Supporting Information For:

Palladium-Catalyzed Nucleomethylation of Alkynes for Synthesis of **Methylated Heteroaromatic Compounds**

Xi Yang,[†] Gang Wang,[†] and Zhi-Shi Ye*[†]

Table of Contents

1.	General	S2
2.	General procedure for the synthesis of <i>ortho</i> -alkynylanilines	S2
3.	General procedure for the synthesis of <i>ortho</i> -alkynylphenols	S9
4.	General procedure for the synthesis of alkynl-imines	S12
5.	Optimization of the Conditions for synthesis of 3-methyl-1-tosyl-1 <i>H</i> -indole	S13
6.	General procedure for synthesis of 3-methylindoles	S17
7.	Optimization of the Conditions for synthesis of 3-methyl-2-phenylbenzofuran	S26
8.	General procedure for synthesis of 3-methylbenzofurans	S29
9.	General procedure for synthesis of 4-methylisoquinolines	
10.	Scale-up experiment for synthesis of 3ad and 60	S33
11.	Further synthetic transformations of product 3ad	S34
12.	Synthesis of bioactive molecules and drugs	S36
13.	Mechanism studies	S41
14.	Kinetic studies	S46
15.	References	S52
16.	Copy of NMR for the compounds	S54

1. General

All reactions were carried out under an atmosphere of nitrogen using standard Schlenk techniques, unless otherwise noted. All solvents and reagents were used as obtained from commercial sources without further purification. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded at room temperature on 400 MHz instrument with tetramethylsilane (TMS) as internal standard. Flash column chromatography was performed on silica gel (200-300 mesh). All reactions were monitored by TLC or NMR analysis.

2. General procedure for the synthesis of ortho-alkynylanilines

The *ortho*-alkynylanilines **1b-1k**, **1ai**, and **1aj** were synthesized according to the reported procedures. $\mathbf{1b}^{[1]}$, $\mathbf{1c}^{[2]}$, $\mathbf{1d}\mathbf{-1f}^{[3]}$, and $\mathbf{1g}^{[2]}$ were known compounds and all data were in agreement with the reported literatures.

Synthesis of compound S2:^[4] Under nitrogen atmosphere, compound S1 (1.0 equiv.) $Pd(PPh_3)_2Cl_2$ (2 mol%), and CuI (4 mol%) were dissolved in *N*,*N*-dimethylformamide, then triethylamine and alkyne compounds (1.5 equiv.) were added. The mixture was stirred overnight in 100 °C oil bath. After completion of the reaction (monitored by TLC), the reaction was cooled to room temperature and quenched by aqueous saturated solution of sodium chloride. The aqueous phase was extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound S2.

Synthesis of compound 1:^[5] Under nitrogen atmosphere, to a solution of **S2** (1.0 equiv.) in dichloromethane, the pyridine (2.0 equiv.) and sulfonyl chloride (1.2 equiv.) were added. The mixture was stirred at room temperature for 12 h. The mixture was quenched by aqueous dilute solution of hydrochloric acid, the aqueous phase was extracted with dichloromethane. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound **1b-1k**, **1ai**, and **1aj**.

N-(2-fluoro-6-(phenylethynyl)phenyl)-4-methylbenzenesulfonamide (1h): the reaction was Ph conducted at 3.5 mmol scale from S1, 377.1 mg, 29% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.64 (m, 2H), 7.45–7.39 (m, 2H), 7.39–7.31 (m, 3H), 7.26–7.24 (m, 1H), 7.21–7.16 (m, 1H), 7.15–7.06 (m, 3H), 6.53 (s, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.9 (d, $J_{C-F} = 250.6$ Hz), 144.1, 137.2, 131.9, 129.7, 129.3, 128.6, 128.1 (d, $J_{C-F} = 3.5$ Hz), 128.0 (d, $J_{C-F} = 8.7$ Hz), 127.6, 125.5 (d, $J_{C-F} = 13.5$ Hz), 122.5 (d, $J_{C-F} = 3.5$ Hz), 128.0 (d, $J_{C-F} = 3.5$ Hz), 127.6, 125.5 (d, $J_{C-F} = 3.5$ Hz), 128.0 (d) (d, 2.6 Hz), 122.2, 117.3 (d, J_{C-F} = 20.7 Hz), 96.2, 84.0 (d, J_{C-F} = 4.3 Hz), 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.80. HRMS (ESI-QEplus) *m/z*: [M+Na]⁺ Calcd for C₂₁H₁₆FNNaO₂S 388.0778; found 388.0773.

N-(4-chloro-2-fluoro-6-(phenylethynyl)phenyl)-4-methylbenzenesulfonamide (1i): the reaction

CI Τs

found 422.0390.

compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) & 7.75-7.64 (m, 2H), 7.40-7.33 (m, 5H), 7.24 (s, 1H), 7.19–7.05 (m, 3H), 6.54 (s, 1H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0 (d, J_{C-F} = 254.0 Hz), 144.2, 137.0, 133.1 (d, J_{C-F} = 10.9 Hz), 132.0, 129.8, 129.6, 128.6, 127.9 (d, $J_{C-F} = 3.5 \text{ Hz}$), 127.6, 124.3 (d, $J_{C-F} = 13.6 \text{ Hz}$), 123.9 (d, $J_{C-F} = 13.6 \text{ Hz}$)), 123.9 (d, J_{C-F} = 13. = 3.4 Hz), 121.7, 117.9 (d, J_{C-F} = 23.9 Hz), 97.2, 83.0 (d, J_{C-F} = 4.1 Hz), 21.7. ¹⁹F NMR (376 MHz,

was conducted at 3.5 mmol scale from S1, 381.8 mg, 27% yield, unknown

N-(3,5-difluoro-2-(phenylethynyl)phenyl)-4-methylbenzenesulfonamide (1j): the reaction was conducted at 3.5 mmol scale from S1, 389.8 mg, 29% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) & 7.75-7.61 (m, 2H), 7.49-7.31 (m, 5H), 7.19-7.08 (m, NH 2H), 7.04-6.94 (m 1H), 6.93-6.82 (m, 1H), 6.36 (s, 1H), 2.30 (s, 3H). ¹³C Τs NMR (100 MHz, CDCl₃) δ 160.9 (dd, J_{C-F} = 248.2, 12.5 Hz), 158.9 (dd, J_{C-F} = 253.4, 13.5 Hz), 144.2, 137.1, 132.0, 129.8, 129.6, 128.6, 127.6, 124.3 (dd, $J_{C-F} = 12.1$, 3.7 Hz), 121.9 (dd, $J_{C-F} = 12.1$, 3.7 Hz), 121.9 (dd, $J_{C-F} = 12.1$) 13.8, 4.2 Hz), 121.8, 114.9 (dd, *J*_{C-F} = 23.8, 3.7 Hz), 105.9 (dd, *J*_{C-F} = 24.9, 1.0 Hz), 97.0, 83.3 (dd, $J_{C-F} = 4.4, 3.4$ Hz), 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.02 (d, J = 8.0 Hz), -111.86 (7.9 Hz). HRMS (ESI-QEplus) m/z [M+Na]⁺ Calcd for C₂₁H₁₅F₂NNaO₂S 406.0684; found

CDCl₃) δ -113.89. HRMS (ESI-QEplus) *m/z*: [M+Na]⁺ Calcd for C₂₁H₁₅ClFNNaO₂S 422.0388;

406.0675.

N-(2-chloro-4-fluoro-6-(phenylethynyl)phenyl)-4-methylbenzenesulfonamide (1k): the reaction was conducted at 3.5 mmol scale from S1, 274.8 mg, 20% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) δ 7.77–7.61 (m, 2H), 7.47–7.39 (m, 2H), 7.38– NH 7.29 (m, 3H), 7.21–7.03 (m, 4H), 6.43 (s, 1H), 2.28 (s, 3H). ¹³C NMR (100 ĊΓ Τ́s MHz, CDCl₃) δ 160.6 (d, J_{C-F} = 249.9 Hz), 144.2, 137.6, 135.2 (d, J_{C-F} = 11.2

Hz), 132.0, 131.0 (d, *J*_{C-F} = 3.7 Hz), 129.8, 129.4, 128.5, 127.6, 126.4 (d, *J*_{C-F} = 11.2 Hz), 122.1, 118.5, 118.2, 118.0, 96.6, 84.6 (d, $J_{C-F} = 3.2$ Hz), 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.48. HRMS (ESI-QEplus) *m*/*z*: [M+Na]⁺ Calcd for C₂₁H₁₅ClFNNaO₂S 422.0388; found 422.0385.

3.94 (s, 3H), 3.93 (s, 3H), 3.77 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 157.0, 150.3,

148.9, 144.0, 136.2, 130.6, 129.7, 127.5, 125.3, 124.2, 117.6, 116.2, 116.0, 114.2, 114.2, 111.2, 95.9, 82.8, 56.2, 56.2, 55.7, 21.8. HRMS (ESI-QEplus) *m*/*z*: [M+Na]⁺ Calcd for C₂₄H₂₃NNaO₅S 460.1189; found 460.1183.

 $\begin{array}{c} \textit{N-(4-methoxy-2-((4-methoxyphenyl)ethynyl)phenyl)-4-methylbenzenesulfonamide (1aj): the reaction was conducted at 15.0 mmol scale from S1, 1489.7 mg, 24% yield, unknown compound, white solid, R_f = 0.25 (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) & 7.59–7.54 (m, 3H), 7.39–7.31 (m, 2H), 7.17–7.09 (m, 2H), 6.95–6.80 (m, 5H), 3.86 (s, 3H), 3.76 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 160.4, 157.1, 143.9, 136.2, 133.3, 130.6, 129.7, 127.5, 124.2, 117.7, 116.2, 115.9, 114.4, 114.2, 95.8, 83.0, 55.7, 55.6, 21.7. HRMS (ESI-QEplus) <math>m/z$: [M+Na]⁺ Calcd for C₂₃H₂₁NNaO₄S

The *ortho*-alkynylanilines **1a**, **1l-1v**, **1aa**, **1ab**, and **1ad** were synthesized according to the reported procedures. $1a^{[6]}$, $1l-1m^{[3]}$, $1o^{[6]}$, $1p^{[7]}$, $1s-1t^{[3]}$, $1u^{[7]}$, $1v^{[8]}$, $1ab^{[6]}$, $1ac^{[7]}$, and $1ad^{[9]}$ were known compounds and all data were in agreement with the reported literatures.

430.1083; found 430.1081.

Synthesis of compound S4:^[5] Under nitrogen atmosphere, to a solution of S3 (1.0 equiv.) in tetrahydrofuran, Pd(PPh₃)₂Cl₂ (2 mol%), CuI (4 mol%), triethylamine (1.2 equiv.) and the alkyne compound (1.2 equiv.) were added. The mixture was stirred at room temperature. After completion of the reaction (monitored by TLC), the reaction was quenched by aqueous saturated solution of sodium chloride. Then the aqueous phase was extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound S4.

Synthesis of compound 1:^[5] Under nitrogen atmosphere, to a solution of S4 (1.0 equiv.) in dichloromethane, pyridine (2.0 equiv.) and sulfonyl chloride (1.2 equiv.) were added. The mixture was stirred at room temperature for 12 h. The mixture was quenched by aqueous dilute solution of hydrochloric acid, the aqueous phase was extracted with dichloromethane. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound 1a, 11-1v, 1ab, 1ac, and 1ad.

N-(2-((4-(tert-butyl)phenyl)ethynyl)phenyl)-4-methylbenzenesulfonamide (1n): the reaction

was conducted at 4.0 mmol scale from S3, 1416.1 mg, 88% yield, unknown compound, white solid, $R_f = 0.25$ (petroleum ether/ethyl acetate 30/1); ¹H NMR (400 MHz, CDCl₃) δ 7.71–7.65 (m, 2H), 7.64–7.60 (m, 1H), 7.41 (s, 4H), 7.38–7.33 (m, 1H), 7.31–7.21 (m, 2H), 7.19–7.14 (m, 2H), 7.09-7.01 (m, 1H), 2.34 (s, 3H), 1.35 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) & 152.7, 144.2, 137.7, 136.3, 132.1, 131.6, 129.8, 129.6, 127.5,

125.8, 124.7, 120.3, 119.2, 115.0, 96.6, 83.3, 35.1, 31.4, 21.7. HRMS (ESI-QEplus) m/z: [M+H]+ Calcd for C₂₅H₂₆NO₂S 404.1679; found 404.1676.

N-(2-((4-acetylphenyl)ethynyl)phenyl)-4-methylbenzenesulfonamide (1q): the reaction was conducted at 5.0 mmol scale from S3, 1837.2 mg, 94% yield, unknown compound, yellow solid, $R_f = 0.25$ (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) δ 8.02–7.94 (m, 2H), 7.71–7.65 (m, 2H), 7.64–7.60 (m, 1H), 7.58–7.51 (m, 2H), 7.43–7.37 (m, 1H), 7.36–7.30 (m, 1H), 7.22–7.14 (m, 3H), 7.13–7.06 (m, 1H), 2.64 (s, 3H), 2.34 (s, 3H). ¹³C NH

NMR (100 MHz, CDCl₃) δ 197.4, 144.3, 137.9, 137.0, 136.2, 132.4, Τ́s 131.9, 130.4, 129.9, 128.6, 127.4, 127.0, 124.9, 120.8, 114.3, 95.3, 87.1, 26.9, 21.7. HRMS (ESI-QEplus) *m*/*z*: [M+H]⁺ Calcd for C₂₃H₂₀NO₃S 390.1158; found 390.1154.

 NO_2 NH Τ́s

4-Methyl-N-(2-((4-nitrophenyl)ethynyl)benzenesulfonamide (1r): the reaction was conducted at 4.0 mmol scale from S3, 780.4 mg, 50% yield, unknown compound, yellow solid, $R_f = 0.25$ (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) δ 8.31-8.19 (m, 2H), 7.72-7.65 (m, 2H), 7.64–7.56 (m, 3H), 7.45–7.40 (m, 1H), 7.39–7.33 (m, 1H), 7.24–7.15 (m, 3H), 7.14–7.08 (m, 1H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 144.5, 138.1, 136.3, 132.7, 132.5, 130.9, 129.9, 129.1, 127.4,

125.0, 124.0, 120.9, 113.8, 94.0, 89.1, 21.8. HRMS (ESI-QEplus) m/z: [M-H]⁻ Calcd for C₂₁H₁₅N₂O₄S 391.0758; found 391.0757.

The *ortho*-alkynylanilines 1w-1z were synthesized according to the reported procedures. 1w^[1] and $1y^{[10]}$ were known compounds and all data were in agreement with the reported literatures.

Synthesis of compound S7:^[11] The mixture of S6 (1.0 equiv.), 4-dimethylaminopyridine (0.1 equiv.), triethylamine (1.2 equiv.) in dry dichloromethane was stirred at room temperature, then S5 was added into the system dropwise. The mixture was stirred at room temperature. After completion of the reaction (monitored by TLC), the reaction was quenched by aqueous saturated solution of sodium chloride. Then the aqueous phase was extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound **S7**. Then **S7** was used to synthesize **1w-1z** following the previous method.

4-(2-((4-Methylphenyl)sulfonamido)phenyl)but-3-yn-1-yl acetate (1x): the reaction was OAc conducted at 3.1 mmol scale from **S4**, 842.1 mg, 76% yield, unknown compound, white solid, $R_f = 0.25$ (petroleum ether/ethyl acetate 7/1); ¹H NMR (400 MHz, CDCl₃) δ 7.71–7.64 (m, 2H), 7.60–7.54 (m, 1H), 7.29– 7.25 (m, 2H), 7.24–7.20 (m, 3H) 7.03–6.97 (m, 1H), 4.24 (t, J = 6.5 Hz, 2H), 2.75 (t, J = 6.5 Hz, 2H), 2.37 (s, 3H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 144.2, 138.1, 136.4, 132.1, 129.8, 129.5, 127.4, 124.4, 119.8, 114.4, 93.3, 77.0, 62.2, 21.7, 21.1, 20.3. HRMS (ESI-QEplus) m/z: [M+Na]⁺ Calcd for C₁₉H₁₉NNaO₄S 380.0927; found 380.0920.

4-(2-((4-Methylphenyl)sulfonamido)phenyl)but-3-yn-1-yl benzoate (1z): the reaction was OBz conducted at 4.8 mmol scale from **S4**, 865.8 mg, 43% yield, unknown compound, white solid, $R_f = 0.25$ (petroleum ether/ethyl acetate 6/1); ¹H NMR (400 MHz, CDCl₃) δ 8.15–8.06 (m, 2H), 7.70–7.62 (m, 2H), 7.61– 7.53 (m, 2H), 7.50–7.43 (m, 2H), 7.33–7.20 (m, 3H), 7.20–7.14 (m, 2H), 7.03–6.95 (m, 1H), 4.49 (t, J = 6.6 Hz, 2H), 2.89 (t, J = 6.6 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 144.1, 138.0, 136.4, 133.4, 132.4, 130.0, 129.9, 129.8, 129.4, 128.7, 127.4, 124.4, 120.0, 114.5, 93.1, 77.2, 62.7, 21.7, 20.5. HRMS (ESI-QEplus) m/z: [M+Na]⁺ Calcd for

The ortho-alkynylanilines 1aa were synthesized according to the reported procedures.

C₂₄H₂₁NNaO₄S 442.1083; found 442.1073.

Synthesis of compound S8:^[12] The mixture of 3-bromopropyne (1.2 equiv.), morpholine (1.0 equiv.), potassium carbonate (1.2 equiv.) in dry tetrahydrofuran was stirred at room temperature. After completion of the reaction (monitored by TLC), the reaction was quenched by aqueous saturated solution of sodium chloride. Then the aqueous phase was extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (dichloromethane/ethyl acetate) to afford the desired compound **S8**. Then **S8** was used to synthesize **1aa** following the previous method.

(3, 211), 2.00, 2.05, (n, 411), 2.05, (s, 511). C Hard (100 Mil2, CDCl3) 0 144.2, 157.9, 150.4, 132.5, 129.7, 129.7, 127.4, 124.4, 119.6, 114.0, 91.6, 80.4, 66.9, 52.5, 48.1, 21.7. HRMS (ESI-QEplus) *m/z*: [M+H]⁺ Calcd for C₂₀H₂₃N₂O₃S 371.1424; found 371.1416.

