Supporting Information

Palladium-Catalyzed Intramolecular Heck Dearomative *gem*-Difluorovinylation of Indoles

Gang Wang, Wenqi Li, Tianxiang Liu, Yonghong Zhang, Bin Wang, Fei Xue, Weiwei Jin,

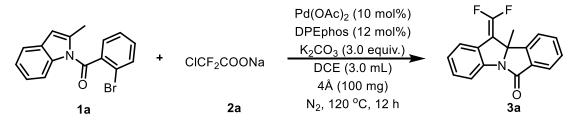
Caiyan Ma, Yu Xia* and Chenjiang Liu*

Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China.

E-mail: 18509487642@163.com; pxylcj@126.com.

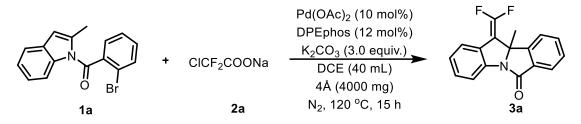
Table of Contents

1. General information	S2
2. Experimental procedures	S2
2.1 General procedure for synthesis of products	S2
2.2 Gram-scale reaction	S3
2.3 Synthetic transformations of product 3a	S3
3. References	S 7
4. Crystallographic data and molecular structure of compounds 3a , 3t , and 4h	S7
5. Analytical data	S11
6. Copies of NMR spectra	S31

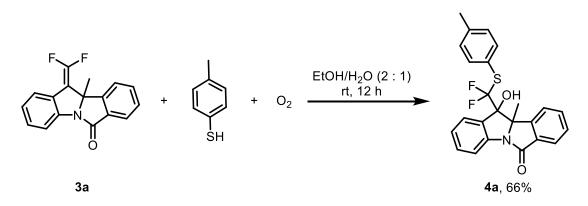

1.General information

General. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on Varian 400 MHz or Bruker 400 MHz spectrometers. ¹H and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0, CDCl₃ (δ (¹H), 7.26 ppm; δ (¹³C), 77.16 ppm), DMSO-*d*6 (δ (¹H), 2.50 ppm; δ (¹³C), 39.51 ppm). Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations are used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. The HRMS analysis was obtained on an Agilent6540 UHD Q-TOF mass spectrometer. The melting point was recorded on BÜCHI (M-560) and uncorrected. The X-ray single crystal diffraction data were collected on a Bruker D8 VENTURE. Analytical thin layer chromatography (TLC) was performed on 0.25 mm silica gel 60 F254 plates and viewed by UV light (254 nm). Column chromatographic purification was performed using 200-300 mesh silica gel.

Materials. All the chemical reagents were purchased from commercial sources and used as received unless otherwise indicated. Substrates **1** were prepared according to the known method.¹

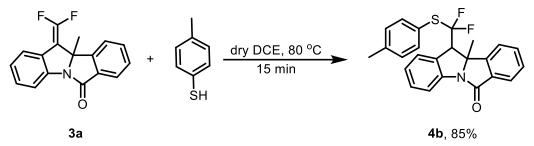

2. Experimental procedures

2.1 General procedure for synthesis of products (taking 3a as an example)

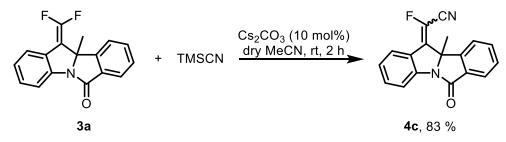

To a Schlenk tube was added $Pd(OAc)_2$ (10 mol%), DPEphos (12 mol%), **1a** (0.2 mmol), K₂CO₃ (0.6 mmol), 4Å MS (100 mg), and **2a** (0.4 mmol) under N₂, after which 3.0 mL DCE was added into the reaction mixture by a syringe and the tube was sealed with Teflon cap. The mixture was stirred at 120 °C for 12 hours. When the reaction was completed, the solvent was removed under vacuum and the residue was purified by column chromatography on silica gel to afford the product **3a** in 79% yield.

2.2 Gram-scale reaction

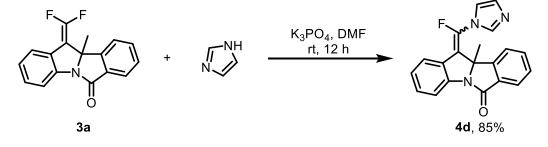
To a Schlenk tube was added $Pd(OAc)_2$ (10 mol%), DPEphos (12 mol%), **1a** (8 mmol), K₂CO₃ (24 mmol), 4Å MS (4000 mg), and **2a** (16 mmol) under N₂, after which 40 mL DCE was added into the reaction mixture by a syringe and the tube was sealed with Teflon cap. The mixture was stirred at 120 °C for 15 hours. When the reaction was completed, the solvent was removed under vacuum and the residue was purified by column chromatography on silica gel to afford the product **3a** in 45% yield.


2.3 Synthetic transformations of product 3a2.3.1 Procedure for synthesis of 4a

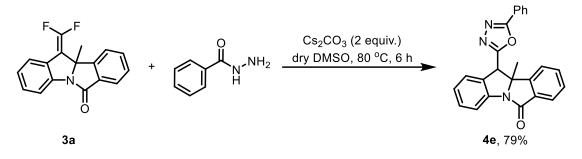
The synthesis of **4a** was conducted according to a reported procedure.² To a 25 mL Schlenk flask was charged with *gem*-difluoroalkene **3a** (0.2 mmol, 1.0 equiv.), 4- methylbenzenethiol (0.4 mmol, 2.0 equiv.), and EtOH/H₂O (2.0 mL, v/v = 2:1). The flask was then evacuated and backfilled with O₂ three times and sealed with a Teflon cap. The resulting solution was stirred at room temperature for 12 h. Upon competition of the reaction, CH₂Cl₂ (10 mL) was added. The organic layer was washed with H₂O (10 mL × 2) and brine (10 mL × 1), and the combined aqueous layers was extracted with CH₂Cl₂ (10 mL × 2) twice. The combine organic layers were dried over anhydrous Na₂SO₄. Then the solvents were removed via rotary evaporator and the residue was purified by column chromatography on silica gel to afford alcohol product **4a** in 66%


yield.

2.3.2 Procedure for synthesis of 4b

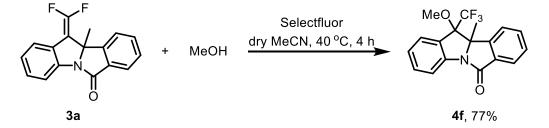

The synthesis of **4b** was conducted according to a reported procedure.³ To a 10 mL Schlenk tube was charged with *gem*-difluoroalkene **3a** (0.2 mmol, 1.0 equiv.), 4-methylbenzenethiol (0.24 mmol, 1.2 equiv.), and dry DCE (40 μ L). The reaction mixture was placed in a preheated metal block and stirred at 80 °C for 15 min. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel to afford product **4b** in 85% yield.

2.3.3 Procedure for synthesis of 4c



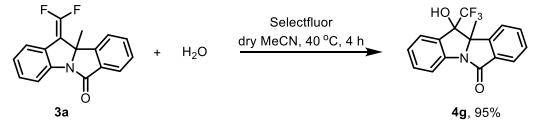
The synthesis of **4c** was conducted according to a reported procedure.⁴ An ovendried 10 mL Schlenk tube was charged with Cs_2CO_3 (0.03 mmol), TMSCN (0.9 mmol, 3 equiv.), **3a** (0.3 mmol, 1.0 equiv.), and dry MeCN (1.0 mL). The reaction mixture was stirred at room temperature for 2 h. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel to afford product **4c** in 83% yield.

2.3.4 Procedure for synthesis of 4d

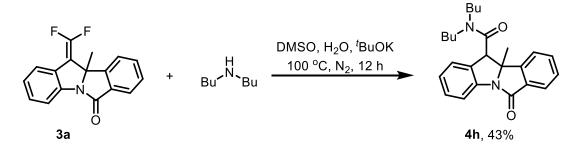


The reduction was conducted according to a reported procedure.⁵ A solution of imidazole (0.5 mmol, 1.0 equiv.) in DMF (0.5 mL) was added dropwise to a mixture of *gem*-difluoroalkene **3a** (0.6 mmol, 1.2 equiv.) and K₃PO₄ (1 mmol, 2 equiv.) in DMF (0.5 mL) via syring and then stirred at room temperature for 12 h (monitored by TLC). After completion of the reaction, the mixture was quenched with H₂O (20 mL). The aqueous phase was extracted with CH₂Cl₂ (3×10 mL). The organic layer was dried over MgSO₄ and filtered, and the filtrate was concentrated in vacuo. The crude product was purified by column chromatography on silica gel to afford product **4d** in 85% yield. **2.3.5 Procedure for synthesis of 4e**

The reduction was conducted according to a reported procedure.⁶ A 25 mL of dried round-bottom flask was charged with *gem*-difluoroalkene **3a** (0.2 mmol, 1.0 equiv.), benzoyl hydrazide (0.24 mmol, 1.2 equiv.), Cs₂CO₃ (0.4 mmol, 2 equiv.), and dry DMSO (1 mL) under N₂ atmosphere. The mixture was stirred at 80 °C for 6 h (monitored by TLC). After the reaction completed, the reaction mixture was quenched with H₂O (20 mL) and extracted with EtOAc (3×10 mL). The combined organic layer was washed with brine (3×10 mL), dried 3 over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to afford product **4e** in 79% yield.


2.3.6 Procedure for synthesis of 4f

The reduction was conducted according to a reported procedure.⁷ Selectfluor (0.3


mmol, 1.5 equiv.), and *gem*-difluoroalkene **3a** (0.2 mmol, 1 equiv.) were added in turn to an oven-dried 10 mL Schlenk tube equipped with a stir bar under a nitrogen atmosphere. The reactants were dissolved in dry CH₃CN (0.8 mL), followed by the addition of dry MeOH (1 mmol, 5 equiv.). The reaction mixture was stirred at 40 °C for 4 h. The reaction mixture was diluted with ethyl acetate (20.0 mL) and transferred to a flask. The solvent was evaporated under vacuum. The residue was purified by column chromatography on silica gel to afford product **4f** in 77% yield.

2.3.7 Procedure for synthesis of 4g

The reduction was conducted according to a reported procedure.⁷ Selectfluor (0.3 mmol, 1.5 equiv.), and *gem*-difluoroalkene **3a** (0.2 mmol, 1 equiv.) were added in turn to an oven-dried 10 mL Schlenk tube equipped with a stir bar under a nitrogen atmosphere. The reactants were dissolved in dry CH₃CN (0.8 mL), followed by the addition of H₂O (1.6 mmol, 8 equiv.). The reaction mixture was stirred at 40 °C for 4 h. The reaction mixture was diluted with ethyl acetate (20.0 mL) and transferred to a flask. The solvent was evaporated under vacuum. The residue was purified by column chromatography on silica gel to afford product **4g** in 95% yield.

2.3.8 Procedure for synthesis of 4h

The reduction was conducted according to a reported procedure.⁸ A solution of ^{*t*}BuOK (0.6 mmol, 3 equiv.) and dibuthylamine (0.4 mmol, 2 equiv.) in DMSO (1.2 mL) was stirred at 100 °C under a nitrogen atmosphere for about 10 minutes, and then H₂O (0.02 mL) was added via a syringe. Twenty minutes later, *gem*-difluoroalkene **3a** (0.2

mmol, 1 equiv.) was added to the mixture under N₂. Stirring was continued at 100 °C for 12 h. After the completion of reaction, the reaction mixture was quenched with H₂O (20 mL) and extracted with ethyl acetate (10 mL \times 3). The organic layer was separated and dried over Na₂SO₄, filtered and evaporated under vacuum. The residue was purified by column chromatography on silica gel to afford product **4h** in 43% yield.

3. References

- 1. D. A. Petrone, A. Yen, N. Zeidan and M. Lautens, Org. Lett., 2015, 17, 4838-4841.
- 2. C. Liu, C. Zhu, Y. Cai and H. Jiang, Angew. Chem., Int. Ed., 2021, 60, 12038-12045.
- 3. X. Jiang, G. Wang, Z. Zheng, X. Yu, Y. Hong, H. Xia and C. Yu, Org. Lett., 2020, 22, 9762-9766.
- L.-F. Jiang, B.-T. Ren, B. Li, G.-Y. Zhang, Y. Peng, Z.-Y. Guan and Q.-H. Deng, *J. Org. Chem.*, 2019, 84, 6557-6564.
- 5. Y. Xiong, X. Zhang, T. Huang and S. Cao, J. Org. Chem., 2014, 79, 6395-6402.
- 6. X. Zhang, J. He and S. Cao, Asian J. Org. Chem., 2019, 8, 279-282.
- 7. J. Hu, Y. Yang, Z. Lou, C. Ni and J. Hu, Chin. J. Chem., 2018, 36, 1202-1208.
- 8. B. Wang, X. Zhao, Q. Liu and S. Cao, Org. Biomol. Chem., 2018, 16, 8546-8552.

4. Crystallographic data and molecular structure of compounds 3a, 3t, and 4h

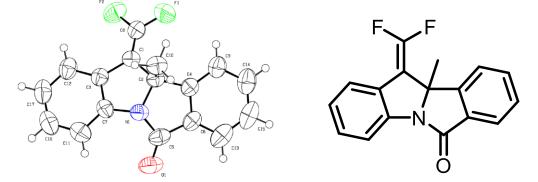
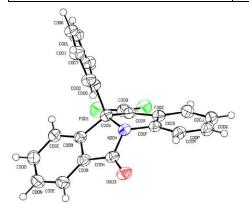



Figure S1. X-ray crystal structure of 3a

Table S1. Crystal data and structure refinement details for 3a.

Compound	3 a
Empirical formula	$C_{17}H_{11}F_2NO$
Formula weight	283.27
Temperature/K	296.15
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	13.160(4)

b/Å	7.282(2)
c/Å	14.200(4)
α/°	90
β/°	99.631(6)
γ/°	90
Volume/Å ³	1341.6(7)
Z	4
$ ho_{calc}g/cm^3$	1.402
μ/mm^{-1}	0.107
F(000)	584.0
Radiation	MoKa ($\lambda = 0.71073$)
20 range for data collection/°	5.82 to 49.986
Index ranges	$-15 \le h \le 15, -6 \le k \le 8, -16 \le l \le 16$
Reflections collected	6537
Independent reflections	2358 [$R_{int} = 0.0836$, $R_{sigma} = 0.0903$]
Data/restraints/parameters	2358/0/191
Goodness-of-fit on F ²	0.974
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0488, wR_2 = 0.0836$
Final R indexes [all data]	$R_1 = 0.1363, wR_2 = 0.1102$
Largest diff. peak/hole / e Å ⁻³	0.14/-0.16

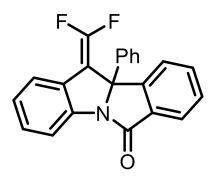
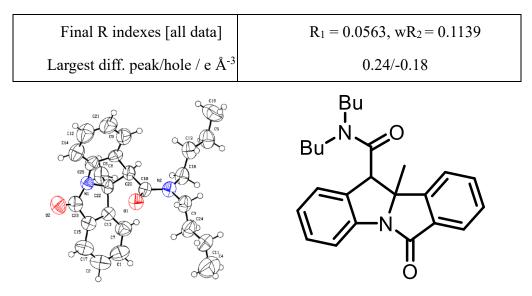
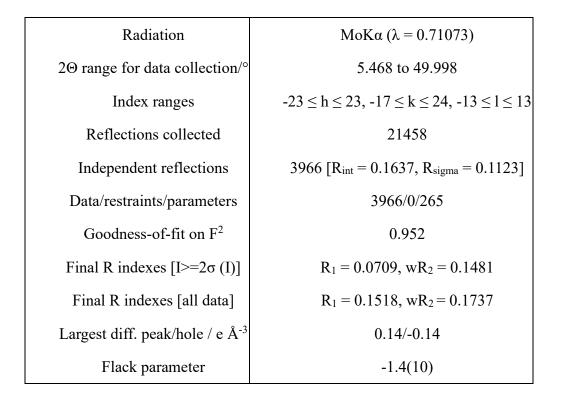


Figure S2. X-ray crystal structure of 3t

Compound	3t	
Empirical formula	$C_{22}H_{13}F_2NO$	
Formula weight	345.33	
Temperature/K	150.00	
Crystal system	monoclinic	
Space group	C2/c	
a/Å	24.1916(17)	
b/Å	9.9649(5)	
c/Å	14.5436(11)	
α/°	90.00	
β/°	112.784(3)	
$\gamma/^{\circ}$	90.00	
Volume/Å ³	3232.4(4)	
Z	8	
$ ho_{calc}g/cm^3$	1.419	
μ/mm^{-1}	0.103	
F(000)	1424.0	
Crystal size/mm ³	0.2 imes 0.15 imes 0.12	
Radiation	MoKa ($\lambda = 0.71073$)	
20 range for data collection/°	4.476 to 52.93	
Index ranges	$-30 \leq h \leq 30, \text{-}12 \leq k \leq 12, \text{-}18 \leq l \leq$	
Reflections collected	28476	
Independent reflections	3311 [$R_{int} = 0.0705$, $R_{sigma} = 0.0334$]	
Data/restraints/parameters	3311/0/235	
Goodness-of-fit on F ²	1.105	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0425, wR_2 = 0.1029$	

Table S2. Crystal data and structure refinement details for 3t.

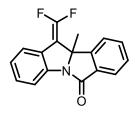
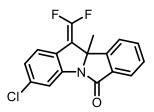
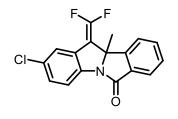
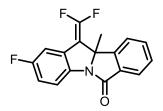

Figure S3. X-ray crystal structure of 4h

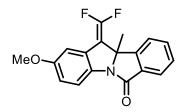
Table S3.	Crystal	data and	structure	refinement	details	for 4h .
-----------	---------	----------	-----------	------------	---------	-----------------

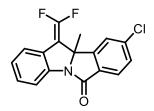

Compound	4h	
Empirical formula	$C_{25}H_{30}N_2O_2$	
Formula weight	390.51	
Temperature/K	296.15	
Crystal system	tetragonal	
Space group	P-42 ₁ /c	
a/Å	20.1920(8)	
b/Å	20.1920(8)	
c/Å	11.0430(5)	
α/°	90.00	
β/°	90.00	
γ/°	90.00	
Volume/Å ³	4502.4(4)	
Z	8	
$ ho_{calc}g/cm^3$	1.152	
μ/mm^{-1}	0.073	
F(000)	1680.0	

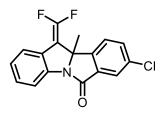

5. Analytical data

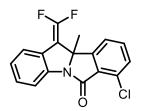

11-(difluoromethylene)-10b-methyl-10b,11-dihydro-6*H***-isoindolo[2,1-***a***]indol-6one (3a): New compound. 44.7 mg, 79% yield. White solid. m.p.: 98.5-99.1 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.86 (d,** *J* **= 7.7 Hz, 1H), 7.78-7.69 (m, 2H), 7.65 (td,** *J* **= 7.5, 1.2 Hz, 1H), 7.51 (td,** *J* **= 7.4, 1.1 Hz, 1H), 7.41 (d,** *J* **= 7.7 Hz, 1H), 7.35 (td,** *J* **= 7.7, 1.3 Hz, 1H), 7.16 (td,** *J* **= 7.6, 1.1 Hz, 1H), 1.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 169.8, 152.2 (dd,** *J* **= 295.1, 288.5 Hz), 148.7, 140.2 (d,** *J* **= 5.4 Hz), 133.7 (d,** *J* **= 1.7 Hz), 132.0, 129.4, 129.3, 127.6 (dd,** *J* **= 6.0, 3.9 Hz), 125.3, 125.2, 123.9 (dd,** *J* **= 9.5, 2.2 Hz), 123.7 (d,** *J* **= 9.5 Hz), 117.5, 96.7 (dd,** *J* **= 25.1, 18.5 Hz), 71.7 (dd,** *J* **= 5.0, 3.5 Hz), 28.0 (t,** *J* **= 2.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) \delta -84.30 (d,** *J* **= 45.2 Hz), -85.00 (d,** *J* **= 45.3 Hz). HRMS (ESI) m/z Calcd for C₁₇H₁₂F₂NO [M+H]⁺: 284.0882; Found: 284.0880.**

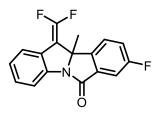
3-chloro-11-(difluoromethylene)-10b-methyl-10b,11-dihydro-6*H*-isoindolo[2,1*a*]indol-6-one (3b): New compound. 25.4 mg, 40% yield. Light yellow solid. m.p.: 149.7-150.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 7.6 Hz, 1H), 7.74 (d, *J* = 2.1 Hz, 1H), 7.73-7.63 (m, 2H), 7.53 (td, *J* = 7.5, 1.5 Hz, 1H), 7.31 (d, *J* = 8.3 Hz, 1H), 7.14 (dd, *J* = 8.3, 2.0 Hz, 1H), 1.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 152.3 (dd, *J* = 293.5, 287.6 Hz), 148.6, 141.1 (d, *J* = 6.6 Hz), 135.0 (t, *J* = 2.9 Hz), 134.0 (d, *J* = 1.8 Hz), 131.5, 129.5, 126.2 (dd, *J* = 5.9, 3.7 Hz), 125.5, 125.4, 124.5 (dd, *J* = 9.5, 2.6 Hz), 123.7 (d, *J* = 9.2 Hz), 117.9, 96.2 (dd, *J* = 25.7, 18.7 Hz), 72.2 (dd, *J* = 4.8, 3.3 Hz), 28.1 (t, *J* = 2.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -83.86 (d, *J* = 44.3 Hz), -84.20 (d, *J* = 44.3 Hz). HRMS (ESI) m/z Calcd for C₁₇H₁₁ClF₂NO [M+H]⁺: 318.0492; Found: 318.0489.


