm{mg}, 10 \mathrm{wt} \%)$. The suspension was stirred for 1 h under a hydrogen atmosphere, and then filtered through a Celite pad. The filtrate was concentrated under reduced pressure and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(34.0 \mathrm{~mL})$. To this solution was added benzoylacetic acid ($1.0 \mathrm{~g}, 6.1 \mathrm{mmol})$, $\mathrm{EDCI} \cdot \mathrm{HCl}(1.4 \mathrm{~g}, 7.3 \mathrm{mmol})$, and $\mathrm{HOBt}(1.1 \mathrm{~g}, 8.2 \mathrm{mmol})$ at rt . The reaction mixture was stirred for 18 h , then the solvent was removed in vacuo. The crude mixture was diluted with AcOEt, and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, saturated aqueous NaHCO_{3}, and brine. The organic solution was dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to give Bza-FG-OMe (15) $(1.54 \mathrm{~g}, 66 \%)$ as a white solid.
[a]d ${ }^{24}$: -42.9 (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.96(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.74-7.72(1 \mathrm{H}, \mathrm{m}), 7.62(1 \mathrm{H}$, $\mathrm{t}, J=7.7 \mathrm{~Hz}), 7.48(2 \mathrm{H}, \mathrm{dd}, J=7.7,8.1 \mathrm{~Hz}), 7.43-7.38(1 \mathrm{H}, \mathrm{m}), 7.29-7.18(5 \mathrm{H}, \mathrm{m}), 4.73(1 \mathrm{H}, \mathrm{dd}, J=5.4,9.4 \mathrm{~Hz})$, $3.99(2 \mathrm{H}, \mathrm{s}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.31(2 \mathrm{H}, \mathrm{s}), 3.26(1 \mathrm{H}, \mathrm{dd}, J=5.4,14.0 \mathrm{~Hz}), 2.92(1 \mathrm{H}, \mathrm{dd}, J=9.4,14.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 196.6,173.9,171.5,169.6,138.5,137.5,134.9,130.2$ (2C), 129.9 (2C), 129.6 (2C), 129.5 (2C), 127.8, 56.0, 52.6, 41.9, 38.6, 32.7; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 405.1385$; found 405.1421.

Bza-FG-OH (16)

To a solution of $\mathbf{1 5}(1.5 \mathrm{~g}, 3.92 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(2 / 1 / 1,80 \mathrm{~mL})$ was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(329 \mathrm{mg}, 7.8 \mathrm{mmol})$. The reaction mixture was stirred for 3 h at rt , and then quenched with 1 NHCl . The aqueous phase was extracted with AcOEt. The combined organic solution was dried over MgSO_{4} and concentrated in vacuo. The residue was purified by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to afford Bza-FG-OH (16) (1.47 g including inseparable impurities) as a white solid.
[a]d ${ }^{21}$: -31.2 (c 0.54, MeOH); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta 8.54-8.42(2 \mathrm{H}, \mathrm{m}), 7.83(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.62$ $(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.46(2 \mathrm{H}, \mathrm{dd}, J=7.8,8.0 \mathrm{~Hz}), 7.29-7.18(5 \mathrm{H}, \mathrm{m}), 4.60-4.55(1 \mathrm{H}, \mathrm{m}), 3.94-3.79(4 \mathrm{H}, \mathrm{m}), 3.07$ $(1 \mathrm{H}, \mathrm{dd}, J=3.9,13.6 \mathrm{~Hz}), 2.77(1 \mathrm{H}, \mathrm{dd}, J=9.2,13.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 194.5,171.3,171.1$, 166.2, 137.8, 136.2, 133.4, 129.2 (2C), 128.7 (2C), 128.3 (2C), 128.1 (2C), 126.3, 53.8, 46.7, 40.7, 37.8; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}-\mathrm{H}]^{-} 367.1288$; found 367.1308.

Bza-FG-Br (17)