The *ortho*-alkynylanilines **1ae-1ag** were synthesized according to the reported procedures. The compound **S9** was synthesized following the previous method.

Synthesis of compound 1:^[13] Under nitrogen atmosphere, to a solution of S10 (1.0 equiv.) in dichloromethane was added oxalyl chloride (2.0 equiv.) and *N*,*N*-dimethylformamide (a few drops). The mixture was stirred at room temperature for 0.5 h. The mixture was concentrated under reduced pressure. The resulting crude material was dissolved in tetrahydrofuran at 0 °C, then S9 (1.2 equiv.) and triethylamine (5.0 equiv.) were added into the system in the same temperature. The mixture was stirred at room temperature for 6 h. The mixture was quenched by aqueous dilute solution of hydrochloric acid, the aqueous phase was extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound **1ae-1ag**.

4-(2-((4-Methylphenyl)sulfonamido)phenyl)but-3-yn-1-yl 4-(N,N-dipropylsulfamoyl)benzoa

te (1ae): the reaction was conducted at 2.0 mmol scale from S10, 174.2 mg, 15% yield, unknown compound, white solid, $R_f = 0.25$ (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) δ 8.28–8.17 (m, 2H), 7.96–7.84 (m, 2H), 7.69–7.61 (m, 2H), 7.57–7.48 (m, 1H), 7.29–7.23 (m, 3H), 7.22–7.18 (m, 2H), 7.03–6.93 (m, 1H), 4.53 (t, *J* = 6.5 Hz, 2H), 3.15–3.04 (m, 4H), 2.92 (t, *J* = 6.5 Hz, 2H), 2.36 (s, 3H),

1.63–1.47 (m, 4H), 0.86 (t, J = 7.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 144.8, 144.3, 138.1, 136.4, 133.2, 132.4, 130.6, 129.8, 129.6, 127.4, 127.4, 124.4, 119.6, 114.1, 92.8, 77.4, 63.3, 50.2, 22.2, 21.8, 20.5, 11.4. HRMS (ESI-QEplus) m/z: [M+Na]⁺ Calcd for C₃₀H₃₄N₂NaO₆S₂

4-(2-((4-Methylphenyl)sulfonamido)phenyl)but-3-yn-1-yl 2-(6-methoxynaphthalen-2-yl)pro-

panoate (1af): the reaction was conducted at 1.5 mmol scale from **S10**, 348.2 mg, 44% yield, unknown compound, colorless oil, $R_f = 0.25$ (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.65 (m, 2H), 7.65–7.60 (m, 3H), 7.56–7.49 (m,

1H), 7.45–7.37 (m, 1H), 7.24–7.19 (m, 1H), 7.19–7.14 (m, 3H), 7.12–7.03 (m, 3H), 6.96–6.87 (m, 1H), 4.24 (t, J = 6.5 Hz, 2H), 3.96 (q, J = 7.1 Hz, 1H), 3.90 (s, 3H), 2.67 (t, J = 6.5 Hz, 2H), 2.32 (s, 3H), 1.60 (d, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 157.8, 144.1, 138.0, 136.5, 135.6, 133.9, 132.2, 129.8, 129.5, 129.4, 129.1, 127.5, 127.4, 126.4, 126.2, 124.4, 119.9, 119.2, 114.5, 105.8, 93.0, 77.1, 62.4, 55.5, 45.5, 21.7, 20.3, 18.8. HRMS (ESI-QEplus) m/z: [M+Na]⁺ Calcd for C₃₁H₂₉NNaO₅S 550.1659; found 550.1653.

4-(2-((4-Methylphenyl)sulfonamido)phenyl)but-3-yn-1-yl 2-(4-isobutylphenyl)propanoate (1

ag): the reaction was conducted at 2.0 mmol scale from S10, 886.4 mg, 88% yield, unknown compound, brown solid, $R_f = 0.25$ (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.2 Hz, 2H), 7.55 (d, J = 8.2 Hz, 1H), 7.26–7.17 (m, 7H), 7.05–7.03 (m, 2H),

7.00–6.96 (m, 1H), 4.27–4.18 (m, 2H), 3.80 (q, J = 7.0 Hz, 1H), 2.68 (t, J = 6.6 Hz, 2H), 2.40 (d, J = 7.2 Hz, 2H), 2.35 (s, 3H), 1.85–1.75 (m, 1H), 1.51 (d, J = 7.1 Hz, 3H), 0.87 (d, J = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 175.0, 144.2, 140.8, 138.0, 137.7, 136.5, 132.3, 129.8, 129.6, 129.4, 127.5, 127.4, 124.4, 120.0, 114.6, 93.0, 77.1, 62.3, 45.3, 45.2, 30.3, 22.6, 21.7, 20.3, 18.8. HRMS (ESI-QEplus) m/z: [M+Na]⁺ Calcd for C₃₀H₃₃NNaO₄S 526.2023; found 526.2019.

The ortho-alkynylanilines 1ah were synthesized according to the reported procedures.

Synthesis of compound S11:^[14] Under nitrogen atmosphere, to a solution of **lithocholic acid** (3.0 mmol, 1.0 equiv.) in tetrahydrofuran (30.0 mL) was added sodium hydride (18.0 mmol, 6.0 equiv.) at 0 °C. The mixture was stirred in the same temperature for 10 min. Then methyl iodide (30 mmol, 10.0 equiv.) was added slowly into the system in the same temperature. The mixture

was stirred at 41 °C for 24 h. The reaction was quenched by saturated ammonium chloride aqueous solution, the aqueous phase was extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound **S11**.

Synthesis of compound 1:^[15] Under nitrogen atmosphere, the reaction tube was charged with **S11** (2.0 mmol, 1.0 equiv.), *p*-toluenesulfonic acid (0.2 mmol, 0.1 equiv.) and **S9** (2.4 mmol, 1.2 equiv.) in toluene (10.0 mL) at room temperature. The mixture was stirred at 60 °C. After completion of the reaction (monitored by TLC), the reaction was quenched by saturated sodium chloride aqueous solution, the aqueous phase was extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound **1ah**.

3-methoxy-5,10,13-trimethylhexadecahydro-1*H*-cyclopenta[*a*]phenanthren-17-

yl)pentanoate (1ah): the reaction was conducted at 2.0 mmol scale from S11, 762.6 mg, 55% yield, unknown compound, white solid, $R_f = 0.25$ (petroleum ether/ethyl acetate

4/1); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 8.5 Hz, 1H), 7.25–7.20 (m, 5H), 7.00–6.97 (m, 1H), 4.24 (t, J = 6.5 Hz, 2H), 3.35 (s, 3H), 3.21–3.10 (m, 1H), 2.74 (t, J = 6.5 Hz, 2H), 2.48–2.40 (m, 1H), 2.37 (s, 3H), 2.34–2.27 (m, 1H), 1.92 (d, J = 12.3 Hz, 1H), 1.86–1.71 (m, 5H), 1.68 (d, J = 12.3 Hz, 1H), 1.55–1.47 (m, 1H), 1.42–1.32 (m, 7H), 1.27–1.16 (m, 5H), 1.14–0.95 (m, 6H), 0.94–0.87 (m, 6H), 0.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 144.2, 138.1, 136.5, 132.2, 129.8, 129.5, 127.5, 124.4, 119.9, 114.5, 93.3, 80.6, 77.4, 62.0, 56.6, 56.1, 55.8, 42.9, 42.3, 40.5, 40.3, 36.0, 35.6, 35.5, 35.1, 33.0, 31.4, 31.2, 28.4, 27.5, 27.0, 26.6, 24.4, 23.6, 21.8, 21.0, 20.4, 18.5, 12.2. HRMS (ESI-QEplus) *m*/*z*: [M+Na]⁺ Calcd for C₄₂H₅₇NNaO₅S 710.3850; found 710.3838.

3. General procedure for the synthesis of ortho-alkynylphenols

The *ortho*-alkynylanilines **5a-5m** were synthesized according to the reported procedures. **5a**^[16], **5b**^[17], **5c-5d**^[16], **5e**^[18], **5j-5l**^[7] were known compounds and all data were in agreement with the reported literatures.

Synthesis of compound S13:^[11] The mixture of **S12** (1.0 equiv.) and, triethylamine (1.2 equiv.) in dry dichloromethane was stirred at 0 °C. Then acetyl chloride (1.2 equiv.) was added dropwise, the mixture was stirred at room temperature. After completion of the reaction (monitored by TLC), the reaction was quenched by aqueous saturated solution of sodium chloride. Then the aqueous phase was extracted with dichloromethane. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound **S13**.

Synthesis of compound S14:^[5] Under nitrogen atmosphere, to a solution of S13 (1.0 equiv.) in tetrahydrofuran was added Pd(PPh₃)₂Cl₂ (2 mol%), CuI (4 mol%), triethylamine (1.2 equiv.) and the alkyne compounds (1.2 equiv.). The mixture was stirred at room temperature. After completion of the reaction (monitored by TLC), the reaction was quenched by aqueous saturated solution of sodium chloride. Then the aqueous phase was extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound S14.

Synthesis of compound 5:^[5] The mixture of **S14** (1.0 equiv.) and potassium carbonate (2.0 equiv.) in was methanol stirred at room temperature. After completion of the reaction (monitored by TLC), the reaction was quenched by water. Then the aqueous phase was extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether) to afford the desired compound **5a-5m**.

5-Chloro-2-(phenylethynyl)phenol (5f): the reaction was conducted at 5.0 mmol scale from S12, 457.4 mg, 40% yield, unknown compound, yellow solid, $R_f = 0.8$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.85–7.15 (m, 6H), 7.11– 6.67 (m, 2H), 5.88 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 136.0, 132.6, 131.8, 129.2, 128.7, 122.3, 121.0, 115.7, 108.7, 97.1, 82.6. HRMS (ESI-QEplus) *m/z*: [M-H]⁻ Calcd for C₁₄H₈ClO 227.0269; found 227.0270.

5-Fluoro-2-(phenylethynyl)phenol (5g): the reaction was conducted at 5.0 mmol scale from **S12**, 350.9 mg, 33% yield, unknown compound, yellow solid, $R_f = 0.8$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.48 (m, 2H), 7.43– 7.33 (m, 4H), 6.78–6.68 (m, 1H), 6.68–6.59 (m, 1H), 5.97 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.1 (d, $J_{C-F} = 247.8$ Hz), 158.2 (d, $J_{C-F} = 13.0$ Hz), 133.0 (d, $J_{C-F} = 10.1$ Hz), 131.8, 129.2, 128.8, 122.4, 108.3 (d, $J_{C-F} = 22.6$ Hz), 106.1 (d, $J_{C-F} = 3.0$ Hz), 102.9 (d, $J_{C-F} = 25.4$ Hz), 96.4, 82.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -107.63. HRMS (ESI-QEplus) m/z: [M-H]⁻ Calcd for C₁₄H₈FO 211.0565; found 211.0564.

5-Methyl-2-(phenylethynyl)phenol (5h): the reaction was conducted at 5.0 mmol scale from S12,

386.3 mg, 37% yield, unknown compound, white solid, $R_f = 0.8$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.66–7.45 (m, 2H), 7.42–7.23 (m, 4H), 6.90–6.64 (m, 2H), 5.79 (s, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.6, 141.4, 131.7, 131.6, 128.9, 128.7, 122.8,

121.7, 115.5, 106.8, 96.0, 83.5, 21.9. HRMS (ESI-QEplus) m/z: [M-H]⁻ Calcd for C₁₅H₁₁O 207.0815; found 207.0815.

2-Methyl-6-(phenylethynyl)phenol (5i): the reaction was conducted at 5.0 mmol scale from **S12**, unknown compound, 300.2 mg, 29% yield, white solid, $R_f = 0.8$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.49 (m, 2H), 7.44–7.33 (m, 3H), 7.30–7.23 (m, 1H), 7.16–7.09 (m, 1H), 6.86–6.77 (m, 1H), 5.92 (s, 1H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 132.0, 131.8, 129.3, 129.0, 128.7, 124.2, 122.7, 120.2, 109.1, 96.3, 83.6, 16.2. HRMS (ESI-QEplus) *m/z*: [M-H]⁻ Calcd for C₁₅H₁₁O 207.0815; found 207.0815.

2-((2-Fluorophenyl)ethynyl)phenol (5j): the reaction was conducted at 5.0 mmol scale from S12,

477.5 mg, 45% yield, unknown compound, yellow solid, $R_f = 0.8$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.48 (m, 1H), 7.47–7.40 (m, 1H), 7.39–7.23 (m, 2H), 7.21–7.07 (m, 2H), 7.05–6.96 (m, 1H), 6.95–6.84 (m, 1H), 5.96 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.7 (d, $J_{C-F} = 249.8$ Hz), 156.9, 133.1, 131.6, 131.1, 130.7 (d, $J_{C-F} = 8.0$ Hz), 124.4 (d, $J_{C-F} = 3.6$ Hz), 120.6,

115.8 (d, $J_{C-F} = 20.9$ Hz), 115.1, 111.4 (d, $J_{C-F} = 15.3$ Hz), 109.4, 89.9, 88.7 (d, $J_{C-F} = 3.6$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -109.84. HRMS (ESI-QEplus) m/z: [M-H]⁻ Calcd for C₁₄H₈FO 211.0565; found 211.0565.

The *ortho*-alkynylanilines **5n**, **5o** were synthesized according to the reported procedures. **5o**^[12] was known compound and all data were in agreement with reported literature.

Synthesis of compound 5:^[12] Under nitrogen atmosphere, to a solution of S13 (1.0 equiv.) in triethylamine was added Pd(PPh₃)₂Cl₂ (2 mol%), CuI (4 mol%) and the alkyne compound (1.2 equiv.). The mixture was stirred at room temperature. After completion of the reaction (monitored by TLC), the reaction was quenched by aqueous saturated solution of sodium chloride. Then the aqueous phase was extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether) to afford the desired compound **5n** and **50**.

2-(3-((Tert-butyldimethylsilyl)oxy)prop-1-yn-1-yl)phenol (5n): the reaction was conducted at

3.0 mmol scale from **S12**, 140.0 mg, 18% yield, unknown compound, yellow solid, $R_f = 0.8$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.30 (m, 1H), 7.27–7.21 (m, 1H), 6.96–6.92 (m, 1H), 6.89–6.83 (m, 1H), 5.81 (s, 1H), 4.59 (s, 2H), 0.94 (s, 9H), 0.17 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ

157.0, 132.0, 130.7, 120.5, 114.9, 109.3, 95.4, 79.2, 52.4, 26.0, 18.5, -4.9. HRMS (ESI-QEplus) *m/z*: [M-H]⁻ Calcd for C₁₅H₂₁O₂Si 261.1316; found 261.1313.

4. General procedure for the synthesis of substrate alkynl-imines

The *ortho*-alkynylanilines 7a-7g were synthesized according to the reported procedures. $7a-7d^{[19]}$ were known compounds and all data were in agreement with the reported literature.

Synthesis of compound S16:^[19] Under nitrogen atmosphere, to a solution of **S15** (1.0 equiv.), Pd(PPh₃)₂Cl₂ (2 mol%), and CuI (1 mol%) in triethylamine, the appropriate acetylene (1.5 equiv.) was added at room temperature. The mixture was stirred overnight in 70 °C oil bath. After completion of the reaction (monitored by TLC), the reaction was cooled to room temperature and quenched by water. The aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound **S16**.

Synthesis of compound 7:^[19] To a suspension of *tert*-butylamine (2.0 equiv.) and 4Å MS in dichloromethane, compound S16 (1.0 equiv.) was added at room temperature. The mixture was stirred overnight, then the mixture was filtered and the filtrate was concentrated to give 7a-7g, which were used for the next step without purification.

N-tert-butyl-1-(2-((2-fluorophenyl)ethynyl)phenyl)methanimine (7e): the reaction was conducted at 3.0 mmol scale from S15, 536.4 mg, 64% yield, unknown compound, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 8.12–8.06 (m, 1H), 7.60–7.55 (m, 1H), 7.54–7.50 (m, 1H), 7.40–7.36 (m, 2H), 7.35–7.30 (m, 1H), 7.18–7.09 (m, 2H), 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 162.9 (d, $J_{C-F} = 250.4$ Hz), 154.5, 138.2, 133.4, 132.4, 130.4 (d, $J_{C-F} = 7.9$ Hz),

129.9, 129.2, 126.2, 124.3 (d, $J_{C-F} = 3.5$ Hz), 123.7, 115.8 (d, $J_{C-F} = 20.4$ Hz), 112.0 (d, $J_{C-F} = 15.3$ Hz), 92.1 (d, $J_{C-F} = 2.8$ Hz), 88.3, 58.1, 30.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -109.53. HRMS (ESI-QEplus) *m*/*z*: [M+H]⁺ Calcd for C₁₉H₁₉FN 280.1496; found 280.1490.

N-tert-butyl-1-(2-(hept-1-yn-1-yl)phenyl)methanimine (7f): the reaction was conducted at 3.0 mmol scale from S15, 459.7 mg, 60% yield, unknown compound, brown oil; ^{C₅H₁₁ ^IH NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.05–7.97 (m, 1H), 7.42–7.37 (m, 1H), 7.33–7.26 (m, 2H), 2.52–2.44 (m, 2H), 1.68–1.59 (m, 2H), 1.51–1.43 (m, 2H), 1.42–1.34 (m, 2H), 1.31 (s, 9H), 0.92 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100}

MHz, CDCl₃) δ 154.8, 137.9, 132.5, 129.8, 128.0, 126.0, 125.0, 96.4, 78.1, 57.8, 31.4, 30.0, 28.7, 22.5, 19.8, 14.2. HRMS (ESI-QEplus) *m/z*: [M+H]⁺ Calcd for C₁₈H₂₆N 256.2060; found 256.2054.