2-chloro-11-(difluoromethylene)-10b-methyl-10b,11-dihydro-6*H***-isoindolo[2,1***a***]indol-6-one (3c): New compound. 22.2 mg, 35% yield. Light yellow oil. ¹H NMR (400 MHz, CDCl₃) \delta 7.87 (d, J = 7.7 Hz, 1H), 7.73-7.62 (m, 3H), 7.54 (t, J = 8.1 Hz, 1H), 7.38 (d, J = 2.6 Hz, 1H), 7.32 (dd, J = 8.4, 2.3 Hz, 1H), 1.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 169.8, 152.4 (dd, J = 294.6, 288.4 Hz), 148.5, 138.8 (d, J = 5.5 Hz), 133.9 (d, J = 1.8 Hz), 131.6, 130.8, 129.6, 129.4 (t, J = 2.4 Hz), 125.4, 124.0 (dd, J = 9.9, 2.6 Hz), 123.7, 123.6, 118.3, 96.3 (dd, J = 26.0, 18.3 Hz), 72.1 (dd, J = 4.3, 3.3 Hz), 28.0 (t, J = 2.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) \delta -82.84 (d, J = 41.6 Hz), -83.21 (d, J = 41.6 Hz). HRMS (ESI) m/z Calcd for C₁₇H₁₁ClF₂NO [M+H]⁺: 318.0492; Found: 318.0490.**


11-(difluoromethylene)-2-fluoro-10b-methyl-10b,11-dihydro-6*H*-isoindolo[2,1*a*]indol-6-one (3d): New compound. 17.1 mg, 28% yield. Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.6 Hz, 1H), 7.73-7.63 (m, 3H), 7.53 (td, *J* = 7.3, 1.4 Hz, 1H), 7.12 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.05 (td, *J* = 8.8, 2.6 Hz, 1H), 1.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 160.6 (d, *J* = 243.2 Hz), 152.4 (dd, *J* = 296.6, 289.8 Hz), 148.5, 136.4 (d, *J* = 5.8 Hz), 133.8, 131.8, 129.5, 129.2 (dd, *J* = 9.8, 5.3 Hz), 125.3, 123.6 (d, *J* = 9.2 Hz), 118.4 (d, *J* = 8.8 Hz), 116.1 (d, *J* = 23.8 Hz), 111.2 (dd, *J* = 25.9, 9.4 Hz), 96.8 (dd, *J* = 27.1, 16.6 Hz), 72.3 (t, *J* = 4.0 Hz), 27.9 (t, *J* = 2.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -83.09 (dd, *J* = 41.8, 1.4 Hz), -83.54 (d, *J* = 42.0 Hz), -116.95 (d, *J* = 1.6 Hz). HRMS (ESI) m/z Calcd for C₁₇H₁₁F₃NO [M+H]⁺: 302.0787; Found: 302.0784.


11-(difluoromethylene)-2,10b-dimethyl-10b,11-dihydro-6*H***-isoindolo[2,1-***a***]indol-6-one (3e)**: New compound. 44.5 mg, 75% yield. Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 7.6 Hz, 1H), 7.70 (dd, J = 7.8, 4.2 Hz, 1H), 7.63 (t, J = 8.6 Hz, 2H), 7.49 (t, J = 7.4 Hz, 1H), 7.24 (d, J = 13.0 Hz, 1H), 7.16 (d, J = 8.3 Hz, 1H), 2.35 (s, 3H), 1.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 152.1 (dd, J = 295.3, 288.3 Hz), 148.7, 137.9 (d, J = 5.5 Hz), 135.1, 133.5 (d, J = 2.2 Hz), 132.0, 130.0 (t, J = 2.4 Hz), 129.3, 127.7 (dd, J = 6.2, 4.0 Hz), 125.1, 124.4 (dd, J = 9.4, 2.4 Hz), 123.6 (d, J = 9.5 Hz), 117.2, 96.7 (dd, J = 24.9, 18.3 Hz), 71.9 (dd, J = 5.1, 3.3 Hz), 27.9 (t, J = 2.8 Hz), 21.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -84.41 (d, J = 45.6 Hz), -85.24 (d, J = 46.3 Hz). HRMS (ESI) m/z Calcd for C₁₈H₁₄F₂NO [M+H]⁺: 298.1038; Found: 298.1033.

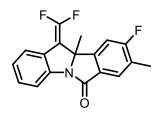

11-(difluoromethylene)-2-methoxy-10b-methyl-10b,11-dihydro-6*H***-isoindolo[2,1***a***]indol-6-one (3f): New compound. 36.2 mg, 58% yield. Light yellow oil. ¹H NMR (400 MHz, CDCl₃) \delta 7.85 (d, J = 7.6 Hz, 1H), 7.70 (dd, J = 7.8, 4.3 Hz, 1H), 7.67-7.60 (m, 2H), 7.51 (t, J = 7.4 Hz, 1H), 6.96 (s, 1H), 6.90 (dd, J = 8.6, 2.6 Hz, 1H), 3.81 (s, 3H), 1.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 170.0, 157.7, 152.2 (dd, J = 293.8, 287.3 Hz), 148.6, 133.9 (d, J = 5.5 Hz), 133.5 (d, J = 1.8 Hz), 132.1, 129.3, 128.9 (dd, J = 5.9, 4.0 Hz), 125.1, 123.6 (d, J = 9.5 Hz), 118.1, 114.8 (t, J = 2.4 Hz), 109.7 (dd, J = 9.4, 2.0 Hz), 97.0 (dd, J = 25.1, 17.8 Hz), 72.1 (dd, J = 5.1, 3.3 Hz), 55.9, 27.8 (t, J = 2.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) \delta -83.91 (d, J = 45.0 Hz), -84.75 (d, J = 44.3 Hz). HRMS (ESI) m/z Calcd for C₁₈H₁₄F₂NO₂ [M+H]⁺: 314.0987; Found: 314.0982.**


9-chloro-11-(difluoromethylene)-10b-methyl-10b,11-dihydro-6*H***-isoindolo[2,1***a***]indol-6-one (3g): New compound. 35.4 mg, 56% yield. White solid. m.p.: 170.5-171.5 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.80 (d, J = 8.2 Hz, 1H), 7.72 (d, J = 7.8 Hz, 1H), 7.69 (dd, J = 3.8, 1.7 Hz, 1H), 7.50 (dd, J = 8.2, 1.7 Hz, 1H), 7.42 (d, J = 7.7 Hz, 1H), 7.36 (td, J = 7.7, 1.3 Hz, 1H), 7.18 (td, J = 7.6, 1.2 Hz, 1H), 1.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 168.7, 152.2 (dd, J = 294.2, 286.6 Hz), 150.2, 140.1 (d, J = 1.8 Hz), 140.0 (d, J = 4.4 Hz), 130.5, 130.0, 129.5 (t, J = 2.6 Hz), 127.3 (dd, J = 6.1, 3.9 Hz), 126.4, 125.6, 124.2 (d, J = 9.9 Hz), 124.0 (dd, J = 9.2, 2.2 Hz), 117.5, 96.4 (dd, J = 24.9, 19.1 Hz), 71.4 (dd, J = 5.1, 3.7 Hz), 27.9 (t, J = 2.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) \delta -83.88 (d, J = 45.6 Hz), -84.60 (d, J = 45.6 Hz). HRMS (ESI) m/z Calcd for C₁₇H₁₁ClF₂NO [M+H]⁺: 318.0492; Found: 318.0490.**

8-chloro-11-(difluoromethylene)-10b-methyl-10b,11-dihydro-6*H***-isoindolo[2,1***a***]indol-6-one (3h): New compound. 33.6 mg, 53% yield. Colorless oil. ¹H NMR (400 MHz, CDCl₃) \delta 7.83 (d, J = 1.7 Hz, 1H), 7.72 (d, J = 7.8 Hz, 1H), 7.68-7.57 (m, 2H), 7.42 (d, J = 7.7 Hz, 1H), 7.37 (td, J = 7.7, 1.3 Hz, 1H), 7.19 (td, J = 7.6, 1.2 Hz, 1H), 1.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 168.3, 152.2 (dd, J = 295.6, 288.3 Hz), 146.8, 139.9 (d, J = 4.0 Hz), 135.7, 133.9, 133.7 (d, J = 1.8 Hz), 129.5 (t, J = 2.5 Hz), 127.5 (dd, J = 5.9, 3.7 Hz), 125.6, 125.1, 125.0 (d, J = 9.5 Hz), 124.0 (dd, J = 9.2, 2.2 Hz), 117.5, 96.5 (dd, J = 25.3, 18.7 Hz), 71.5 (dd, J = 5.1, 3.3 Hz), 27.9 (t, J = 2.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) \delta -84.27 (d, J = 45.6 Hz), -84.76 (d, J = 45.6 Hz). HRMS (ESI) m/z Calcd for C₁₇H₁₁ClF₂NO [M+H]⁺: 318.0492; Found: 318.0490.**

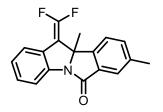


7-chloro-11-(difluoromethylene)-10b-methyl-10b,11-dihydro-6*H*-isoindolo[2,1*a*]indol-6-one (3i): New compound. 30.6 mg, 48% yield. White solid. m.p.: 131.4-132.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 7.1 Hz, 1H), 7.63 (ddd, J = 7.7, 4.0, 1.1 Hz, 1H), 7.57 (t, J = 7.8 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.41 (d, J = 7.7 Hz, 1H), 7.36 (td, J = 7.8, 1.3 Hz, 1H), 7.18 (td, J = 7.6, 1.2 Hz, 1H), 1.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) 167.5, 152.2 (dd, J = 295.6, 288.7 Hz), 151.1, 140.2 (d, J =4.8 Hz), 134.3 (d, J = 1.8 Hz), 132.8, 131.0, 129.5 (t, J = 2.6 Hz), 128.0, 127.4 (dd, J =6.1, 3.9 Hz), 125.6, 123.9 (dd, J = 9.5, 2.2 Hz), 122.2 (d, J = 10.3 Hz), 117.7, 96.7 (dd, J = 24.8, 18.9 Hz), 70.4 (dd, J = 5.1, 3.3 Hz), 28.1 (t, J = 2.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -83.93 (d, J = 45.0 Hz), -84.51 (d, J = 45.6 Hz). HRMS (ESI) m/z Calcd for C₁₇H₁₁ClF₂NO [M+H]⁺: 318.0492; Found: 318.0489.

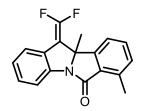


11-(difluoromethylene)-8-fluoro-10b-methyl-10b,11-dihydro-6*H*-isoindolo[2,1-

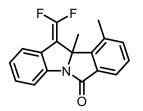
a]indol-6-one (3j): New compound. 21.0 mg, 35% yield. Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.9 Hz, 1H), 7.68 (dt, J = 8.4, 4.2 Hz, 1H), 7.52 (dd, J = 7.4, 2.5 Hz, 1H), 7.42 (d, J = 7.7 Hz, 1H), 7.39-7.30 (m, 2H), 7.19 (td, J = 7.6, 1.2 Hz, 1H), 1.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5 (d, J = 3.3 Hz), 163.4 (d, J = 249.7 Hz), 152.2 (dd, J = 295.4, 288.2 Hz), 144.2 (d, J = 2.4 Hz), 139.9 (d, J = 4.4 Hz), 134.4 (d, J = 8.5 Hz), 129.5 (t, J = 2.3 Hz), 127.6 (dd, J = 5.8, 3.7 Hz), 125.6, 125.4 (t, J = 8.9 Hz), 124.0 (dd, J = 9.2, 2.2 Hz), 121.1 (dd, J = 23.6, 1.6 Hz), 117.5, 111.7 (d, J = 23.3 Hz), 96.7 (dd, J = 25.0, 18.5 Hz), 71.5 (dd, J = 4.9, 3.3 Hz), 28.0 (t, J = 2.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.52 (dd, J = 45.7, 4.0 Hz), -84.94 (d, J= 45.6 Hz), -111.37 (td, J = 8.0, 4.2 Hz). HRMS (ESI) m/z Calcd for C₁₇H₁₁F₃NO [M+H]⁺: 302.0787; Found: 302.0783.



11-(difluoromethylene)-10b-methyl-8-(trifluoromethyl)-10b,11-dihydro-6*H*isoindolo[2,1-*a*]indol-6-one (3k): New compound. 29.6 mg, 42% yield. Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.92 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.86 (dd, *J* = 8.1, 3.9 Hz, 1H), 7.75 (d, *J* = 7.9 Hz, 1H), 7.43 (d, *J* = 7.7 Hz, 1H), 7.38 (td, *J* = 7.7, 1.2 Hz, 1H), 7.21 (td, *J* = 7.6, 1.1 Hz, 1H), 1.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 152.2 (dd, *J* = 295.8, 288.2 Hz), 151.7, 139.8 (d, *J* = 5.5 Hz), 133.1, 132.2 (q, *J* = 33.3 Hz), 130.4 (dd, *J* = 3.5, 1.7 Hz), 129.6 (t, *J* = 2.3 Hz), 127.4 (dd, *J* = 5.9, 3.7 Hz), 125.8, 124.5 (d, *J* = 9.9 Hz), 124.1 (dd, *J* = 9.3, 2.1 Hz), 123.6 (q, *J* = 272.8 Hz), 122.5 (q, *J* = 3.9 Hz), 117.6, 96.4 (dd, *J* = 25.0, 19.1 Hz), 71.8 (dd, *J* = 4.8, 3.5 Hz), 27.9 (t, J = 2.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.58, -83.96 (dd, J = 45.6, 4.0 Hz), -84.49 (d, J = 45.3 Hz). HRMS (ESI) m/z Calcd for C₁₈H₁₁F₅NO [M+H]⁺: 352.0755; Found: 352.0750.


11-(difluoromethylene)-9-fluoro-8,10b-dimethyl-10b,11-dihydro-6H-

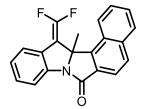
isoindolo[2,1-*a*]indol-6-one (3l): New compound. 44.7 mg, 71% yield. White solid. m.p.: 120.2-122.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, J = 6.6, 5.0 Hz, 2H), 7.41 (d, J = 7.7 Hz, 1H), 7.38-7.29 (m, 2H), 7.17 (td, J = 7.6, 1.1 Hz, 1H), 2.35 (d, J =2.2 Hz, 3H), 1.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 164.9 (dd, J = 253.4, 1.2 Hz), 152.2 (dd, J = 295.5, 288.1 Hz), 148.6 (d, J = 9.8 Hz), 140.3 (d, J = 5.4 Hz), 129.5 (t, J = 2.3 Hz), 128.1 (d, J = 6.9 Hz), 127.6 (d, J = 2.5 Hz), 127.3 (dd, J = 5.8, 3.7 Hz), 127.3 (d, J = 19.2 Hz), 125.4, 124.0 (dd, J = 9.2, 2.2 Hz), 117.4, 110.7 (dd, J =25.8, 9.4 Hz), 96.6 (dd, J = 25.0, 18.6 Hz), 71.1 (ddd, J = 5.1, 3.3, 2.9 Hz), 27.9 (t, J =2.7 Hz), 14.9 (d, J = 4.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.52 (d, J = 46.3 Hz), -84.97 (d, J = 46.3 Hz). HRMS (ESI) m/z Calcd for C₁₈H₁₃F₃NO [M+H]⁺: 316.0944; Found: 316.0940.



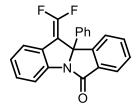
11-(difluoromethylene)-8,10b-dimethyl-10b,11-dihydro-6*H***-isoindolo[2,1-***a***]indol-6-one (3m)**: New compound. 41.8 mg, 70% yield. Light yellow oil. ¹**H** NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.9 Hz, 1H), 7.66 (s, 1H), 7.59 (dd, *J* = 7.9, 4.4 Hz, 1H), 7.47 (d, *J* = 7.8 Hz, 1H), 7.41 (d, *J* = 7.7 Hz, 1H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.17 (t, *J* = 7.6 Hz, 1H), 2.45 (s, 3H), 1.77 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 170.1, 152.2 (dd, *J* = 293.4, 286.8 Hz), 146.1, 140.3 (d, *J* = 5.4 Hz), 139.6, 134.7 (d, *J* = 1.4 Hz),

132.1, 129.3 (t, J = 2.3 Hz), 127.7 (dd, J = 5.9, 3.9 Hz), 125.3, 125.3, 123.9 (dd, J = 9.3, 2.1 Hz), 123.4 (d, J = 9.1 Hz), 117.5, 96.8 (dd, J = 25.2, 18.2 Hz), 71.6 (dd, J = 5.0, 3.5 Hz), 28.0 (t, J = 2.9 Hz), 21.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -84.55 (d, J = 45.6 Hz), -85.23 (d, J = 45.6 Hz). HRMS (ESI) m/z Calcd for C₁₈H₁₄F₂NO [M+H]⁺: 298.1038; Found: 298.1035.

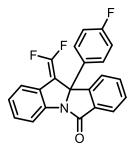
11-(difluoromethylene)-7,10b-dimethyl-10b,11-dihydro-6*H***-isoindolo[2,1-***a***]indol-6-one (3n)**: New compound. 49.9 mg, 84% yield. Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.9 Hz, 1H), 7.57-7.47 (m, 2H), 7.40 (d, *J* = 7.7 Hz, 1H), 7.34 (t, *J* = 7.8 Hz, 1H), 7.24 (d, *J* = 7.5 Hz, 1H), 7.15 (t, *J* = 7.6 Hz, 1H), 2.70 (s, 3H), 1.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 152.3 (dd, *J* = 294.9, 288.7 Hz), 149.4, 140.6 (d, *J* = 5.4 Hz), 139.6, 133.2 (d, *J* = 1.6 Hz), 131.3, 129.3 (t, *J* = 2.5 Hz), 128.8, 127.6 (dd, *J* = 6.0, 3.9 Hz), 125.2, 123.9 (dd, *J* = 9.6, 2.3 Hz), 121.1 (d, *J* = 9.7 Hz), 117.5, 97.0 (dd, *J* = 24.8, 18.3 Hz), 70.8 (dd, *J* = 5.0, 3.7 Hz), 28.1 (t, *J* = 2.8 Hz), 17.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -84.26 (d, *J* = 45.9 Hz), -84.97 (d, *J* = 45.8 Hz). HRMS (ESI) m/z Calcd for C₁₈H₁₄F₂NO [M+H]⁺: 298.1038; Found: 298.1036.

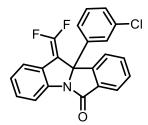

11-(difluoromethylene)-10,10b-dimethyl-10b,11-dihydro-6H-isoindolo[2,1-

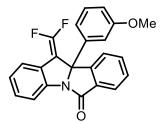
a]indol-6-one (30): New compound. 10.2 mg, 17% yield. White solid. m.p.: 92.0-94.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.68 (m, 2H), 7.49-7.41 (m, 3H), 7.37 (td, *J* = 7.8, 1.3 Hz, 1H), 7.20 (td, *J* = 7.7, 1.1 Hz, 1H), 2.61 (d, *J* = 5.1 Hz, 3H), 1.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 151.1 (dd, *J* = 291.3, 289.2 Hz), 144.0, 139.0 (d, *J* = 5.3 Hz), 136.5, 135.1, 133.2, 129.6, 129.4 (t, *J* = 4.8 Hz), 129.2 (t, *J* = 1.9 Hz), 125.5, 124.3 (dd, J = 10.3, 1.8 Hz), 122.9, 118.4, 97.1 (dd, J = 23.9, 19.1 Hz), 73.1 (dd, J = 4.9, 2.8 Hz), 26.2 (t, J = 2.7 Hz), 19.8 (d, J = 16.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -81.56 (d, J = 43.0 Hz), -85.46 (d, J = 42.9 Hz). HRMS (ESI) m/z Calcd for C₁₈H₁₄F₂NO [M+H]⁺: 298.1038; Found: 298.1035.

