Supporting Information

Room Temperature Charge-Transfer Phosphorescence from Organic Donor-Acceptor Co-crystals

Swadhin Garain,^a Shagufi Naz Ansari,^a Anju Ajayan Kongasseri,^a Bidhan Chandra Garain,^b Swapan K. Pati,^b and Subi J. George^{*a}

^a New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India

^{b.}Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India. Table of Contents

- 1. General Methods
- 2. Synthetic Schemes and Procedures
- 3. Experimental Procedures
- 4. Supporting Figures
- 5. Supporting Characterization Original Data
- 6. References
- 1. General Methods

<u>MMR Measurements</u>¹H and ¹³C NMR spectra were recorded on a BRUKER AVANCE-400 fourier transformation spectrometer with 400 and 100 MHz respectively. The spectra were calibrated with respect to the residual solvent peaks. The chemical shifts are reported in parts per million (ppm) with respect to TMS. Short notations used are, s for singlet, d for doublet, t for triplet.

Spectroscopic Measurements: Electronic absorption spectra were recorded on Jasco V-750 UV-Visible spectrophotometer and emission spectra were recorded on FLS1000 spectrometer, Edinburgh Instruments. Solution state UV-Vis and emission spectra were recorded in 10 mm path length cuvette. Fluorescence spectra of the films were recorded in front-face geometry to avoid self-absorption.

Lifetime and quantum yield measurements: Fluorescence lifetimes were performed on a Horiba Delta Flex time-correlated single-photon-counting (TCSPC) instrument. A 340 nm diode and 373 nm, 442 nm laser diode with a pulse repetition rate of 1 MHz was used as the light source. The instrument response function (IRF) was collected by using a scatterer (Ludox AS40 colloidal silica, Sigma-Aldrich). Phosphorescence lifetime ($\lambda_{exc.}$ = 340 nm and 430 nm), gated emission and time-resolved excitation and emission were measured on FLS1000 spectrometer, Edinburgh Instruments equipped with a micro flash-lamp (μ F2) set-up. Quantum yields were measured using an integrating sphere in the same instrument.

High Resolution Mass Spectrometry (HR-MS): HR-MS was carried out using Agilent Technologies 6538 UHD Accurate-Mass Q-TOFLC/MS.

<u>Single Crystal X-ray Crystallography</u>: Suitable single crystal of the $A+D_2$ and $A+D_4$ compound was mounted on a thin glass fibre with commercially available super glue. Intensity data were collected Bruker D8 VENTURE diffractometer equipped with a PHOTON detector and graphite-monochromated Mo-K α radiation ($\lambda \alpha = 0.71073$ Å, 50 kV, 1mA) at 100 K. APEX III software was used to collect, reduce and integrate the raw data. The direct method was used for solving crystal structure, followed by fullmatrix least-squares refinements against F2 (all data HKLF 4 format) using the SHELXL 2014/7 and difference Fourier synthesis and least-squares refinement revealed the positions of the non-hydrogen atoms. All nonhydrogen atoms were refined anisotropically and remaining hydrogen atoms were placed in geometrically constrained positions and refined with isotropic temperature factors, generally 1.2 × Ueq of their parent atoms. Molecular structure drawings were prepared using the program Mercury (ver 3.1). We have selected the best crystal; however, few alerts are generated and can't be resolved despite several attempts due to the weak diffraction of crystals.

Computational Details: Ground State (S₀) of donor-acceptor pairs (**A+D**₅) was optimized using density functional theory (DFT). We are not able to optimize other donor-acceptor pairs. Excitation energies were calculated using B3LYP functional with 6-31+g(d) basis set except for Br and I.^[S1,52] For which we have used Lanl2dz functional with effective core potential. NTO calculations were done after TDDFT calculations. No solvent corrections were added in this work. The spin orbit coupling effect were considered to be a perturbation of scalar relativistic Kohn-Sham orbitals after SCF and TDDFT calculations (pSOC-TDDFT). The SOC matrix elements were calculated using B3LYP functional with a Slater type all-electron TZP basis set for all atoms as implemented in the ADF package.^[S2-S6] While the excited state calculations were performed using B3LYP exchange-correlation functional with the same basis sets as mentioned before.

2. Synthetic Scheme and Procedure:

Pyromellitic dianhydride (PMDA) was purchased from Sigma Aldrich; Durene and 2-Ethylhexyl amine were purchased from Alfa-Aesar; 1-Bromo-4-iodobenzene and 1,4-Dibromobenzene were purchased from TCI, Acetic acid was purchased from Spectrochem and used without further purification.

Scheme S1. Synthetic scheme for PmDI (Acceptor)

PmDI: Pyromellitic dianhydride (1) (0.50 g, 2.4mmol) was taken in a 100 mL round bottom flask and 25 mL acetic acid was added into it and stirred at room temperature for 30 minutes. 2-Ethylhexylamine (0.66 g, 5.1 mmol) was added to the reaction mixture and the reaction mixture was allowed to reflux for 12 hours. Water was added to the reaction mixture to get white precipitate. The precipitate was then filtered and dried under vacuum for 10 hours. Column chromatography was performed using chloroform as an eluent to get the pure product as white solid (0.86 g, 85 % yield). ¹H NMR (CDCl₃, 400 MHz), δ (ppm) = 8.26 (s, 2H), 3.64 (d, 4H, J = 7.2 Hz), 1.85 (t, 2H, J = 6 Hz), 1.55-1.26 (m, 16 H), 0.94-0.87 (m, 12

H); ¹³C NMR (CDCl₃, 100 MHz), δ (ppm) = 166.6, 137.2, 118.2, 42.6, 38.3, 30.6, 28.5, 23.9, 23.00, 14.0 10.4 HRMS (APCI): *m/z* calculated for C₂₆H₃₆N₂O₄: 440.2675: observed 440.2760 [M]⁻¹.

3. Experimental Procedures

We have used the following acceptors and donors for the ${}^{3}CT$ and ${}^{3}LE$ phosphorescence studies. The donors $D_{1}{}^{57}$, $D_{2}{}^{58}$ and $D_{3}{}^{59}$ were synthesized according to the literature procedures.

Protocol for co-crystal synthesis: We have prepared saturated solutions of both donor and acceptors in chloroform and mixed them in a 1:1 molar ratio. Then acetonitrile was added into it as a bad solvent. The mixture was heated at 70 °C for ten minutes and then kept at room temperature for crystallization. Protocol for sample preparation: All solution state studies were performed, keeping the final concentration of the samples to 0.05 mM and 0.1 mM from a stock solution of THF (1 mM). For thin films, acceptor molecules (1 mg) were mixed with 100 mg of PMMA. This mixture was then heated at 50 °C for 10 minutes followed by sonication (5 minutes) to dissolve all the components thoroughly. Then, 0.5 mL of this solution was drop-casted on a clean quartz substrate. Finally, the drop-casted thin films were dried at 60 °C for 30 minutes before performing the photophysical studies. For the phosphorescence studies of the co-crystal, a small amount of the co-crystal was placed in between two quartz plates.