N-tert-butyl-1-(2-(4-((*tert*-butyldimethylsilyl)oxy)but-1-yn-1-yl)phenyl)methanimine (7g): the OTBS reaction was conducted at 3.0 mmol scale from S15, 927.7 mg, 90% yield, unknown compound, brown oil; ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.04–7.97 (m, 1H), 7.43–7.37 (m, 1H), 7.33–7.27 (m, 2H), 3.85 (t, J = 7.2 Hz, 2H), 2.69 (t, J = 7.2 Hz, 2H), 1.31 (s, 9H), 0.91 (s, 9H), 0.09 (s,

6H). ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 138.0, 132.5, 129.8, 128.3, 126.0, 124.6, 92.9, 79.2, 62.3, 57.9, 30.0, 26.1, 24.2, 18.6, -5.1. HRMS (ESI-QEplus) *m/z*: [M+H]⁺ Calcd for C₂₁H₃₄NOSi 344.2404; found 344.2397.

5. Optimization of the Conditions for synthesis of 3-methyl-1-tosyl-1H-indole

Ph		Pd(OAc) ₂ /Xantphos, base	Ph	
NH t-	+ MeB(OH) ₂ —	O ₂ , 4Å MS, THF, 50 °C	+ N Ts	
1s 1a	2a	3a	4a	
Entry	Base	3a Yield (%)	3a:4a	
1	DMAP	0	0:1	
2	NaOEt	29	1:0.17	
3	NaOMe	60	1:0.45	
4	KOMe	32	1:0.09	
5	KO'Bu	36	1:0.06	
6	NaO ₂ CH	70	1:0.42	
7	KOAc	60	1:0.66	
8	CsOAc	56	1:0.71	
9	K ₂ CO ₃	81	1:0.05	
10	K ₃ PO ₄	84	1:0.12	

Table S1: Base screening

^{*a*}**1a** (0.1 mmol), **2a** (0.3 mmol), $Pd(OAc)_2$ (10 mol%), Xantphos (11 mol%), base (1.5 equiv.), THF (2.0 mL), 4Å MS (100.0 mg), O₂ balloon, 50 °C, 10 h. Yields of **3a** and ratios of **3a**:**4a** were determined by ¹H NMR (1,3,5-trimethoxybenzene as internal standard).

Table S2: Solvent screening

Ph NH Ts	+ MeB(OH) ₂ - Pd(OAc) ₂ /Xar O ₂ , 4Å MS, s	$\xrightarrow{\text{htphos, K}_3PO_4}$	N Ts
1a	2a	3a	4a
Entry	Solvent	3a Yield (%)	3a:4a
1	THF	84	1:0.12
2	DCM	<5	N.D.
3	Ethyl ether	<5	N.D.
4	EA	69	1:0.13
5	MeOH	<5	N.D.
6	TFE	33	N.D.
7	NMP	<5	N.D.
8	DMSO	<5	N.D.
9	DMF	15	>20:1
10	PhMe	18	1:4.60
11	Benzene	24	1:2.60
12	Benzotrifluoride	39	1:0.89
13	1,4-dioxane	78	1:0.27

^{*a*}**1a** (0.1 mmol), **2a** (0.3 mmol), Pd(OAc)₂ (10 mol%), Xantphos (11 mol%), K₃PO₄ (1.5 equiv.), solvent (2.0 mL), 4Å MS (100.0 mg), O₂ balloon, 50 °C, 10 h. Yields of **3a** and ratios of **3a**:**4a** were determined by ¹H NMR (1,3,5-trimethoxybenzene as internal standard).

Table S3: Metal precursor screening

Ph	+ MeB(OH)a -	Cat. Pd/Xantphos, K ₃ PO ₄	Me	+ - Ph
NH		O ₂ , 4Å MS, THF, 50 °C	N Ts	Ts
1a	2a		3a	4a
Entry	Cat.	Pd	3a Yield (%)	3a:4a
1	Pd(O	$(Ac)_2$	84	1:0.12
2^b	Pde	Cl_2	33	1:0.03
3	Pdl	Br ₂	<5	N.D.
4	Pd(PPl	$n_3)_2Cl_2$	8	N.D.
5	Pd(T	FA) ₂	97	1:0.03

^{*a*}**1a** (0.1 mmol), **2a** (0.3 mmol), cat. Pd (10 mol%), Xantphos (11 mol%), K₃PO₄ (1.5 equiv.), THF (2.0 mL), 4Å MS (100.0 mg), O₂ balloon, 50 °C, 10 h. Yields of **3a** and ratios of **3a**:**4a** were determined by ¹H NMR (1,3,5-trimethoxybenzene as internal standard). ^{*b*}2.0 mg 2,2'-diphenyl-1,1'-ditosyl-1H,1'*H*- 3,3'-biindole was isolated, 6% yield, known compound^[36]; ¹H NMR (400 MHz, CDCl₃) δ 8.37–8.27 (m, 2H), 7.36–7.30 (m, 2H), 7.22–7.13 (m, 6H), 7.12–6.94 (m, 10H), 6.72 (s, 4H), 6.62–6.57 (m, 2H), 2.35 (s, 6H).¹³C NMR (100 MHz, CDCl₃) δ 144.7, 139.7, 137.9, 134.6, 132.0, 130.8, 129.3, 128.3, 127.2, 127.0, 125.4, 124.6, 119.8, 117.2, 117.2, 21.8.

Table S4: Ligand screening

^{*a*}**1a** (0.1 mmol), **2a** (0.3 mmol), Pd(TFA)₂ (10 mol%), ligand (11 mol%), K₃PO₄ (1.5 equiv.), THF (2.0 mL), 4Å MS (100.0 mg), O₂ balloon, 50 °C, 10 h. Yields of **3a** and ratios of **3a**:**4a** were determined by ¹H NMR (1,3,5-trimethoxybenzene as internal standard).

	Ph NH Ts	+ 2 Pd(TFA) ₂ /Xantphos, K ₃ PO ₄ O ₂ , 4Å MS, THF, 50 °C	N N	Me Ph +	Ph N Ts
1	a		3a		4a
Entry	PG	MeB(OR) ₂	T(°C)	3a Yield (%)	3a:4a
1	Ts	$MeB(OH)_2$ (3.0 eq)	50	95	1:0.03
2	Boc	$MeB(OH)_2$ (3.0 eq)	50	-	-
3	Ac	$MeB(OH)_2$ (3.0 eq)	50	-	-
4	Ts	MeB(OH) ₂ (1.2 eq)	50	27	1:0.30
5	Ts	MeB(OH) ₂ (2.0 eq)	50	59	1:0.10
6	Ts	Trimethylboroxine (3.0 eq)	50	60	1:0.04
7	Ts	MeBF ₃ K (3.0 eq)	50	56	1:0.08
8	Ts	MeB(pin) (3.0 eq)	50	-	-
9 ^c	Ts	MeB(OH) ₂ (3.0 eq)	30	85	1:0.02
10 ^c	Ts	MeB(OH) ₂ (3.0 eq)	60	94	1:0.06
$11^{b,c}$	Ts	MeB(OH) ₂ (3.0 eq)	50	95	1:0.05

Table S5: The other reaction conditions screening

^{*a*}**1a** (0.1 mmol), **2** (0.3 mmol), Pd(TFA)₂ (10 mol%), Xantphos (11 mol%), K₃PO₄ (1.5 equiv.), THF (2.0 mL), 4Å MS (100.0 mg), O₂ balloon, 50 °C, 10 h. Yields of **3a** and ratios of **3a**:**4a** were determined by ¹H NMR (1,3,5-trimethoxybenzene as internal standard). ^{*b*}5 mol% cat Pd, 5.5 mol% ligand. ^{*c*}Isolated yields.

6. General procedure for synthesis of 3-methylindoles

In the glovebox, a Schlenk tube was charged with 1 (1.0 equiv.), 2a (3.0 equiv.), Pd(TFA)₂ (5 mol%), Xantphos (5.5 mol%), potassium phosphate (1.5 equiv.), 4Å MS and tetrahydrofuran. Then the Schlenk tube was removed from glovebox and the nitrogen atmosphere was replaced with the oxygen using an oxygen balloon. The mixture was stirred in 50 °C oil bath. After completion of the reaction (monitored by TLC), the resulting mixture was concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compounds **3**.

3-Methyl-2-phenyl-1-tosyl-1H-indole (3a): the reaction was conducted at 0.1 mmol scale, 34.3 mg, 95% yield, known compound^[20], white solid, $R_f = 0.3$ (petroleum ether/ethyl Me acetate 50/1); ¹H NMR (400 MHz, CDCl₃) & 8.40-8.26 (m, 1H), 7.53-7.40 (m, 4H), 7.39-7.25 (m, 6H), 7.12-6.96 (m, 2H), 2.29 (s, 3H), 2.03 (s, 3H). ¹³C NMR Ts (100 MHz, CDCl₃) & 144.5, 137.4, 136.9, 135.3, 132.0, 131.8, 131.6, 129.4, 128.6,

127.6, 127.0, 125.2, 124.1, 120.0, 119.2, 116.4, 21.7, 9.7.

3,5-Dimethyl-2-phenyl-1-tosyl-1H-indole (3b): the reaction was conducted at 0.1 mmol scale, 36.0 mg, 96% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) & 8.22-8.14 (m, 1H), 7.47-7.38 (m, 3H), 7.38-7.31 (m, 2H), 7.30-7.25 (m, 2H), 7.22-7.15 (m, 2H), 7.08-6.99 (m, 2H), 2.44 (s, 3H), 2.28 (s, 3H), 2.01 (s, 3H). ¹³C NMR (100

MHz, CDCl₃) δ 144.4, 137.0, 135.6, 135.2, 133.8, 132.3, 131.9, 131.5, 129.4, 128.5, 127.6, 127.0, 126.5, 120.0, 119.2, 116.2, 21.7, 21.6, 9.7. HRMS (ESI-QEplus) m/z: [M+Na]⁺ Calcd for C₂₃H₂₁NNaO₂S 398.1185; found 398.1184.

5-Methoxy-3-methyl-2-phenyl-1-tosyl-1H-indole (3c): the reaction was conducted at 0.1 mmol scale, 37.5 mg, 96% yield, unknown compound, white solid, $R_f = 0.3$ Me MeC (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) & 8.24-8.16 (m, 1H), 7.47-7.40 (m, 3H), 7.39-7.31 (m, 2H), 7.29-7.23 (m, 2H), 7.09-7.01 (m, 2H), 7.00-6.93 (m, 1H), 6.88-6.80 (m, 1H), 3.85 (s, 3H), 2.28

(s, 3H), 2.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 144.4, 137.9, 135.0, 133.3, 131.9, 131.8, 131.5, 129.3, 128.6, 127.6, 127.0, 120.2, 117.6, 113.5, 101.9, 55.8, 21.7, 9.8. HRMS (ESI-QEplus) *m/z*: [M+Na]⁺ Calcd for C₂₃H₂₁NNaO₃S 414.1134; found 414.1134.

5-Chloro-3-methyl-2-phenyl-1-tosyl-1H-indole (3d): the reaction was conducted at 0.1 mmol scale, 19.7 mg, 50% yield, unknown compound, white solid, $R_f = 0.3$ Me (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) & 8.29-8.20 CI (m, 1H), 7.48–7.41 (m, 3H), 7.40–7.37 (m, 1H), 7.36–7.29 (m, 3H), 7.28–7.24 (m, 2H), 7.11–7.02 (m, 2H), 2.31 (s, 3H), 2.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 144.9, 137.7, 137.4, 135.2, 131.6, 131.2, 131.0, 130.4, 129.6, 128.8, 127.7, 127.1, 124.6, 119.9, 119.4, 116.5, 21.8, 9.6. HRMS (ESI-QEplus) m/z: [M+Na]⁺ Calcd for C₂₂H₁₈ClNNaO₂S 418.0639; found 418.0633.

5-Fluoro-3-methyl-2-phenyl-1-tosyl-1H-indole (3e): the reaction was conducted at 0.1 mmol scale, 33.1 mg, 87% yield, unknown compound, white solid, $R_f = 0.3$ Me (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) & 8.30-8.23 (m, 1H), 7.48-7.41 (m, 3H), 7.38-7.31 (m, 2H), 7.30-7.23 (m, 2H), 7.13-7.01 (m, 4H), 2.30 (s, 3H), 2.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.3 (d, J_C- $_{\rm F}$ = 239.8 Hz), 144.8, 138.7, 134.9, 133.6, 133.3 (d, $J_{\rm C-F}$ = 9.4 Hz), 131.5, 131.4, 129.5, 128.8, 127.7, 127.0, 119.8 (d, $J_{C-F} = 4.0$ Hz), 117.7 (d, $J_{C-F} = 9.2$ Hz), 112.8 (d, $J_{C-F} = 25.1$ Hz), 104.9 (d, $J_{C-F} = 23.7$ Hz), 21.8, 9.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.79. HRMS (ESI-QEplus) m/z: 3,6-Dimethyl-2-phenyl-1-tosyl-1H-indole (3f): the reaction was conducted at 0.1 mmol scale, 34.5 mg, 92% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum Me ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.47-7.38 (m, 3H), 7.36-7.31 (m, 2H), 7.30-7.26 (m, 3H), 7.15-7.11 (m, 1H), Me Ts 7.09-7.02 (m, 2H), 2.54 (s, 3H), 2.30 (s, 3H), 2.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 137.8, 136.2, 135.4, 135.2, 131.9, 131.6, 129.8, 129.4, 128.4, 127.6, 127.0,

125.5, 120.0, 118.8, 116.6, 22.3, 21.7, 9.7. HRMS (ESI-QEplus) m/z: [M+Na]⁺ Calcd for C₂₃H₂₁NNaO₂S 398.1185; found 398.1184.

6-Chloro-3-methyl-2-phenyl-1-tosyl-1H-indole (3g): the reaction was conducted at 0.1 mmol scale, 19.3 mg, 49% yield, unknown compound, white solid, $R_f = 0.3$ Me (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.48–7.39 (m, 3H), 7.36–7.24 (m, 6H), 7.14–7.03 (m, 2H), 2.32 (s, 3H), Ts 2.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 137.7, 137.4, 135.2, 131.6,

131.2, 131.0, 130.4, 129.6, 128.8, 127.7, 127.1, 124.6, 119.9, 119.4, 116.5, 21.8, 9.6. HRMS (ESI-QEplus) *m/z*: [M+Na]⁺ Calcd for C₂₂H₁₈ClNNaO₂S 418.0639; found 418.0642.

7-Fluoro-3-methyl-2-phenyl-1-tosyl-1H-indole (3h): the reaction was conducted at 0.1 mmol scale, 32.2 mg, 85% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum Me ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.42 (m, 5H), 7.41-7.36 (m, 2H), 7.25-7.17 (m, 2H), 7.16-7.10 (m, 2H), 7.09-7.02 (m, 1H), 2.34 (s, 3H), 2.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.5 (d, J_{C-F} = 251.6 Hz), 144.6, 139.8, 136.7 (d, J_{C-F} = 2.9 Hz), 135.4, 132.2, 130.7, 129.4, 128.5, 127.9, 127.5 (d, J_{C-F}

= 1.5 Hz), 125.4 (d, J_{C-F} = 7.2 Hz), 120.3 (d, J_{C-F} = 1.8 Hz), 115.2 (d, J_{C-F} = 3.6 Hz), 112.7 (d, J_{C-F} = 21.7 Hz), 21.8, 10.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.45. HRMS (ESI-QEplus) m/z: [M+Na]⁺ Calcd for C₂₂H₁₈FNNaO₂S 402.0934; found 402.0931.

5-Chloro-7-fluoro-3-methyl-2-phenyl-1-tosyl-1H-indole (3i): the reaction was conducted at 0.1 mmol scale, 29.0 mg, 70% yield, unknown compound, white solid, $R_f = 0.3$ Me (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.42 (m, 4H), 7.41 (s, 1H), 7.39–7.34 (m, 2H), 7.20–7.17 (m, 1H), 7.16–7.12 Τs (m, 2H), 7.10–7.05 (m, 1H), 2.36 (s, 3H), 2.04 (s, 3H). ¹³C NMR (100 MHz,

CDCl₃) δ 150.9 (d, J_{C-F} = 256.3 Hz), 144.9, 141.3, 137.2 (d, J_{C-F} = 3.8 Hz), 135.2, 131.7, 130.7, 130.2 (d, $J_{C-F} = 9.1$ Hz), 129.5, 128.8, 128.0, 127.5 (d, $J_{C-F} = 0.8$ Hz), 123.9 (d, $J_{C-F} = 9.5$ Hz), 119.6 (d, $J_{C-F} = 2.0$ Hz), 115.2 (d, $J_{C-F} = 3.9$ Hz), 113.3 (d, $J_{C-F} = 25.3$ Hz), 21.8, 9.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.73. HRMS (ESI-QEplus) m/z: [M+Na]⁺ Calcd for C₂₂H₁₇ClFNNaO₂S 436.0545; found 436.0552.

4,6-Difluoro-3-methyl-2-phenyl-1-tosyl-1*H*-indole (3j): the reaction was conducted at 0.1 mmol

CI

scale, 36.4 mg, 92% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) & 7.49-7.42 (m, 3H), 7.41 (s, 1H), 7.40-7.34 (m, 3H), 7.17-7.09 (m, 2H), 6.91-6.79 (m, 2H), 2.35 (s, 3H), 2.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.0 (dd, J_{C-F} = 242.8, 10.2 Hz), 151.2 (dd, J_{C-F} = 255.2, 13.1 Hz), 144.9, 141.6, 137.0 (dd, J_{C-F})

= 10.7, 4.4 Hz), 134.9, 131.8, 130.7, 129.5, 128.8, 128.0, 127.5 (d, $J_{C-F} = 0.3$ Hz), 121.9 (dd, $J_{C-F} = 0.3$ Hz), 121.9 (dd, J_{C-F} = 0.3 Hz), 121.9 (dd, J_ = 9.4, 2.3 Hz), 120.4 (dd, J_{C-F} = 3.8, 2.4 Hz), 101.9, 101.6, 101.6, 101.4, 101.4, 101.4, 101.2,

101.2, 21.8, 9.9. ¹⁹F NMR (376 MHz, CDCl₃) δ = -112.06 (d, *J* = 6.5 Hz), -115.05 (d, *J* = 6.0 Hz). HRMS (ESI-QEplus) *m/z*: [M+Na]⁺ Calcd for C₂₂H₁₇F₂NNaO₂S 420.0840; found 420.0834.