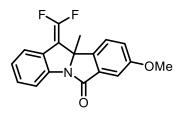


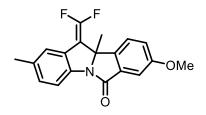
2-chloro-11-(difluoromethylene)-10,10b-dimethyl-10b,11-dihydro-6H-

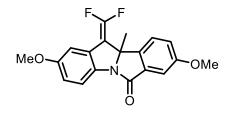

isoindolo[2,1-*a*]**indol-6-one (3p**): New compound. 22.0 mg, 33% yield. Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, *J* = 7.0, 2.1 Hz, 1H), 7.64 (d, *J* = 8.3 Hz, 1H), 7.49-7.42 (m, 2H), 7.40 (t, *J* = 1.8 Hz, 1H), 7.34 (dd, *J* = 8.4, 2.1 Hz, 1H), 2.60 (d, *J* = 5.1 Hz, 3H), 1.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 151.4 (dd, *J* = 294.3, 292.5 Hz), 143.8, 137.6 (d, *J* = 5.3 Hz), 136.8, 135.2, 132.9, 131.1 (t, *J* = 5.0 Hz), 131.0, 129.8, 129.2 (t, *J* = 1.9 Hz), 124.3 (dd, *J* = 11.0, 1.8 Hz), 123.0, 119.2, 96.7 (dd, *J* = 24.9, 18.8 Hz), 73.4 (dd, *J* = 4.6, 2.8 Hz), 26.2 (t, *J* = 2.6 Hz), 19.7 (d, *J* = 16.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -80.09 (d, *J* = 39.1 Hz), -83.68 (d, *J* = 39.3 Hz). HRMS (ESI) m/z Calcd for C₁₈H₁₃ClF₂NO [M+H]⁺: 332.0648; Found: 332.0645.


13-(difluoromethylene)-13a-methyl-13,13a-dihydro-*7H***-benzo[6,7]isoindolo[2,1***a***]indol-7-one (3q)**: New compound. 45.5 mg, 68% yield. White solid. m.p.: 148.4-149.0 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.32 (t, *J* = 9.0 Hz, 1H), 8.05-7.99 (m, 2H), 7.90 (d, *J* = 8.3 Hz, 1H), 7.77 (d, *J* = 7.0 Hz, 1H), 7.71-7.63 (m, 2H), 7.47 (d, *J* = 7.7 Hz, 1H), 7.40 (td, *J* = 7.7, 1.3 Hz, 1H), 7.21 (td, *J* = 7.6, 1.1 Hz, 1H), 2.10 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 169.3, 152.1 (t, *J* = 293.2 Hz), 145.0, 138.9 (d, *J* = 5.4 Hz), 136.9, 131.5, 131.0, 129.7, 129.4 (dd, *J* = 5.3, 4.4 Hz), 129.3 (t, *J* = 1.8 Hz), 128.5, 128.1, 126.9 (d, J = 1.3 Hz), 125.9 (d, J = 14.5 Hz), 125.5, 124.4 (dd, J = 10.6, 1.7 Hz), 120.5, 118.2, 97.1 (dd, J = 23.6, 19.7 Hz), 73.5 (dd, J = 4.9, 2.5 Hz), 27.7 (t, J = 2.6Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -77.47 (d, J = 41.3 Hz), -84.18 (d, J = 41.1 Hz). HRMS (ESI) m/z Calcd for C₂₁H₁₄F₂NO [M+H]⁺: 334.1038; Found: 334.1033.

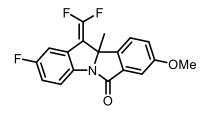

11-(difluoromethylene)-10b-phenyl-10b,11-dihydro-*6H***-isoindolo**[**2,1-***a***]indol-6-one (3t)**: New compound. 23.4 mg, 34% yield. White solid. m.p.: 141.4-142.5 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.6 Hz, 1H), 7.73 (d, *J* = 7.9 Hz, 1H), 7.60 (d, *J* = 4.6 Hz, 2H), 7.55-7.49 (m, 1H), 7.44 (dd, *J* = 14.4, 7.0 Hz, 3H), 7.36-7.26 (m, 4H), 7.17 (t, *J* = 7.6 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 169.9, 152.8 (dd, *J* = 295.4, 289.7 Hz), 147.8, 140.7 (t, *J* = 2.8 Hz), 140.1 (d, *J* = 5.3 Hz), 133.7 (d, *J* = 1.3 Hz), 132.2, 129.5, 129.0, 128.7, 128.6, 125.6, 125.6, 125.6, 125.3 (d, *J* = 9.2 Hz), 125.1, 123.9 (dd, *J* = 9.3, 1.8 Hz), 117.8, 95.9 (dd, *J* = 23.9, 20.0 Hz); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -80.96 (d, *J* = 41.4 Hz), -84.67 (d, *J* = 41.2 Hz). **HRMS** (ESI) m/z Calcd for C₂₂H₁₄F₂NO [M+H]⁺: 346.1038; Found: 346.1034.


11-(difluoromethylene)-10b-(4-fluorophenyl)-10b,11-dihydro-6H-isoindolo[2,1*a*]**indol-6-one (3u)**: New compound. 37.0 mg, 51% yield. Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 7.6 Hz, 1H), 7.73 (d, J = 7.8 Hz, 1H), 7.65-7.51 (m, 3H), 7.46 (d, J = 7.7 Hz, 1H), 7.41-7.32 (m, 3H), 7.18 (td, J = 7.6, 1.1 Hz, 1H), 7.03-6.92 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 162.8 (d, J = 248.3 Hz), 152.7 (dd, J = 295.8, 289.8 Hz), 147.6, 140.0 (d, J = 5.3 Hz), 136.4 (q, J = 3.0 Hz), 133.9 (d, J = 1.4 Hz), 132.1, 129.7, 129.6 (t, J = 2.1 Hz), 128.4 (dd, J = 5.7, 3.8 Hz), 127.6 (d, J = 8.4 Hz), 125.7, 125.2 (t, J = 4.7 Hz), 123.9 (dd, J = 9.3, 1.9 Hz), 117.8, 115.9 (d, J = 21.7 Hz), 96.0 (dd, J = 23.8, 19.9 Hz), 76.4 (dd, J = 5.3, 3.9 Hz); ¹⁹F NMR (376 MHz, CDC1₃) δ -80.79 (d, J = 40.8 Hz), -84.41 (d, J = 40.8 Hz), -113.36. HRMS (ESI) m/z Calcd for C₂₂H₁₃F₃NO [M+H]⁺: 364.0944; Found: 364.0939.

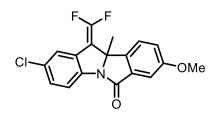

10b-(3-chlorophenyl)-11-(difluoromethylene)-10b,11-dihydro-6H-isoindolo[2,1*a***]indol-6-one (3v)**: New compound. 21.3 mg, 28% yield. Light yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (d, J = 7.6 Hz, 1H), 7.74 (d, J = 7.9 Hz, 1H), 7.63 (td, J = 7.4, 1.3 Hz, 1H), 7.60-7.56 (m, 1H), 7.54 (td, J = 7.2, 1.5 Hz, 1H), 7.45 (d, J = 7.7 Hz, 1H), 7.39-7.30 (m, 3H), 7.26-7.23 (m, 2H), 7.18 (td, J = 7.7, 1.2 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 169.8, 152.8 (dd, J = 296.1, 290.0 Hz), 147.1, 142.8 (t, J = 2.9 Hz), 140.0 (d, J = 5.2 Hz), 135.0, 133.9 (d, J = 1.3 Hz), 132.1, 130.3, 129.8, 129.7 (t, J= 2.0 Hz), 128.9, 128.3 (dd, J = 5.7, 3.8 Hz), 125.8 (d, J = 12.9 Hz), 125.3, 125.3, 125.2, 124.0 (d, J = 1.7 Hz), 123.9, 117.9, 95.8 (dd, J = 23.7, 20.2 Hz), 76.4 (dd, J = 5.5, 3.8 Hz); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -80.57 (dd, J = 40.3, 4.8 Hz), -84.06 (d, J = 40.1 Hz). **HRMS** (ESI) m/z Calcd for C₂₂H₁₃ClF₂NO [M+H]⁺: 380.0648; Found: 380.0643.


11-(difluoromethylene)-10b-(3-methoxyphenyl)-10b,11-dihydro-6*H***-isoindolo[2,1***a***]indol-6-one (3w)**: New compound. 22.2 mg, 30% yield. White solid. m.p.: 161.1-162.7 °C. ¹**H NMR** (400 MHz, CDC1₃) δ 7.90 (d, *J* = 7.6 Hz, 1H), 7.73 (d, *J* = 7.9 Hz, 1H), 7.64-7.57 (m, 2H), 7.53-7.48 (m, 1H), 7.44 (d, *J* = 7.7 Hz, 1H), 7.33 (t, *J* = 7.8 Hz, 1H), 7.22 (t, *J* = 8.1 Hz, 1H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.02 (d, *J* = 7.8 Hz, 1H), 6.96 (t, *J* = 2.3 Hz, 1H), 6.79 (dd, *J* = 8.3, 2.5 Hz, 1H), 3.72 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 169.9, 160.0, 152.7 (dd, J = 295.4, 289.7 Hz), 147.6, 142.4 (t, J = 2.9 Hz), 140.1 (d, J = 5.1 Hz), 133.7 (d, J = 1.4 Hz), 132.2, 130.1, 129.5, 129.5 (t, J = 2.1 Hz), 128.6 (dd, J = 5.7, 3.9 Hz), 125.6, 125.3 (d, J = 9.2 Hz), 125.1, 123.9 (dd, J = 9.3, 1.8 Hz), 118.0 (d, J = 1.1 Hz), 117.8, 113.2, 112.3, 96.0 (dd, J = 23.8, 20.0 Hz), 55.4; ¹⁹F **NMR** (376 MHz, CDCl₃) δ -81.00 (dd, J = 41.3, 4.1 Hz), -84.66 (d, J = 41.1 Hz). **HRMS** (ESI) m/z Calcd for C₂₃H₁₆F₂NO₂ [M+H]⁺: 376.1144; Found: 376.1139.

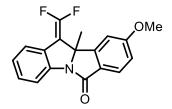
11-(difluoromethylene)-8-methoxy-10b-methyl-10b,11-dihydro-6*H*-isoindolo[2,1*a*]indol-6-one (3x): New compound. 51.0 mg, 81% yield. Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.9 Hz, 1H), 7.59 (dd, *J* = 8.4, 4.3 Hz, 1H), 7.41 (d, *J* = 7.7 Hz, 1H), 7.35 (td, *J* = 7.7, 1.3 Hz, 1H), 7.32 (d, *J* = 2.6 Hz, 1H), 7.22-7.14 (m, 2H), 3.87 (s, 3H), 1.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 160.8, 152.2 (dd, *J* = 295.0, 288.2 Hz), 141.1, 140.1 (d, *J* = 5.4 Hz), 133.4, 129.3 (t, *J* = 2.4 Hz), 127.7 (dd, *J* = 5.9, 3.8 Hz), 125.3, 124.5 (d, *J* = 9.2 Hz), 124.0 (dd, *J* = 9.4, 2.2 Hz), 121.9 (d, *J* = 1.8 Hz), 117.5, 107.5, 96.8 (dd, *J* = 25.3, 18.0 Hz), 71.4 (dd, *J* = 5.1, 3.4 Hz), 55.8, 27.9 (t, *J* = 2.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.79 (d, *J* = 45.8 Hz), -85.37 (d, *J* = 45.8 Hz). HRMS (ESI) m/z Calcd for C₁₈H₁₄F₂NO₂ [M+H]⁺: 314.0987; Found: 314.0984.

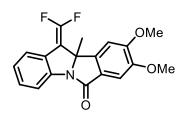


11-(difluoromethylene)-8-methoxy-2,10b-dimethyl-10b,11-dihydro-6*H***isoindolo[2,1-***a***]indol-6-one (3y)**: New compound. 55.6 mg, 85% yield. Light yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.63-7.54 (m, 2H), 7.32 (d, *J* = 2.6 Hz, 1H), 7.22 (s, 1H), 7.19 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.16 (d, *J* = 8.1 Hz, 1H), 3.86 (s, 3H), 2.36 (s, 3H), 1.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 160.8, 152.1 (dd, J = 295.0, 288.1 Hz), 141.1, 137.9 (d, J = 5.5 Hz), 135.1, 133.5, 129.9 (t, J = 2.4 Hz), 127.8 (dd, J = 6.0, 3.9 Hz), 124.5 (d, J = 9.2 Hz), 124.5 (dd, J = 9.2, 2.2 Hz), 121.8 (d, J = 1.8 Hz), 117.2, 107.5, 96.8 (dd, J = 25.1, 17.9 Hz), 71.6 (dd, J = 5.2, 3.5 Hz), 55.9, 27.9 (t, J = 2.8 Hz), 21.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -84.93 (d, J = 46.3 Hz), -85.61 (d, J = 46.3 Hz). HRMS (ESI) m/z Calcd for C₁₉H₁₆F₂NO₂ [M+H]⁺: 328.1144; Found: 328.1139.

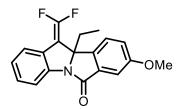


11-(difluoromethylene)-2,8-dimethoxy-10b-methyl-10b,11-dihydro-6H-

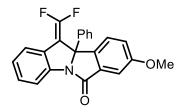

isoindolo[2,1-*a*]indol-6-one (3z): New compound. 47.3 mg, 69% yield. Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.6 Hz, 1H), 7.57 (dd, J = 8.5, 4.4 Hz, 1H), 7.31 (d, J = 2.5 Hz, 1H), 7.18 (dd, J = 8.5, 2.5 Hz, 1H), 6.95 (d, J = 2.6 Hz, 1H), 6.89 (dd, J = 8.6, 2.6 Hz, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 1.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 160.8, 157.7, 152.1 (dd, J = 295.4, 288.7 Hz), 140.9, 133.9 (d, J = 5.4 Hz), 133.5, 129.0 (dd, J = 5.2, 4.4 Hz), 124.5 (d, J = 9.2 Hz), 121.7, 118.1, 114.7, 109.7 (d, J = 9.2 Hz), 107.5, 97.1 (dd, J = 25.3, 17.3 Hz), 71.8 (dd, J = 4.6, 3.6 Hz), 55.8, 55.8, 27.7 (t, J = 2.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.42 (d, J = 45.6 Hz), -85.11 (d, J = 45.0 Hz). HRMS (ESI) m/z Calcd for C₁₉H₁₆F₂NO₃ [M+H]⁺: 344.1093; Found: 344.1090.


11-(difluoromethylene)-2-fluoro-8-methoxy-10b-methyl-10b,11-dihydro-6*H***isoindolo[2,1-***a***]indol-6-one (3aa)**: New compound. 27.2 mg, 41% yield. Light yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.66 (dd, *J* = 8.6, 4.7 Hz, 1H), 7.58 (dd, *J* = 8.5, 4.2 Hz, 1H), 7.32 (d, *J* = 2.5 Hz, 1H), 7.21 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.11 (dd, *J* = 8.6, 2.6 Hz, 1H), 7.05 (td, J = 8.9, 2.7 Hz, 1H), 3.87 (s, 3H), 1.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 160.9, 160.6 (d, J = 242.9 Hz), 152.3 (dd, J = 295.4, 290.4 Hz), 140.9, 136.3 (d, J = 6.9 Hz), 133.2, 129.4 (ddd, J = 9.6, 5.5, 4.0 Hz), 124.5 (d, J = 8.7 Hz), 122.1 (d, J = 1.5 Hz), 118.4 (d, J = 8.9 Hz), 116.0 (dt, J = 23.8, 2.3 Hz), 111.2 (ddd, J = 26.0, 9.1, 2.2 Hz), 107.6, 96.9 (ddd, J = 25.9, 17.6, 2.8 Hz), 71.9 (dd, J = 4.4, 3.3 Hz), 55.9, 27.8 (t, J = 2.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -83.61 (dd, J = 42.3, 2.5 Hz), -83.93 (dd, J = 42.2, 1.8 Hz), -116.96 (t, J = 2.0 Hz). HRMS (ESI) m/z Calcd for C₁₈H₁₃F₃NO₂ [M+H]⁺: 332.0893; Found: 332.0889.

2-chloro-11-(difluoromethylene)-8-methoxy-10b-methyl-10b,11-dihydro-6*H***isoindolo[2,1-***a***]indol-6-one (3ab): New compound. 38.4 mg, 55% yield. White solid. m.p.: 138.4-138.9 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.64 (d,** *J* **= 8.4 Hz, 1H), 7.58 (dd,** *J* **= 8.5, 4.1 Hz, 1H), 7.37 (s, 1H), 7.32 (d,** *J* **= 6.4 Hz, 2H), 7.22 (d,** *J* **= 8.4 Hz, 1H), 3.87 (s, 3H), 1.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 169.8, 160.9, 152.4 (dd,** *J* **= 296.0, 290.2 Hz), 140.9, 138.8 (d,** *J* **= 4.9 Hz), 133.1, 130.7, 129.4 (dd,** *J* **= 5.1, 4.0 Hz), 129.3 (t,** *J* **= 2.4 Hz), 124.5 (d,** *J* **= 8.5 Hz), 124.0 (dd,** *J* **= 9.2, 2.4 Hz), 122.2, 118.3, 107.6, 96.5 (dd,** *J* **= 25.6, 18.1 Hz), 71.7 (t,** *J* **= 3.7 Hz), 55.9, 28.0 (t,** *J* **= 2.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) \delta -83.39 (d,** *J* **= 41.9 Hz), -83.62 (d,** *J* **= 42.0 Hz). HRMS (ESI) m/z Calcd for C₁₈H₁₃ClF₂NO₂ [M+H]⁺: 348.0597; Found: 348.0593.**



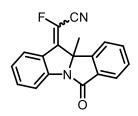
11-(difluoromethylene)-9-methoxy-10b-methyl-10b,11-dihydro-6*H***-isoindolo[2,1***a***]indol-6-one (3ad)**: New compound. 45.2 mg, 72% yield. White solid. m.p.: 126.0-127.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.4 Hz, 1H), 7.72 (d, *J* = 7.9 Hz, 1H), 7.40 (d, J = 7.7 Hz, 1H), 7.34 (td, J = 7.7, 1.2 Hz, 1H), 7.19-7.12 (m, 2H), 7.01 (dd, J = 8.5, 2.2 Hz, 1H), 3.91 (s, 3H), 1.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 164.4 (d, J = 1.5 Hz), 152.2 (dd, J = 295.1, 288.0 Hz), 151.2, 140.7 (d, J = 5.3 Hz), 129.3 (t, J = 2.4 Hz), 127.2 (dd, J = 5.9, 3.8 Hz), 126.7, 125.1, 124.1, 123.8 (dd, J = 9.5, 2.2 Hz), 117.3, 115.7, 108.7 (d, J = 9.9 Hz), 96.8 (dd, J = 24.9, 18.4 Hz), 71.2 (dd, J = 5.1, 3.4 Hz), 55.9, 27.9 (t, J = 2.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.40 (d, J = 46.5 Hz), -84.97 (d, J = 46.9 Hz). HRMS (ESI) m/z Calcd for C₁₈H₁₄F₂NO₂ [M+H]⁺: 314.0987; Found: 314.0983.



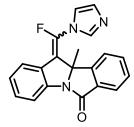
11-(difluoromethylene)-8,9-dimethoxy-10b-methyl-10b,11-dihydro-6H-

isoindolo[2,1-*a*]indol-6-one (3ae): New compound. 43.9 mg, 64% yield. Light yellow solid. m.p.: 183.5-184.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.9 Hz, 1H), 7.40 (d, *J* = 7.7 Hz, 1H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.28 (s, 1H), 7.18-7.11 (m, 2H), 4.02 (s, 3H), 3.94 (s, 3H), 1.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 154.3 (d, *J* = 1.4 Hz), 152.3 (dd, *J* = 294.7, 287.4 Hz), 150.6, 143.1, 140.7 (dd, *J* = 5.1, 1.2 Hz), 129.4 (t, *J* = 2.4 Hz), 127.4 (dd, *J* = 5.3, 3.3 Hz), 125.1, 123.9 (dd, *J* = 9.0, 2.8 Hz), 123.9, 117.4, 106.0, 105.4 (d, *J* = 9.3 Hz), 96.9 (dd, *J* = 24.7, 18.5 Hz), 71.3 (dd, *J* = 4.3, 2.9 Hz), 56.4, 56.4, 27.8 (t, *J* = 2.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -85.15 (d, *J* = 47.9 Hz), -85.39 (d, *J* = 48.2 Hz). HRMS (ESI) m/z Calcd for C₁₉H₁₆F₂NO₃ [M+H]⁺: 344.1093; Found: 344.1088.

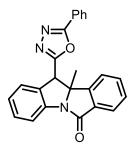
11-(difluoromethylene)-10b-ethyl-8-methoxy-10b,11-dihydro-6*H*-isoindolo[2,1*a*]indol-6-one (3af): New compound. 48.6 mg, 74% yield. Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.8 Hz, 1H), 7.54 (dd, *J* = 8.5, 4.2 Hz, 1H), 7.40 (d, *J* = 7.8 Hz, 1H), 7.36-7.30 (m, 2H), 7.20 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.15 (t, *J* = 7.6 Hz, 1H), 3.86 (s, 3H), 2.17 (dq, *J* = 14.5, 7.3 Hz, 1H), 2.05 (dq, *J* = 14.3, 7.3 Hz, 1H), 0.69 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 170.4, 160.8, 152.3 (dd, *J* = 294.9, 288.3 Hz), 140.8 (d, *J* = 4.6 Hz), 139.7, 134.3, 129.2 (t, *J* = 2.3 Hz), 128.3 (dd, *J* = 5.8, 4.0 Hz), 125.2, 124.6 (d, *J* = 9.3 Hz), 123.8 (dd, *J* = 9.4, 2.2 Hz), 121.8 (d, *J* = 1.6 Hz), 117.2, 107.4, 96.1 (dd, *J* = 25.0, 18.0 Hz), 74.7 (dd, *J* = 4.7, 3.7 Hz), 55.8, 33.3 (t, *J* = 2.6 Hz), 8.1; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -84.59 (dd, *J* = 46.3, 4.2 Hz), -85.12 (d, *J* = 46.1 Hz). **HRMS** (ESI) m/z Calcd for C₁₉H₁₆F₂NO₂ [M+H]⁺: 328.1144; Found: 328.1140.