To a solution of $\mathbf{1 6}(400 \mathrm{mg}, 1.08 \mathrm{mmol})$ in THF (10 mL) was added triethylamine ($211 \mu \mathrm{~L}, 1.51 \mathrm{mmol}$) and isobutyl chloroformate ($184 \mu \mathrm{~L}, 1.41 \mathrm{mmol}$) at $-40^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min at $-40^{\circ} \mathrm{C}$, and for 30 min at $-15^{\circ} \mathrm{C}$. In another flask, a solution of Diazald ($1.07 \mathrm{~g}, 5.0 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added slowly over 1 h to a solution of $\mathrm{KOH}(841 \mathrm{mg}, 15.0 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{Et}_{2} \mathrm{O}(2 / 1 / 1,24.0 \mathrm{~mL})$ at rt. The generated $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was added to the reaction solution by bubbling, and the reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. Then, 48% aqueous $\mathrm{HBr} / \mathrm{AcOH}(1 / 1,4.0 \mathrm{~mL})$ was added, and stirring was continued for 15 min at $0^{\circ} \mathrm{C}$. The reaction mixture was quenched with saturated aqueous NaHCO_{3}. The aqueous layer was extracted with AcOEt , and the organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent; $\left.\mathrm{AcOEt} / \mathrm{Hex}=1 / 1\right)$ to afford $\mathrm{Bza}-\mathrm{FG}-\mathrm{Br}(\mathbf{1 7})(396 \mathrm{mg}$ including inseparable impurities) as a white solid.
$[\mathrm{a}]_{\mathrm{D}}{ }^{21}:-22.1(\mathrm{c} 0.83, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.90(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.71-7.69(1 \mathrm{H}, \mathrm{m}), 7.59(1 \mathrm{H}$, $\mathrm{t}, J=7.4 \mathrm{~Hz}), 7.46(2 \mathrm{H}, \mathrm{dd}, J=7.4,7.6 \mathrm{~Hz}), 7.42-7.35(1 \mathrm{H}, \mathrm{m}), 7.28-7.17(5 \mathrm{H}, \mathrm{m}), 4.86-4.81(1 \mathrm{H}, \mathrm{m}), 4.31(1 \mathrm{H}, \mathrm{dd}$, $J=5.4,18.9 \mathrm{~Hz}), 4.21(1 \mathrm{H}, \mathrm{dd}, J=5.2,18.9 \mathrm{~Hz}), 3.90(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 3.89(2 \mathrm{H}, \mathrm{s}), 3.18(1 \mathrm{H}, \mathrm{dd}, J=6.4,14.1$ $\mathrm{Hz}), 3.08(1 \mathrm{H}, \mathrm{dd}, J=7.8,14.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 197.7,195.5,171.4,166.7,136.5,136.0,134.3$, 129.4 (2C), 129.0 (2C), 128.8 (2C), 128.7 (2C), 127.2, 54.7, 47.2, 45.6, 37.8, 31.8; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+} 469.0558$; found 469.0511 .

Bza-FG-AOMK

To a solution of $17(330 \mathrm{mg}, 0.74 \mathrm{mmol})$ in DMF $(7.4 \mathrm{~mL})$ was added 2,6-dimethyl benzoic acid ($134 \mathrm{mg}, 0.89$ $\mathrm{mmol})$ and $\mathrm{KF}(172 \mathrm{mg}, 2.96 \mathrm{mmol})$ at rt . The reaction mixture was stirred for 14 h at rt and quenched with $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with AcOEt and the organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$, saturated aqueous NaHCO_{3}, and brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent; $\left.\mathrm{AcOEt} / \mathrm{Hex}=7 / 3\right)$ to afford Bza-FG-AOMK $(235 \mathrm{mg}, 50 \%$ in 5 steps from compound 15) as a white solid.
$[\mathrm{a}]_{\mathrm{D}}{ }^{22}:-22.2(\mathrm{c} 0.63, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.92(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.72-7.71(1 \mathrm{H}, \mathrm{m}), 7.60(1 \mathrm{H}$, $\mathrm{t}, J=7.5 \mathrm{~Hz}), 7.46(2 \mathrm{H}, \mathrm{dd}, J=7.5,7.6 \mathrm{~Hz}), 7.38-7.36(1 \mathrm{H}, \mathrm{m}), 7.28-7.17(5 \mathrm{H}, \mathrm{m}), 7.09-7.03(3 \mathrm{H}, \mathrm{m}), 4.89(2 \mathrm{H}, \mathrm{d}$, $J=2.4 \mathrm{~Hz}), 4.85-4.80(1 \mathrm{H}, \mathrm{m}), 4.26(1 \mathrm{H}, \mathrm{dd}, J=5.0,19.1 \mathrm{~Hz}), 4.15(1 \mathrm{H}, \mathrm{dd}, J=5.2,19.1 \mathrm{~Hz}), 3.93(2 \mathrm{H}, \mathrm{d}, J=8.8$ $\mathrm{Hz}), 3.18(1 \mathrm{H}, \mathrm{dd}, J=6.6,14.2 \mathrm{~Hz}), 3.12(1 \mathrm{H}, \mathrm{dd}, J=7.4,14.2 \mathrm{~Hz}), 2.36(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $198.9,195.6,171.2,169.1,166.5,136.4,136.0,135.8$ (2C), 134.3, 132.4, 130.0, 129.4 (2C), 129.0 (2C), 128.9 (2C), 128.7 (2C), 127.9 (2C), 127.2, 66.9, 54.8, 46.9, 45.5, 37.8, 20.1 (2C); HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$ 537.1996; found 537.1995.

Comparison with Purification Method Using Biotin-Avidin System and Click Reaction

To compare our method with the widely used alkyne-tag-click reaction method, alkyne-tagged Bza-FG-AOMK (AltBza-FG-AOMK) was prepared and used in our method or the general method using click reaction and biotinavidin system.

Purification of the peptide modified by AltBza-FG-AOMK by using Pd beads

Fig. S18
The tryptic digest of AltBza-FG-AOMK-labelled cathepsin B (150 pmol) was prepared by using the same method as Fig. S15. Even in the case of this sample, we succeeded in purification of the AltBza-FG-AOMK-labelled peptide by our method.
*In the case of AltBza-FG-AOMK, one of the cysteine residues in target peptide was not capped efficiently by iodoacetamide.