2-(4-Methoxyphenyl)-3-methyl-1-tosyl-1*H*-indole (3l): the reaction was conducted at 0.1 mmol

scale, 31.3 mg, 80% yield, known compound^[34], white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) δ 8.35–8.27 (m, 1H), 7.43–7.34 (m, 2H), 7.32–7.23 (m, 5H), 7.09–7.01 (m, 2H), 7.00–6.92 (m, 2H), 3.89 (s, 3H), 2.29 (s, 3H), 2.02 (s, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ 159.9, 144.5, 137.3, 136.8, 135.4, 132.9, 132.0, 129.4, 127.0, 125.0, 124.1, 123.9, 119.5, 119.1, 116.4, 113.1, 55.5, 21.7, 9.7.

3-Methyl-2-(p-tolyl)-1-tosyl-1H-indole (3m): the reaction was conducted at 0.1 mmol scale, 33.2

mg, 88% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) δ 8.34–8.28 (m, 1H), 7.42–7.33 (m, 2H), 7.32–7.27 (m, 3H), 7.26–7.22 (m, 4H), 7.07–7.00 (m, 2H), 2.44 (s, 3H), 2.28 (s, 3H), 2.03 (s, 3H). ¹³C NMR (100 MHz, 200 M

CDCl₃) δ 144.5, 138.4, 137.3, 137.0, 135.2, 132.1, 131.4, 129.4, 128.8, 128.4, 127.0, 125.0, 124.1, 119.8, 119.1, 116.4, 21.7, 21.7, 9.7. HRMS (ESI-QEplus) *m/z*: [M+Na]⁺ Calcd for C₂₃H₂₁NNaO₂S 398.1185; found 398.1184.

2-(4-(*Tert*-butyl)phenyl)-3-methyl-1-tosyl-1*H*-indole (3n): the reaction was conducted at 0.1 Me N_{Ts} N_{Ts} Me N_{Ts} Me N

NMR (100 MHz, CDCl₃) δ 151.4, 144.4, 137.4, 137.1, 135.3, 132.1, 131.2, 129.3, 128.6, 127.1, 125.0, 124.5, 124.0, 119.7, 119.1, 116.4, 34.9, 31.6, 21.7, 9.8. HRMS (ESI-QEplus) *m/z*: [M+Na]⁺ Calcd for C₂₆H₂₇NNaO₂S 440.1655; found 440.1652.

2-(4-Fluorophenyl)-3-methyl-1-tosyl-1*H*-indole (30): the reaction was conducted at 0.1 mmol scale, 28.4 mg, 75% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) δ 8.36– 8.27 (m, 1H), 7.45–7.36 (m, 2H), 7.34–7.24 (m, 5H), 7.17–7.09 (m, 2H), 7.08–7.02 (m, 2H), 2.30 (s, 3H), 2.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃)

δ 163.0 (d, J_{C-F} = 246.8 Hz), 144.7, 137.4, 135.7, 135.3, 133.3 (d, J_{C-F} = 38.1 Hz), 131.8, 129.5, 127.7 (d, J_{C-F} = 3.3 Hz), 126.9, 125.3, 124.2, 120.2, 119.2, 116.4, 114.8 (d, J_{C-F} = 21.6 Hz), 21.7,

9.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.83. HRMS (ESI-QEplus) *m*/*z*: [M+Na]⁺ Calcd for C₂₂H₁₈FNNaO₂S 402.0934; found 402.0935.

2-(4-Chlorophenyl)-3-methyl-1-tosyl-1H-indole (3p): the reaction was conducted at 0.1 mmol

scale, 23.7 mg, 60% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) δ 8.36–8.28 (m, 1H), 7.45–7.36 (m, 4H), 7.34–7.30 (m, 1H), 7.29–7.26 (m, 4H), 7.10–7.01 (m, 2H), 2.30 (s, 3H), 2.03 (s, 3H). ¹³C NMR (100 MHz,

CDCl₃) δ 144.7, 137.5, 135.6, 135.2, 134.7, 132.8, 131.9, 130.2, 129.5, 128.0, 127.0, 125.5, 124.3, 120.5, 119.3, 116.5, 21.8, 9.7. HRMS (ESI-QEplus) *m*/*z*: [M+Na]⁺ Calcd for C₂₂H₁₈ClNNaO₂S 418.0639; found 418.0611.

1-(4-(3-Methyl-1-tosyl-1H-indol-2-yl)phenyl)ethan-1-one (3q): the reaction was conducted at

0.1 mmol scale, 30.1 mg, 75% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 30/1); ¹H NMR (400 MHz, CDCl₃) δ 8.35–8.29 (m, 1H), 8.08–8.02 (m, 2H), 7.53–7.47 (m, 2H), 7.46–7.37 (m, 2H), 7.35–7.27 (m, 3H), 7.09–7.03 (m, 2H), 2.69 (s, 3H),

2.30 (s, 3H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.0, 144.8, 137.7, 136.8, 136.7, 135.7, 134.8, 132.1, 131.6, 129.5, 127.7, 126.9, 125.7, 124.5, 121.5, 119.5, 116.6, 26.9, 21.8, 9.8. HRMS (ESI-QEplus) *m/z*: [M+Na]⁺ Calcd for C₂₄H₂₁NNaO₃S 426.1134; found 426.1131.

3-Methyl-2-(4-nitrophenyl)-1-tosyl-1H-indole (3r): the reaction was conducted at 0.1 mmol

scale, 28.0 mg, 69% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 30/1); ¹H NMR (400 MHz, CDCl₃) δ 8.35–8.29 (m, 3H), 7.62–7.54 (m, 2H), 7.48–7.41 (m, 2H), 7.37–7.31 (m, 1H), 7.30–7.24 (m, 2H), 7.10–7.05 (m, 2H), 2.31 (s, 3H), 2.09 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 147.7, 145.1, 138.7, 137.9, 134.6, 132.1, 131.9, 129.6, 126.9, 126.2, 124.7, 123.1, 122.9, 122.5, 119.7, 116.7, 21.8, 9.8. HRMS (ESI-QEplus) *m/z*: [M-H]⁻ Calcd for C₂₂H₁₇N₂O₄S 405.0915; found 405.0906.

3-Methyl-2-(*m***-tolyl)-1-tosyl-1***H***-indole (3s): the reaction was conducted at 0.1 mmol scale, 31.9 mg, 85% yield, unknown compound, white solid, R_f = 0.3 (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) \delta 8.35–8.27 (m, 1H), 7.45–7.39 (m, 1H), 7.39–7.22 (m, 6H), 7.17–7.08 (m, 2H), 7.08–7.01 (m, 2H), 2.40 (s, 3H), 2.29 (s, 3H), 2.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) \delta 144.5, 137.4, 137.1, 137.0, 135.4, 132.3, 132.0, 131.6, 129.4, 128.6, 127.5, 127.1, 125.1, 124.0,**

144.5, 137.4, 137.1, 137.0, 135.4, 132.3, 132.0, 131.6, 129.4, 128.6, 127.5, 127.1, 125.1, 124.0, 119.7, 119.2, 116.4, 21.7, 21.7, 9.7. HRMS (ESI-QEplus) m/z: [M+Na]⁺ Calcd for C₂₃H₂₁NNaO₂S 398.1185; found 398.1183.

2-(3-Chlorophenyl)-3-methyl-1-tosyl-1*H*-indole (3t): the reaction was conducted at 0.1 mmol scale, 32.7 mg, 83% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) δ 8.35–8.27 (m, 1H), 7.45–7.35 (m, 4H), 7.34–7.24 (m, 4H), 7.23–7.20 (m, 1H), 7.10–7.04 (m, 2H), 2.31 (s, 3H), 2.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃)

 $\delta \ 144.8, \ 137.5, \ 135.2, \ 133.5, \ 131.7, \ 131.3, \ 129.9, \ 129.5, \ 128.9, \ 128.7, \ 127.0, \ 125.5, \ 124.2, \ 120.6, \ 126.7, \ 126.7, \ 127.0, \ 125.5, \ 124.2, \ 120.6, \ 126.7,$

119.4, 116.4, 21.8, 9.6. HRMS (ESI-QEplus) *m*/*z*: [M+Na]⁺ Calcd for C₂₂H₁₈ClNNaO₂S 418.0639; found 418.0641.

2-(2-Fluorophenyl)-3-methyl-1-tosyl-1H-indole (3v): the reaction was conducted at 0.1 mmol

scale, 33.8 mg, 89% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) δ 8.31–8.24 (m, 1H), 7.49–7.42 (m, 2H), 7.40–7.27 (m, 5H), 7.26–7.21 (m, 1H), 7.20–7.14 (m, 1H), 7.10–7.04 (m, 2H), 2.28 (s, 3H), 2.03 (s, 3H). ¹³C NMR

(100 MHz, CDCl₃) δ 160.8 (d, $J_{C-F} = 247.1$ Hz), 144.7, 137.4, 135.3, 133.7 (d, $J_{C-F} = 2.7$ Hz), 131.6, 131.0 (d, $J_{C-F} = 8.5$ Hz), 130.2, 129.5, 127.0, 125.3, 124.0, 123.5 (d, $J_{C-F} = 3.6$ Hz), 121.4, 119.9 (d, $J_{C-F} = 15.1$ Hz), 119.3, 116.0, 115.7 (d, $J_{C-F} = 21.7$ Hz), 21.7, 9.6 (d, $J_{C-F} = 0.9$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.42. HRMS (ESI-QEplus) m/z: [M+Na]⁺ Calcd for C₂₂H₁₈FNNaO₂S 402.0934; found 402.0928.

2-(2-(Benzyloxy)ethyl)-3-methyl-1-tosyl-1*H***-indole (3w):** the reaction was conducted at 0.1 mmol scale, 39.9 mg, 95% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) δ 8.21– 8.14 (m, 1H), 7.59–7.52 (m, 2H), 7.41–7.35 (m, 1H), 7.33–7.21 (m, 7H), 7.16–7.09 (m, 2H), 4.52 (s, 2H), 3.79 (t, J = 6.9 Hz, 2H), 3.32 (t, J = 7.0 Hz,

2H), 2.30 (s, 3H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 138.8, 136.9, 136.3, 133.5, 131.6, 129.9, 128.5, 127.7, 127.7, 126.4, 124.5, 123.6, 118.9, 118.7, 115.3, 73.2, 70.1, 27.6, 21.7, 9.3. HRMS (ESI-QEplus) *m/z*: [M+Na]⁺ Calcd for C₂₅H₂₅NNaO₃S 442.1447; found 442.1445.

2-(3-Methyl-1-tosyl-1*H***-indol-2-yl)ethyl acetate (3x):** the reaction was conducted at 0.1 mmol scale, 33.4 mg, 90% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 15/1); ¹H NMR (400 MHz, CDCl₃) δ 8.21–8.13 (m, 1H), 7.61–7.53 (m, 2H), 7.42–7.37 (m, 1H), 7.33–7.23 (m, 2H), 7.19–7.12 (m, 2H), 4.38 (t, J = 6.7 Hz, 2H), 3.34 (t, J = 6.7 Hz, 2H), 2.32 (s,

3H), 2.17 (s, 3H), 2.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 144.8, 136.8, 136.1, 132.4, 131.4, 130.0, 126.4, 124.8, 123.7, 119.4, 118.8, 115.3, 64.0, 26.3, 21.7, 21.2, 9.2. HRMS (ESI-QEplus) *m/z*: [M+Na]⁺ Calcd for C₂₀H₂₁NNaO₄S 394.1083; found 394.1078.

2-(2-((*Tert***-butyldimethylsilyl)oxy)ethyl)-3-methyl-1-tosyl-1***H***-indole (3y): the reaction was conducted at 0.1 mmol scale, 35.1 mg, 79% yield, unknown compound, white solid, R_f = 0.3**

(petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) δ 8.20– 8.14 (m, 1H), 7.59–7.52 (m, 2H), 7.40–7.34 (m, 1H), 7.30–7.20 (m, 2H), 7.17–7.10 (m, 2H), 3.92 (t, *J* = 6.7 Hz, 2H), 3.21 (t, *J* = 6.6 Hz, 2H), 2.31 (s, 3H), 2.17 (s, 3H), 0.85 (s, 9H), -0.03 (s, 6H). ¹³C NMR (100 MHz,

CDCl₃) δ 144.6, 136.8, 136.3, 133.8, 131.7, 129.9, 126.4, 124.4, 123.6, 119.1, 118.6, 115.3, 63.3, 30.5, 26.1, 21.7, 18.5, 9.5, -5.2. HRMS (ESI-QEplus) *m*/*z*: [M+Na]⁺ Calcd for C₂₄H₃₃NNaO₃SSi 466.1843; found 466.1834.

2-(3-Methyl-1-tosyl-1*H***-indol-2-yl)ethyl benzoate (3z):** the reaction was conducted at 0.1 mmol scale, 36.8 mg, 85% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 15/1); ¹H NMR (400 MHz, CDCl₃) δ 8.22–8.16 (m, 1H), 8.03–7.95 (m, 2H), 7.63–7.57 (m, 2H), 7.56–7.50 (m, 1H), 7.45–7.35 (m, 3H), 7.34–7.28 (m, 1H), 7.27–7.22 (m, 1H), 7.19–7.12 (m, 2H) δ 6.16 (m, 1H) δ 6.17 (m, 2H) δ 6.16 (m, 2H) δ 6.16 (m, 2H) δ 6.16 (m, 2H) δ 7.25 (m, 2H) δ 7.25 (m, 2H) δ 7.25 (m, 2H) δ 7.25 (m, 2H) δ 7.27–7.22 (m, 1H) δ 7.27–7.22 (m, 2H) δ 7.25 (m, 2

2H), 4.65 (t, J = 6.6 Hz, 2H), 3.48 (t, J = 6.6 Hz, 2H), 2.31 (s, 3H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 144.8, 136.9, 136.2, 133.1, 132.4, 131.4, 130.4, 130.0, 129.8, 128.5, 126.4, 124.8, 123.7, 119.5, 118.9, 115.3, 64.4, 26.4, 21.7, 9.3. HRMS (ESI-QEplus) *m*/*z*: [M+Na]⁺ Calcd for C₂₅H₂₃NNaO₄S 456.1240; found 456.1234.

4-((3-Methyl-1-tosyl-1H-indol-2-yl)methyl)morpholine (3aa): the reaction was conducted at 0.1

mmol scale, 18.5 mg, 48% yield, unknown compound, white solid, $R_f = 0.3$ (dichloromethane/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) δ 8.16–8.08 (m, 1H), 8.07–7.98 (m, 2H), 7.49–7.40 (m, 1H), 7.35–7.28 (m, 1H), 7.26–7.21 (m, 1H), 7.21–7.12 (m, 2H), 3.88 (s, 2H), 3.53 (br s, 4H), 2.50 (br s, 4H), 2.34 (s, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 137.4,

136.6, 132.2, 130.3, 129.5, 127.3, 125.0, 123.2, 119.2, 119.1, 114.9, 66.9, 53.4, 52.1, 21.7, 9.5. HRMS (ESI-QEplus) *m*/*z*: [M+H]⁺ Calcd for C₂₁H₂₅N₂O₃S 385.1580; found 385.1577.

2-Cyclopropyl-3-methyl-1-tosyl-1H-indole (3ab): the reaction was conducted at 0.1 mmol scale,

27.7 mg, 85% yield, unknown compound, white solid, $R_{\rm f}$ = 0.3 (petroleum ether/ethyl acetate 50/1); $^1\rm H$ NMR (400 MHz, CDCl₃) δ 8.21–8.14 (m, 1H), 7.67–7.59 (m, 2H), 7.39–7.33 (m, 1H), 7.31–7.20 (m, 2H), 7.18–7.12 (m, 2H), 2.33 (s, 3H), 2.21 (s, 3H), 2.06–1.93 (m, 1H), 1.06–0.97 (m, 2H), 0.69–0.61 (m,

2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 137.6, 136.9, 136.9, 131.5, 129.7, 126.6, 124.7, 123.4, 118.6, 118.4, 115.1, 21.7, 10.1, 8.5, 8.2. HRMS (ESI-QEplus) *m*/*z* Calcd for C₁₉H₁₉NNaO₂S [M+Na]⁺ 348.1029, found 348.1027.

 $\begin{array}{c|c} \textbf{2-(Tert-butyl)-3-methyl-1-tosyl-1}\textit{H-indole (3ac):} the reaction was conducted at 0.1 mmol scale, \\ & \texttt{Me} \\ & \texttt{Me} \\ & \texttt{Me} \\ & \texttt{Me} \\ & \texttt{N}_{\mathsf{Ts}} \\ & \texttt{N}_$

132.7, 128.6, 127.0, 124.9, 124.7, 124.6, 118.5, 118.2, 36.1, 32.1, 21.7, 12.9. HRMS (ESI-QEplus) *m/z*: [M+Na]⁺ Calcd for C₂₀H₂₃NNaO₂S 364.1342; found 364.1340.

3-Methyl-1-tosyl-2-(trimethylsilyl)-1*H***-indole (3ad):** the reaction was conducted at 0.1 mmol scale, 35.7 mg, 99% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl

acetate 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.97–7.92 (m, 1H), 7.46–7.41 (m, 2H), 7.38–7.34 (m, 1H), 7.26–7.21 (m, 1H), 7.19–7.13 (m, 1H), 7.08–7.02 (m, 2H), 2.32 (s, 3H), 2.24 (s, 3H), 0.52 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 139.5, 138.1, 135.2, 133.7, 133.4, 129.4, 126.7, 125.5, 123.6, 119.2,

115.6, 21.7, 12.1, 2.7. HRMS (ESI-QEplus) *m*/*z*: [M+Na]⁺ Calcd for C₁₉H₂₃NNaO₂SSi 380.1111; found 380.1108.