4. Supporting Figures

Figure S1. Fluorescence lifetime decay profiles of **PmDI** in various solvents: ¹LE emission in THF ($\lambda_{exc.}$ = 340 nm, $\lambda_{collected}$ = 420 nm), ¹CT emission in toluene, *p*-xylene, mesitylene ($\lambda_{exc.}$ = 404 nm, $\lambda_{collected}$ = 500 nm) and TMB ($\lambda_{exc.}$ = 442 nm, $\lambda_{collected}$ = 500 nm), IRF is the instrument response function ($\tau_{avg.}$ = 1.82 ns, 2.62 ns and 6.42 ns for toluene, *p*-xylene and mesitylene, respectively). Further details are mentioned in Table S1.

Note: Lifetime analyses show that ¹CT emission of **PmDI** in various aromatic solvents have a higher lifetime than the ¹LE emission in THF, further validating the CT nature of the broad emission band as a result of the CT complexation of **PmDI** with aromatic solvents.

Figure S2. Comparison of the spectroscopic studies of $\mathbf{A}+\mathbf{D}_2$ complex and \mathbf{A} alone at 77 K in THF glassy matrix: a) Excitation spectra ($\lambda_{\text{monitored}} = 560 \text{ nm}$), b) delayed emission spectra (delay time = 0.5 ms). Corresponding lifetime decay profiles when excited at c) $\lambda_{\text{exc.}} = 340 \text{ nm}$, ($\tau_{\text{avg.}} = 0.48 \text{ s}$ and for \mathbf{A} alone and $\tau_{\text{avg.}} = 0.33 \text{ s}$ (excluding fast component) for $\mathbf{A}+\mathbf{D}_2$), and d) $\lambda_{\text{exc.}} = 430 \text{ nm}$ ($\tau_{\text{avg.}} = 0.16 \text{ ms}$). In both cases the emission collected at 560 nm. (Concentration of each component is 0.1 mM). Further details of lifetimes are mentioned in Table S2.

Note: a) Excitation spectra of $\mathbf{A}+\mathbf{D}_2$ pair shows red-shifted band compared to the bare acceptor (**A**), suggesting the formation of CT complex even in solution under cryogenic conditions. Emission spectrum of $\mathbf{A}+\mathbf{D}_2$ gets red-shifted by 44 nm ($\lambda_{max.} = 544$ nm) compared to **A** upon direct excitation at the CT band ($\lambda_{exc.} = 430$ nm) pointing towards the CT nature of the phosphorescence emission. Unlike **A**, the sharp decay component in the lifetime decay plot of $\mathbf{A}+\mathbf{D}_2$ implies the formation of another state different from that of ³LE state, which is the ³CT state. However, we have successfully extracted the newly formed state upon selectively exciting at the CT band, which clearly shows a short lifetime component compared to the ³LE emission, and validated our hypothesis of ³CT state formation.

Figure S3. Normalized steady-state and delayed (delay time = 50 μ s) excitation (above) and emission (below) spectra of a,c) **A+D**₁ and b,d) **A+D**₂ co-crystal ($\lambda_{exc.}$ = 340 nm $\lambda_{monitored}$ = 560 nm). **Note:** The delayed excitation spectrum validates the long-lived nature of the CT process and its role in the origin of long-lived greenish-yellow emission of the co-crystals.

Figure S4. Spectroscopic studies of $A+D_1$ and $A+D_2$ co-crystals under air and vacuum: Steady-state emission spectra ($\lambda_{exc.} = 340 \text{ nm}$) of a) $A+D_1$ and c) $A+D_2$ and corresponding lifetime decay profiles ($\lambda_{exc.} = 340 \text{ nm}$, $\lambda_{collected} = 560 \text{ nm}$) of b) $A+D_1$ ($\tau = 22.02 \text{ µs}$ in air and 34.14 µs in vacuum) and d) $A+D_2$ ($\tau = 12.24 \text{ µs}$ in air and 17.39 µs in vacuum). Further details of lifetimes are mentioned in Table S3.

Note: Increase in the emission intensity and lifetime under vacuum confirms the presence of triplet contribution to the emission from the co-crystals.

Figure S5. Temperature dependent studies of $A+D_1$ and $A+D_2$ co-crystals: Steady-state emission spectra ($\lambda_{exc.} = 340 \text{ nm}$) of a) $A+D_1$ and c) $A+D_2$. Corresponding lifetime decay profiles ($\lambda_{exc.} = 340 \text{ nm}$, $\lambda_{collected} = 560 \text{ nm}$) of b) $A+D_1$ ($\tau = 48.47 \text{ } \mu \text{s}$ at 20 K and 24.12 μs at 300 K), and d) $A+D_2$ ($\tau = 35.83 \text{ } \mu \text{s}$ at 20 K and 17.39 μs at 300 K). Further details of lifetimes are mentioned in Table S4.

Note: The increase in the emission intensity (a,c) and lifetime (b,d) upon decreasing the temperature confirm the phosphorescence nature of the emission.

Figure S6. Steady-state emission spectra of individual donors (D_1 and D_2), acceptor (A) shows weakly emissive nature of individual donors and acceptor ($\lambda_{exc.} = 340$ nm).

Figure S7. Spectroscopic studies under de-aerated conditions and temperature dependent studies of **A** (**PmDI**) in PMMA films (1 wt.% of **A** doped in PMMA matrix): a) Steady-state emission spectra ($\lambda_{exc.}$ = 340 nm) and b) lifetime decay profile ($\lambda_{exc.}$ = 340 nm, $\lambda_{collected}$ = 500 nm) under aerated and vacuum ($\tau_{avg.}$ = 7.72 µs in air and $\tau_{avg.}$ = 30.79 ms in vacuum). Inset represents the zoomed in lifetime decay profile in presence of air. c) Steady-state emission spectra ($\lambda_{exc.}$ = 340 nm) and d) lifetime decay profile ($\lambda_{exc.}$ = 340 nm, $\lambda_{collected}$ = 500 nm) and d) lifetime decay profile ($\lambda_{exc.}$ = 340 nm, $\lambda_{collected}$ = 500 nm) and d) lifetime decay profile ($\lambda_{exc.}$ = 340 nm, $\lambda_{collected}$ = 500 nm) in variable temperature measurements ($\tau_{avg.}$ = 525 ms at 20 K and 77 ms at 300 K). Further details of lifetimes are mentioned in Table S5.

Note: The increase in the (a) emission intensity and (b) lifetime under vacuum confirms the presence of triplet contribution to the emission. Further, an increase in the (c) steady-state emission intensity and

(d) lifetime upon decreasing the temperature confirms the locally excited (³LE) phosphorescence nature of the **PmDI** emission in the absence of any donor molecules.

Figure S8. Phosphorescence study of **A** under cryogenic conditions (77 K in THF): a) Steady-state emission spectrum ($\lambda_{exc.}$ = 340 nm) and b) lifetime decay profile ($\lambda_{exc.}$ = 340 nm, $\lambda_{collected}$ = 500 nm, $\tau_{avg.}$ = 0.54 s) ([c] = 0.05 mM). Further details of lifetimes are mentioned in Table S6.

Note: Given steady-state emission spectrum and lifetime decay profile of the acceptor at very low concentration in THF glassy matrix is attested to the locally excited (³LE) phosphorescence emission of **PmDI** monomer in the absence of any donor molecules.