Purification of the peptide modified by AltBza-FG-AOMK by using biotin-avidin system

Fig. S19
Human liver cathepsin B ($4 \mu \mathrm{~g}, 150 \mathrm{pmol}$) was incubated with AltBza-FG-AOMK (final concentration $30 \mu \mathrm{M})$ for 30 min at $37^{\circ} \mathrm{C}$, then cathepsin B was precipitated with TCA and washed with acetone. The precipitate was dissolved in $100 \mu \mathrm{~L}$ of SDS buffer ($1 \% \mathrm{SDS}, 50 \mathrm{mM}$ Tris- $\mathrm{HCl}, \mathrm{pH} 8.0$). Introduction of a biotin tag was performed by click reaction using Click-it Protein Reaction Buffer Kit (Thermo Fisher Scientific). After click reaction, reagents were removed by $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ precipitation. The precipitate was digested with trypsin after capping of cysteine residues using the same method as for Fig. S15. We tried to purify the AltBza-FG-AOMK-labelled peptide by using the biotinavidin system according to the supplier's protocol. Pierce Monomeric Avidin UltraLink resin ($100 \mu \mathrm{~L}, 50 \%$ aqueous slurry, ≥ 900 pmol binding capacity) was added to a tube, and then washed 5 times with PBS buffer (0.5 mL). The tryptic digest of cathepsin B was mixed with the avidin beads in PBS buffer (0.5 mL), and the mixture was incubated for 1 h at $4^{\circ} \mathrm{C}$. The supernatant was recovered after centrifugation, and the beads were washed 5 times with PBS buffer (0.5 mL). The washed beads were incubated in 2 mM biotin in PBS buffer $(0.1 \mathrm{~mL})$ for 1 h at $4{ }^{\circ} \mathrm{C}$, and the supernatant was recovered as eluate 1 . Additionally, the beads were incubated in regeneration buffer (0.1 M glycine buffer, pH 2.8) for 1 h at rt , and then the supernatant was recovered as eluate 2 . The obtained solutions were analyzed by MALDI-TOF-MS (Fig. S19) and LC-ESI-MS.

Non-labelled target peptide ($\mathrm{CatB}_{101-120}$) was not observed in the initial solution. This indicates that the labelling with AltBza-FG-AOMK proceeded successfully. However, the biotinylated target peptide was not detected even in the initial solution. Possible reasons for this are that the biotinylated peptide may have low ionization efficiency or may have precipitated due to the low solubility of the biotin tag.

Western blotting analysis of cathepsin B labelled by AltBza-FG-AOMK with click reaction.

Labeled Cathepsin B

Fig. S20
To confirm the introduction of the biotin tag by click reaction, Western blotting analysis was performed (Fig. S20). In the same manner as for figure S 14 , human liver cathepsin $\mathrm{B}(4 \mu \mathrm{~g}, 150 \mathrm{pmol})$ was treated with or without AltBza-FG-AOMK, and the biotin tag was introduced by click reaction. The biotinylated cathepsin B was dissolved in SDS sample buffer, and reductive alkylation was performed with a sample buffer kit (Apro Science; acrylamide as an alkylation reagent). The obtained samples were separated by SDS-PAGE and analyzed by Western blotting using streptavidin-HRP (GE Healthcare). The chemiluminescence image was obtained by using LAS4000 (GE-Helthcare). As shown in the right part of Fig. S20, cathepsin B has two forms: a single chain form and a two-chain form. The two-chain form was mainly included in our sample, and the binding site is in the light chain. Indeed, the light chain was clearly observed by chemiluminescence, indicating that the introduction of the biotin tag proceeded successfully with AltBza-FG-AOMK and click reaction.

Synthesis of AltBza-FG AOMK

Scheme S4

Reagents and conditions: (a) $\mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} \%), \mathrm{H}_{2}, \mathrm{THF} / \mathrm{EtOH}, \mathrm{rt}, 1.5 \mathrm{~h}$; (b) methyl 4-(ethynyl)benzoylacetate, toluene, reflux, $6 \mathrm{~h}, 54 \%$ in 2 steps; (c) $\mathrm{LiOH}, \mathrm{THF} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, rt, $2 \mathrm{~h}, 94 \%$; (d) isobutyl chloroformate, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF},-60^{\circ} \mathrm{C}$, 30 min then $-40^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (e) diazald, $\mathrm{KOH}, \mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 43 \%$ in 2 steps; (f) 2,6-dimethyl benzoic acid, HFIP, rt, $3 \mathrm{~h}, 14 \%$.
methyl 3-(4-ethynylphenyl)-3-oxopropanoate (19) ${ }^{9,10}$

To a solution of 4-bromoacetophenone ($10.0 \mathrm{~g}, 50.0 \mathrm{mmol}$) in dimethyl carbonate (50.0 mL) was added $\mathrm{NaH}(4.40$ g, 55% dispersion in mineral oil, 100 mmol) at rt and the mixture was stirred for 4 h at $80^{\circ} \mathrm{C}$. The reaction mixture was quenched with $1 N \mathrm{HCl}$, and the whole was extracted with AcOEt two times. The combined organic solution was dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent; $\left.\mathrm{AcOEt} / \mathrm{Hex}=1 / 9\right)$ to give methyl 4-bromobenzoylacetate (18) (13.5 g, quant.) as a pale yellow oil ${ }^{9}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.80(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.63(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 3.97(2 \mathrm{H}, \mathrm{s}), 3.75(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.5,167.7,134.7,132.3,130.1,127.7,52.7,45.7$.