11-(difluoromethylene)-8-methoxy-10b-phenyl-10b,11-dihydro-6*H***-isoindolo[2,1***a***]indol-6-one (3ag): New compound. 43.6 mg, 58% yield. Colorless oil. ¹H NMR (400 MHz, CDCl₃) 7.72 (d, J = 7.8 Hz, 1H), 7.49-7.42 (m, 2H), 7.42-7.37 (m, 2H), 7.36 (d, J = 2.6 Hz, 1H), 7.34-7.22 (m, 4H), 7.19-7.12 (m, 2H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 169.9, 160.9, 152.8 (dd, J = 295.5, 289.4 Hz), 140.8 (t, J = 2.8 Hz), 140.2, 140.1 (d, J = 5.2 Hz), 133.7, 129.4 (t, J = 2.2 Hz), 128.9, 128.7 (dd, J = 5.8, 3.8 Hz), 128.6, 126.1 (d, J = 9.1 Hz), 125.6, 125.6, 123.9 (dd, J = 9.2, 2.0 Hz), 122.0 (d, J = 1.7 Hz), 117.7, 107.3, 96.0 (dd, J = 24.1, 19.5 Hz), 76.5 (dd, J = 5.5, 3.5 Hz), 55.9; ¹⁹F NMR (376 MHz, CDCl₃) \delta -81.44 (d, J = 41.5 Hz), -85.02 (d, J = 41.5 Hz). HRMS (ESI) m/z Calcd for C₂₃H₁₆F₂NO₂ [M+H]⁺: 376.1144; Found: 376.1138.**

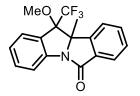
11-(difluoro(*p*-tolylthio)methyl)-11-hydroxy-10b-methyl-10b,11-dihydro-6*H*isoindolo[2,1-*a*]indol-6-one (4a): New compound. 55.6 mg, 66% yield. White solid. m.p.: 234.0-234.5 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.03 (d, *J* = 7.6 Hz, 1H), 7.80-7.72 (m, 3H), 7.64 (t, *J* = 8.5 Hz, 3H), 7.61-7.56 (m, 1H), 7.54 (td, *J* = 7.6, 1.3 Hz, 1H), 7.36-7.28 (m, 3H), 6.79 (s, 1H), 2.38 (s, 3H), 1.55 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.8, 146.9, 140.3, 139.1, 136.7, 135.1 (d, *J* = 3.9 Hz), 132.9, 131.0 (t, *J* = 287.2 Hz), 130.5, 130.1, 129.0, 126.2, 124.6, 124.4 (d, *J* = 5.1 Hz), 123.8, 122.2, 117.4, 83.9 (t, *J* = 26.3 Hz), 78.8, 22.7, 20.8; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -71.59 (d, *J* = 209.8 Hz), -74.25 (d, *J* = 210.1 Hz). HRMS (ESI) m/z Calcd for C₂₄H₂₀F₂NO₂S [M+H]⁺: 424.1177; Found: 424.1174.



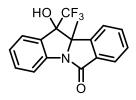
11-(difluoro(*p*-tolylthio)methyl)-10b-methyl-10b,11-dihydro-6*H*-isoindolo[2,1*a*]indol-6-one (4b): New compound. 69.4 mg, 85% yield. White solid. m.p.: 190.0-190.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 7.7, 3.8 Hz, 2H), 7.68 (d, *J* = 7.9 Hz, 2H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.56 (d, *J* = 8.1 Hz, 2H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.39 (t, *J* = 7.7 Hz, 1H), 7.24-7.15 (m, 3H), 4.02 (dd, *J* = 21.6, 4.4 Hz, 1H), 2.36 (s, 3H), 1.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 149.7, 141.0, 139.4, 136.6, 133.1, 132.7, 132.2 (d, *J* = 3.5 Hz), 130.2, 129.2, 129.1, 129.1 (t, *J* = 281.7 Hz), 126.3, 125.0, 124.9, 123.7 (d, *J* = 6.1 Hz), 122.3 (d, *J* = 3.2 Hz), 117.8, 75.1 (d, *J* = 1.9 Hz), 57.0 (dd, *J* = 25.9, 23.2 Hz), 23.1 (d, *J* = 3.0 Hz), 21.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.42 (d, *J* = 213.5 Hz), -78.20 (d, *J* = 213.5 Hz). **HRMS** (ESI) m/z Calcd for C₂₄H₂₀F₂NOS [M+H]⁺: 408.1228; Found: 408.1227.

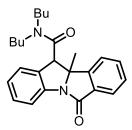

2-fluoro-2-(10b-methyl-6-oxo-6,10b-dihydro-11*H*-isoindolo[2,1-*a*]indol-11-

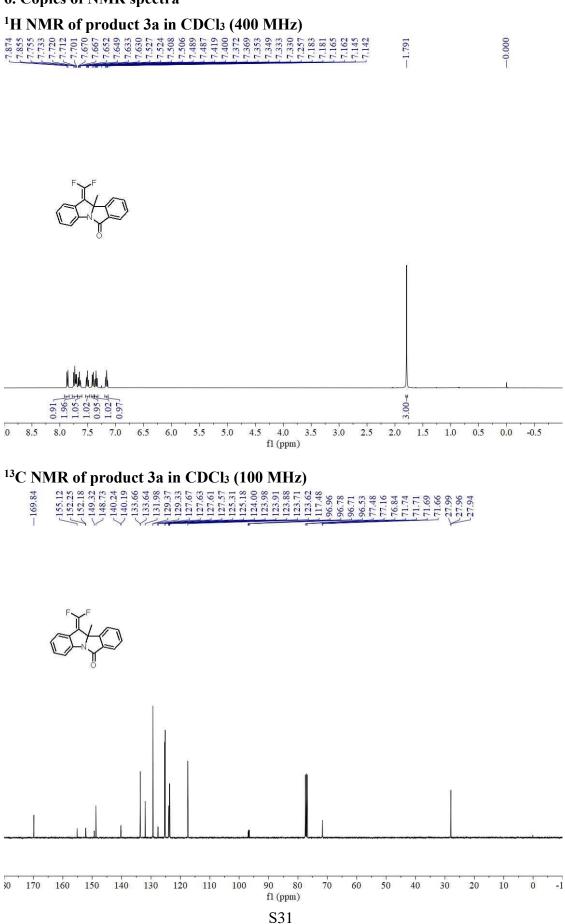
ylidene)acetonitrile (4c): New compound. 72.0 mg, 83% yield. White solid. m.p.: 140.0-141.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.9 Hz, 1H), 7.89-7.80 (m, 3H), 7.70 (td, *J* = 7.5, 1.2 Hz, 1H), 7.55 (td, *J* = 7.2, 3.9 Hz, 2H), 7.26 (t, *J* = 7.2 Hz, 1H), 1.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 147.1, 143.7 (d, *J* = 4.7 Hz), 138.2 (d, *J* = 19.6 Hz), 134.2 (d, *J* = 2.3 Hz), 133.4 (d, *J* = 2.9 Hz), 131.8, 129.8, 128.2 (d, *J* = 15.1 Hz), 126.1 (d, *J* = 237.0 Hz), 125.6, 125.3, 124.8 (d, *J* = 13.5 Hz), 123.9 (d, *J* = 2.5 Hz), 117.9, 112.5 (d, *J* = 46.2 Hz), 75.2 (d, *J* = 3.7 Hz), 27.7 (d, *J* = 2.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -129.15. HRMS (ESI) m/z Calcd for C₁₈H₁₂FN₂O [M+H]⁺: 291.0928; Found: 291.0926.

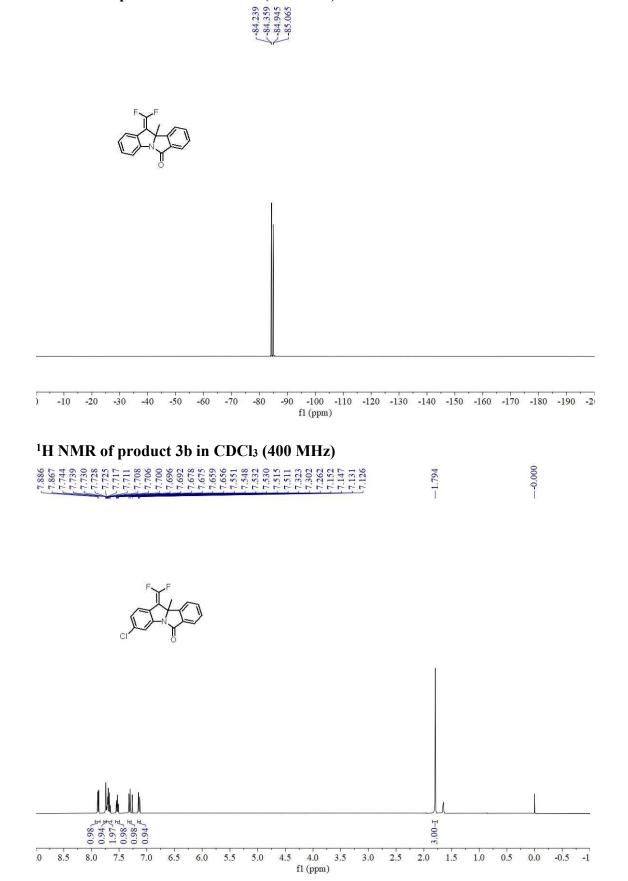


11-(fluoro(1H-imidazol-1-yl)methylene)-10b-methyl-10b,11-dihydro-6H-

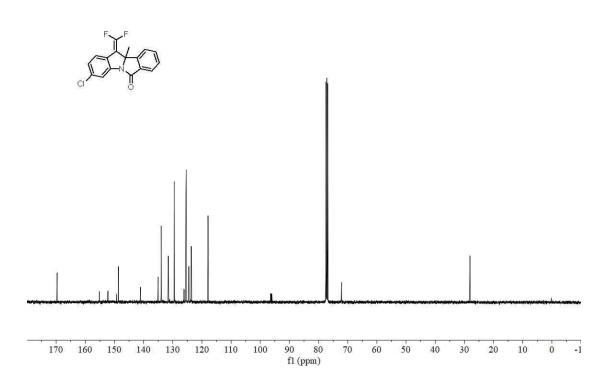

isoindolo[**2**,1-*a*]**indol-6-one (4d)**: New compound. 141.1 mg, 85% yield. Yellow solid. m.p.: 68.7-71.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 7.1 Hz, 2H), 7.77 (d, *J* = 7.9 Hz, 1H), 7.70 (s, 2H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.38-7.29 (m, 2H), 7.14 (s, 1H), 6.95 (t, *J* = 7.8 Hz, 1H), 6.02 (d, *J* = 7.9 Hz, 1H), 1.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 148.1, 141.6 (d, *J* = 5.1 Hz), 139.1 (d, *J* = 265.6 Hz), 137.1, 133.8 (d, *J* = 2.0 Hz), 132.0, 131.2, 130.9 (d, *J* = 2.7 Hz), 129.4, 126.7 (d, *J* = 2.5 Hz), 125.4, 125.0, 124.5 (d, *J* = 12.6 Hz), 122.8 (d, *J* = 2.6 Hz), 119.8 (d, *J* = 30.9 Hz), 118.6, 117.7, 73.5 (d, *J* = 4.6 Hz), 27.8 (d, *J* = 2.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -81.25. HRMS (ESI) m/z Calcd for C₂₀H₁₅FN₃O [M+H]⁺: 332.1194; Found: 332.1199.


10b-methyl-11-(5-phenyl-1,3,4-oxadiazol-2-yl)-10b,11-dihydro-6*H***-isoindolo[2,1***a***]indol-6-one (4e): New compound. 59.8 mg, 79% yield. White solid. m.p.: 180.8-183.7 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.84 (t, J = 7.8 Hz, 2H), 7.47 (t, J = 6.8 Hz, 3H), 7.41 (d, J = 7.5 Hz, 1H), 7.38-7.26 (m, 6H), 7.16 (t, J = 7.5 Hz, 1H), 4.92 (s, 1H), 1.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 168.6, 165.2, 163.9, 147.0, 139.8, 133.2, 132.9, 131.8, 130.3, 129.5, 128.9, 126.6, 126.5, 125.4, 124.7, 123.0, 122.5, 118.3, 74.5, 47.8, 27.4. HRMS (ESI) m/z Calcd for C₂₄H₁₈N₃O₂ [M+H]⁺: 380.1394; Found: 380.1392.**

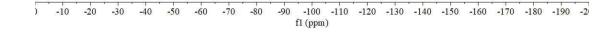

11-methoxy-10b-methyl-11-(trifluoromethyl)-10b,11-dihydro-*6H***-isoindolo**[**2,1-***a*]**indol-6-one (4f)**: New compound. 51.6 mg, 77% yield. White solid. m.p.: 115.4-117.0 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 7.6 Hz, 1H), 7.80 (d, *J* = 7.9 Hz, 1H), 7.66 (t, *J* = 7.5 Hz, 1H), 7.62-7.51 (m, 4H), 7.27 (t, *J* = 7.6 Hz, 1H), 2.70 (s, 3H), 1.63 (d, *J* = 2.6 Hz, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 167.6, 146.8, 140.5, 133.1, 133.0, 132.1, 129.2, 128.1, 127.6, 125.5 (q, *J* = 285.9 Hz), 124.8, 124.6, 123.5 (q, *J* = 1.9 Hz), 118.6, 86.0 (q, *J* = 29.1 Hz), 78.7, 54.2 (d, *J* = 1.7 Hz), 23.1 (q, *J* = 3.4 Hz); ¹⁹**F** NMR (376 MHz, CDCl₃) δ -69.17. HRMS (ESI) m/z Calcd for C₁₈H₁₅F₃NO₂ [M+H]⁺: 334.1049; Found: 334.1054.

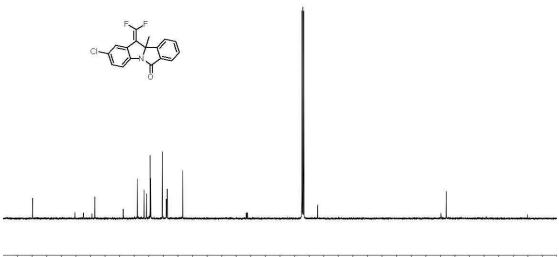

11-hydroxy-10b-methyl-11-(trifluoromethyl)-10b,11-dihydro-6*H***-isoindolo[2,1***a***]indol-6-one (4g)**: New compound. 60.8 mg, 95% yield. White solid. m.p.: 259.2-259.8 °C. ¹**H** NMR (400 MHz, DMSO-*d*₆) δ 7.82-7.73 (m, 2H), 7.66-7.50 (m, 5H), 7.30 (t, *J* = 7.6 Hz, 1H), 6.94 (s, 1H), 1.55 (d, *J* = 2.6 Hz, 3H); ¹³C NMR (100 MHz, DMSO*d*₆) δ 167.3, 146.5, 139.1, 133.3, 133.2, 132.4, 131.1, 129.2, 125.3 (q, *J* = 284.3 Hz), 125.3, 125.0, 124.0, 123.6, 117.6, 80.6 (q, *J* = 29.5 Hz), 77.2, 22.2 (d, *J* = 3.2 Hz); ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -70.16. **HRMS** (ESI) m/z Calcd for C₁₇H₁₃F₃NO₂ [M+H]⁺: 320.0893; Found: 320.0897.

N,*N*-dibutyl-10b-methyl-6-oxo-10b,11-dihydro-6*H*-isoindolo[2,1-*a*]indole-11carboxamide (4h): New compound. 33.8 mg, 43% yield. Light yellow solid. m.p.: 138.4-139.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 7.5 Hz, 1H), 7.75 (d, *J* = 7.1 Hz, 1H), 7.53 (td, *J* = 7.5, 1.2 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.35 (q, *J* = 7.4 Hz, 2H), 7.18 (d, *J* = 6.5 Hz, 1H), 7.10 (td, *J* = 7.5, 1.1 Hz, 1H), 4.27 (s, 1H), 3.75-3.00 (m, 3H), 2.85-2.62 (m, 1H), 1.67 (s, 5H), 1.43 (s, 2H), 1.07-1.02 (m, 3H), 1.01-0.77 (m, 4H), 0.70 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 148.0, 140.7, 135.8, 133.8, 132.3, 129.0, 128.8, 125.1, 124.6, 121.6, 117.8, 74.4, 52.2, 48.3, 46.3, 32.5, 29.5, 28.1, 20.2, 20.1, 14.0, 13.8. HRMS (ESI) m/z Calcd for C₂₅H₃₁N₂O₂ [M+H]⁺: 391.2380; Found: 391.2385. 6. Copies of NMR spectra

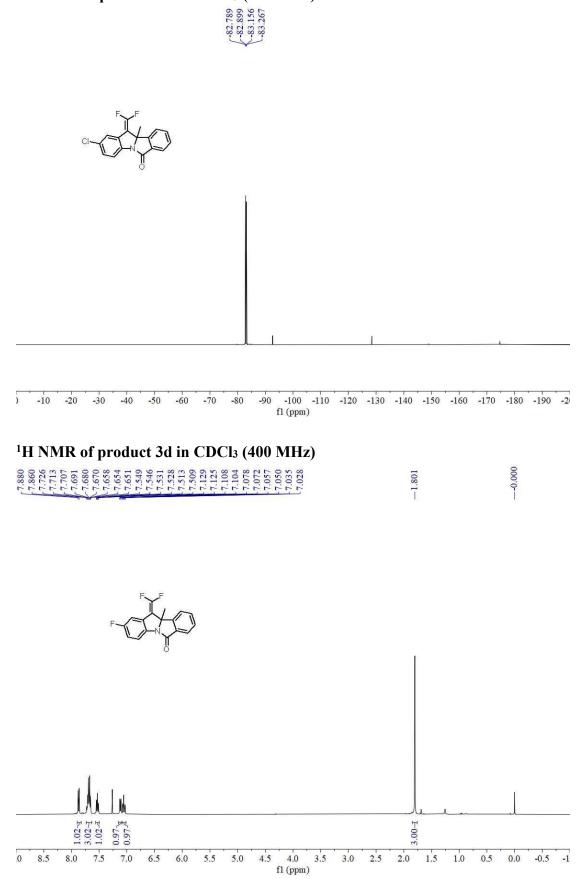


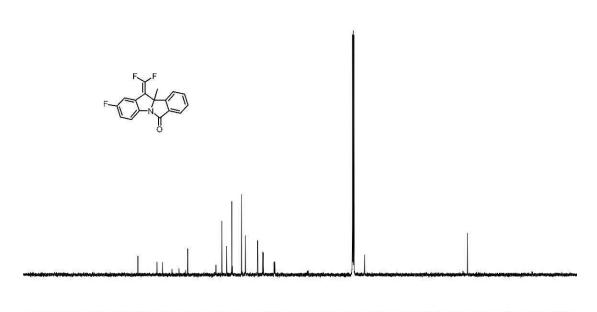
¹⁹F NMR of product 3a in CDCl₃ (376 MHz)


¹³C NMR of product 3b in CDCl₃ (100 MHz)


¹⁹F NMR of product 3b in CDCl₃ (376 MHz)

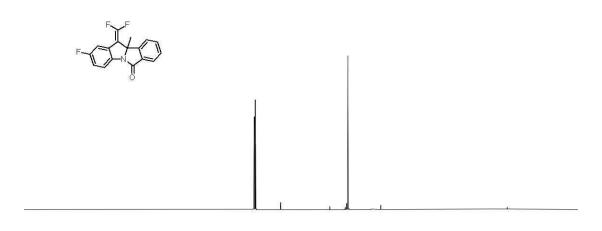
r-83.803	1-83.921	V-84.144	L-84.261

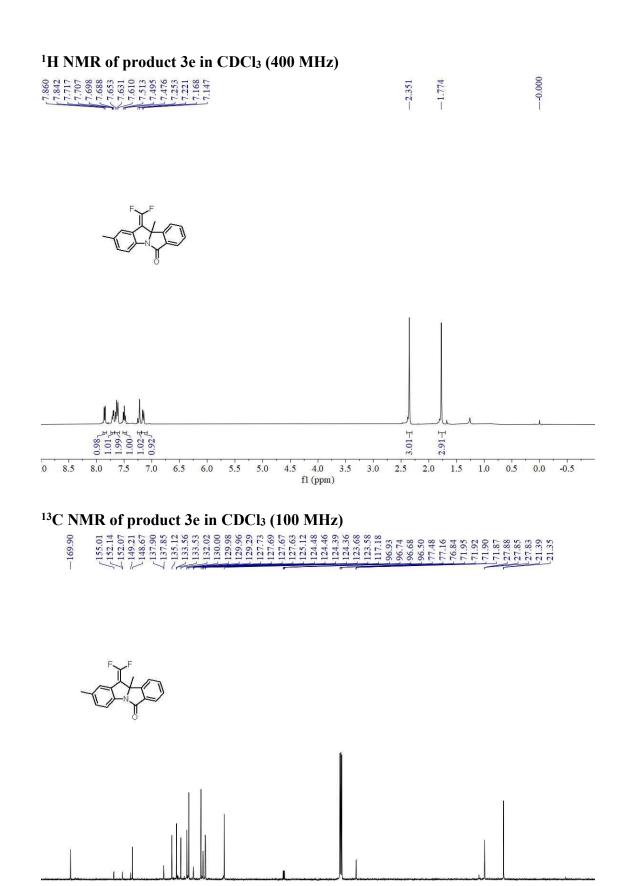

¹H NMR of product 3c in CDCl₃ (400 MHz)