Figure S9. Comparison of ³LE phosphorescence of **A** alone and ³CT phosphorescence $A+D_1$ and $A+D_2$ cocrystals: Delayed emission spectra of **A** at cryogenic conditions (blue, [c] = 0.05 mM in THF), in PMMA matrix (black, 1 wt.% of **A** doped in PMMA matrix) shows ³LE phosphorescence and $A+D_1$ and $A+D_2$ at ambient conditions show ³CT phosphorescence (delay time = 1 ms for **A** and 50 ms for $A+D_1$ and $A+D_2$, $\lambda_{exc.}$ = 340 nm for **A** and 430 nm $A+D_1$ and $A+D_2$).

Note: Red-shifted and broad emission spectra of $A+D_1$ and $A+D_2$ co-crystals compared to the acceptor (A) phosphorescence emission suggests the ³CT nature of the formers' emission.

Figure S10. Temperature dependent studies of $A+D_1$ and $A+D_2$ co-crystals by the selective excitation at the CT absorption: Steady-state emission spectra ($\lambda_{exc.} = 430 \text{ nm}$) of a) $A+D_1$ and c) $A+D_2$. Lifetime decay profiles ($\lambda_{exc.} = 430 \text{ nm}$, $\lambda_{collected} = 560 \text{ nm}$) of b) $A+D_1$ ($\tau = 49.39 \text{ }\mu\text{s}$ at 20 K and 35.67 μs at 300 K) and d) $A+D_2$ ($\tau = 35.38 \text{ }\mu\text{s}$ at 20 K and 17.33 μs at 300 K). Further details of lifetimes are mentioned in Table S4. **Note:** Increase in the (a) emission intensity and (b) lifetime upon decreasing the temperature on selective excitation at the CT band hints towards the phosphorescence nature of the CT emission.

Figure S11. Time-resolved a) excitation spectra, ($\lambda_{\text{monitored}} = 560 \text{ nm}$), b) emission spectra upon exciting at $\lambda_{\text{exc.}} = 340 \text{ nm}$ and c) upon selective excitation at the CT band ($\lambda_{\text{exc.}} = 430 \text{ nm}$) of **A+D**₁ co-crystal.

Note: Time-resolved emission experiments indicate no spectral changes with gradual progress in time, suggesting that emission comes from the same excited state, i.e., ³CT state and there is no transfer of excitons to other excited states.

Bond precision:	C-C = 0.0355 A		Wavelength	n=0.71073	>			NOMOVE	FOR EP29_0	Prob = Temp =	= 50 = 300
Cell:	a=5.4537(5)	b=38.527(4	1)	c=15.1042(15)	20			C28	J C C C C C C C C C C C C C C C C C C		
Temperature:	300 K	5000-55170	2(4)	ganna-90		125	A	C2	n-9-0-119		
	Calculated		Reported		c	33	K 30	C23 624-0	C30_0 V L19		
Volume	3167.0(5)		3167.0(5)		2	$\langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle$	C28 03 C28		N2_c C26_c C17 h	6//)	
Space group	P 21/m		P 21/m		122	ALX	DA C	C24 C25 C22 04_0			
Hall group	-P 2yb		-P 2yb		8	SAF		C21 C20	02_b	\sim	
Moiety formula	C26 H36 N2 O4, C O4, C10 H12 I2,	24 H30 N2 2(C H3)	?		5	C32	- C30 9 C26 04	L cli-			
Sum formula	C62 H84 I2 N4 O8		C3.35 H4. 00.16	54 IO.11 NO.22	N	C18	02 02 02 02 00	D-D CB_D			
Mr	1267.13		64.17		00	- CA	201 29C13	Ce 7 CIO D-	OCT BOK H		
Dx,g cm-3	1.329		1.245			17	7 Hallon	2 CD			
Z	2		37		ů.	C19	CI2	P 17 3 C9	01_b V_C15_b		
Mu (mm-1)	1.046		1.036		8		LIB I MAPO				
F000	1308.0		1228.0				6C14 01	l			
F000'	1306.59				8						
h,k,lmax	6,45,17		6,45,17		2		C15 V	á 1001	/ 1001_a		
Nref	5692		5689		,						
Tmin,Tmax	0.847,0.950		0.518,0.7	746	-p			$\mathbf{D}^{\mathbf{C}}$			
Tmin'	0.847				-				Con Contraction		
Correction metho AbsCorr = MULTI-	d= # Reported T I SCAN	Limits: Tmi	n=0.518 Tr	nax=0.746	PLATON						
Data completenes	s= 0.999	Theta(m	ax)= 24.99	9	Z 76	shel×	P 21/m	R = 0.11	R	ES= 0	1 X

Figure S12. Structure data and cell parameters of A+D₂ single crystal. CCDC Number is 2159661.

Figure S13. a) Unit cell and b) slipped stacked arrangement of acceptor and donor showing various intermolecular halogen-carbonyl interactions of **A+D**₂ single crystal (we have removed ethyl hexyl chain for better illustration).

Figure S14. Excitation energies of $A+D_1$ obtained from TDDFT calculation in the ground state geometry using B3LYP functional in conjunction with 6-31+g(d) basis set for C, H, N, O and LANL2DZ basis set for I with effective core potential.

Figure S15. Natural Transition Orbitals (NTOs) for $A+D_1$. Singlet states are calculated at TD-B3LYP level with 6-31+g(d) basis set for C, H, O and N and LANL2DZ basis set for I with effective core potential, λ is the maximum value of singular value decomposition (SVD).

Figure S16. Natural Transition Orbitals (NTOs) for $A+D_1$. Triplet states are calculated at TD-CAMB3LYP level with 6-31+g(d) basis set for C, H, O and N and LANL2DZ basis set for Br and I with effective core potential, λ is the maximum value of singular value decomposition (SVD).

Figure S17. ³CT phosphorescence studies of **A**+**D**₃ co-crystals and comparison with the ³LE phosphorescence of **A** alone and ³CT phosphorescence **A**+**D**₂ co-crystals: a) Excitation spectra of acceptor (**A**) alone and donor-acceptor co-crystal **A**+**D**₂ (red line), **A**+**D**₃ (orange line), red-shifted band of donor-acceptor co-crystal compared to the bare acceptor (**A**) phosphorescence emission suggests the formation of CT state ($\lambda_{monitored} = 560 \text{ nm}$). b) Steady-state emission spectra of donor-acceptor co-crystal (**A**+**D**₃). c) Corresponding lifetime decay profiles when excited at LE ($\lambda_{exc} = 340 \text{ nm}$) and CT ($\lambda_{exc.} = 430 \text{ nm}$) band, in both cases the emission collected at 560 nm ($\tau_{avg} = 106.6 \mu s$ in air upon 340 nm excitation). d) Delayed

emission spectra of acceptor (**A**) alone at cryogenic conditions ([c] = 0.05 mM in THF) and in PMMA matrix (1 wt.% of **A** doped in PMMA matrix) show ³LE phosphorescence, and $A+D_2$ and $A+D_3$ in air show ³CT phosphorescence (delay time = 1 ms for **A** and 50 µs for $A+D_2$ and $A+D_3$). Further details of lifetimes are mentioned in Table S7.