To a solution of $\mathbf{1 8}(12.2 \mathrm{~g}, 47.6 \mathrm{mmol})$ and trimethylsilylacetylene ($19.8 \mathrm{~mL}, 143 \mathrm{mmol}$) in $\mathrm{Et}_{3} \mathrm{~N}(450 \mathrm{~mL})$ was added bis(triphenylphosphine)palladium dichloride ($842 \mathrm{mg}, 1.20 \mathrm{mmol}$) and copper iodide ($229 \mathrm{mg}, 1.20 \mathrm{mmol}$) at rt . The reaction mixture was stirred for 1 h at $80^{\circ} \mathrm{C}$, then the solution was filtered through a Celite pad. The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent; AcOEt/Hex = 1/19) to give the TMS-protected product ${ }^{10}$. To a solution of the TMS-protected compound in $\mathrm{MeOH}(250 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(9.90 \mathrm{~g}, 71.4 \mathrm{mmol})$ at rt . The reaction mixture was stirred for 3 h at rt , then saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ two times. The combined organic solution was dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash
column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent; $\left.\mathrm{AcOEt} / \mathrm{Hex}=1 / 9\right)$ to give methyl 3-(4-ethynylphenyl)-3-oxopropanoate (19) ($7.36 \mathrm{~g}, 77 \%$) as a pale-yellow solid.
Enol form (major): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 12.5(1 \mathrm{H}, \mathrm{s}), 7.73(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.53(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, $5.68(1 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.20(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.5,170.5,133.6,132.4$ (2C), 126.1 (2C), 125.1, 87.9, 83.1, 79.6, 51.7; HRMS (ESI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{Na}$: 225.0522. Found: 255.0521.
*Keto form: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.90(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.59(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 3.94(2 \mathrm{H}, \mathrm{s}), 3.75(3 \mathrm{H}$, s), $3.28(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.7,167.8,135.7,132.6$ (2C), 128.5 (2C), 127.8, 82.7, 81.1, 52.7, 45.8.

AltBza-FG-OMe (20) ${ }^{11}$

To a mixture of $\mathbf{1 4}^{8}(1.53 \mathrm{~g}, 4.10 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{THF}(4 / 1,40.0 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(153 \mathrm{mg}, 10 \mathrm{wt} \%)$. The suspension was stirred for 1.5 h under a hydrogen atmosphere, and then the mixture was filtered through a Celite pad. The filtrate was concentrated under reduced pressure. The residue was dissolved in toluene (40.0 mL), and then 19 $(1.00 \mathrm{~g}, 4.90 \mathrm{mmol})$ was added to the solution at rt . The reaction mixture was refluxed for 6 h , then diluted with AcOEt. The organic solution was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, saturated aqueous NaHCO_{3}, and brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent; $\left.\mathrm{MeOH} / \mathrm{CHCl}_{3}=1 / 49\right)$, and recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to give AltBza-FGOMe (20) (901 mg, 54\%) as a white solid.
white solid; $[\mathrm{a}]_{\mathrm{D}}{ }^{24}:-47.2(\mathrm{c} 1.0, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.87(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.57(2 \mathrm{H}, \mathrm{d}, J=$ $8.2 \mathrm{~Hz}), 7.31-7.18(6 \mathrm{H}, \mathrm{m}), 6.76(1 \mathrm{H}, \mathrm{dd}, J=5.4,4.9 \mathrm{~Hz}), 4.79(1 \mathrm{H}, \mathrm{dd}, J=7.6,6.4 \mathrm{~Hz}), 4.07(1 \mathrm{H}, \mathrm{dd}, J=18,5.4$ $\mathrm{Hz}), 3.92(1 \mathrm{H}, \mathrm{dd}, J=18,4.9 \mathrm{~Hz}), 3.90(2 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.29(1 \mathrm{H}, \mathrm{s}), 3.15(1 \mathrm{H}, \mathrm{dd}, J=13.8,6.4$ $\mathrm{Hz}), 3.15(1 \mathrm{H}, \mathrm{dd}, J=13.8,7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{D}_{2} \mathrm{O} 1\right.$ drop): $\delta 194.6,171.2,170.2,166.3,136.6$, 135.6, 132.6 (2C), 129.4 (2C), 128.7 (2C), 128.5 (2C), 127.1, 125.8, 82.6, 81.3, 54.6, 52.5, 45.9, 41.3, 37.8; HRMS (ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$429.1421; Found 429.1412.

AltBza-FG-OH (21)