2-(3-Methyl-1-tosyl-1*H*-indol-2-yl)ethyl 3-(*N*,*N*-dipropylsulfamoyl)benzoate (3ae): the reaction was conducted at 0.1 mmol scale, 44.1 mg, 74% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 15/1); ¹H NMR (400 MHz, CDCl₃) δ

Ts 8.22–8.16 (m, 1H), 8.14–8.05 (m, 2H), 7.88–7.81 (m, 2H), 7.62–7.54 (m, 2H), 7.39–7.37 (m 1H), 7.35–7.22 (m, 2H), 7.20–7.12 (m, 2H), 4.69 (t, J = 6.5 Hz, 2H), 3.50 (t, J = 6.5 Hz, 2H), 3.15–3.04 (m, 4H), 2.32 (s, 3H), 2.16 (s, 3H), 1.55–1.49 (m, 4H), 0.86 (t, J = 7.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 144.9, 144.4, 136.9, 136.0, 133.7, 132.1, 131.3, 130.4, 130.0, 127.2, 126.4, 124.9, 123.8, 119.6, 118.9, 115.3, 65.1, 50.1, 26.3, 22.1, 21.7, 11.3, 9.3. HRMS (ESI-QEplus) *m/z*: [M+Na]⁺ Calcd for C₃₁H₃₆N₂NaO₆S₂ 619.1907; found 619.1908.

2-(3-Methyl-1-tosyl-1H-indol-2-yl)ethyl 2-(6-methoxynaphthalen-2-yl)propanoate (3af): the

reaction was conducted at 0.1 mmol scale, 29.4 mg, 54% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 15/1); ¹H NMR (400 MHz, CDCl₃) δ 8.17–8.11 (m, 1H), 7.60–7.58 (m, 2H), 7.55–7.53 (m, 1H), 7.52–7.46 (m, 2H), 7.32–7.18 (m, 4H), 7.13–7.03 (m, 4H), 4.40 (t, J = 6.5 Hz, 2H), 3.91 (s, 3H), 3.79 (q, J = 7.1 Hz, 1H), 3.33–

3.21 (m, 2H), 2.27 (s, 3H), 1.94 (s, 3H), 1.53 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.8, 157.8, 144.7, 136.9, 136.1, 135.8, 133.8, 132.3, 131.4, 129.9, 129.5, 129.1, 127.3, 126.4, 126.4, 126.1, 124.7, 123.6, 119.6, 119.1, 118.9, 115.3, 105.8, 64.4, 55.5, 45.7, 26.2, 21.7, 18.7, 9.0. HRMS (ESI-QEplus) m/z: [M+Na]⁺ Calcd for C₃₂H₃₁NNaO₅S 564.1815; found 564.1812.

2-(3-Methyl-1-tosyl-1*H*-indol-2-yl)ethyl 2-(4-isobutylphenyl)propanoate (3ag): the reaction Me was conducted at 0.1 mmol scale, 32.6 mg, 63% yield, unknown compound white solid $\mathbf{R}_{2} = 0.3$ (petroleum

was conducted at 0.1 mmol scale, 32.6 mg, 63% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 15/1); ¹H NMR (400 MHz, CDCl₃) δ 8.18–8.12 (m, 1H), 7.56–7.49 (m, 2H), 7.36–7.27 (m, 2H), 7.25 – 7.21 (m, 1H), 7.16–7.08 (m, 4H), 7.02–6.96 (m, 2H), 4.44–4.32 (m, 2H), 3.63 (q, J = 7.0 Hz, 1H), 3.35–3.22 (m, 2H), 2.41 (d, J

= 7.1 Hz, 2H), 2.30 (s, 3H), 2.02 (s, 3H), 1.88–1.76 (m, 1H), 1.44 (d, J = 7.2 Hz, 3H), 0.88 (d, J = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 144.7, 140.6, 137.9, 136.9, 136.1, 132.4, 131.4, 129.9, 129.5, 127.4, 126.4, 124.7, 123.7, 119.6, 118.9, 115.3, 64.3, 45.3, 45.2, 30.4, 29.9, 26.2, 22.6, 21.7, 18.8, 9.1. HRMS (ESI-QEplus) m/z: [M+Na]⁺ Calcd for C₃₁H₃₅NNaO₄S 540.2179; found 540.2174.

2-(3-Methyl-1-tosyl-1*H*-indol-2-yl)ethyl (*R*)-4-((3*R*,5*R*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-3-methoxy-10,13-dimethylhexadecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl)pentanoate (3ah): the

reaction was conducted at 0.1 mmol scale, 51.8 mg, 74% yield, unknown compound, white solid, $R_f = 0.3$ (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) δ 8.21–8.14 (m, 1H), 7.61–7.52 (m, 2H), 7.40–7.38 (m, 1H), 7.31–7.27 (m, 1H), 7.26–7.21 (m, 1H), 7.18–7.10 (m, 2H), 4.38 (t, J = 6.6 Hz, 2H), 3.43–3.28 (m, 5H),

3.23–3.09 (m, 1H), 2.36–2.26 (m, 4H), 2.23–2.11 (m, 4H), 1.95–1.89 (m, 1H), 1.86–1.63 (m, 7H), 1.43–1.32 (m, 6H), 1.30–1.17 (m, 6H), 1.15–0.96 (m, 6H), 0.91 (s, 3H), 0.87 (d, J = 6.4 Hz, 3H), 0.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.4, 144.8, 136.9, 136.2, 132.5, 131.4, 130.0, 126.4, 124.7, 123.7, 119.4, 118.8, 115.3, 80.6, 63.8, 56.6, 56.1, 55.7, 42.9, 42.2, 40.5, 40.3, 36.0, 35.5, 35.5, 35.1, 33.0, 31.5, 31.1, 28.3, 27.5, 27.0, 26.6, 26.3, 24.4, 23.6, 21.7, 21.0, 18.4, 12.2, 9.3. HRMS (ESI-QEplus) m/z: [M+H]⁺ Calcd for C₄₃H₆₀NNaO₅S 702.4187; found 702.4173.

7. Optimization of the Conditions for synthesis of 3-methyl-2-phenylbenzofuran

Ph	+ MeB(OH) ₂	Pd(TFA) ₂ /Xantphos, K ₃ PO ₄	Me	
ОН		O_2 , 4Å MS, solvent, 50 °C	↓ Ph	
5a	2a		6a	
Entry	Solvent		6a Yield(%)	
1	1,4-Dioxane		64	
2	2-Methylte	etrahydrofuran	57	
3	THF		48	
4	1,2-Dimethoxyethane		39	
5	EA		33	
6	DCE		27	
7	CH ₃ CN		15	
8	Γ	DMF	15	
9	To	luene	12	
10	o-Xylene		12	
11	Benzotrifluoride		12	
12	Cl	H ₃ OH	N.D.	

Table S6: Solvent screening

^{*a*}**5a** (0.1 mmol), **2a** (0.3 mmol), Pd(TFA)₂ (10 mol%), Xantphos (11 mol%), K₃PO₄ (1.5 equiv.), solvent (2.0 mL), 4Å MS (100.0 mg), O₂ balloon, 50 °C, 10 h, isolated yields.

Ph		Pd(TFA) ₂ /Xantphos, base	Me
ОН		O ₂ , 4Å MS, 1,4-dioxane, 50 °C	Ph
5a	2a		6a
Entry	Е	ase	6a Yield(%)
1	K	₃ PO ₃	64
2	K	$2CO_3$	63
3	Na	₂ CO ₃	51
4	Cs_2CO_3		51
5	Li	₂ CO ₃	9
6	Nal	HCO ₃	9
7	K	OAc	24
8	K	D'Bu	24
9	K	ОН	N.D.
10	DA	BCO	<5

Table S7: Base screening

^{*a*}**5a** (0.1 mmol), **2a** (0.3 mmol), Pd(TFA)₂ (10 mol%), Xantphos (11 mol%), base (1.5 equiv.), 1,4dioxane (2.0 mL), 4Å MS (100.0 mg), O₂ balloon, 50 °C, 10 h, isolated yields.

Table S8: Metal precursor screening

Ph	+ MeB(OH) ₂	Cat. Pd/Xantphos, K ₃ PO ₄	Me O Ph
5a	2a		6a
Entry	Ро	l-cat	6a Yield(%)
1	Pd(TFA) ₂		64
2	[PdCl(Allyl)] ₂		48
3	Pd[(CH ₃) ₃ CO ₂]		36
4	PdCl ₂ (CN) ₂		33
5	$Pd(acac)_2$		15
6	PdCl ₂ (Amphos)		6
8	Pd(PPh ₃) ₂ Cl ₂		<5
9	PdCl ₂		<5

^{*a*}**5a** (0.1 mmol), **2a** (0.3 mmol), cat. Pd (10 mol%), Xantphos (11 mol%), K₃PO₄ (1.5 equiv.), 1,4dioxane (2.0 mL), 4Å MS (100.0 mg), O₂ balloon, 50 °C, 10 h, isolated yields.

Table S9: Ligand screening

Entry	Base	6a Yield(%)
1	L1	12
2	L2	15
3	L3	27
4	L4	33
5	L5	20
6	L6	39
7	L7	15
8	L8	42
9	L9	64
10	L10	30
11	L11	6

^{*a*}**5a** (0.1 mmol), **2a** (0.3 mmol), Pd(TFA)₂ (10 mol%), ligand (11 mol%), K₃PO₄ (1.5 equiv.), 1,4dioxane (2.0 mL), 4Å MS (100.0 mg), O₂ balloon, 50 °C, 10 h, isolated yields.

8. General procedure for synthesis of 3-methylbenzofurans

In the glovebox, a Schlenk tube was charged with 5 (1.0 equiv.), 2a (3.0 equiv.), Pd(TFA)₂ (10 mmo%), Xantphos (11 mol%), potassium phosphate (1.5 equiv.), 4Å MS and 1,4-dioxane. Then the Schlenk tube was removed from glovebox and the nitrogen atmosphere was replaced with the oxygen using an oxygen balloon. The mixture was stirred in 50 °C oil bath. After completion of the reaction (monitored by TLC), the resulting mixture was concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether) to afford the desired compounds 6.

3-Methyl-2-phenylbenzofuran (6a): the reaction was conducted at 0.1 mmol scale, 13.3 mg, Me 64% yield, known compound^[21], white solid, $R_f = 0.8$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.89–7.77 (m, 2H), 7.58–7.52 (m, 1H), 7.52–7.43 (m, 3H), 7.40–7.33 (m, 1H), 7.32–7.24 (m, 2H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 150.9, 131.6, 131.4, 128.8, 128.1, 126.9, 124.5, 122.5, 119.5, 111.5, 111.2, 9.7.

5-Fluoro-3-methyl-2-phenylbenzofuran (6b): the reaction was conducted at 0.1 mmol scale, Me 10.0 mg, 44% yield, known compound^[21], white solid, $R_f = 0.8$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.83–7.76 (m, 2H), 7.52–7.44 (m, 2H), 7.42–7.34 (m, 2H), 7.21–7.15 (m, 1H), 7.05–6.95 (m, 1H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.4 (d, $J_{C-F} = 236.4$ Hz), 152.8, 150.2, 132.3 (d, $J_{C-F} = 10.1$ Hz), 131.3, 128.9, 128.4, 127.0, 112.1 (d, $J_{C-F} = 26.0$ Hz), 111.7 (d, $J_{C-F} = 9.5$ Hz), 111.7 (d, $J_{C-F} = 3.8$ Hz), 105.1 (d, $J_{C-F} = 24.6$ Hz), 9.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -121.32.

5-(*Tert*-butyl)-3-methyl-2-phenylbenzofuran (6d): the reaction was conducted at 0.1 mmol scale, ^tBu $\xrightarrow{\text{tBu}}$ $\xrightarrow{\text{tBu}}$ $\xrightarrow{\text{tBu}}$ $\xrightarrow{\text{tBu}}$ $\xrightarrow{\text{tBu}}$ $\xrightarrow{\text{tPh}}$ $\xrightarrow{\text{tPh}$

(s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 152.3, 151.1, 145.7, 131.9, 130.9, 128.8, 127.9, 126.9, 122.5, 115.5, 111.7, 110.5, 35.0, 32.1, 9.7.

5-Methoxy-3-methyl-2-phenylbenzofuran (6e): the reaction was conducted at 0.1 mmol scale, 10.0 mg, 42% yield, known compound^[21], white solid, $R_f = 0.8$ (petroleum MeO ether); ¹H NMR (400 MHz, CDCl₃) & 7.83-7.76 (m, 2H), 7.52-7.44 (m, 2H), 7.41-7.31 (m, 2H), 7.01-6.96 (m, 1H), 6.93-6.87 (m, 1H), 3.89 (s, 3H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 151.8, 149.0, 131.9, 131.7, 128.8, 128.1, 126.9, 113.2, 111.6, 111.6, 102.1, 56.2, 9.8.

6-Chloro-3-methyl-2-phenylbenzofuran (6f): the reaction was conducted at 0.1 mmol scale, 6.3 mg, 26% yield, known compound^[22], white solid, $R_f = 0.8$ (petroleum ether); Me ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.74 (m, 2H), 7.54-7.45 (m, 3H), 7.44-7.41 (m, 1H), 7.40-7.34 (m, 1H), 7.25-7.20 (m, 1H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 154.0, 151.7, 131.2, 130.2, 130.1, 128.9, 128.4, 126.9, 123.3, 120.0, 111.7, 111.3, 9.6.

6-Fluoro-3-methyl-2-phenylbenzofuran (6g): the reaction was conducted at 0.1 mmol scale, 7.2 mg, 32% yield, known compound^[21], white solid, $R_f = 0.8$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.75 (m, 2H), 7.52–7.41 (m, 3H), 7.39– Ph 7.33 (m, 1H), 7.23–7.17 (m, 1H), 7.06–6.97 (m, 1H), 2.47 (s, 3H). ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta 161.3 \text{ (d}, J_{C-F} = 270.1 \text{ Hz}), 153.9 \text{ (d}, J_{C-F} = 13.1 \text{ Hz}), 151.7 \text{ (d}, J_{C-F} = 4.0 \text{ Hz}),$ 131.4, 128.9, 128.2, 127.7 (d, *J*_{C-F} = 1.2 Hz), 126.8, 119.8 (d, *J*_{C-F} = 10.0 Hz), 111.3, 110.8 (d, *J*_{C-F}) = 23.8 Hz), 99.0 (d, J_{C-F} = 24.6 Hz), 9.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -117.45.

3,6-Dimethyl-2-phenylbenzofuran (6h): the reaction was conducted at 0.1 mmol scale, 15.9 mg,

71% yield, unknown compound, white solid, $R_f = 0.8$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.76 (m, 2H), 7.51-7.43 (m, 2H), 7.42-7.38 (m, 1H), 7.37-7.31 (m, 1H), 7.30-7.27 (m, 1H), 7.11-7.04 (m, 1H), 2.49 (s, 3H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 154.4, 150.3, 134.8, 131.9,

129.0, 128.8, 127.8, 126.8, 124.0, 119.0, 111.4, 22.0, 9.8. HRMS (ESI-QEplus) m/z: [M+H]⁺ Calcd for C₁₆H₁₅O 223.1117; found 223.1116.

3,7-Dimethyl-2-phenylbenzofuran (6i): the reaction was conducted at 0.1 mmol scale, 15.8 mg, Me 71% yield, unknown compound, white solid, $R_f = 0.8$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) & 7.87–7.79 (m, 2H), 7.53–7.44 (m, 2H), 7.40–7.32 (m, 2H), 7.20-7.13 (m, 1H), 7.12-7.05 (m, 1H), 2.57 (s, 3H), 2.47 (s, 3H). ¹³C NMR (100 Me MHz, CDCl₃) & 153.0, 150.6, 131.9, 130.8, 128.8, 128.0, 126.9, 125.5, 122.6, 121.4, 117.0, 111.8, 15.2, 9.8. HRMS (ESI-QEplus) m/z: [M+H]⁺ Calcd for C₁₆H₁₅O 223.1117; found 223.1117.

2-(2-Fluorophenyl)-3-methylbenzofuran (6j): the reaction was conducted at 0.1 mmol scale,

17.6 mg, 78% yield, unknown compound, white solid, $R_f = 0.8$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.69–7.61 (m, 1H), 7.60–7.53 (m, 1H), 7.52-7.46 (m, 1H), 7.43-7.36 (m, 1H), 7.35-7.23 (m, 3H), 7.22-7.15 (m, 1H), 2.32 (d, J = 2.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.7 (d, $J_{C-F} = 249.6$

Hz), 154.7, 146.5, 130.9 (d, $J_{C-F} = 3.3$ Hz), 130.7, 130.6 (d, $J_{C-F} = 8.1$ Hz), 124.7, 124.4 (d, $J_{C-F} = 3.3$ Hz)

3.4 Hz), 122.6, 119.8, 119.4 (d, $J_{C-F} = 14.2$ Hz), 116.5 (d, $J_{C-F} = 22.0$ Hz), 114.4, 111.3, 9.2 (d, $J_{C-F} = 6.4$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.93. HRMS (ESI-QEplus) m/z: [M+H]⁺ Calcd for C₁₅H₁₂FO 227.0867; found 227.0866.

2-(4-Fluorophenyl)-3-methylbenzofuran (6k): the reaction was conducted at 0.1 mmol scale, Me 13.8 mg, 61% yield, known compound^[23], white solid, $R_f = 0.8$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.73 (m, 2H), 7.56–7.50 (m, 1H), 7.49–7.45 (m, 1H), 7.33–7.22 (m, 2H), 7.21–7.12 (m, 2H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.6 (d, $J_{C-F} = 246.9$ Hz), 153.9, 150.1, 131.3, 128.7 (d, $J_{C-F} = 8.2$ Hz), 127.9 (d, $J_{C-F} = 3.6$ Hz), 124.6, 122.7, 119.5, 115.9 (d, $J_{C-F} = 21.6$ Hz), 111.1, 9.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.13.

3-Methyl-2-(*p***-tolyl)benzofuran (61):** the reaction was conducted at 0.1 mmol scale, 13.8 mg, 62% yield, known compound^[24], white solid, $R_f = 0.8$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.67 (m, 2H), 7.56–7.50 (m, 1H), 7.49–7.44 (m, 1H), 7.32–7.20 (m, 4H), 2.46 (s, 3H), 2.41 (s, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ 153.9, 151.2, 138.1, 131.5, 129.6, 128.8, 126.9, 124.3, 122.5, 119.4, 111.1, 110.8, 21.6, 9.7.