Note: Here, we have used a donor **D**₃ with less electron-donating capability (two methyl groups are removed), which results in decrease in the extend of CT as evident from the excitation spectra. The CT band of **A**+**D**₃ is blue-shifted compared to **A**+**D**₂, confirming reduced CT complexation in former when compared to latter. In addition, the comparison of the normalized delayed emission spectra (d) of **A** (³LE), **A**+**D**₂ and **A**+**D**₃ (³CT) reiterates the possibility of modulation of emission by varying the donor strength.

Figure S18. Spectroscopic studies in de-aerated conditions and temperature dependent studies of **A+D**₄ co-crystal: a) Steady-state emission spectra ($\lambda_{exc.} = 340 \text{ nm}$) and b) corresponding lifetime decay profiles ($\lambda_{exc.} = 340 \text{ nm}$, $\lambda_{collected} = 560 \text{ nm}$) under air and vacuum ($\tau_{avg} = 0.38 \text{ ms}$ in air and, 0.41 ms in vacuum). c) Steady-state emission spectra ($\lambda_{exc.} = 340 \text{ nm}$) and b) corresponding lifetime decay profile ($\lambda_{exc.} = 340 \text{ nm}$, $\lambda_{collected} = 560 \text{ nm}$, $\tau_{avg} = 0.61 \text{ ms}$ at 20 K and 0.49 at 300 K) at different temperatures. Further details of lifetimes are mentioned in Table S8.

Note: Increase in the (a) emission intensity and (b) lifetime under vacuum confirms the presence of triplet contribution to the emission. Further, an increase in the (c) steady-state emission intensity and (d) lifetime upon decreasing the temperature confirms the phosphorescence nature of the emission.

Figure S19. Structure data and cell parameters of A+D₄ single crystal. CCDC Number is 2159217.

Figure S20. a) Unit cell and b) extended single crystal structure of **A+D**₄ showing various intermolecular halogen bonding interactions (we have removed ethyl hexyl chain for better illustration).

Note: Six halogen bonding interactions (bromo-carbonyl and iodo-carbonyl) per donor molecule results in significant enhancement of the SOC value via external heavy atom effect to achieve very high phosphorescence efficiency from ³LE state of **PmDI**.

Figure S21. Phosphorescence studies of **A**+**D**₅ co-crystal: a) Excitation spectra of the acceptor (**A**) alone and donor-acceptor co-crystal (**A**+**D**₅) ($\lambda_{\text{monitored}} = 560 \text{ nm}$), b) steady-state and gated emission spectra of **A**+**D**₅ co-crystal ($\lambda_{\text{exc.}} = 340 \text{ nm}$, Inset: Photograph of **A**+**D**₅ co-crystal under 365 nm UV lamp in air). c) Lifetime decay profile of **A**+**D**₅ co-crystal ($\lambda_{\text{exc.}} = 340 \text{ nm}$, $\lambda_{\text{collected}} = 560 \text{ nm}$, $\tau_{\text{avg}} = 2.29 \text{ ms}$). d) Normalized delayed emission spectra of acceptor (**A**) alone at 77 K in THF, doped in PMMA matrix at 20 K (1 wt.% with respect to PMMA) and **A**+**D**₅ at room temperature ($\lambda_{\text{exc.}} = 340 \text{ nm}$, delay time = 1 ms). Further details of lifetimes are mentioned in Table S9.

Note: Here, we have used 1,4-dibromobenzene as the donor (D_5), which shows lesser heavy-atom effect compared to donor D_4 . The excitation spectrum of $A+D_5$ is similar to A which indicates that no CT complexation is present in the former. Similarly, the gated emission spectra of A and $A+D_5$ are exactly similar suggesting the origin of co-crystal emission to be the ³LE phosphorescence of PmDI. However, the decreased heavy atom effect is reflected in the quantum yield measurement, where $A+D_5$ shows a quantum yield of 11 %, much lesser than that of $A+D_4$ (52 %), indicating the role of the heavy iodine atom in $A+D_4$ co-crystal.

Figure S22. Powder XRD pattern of A+D₄ and A+D₅ co-crystals.

Note: PXRD suggests that the molecular packing of A+D₄ and A+D₅ co-crystals are similar.

Figure S23. Excitation energies of $A+D_5$ pair obtained from TDDFT calculation in the ground state geometry using B3LYP functional in conjunction with 6-31+g(d) basis set for C, H, N, O and LANL2DZ basis set for Br with effective core potential.

Figure S24. Natural Transition Orbitals (NTOs) for $A+D_5$. Singlet states calculated at TD-B3LYP level with 6-31+g(d) basis set for C, H, O and N and LANL2DZ basis set for I with effective core potential, λ is the maximum value of singular value decomposition (SVD).

Figure S25. Natural Transition Orbitals (NTOs) for $A+D_5$. Triplet states calculated at TD-B3LYP level with 6-31+g(d) basis set for C, H, O and N and LANL2DZ basis set for Br and I with effective core potential, λ is the maximum value of singular value decomposition (SVD).

Note: The absence of CT complexation between D_5 with the **PmDI** core (acceptor) is clear from the computed natural transition orbitals (NTOs) of the first excited singlet (S₁) and triplet (T₁) states, where the hole and electron both are located on the π -surface of the acceptor, suggesting towards the LE transition.

Solvents	λ _{exc.} (nm)	$\lambda_{\text{collected}}\left(nm ight)$	$ au_1$ (ns)	$ au_2$ (ns)	$ au_3$ (ns)	$<\tau_{avg}>(ns)$
THF	340	420	0.80 (95%)	2.00 (5%)	-	0.86
Toluene	404	500	0.53 (38%)	1.25 (48%)	7.29 (14%)	1.82
<i>p</i> -Xylene	404	500	2.52 (20%)	0.74 (61%)	8.78 (19%)	2.62
Mesity- lene	404	500	3.10 (45%)	10.63 (47%)	0.41 (8%)	6.42
ТМВ	442	500	0.37 (12%)	2.16 (79%)	9.00 (9%)	2.56

Table S1. Summary of fluorescence decay of PmDI (A) in various solvents.

Table S2. Summary of phosphorescence decay of A+D₂ complex and A alone at 77 K in THF glassy matrix.

	λ _{exc.} (nm)	$\lambda_{\text{collected}}$ (nm)	τ ₁ (s)	τ ₂ (s)	τ ₃ (s)	<\u03ct_avg.>(s)
Α	340	560	0.28 (27%)	0.56 (73%)	-	0.48
A+D ₂	340	560	0.33 (100 %)	-	-	0.33
A+D ₂	430	560	0.016 ms (32%)	0.11 ms (39 %)	0.37 ms (29%)	0.16 ms

Table S3. Summary of phosphorescence decay of A+D₁ and A+D₂ co-crystals under air and vacuum.

	$\lambda_{exc.}(nm)$	$\lambda_{\text{collected}}(\text{nm})$	τ (μs)
A+D ₁ in Air	340	560	22.02 (100%)
A+D 1 in Vac- uum	340	560	34.14 (100%)
A+D₂ in Air	340	560	12.24 (100 %)
A+D ₂ Vacuum	340	560	17.39 (100%)

Table S4. Summary of phosphorescence decay of A+D₁ and A+D₂ co-crystals in different temperature.