-1 fl (ppm)

¹⁹F NMR of product 3c in CDCl₃ (376 MHz)

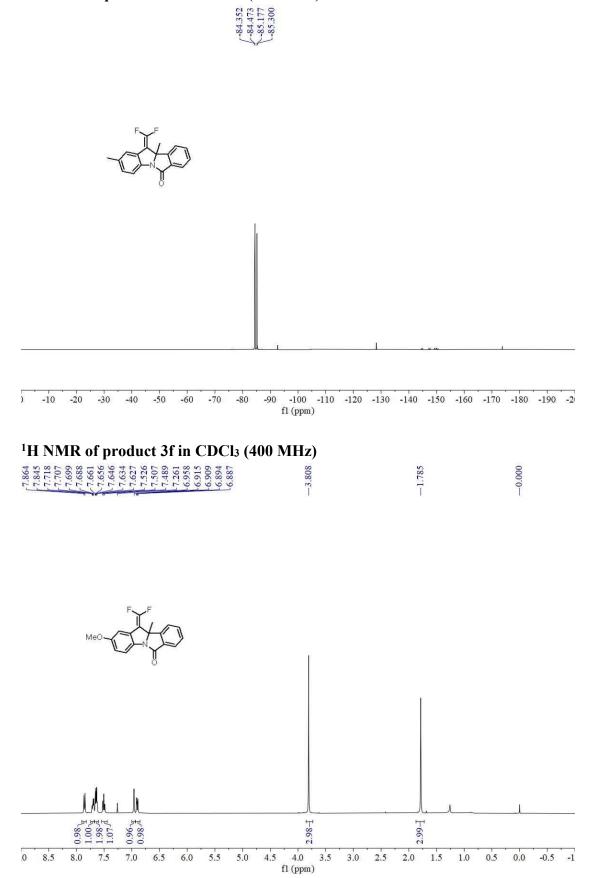
¹³C NMR of product 3d in CDCl₃ (100 MHz)


170.03 155.41 155.41 155.41 155.25 155.25 155.25 155.25 155.25 155.25 155.25 155.25 155.25 155.25 155.25 155.25 155.25 155.25 155.25 155.25 155.25 155.25 111.25 155.25 111.25 155.25 111.25 111.25 111.25 111.25 111.25 111.25 111.25 112.25 111.25 112.25 111.25 112.25 113.26 111.25 113.26 111.25 113.26 113.26 113.25 111.25 123.15

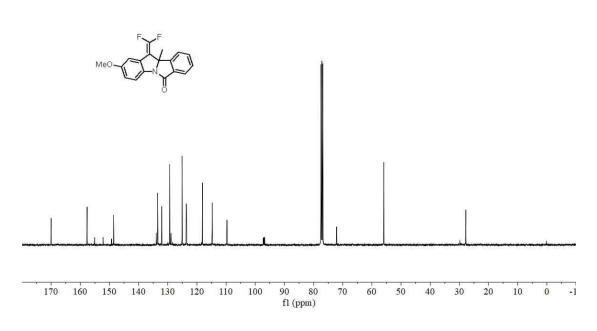

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹⁹F NMR of product 3d in CDCl₃ (376 MHz)

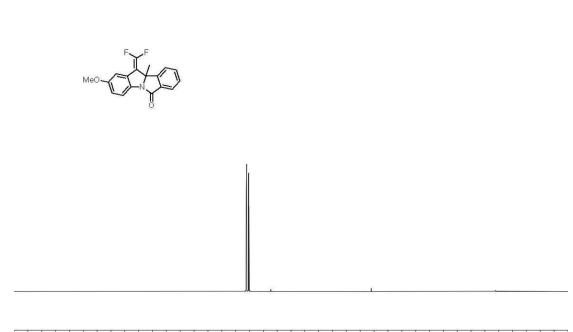
L 1 8 1 9 L	13
03 04 115 115 59 59	6.
	16
<u>xo</u> xo xo xo xo	7 7
	$\dot{\mathbf{v}}$

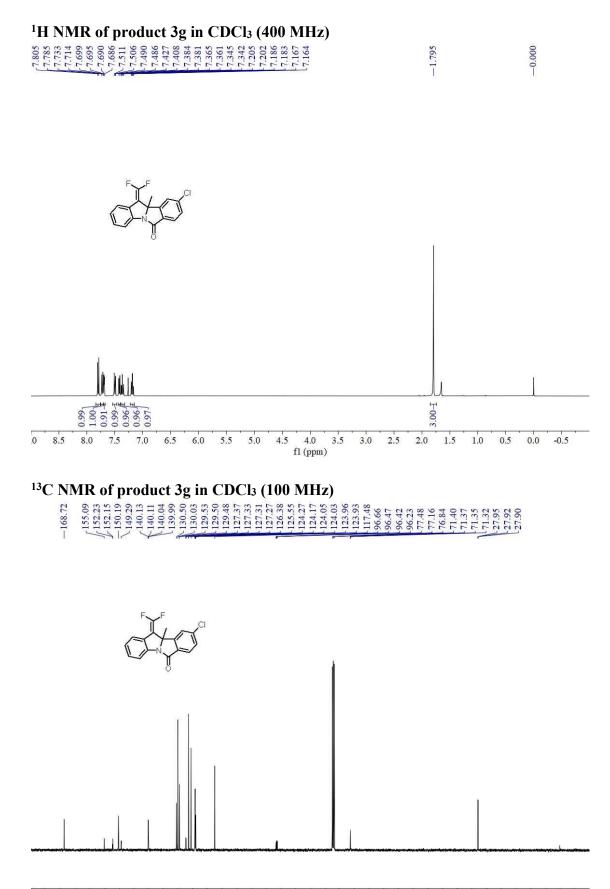


) -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2 fl (ppm)


-1 fl (ppm)

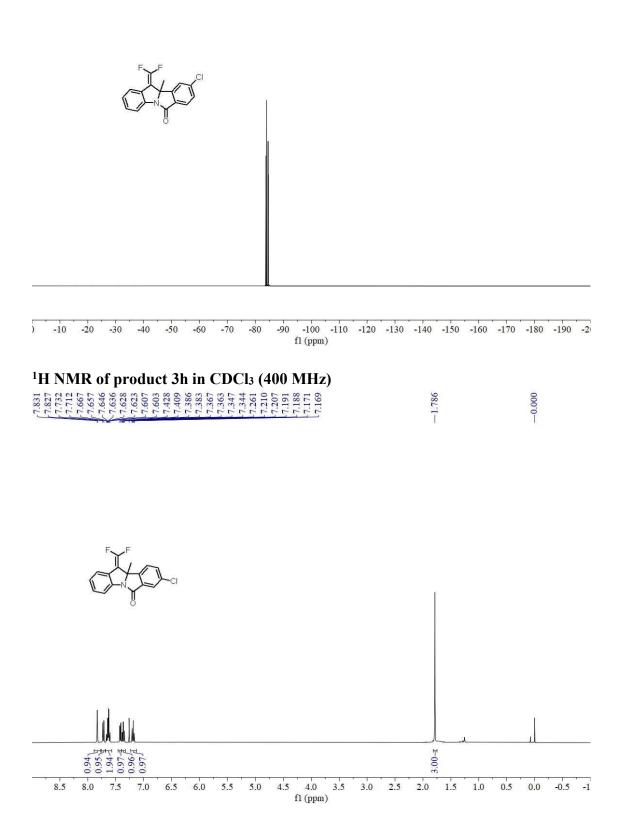
¹⁹F NMR of product 3e in CDCl₃ (376 MHz)


¹³C NMR of product 3f in CDCl₃ (100 MHz)

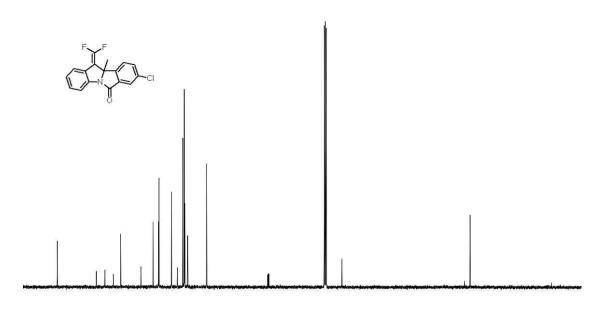

170.00	157.67 155.08 155.08 149.28 149.28 143.56 143.56 143.59 133.49 14.49 14.49 14.49 14.49 14.49 14.49 14.49 14.49 14.49 14.49 14.49	7.7

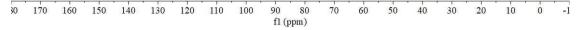
¹⁹F NMR of product 3f in CDCl₃ (376 MHz)

-83.85. -83.977 -84.68 -84.80
--

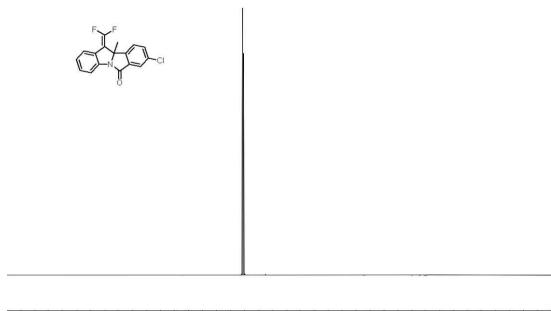


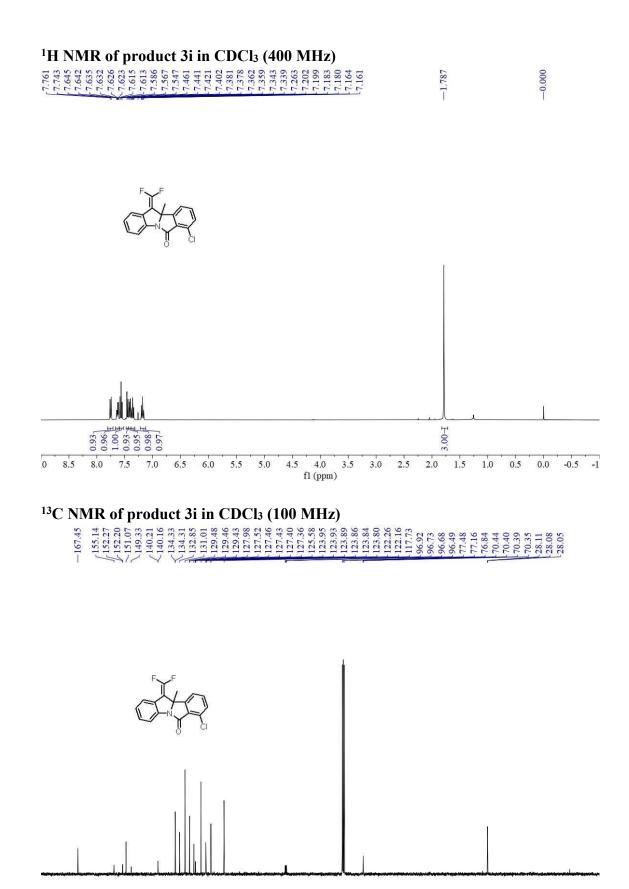
ò -1 fl (ppm)


¹⁹F NMR of product 3g in CDCl₃ (376 MHz)

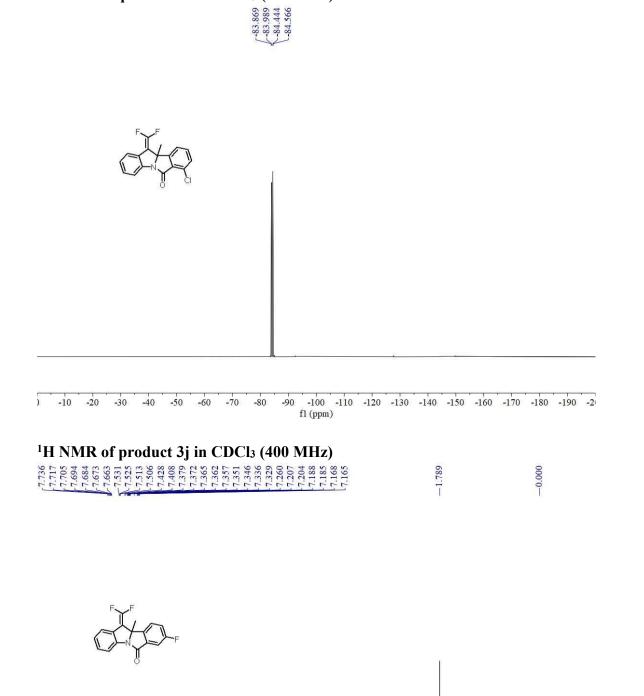


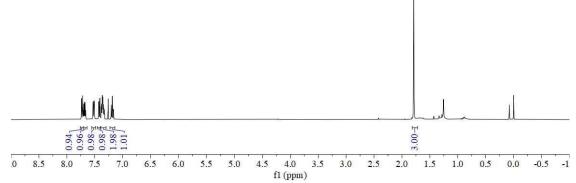
¹³C NMR of product 3h in CDCl₃ (100 MHz)


68.3 555.0 552.1 552.1 46.7 46.7 39.8 39.8 39.8	27.229.2333.22 27.229.29	401000000440	60.4 7.4 7.1 7.1 7.2
	SV		

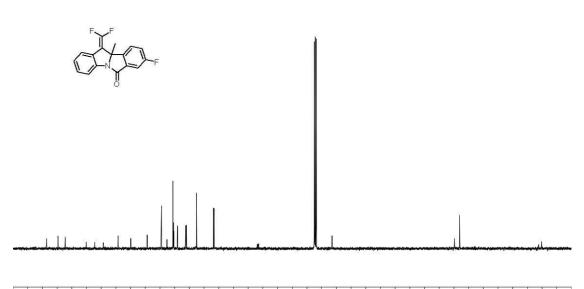


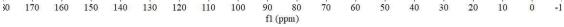
¹⁹F NMR of product 3h in CDCl₃ (376 MHz)



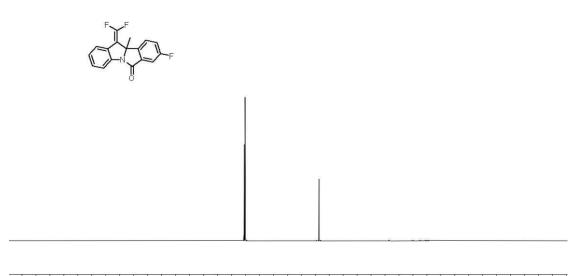


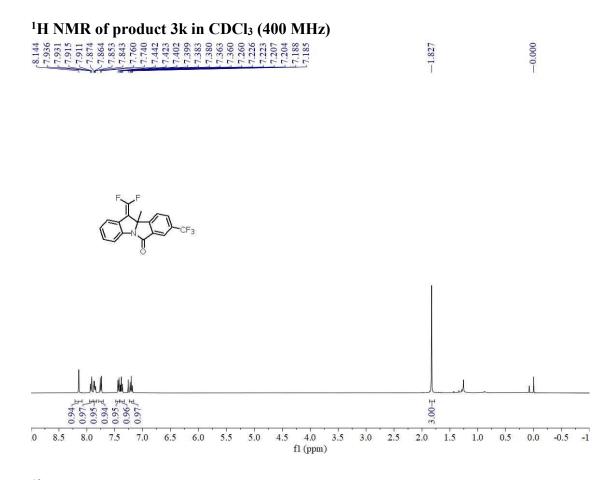
ò 140 130 -1 fl (ppm)


¹⁹F NMR of product 3i in CDCl₃ (376 MHz)

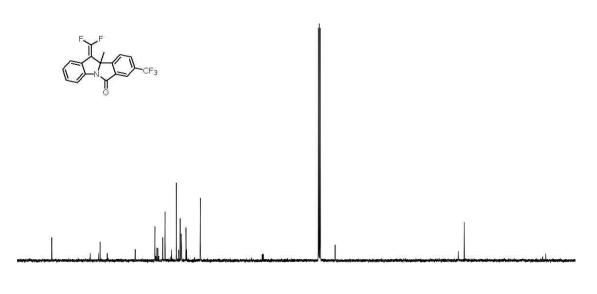


¹³C NMR of product 3j in CDCl₃ (100 MHz)

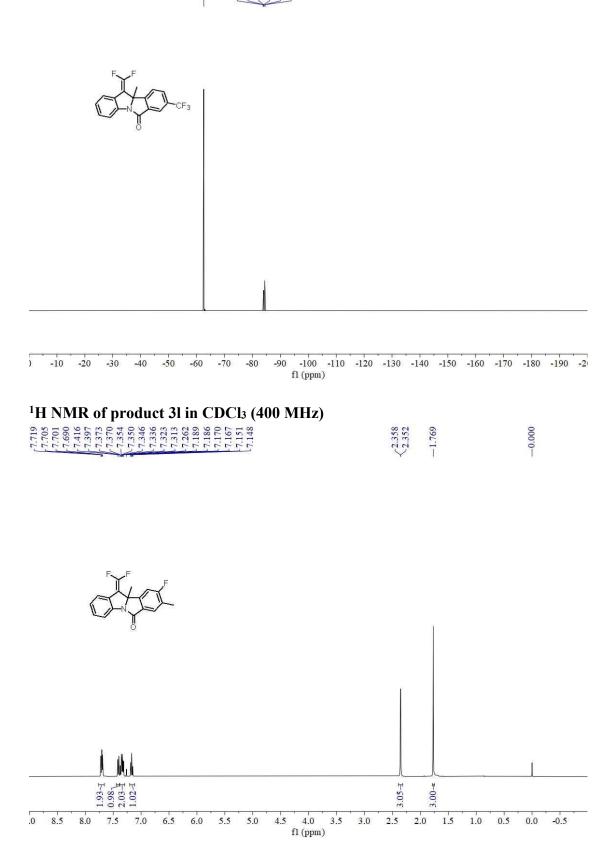




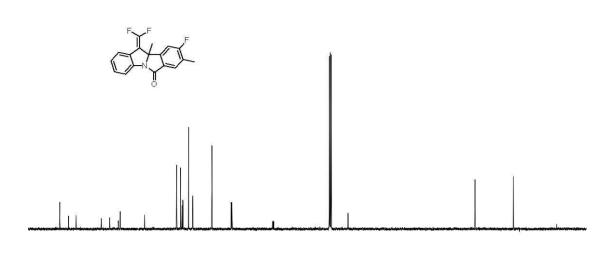
¹⁹F NMR of product 3j in CDCl₃ (376 MHz)

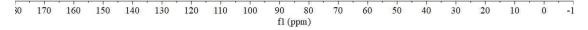

4.458	11.343
4.469	11.354
4.580	11.364
4.590	11.376
4.590	11.376
4.590	11.386
5.001	11.397
8 8 8 8 8	11111

¹³C NMR of product 3k in CDCl₃ (100 MHz)

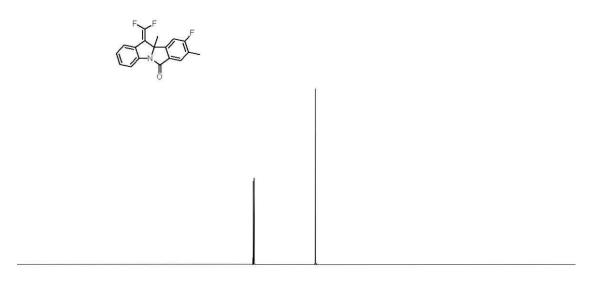


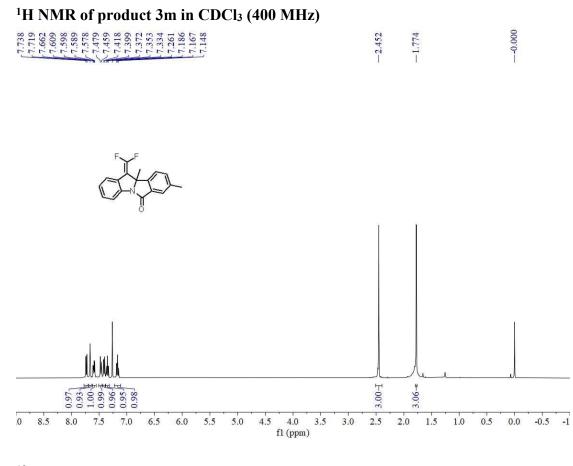

ò -1 fl (ppm)


¹⁹F NMR of product 3k in CDCl₃ (376 MHz)

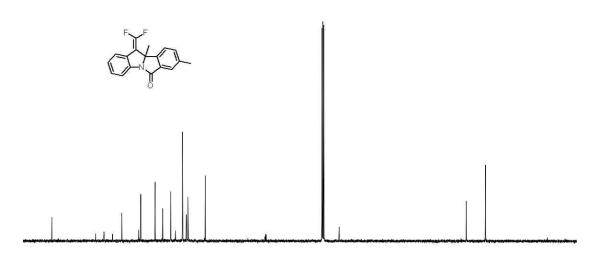

580	896 906 017 027 433 433
62.	83. 84. 84. 84.