To a solution of AltBza-FG-OMe ($800 \mathrm{mg}, 1.97 \mathrm{mmol}$) in THF/MeOH/ $\mathrm{H}_{2} \mathrm{O}(2 / 1 / 1,21 \mathrm{~mL}$) was added lithium hydroxide monohydrate $(250 \mathrm{mg}, 5.96 \mathrm{mmol})$ at rt . The reaction mixture was stirred at rt for 2 h , and then diluted with AcOEt and $\mathrm{H}_{2} \mathrm{O}$. The mixture was separated, and the aqueous layer was acidified with $1 N \mathrm{HCl}$. The acidified aqueous layer was extracted with AcOEt twice. The combined organic solution was dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to give AltBza-FG-OH (21) ($723 \mathrm{mg}, 94 \%$) as a white solid.
white solid; [a]d ${ }^{25}:-44.1(\mathrm{c} 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DMSO}-d_{6} 1\right.$ drop): $\delta 7.82(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, $7.51(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.28-7.13(7 \mathrm{H}, \mathrm{m}), 4.73(1 \mathrm{H}, \mathrm{dd}, J=7.8,6.0 \mathrm{~Hz}), 4.05-3.80(4 \mathrm{H}, \mathrm{m}), 3.26(1 \mathrm{H}, \mathrm{s}), 3.17(1 \mathrm{H}$, dd, $J=14.1,6.0 \mathrm{~Hz}$), $2.98\left(1 \mathrm{H}, \mathrm{dd}, J=14.1,7.8 \mathrm{~Hz}\right.$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}(4 / 1)\right.$): $\delta 193.7,171.1$, 170.7, 165.9, 136.7, 135.2, 131.6 (2C), 128.7 (2C), 127.8 (2C), 127.6 (2C), 125.8, 124.8, 81.9, 80.9, 53.8, 46.3, 40.7, 37.0; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5}$ [M-H] 391.1299 ; Found 391.1323.

AltBza-FG-N2 (22) ${ }^{10}$

To a solution of AltBza-FG-OH ($680 \mathrm{mg}, 1.73 \mathrm{mmol}$) and triethylamine ($313 \mu \mathrm{~L}, 2.24 \mathrm{mmol}$) in THF (17 mL) was added isobutyl chloroformate ($270 \mu \mathrm{~L}, 2.08 \mathrm{mmol}$) at $-60^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-60^{\circ} \mathrm{C}$ for 30 min , and then at $-40^{\circ} \mathrm{C}$ for 30 min . In another flask, a solution of Diazald ($1.85 \mathrm{~g}, 8.65 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(17.0 \mathrm{~mL})$ was added slowly over 1 h to a solution of $\mathrm{KOH}(1.46 \mathrm{~g}, 26.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(1 / 2 / 1,40.0 \mathrm{~mL})$ at rt . The generated $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was added to the reaction solution by bubbling, and stirring was continued for 2 h at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was quenched with AcOH , and diluted with AcOEt . The organic solution was washed with saturated aqueous NaHCO_{3} and brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO_{2}, eluent; AcOEt), and recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane to give AltBza-FG-N (22) ($308 \mathrm{mg}, \mathbf{4 3 \%}$) as a white solid. white solid; [a] ${ }^{25}$: - $50.9\left(\mathrm{c} 0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.87(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.57(2 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}), 7.33-7.20(6 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{br}-\mathrm{s}), 5.34(1 \mathrm{H}, \mathrm{s}), 4.76(1 \mathrm{H}, \mathrm{dd}, J=7.8,6.4 \mathrm{~Hz}), 4.00-3.86(4 \mathrm{H}, \mathrm{m}), 3.30(1 \mathrm{H}$, s), $3.20\left(1 \mathrm{H}, \mathrm{dd}, J=13.3,6.4 \mathrm{~Hz}\right.$), $3.11\left(1 \mathrm{H}, \mathrm{dd}, J=13.3,7.8 \mathrm{~Hz}\right.$), ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3,} \mathrm{D}_{2} \mathrm{O} 1 \mathrm{drop}\right): \delta 194.8$, $190.4,171.0,166.4,144.6,136.4,135.5,132.7(2 \mathrm{C}), 129.4$ (2C), 128.9 (2C), 128.6 (2C), 127.3, 125.8, 82.6, 81.5, 54.9, 53.9, 46.9, 37.6; HRMS (ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 439.1377$; Found 439.1376.

AltBza-FG-AOMK ${ }^{12}$

To a solution of $22(100 \mathrm{mg}, 0.240 \mathrm{mmol})$ in HFIP $(500 \mu \mathrm{~L})$ was added 2,6-dimethylbenzoic acid ($180 \mathrm{mg}, 1.20$ mmol) at rt . The reaction mixture was stirred for 3 h at rt , and then diluted with AcOEt. The organic solution was washed with saturated aqueous NaHCO_{3} and brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO_{2}, eluent; $\mathrm{AcOEt} / \mathrm{Hex}=7 / 3$), PTLC (eluent; $\mathrm{AcOEt} / \mathrm{Hex}=1 / 1)$, and GPC $\left(\mathrm{CHCl}_{3}\right)$ to give AltBza-FG-AOMK (18 mg, 14\%) as a white solid.
white solid; $[\mathrm{a}]_{\mathrm{D}}{ }^{25}:-26.0\left(\mathrm{c} 0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.88(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.57(2 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}), 7.30-7.20(7 \mathrm{H}, \mathrm{m}), 7.05(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.89(1 \mathrm{H}, \mathrm{br}-\mathrm{s}), 4.90(2 \mathrm{H}, \mathrm{s}), 4.79(1 \mathrm{H}, \mathrm{dd}, J=7.4,6.6 \mathrm{~Hz})$, $4.28(1 \mathrm{H}, \mathrm{dd}, J=19,5.4 \mathrm{~Hz}), 4.16(1 \mathrm{H}, \mathrm{dd}, J=19,4.6 \mathrm{~Hz}), 3.95(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.89(1 \mathrm{H}, \mathrm{dd}, J=17 \mathrm{~Hz}), 3.29$ $(1 \mathrm{H}, \mathrm{s}), 3.19(1 \mathrm{H}, \mathrm{dd}, J=14.2,6.6 \mathrm{~Hz}), 3.13(1 \mathrm{H}, \mathrm{dd}, J=14.2,7.4 \mathrm{~Hz}), 2.37(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\mathrm{D}_{2} \mathrm{O} 1$ drop): $\delta 199.0,194.8,171.1,169.2,166.2,136.4,135.8$ (2C), 135.6, 132.6 (2C), 132.3, 130.0, 129.4 (2C), 128.8 (2C), 128.6 (2C), 127.9 (2C), 127.2, 125.8, 82.6, 81.3, 66.9, 54.6, 46.8, 37.7, 20.1 (2C); HRMS (ESI) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$561.1996; Found 561.2000.