	λ _{exc.} (nm)	$\lambda_{collected}$ (nm)	τ (μs) at 20 K	τ (μs) at 300 K
A+D ₁	340	560	48.47 (100%)	34.12 (100%)
A+D ₁	430	560	49.39 (100%)	35.67 (100%)
A+D ₂	340	560	35.83 (100 %)	17.39 (100%)
A+D ₂	430	560	35.38 (100%)	17.33 (100%)

Table S5. Summary of phosphorescence decay of **PmDI**, doped in PMMA matrix (1 wt.% with respect to PMMA) in de-aerated conditions and in different temperature.

	λ _{exc} .(nm)	$\lambda_{collected}$ (nm)	$ au_1$ (ms)	$ au_2$ (ms)	$ au_3$ (ms)	< $ au_{avg}$ > (ms)
Air	340	500	1.09 μs (66 %)	10.35 μs (28 %)	68.37 μs (5 %)	7.72 μs
Vacuum	340	500	4.28 (10 %)	19.57 (43 %)	77.86 (47 %)	30.79
20 K	340	500	340 (22%)	590 (78 %)	-	535
300 K	340	500	30.80 (60 %)	147 (40 %)	-	77.28

Table S6. Summary of phosphorescence decay of **PmDI** (**A**) under cryogenic conditions (77 K in THF, [c]= 0.05 mM).

	λ _{exc.} (nm)	$\lambda_{\text{collected}}(\text{nm})$	τ ₁ (s)	τ ₂ (s)	τ ₃ (s)	<\u03ct_avg.>(s)
77 K	340	500	0.298 (26 %)	0.595 (78 %)	-	0.54

Table S7. Summary $k_P(s^{-1})$, $k_{ISC}(s^{-1})$, and $k_n(s^{-1})$ of $A+D_1$, $A+D_2$, $A+D_3$, $A+D_4$ and $A+D_5$ co-crystals.

Co-crystals	Φ _P	<\c>F	$k_{ISC} = \Phi_{\rm P}/\langle \tau \rangle_{\rm F}$
A+D ₁	46 %	13.3 ns ($\lambda_{exc.}$ = 442 nm, $\lambda_{collected}$ = 460 nm)	3.46 x 10 ⁻⁹ s ⁻¹
A+D ₂	43 %	13.3 ns ($\lambda_{exc.}$ = 442 nm, $\lambda_{collected}$ = 460 nm)	3.23 x 10 ⁻⁹ s ⁻¹
A+D ₃	42 %	13.4 ns ($\lambda_{exc.}$ = 442 nm, $\lambda_{collected}$ = 460 nm)	3.13 x 10 ⁻⁹ s ⁻¹
A+D ₄	52 %	1.8 ns ($\lambda_{\text{exc.}}$ = 373 nm, $\lambda_{\text{collected}}$ = 430 nm)	2.88 x 10 ⁻⁸ s ⁻¹
A+D₅	11 %	1.3 ns ($\lambda_{\text{exc.}}$ = 442 nm, $\lambda_{\text{collected}}$ = 430 nm)	8.46 x 10 ⁻⁹ s ⁻¹

Co-crystals	<s h<sub>SO T></s h<sub>	T_1
A+D ₁	S ₀	34.21
A+D ₂	S ₀	63.94
A+D ₄	S ₀	17.73
A+D₅	S ₀	10.45

Table S9. Summary of phosphorescence decay of A+D₃ co-crystal.

λ _{exc.} (nm)	$\lambda_{\text{collected}}$ (nm)	τ ₁ (μs)	τ ₂ (μs)	<τ _{avg.} >(μs)
340	560	47.60 (47 %)	159 (53 %)	106.64
430	560	33.10 (39 %)	132 (61 %)	93.43

Table S10. Summary of phosphorescence decay of A+D4 co-crystals in de-aerated conditions and in dif-

ferent temperature.

	λ _{exc.} (nm)	$\lambda_{collected}$ (nm)	$ au_1$ (ms)	$ au_2$ (ms)	$ au_3$ (ms)	< $ au_{avg}$ > (mS)
Air	340	500	0.22 (35 %)	0.47 (65 %)	-	0.38
Vacuum	340	500	0.19 (28 %)	0.49 (72 %)	-	0.406
20 K	340	500	0.026 (14 %)	0.668 (85 %)	3.32 (1 %)	0.61
300 K	340	500	0.17 (10 %)	0.51 (89 %)	1.64 (1 %)	0.49

Table S11. Summary of phosphorescence decay of A+D₅ co-crystals.

λ _{exc.} (nm)	$\lambda_{\text{collected}}$ (nm)	$ au_1$ (ms)	$ au_2$ (ms)	$ au_3$ (ms)	< $ au_{avg}$ > (ms)
340	560	0.31 (8 %)	1.36 (52 %)	3.0 (52 %)	2.29

5. Supporting Characterization Original Data

Figure S26. ¹H NMR spectrum of PmDI in CDCl₃.

Figure S27. ¹³C NMR spectrum of PmDI in CDCl₃.

Figure S28. APCI-HR-MS spectrum of PmDI.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) shelx

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: shelx

Bond precision:	C-C = 0.0344 A	V	Navelength=0.71073			
Cell:	a=5.4537(5)	b=38.527(4)	c=15.1042(15)		
Temperature:	alpha=90 300 K	beta=93.70	2(4)	gamma=90		
	Calculated		Reported			
Volume	3167.0(5)		3167.0(5)			
Space group	P 21/m		P 21/m			
Hall group	-P 2yb		-P 2yb			
Moiety formula	C26 H36 N2 O4, 0 I2)	.5(C10 H12	?			
Sum formula	C31 H42 I N2 O4		C3.35 H4. 00.16	54 IO.11 NO.22		
Mr	633.57		64.17			
Dx,g cm-3	1.329		1.245			
Z	4		37			
Mu (mm-1)	1.046		1.036			
F000	1308.0		1228.0			
F000'	1306.59					
h,k,lmax	6,45,17		6,45,17			
Nref	5692		5689			
Tmin,Tmax Tmin'	0.847,0.950 0.847		0.518,0.7	46		

Correction method= # Reported T Limits: Tmin=0.518 Tmax=0.746 AbsCorr = MULTI-SCAN

Data completeness= 0.999

Theta(max) = 24.999

R(reflections) = 0.1088(3830)

S = 1.141

Npar= 319

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

🗳 Alert level A

🗣 Alert level A		
SHFSU01_ALERT_2_A The absolute value of parameter shift to s	u rati	o > 0.20
Absolute value of the parameter shift to su ratio	given	2.659
Additional refinement cycles may be required.		
PLAT080_ALERT_2_A Maximum Shift/Error		2.66 Why ?
PLAT241_ALERT_2_A High 'MainMol' Ueq as Compared to Neighbo	rs of	C18 Check
PLAT241_ALERT_2_A High 'MainMol' Ueq as Compared to Neighbo	rs of	C32 Check
PLAT242_ALERT_2_A Low 'MainMol' Ueq as Compared to Neighbo	rs of	C14 Check
PLAT242_ALERT_2_A Low 'MainMol' Ueq as Compared to Neighbo	rs of	C31 Check
PLAT413_ALERT_2_A Short Inter XH3 XHn H33BH33B		1.67 Ang.
-2-x,1-y,2-z	-	3_367 Check

