Supplementary Material for: "Tuning reactivity in trimetallic dualatom alloys: Molecular-like electronic states and ensemble effects"

Shengjie Zhang,¹ E. Charles H. Sykes,² Matthew M. Montemore^{1*}

¹ Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA

70118, USA

² Department of Chemistry, Tufts University, Medford, MA 02155, USA

*mmontemore@tulane.edu

Fig. S1 (a) d-states of Ir and Cu in Ir_1Cu . (b) d-states of Ti and Cu in Ti_1Cu . (c), (d) Symmetryresolved pDOS of Ir in Ir_1Cu and Ti in Ti_1Cu . The overlaps exhibit nearly degenerated d states, indicating very small interactions with Cu. (e), (f) Symmetry-resolved pDOS of Ir and Ti in Ir_1Ti_1Cu . Ir t_{2g} -states shift to lower energies near -2 eV and Ti t_{2g} -states shift to higher energies near 2 eV, as the Ir-Ti hybridization results in bonding and antibonding-like d-states. (g) s- and pstates of Ir in Ir_1Cu , which are smaller and broader than its d-states.

Fig. S2 Additional top views of calculated wavefunctions in Ir_1Ti_1Cu beyond those presented in Figure 1. (a) Ir d_{z2} in Ir_1Cu . (b) Ti d_{x2-y2} in Ti_1Cu . (c) Ti d_{z2} Ti₁Cu. (d) - (f) Ir-Ti d-d σ and π states in Ir_1Ti_1Cu . (f) – (h) Ir-Ti d-d δ^* , σ^* and π^* states in Ir_1Ti_1Cu .

	M ₁ Pd ₁ Ag		M ₁ Pd ₁ Au		M ₁ Pt ₁ Ag		M ₁ Ti ₁ Cu	
Dopant	Hetero-	Homo-	Hetero-	Homo-	Hetero-	Homo-	Hetero-	Homo-
Со	-0.03	-0.39	0.06	-0.18	-0.12	-0.39	-0.73	-0.35
Cr	-0.07	0.14	0.09	0.29	-0.19	0.14	0.03	0.02
Cu	0.00	0.01	0.05	0.05	-0.02	0.01	/	/
Fe	-0.07	-0.40	0.05	-0.05	-0.21	-0.40	-0.51	-0.40
Hf	-0.53	-0.13	-0.12	0.44	-0.89	-0.13	0.33	0.66
Ir	0.03	-0.20	0.14	-0.14	-0.04	-0.20	-0.83	0.08
Mn	-0.13	0.08	0.02	0.25	-0.27	0.08	-0.02	0.21
Мо	-0.17	-3.05	0.04	-2.01	-0.38	-3.05	-0.99	-2.08
Ni	0.01	-0.01	0.12	0.10	-0.05	-0.01	-0.31	0.01
Pd	0.03	0.03	0.13	0.13	0.03	0.03	-0.20	0.16
Pt	0.03	0.02	0.12	0.09	0.02	0.02	-0.38	0.25
Re	-0.19	-2.33	0.02	-1.63	-0.43	-2.33	-1.04	-1.42
Rh	0.05	0.04	0.17	0.13	0.00	0.04	-0.71	0.19
Ru	0.02	-0.81	0.13	-0.55	-0.10	-0.81	-1.15	-0.30
Sc	-0.38	0.30	-0.06	0.64	-0.66	0.30	0.47	0.82
Та	-0.46	-1.48	-0.11	-0.22	-0.85	-1.49	-0.16	-0.45
Tc	-0.14	-3.69	0.04	-3.44	-0.33	-3.70	-1.30	-1.38
Ti	-0.30	-0.30	-0.03	0.15	-0.62	-0.30	0.07	0.07
V	-0.13	-0.64	0.07	0.15	-0.32	-0.64	-0.13	-0.58
W	-0.26	-2.53	-0.05	-1.56	-0.58	-2.54	-0.66	-1.43

Table S1. Homodimer and heterodimer formation energies for M_1Pd_1Ag , M_1Pd_1Au , M_1Pt_1Ag , and M_1Ti_1Cu in eV.