Purification and Identification of Bza-VAD(OMe)-FMK-labelled peptide

To examine the generality of our method, we applied the same approach for another enzyme inhibitor. The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has inflicted severe damage globally. To overcome this pandemic, various therapeutic approaches were examined. ${ }^{13}$ Among them, SARS-CoV-2 main protease ($\mathrm{M}^{\text {pro }}$) was expected to be an antiviral target to suppress the virus replication. ${ }^{14} \mathrm{Z}-\mathrm{VAD}(\mathrm{OMe})$-FMK was identified as a potent inhibitor for SARS-CoV-2 $\mathrm{M}^{\text {pro }}$ by chemical screening from a library of 4198 chemical entities. ${ }^{15}$ A fluoromethylketone (FMK) group of Z-VAD(OMe)-FMK was identified for creating a covalent bond with catalytic cysteine of the protease. ${ }^{15}$ We synthesized $\mathrm{Bza}-\mathrm{VAD}(\mathrm{OMe})-$ FMK from Z-VAD (OMe)-FMK and applied it for the purification of the labelled peptide.

Assay System for Inhibitory Activities against SARS-CoV-2 Main Protease ($\mathbf{M r}^{\mathrm{pr}}$)

Fig. S21
The protease-inhibitory activities of compounds were measured by using a fluorogenic substrate peptide (PEPTIDE INSTITUTE, INC., code: 3249-v). Briefly, test compound and SARS-CoV-2 M ${ }^{\text {pro }}$ (Sigma-Aldrich, catalog No. SAE0172-200UG) were mixed in a 96-well plate ($0.70 \mu \mathrm{~g}, 50 \mu \mathrm{~L} /$ well, final $0.20 \mu \mathrm{M}$), and the fluorogenic substrate was added ($50 \mu \mathrm{~L} /$ well, final $20 \mu \mathrm{M}$). The plate was incubated at $30^{\circ} \mathrm{C}$ for 15 min , and the activity of SARS-CoV$2 \mathrm{M}^{\text {pro }}$ was determined based on the increase of fluorescence ($\operatorname{Ex} 360 \mathrm{~nm} / E m 460 \mathrm{~nm}$) measured with a 96-well plate reader (Spectra Max M2e, Molecular Devices). The dose-response curves and IC_{50} values of compounds were calculated by Origin 2023 software, and data are presented as mean \pm S.D. $(\mathrm{n}=3)$. Bza-VAD(OMe)-FMK showed a comparable protease-inhibitory activity to Z-VAD(OMe)-FMK.

Preparation of enzymatic digest of labelled SARS-CoV-2 M ${ }^{\text {pro }}$

Fig. S22

Recombinant SARS-CoV-2 M ${ }^{\text {pro }}$ (11.2 $\mu \mathrm{g}$, Sigma-Aldrich, catalog No. SAE0172-200UG) was dissolved in 1.6 mL of reaction buffer (20 mM Tris $\cdot \mathrm{HCl}(\mathrm{pH} 7.2$), $100 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA and 1 mM DTT). Then $16 \mu \mathrm{~L}$ of 3 mM Bza-VAD(Me)-FMK in DMSO was added (final concentration $30 \mu \mathrm{M}$), and the mixture was incubated for 30 min at rt . After incubation, SARS-CoV-2 $\mathrm{M}^{\mathrm{pro}}$ was precipitated by adding cold acetone. The precipitate was washed with acetone and dissolved in denaturing buffer (7 M urea, 1 M Tris $\cdot \mathrm{HCl}(\mathrm{pH} 8.5$) and 5 mM TCEP). The solution was incubated for 30 min at rt . After addition of $3 \mu \mathrm{~L}$ of 200 mM iodoacetamide (IAM), incubation was continued for 30 min at rt . Then, the solution was diluted with $480 \mu \mathrm{~L}$ of water containing n-decyl- β-D-glucopyranoside (DG, final concentration: $0.05 \mathrm{w} / \mathrm{v} \%$). After addition of chymotrypsin (300 ng), the sample solution was incubated for 4 h at rt and used as the enzymatic digest of SARS-CoV-2 $\mathrm{M}^{\text {pro }}(320 \mathrm{pmol} / 540 \mu \mathrm{~L}$, approximately).

```
                                    1 ~ S G F R K M A F P S G K V E G C M V Q V T C G T T T L N G L W L D D V V Y C P R H V I C T S E D M L ~
5 1 ~ N P N Y E D L L I R K S N H N F L V Q A G N V Q L R V I G H S M Q N C V L K L K V D T A N P K T P K
1 0 1 ~ Y K F V R I Q P G Q T F S V L A C Y N G S P S G V Y Q C A M R P N E T I K G S E L N G S C G S V G F ~
1 5 1 ~ N I D Y D C V S F C Y M H H M E L P T G V H A G T D L E G N F Y G P F V D R Q T A Q A A G T D T T I ~
201 TVNVLAWLYAAVINGDRWFLNRFTTTLNDFNLVAMKYNYEPLTQDHVDIL
251 GPLSAQTGIAVLDMCASLKELLQNGMNGRTILGSALLEDEFTPEDVVRQC
301 SGVTFQ
```

Fig. S23 Amino acid sequence of SARS-CoV-2 M ${ }^{\text {pro }}$ (NCBI Accession Number: YP_009725301.1) Catalytic cysteine residue (Cys145) is shown in red.