2-(4-Methoxyphenyl)-3-methylbenzofuran (6m): the reaction was conducted at 0.1 mmol scale, Me 16.0 mg, 67% yield, known compound^[24], white solid, $R_f = 0.8$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.70 (m, 2H), 7.55–7.49 (m, 1H), 7.48–7.43 (m, 1H), 7.31–7.20 (m, 2H), 7.06–6.98 (m, 2H), 3.87 (s, 3H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 153.8, 151.1, 131.5, 128.4, 124.4, 124.1, 122.5, 119.2, 114.3, 111.0, 109.9, 55.6, 9.6.

Tert-butyldimethyl((3-methylbenzofuran-2-yl)methoxy)silane (6n): the reaction was conducted Me at 0.1 mmol scale, 13.3 mg, 48% yield, unknown compound, white solid, $R_f =$ 0.8 (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.46 (m, 1H), 7.44–7.41 (m, 1H), 7.29–7.24 (m, 1H), 7.23–7.19 (m, 1H), 4.78 (s, 2H), 2.25 (s, 3H), 0.92 (s, 9H), 0.12 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 151.7, 130.2, 124.4, 122.3, 119.6, 112.4, 111.3, 56.9, 26.1, 18.7, 8.2, -5.0. HRMS (ESI-QEplus) *m/z*: [M-^{*i*}Bu]⁺ Calcd for C₁₂H₁₅O₂Si 219.0836; found 219.0833.

Trimethyl(3-methylbenzofuran-2-yl)silane (60): the reaction was conducted at 0.1 mmol scale,Me15.9 mg, 78% yield, known compound^[25], white solid, $R_f = 0.8$ (petroleum \leftarrow TMSether); ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.46 (m, 1H), 7.44–7.41 (m, 1H),7.29–7.24 (m, 1H), 7.23–7.19 (m, 1H), 2.31 (s, 3H), 0.38 (s, 9H). ¹³C NMR(100 MHz, CDCl₃) δ 157.6, 157.6, 157.6, 130.1, 125.3, 124.4, 122.0, 119.4, 111.3, 9.1, -0.9.

9. General procedure for synthesis of 4-methylisoquinolines

In the glovebox, a Schlenk tube was charged with 7 (1.0 equiv.), 2a (3.0 equiv.), Pd(TFA)₂ (10 mol%), Xantphos (11 mol%), potassium phosphate (1.5 equiv.), 4Å MS and tetrahydrofuran. Then the Schlenk tube was removed from glovebox and the nitrogen atmosphere was replaced with the oxygen using an oxygen balloon. The mixture was stirred in 50 °C oil bath. After completion of the reaction (monitored by TLC), the resulting mixture was concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compounds **8**.

4-Methyl-3-phenylisoquinoline (8a): the reaction was conducted at 0.1 mmol scale, 12.1 mg, Me 55% yield, known compound^[26], white solid, $R_f = 0.25$ (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 8.10–8.05 (m, 1H), 8.03–7.97 (m, 1H), 7.81–7.73 (m, 1H), 7.66–7.56 (m, 3H), 7.53–7.45 (m, 2H), 7.44–7.37 (m, 1H), 2.66 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.1, 150.4, 141.5, 136.5, 130.6, 130.1, 128.3, 127.8, 127.5, 126.9, 124.3, 123.8, 15.8.

3-(4-Fluorophenyl)-4-methylisoquinoline (8b): the reaction was conducted at 0.1 mmol scale, 12.5 mg, 53% yield, unknown compound, white solid, $R_f = 0.25$ (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) δ 9.19 (s, 1H), 8.11– 8.04 (m, 1H), 8.03–7.97 (m, 1H), 7.82–7.75 (m, 1H), 7.68–7.60 (m, 1H), 7.59–7.52 (m, 2H), 7.22–7.11 (m, 2H), 2.65 (s, 3H). ¹³C NMR (100 MHz,

CDCl₃) δ 162.6 (d, J_{C-F} = 245.0 Hz), 151.0, 150.4, 137.6 (d, J_{C-F} = 3.5 Hz), 136.4, 131.8 (d, J_{C-F} = 8.1 Hz), 130.8, 128.4, 127.5, 127.0, 124.3, 123.8, 115.3 (d, J_{C-F} = 2.1 Hz), 15.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.77. HRMS (ESI-QEplus) m/z: [M+H]⁺ Calcd for C₁₆H₁₃FN 238.1027; found 238.1020.

3-(4-Chlorophenyl)-4-methylisoquinoline (8c): the reaction was conducted at 0.1 mmol scale, 11.2 mg, 44% yield, unknown compound, white solid, $R_f = 0.25$ (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) δ 9.19 (s, 1H), 8.12– 8.05 (m, 1H), 8.03–7.98 (m, 1H), 7.83–7.74 (m, 1H), 7.69–7.60 (m, 1H), 7.58–7.51 (m, 2H), 7.49–7.42 (m, 2H), 2.65 (s, 3H). ¹³C NMR (100 MHz,

CDCl₃) δ 150.8, 150.5, 140.0, 136.4, 133.9, 131.5, 130.8, 128.5, 128.4, 127.6, 127.1, 124.4, 123.8, 15.7. HRMS (ESI-QEplus) *m/z*: [M+H]⁺ Calcd for C₁₆H₁₃ClN 254.0731; found 254.0725.

 7.59 (m, 1H), 7.57–7.48 (m, 2H), 7.06–6.99 (m, 2H), 3.88 (s, 3H), 2.67 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 151.8, 150.3, 136.5, 134.0, 131.4, 130.6, 128.3, 127.3, 126.7, 123.9, 123.8, 113.8, 55.6, 15.9. HRMS (ESI-QEplus) *m*/*z*: [M+H]⁺ Calcd for C₁₇H₁₆NO 250.1226; found 250.1220.

3-(2-Fluorophenyl)-4-methylisoquinoline (8e): the reaction was conducted at 0.1 mmol scale, 12.7 mg, 54% yield, unknown compound, white solid, $R_f = 0.25$ (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 8.11– 8.05 (m, 1H), 8.04–7.99 (m, 1H), 7.82–7.75 (m, 1H), 7.70–7.61 (m, 1H), 7.58– 7.50 (m, 1H), 7.46–7.38 (m, 1H), 7.32–7.26 (m, 1H), 7.22–7.14 (m, 1H), 2.56 (d, *J* = 2.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.7 (d, *J*_{C-F} = 245.5 Hz), 150.6, 146.7, 136.0, 132.2 (d, *J*_{C-F} = 3.4 Hz), 130.7, 130.0 (d, *J*_{C-F} = 8.4 Hz), 129.2 (d, *J*_{C-F} = 16.0 Hz), 128.3, 127.8, 127.2, 126.5, 124.5 (d, *J*_{C-F} = 3.6 Hz), 123.8, 115.8 (d, *J*_{C-F} = 22.4 Hz), 15.3 (d, *J*_{C-F} = 3.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -115.21. HRMS (ESI-QEplus) *m/z*: [M+H]⁺ Calcd for C₁₆H₁₃FN 238.1027; found 238.1020.

4-Methyl-3-pentylisoquinoline (8f): the reaction was conducted at 0.1 mmol scale, 15.0 mg, 70% Me yield, unknown compound, colorless oil, $R_f = 0.25$ (petroleum ether/ethyl C_5H_{11} acetate 10/1); ¹H NMR (400 MHz, CDCl₃) δ 9.08 (s, 1H), 8.01–7.95 (m, 1H), 7.94–7.87 (m, 1H), 7.74–7.65 (m, 1H), 7.57–7.48 (m, 1H), 3.06–2.96 (m, 2H), 2.61 (s, 3H), 1.82–1.69 (m, 2H), 1.50–1.32 (m, 4H), 0.93 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 150.1, 136.2, 130.2, 128.2, 127.1, 125.9, 123.5, 123.2, 36.2, 32.2, 29.9, 22.9, 14.3, 13.8. HRMS (ESI-QEplus) m/z: [M+H]⁺ Calcd for C₁₅H₂₀N 214.1590; found 214.1584.

3-(2-((*Tert***-butyldimethylsilyl)oxy)ethyl)-4-methylisoquinoline (8g):** the reaction was conducted at 0.1 mmol scale, 10.3 mg, 34% yield, unknown compound, white liquid, $R_f = 0.25$ (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) δ 9.08 (s, 1H), 8.01–7.96 (m, 1H), 7.94–7.88 (m, 1H), 7.73–7.66 (m, 1H), 7.57–7.50 (m, 1H), 4.05 (t, J = 6.9 Hz, 2H), 3.25 (t, J = 6.9

Hz, 2H), 2.65 (s, 3H), 0.83 (s, 9H), -0.07 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 150.2, 136.0, 130.2, 128.2, 127.2, 126.1, 125.0, 123.3, 63.5, 39.2, 26.1, 18.5, 14.1, -5.2. HRMS (ESI-QEplus) *m*/*z*: [M+H]⁺ Calcd for C₁₈H₂₈NOSi 302.1935; found 302.1928.

10. Scale-up experiment for synthesis of 3ad and 6o

In the glovebox, a Schlenk tube was charged with **1ad** (343.5 mg, 1.0 mmol), **2a** (180.0 mg, 3.0 mmol), Pd(TFA)₂ (33.0 mg, 0.1 mmol), Xantphos (64.0 mg, 0.11 mmol), potassium phosphate (318.0 mg, 1.5 mmol), and 4Å MS (1000.0 mg) in the tetrahydrofuran (20.0 mL). Then the Schlenk tube was removed from glovebox and the nitrogen atmosphere was replaced with the oxygen using an oxygen balloon. The mixture was stirred in 50 °C oil bath. After completion of

the reaction (monitored by TLC), the resulting mixture was concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound **3ad** as white solid (350.0 mg, 98% yield).

In the glovebox, a Schlenk tube was charged with 50 (380.0 mg, 2 mmol), 2a (360.0 mg, 6 mmol), Pd(TFA)₂ (66.0 mg, 0.2 mmol), Xantphos (127.3 mg, 0.22 mmol), potassium phosphate (636.0 mg, 3 mmol), and 4Å MS (2000.0 mg) in the 1,4-dioxane (40.0 mL). Then the Schlenk tube was removed from glovebox and the nitrogen atmosphere was replaced with the oxygen using an oxygen balloon. The mixture was stirred in 50 °C oil bath. After completion of the reaction (monitored by TLC), the resulting mixture was concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether) to afford the desired compound 60 as white solid (319.4 mg, 77% yield).

11. Further synthetic transformations of product 3ad

Synthesis of (3-methyl-1-tosyl-1H-indol-2-yl)(phenyl)methanone 9: In a nitrogen-filled Schlenk tube, to a solution of the 3ad (35.7 mg, 0.1 mmol) and benzoyl chloride (15.5 mg, 1.1 mmol) in dichloromethane (2.0 mL) was added dropwise a solution of titanium tetrachloride in dichloromethane (3.0 M, 0.13 mL, 0.4 mmol) at 0 °C. The mixture was stirred for 0.5 h, the reaction was quenched by water, then extracted with dichloromethane. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound 9 as white solid (22.2 mg, 57% yield), unknown compound, $R_f = 0.25$ (petroleum ether/ethyl acetate 30/1); ¹H NMR (400 MHz, CDCl₃) δ 8.14– 8.06 (m, 1H), 7.96-7.88 (m, 2H), 7.74-7.67 (m, 2H), 7.62-7.56 (m, 1H), 7.52-7.40 (m, 4H), 7.34-7.28 (m, 1H), 7.19-7.13 (m, 2H), 2.31 (s, 3H), 2.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.8, 145.1, 138.6, 136.6, 134.0, 133.8, 133.6, 131.4, 129.8, 129.7, 128.8, 127.5, 126.9, 124.8, 124.5, 120.6, 115.5, 21.8, 9.6. HRMS (ESI-QEplus) m/z: [M+Na]+ Calcd for C23H19NNaO3S 412.0975; found 412.0971.

Synthesis of 2-bromo-3-methyl-1-tosyl-1H-indole 10: Under nitrogen atmosphere, the

mixture of **3ad** (35.7 mg, 0.1 mmol) and *N*-bromosuccinimide (35.6 mg, 0.2 mmol) in dichloromethane (2.0 mL) was stirred for 2h in 40 °C oil bath. Then the reaction was cooled to room temperature and quenched by water, the aqueous phase was extracted with dichloromethane. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound **10** as white solid (24.4 mg, 67% yield), unknown compound, $R_f = 0.25$ (petroleum ether/ethyl acetate 30/1); ¹H NMR (400 MHz, CDCl₃) δ 8.31–8.24 (m, 1H), 7.77–7.70 (m, 2H), 7.41–7.36 (m, 1H), 7.35–7.29 (m, 1H), 7.29–7.22 (m, 1H), 7.22–7.15 (m, 2H), 2.34 (s, 3H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 137.5, 135.5, 130.6, 129.9, 127.3, 125.2, 124.0, 121.9, 118.7, 115.7, 109.2, 21.8, 10.6. HRMS (ESI-QEplus) *m/z*: [M+Na]⁺ Calcd for C₁₆H₁₄BrNNaO₂S 385.9821; found 385.9816.

Synthesis of 3-methyl-1-tosyl-1*H*-indole 11: Under nitrogen atmosphere, to a solution of the 3ad (35.7 mg, 0.1 mmol) in tetrahydrofuran (2.0 mL) was added dropwise a solution of tetrabutylammonium fluoride in tetrahydrofuran (1.0 M, 0.3 mL, 0.3 mmol). The mixture was stirred for 12 h. The reaction was quenched by water, then extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound 11 as white solid (22.5 mg, 79% yield), known compound^[27], white solid, $R_f = 0.25$ (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) δ 8.01–7.94 (m, 1H), 7.77–7.69 (m, 2H), 7.47–7.40 (m, 1H), 7.34–7.27 (m, 2H), 7.26–7.21 (m, 1H), 7.19–7.14 (m, 2H), 2.30 (s, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 135.6, 135.5, 132.0, 130.0, 126.9, 124.8, 123.3, 123.2, 119.6, 118.8, 113.9, 21.7, 9.9.

Synthesis of 1,3-dimethyl-1*H*-indole 12: Under nitrogen atmosphere, the mixture of 3ad (35.7 mg, 0.1 mmol) and potassium methoxide (14.0 mg, 0.2 mmol) in acetonitrile (2.0 mL) was stirred overnight. After completion of the reaction (monitored by TLC), the reaction was quenched by water, then extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound 12 as white solid (12.1 mg, 83% yield), known compound^[27], white solid, $R_f = 0.25$ (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.60 –7.54 (m, 1H), 7.30–7.24 (m, 1H), 7.23–7.17 (m, 1H), 7.14–7.06 (m, 1H), 6.80 (s, 1H), 3.71 (s, 3H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 128.8, 126.7, 121.6, 119.1, 118.7, 110.3, 109.2, 32.7, 9.7.

12. Synthesis of bioactive molecules and drugs

Synthesis of 2-(3,4-dimethoxyphenyl)-5-methoxy-3-methyl-1-tosyl-1*H*-indole 3ai: In the glovebox, a Schlenk tube was charged with 1ai (438.0 mg, 1.0 mmol), 2a (180.0 mg, 3.0 mmol), Pd(TFA)₂ (33.0 mg, 0.1 mmol), Xantphos (64.0 mg, 0.11 mmol), potassium phosphate (318.0 mg, 1.5 mmol), and 4Å MS (1000.0 mg) in the tetrahydrofuran (20.0 mL). Then the Schlenk tube was removed from glovebox and the nitrogen atmosphere was replaced with the oxygen using an oxygen balloon. The mixture was stirred in 50 °C oil bath. After completion of the reaction (monitored by TLC), the resulting mixture was concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound **3ai** as white solid (375.0 mg, 83% yield), unknown compound, R_f = 0.3 (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) δ 8.24–8.18 (m, 1H), 7.29–7.24 (m, 2H), 7.07–7.01 (m, 2H), 7.00–6.95 (m, 1H), 6.94–6.90 (m, 1H), 6.89–6.82 (m, 3H), 3.96 (s, 3H), 3.86 (s, 3H), 2.30 (s, 3H), 2.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.1, 149.3, 148.0, 144.4, 137.7, 135.1, 133.2, 131.8, 129.3, 127.0, 124.0, 124.0, 119.7, 117.5, 115.1, 113.3, 110.0, 101.8, 56.1, 56.0, 55.8, 21.7, 9.9. HRMS (ESI-QEplus) *m/z*: [M+Na]⁺ Calcd for C₂₅H₂₅NNaO₅S 474.1346; found 474.1344.

Synthesis of 2-(3,4-dimethoxyphenyl)-5-methoxy-3-methyl-1*H*-indole 13: Under nitrogen atmosphere, the mixture of **3ai** (135.5 mg, 0.3 mmol) and potassium hydroxide (50.5 mg, 0.9 mmol) in ethanol (6.0 mL) was stirred overnight in 100 °C oil bath. The reaction was cooled to room temperature and quenched by water, then extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound 13 as white solid (84.7 mg, 95% yield), known compound^[28], $R_f = 0.3$ (petroleum ether/ethyl acetate 15/1); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.28–7.25 (m, 1H), 7.14–7.10 (m, 1H), 7.09–7.06 (m, 1H), 7.04–7.01 (m, 1H), 6.99–6.95 (m, 1H), 6.88–6.82 (m, 1H), 3.94 (s, 3H), 3.93 (s, 3H), 3.89 (s, 3H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 149.3, 148.7, 135.3, 131.0, 130.7, 126.5, 120.5, 112.3, 111.6, 111.5, 111.2, 107.9, 100.9, 56.2, 9.9.

Synthesis of 4-(5-hydroxy-3-methyl-1*H*-indol-2-yl)benzene-1,2-diol 14: Under nitrogen atmosphere, to a solution of the 13 (29.7 mg, 0.1 mmol) in dichloromethane (2.0 mL) was added
dropwise a solution of boron tribromide in dichloromethane (1 M, 0.9 mL, 0.9 mmol) in 0 °C. The mixture was stirred for 1.5 h at room temperature. The reaction was quenched by water, then extracted with dichloromethane. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound **14** as yellow solid (20.4 mg, 80% yield), known compound^[28], $R_f = 0.25$ (petroleum ether/ethyl acetate 4/1); ¹H NMR (400 MHz, CD₃OD) δ 7.17–7.14 (m, 1H), 7.09–7.08 (m, 1H), 6.98–6.95 (m, 1H), 6.90–6.85 (m, 2H), 6.66–6.64 (m, 1H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CD₃OD) δ 150.4, 145.7, 145.1, 136.2, 131.7, 131.4, 126.6, 119.9, 115.9, 115.4, 111.4, 111.3, 105.6, 102.8, 9.4.