Alert level B

PLAT043_ALERT_1_B	Calculated and Reported Mol. Weight Differ by	39.99 Check
PLAT213_ALERT_2_B	Atom C32 has ADP max/min Ratio	4.5 prolat
PLAT213_ALERT_2_B	Atom C33 has ADP max/min Ratio	4.6 prolat
PLAT220_ALERT_2_B	NonSolvent Resd 1 C Ueq(max)/Ueq(min) Range	10.0 Ratio
PLAT220_ALERT_2_B	NonSolvent Resd 2 C Ueq(max)/Ueq(min) Range	10.0 Ratio
PLAT242_ALERT_2_B	Low 'MainMol' Ueq as Compared to Neighbors of	C17 Check
PLAT242_ALERT_2_B	Low 'MainMol' Ueq as Compared to Neighbors of	C27 Check
PLAT242_ALERT_2_B	Low 'MainMol' Ueq as Compared to Neighbors of	C30 Check
PLAT342_ALERT_3_B	Low Bond Precision on C-C Bonds	0.03443 Ang.
PLAT412_ALERT_2_B	Short Intra XH3 XHn H17AH19A .	1.79 Ang.
	x,y,z =	1_555 Check
PLAT412_ALERT_2_B	Short Intra XH3 XHn H31BH33B .	1.76 Ang.
	x,y,z =	1_555 Check

Alert level C

ABSMU01_ALERT_1_C The ratio of given/expected absorption coefficient lies outside the range 0.99 <> 1.01 Calculated value of mu = 1.053 Value of mu given = 1.036 RINTA01_ALERT_3_C The value of Rint is greater than 0.12 Rint given 0.136

 PLAT020_ALERT_3_C The Value of Rint is Greater Than 0.12
 0.136 Report

 PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ
 Please Check

 PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)...
 Please Check

 0.136 Report 0.11 Report 0.28 Report PLAT082_ALERT_2_C High R1 Value PLAT084_ALERT_3_C High wR2 Value (i.e. > 0.25) PLAT213_ALERT_2_C Atom C28 has ADP max/min Ratio 3.3 prolat PLAT213_ALEKI_2_C Atom C20 PLAT218_ALERT_3_C Constrained U(ij) Components(s) for C13 PLAT218_ALERT_3_C Constrained U(ij) Components(s) for C16 6 Check 6 Check 6 Check 6 Check 6 Check PLAT218_ALERT_3_C Constrained U(ij) Components(s) for C14 . PLAT218_ALERT_3_C Constrained U(ij) Components(s) for C30 . PLAT218_ALERT_3_C Constrained U(ij) Components(s) for C30

PLAT218_ALERT_3_C	Const	cained U(ij)	Component	ts(s) i	for C	231		6	Check
PLAT218_ALERT_3_C	Const	cained U(ij)	Component	ts(s) i	for C	217		6	Check
PLAT222_ALERT_3_C	NonSo	lvent Resd 1	H Uis	o(max),	/Uisc	o(min)	Range	10.0	Ratio
PLAT222_ALERT_3_C	NonSo	lvent Resd 2	H Uis	o(max),	/Uisc	o(min)	Range	10.0	Ratio
PLAT230_ALERT_2_C	Hirshi	Eeld Test Dif	ff for	C28		C29		6.6	s.u.
PLAT234_ALERT_4_C	Large	Hirshfeld Di	lfference	C8	1	C10	× .	0.17	Ang.
PLAT234_ALERT_4_C	Large	Hirshfeld Di	fference	N2	5 7.	C26		0.20	Ang.
PLAT234_ALERT_4_C	Large	Hirshfeld Di	lfference	C20		C24		0.16	Ang.
PLAT242_ALERT_2_C	Low	'MainMol' U	Jeq as Con	mpared	to N	leighbo	rs of	C12	Check
PLAT242_ALERT_2_C	Low	'MainMol' U	Jeq as Co	mpared	to N	leighbo	rs of	C13	Check
PLAT242_ALERT_2_C	Low	'MainMol' U	Jeq as Co	mpared	to N	leighbo	rs of	C28	Check
PLAT250_ALERT_2_C	Large	U3/U1 Ratio	for Aver	age U(:	i,j)	Tensor		3.0	Note
PLAT250_ALERT_2_C	Large	U3/U1 Ratio	for Aver	age U(:	i,j)	Tensor		2.7	Note
PLAT260_ALERT_2_C	Large	Average Ueq	of Resid	ue Inci	ludin	ng	01	0.242	Check
PLAT260_ALERT_2_C	Large	Average Ueq	of Resid	ue Inci	ludin	ng	03	0.279	Check
PLAT361_ALERT_2_C	Long	C(sp3)-C(sp	o3) Bond	C27	5 	- C28		1.65	Ang.
PLAT411_ALERT_2_C	Short	Inter HH	Contact	H18B		.H32A	× .	2.06	Ang.
					1+x	k,y,z	-	1_655 Chec	ck
PLAT412_ALERT_2_C	Short	Intra XH3	. XHn	H3A		H5B		1.89	Ang.
					х	K,Y,Z	-	1_555 Chec	ck
PLAT413_ALERT_2_C	Short	Inter XH3	. XHn	H19C		H19C		2.03	Ang.
				-1-2	x,1-y	/,1-z	-	3_466 Chec	ck
PLAT906_ALERT_3_C	Large	K Value in t	the Analy	sis of	Vari	lance .		20.196	Check
PLAT906_ALERT_3_C	Large	K Value in t	the Analy	sis of	Vari	lance .		3.897	Check
PLAT906_ALERT_3_C	Large	K Value in t	the Analy	sis of	Vari	lance .		2.103	Check
PLAT972_ALERT_2_C	Check	Calcd Resid.	Dens.	1.12Ang	g Fro	om C20		-2.29	eA-3

```
Alert level G
```

FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C3.35 H4.54 I0.11 N0.22 00.16 Atom count from the _atom_site data: C3.351351 H4.540540 I0.108108 N0 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G ALERT: Large difference may be due to a symmetry error - see SYMMG tests From the CIF: _cell_formula_units_Z 37 From the CIF: _chemical_formula_sum C3.35 H4.54 IO.11 N0.22 00.16 TEST: Compare cell contents of formula and atom_site data Z*formula cif sites diff atom С 123.95 124.00 -0.05 167.98 Н 168.00 -0.02 Т 4.07 4.00 0.07 8.14 8.00 0.14 Ν 16.00 -10.08 0 5.92 PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 14 Note PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 10 Report PLAT045_ALERT_1_G Calculated and Reported Z Differ by a Factor ... 0.108 Check PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large 31.85 Why ? PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records 15 Report PLAT177_ALERT_4_G The CIF-Embedded .res File Contains DELU Records 6 Report PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records 6 Report PLAT343_ALERT_2_G Unusual sp3 Angle Range in Main Residue for C14 Check PLAT431_ALERT_2_G Short Inter HL..A Contact I001 3.16 Ang. ..01 x,y,z = 1_555 Check PLAT432_ALERT_2_G Short Inter X...Y Contact 02 ..C21 2.93 Ang. .

```
1_555 Check
                                                    x, y, z =
                                                    ..C6
PLAT432 ALERT 2 G Short Inter X...Y Contact 03
                                                                     2.91 Ang.
                                                              1_455 Check
                                                 -1+x,y,z =
PLAT720 ALERT 4 G Number of Unusual/Non-Standard Labels .....
                                                                  Please Check
                                                                         1 Note
PLAT767_ALERT_4_G INS Embedded LIST 6 Instruction Should be LIST 4
PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. #
                                                                        2 Note
             C26 H36 N2 O4
PLAT793_ALERT_4_G Model has Chirality at C13
                                                   (Centro SPGR)
                                                                         S Verify
PLAT793_ALERT_4_G Model has Chirality at C27
                                                 (Centro SPGR)
                                                                        R Verify
PLAT860_ALERT_3_G Number of Least-Squares Restraints .....
                                                                        51 Note
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .
                                                                    Please Do !
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).
                                                                       4 Note
PLAT965_ALERT_2_G The SHELXL WEIGHT Optimisation has not Converged
                                                                    Please Check
PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res ..
                                                                     50.0 Degree
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
                                                                        0 Info
  7 ALERT level A = Most likely a serious problem - resolve or explain
 11 ALERT level B = A potentially serious problem, consider carefully
 35 ALERT level C = Check. Ensure it is not caused by an omission or oversight
 25 ALERT level G = General information/check it is not something unexpected
```

```
8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
41 ALERT type 2 Indicator that the structure model may be wrong or deficient
17 ALERT type 3 Indicator that the structure quality may be low
11 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that <u>full publication checks</u> are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 18/05/2022; check.def file version of 17/05/2022

Figure S29. Check CIF documents for A+D₂ co-crystal.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) shelx

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: shelx

Bond precision:	C-C = 0.0300 A	Wa	avelength	=0.71073
Cell:	a=5.6900(4)	b=8.3410(6	5)	c=17.5111(12)
Temperature:	alpha=79.981(3) 299 K	beta=82.48	33(2)	gamma=89.991(2)
	Calculated	F	Reported	
Volume	811.16(10)	8	311.16(10)
Space group	P 1	E	2 1	
Hall group	P 1	E	2 1	
Moiety formula	C26 H36 N2 O4, C6	H4 Br I 🕄	?	
C	222 H40 D- T N2 04	C	C4 H5 Br0	.12 IO.12 NO.25
Sum formula	C32 H40 Br I N2 04	C	0.50	
Mr	723.46	9	90.43	
Dx,g cm-3	1.481	1	L.481	
Z	1	8	3	
Mu (mm-1)	2.255	2	2.255	
F000	366.0	3	366.0	
F000 '	365.37			
h,k,lmax	6,9,20	6	5,9,20	
Nref	5690[2845]	5	5650	
Tmin,Tmax	0.805,0.854	(0.518,0.7	46
Tmin'	0.595			
Correction meth	od= # Reported T Lim	nits: Tmin=	=0.518 Tm	nax=0.746
AbsCorr = MULTI	-SCAN			
Data completene	ss= 1.99/0.99	Theta(max	a)= 24.99	5
R(reflections)=	0.0510(4582)			wR2(reflections)= 0.1570(5650)
S = 1.014	Npar= 34	4		

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**. Click on the hyperlinks for more details of the test.

Click on the hyperlinks for more details of the tes

🔩 Alert level A

PLAT035_ALERT_1_B	_chemical_absolute_configuration	Info Not Given	Please Do !
PLAT220_ALERT_2_B	NonSolvent Resd 1 C Ueq(max)	/Ueq(min) Range	6.7 Ratio
PLAT234_ALERT_4_B	Large Hirshfeld Difference C24	C25 .	0.28 Ang.
PLAT241_ALERT_2_B	High 'MainMol' Ueq as Compared	to Neighbors of	C5 Check
PLAT242_ALERT_2_B	Low 'MainMol' Ueq as Compared	to Neighbors of	C4 Check
PLAT242_ALERT_2_B	Low 'MainMol' Ueq as Compared	to Neighbors of	C25 Check
PLAT334_ALERT_2_B	Small <c-c> Benzene Dist. C27</c-c>	-C32 .	1.34 Ang.
PLAT342_ALERT_3_B	Low Bond Precision on C-C Bonds		0.03004 Ang.
PLAT410_ALERT_2_B	Short Intra HH Contact H8B	Н9В .	1.87 Ang.
		x,y,z =	1_555 Check
PLAT926_ALERT_1_B	Reported and Calculated R1 Diff	er by	0.0059 Check
PLAT927_ALERT_1_B	Reported and Calculated wR2 Diff	er by	0.0138 Check

Alert level C

ABSMU01_ALERT_1_C The ratio of given/expected absorption coefficient lies outside the range 0.99 <> 1.01 Calculated value of mu = 2.168 Value of mu given = 2.255 Value of mu given CHEMW01_ALERT_1_C The ratio of given/expected molecular weight as calculated from the _chemical_formula_sum lies outside the range 0.99 <> 1.01 Calculated formula weight = 89.4019 Formula weight given = 90.4300 CHEMW01_ALERT_1_C The difference between the given and expected weight for compound is greater 1 mass unit. Check that all hydrogen atoms have been taken into account. STRVA01_ALERT_4_C Flack test results are ambiguous. From the CIF: _refine_ls_abs_structure_Flack 0.502 From the CIF: _refine_ls_abs_structure_Flack_su 0.004 PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ Please Check 3.3 oblate PLAT213_ALERT_2_C Atom C3 has ADP max/min Ratio PLAT213_ALERT_2_C Atom C5 has ADP max/min Ratio 3.4 prolat PLAT213_ALERT_2_C Atom C23 has ADP max/min Ratio 3.1 prolat PLAT222_ALERT_3_C NonSolvent Resd 1 H Uiso(max)/Uiso(min) Range 6.7 Ratio PLAT234_ALERT_4_C Large Hirshfeld Difference 02 --C1 0.18 Ang. . PLAT234_ALERT_4_C Large Hirshfeld Difference N1 --C1 0.16 Ang. . 0.17 Ang. PLAT234_ALERT_4_C Large Hirshfeld Difference N2 --C15 . --C11 . --C12 . --C12 . --C14 . PLAT234_ALERT_4_C Large Hirshfeld Difference C1 0.21 Ang. PLAT234_ALERT_4_C Large Hirshfeld Difference C11 0.18 Ang. PLAT234_ALERT_4_C Large Hirshfeld Difference C13 0.17 Ang. PLAT234_ALERT_4_C Large Hirshfeld Difference C16 0.17 Ang.

PLAT234_ALERT_4_C	Large	Hirshfeld	Diffe	ere	nce C19		C20		0.22	Ang.
PLAT234_ALERT_4_C	Large	Hirshfeld	Diffe	ere	nce IO1		C27		0.17	Ang.
PLAT234_ALERT_4_C	Large	Hirshfeld	Diffe	erei	nce Br01		C30		0.19	Ang.
PLAT234_ALERT_4_C	Large	Hirshfeld	Diffe	ere	nce C28		C29		0.20	Ang.
PLAT234_ALERT_4_C	Large	Hirshfeld	Diffe	ere	nce C31		C32		0.24	Ang.
PLAT241_ALERT_2_C	High	'MainMol'	Ueq	as	Compared	to	Neighbors	of	C3	Check
PLAT241_ALERT_2_C	High	'MainMol'	Ueq	as	Compared	to	Neighbors	of	C9	Check
PLAT241_ALERT_2_C	High	'MainMol'	Ueq	as	Compared	to	Neighbors	of	C23	Check
PLAT241_ALERT_2_C	High	'MainMol'	Ueq	as	Compared	to	Neighbors	of	C24	Check
PLAT242_ALERT_2_C	Low	'MainMol'	Ueq	as	Compared	to	Neighbors	of	C19	Check
PLAT244_ALERT_4_C	Low	'Solvent'	Ueq	as	Compared	to	Neighbors	of	C27	Check
PLAT360_ALERT_2_C	Short	C(sp3)-C(sp3)	Bor	nd C8		- C9		1.39	Ang.
PLAT360_ALERT_2_C	Short	C(sp3)-C(sp3)	Bor	nd C9		- C10		1.42	Ang.
PLAT360_ALERT_2_C	Short	C(sp3)-C(sp3)	Bor	nd C21		- C22		1.42	Ang.
PLAT361_ALERT_2_C	Long	C(sp3)-C(sp3)	Bor	nd C5		- C6		1.71	Ang.
PLAT369_ALERT_2_C	Long	C(sp2)-C(sp2)	Bor	nd C14		- C15		1.56	Ang.
PLAT410_ALERT_2_C	Short	Intra H	H Cor	ntad	et H23A		H24A		1.93	Ang.
							x,y,z =		1_555 Chec	ck
PLAT918_ALERT_3_C	Reflec	ction(s) wi	th I	(obs	s) much Sr	nal	ler I(calc) .	2	Check
PLAT977_ALERT_2_C	Check	Negative D	iffer	rend	ce Density	y or	n H20		-0.31	eA-3
PLAT987_ALERT_1_C	The F	lack x is >	> 0 -	- I	o a BASF,	/TW:	IN Refinem	ent	Please	Check

Alert level G

CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G ALERT: check formula stoichiometry or atom site occupancies. From the CIF: cell formula units Z 8

From the CIF: _cell_formula_units_Z 8 From the CIF: _chemical_formula_sum C4 H5 Br0.12 I0.12 N0.25 00.50 TEST: Compare cell contents of formula and atom_site data

atom	7*formula	aif aito	diff
acom	2º TOTINUTA	CII SILE	
C	32.00	32.00	0.00
H	40.00	40.00	0.00
Br	0.96	1.00	-0.04
I	0.96	1.00	-0.04
N	2.00	2.00	0.00
0	4.00	4.00	0.00

PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 14 Note PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 12 Report PLAT033_ALERT_4_G Flack x Value Deviates > 3.0 * sigma from Zero . 0.502 Note PLAT045_ALERT_1_G Calculated and Reported Z Differ by a Factor ... 0.125 Check PLAT111_ALERT_2_G ADDSYM Detects New (Pseudo) Centre of Symmetry . 95 %Fit P-1 Check PLAT113_ALERT_2_G ADDSYM Suggests Possible Pseudo/New Space Group PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records 10 Report PLAT177_ALERT_4_G The CIF-Embedded .res File Contains DELU Records 8 Report PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records 8 Report PLAT335_ALERT_2_G Check Large C6 Ring C-C Range C11 0.24 Ang. -C18 Angle Range in Main Residue for PLAT343_ALERT_2_G Unusual sp3 C8 Check C9 Check PLAT343_ALERT_2_G Unusual sp3 Angle Range in Main Residue for PLAT343_ALERT_2_G Unusual sp3 Angle Range in Main Residue for C23 Check PLAT343_ALERT_2_G Unusual sp3 Angle Range in Main Residue for C24 Check PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels 5 Note PLAT767_ALERT_4_G INS Embedded LIST 6 Instruction Should be LIST 4 Please Check PLAT773_ALERT_2_G Check long C-C Bond in CIF: C5 1.71 Ang. PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 2 Note C6 H4 Br I PLAT791_ALERT_4_G Model has Chirality at C4 R Verify (Sohnke SpGr)