¹³C NMR of product 3l in CDCl₃ (100 MHz)

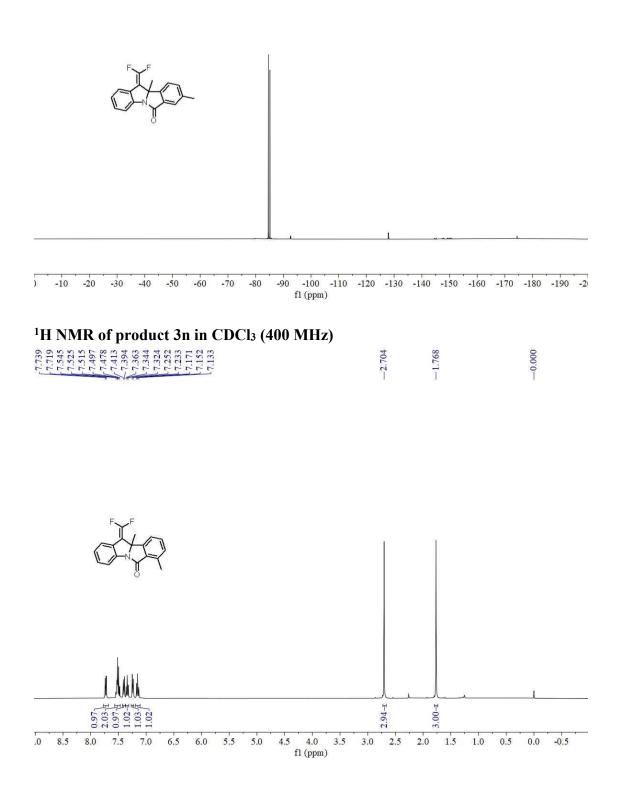




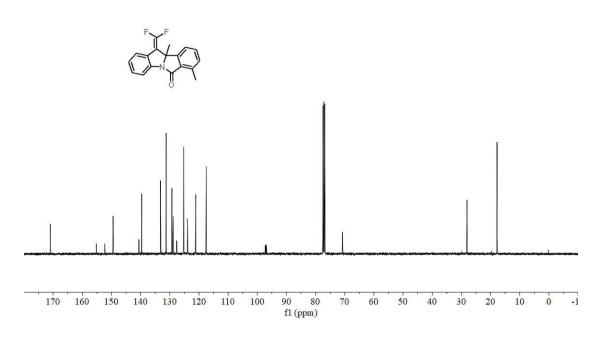
¹⁹F NMR of product 3l in CDCl₃ (376 MHz)



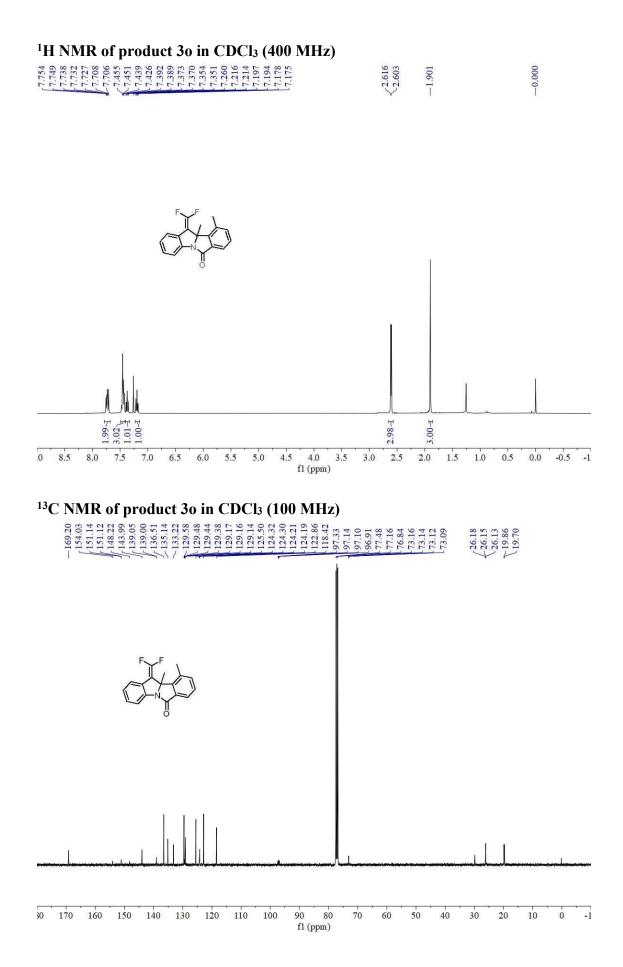
¹³C NMR of product 3m in CDCl₃ (100 MHz)

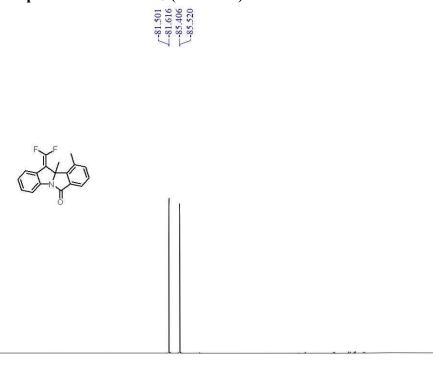

-170.07	-170.07 -170.07 -152.17 -152.24 -146.21 -146.21 -140.25 -140.25 -133.59 -140.25 -133.59 -140.25 -133.59 -133.59 -133.59 -127.63 -127.63 -127.63 -127.63 -127.63 -127.63 -127.5	223.4 223.4 223.4 223.4 2.23.5
4	AND A France	

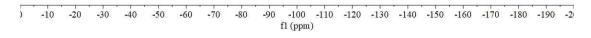
90 80 fl (ppm) ò -1


¹⁹F NMR of product 3m in CDCl₃ (376 MHz)

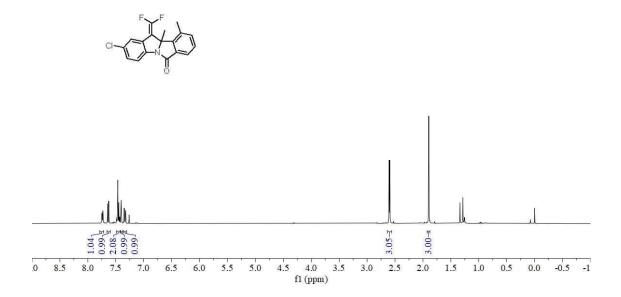
¹³C NMR of product 3n in CDCl₃ (100 MHz)


94	000000000000000000000000000000000000000	5 5 5
70	155. 152. 152. 152. 153. 153. 153. 153. 153. 153. 153. 153	~ 00 00
T		192


¹⁹F NMR of product 3n in CDCl₃ (376 MHz)

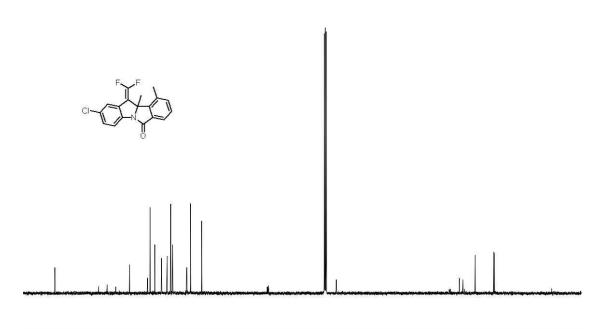

-84.202	-84.910
4	2

¹⁹F NMR of product 30 in CDCl₃ (376 MHz)

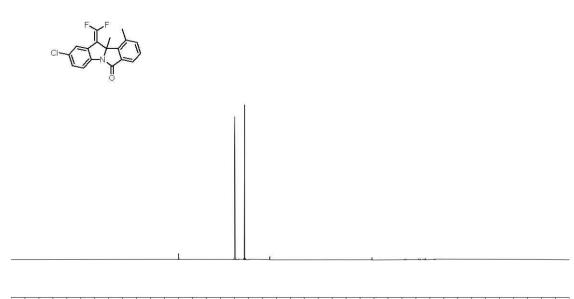


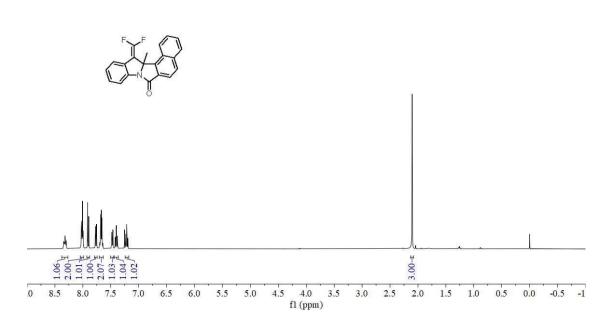
¹H NMR of product 3p in CDCl₃ (400 MHz)

	9	4	00	9	5	0	01	8	co.	0	00	6	4	0	0	4	00	3	61
5	4	ŝ	N	4	0	00	00	9	9	4	2	0	0	0	4	4	0	N	9
5	5	5	1	9	0	4	4	4	4	4	4	4	4	4	3	3	3	3	2
1	5	N	D'	N	1	5	N	D'	N	P.	5	N	N	r	N	5	N	r'	N
1	1	1	-	1														1	
				-				6											


- T	**	
06	6	
9 5	00	
adi		
Y		

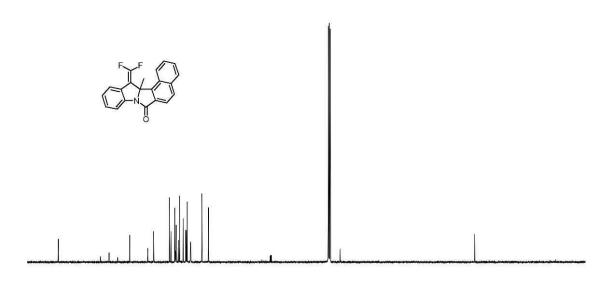
---0.000


¹³C NMR of product 3p in CDCl₃ (100 MHz)


ò 30 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 -1 fl (ppm)

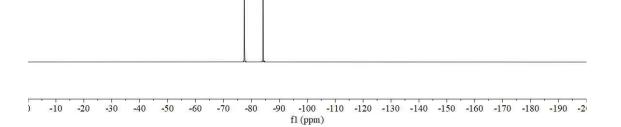
¹⁹F NMR of product 3p in CDCl₃ (376 MHz)

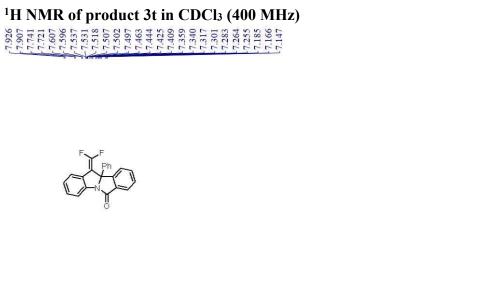
¹H NMR of product 3q in CDCl₃ (400 MHz)

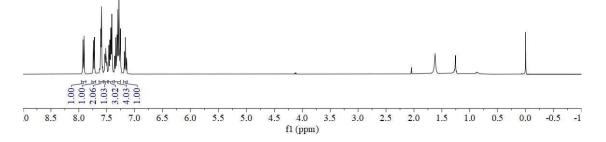

8.342
8.331
8.331
8.331
8.331
8.329
8.297
8.297
8.005
9.7994
9.7994
9.7994
9.7994
9.7994
9.7794
9.7779
9.7794
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7666
9.7666
9.7666
9.7666
9.7666
9.7666
9.7666
9.7666
9.7761
9.7756
9.7756
9.7756
9.7756
9.7566
9.7676
9.7761
9.7761
9.7761
9.7761
9.7761
9.7761
9.7666
9.7666
9.7666
9.7666
9.7761
9.7761
9.7761
9.7761
9.7766
9.7666
9.7666
9.7666
9.7666
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7666
9.7666
9.7666
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
9.7766
<l

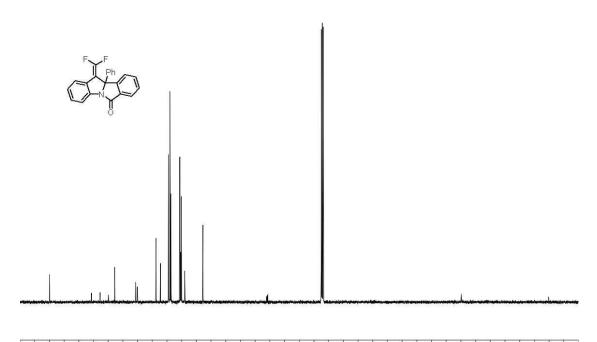
-0.000

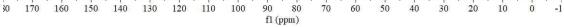
¹³C NMR of product 3q in CDCl₃ (100 MHz)



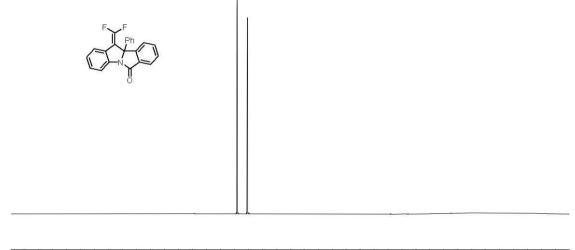

ò -1 fl (ppm)

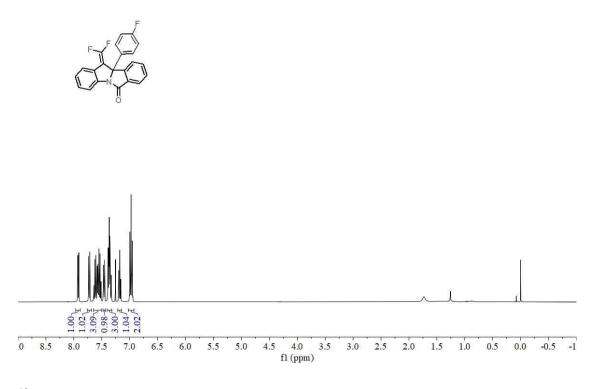

¹⁹F NMR of product 3q in CDCl₃ (376 MHz)


-0.000

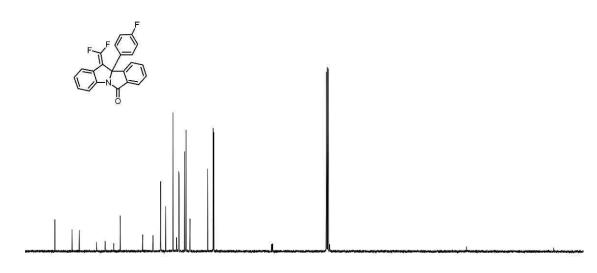


¹³C NMR of product 3t in CDCl₃ (100 MHz)

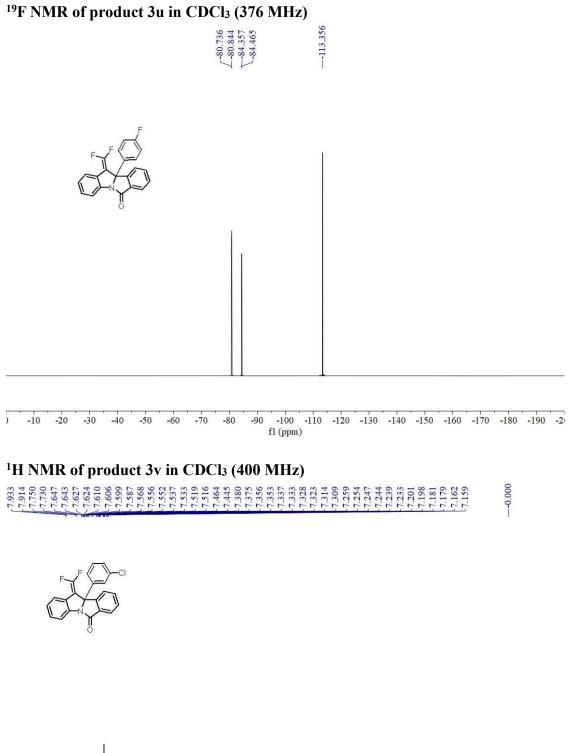

	69.9 55.6 52.8 52.7 52.7	47.7 40.6 40.6 40.6 40.1	40.0 33.7 33.7 229.5 228.9 28.9	2222222	0 0 0 1 0 0 1 0 0 4
--	--------------------------------------	--------------------------------------	--	---------	---------------------

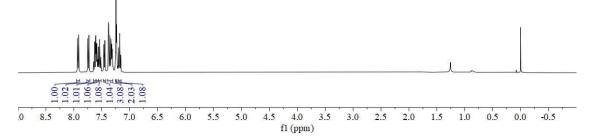

¹⁹F NMR of product 3t in CDCl₃ (376 MHz)

£-80.904	T-84.616
∠-81.014	L-84.725

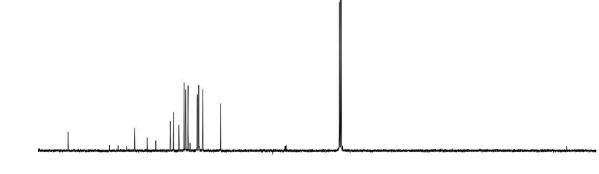

¹H NMR of product 3u in CDCl₃ (400 MHz)

 $\begin{array}{c} 7.929\\ 7.7.920\\ 7.7.910\\ 7.7.910\\ 7.7.640\\ 7.7.603\\ 7.640\\ 7.7.603\\ 7.7.603\\ 7.7.603\\ 7.7.612\\ 7.7.511\\ 7.7.511\\ 7.7.514\\ 7.7.514\\ 7.7.514\\ 7.7.514\\ 7.7.514\\ 7.7.514\\ 7.7.514\\ 7.7.323\\ 7.7.325\\ 7.7.325\\ 7.7.325\\ 7.7.325\\ 7.7.325\\ 7.7.325\\ 7.7.325\\ 7.7.325\\ 7.7.325\\ 7.7.325\\ 7.7.326\\$

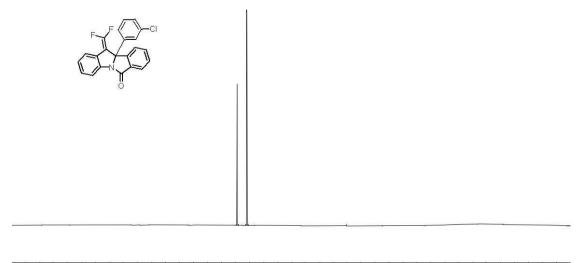



¹³C NMR of product 3u in CDCl₃ (100 MHz)

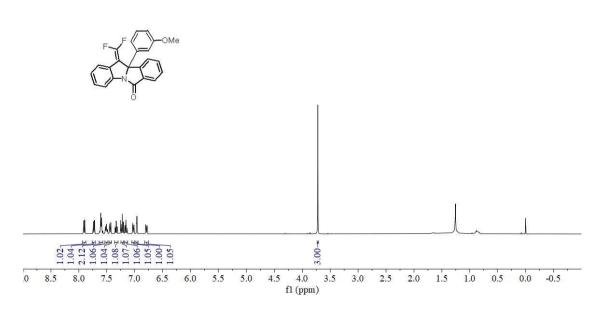
ò -1 fl (ppm)



¹³C NMR of product 3v in CDCl₃ (100 MHz)

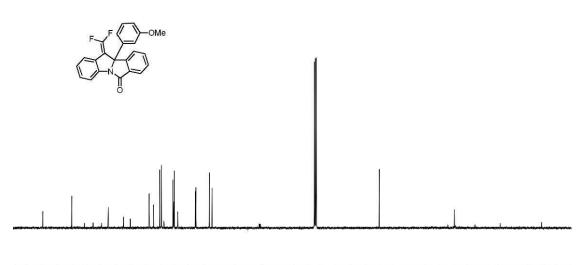


10					1.2		- U												
30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
									f1 (p	opm)									


¹⁹F NMR of product 3v in CDCl₃ (376 MHz)

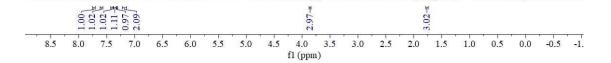
.510	.523	617	.630	600.1	1.115	
r-80	1-80	4-80	1-80	-84	1-84	