Synthesis of 5-methoxy-2-(4-methoxyphenyl)-3-methyl-1-tosyl-1*H*-indole 3aj: In the glovebox, a Schlenk tube was charged with 1aj (407.5 mg, 1.0 mmol), 2a (180.0 mg, 3.0 mmol), Pd(TFA)₂ (33.0 mg, 0.1 mmol), Xantphos (64.0 mg, 0.11 mmol), potassium phosphate (318.0 mg, 1.5 mmol), and 4Å MS (1000.0 mg) in the tetrahydrofuran (20.0 mL). Then the Schlenk tube was removed from glovebox and the nitrogen atmosphere was replaced with the oxygen using an oxygen balloon. The mixture was stirred in 50 °C oil bath. After completion of the reaction (monitored by TLC), the resulting mixture was concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound **3aj** as white solid (384.0 mg, 91% yield), unknown compound, $R_f = 0.3$ (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) δ 8.24–8.16 (m, 1H), 7.28–7.22 (m, 4H), 7.08–7.00 (m, 2H), 6.99–6.92 (m, 3H), 6.86–6.79 (m, 1H), 3.89 (s, 3H), 3.85 (s, 3H), 2.29 (s, 3H), 2.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 157.1, 144.4, 137.8, 135.1, 133.3, 132.8, 131.8, 129.3, 127.0, 124.0, 119.7, 117.6, 113.3, 113.1, 101.9, 55.9, 55.5, 21.7, 9.8. HRMS (ESI-QEplus) *m/z*: [M+Na]⁺ Calcd for C₂₄H₂₃NNaO₄S 444.1240; found 444.1235.

Synthesis of 5-methoxy-2-(4-methoxyphenyl)-3-methyl-1*H*-indole 15: Under nitrogen atmosphere, the mixture of **3aj** (380.0 mg, 0.9 mmol) and potassium hydroxide (151.5 mg, 2.7 mmol) in ethanol (20.0 mL) was stirred overnight in 100 °C oil bath. The reaction was cooled to room temperature and quenched by water, then extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound **15** as white solid (235.8 mg, 98% yield), known compound^[29], $R_f = 0.3$ (petroleum ether/ethyl acetate 15/1); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.53–7.44 (m, 2H), 7.27–7.20 (m, 1H), 7.06–6.96 (m, 3H), 6.88–6.80 (m, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 154.2, 135.2, 131.0, 130.6, 129.1,

Estrogen receptor modulator

Synthesis of 1-(4-(2-(azepan-1-yl)ethoxy)benzyl)-5-methoxy-2-(4-methoxyphenyl)-3-methyl

-1H-indole 17: Under nitrogen atmosphere, the mixture of 15 (26.7 mg, 0.1 mmol) and potassium hydroxide (50.5 mg, 0.3 mmol) in N,N-dimethylformamide (3.0 mL) was stirred for 1h. Then the compound 16 (32.1 mg, 0.12 mmol) was added into the mixture. The reaction was stirred for 24 h and quenched by water, then extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate/triethylamine) to afford the desired compound 17 as yellow oil (47.7 mg, 96% yield), known compound^[10], $R_f = 0.25$ (petroleum ether/ethyl acetate/triethylamine 10/1/1); ¹H NMR (400 MHz, CDCl₃) δ 7.27–7.20 (m, 2H), 7.09–7.03 (m, 2H), 6.96–6.90 (m, 2H), 6.87–6.83 (m, 2H), 6.82–6.78 (m, 1H), 6.78–6.71 (m, 2H), 5.11 (s, 2H), 4.00 (t, J = 6.2 Hz, 2H), 3.88 (s, 3H), 3.84 (s, 3H), 2.91 (t, J = 6.2 Hz, 2H), 2.80–2.71 (m, 4H), 2.25 (s, 3H), 1.70–1.54 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) & 159.5, 158.0, 154.2, 138.5, 132.1, 131.9, 131.0, 129.3, 127.4, 124.6, 114.8, 114.0, 111.8, 111.1, 108.5, 100.9, 66.4, 56.4, 56.2, 56.0, 55.5, 47.3, 27.8, 27.2, 9.7.

Synthesis of Bazedoxifene 18: Under nitrogen atmosphere, to a solution of the 17 (24.9 mg, 0.05 mmol) in chloroform (1.0 mL) was added dropwise a solution of boron tribromide in dichloromethane (1 M, 0.3 mL, 0.3 mmol) at -30 °C. The mixture was stirred for 16 h in at -10 °C. The reaction was quenched by water, then extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The flash resulting crude material was purified by column chromatography (dichloromethane/methanol) to afford the desired compound 18 as yellow solid (8.0 mg, 34%) yield), known compound^[30], yellow solid, $R_f = 0.25$ (dichloromethane/methanol 10/1); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.16–7.11 (m, 2H), 7.07–7.02 (m, 1H), 6.91–6.86 (m, 2H), 6.82–6.79 (m, 1H), 6.77–6.71 (m, 4H), 6.60–6.56 (m, 1H), 5.10 (s, 2H), 3.92 (t, J =6.2 Hz, 2H), 2.77 (t, J = 6.0 Hz, 2H), 2.67–2.60 (m, 4H), 2.10 (s, 3H), 1.58–1.45 (m, 8H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 157.9, 157.8, 151.4, 138.5, 131.8, 131.8, 131.1, 131.1, 131.1, 127.8, 127.8, 115.9, 114.8, 111.2, 106.9, 103.0, 66.6, 56.5, 55.6, 28.3, 27.0, 9.9.

Synthesis of 1-ethyl-5-methoxy-2-(4-methoxyphenyl)-3-methyl-1*H*-indole 19: Under nitrogen atmosphere, the mixture of 15 (80.0 mg, 0.3 mmol) and sodium hydride (10.8 mg, 0.45 mmol) in *N*,*N*-dimethylformamide (3.0 mL) was stirred for 15 min. Then a solution of iodoethane in *N*,*N*-dimethylformamide was added into the mixture. The reaction was stirred overnight and quenched by water, then extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound **19** as white solid (75.0 mg, 85% yield), known compound^[31], $R_f = 0.3$ (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.31 (m, 2H), 7.31–7.24 (m, 1H), 7.11–7.01 (m, 3H), 6.97–6.87 (m, 1H), 4.05 (q, *J* = 7.1 Hz, 2H), 3.93 (s, 3H), 3.92 (s, 3H), 2.24 (s, 3H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 153.9, 137.8, 131.7, 131.2, 128.9, 124.8, 113.9, 111.5, 110.2, 108.2, 100.8, 56.1, 55.4, 38.7, 15.5, 9.4.

Synthesis of Zindoxifene 20: Under nitrogen atmosphere, to a solution of the **19** (29.7 mg, 0.1 mmol) in dichloromethane (2.0 mL) was added dropwise a solution of boron tribromide in dichloromethane (1 M, 0.4 mL, 0.4 mmol) in -60 °C. After 30 min the cooling bath was removed and the mixture was stirred overnight. The reaction was quenched by an aqueous solution of sodium bicarbonate, then extracted with dichloromethane. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude material was used for next acetylation step without further purification.

Under nitrogen atmosphere, to a solution of the crude material in pyridine (1.0 mL) was added acetic anhydride (61.3 mg, 0.6 mmol). After refluxing in 110 °C oil bath for 2 h. The reaction was cooled to room temperature and quenched by aqueous dilute solution of hydrochloric acid, then extracted with dichloromethane. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound **20** as white solid (32.3 mg, 92% yield), known compound^[32], $R_f = 0.25$ (petroleum ether/ethyl acetate 10/1); ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.35 (m, 2H), 7.34–7.29 (m, 1H), 7.28–7.26 (m, 1H), 7.24–7.18 (m, 2H), 6.97–6.91 (m, 1H), 4.04 (q, *J* = 7.1 Hz, 2H), 2.34 (s, 3H), 2.33 (s, 3H), 2.18 (s, 3H), 1.20 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 169.6, 150.6, 144.2, 137.7, 134.1, 131.7, 129.9, 129.0, 121.8, 115.8, 111.2, 110.1, 109.5, 39.0, 21.4, 15.6, 9.4.

Synthesis of 3-methylbenzofuran-2-carbaldehyde 21: Under nitrogen atmosphere, to a solution of the **60** (306.5 mg, 1.5 mmol) in tetrahydrofuran (2.0 mL) was added dropwise a solution of tetrabutylammonium fluoride in tetrahydrofuran (1.0 M, 0.3 mL, 0.3 mmol). The reaction was stirred overnight and quenched by water, then extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude material was used for next acetylation step without further purification.

Under nitrogen atmosphere, to a solution of the crude material in tetrahydrofuran (10.0 mL) was added dropwise a solution of *n*-butyllithium (2.5 M, 0.4 mL, 1.6 mmol) in tetrahydrofuran at -78 °C. After 1 h the *N*,*N*-dimethylformamide (0.3 mL, 3.0 mmol) was added to the mixture and the reaction was stirred for 5h. The reaction was quenched by a saturated aqueous solution of ammonium chloride, then extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound **21** as white solid (192.2 mg, 80% yield), known compound^[33], $R_f = 0.25$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 7.73–7.68 (m, 1H), 7.58–7.49 (m, 2H), 7.38–7.31 (m, 1H), 2.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 179.9, 155.6, 148.3, 129.6, 128.9, 123.8, 122.0, 112.8, 8.63.

Synthesis of N-methyl-1-(3-methylbenzofuran-2-yl)methanamine 22: Under nitrogen atmosphere, the reaction tube was charged with methylamine hydrochloride (20.3 mg, 0.3 mmol), potassium carbonate (20.7 mg, 0.15 mmol) and methanol (1 mL), and the reaction was stirred at 0 °C for 30 min. Then the compound 21 (32.2 mg, 0.2 mmol) was added to mixture, and the reaction was stirred at r.t. for 1 h. The reaction was cooled to 0 °C and sodium borohydride (11.4 mg, 0.3 mmol) was added. The reaction was stirred at room temperature for 4 h. The reaction was quenched by water, then extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate/triethylamine) to afford the desired compound 22 as white solid (26.4 mg, 75% yield), unknown compound, $R_f = 0.2$ (petroleum ether/ethyl acetate/triethylamine 20/1/1); ¹H NMR (400 MHz, CD₃OD) δ 7.51–7.46 (m, 1H), 7.41–7.35 (m, 1H), 7.26–7.17 (m, 2H), 3.82 (s, 2H), 2.37 (s, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CD₃OD) δ 155.0, 151.0, 130.4, 124.6, 122.7, 119.7, 113.3, 111.0, 34.7, 7.2. HRMS (ESI-QEplus) m/z: [M+H]⁺ Calcd for C₁₁H₁₄NO 176.1070; found 176.1068.

13. Mechanism studies

In the glovebox, a Schlenk tube was charged with **4a** (24.5 mg, 0.07 mmol), **2a** (12.6 mg, 0.21 mmol), $Pd(TFA)_2$ (1.2 mg, 0.0035 mmol), Xantphos (2.2 mg, 0.00385 mmol), potassium phosphate (22.3 mg, 0.105 mmol), and 4Å MS (70.0 mg) in the tetrahydrofuran (1.4 mL). Then the Schlenk tube was removed from glovebox and the nitrogen atmosphere was replaced with the oxygen using an oxygen balloon. The mixture was stirred in 50 °C oil bath for 5 h. After completion of the reaction, the resulting mixture was concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford 25.1 mg compound and confirmed as **4a** by ¹H NMR.

2-phenyl-1-tosyl-1H-indole 4a: known compound^[34], white solid, $R_f = 0.2$ (petroleum ether/ethyl acetate 50/1); ¹H NMR (400 MHz, CDCl₃) δ 8.35–8.28 (m, 1H), 7.54–7.47 (m, 2H), 7.47–7.39 (m, 4H), 7.39–7.32 (m, 1H), 7.31–7.22 (m, 3H), 7.08–6.99 (m, 2H), 6.54 (s, 1H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 142.3, 138.5, 134.9, 132.6, 130.8, 130.6, 129.4, 128.9, 127.7, 127.0, 125.0, 124.5, 120.9, 116.9, 113.8, 21.7.

Preparation of (Xantphos)Pd(TFA)₂ **24** : In the glovebox, the reaction tube was charged with $Pd(CH_3CN)_2Cl_2$ (31.1 mg, 0.12 mmol), Xantphos (69.4 mg, 0.12 mmol) and dichloromethane (4.0 mL). Then the mixture was stirred in room temperature for 3 h. Filtration through Celite yielded a clear yellow solution, which was concentrated under reduced pressure. Then ethyl ether was added,

and the solution was cooled at -35 °C for 12 h. The resulting yellow crystals were washed two times with ethyl ether and dried in vacuo. Under nitrogen atmosphere, the reaction tube was charged with the resulting yellow crystals, silver trifluoroacetate (106.0 mg, 0.48 mmol), dichloromethane (5.0 mL) and acetonitrile (0.5 mL). Then the mixture was stirred in room temperature for 0.5 h. Filtration through Celite yielded a clear green solution, which was concentrated under reduced pressure. The resulting green crystals were washed two times with ethyl ether and dried in vacuo to afford **24** as yellow solid (79.0 mg, 75% yield), unknown compound, yellow solid; ¹H NMR (400 MHz, CD₂Cl₂) δ 7.69–7.60 (m, 2H), 7.40–7.25 (m, 12H), 7.20–7.13 (m, 8H), 7.11–7.06 (m, 2H), 6.56–6.45 (m, 2H), 1.67 (s, 6H). ¹³C NMR (100 MHz, CD₂Cl₂) δ 155.3, 155.3, 135.4, 135.4, 133.9, 133.8, 132.0, 132.0, 131.2, 131.2, 129.1, 128.5, 128.4, 125.8, 125.3, 125.2, 117.2, 116.7, 36.8, 26.8. ¹⁹F NMR (376 MHz, CD₂Cl₂) δ -74.80. ³¹P NMR (161 MHz, CD₂Cl₂) δ 8.81. HRMS (ESI-QEplus) *m/z*: [M-2TFA]²⁺ Calcd for C₃₉H₃₂OP₂Pd 342.0476; found 342.0472.

The reaction was conducted at 0.02 mmol scale using 1.0 equiv. (Xantphos)Pd(TFA)₂ 24: In the glovebox, a Schlenk tube was charged with 1a (6.9 mg, 0.02 mmol), 2a (3.6 mg, 0.06 mmol), 24 (17.6 mg, 0.02 mmol), potassium phosphate (6.4 mg, 0.03 mmol), 4Å MS (20.0 mg) and tetrahydrofuran (0.5 mL). Then the Schlenk tube was removed from glovebox and the mixture was stirred in 50 °C oil bath for 10 h. After completion of the reaction, the resulting mixture was concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound 3a (7.1 mg, 98% yield).

The reaction was conducted at 0.1 mmol scale using 0.1 equiv. (Xantphos)Pd(TFA)₂ 24: In the glovebox, a Schlenk tube was charged with 1a (34.7 mg, 0.1 mmol), 2a (18.0 mg, 0.3 mmol), 24 (8.8 mg, 0.01 mmol), potassium phosphate (31.8 mg, 0.15 mmol), 4Å MS (100.0 mg) and tetrahydrofuran (2.0 mL). Then the nitrogen atmosphere was replaced with the oxygen using an oxygen balloon. The mixture was stirred in 50 °C oil bath for 10 h. After completion of the reaction, the mixture was concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound 3a (31.6 mg, 88% yield).

In the glovebox, a Schlenk tube was charged with **1a** (34.7 mg, 0.1 mmol), $Pd(TFA)_2$ (1.7 mg, 0.005 mmol), Xantphos (3.2 mg, 0.0055 mmol), potassium phosphate (31.8 mg, 0.15 mmol), 4Å MS (100.0 mg) and tetrahydrofuran (2.0 mL). Then the Schlenk tube was removed from glovebox and the nitrogen atmosphere was replaced with the oxygen using an oxygen balloon. The mixture was stirred in 50 °C oil bath for 10 h. After completion of the reaction, the resulting mixture was concentrated under reduced pressure. The resulting crude material was analyzed by ¹H NMR using 1,3,5-trimethoxybenzene as internal standard and yield of **4a** is 6%.

Preparation of (Xantphos)PdMeCl·25 : In the glovebox, the reaction tube was charged with (cod)PdMeCl (88.0 mg, 0.29 mmol), Xantphos (167.8 mg, 0.29 mmol) and dichloromethane (7.0 mL). Then the mixture was stirred in room temperature for 3 h. Filtration through Celite yielded a clear yellow solution, which was concentrated under reduced pressure. Then pentane was added, and the solution was cooled at -35 °C for 12 h. The resulting yellow crystals were washed two times with pentane and dried in vacuo to afford **25** as green solid, known compound^[35]; ¹H NMR (400 MHz, CD₂Cl₂) δ 7.58–7.52 (m, 2H), 7.48–7.34 (m, 8H), 7.26–7.13 (m, 12H), 7.12–7.07 (m, 2H), 7.06–7.01 (m, 2H), 1.67 (s, 6H), 0.30 (s, 3H). ¹³C NMR (100 MHz, CD₂Cl₂) δ 155.3, 155.2, 134.8, 134.8, 134.8, 134.5, 134.4, 134.4, 131.8, 131.6, 131.4, 131.0, 129.8, 128.2, 128.1, 127.0, 124.4, 124.4, 36.3, 27.6, 0.8. ³¹P NMR (162 MHz, CD₂Cl₂) δ 15.21. HRMS (ESI-QEplus) *m/z*: [M-Cl]⁺ Calcd for C₄₀H₃₅OP₂Pd⁺ 699.1192; found 699.1197.