Purification of the peptide labelled by Bza-VAD(Me)-FMK

To a solution of enzymatic digest of Bza-VAD(Me)-FMK-labelled SARS-CoV-2 $\mathrm{M}^{\text {pro }}$ (160 pmol) in 0.3% TFA in $5 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was added TentaGel-supported Pd aqua complex ($200 \mathrm{nmol}, 1250 \mathrm{eq}$.). The mixture was rotated for 1 h at rt , then filtered. The beads were washed with 2.0 mL of $0.3 \% \mathrm{TFA}$ in $5 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ (5 times), and then the beads were exposed to $0.3 \% \mathrm{TFA}$ in $50 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(500 \mu \mathrm{~L})$ for 30 min at rt . After filtration, the beads were washed with $0.3 \% \mathrm{TFA}$ in $50 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(500 \mu \mathrm{~L})$. The obtained solutions, initial solution, supernatant, washing solution, and eluted solution, were washed with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$. The organic solvents contained in the water layer were removed under reduced pressure, and the residue was concentrated by C18 spin column (GL Science, MonoSpin ${ }^{\circledR}$ C18) and analyzed by MALDI-TOF-MS.

Although non-specific peptides were also detected, three Bza-labelled peptides were successfully identified by the comparison with a control sample (Fig S24). One was a reported peptide, ${ }^{15}$ and the others were unreported peptides derived from the difference of chymotrypsin cleavage pattern and the hydrolysis of methyl ester. This result indicates the advantage of our method for the identification of unexpected modification of labelled peptides.

QCAMRPNFTIKGSFLNGSCGSVGF[127-150]

Labelled peptide $A(R=H)$
Calcd.: 3023.39 / Found: 3023.47
Labelled peptide $B(R=M e)$
Calcd.: 3037.40 / Found: 3037.50
RPNFTIKGSFLNGSCGSVGF[131-150]

Labelled peptide C
Calcd.: 2547.23 / Found: 2547.35
Reported in ref. 15

Fig. S24

Synthesis of Bza-VAD(Me)-FMK

To a solution of Z-VAD(Me)-FMK ($20 \mathrm{mg}, 0.043 \mathrm{mmol}$, PEPTIDE INSTITUTE, INC., code: $3188-\mathrm{v}$) in $\mathrm{MeOH}(4.5$ $\mathrm{mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(2.0 \mathrm{mg}, 10 \mathrm{wt} \%)$. The suspension was stirred for 1 h under a hydrogen atmosphere, and then filtered through a Celite pad. The filtrate was concentrated under reduced pressure and the residue was dissolved in DMF (3.0 mL). To this solution was added benzoylacetic acid ($9.1 \mathrm{mg}, 0.056 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}$ ($7.7 \mu \mathrm{~L}, 0.056 \mathrm{mmol}$), and TFFH ($14.7 \mathrm{mg}, 0.056 \mathrm{mmol}$) at rt . The reaction mixture was stirred for 2 h , then the solvent was removed in vacuo. The crude mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and brine. The organic solution was dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent; $\mathrm{AcOEt} / \mathrm{Hex}=7 / 3$ to $9 / 1$) twice to give $\mathrm{Bza}-\mathrm{VAD}(\mathrm{Me})$-FMK ($5.5 \mathrm{mg}, 27 \%$) as a white solid. We confirmed the purity of compound by HPLC analysis, and it showed a single peak. However, careful NMR analysis indicated that the compound was obtained as inseparable 1:1 diastereomeric mixture due to epimerization of aspartic acid. We applied this sample for the labelling experiments, because it showed a comparable protease-inhibitory activity to Z-VAD(OMe)-FMK (Fig. S21).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.97(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.52(2 \mathrm{H}, \mathrm{dd}, J=7.8,7.4 \mathrm{~Hz}), 7.44-$ $7.38(1 \mathrm{H}, \mathrm{br}), 7.31(1 \mathrm{H}, \mathrm{br}), 7.16-7.10(1 \mathrm{H}, \mathrm{br}), 5.31-4.92($ total $2 \mathrm{H}, \mathrm{m}), 4.87-4.79(1 \mathrm{H}, \mathrm{m}), 4.57-4.50(1 \mathrm{H}, \mathrm{m}), 4.29-$ $4.24(1 \mathrm{H}, \mathrm{m}), 4.13(1 \mathrm{H}, \mathrm{d}, J=17.5 \mathrm{~Hz}), 4.04(1 \mathrm{H}, \mathrm{d}, J=17.5 \mathrm{~Hz}), 3.64$ and $3.55($ total $3 \mathrm{H}, \mathrm{s}$, ca 1:1), 2.94-2.90 (1 H , $\mathrm{m}), 2.87-2.83(1 \mathrm{H}, \mathrm{m}), 2.35-2.28(1 \mathrm{H}, \mathrm{m}), 1.46$ and $1.45($ total $3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}$, ca 1:1), $1.02(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz})$, 0.972 and 0.966 (total $3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$, ca 1:1) ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 202.5(\mathrm{~d}, J=16.4 \mathrm{~Hz}), 196.1,172.6$, $171.1,170.8,167.8,135.6,134.5,129.0,128.5,84.1$ (d, $J=183.0 \mathrm{~Hz}), 59.9,52.2,52.0,49.2,45.9,34.7,29.7,19.5$, 17.8, 17.5; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{FN}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 502.1960$; found 502.1981.