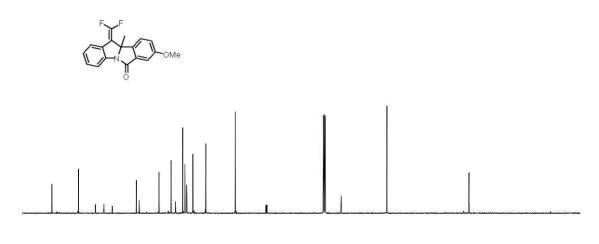

¹H NMR of product 3w in CDCl₃ (400 MHz) ¹H NMR of product 3w in CDCl₃ (400 MHz) ¹⁰¹²¹ ¹⁰¹²¹ ¹⁰¹²² ¹⁰

-0.000

¹³C NMR of product 3w in CDCl₃ (100 MHz)

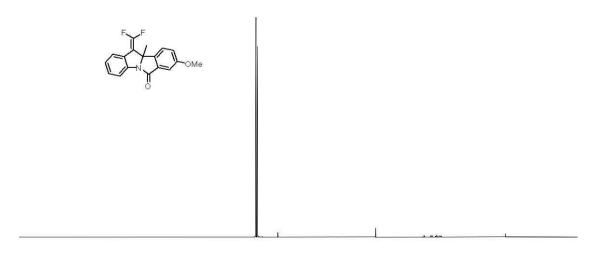


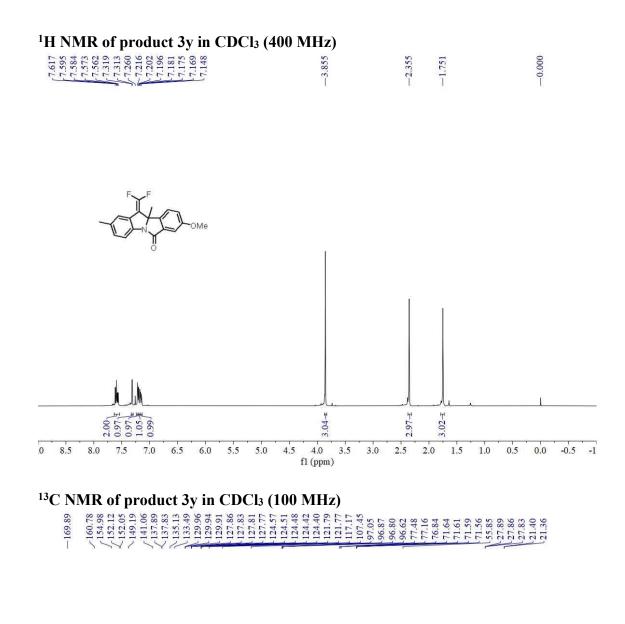
ò -1 30 170 160 150 140 130 120 90 80 70 50 40 30 20 10 110 100 60 fl (ppm)

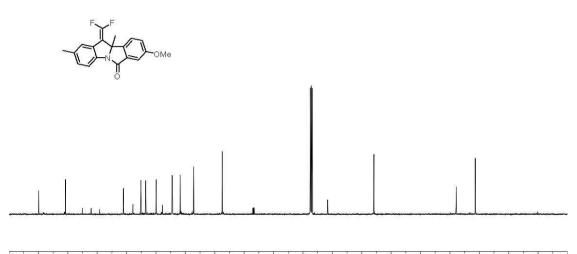

¹⁹F NMR of product 3w in CDCl₃ (376 MHz)

-80.943 -81.053 -84.608 -84.717		
$^{1}H \text{ NMR of product } 3x \text{ in CDCl}_{3} (400 \text{ MHz})$	-130 -140 -150 -160	0 -170 -180 -190 -2 0 -00 00 00 00 00 00

¹³C NMR of product 3x in CDCl₃ (100 MHz)

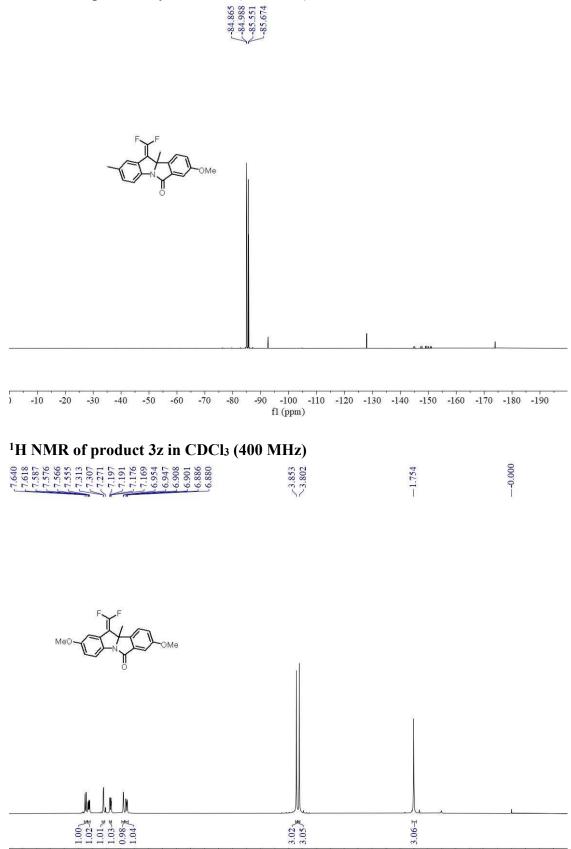

169.83	100.09 1125.06 1125.06 1125.06 1141.08 1141.08 1141.08 1141.08 1141.08 1141.08 1141.08 1127.09 1127.09 1127.09 1127.09 1127.05 1127	6.1
		8



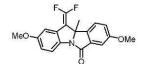

30 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 fl (ppm)

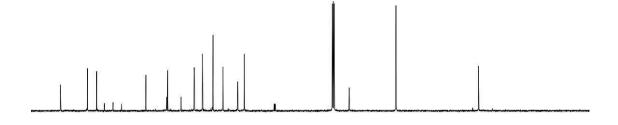
¹⁹F NMR of product 3x in CDCl₃ (376 MHz)

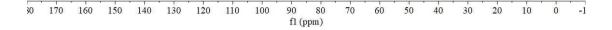
4.734	4.856	5.306	5.427	
7-8	1-8-	2-8-1	1-8	



ò -1 140 130 fl (ppm)

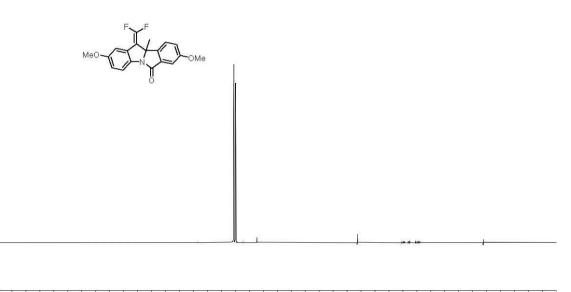

¹⁹F NMR of product 3y in CDCl₃ (376 MHz)

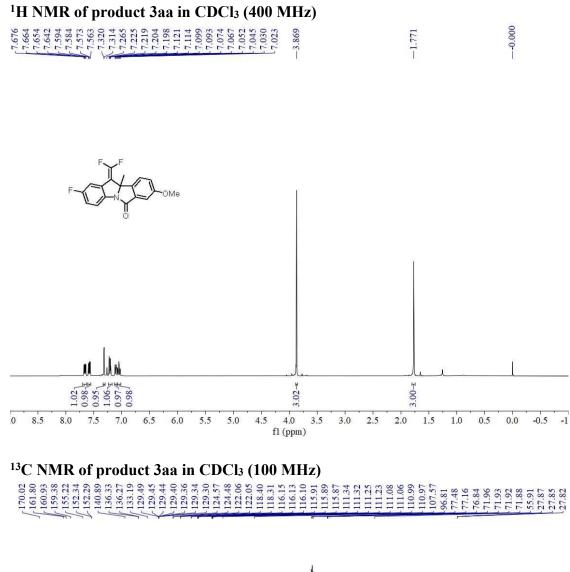


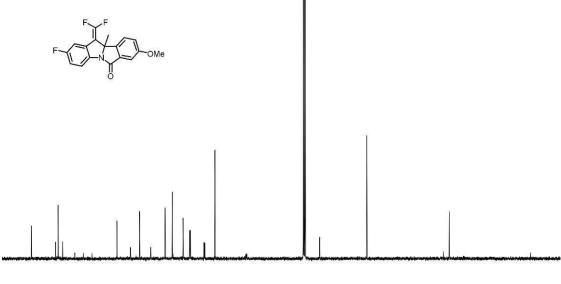

4.0 0.5 0.0 -0.5 -1 0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 3.5 3.0 2.5 2.0 1.5 1.0 4.5 fl (ppm)

¹³C NMR of product 3z in CDCl₃ (100 MHz)

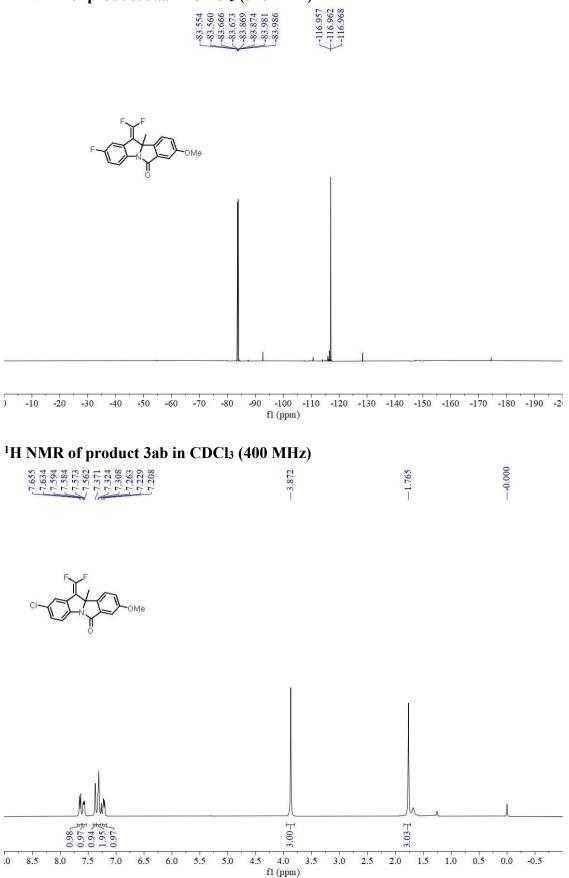
6.69	71.57.66 71.57.66 71.57.65 71.57.15 71.57.15 71.57.15 71.57.15 71.57.15 71.57.15 71.77 75.88 77.77 75.88 77.77 75.88 77.77 75.88 77.77 75.88 77.77 75.88 75.	27.76 27.73 127.71
T		4

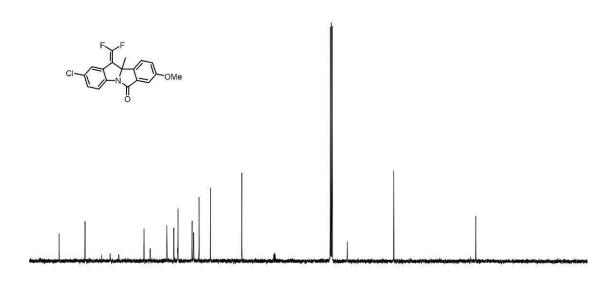


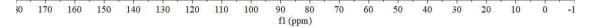




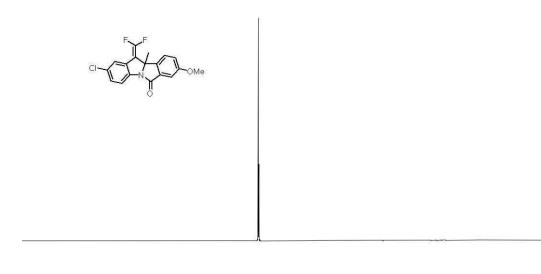
¹⁹F NMR of product 3z in CDCl₃ (376 MHz)

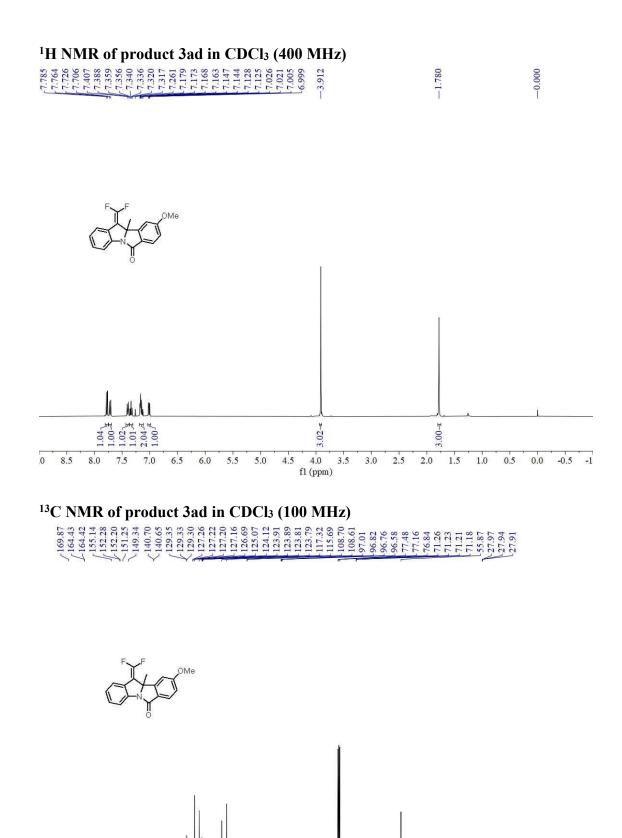


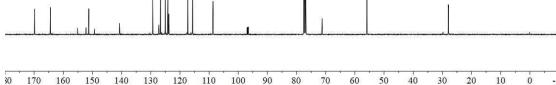

ò -1 fl (ppm)


¹⁹F NMR of product 3aa in CDCl₃ (376 MHz)

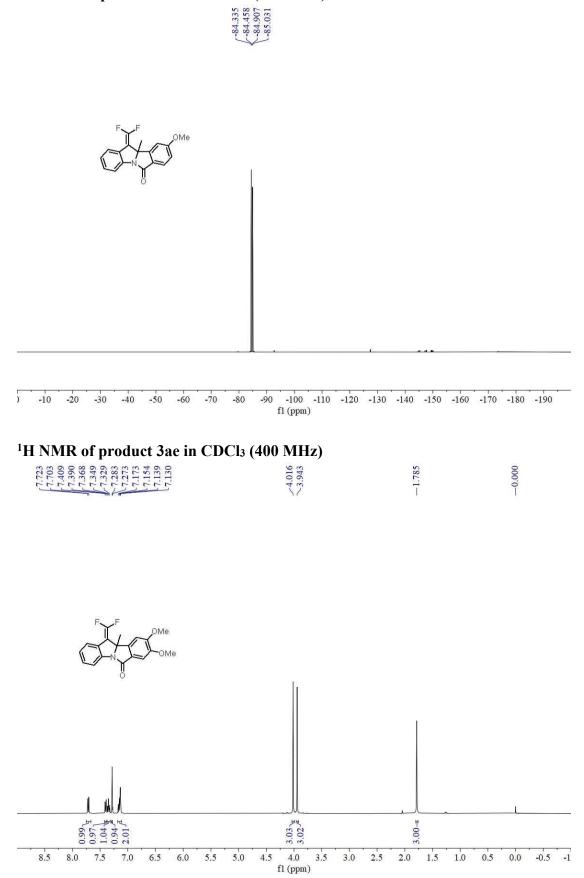
¹³C NMR of product 3ab in CDCl₃ (100 MHz)

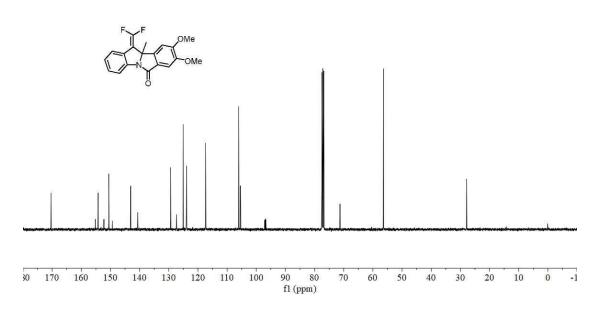

77.69	0.9	5.2	2.4	2.3	9.4	0.8	8.8	8.7	3.1	0.7	9.4	9.4	9.4	9.3	9.3	9.3	9.2	4.5	4.5	4.0	4.0	3.9	3.9	2.1	oo I	0.1	- 5	4	u	4	-	00	5	1	9	6	0.	7.98	2
-																																						n n	
7	1	17	1	7	1	2	7	5	T	7	5	5	1	1		1.5	T	1	1	1	1	5	1	-	1.0	7 9	, 9,		9,	1	1		1		-		5	3.0	22
14		1 7	-	\checkmark	1			1		10				100		-			-		-				-	_		-	-	_				-			f		



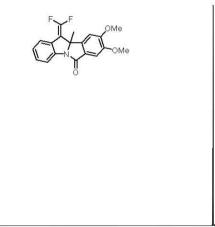


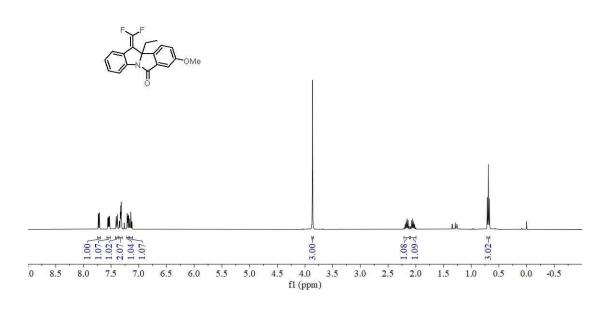
¹⁹F NMR of product 3ab in CDCl₃ (376 MHz)

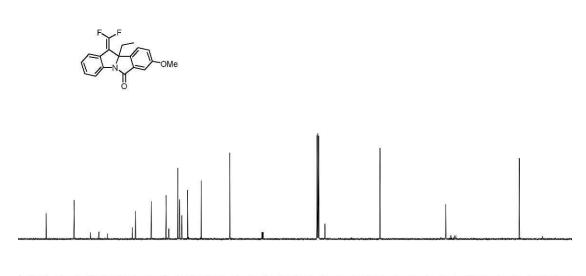



-1 fl (ppm)

¹⁹F NMR of product 3ad in CDCl₃ (376 MHz)

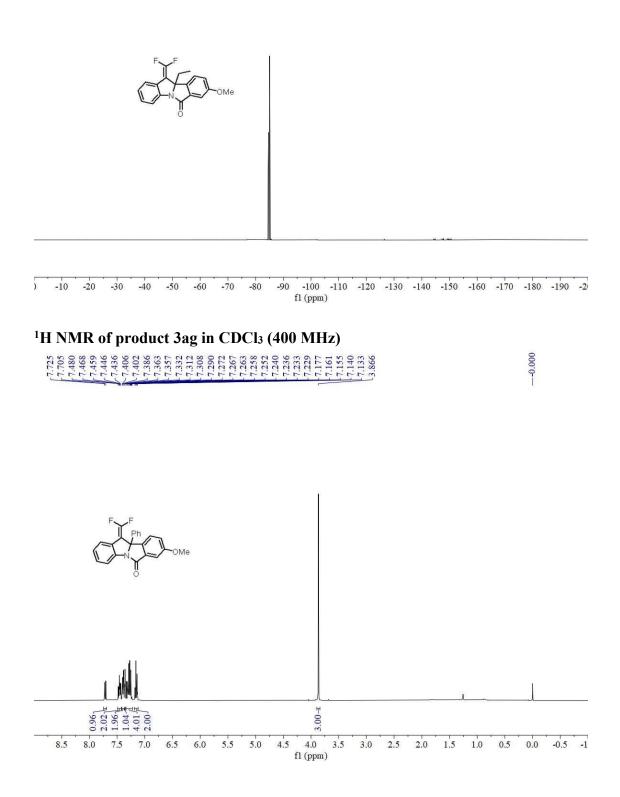

¹³C NMR of product 3ae in CDCl₃ (100 MHz)


¹⁹F NMR of product 3ae in CDCl₃ (376 MHz)

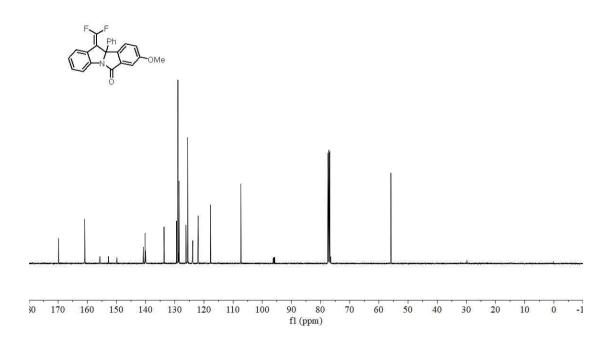

¹H NMR of product 3af in CDCl₃ (400 MHz)

31 26 26 27 23 33 23 37 23 23 37 23 23 37 23 23 37 23 23 23 23 23 23 23 23 23 23 23 23 23	64	$\begin{array}{c} 112 \\ 932 \\ 932 \\ 932 \\ 933 \\ 933 \\ 932 \\ 933 \\ 932 \\ 932 \\ 933 \\$	00
C C S S S S S S S S S S S S S S S S S S	8	000000000000000000000000000000000000000	0
	3	000000000000000000000000000000000000000	0