```
PLAT791_ALERT_4_G Model has Chirality at C20
                                                     (Sohnke SpGr)
                                                                            R Verify
PLAT860_ALERT_3_G Number of Least-Squares Restraints .....
                                                                           60 Note
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .
                                                                       Please Do !
PLAT909_ALERT_3_G Percentage of I>2sig(I) Data at Theta(Max) Still
                                                                          51% Note
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).
                                                                           1 Note
                                                                       Please Check
PLAT965_ALERT_2_G The SHELXL WEIGHT Optimisation has not Converged
PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res ..
                                                                         50.0 Degree
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
                                                                            2 Info
   2 ALERT level A = Most likely a serious problem - resolve or explain
  11 ALERT level B - A potentially serious problem, consider carefully
  36 ALERT level C = Check. Ensure it is not caused by an omission or oversight
 29 ALERT level G = General information/check it is not something unexpected
  12 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
  35 ALERT type 2 Indicator that the structure model may be wrong or deficient
   6 ALERT type 3 Indicator that the structure quality may be low
 24 ALERT type 4 Improvement, methodology, query or suggestion
   1 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that <u>full publication checks</u> are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 18/05/2022; check.def file version of 17/05/2022

Figure S30. Check CIF documents for A+D₄ co-crystal.

Datablock shelx - ellipsoid plot

Figure S31. Screenshots of phosphorescence quantum yield for A crystal.

Figure S32. Screenshots of phosphorescence quantum yield for D₁ crystal.

Figure S33. Screenshots of phosphorescence quantum yield for D₂ crystal.

Figure S34. Screenshots of phosphorescence quantum yield for D₃ crystal.

Figure S35. Screenshots of phosphorescence quantum yield for D₄ crystal.

Figure S36. Screenshots of phosphorescence quantum yield for D₅ crystal.

Figure S37. Screenshots of phosphorescence quantum yield for A+D₁ co-crystal.

Figure S38. Screenshots of phosphorescence quantum yield for A+D₂ co-crystal.

Figure S39. Screenshots of phosphorescence quantum yield for A+D₃ co-crystal.

Figure S40. Screenshots of phosphorescence quantum yield for A+D₄ co-crystal.

Figure S41. Screenshots of phosphorescence quantum yield for A+D₅ co-crystal.

6. References

[S1] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J.
Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L.
Sonnenberg, D. Williams-Young, F. Ding, G. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T.
Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K.
Throssell, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N.
Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C, Adamo, R. Cammi, J. W. Ochterski, R. L.

[S2] A. D. Becke, J. Chem. Phys. 1993, 98, 1372-1377.

[S3] C. Lee, W. Yang and R. G. Parr. *Phys. Rev. B* 1988, **37**, 785-789.

[S4] B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett. 1989, 157, 200-206.

[S5] S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 1999, 314, 291-299.

[S6] ADF2017, SCM, Theoretical Chemistry, VrijeUniversiteit, Amsterdam, The Netherlands, http://www.scm.com.

[S7] D. Cao, M. Hong, A. K. Blackburn, Z. Liu, J. M. Holcroft and J. F. Stoddart, J. F. *Chem. Sci.* 2014, **5**, 4242-4248.

[S8] S. M. Luo, K. A. Stellmach, S. M. Ikuzwe and D. D. Cao, J. Org. Chem. 2019, 84, 10362-10370.

[S9] X. Huang, M. Hu, X. Zhao, C. Li, Z. Yuan, X. Liu, C. Cai, Y. Zhang, Y. Hu and Y. Chen, Org. Lett. 2019, 21, 3382-3386.