HPLC chromatogram of Bza-VAD(Me)-FMK

Column: SERI L-column ODS ($1.5 \times 0150 \mathrm{~mm}$ I.D., $3 \mu \mathrm{~m}$) Column temp.: $35^{\circ} \mathrm{C}$ Mobile phase: 9.5-57\% MeCN (containing $0.1 \% \mathrm{TFA}$), 20 min Flow rate: $100 \mu \mathrm{~L} / \mathrm{min}$ Detection: UV at 215 nm

Solution

A: 0.1% TFA $5 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$, B: 0.1% TFA $95 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$,

NMR Spectra

TentaGel-supported BINAP ($\left.{ }^{31} \mathrm{P}-\mathrm{NMR}\right)$

TentaGel-supported Pd aqua complex (${ }^{31} \mathrm{P}-\mathrm{NMR}$)

Bka-1

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$

Bka-2
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$

Bka-3

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$

Bka-4

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$

Bza-FG-OMe (15)
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}$-NMR

Bza-FG-OH (16)

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$

Bza-FG-Br (17)

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$

Bza-FG-AOMK

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$

methyl 3-(4-ethynylphenyl)-3-oxopropanoate (19)
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$

AltBza-FG-OMe (20)

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$

AltBza-FG-OH (21)

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$

AltBza-FG-N 2 (22)

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$

AltBza-FG-AOMK

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}$-NMR

Bza-VAD(Me)-FMK

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}$-NMR

References

1. Cai, D.; Larsen, R. D.; Reider, P. J. Tetrahedron Lett., 2002, 43, 4055-4057.
2. Otomaru, Y.; Senda, T.; Hayashi, T. Org. Lett., 2004, 6, 3357-3359.
3. Wu, H.-C.; Yu, J.-Q.; Spencer, J. B. Org. Lett., 2004, 6, 4675-4678.
4. Fujii, A.; Sodeoka, M. Tetrahedron Lett., 1999, 40, 8011-8014.
5. Hayamizu, K.; Terayama, N.; Hashizume, D.; Dodo, K.; Sodeoka, M. Tetrahedron 2015, 71, 6594-6601.
6. DeMong, D. E.; Ng, I.; Miller, M. W.; Stamford, A. W. Org. Lett. 2013, 15, 2830-2833.
7. Bark, T.; Buhr, W.; Susanna, B.; Burgert, M.; Camillo, C.; Duerrenberger, F.; Funk, F.; Geisser, P.; Kalogerakis, A.: Mayer, S.; Philipp, E.; Stefan, D.; Schmitt, J.; Schwarz, K. WO2011117225 A1, 2011-09-29.
8. Qiu, Z.; Kuhn, B.; Aebi, J.; Lin, X.; Ding, H.; Zhou, Z.; Xu, Z.; Xu, D.; Han, L.; Liu, C.; Qiu, H.; Zhang, Y.; Haap, W.: Riemer, C.; Stahl, M.; Qin, N.; Shen, H. C.; Tang, G. ACS Med. Chem. Lett. 2016, 7, 802-806.
9. Balamurugan, R.; Manojveer, S. Chem. Commun., 2011, 47, 11143-11145.
10. Song, F.; Wei, G.; Jiang, X.; Li, F.; Zhu, C.; Cheng, Y. Chem. Commun., 2013, 49, 5772-5774.
11. Biediger, R. J.; Dupre, B.; Hamaker, L. K.; Holland, G. W.; Kassir, J. M.; Li, W.; Market, R. V.; Nguyen, N.; Scott, I. L.; Wu, C.; Decker, E. R., US20030199692 A1, 2003-10-23.
12. Dumitrescu, L.; Azzouzi-Zriba, K.; Bonnet-Delpon, D.; Crousse, B. Org. Lett., 2011, 13, 692-695.
13. Zhou, Y. W.; Xie, Y.; Tang, L. S.; Pu, D.; Zhu, Y. J.; Liu J. Y.; Ma, X. L., Signal Transduct. Target. Ther., 2021, 6, 317.
14. Gao, K.; Wang, R.; Chen, J.; Tepe, J. J.; Huang, F.; Wei, G. W., J. Med. Chem., 2021, 64, 16922-16955.
15. Wang, Z.; Zhao, Y.; Wang, Q.; Xing, Y.; Feng, L.; Kong, J.; Peng, C.; Zhang, L.; Yang, H.; Lu, M., Signal Transduct. Target. Ther., 2021, 6, 214.