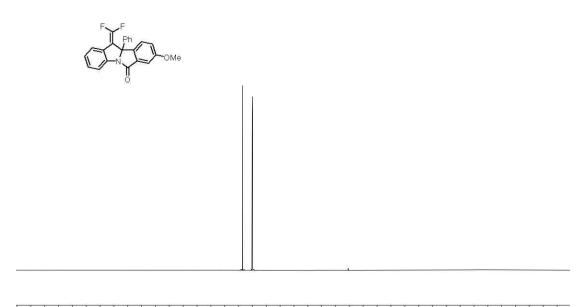
¹³C NMR of product 3af in CDCl₃ (100 MHz)


37	D D D D D D	8827333102426888738827388268831255333102552233882
120	60004	$ \begin{array}{c} 140\\ 140\\ 129\\ 129\\ 129\\ 122\\ 122\\ 122\\ 122\\ 122$
T	3547	

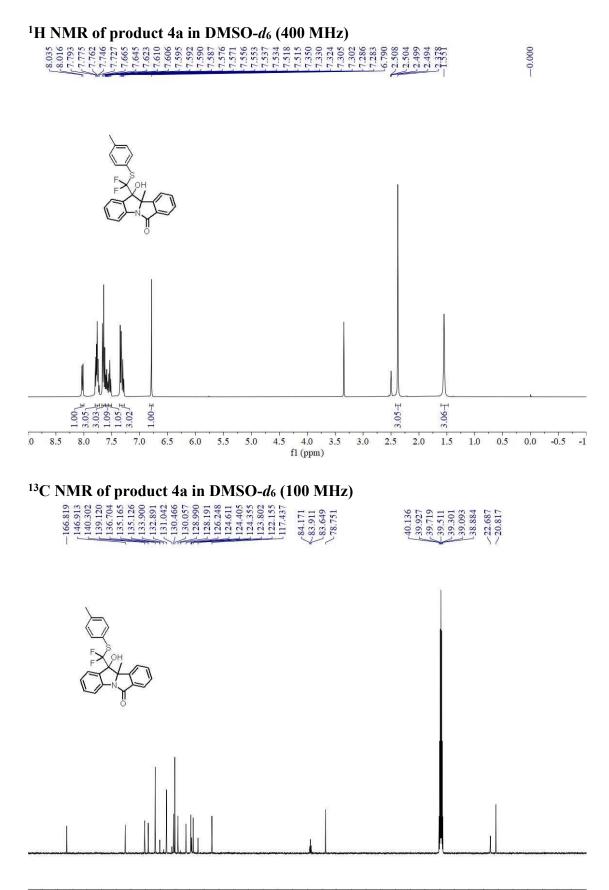
90 80 fl (ppm) -1 140 130


¹⁹F NMR of product 3af in CDCl₃ (376 MHz)

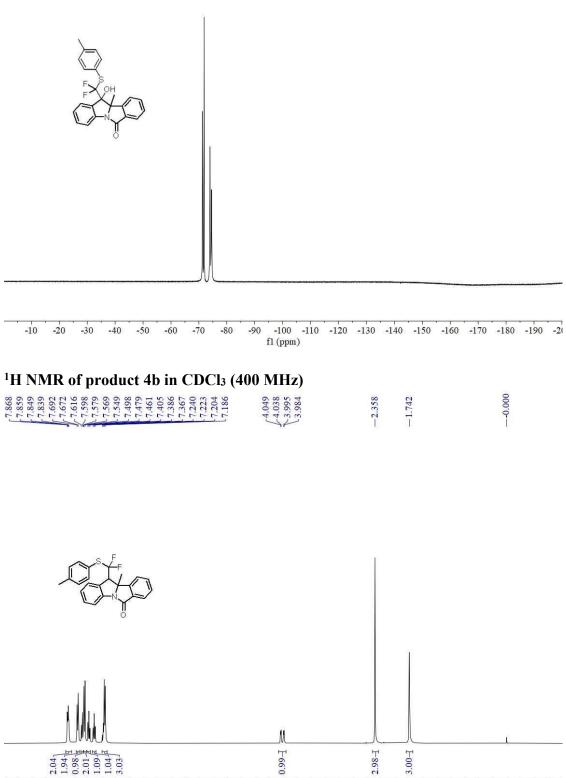
0	00	0	-	8	-
N	3	S	0	5	00
5	5	9	6	0	
4	+	4	-	in	vi
ò	õ	õ	ò	8	
		1.1			
-	-	2	1	_	_



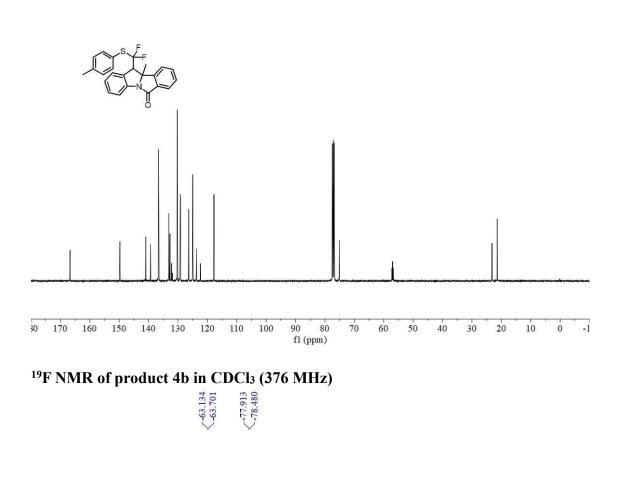
¹³C NMR of product 3ag in CDCl₃ (100 MHz)

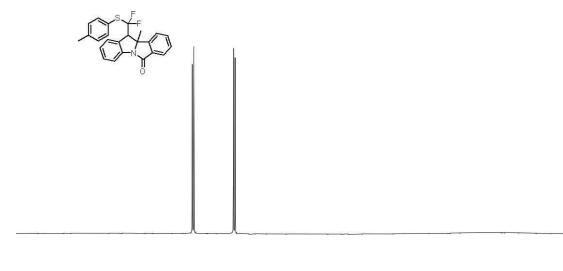

00	0 0 0 7 4 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0
00	8 0 1 1 8 8 8 1 0 0 0 1 4 4 4 6 1 1 1 9 9 1 1 9 9 6 8 8 0 6 1 8 0 8 9 4 9 1 0 0 8 8 9 4 9 1 0 0 8 8 9 4 9 1 0 0 8 8 9 4 9 1 0 0 8 8 9 4 9 1 0 0 8 8 9 4 9 1 0 0 8 8 9 4 9 1 0 0 8 8 9 1 0 0 1 0 0 8 8 9 1 0 0 0 8 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0
6	88.888.888.888.99.000.000.000.000.000.00
9	00000-00000000000000000000000000000000

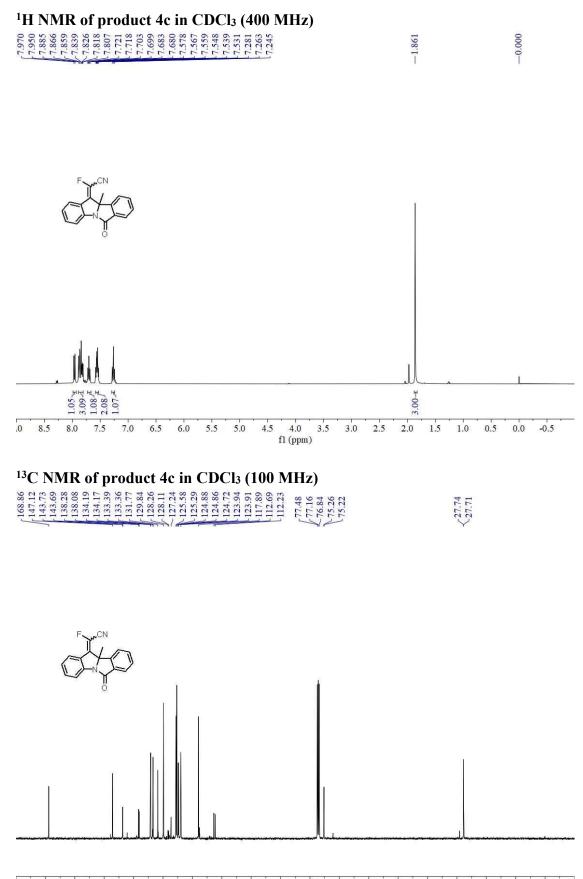
¹⁹F NMR of product 3ag in CDCl₃ (376 MHz)


) -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 fl (ppm)

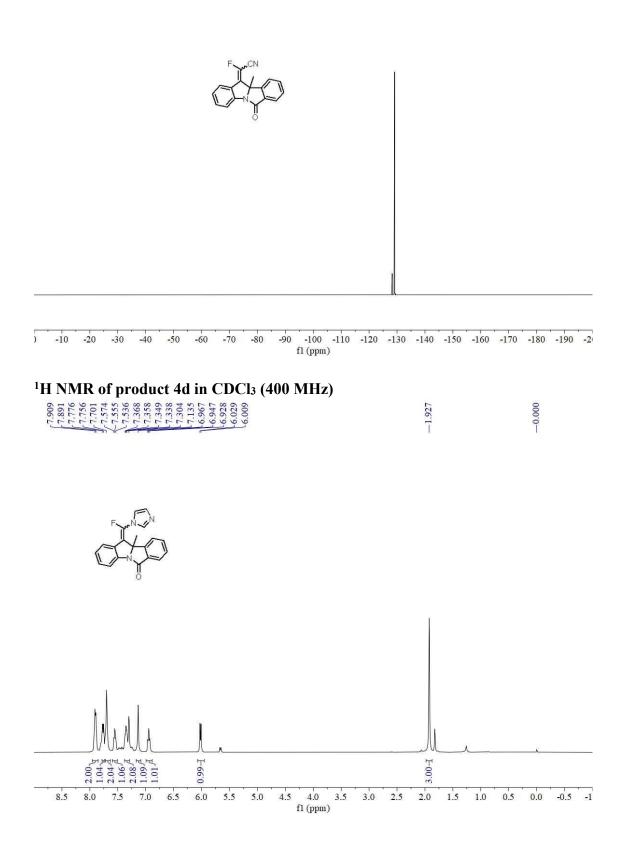
ò -1 fl (ppm)


¹⁹F NMR of product 4a in DMSO-d₆ (376 MHz)

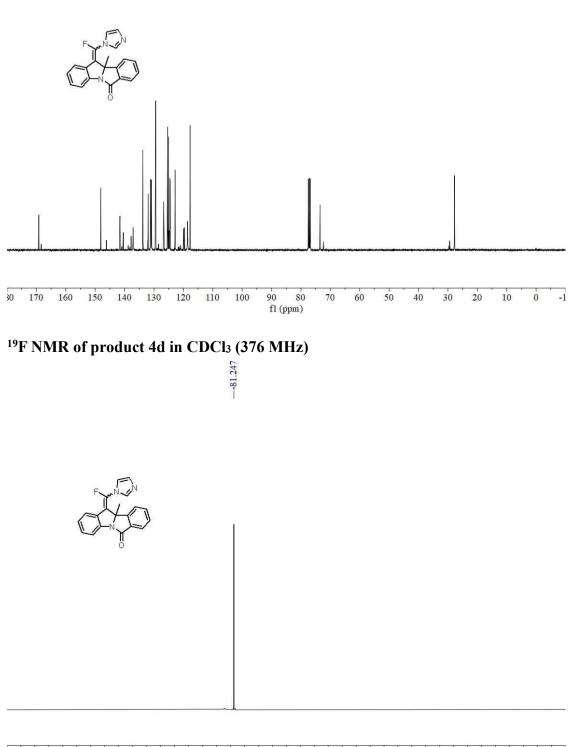


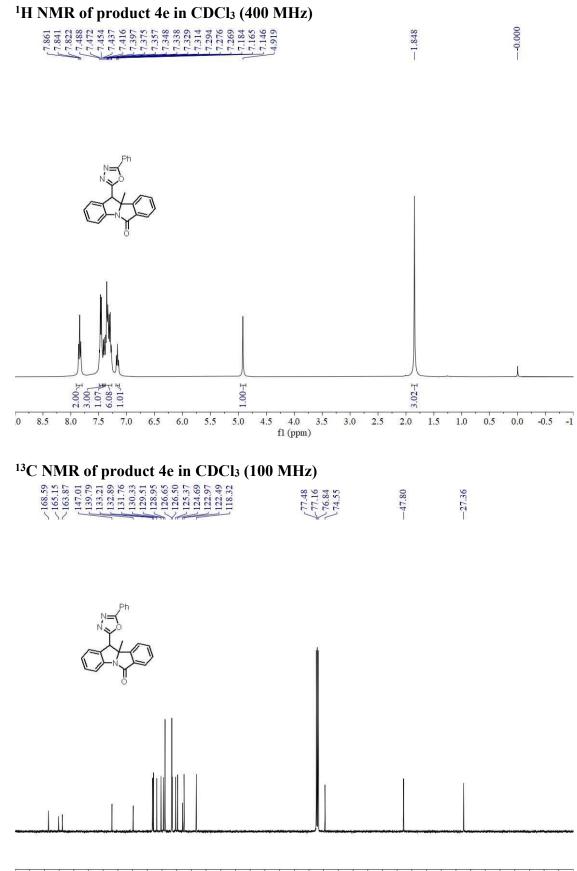

¹³C NMR of product 4b in CDCl₃ (100 MHz)

-166.71 -166.71 -149.74 -139.36 -132.35 -132.35 -132.35 -132.35 -132.35 -132.35 -132.35 -132.35 -132.35 -132.35 -132.35 -132.35 -132.35 -132.35 -122.3	23.18 23.16 23.13 23.13 21.41
---	---

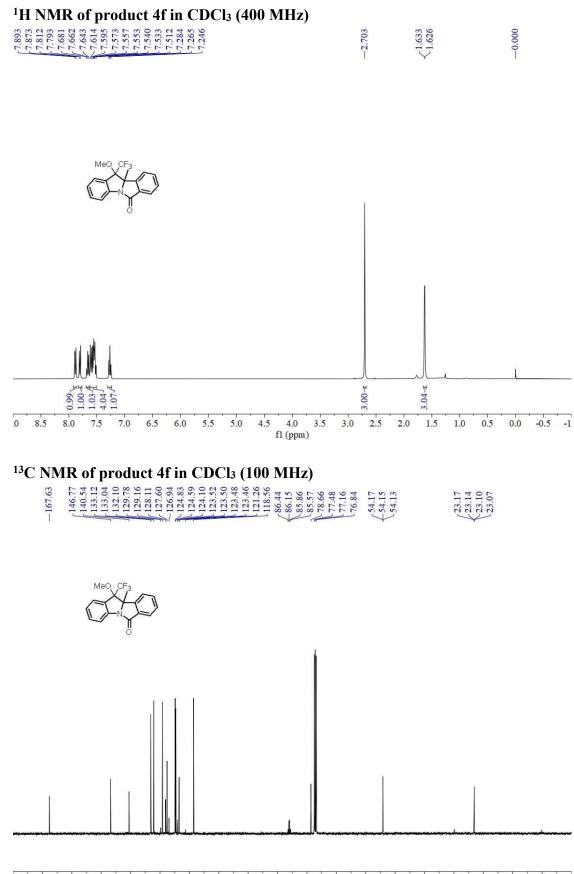


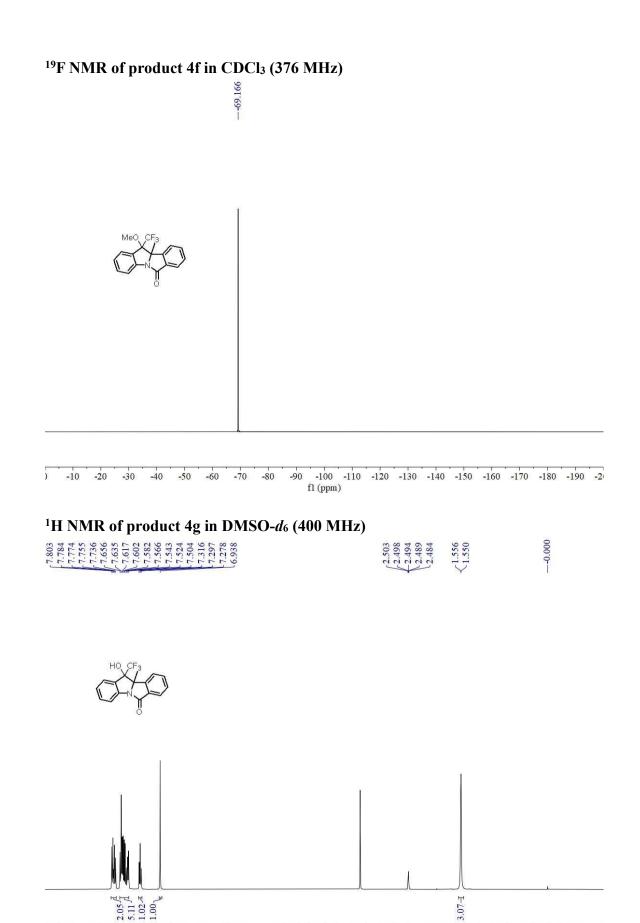
) -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2 fl (ppm)

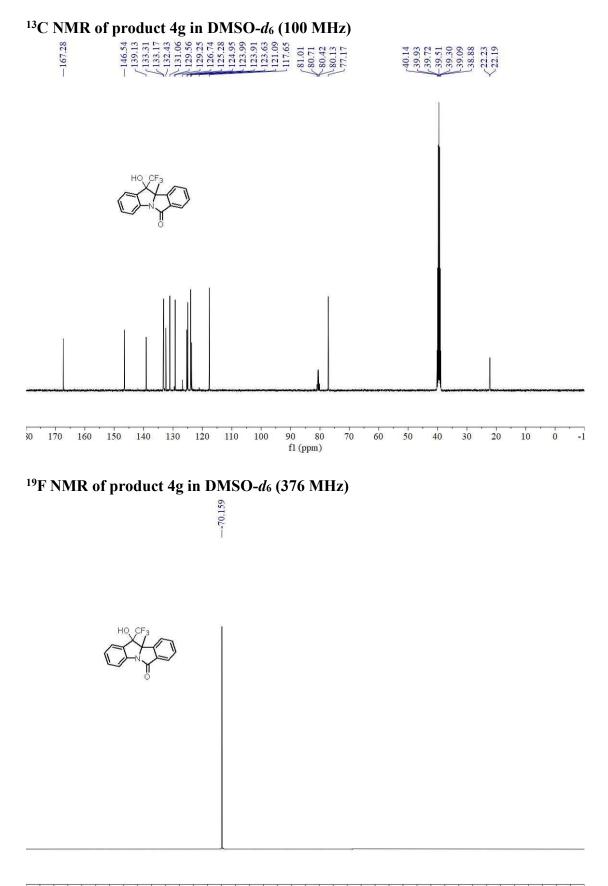

ò 140 130 120 110 -1 fl (ppm)


¹³C NMR of product 4d in CDCl₃ (100 MHz)

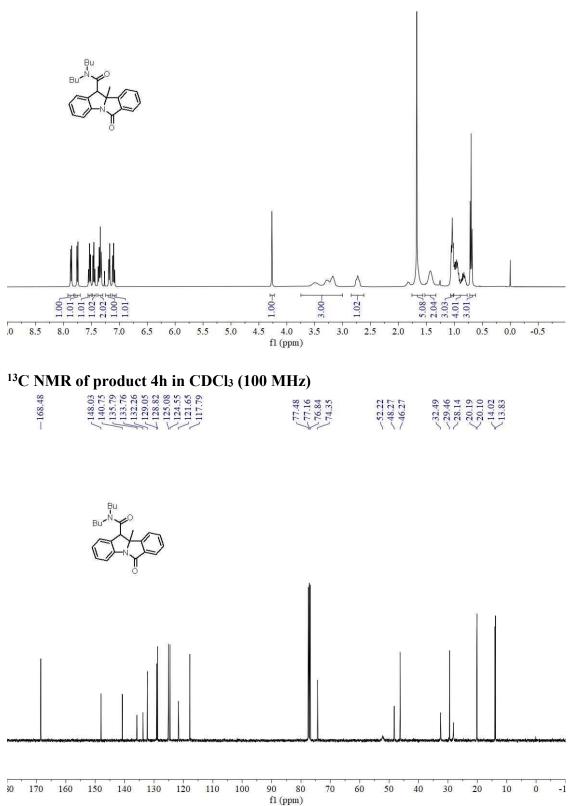
6	148.08 141.62 141.62 137.78 137.78 133.78 133.78 133.78 133.78 133.78 133.78 133.78 133.87 125.57 125.45 125.55 12	
1		


<27.78</pre>


) -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2 fl (ppm)


ò 140 130 -1 fl (ppm)

ò -1 fl (ppm)


7.5 0 8.5 8.0 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 fl (ppm)

) -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2 fl (ppm)

¹H NMR of product 4h in CDCl₃ (400 MHz)

 $\begin{array}{c} 7.873\\ 7.875\\ 7.554\\ 7.555\\ 7.$

11 (ppm)