Table S2. DFT energies of CO adsorption on atop site of M in M_1H ($E_{ads(SAA)}$), atop site of M in $M_1M'_1H$ ($E_{ads(DAA, M)}$), atop site of M' ($E_{ads(DAA, M')}$) and bridge site ($E_{ads(DAA, Bri)}$) in eV. The lowest energy site for each dual-atom case are in bold. Strong electronic effects are indicated if the CO top-site adsorption energy changes by more than 0.14 eV between the SAA and DAA. Strong ensemble effects are indicated if the bridge site is the most stable site on the DAA.

	SAAs (M.H)	Dual	-atom sites (M ₁ N			
	top CO				Electronic	Ensemble
	on M	top CO on M	top CO on M'	bridge CO	effect?	effect?
	$(E_{ads(SAA)})$	$(E_{ads(DAA, M)})$	$(E_{ads(DAA, M')})$	$(E_{ads(DAA, Bri)})$		
Pd ₁ Ag	-1.32					
Ni ₁ (Pd ₁)Ag	-1.88	-1.87	-1.34		strong	weak
Cr ₁ (Pd ₁)Ag	-1.27	-1.27	-1.34	-1.52	weak	strong
Cu ₁ (Pd ₁)Ag	-0.92	-0.90	-1.35	-1.31	weak	weak
Hf ₁ (Pd ₁)Ag	-1.57	-1.43	-1.16	-1.51	strong	strong
Mn ₁ (Pd ₁)Ag	-1.19	-1.11	-1.31	-1.39	weak	strong
Sc ₁ (Pd ₁)Ag	-1.05	-0.98	-1.25	-1.29	weak	strong
Ti ₁ (Pd ₁)Ag	-1.51	-1.52	-1.25	-1.60	weak	strong
Pd ₁ Au	-1.20					
Hf ₁ (Pd ₁)Au	-1.35	-1.29	-1.17	-1.37	weak	strong
Sc ₁ (Pd ₁)Au	-0.94	-0.91	-1.25	-1.19	weak	weak
Ti ₁ (Pd ₁)Au	-1.41	-1.37	-1.23	-1.49	weak	strong
Ti ₁ Cu	-1.42					
Ru ₁ (Ti ₁)Cu	-2.63	-2.26	-1.20	/a	strong	weak
Ir ₁ (Ti ₁)Cu	-2.52	-2.22	-1.29	/a	strong	weak
Co ₁ (Ti ₁)Cu	-2.44	-2.28	-1.28	/a	strong	weak
Rh ₁ (Ti ₁)Cu	-2.18	-1.94	-1.42	/a	strong	weak
Fe ₁ (Ti ₁)Cu	-2.02	-2.33	/a	/a	strong	weak
Ni ₁ (Ti ₁)Cu	-1.80	-1.72	-1.37	-1.72	weak	weak
Pt ₁ (Ti ₁)Cu	-1.59	-1.40	-1.50	-1.39	strong	weak
Mn ₁ (Ti ₁)Cu	-1.42	-2.14	-1.28	/a	strong	weak
Pd ₁ (Ti ₁)Cu	-1.29	-1.19	-1.51	-1.47	weak	weak

^a CO transfers to the lowest energy site

Fig. S3 pDOS of d-states of Ru, Fe, and Mn in (a) Ru_1Cu ; (b) Ru_1Ti_1Cu ; (c) Fe_1Cu ; (d) Fe_1Ti_1Cu ; (e) Mn_1Cu and (f) Mn_1Ti_1Cu . The shape and d-band center are significantly changed from SAAs (a, c, e) to dual-atom alloy sites (b, d, f), showing significant electronic effects.

Fig. S4 pDOS of d-states of Cr and Ti in (a) Cr_1Ag ; (b) Cr_1Pd_1Ag ; (c) Ti_1Ag ; (d) Ti_1Pd_1Ag ; (e) Ti_1Au and (f) Ti_1Pd_1Au . The shape and d-band center are almost identical between SAAs (a, c, e) and dual-atom alloy sites (b, d, f), showing negligible electronic effects.