The reaction was conducted at 0.02 mmol scale using 1.5 equiv. (Xantphos)PdMeCl·25: Under nitrogen atmosphere, the reaction tube was charged with 25 (22.1 mg, 0.03 mmol), silver trifluoroacetate (6.6 mg, 0.03 mmol), dichloromethane (1.0 mL). Then the mixture was stirred in room temperature for 0.5 h. Filtration through Celite yielded a clear brown solution, which was concentrated under reduced pressure. The resulting solid is dissolved in tetrahydrofuran (1.0 mL), then 1a (6.9 mg, 0.02 mmol), potassium phosphate (6.4 mg, 0.03 mmol) and 4Å MS (20.0 mg) was added into the system. The mixture was stirred in 50 °C oil bath for 10 h. After completion of the reaction, the mixture was concentrated under reduced pressure. The resulting solid is dissolved in the resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound 3a (5.9 mg, 82% yield) and 4a (0.3 mg, 4% yield).

The reaction was conducted at 0.1 mmol scale using 0.15 equiv. (Xantphos)PdMeCl·25: Under nitrogen atmosphere, the reaction tube was charged with 25 (11.0 mg, 0.015 mmol), silver trifluoroacetate (3.4 mg, 0.015 mmol), dichloromethane (1.0 mL). Then the mixture was stirred in room temperature for 0.5 h. Filtration through Celite yielded a clear brown solution, which was concentrated under reduced pressure. The resulting solid is dissolved in tetrahydrofuran (2.0 mL), then 1a (34.7 mg, 0.1 mmol), potassium phosphate (31.8 mg, 0.15 mmol) and 4Å MS (100.0 mg)

was added into the system. Then the nitrogen atmosphere was replaced with the oxygen using an oxygen balloon. The mixture was stirred in 50 °C oil bath for 10 h. After completion of the reaction, the mixture was concentrated under reduced pressure. The resulting crude material was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired compound 3a (4.9 mg, 14% yield) and 4a (14.2 mg, 41% yield).

Determination of intermediate 25-TFA: In the glovebox, a seal tube was charged with **2a** (6.0 mg, 0.1 mmol), Pd(TFA)₂ (33.0 mg, 0.1 mmol), Xantphos (64.0 mg, 0.11 mmol), potassium phosphate (21.2 mg, 0.1 mmol), and 4Å MS (100.0 mg) in the tetrahydrofuran (2.0 mL). Then the seal tube was removed from glovebox and oscillated several times. The mixture was filtered and diluted with methanol, analyzed by HRMS immediately. HRMS (ESI-QEplus) m/z: [M-X]⁺ Calcd for C₄₀H₃₅OP₂Pd⁺ 699.1192; found 699.1209.

Determination of intermediate 26: In the glovebox, a seal tube was charged with **1a** (34.7 mg, 0.1 mmol), **2a** (18.0 mg, 0.3 mmol), $Pd(TFA)_2$ (3.3 mg, 0.01 mmol), Xantphos (6.4 mg, 0.011 mmol), potassium phosphate (31.8 mg, 0.15 mmol), and 4Å MS (100.0 mg) in the tetrahydrofuran (2.0 mL). Then the seal tube was removed from glovebox and oscillated several times. The

mixture was filtered and diluted with methanol, analyzed by HRMS immediately. HRMS (ESI-QEplus) m/z: [M+H]⁺ Calcd for C₆₁H₅₂NO₃P₂PdS 1046.2172; found 1046.1764.

Fig.S2 HRMS analysis of intermediate 26

14. Kinetic studies

14.1 Kinetic order of catalyst

In the glovebox, a Schlenk tube was charged with 1a (104.0 mg, 0.3 mmol), 2a (53.9 mg, 0.9 mmol), trimethoxybenzene (50.5 mg, 0.3 mmol), Pd(TFA)₂, Xantphos, potassium phosphate (95.5 mg, 0.45 mmol), and 4Å MS (250.0 mg) in the tetrahydrofuran (6.0 mL). Then the Schlenk tube was removed from glovebox and the nitrogen atmosphere was replaced with the oxygen using an oxygen balloon. The mixture was stirred in 50 °C oil bath and analyzed by ¹H NMR along time. The experimental details and results were shown in the tables below.

Enter	Pd	Xantphos	1a	2a	K ₃ PO ₄	Trimethoxybenzene	THF
Entry	mg	mg	mg	mg	mg	mg	mL
1	6	11.5	104	53.9	95.5	50.5	6
2	5	9.5	104	53.9	95.5	50.5	6
3	4	7.6	104	53.9	95.5	50.5	6
4	3	5.7	104	53.9	95.5	50.5	6

Table S10: The amount of materials used for kinetic order test of catalyst

Table S11: Concentration of 3a over time	with reactions performed with varying
concentration of catalyst	

3 mol%	Time/min	3	5		8	10		12	15
cat	3a/M	0.00162	0.00236	0.00	3575	0.0050	95	0.0061	0.00741
4 mol%	Time/min	2	5		8	3		10	13
cat	3 a/M	0.002065	0.004	5	0.00	6225	0.	00804	0.009885
5 mol%	Time/min	5	8		1	0		13	15
cat	3a/M	0.003495	0.0056	15	0.00	768	0.	01074	0.01262
6 mol%	Time/min	3	5		8	10		13	15
cat	3 a/M	0.003435	0.00619	0.0	1027	0.0131	65	0.015565	0.0187

Initial rate of catalyst

Fig.S3 Plot of concentration of 3a over time with reactions performed with varying concentration of catalyst

Cat/M	0.0015	0.002	0.0025	0.003
Initial rate/M·min ⁻¹	0.000501	0.000709	0.000933	0.001245
			•	

-Ln(cat)	5.809143	5.991465	6.214608	6.50229
-Ln(v)	6.68862	6.977105	7.251655	7.598904

14.2 Kinetic order of 1a

In the glovebox, a Schlenk tube was charged with 1a, 2a (53.9 mg, 0.9 mmol), trimethoxybenzene (50.5 mg, 0.3 mmol), Pd(TFA)₂ (4.0 mg, 0.012 mmol), Xantphos (7.6 mg, 0.013 mmol), potassium phosphate (95.5 mg, 0.45 mmol), and 4Å MS (250.0 mg) in the tetrahydrofuran (6.0 mL). Then the Schlenk tube was removed from glovebox and the nitrogen atmosphere was replaced with the oxygen using an oxygen balloon. The mixture was stirred in 50 °C oil bath and analyzed by 1H NMR along time. The detailed amount of each substrate was shown in the table below.

Entw	Pd	Xantphos	1a	2a	K ₃ PO ₄	Trimethoxybenzene	THF
	mg	mg	mg	mg	mg	mg	mL
1	4	7.6	86.8	53.9	95.5	50.5	6
2	4	7.6	104	53.9	95.5	50.5	6
3	4	7.6	121.5	53.9	95.5	50.5	6
4	4	7.6	138.8	53.9	95.5	50.5	6

Table S14: Concentration of 3a over time	with reactions performed with varying
concentration of 1a	

0.0417 M	Time/min	3	5	8	11	13
1a	3a/M	0.00185	0.00329	0.005235	0.007255	0.009045
0.05 M	Time/min	2	5	8	10	13
1a	3a/M	0.002065	0.0045	0.006225	0.00804	0.009885
0.0583 M	Time/min	3	5	8	10	13
1a	3a/M	0.00224	0.003585	0.00566	0.00723	0.009235
0.0677 M	Time/min	3	5	8	10	13
1a	3a/M	0.002835	0.00449	0.006635	0.00801	0.009945

oncentration of 1a

Fig.S5 Plot of concentration of 3a over time with reactions performed with varying concentration of 1a

Table S15: Relationshi	p between initia	l rate and	concentration o	f 1	a
------------------------	------------------	------------	-----------------	-----	---

1 a/M	0.0417	0.05	0.0583	0.0677
Initial rate/M·min ⁻¹	0.000704	0.000709	0.000705	0.00708
-Ln(1a)	3.17725	2.99573	2.84215	2.69267
-Ln(v)	7.25873	7.25166	7.25731	7.25307

14.3 Kinetic order of 2a

In the glovebox, a Schlenk tube was charged with **1a** (104.0 mg, 0.3 mmol), **2a**, trimethoxybenzene (50.5 mg, 0.3 mmol), $Pd(TFA)_2$ (4.0 mg, 0.012 mmol), Xantphos (7.6 mg, 0.013 mmol), potassium phosphate (95.5 mg, 0.45 mmol), and 4Å MS (250.0 mg) in the tetrahydrofuran (6.0 mL). Then the Schlenk tube was removed from glovebox and the nitrogen atmosphere was replaced with the oxygen using an oxygen balloon. The mixture was stirred in 50 °C oil bath and analyzed by ¹H NMR along time. The detailed amount of each substrate was shown in the table below.

Entry	Pd	Xantphos	1a	2a	K ₃ PO ₄	Trimethoxybenzene	THF
Liiuy	mg	mg	mg	mg	mg	mg	mL
1	4	7.6	104	35.9	95.5	50.5	6
2	4	7.6	104	53.9	95.5	50.5	6
3	4	7.6	104	71.8	95.5	50.5	6

Table S16: The amount of materials used for kinetic order test of 2a

Table S17: Concentration of 3a over time	with reactions performed with varying
concentration of 2a	

0.1 M 2a	Time/min	2	5	7	10	12	15
	3a /M	0.00238	0.00358	0.005665	0.007095	0.00906	0.010955

0.15 M 2 a	Time/min	2	5	8	10	13
0.13 IVI 2a	3a /M	0.002065	0.0045	0.006225	0.00804	0.009884

0.2 M 2a	Time/min	3	5	7	9	13
	3a /M	0.002185	0.00317	0.005285	0.0066	0.00926

Fig.S7 Plot of concentration of 3a over time with reactions performed with varying concentration of 2a

Table S18: Relationsh	p between initial ra	ate and concentration of 2a
-----------------------	----------------------	-----------------------------

2a /M	0.1	0.15	0.2
Initial rate/M·min ⁻¹	0.000709	0.000706	0.000706

-Ln(2a)	2.302585093	1.897119985	1.609437912
-Ln(v)	7.251655031	7.25589532	7.25589532

15. References

- 1. He, Y.-P.; Cao, J.; Wu, H.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2021, 60, 7093-7097.
- 2. Inamoto, K.; Asano, N.; Nakamura, Y.; Yonemoto, M.; Kondo, Y. Org. Lett. 2012, 14, 2622–2625.
- 3. Lv, J.; Zhao, B.; Liu, L.; Han, Y.; Yuan, Y.; Shi, Z. Adv. Synth. Catal. 2018, 360, 4054-4059.
- 4. Majumdar, K. C.; Samanta, S.; Chattopadhyay, B. Tetrahedron Lett. 2008, 49, 7213–7216.
- 5. Chong, E.; Blum, S. A. J. Am. Chem. Soc. 2015, 137, 10144–10147.
- Li, X.; Zhang, B.; Zhang, J.; Wang, X.; Zhang, D.; Du, Y.; Zhao, K. Chinese J. Chem. 2021, 39, 1211–1224.
- 7. Li, Y.-L.; Li, J.; Yu, S.-N.; Wang, J.-B.; Yu, Y.-M.; Deng, J. *Tetrahedron* 2015, *71*, 8271–8277.
- 8. Liu, J.; Xie, X.; Liu, Y. Chem Commun 2013, 49, 11794–11796.
- Yoshioka, S.; Fujii, Y.; Tsujino, H.; Uno, T.; Fujioka, H.; Arisawa, M. Chem. Commun. 2017, 53, 5970–5973.
- 10. Whyte, A.; Bajohr, J.; Arora, R.; Torelli, A.; Lautens, M. Angew. Chem. Int. Ed. 2021, 60, 20231–20236.
- 11. Apel, C.; Hartmann, S. S.; Lentz, D.; Christmann, M. Angew. Chem. Int. Ed. 2019, 58, 5075-5079.
- 12. Hirner, J. J.; Faizi, D. J.; Blum, S. A. J. Am. Chem. Soc. 2014, 136, 4740-4745.
- 13. Tabrizi, L.; Romanova, J. Appl. Organomet. Chem. 2020, 34, e5618J.
- 14. Bera, S.; Hu, X. Angew. Chem. Int. Ed. 2019, 58, 13854-13859.
- Moitra, P.; Kumar, K.; Sarkar, S.; Kondaiah, P.; Duan, W.; Bhattacharya, S. *Chem. Commun.* 2017, 53, 8184–8187.
- 16. Sun, S.-X.; Wang, J.-J.; Xu, Z.-J.; Cao, L.-Y.; Shi, Z.-F.; Zhang, H.-L. *Tetrahedron* **2014**, *70*, 3798–3806.
- 17. Wang, H.; Han, X.; Lu, X. Synlett 2011, 17, 2590-2594.
- 18. Eicher, T.; Schneider, V. Synthesis 1989, 5, 372-378.
- 19. Yuan, Z.; Cheng, R.; Chen, P.; Liu, G.; Liang, S. H. Angew. Chem. Int. Ed. 2016, 55, 11882–11886.
- 20. McAusland, D.; Seo, S.; Pintori, D. G.; Finlayson, J.; Greaney, M. F. Org. Lett. 2011, 13, 3667–3669.
- 21. Eidamshaus, C.; Burch, J. D. Org. Lett. 2008, 10, 4211-4214.
- 22. Yang, P.; Xu, W.; Wang, R.; Zhang, M.; Xie, C.; Zeng, X.; Wang, M. Org. Lett. 2019, 21, 3658–3662.
- 23. Willis, M. C.; Taylor, D.; Gillmore, A. T. Org. Lett. 2004, 6, 4755-4757.
- 24. Zhu, H.; Zhou, Q.; Liu, N.; Xing, J.; Yao, W.; Dou, X. Adv. Synth. Catal. 2022, 364, 1162–1167.
- 25. Adam, W.; Albrecht, O.; Feineis, E.; Reuther, I.; Sahamoller, C. R.; Seufertbaumbach, P.; Wild, D. *Liebigs. Ann. Chem.* **1991**, 1991, 33.
- 26. Kuai, C.; Wang, L.; Li, B.; Yang, Z.; Cui, X. Org. Lett. 2017, 19, 2102-2105.
- 27. Cheng, H.-G.; Lu, L.-Q.; Wang, T.; Yang, Q.-Q.; Liu, X.-P.; Li, Y.; Deng, Q.-H.; Chen, J.-R.; Xiao, W.-J. *Angew. Chem. Int. Ed.* **2013**, *52*, 3250–3254.
- 28. Hodnik, Ž.; Peterlin Mašič, L.; Tomašić, T.; Smodiš, D.; D'Amore, C.; Fiorucci, S.; Kikelj,

D. J. Med. Chem. 2014, 57, 4819-4833.

- Kelly, P. M.; Bright, S. A.; Fayne, D.; Pollock, J. K.; Zisterer, D. M.; Williams, D. C.; Meegan, M. J. *Bioorg. Med. Chem.* 2016, 24, 4075–4099.
- Lušin, T. T.; Tomašić, T.; Trontelj, J.; Mrhar, A.; Peterlin-Mašič, L. Chem. Biol. Interact. 2012, 197, 8–15.
- 31. Xu, C.; Xu, J. J. Org. Chem. 2018, 83, 14733-14742.
- 32. Chung, H.; Kim, J.; González-Montiel, G. A.; Cheong, P. H. Y.; Lee, H. G. *Org. Lett.* **2021**, *23*, 1096–1102.
- 33. Schevenels, F.; Markó, I. E. Org. Lett. 2012, 14, 1298-1301.
- 34. Hua, T.-B.; Chao, F.; Wang, L.; Yan, C.-Y.; Xiao, C.; Yang, Q.-Q.; Xiao, W.-J. *Adv. Synth. Catal.* **2020**, *362*, 2615–2619.
- 35. Andersen, T. L.; Nordeman, P.; Christoffersen, H. F.; Audrain, H.; Antoni, G.; Skrydstrup, T. Angew. Chem., Int. Ed. 2017, 56, 4549–4553.
- 36 Mino, T.; Yamaoka, T.; Watanabe, K.; Masuda, C.; Kasano, S.; Yoshida, Y.; Takita, R.; Kasashima, Y.; Sakamoto, M. J. Org. Chem. 2022, 87, 7365–7377.

16. Copy of NMR for compounds

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

P. 1008 B. 1008 B.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

7,75,6896 7,77,77,75,6896 7,6899 7,6899 7,6899 6,6928 6,9925 6,9925 6,9925 6,9925 6,9925 7,72,71,76 7,72,72,72 7,72,72 7,72,72 7,72,72 7,72,72

7,5428 7,5372 7,5382 7,55188 7,3447 7,3352 7,3352 7,3352 7,3352 7,3352 7,3352 7,3352 7,3352 7,3352 7,3352 7,3352 7,55531 7,5555 18,7227 6,5707 7,5,555 18,7227 6,5707 7,5,555 18,7227 6,5707 7,5,555 18,7227 6,5707 7,5,555 18,7227 6,5707 7,5,555 18,727 7,5,555 18,727 19,

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-2.2820

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-2.2996

---2.3072 ---2.0872

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

C 28.1831 C 26.1831 C 26.1631 C 26.1631 C 26.1631 C 26.284 C

23313 22066 220265 202465 202465 202465 202465 202465 202465 202465 202465 202465 202465 10343 10343 10343 10343 10343 10343 10343 10343 10365 206665 200665 2007 10343 103543 103543 103555 100

8,1457 1,5540 1,5540 1,5540 1,75540 1,75540 1,75540 1,75540 1,72819

--9.63

210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Мe Ph F **6g** ¹⁹F NMR (376 MHz CDCl₃) 0 10 0 -10 -20 -30 -40 -50 -80 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

S138

2.4617

-2.6493

-15.75

f1 (ppm)

-15.74

9.0780 9.0780 7.7.9650 7.7.9650 7.7.9061 7.7.9061 7.7.7.076 7.6934 7.7.6839 7.7.6839 7.7.6839 7.7.6839 7.7.6839 7.7.6839 7.7.6839 7.7.5446

-10 210 200 190 110 100 f1 (ppm) 10 ò 180 170 160 150 140 130 120 90 80 70 60 50 40 30 20

S166

S171

90 80 70 60 50 40 30 20 10

110 100 f1 (ppm) 0 -10

210 200 190 180

170 160

150 140

130 120

S174

