Supplementary Information

Unified Synthesis of Multiply Arylated Alkanes by Catalytic Deoxygenative Transformation of Diarylketones

Miki B. Kurosawa,^a Kenta Kato,^a Kei Muto,^b and Junichiro Yamaguchi*^a

a Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041 Japan.

b Waseda Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041 Japan.

E-mail: junyamaguchi@waseda.jp

Table of Contents

1.	General	S2–S3
2.	Pd-Catalyzed Deoxygenative Synthesis of Diarylmethanes from Diarylketones	S4–S9
3.	Pd-Catalyzed Deoxygenative Synthesis of Tetraarylethanes from Diarylketones	S10–S18
4.	Pd-Catalyzed Deoxygenative Synthesis of Triarylmethanes from Diarylketones	S19–S24
5.	One-Pot Synthesis of Diphenylmethane (2A)	S25
6.	One-Pot Synthesis of 1,1,2,2-Tetraphenylethane (3A)	S25–S26
7.	One-Pot Synthesis of 2-(1-(p-Tolyl)but-3-en-1-yl)naphthalene (8)	S26
8.	One-Pot Synthesis of 2-(4-Allylbenzyl)naphthalene (10)	S27
9.	Intramolecular Dimerization/ Oxidation	S27–S28
10.	2-Benzylnaphthalene (2B) Synthesis from Arylaldehyde	S28
11.	2-(1,2-Diphenylethyl)naphthalene (16) Synthesis from Diarylketone	S29
12.	2-Tritylbenzofuran (18) Synthesis from Benzophenone (1)	S30
13.	Effect of Parameters	S31
14.	Mechanistic Study	S32–S35
15.	X-ray Crystal Structure Analysis	S36–S41
16.	References	S42-S42
17.	¹ H, ¹³ C, ¹⁹ F and ³¹ P NMR Spectra	S44–S148

1. General

Unless otherwise noted, all reactants or reagents including dry solvents were obtained from commercial suppliers and used as received. Cs₂CO₃ was gifted by Iwatani Corporation. PPh₃ was purchased from KANTO Chemical. Diphenylphosphine oxide, HCO_2Na , benzophenone (1), naphthalen-2-yl(phenyl)methanone (9), phenyl(*m*-tolyl)methanone, [1,1'-biphenyl]-4yl(phenyl)methanone, bis(4-fluorophenyl)methanone, (2-fluorophenyl)(4-fluorophenyl)methanone, bis(3-(trifluoromethyl)phenyl)methanone, phenyl(pyridin-2-yl)methanone, phenyl(pyridin-3yl)methanone, phenyl(pyridin-4-yl)methanone, 7H-benzo[de]anthracen-7-one, 10,11-dihydro-5Hdibenzo[a,d][7]annulen-5-one, 9H-fluoren-9-one, 9H-xanthen-9-one, 9H-thioxanthen-9-one, 2-(3-2-(3-benzoylphenyl)propanenitrile, benzoylphenyl)propanoic acid, isopropyl 2-(4-(4chlorobenzoyl)phenoxy)-2-methylpropanoate, di-p-tolylmethanone (5), phenyl(o-tolyl)methanone, (3,4-dimethylphenyl)(phenyl)methanone, (4-fluorophenyl)(phenyl)methanone, (2-methoxyphenyl)(4methoxyphenyl)methanone, (4-phenoxyphenyl)(phenyl)methanone, (4-(benzyloxy)phenyl)(phenyl)methanone, (4-(dimethylamino)phenyl)(phenyl)methanone, (3aminophenyl)(phenyl)methanone, phenyl(thiophen-2-yl)methanone, and 2,4-diethyl-9H-thioxanthen-9one were purchased from Tokyo Chemical Industry (TCI). DCO₂Na (>99% D), NaBD₄ (98% D), and (4-fluorophenyl)(4-(phenylethynyl)phenyl)methanone were purchased from Sigma-Aldrich. PdCl₂ and bis(4-methoxyphenyl)methanone were purchased from FUJIFILM Wako Pure Chemical Corporation. (4'-Methoxy-[1,1'-biphenyl]-4-yl)(phenyl)methanone,^[1] phenyl(2-phenylquinolin-4-yl)methanone,^[2] 4benzoyl-*N*,*N*-dipropylbenzenesulfonamide,^[3] (6-(3-(adamantan-1-yl)-4-methoxyphenyl)naphthalen-2yl)(phenyl)methanone,^[4] naphthalen-2-yl(p-tolyl)methanone (7),^[5] and [1,1'-biphenyl]-2,2'divlbis(phenylmethanone) (11)^[6] were synthesized according to procedures and the spectra matched with those of compounds reported in the literature. Unless otherwise noted, all reactions were performed with dry solvents under an atmosphere of N₂ in dried glassware using standard vacuum-line techniques. All deoxygenative reactions of diarylketones were performed in 20-mL glass vessel tubes equipped with J. Young[®] O-ring tap and heated (IKA Plate RCT Digital) in an oil bath or a 9-well aluminum reaction block (IKA H 135.103 Block 9 × 16 ml) unless otherwise noted. All work-up and purification procedures were carried out with reagent-grade solvents under air unless otherwise noted.

Analytical thin-layer chromatography (TLC) was performed using Silica-gel 70 TLC Plate-Wako (0.25 mm). The developed chromatogram was analyzed by UV lamp (254 nm). Flash column chromatography was performed with Biotage Isolera[®] equipped with Biotage Sfär Cartridge Silica D columns. Preparative thin-layer chromatography (PTLC) was performed using Wakogel B5-F silica coated plates (0.75 mm) prepared in our laboratory. Preparative recycling gel permeation chromatography (GPC) was performed with a JAI LaboACE LC-5060 instrument equipped with JAIGEL-2HR columns using CHCl₃ as an eluent. High-resolution mass spectra (HRMS) were

conducted on Thermo Fisher Scientific ExactivePlus Orbitrap (ESI and DART). Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL JNM-ECS-400 (¹H 400 MHz, ¹³C 101 MHz), JEOL JNM-ECZ-400 (¹H 400 MHz, ¹³C 101 MHz, ³¹P 162 MHz, ¹⁹F 376 MHz), or JEOL JNM-ECZ600R/S1 (¹³C 151 MHz). Chemical shifts for ¹H NMR are expressed in parts per million (ppm) relative to tetramethylsilane (δ 0.00 ppm) and CHD₂SOCD₃ (δ 2.50 ppm) in DMSO-*d*₆. Chemical shifts for ¹³C NMR are expressed in ppm relative to CDCl₃ (δ 77.0 ppm) and DMSO-*d*₆ (δ 39.5 ppm). Chemical shifts for ³¹P NMR are expressed in ppm relative to H₃PO₄ (δ 0.00 ppm) as an external standard. Chemical shifts for ¹⁹F NMR are expressed in ppm relative to fluorobenzene (δ –113.15 ppm) as an internal standard.

Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, td = triplet of doublets, q = quartet, m = multiplet, brs = broad singlet), coupling constant (Hz), and integration.

2. Pd-Catalyzed Deoxygenative Synthesis of Diarylmethanes from Diarylketones

General Procedure

A 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar and Cs_2CO_3 (260.7 mg, 0.80 mmol, 2.0 equiv) was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this were added diarylketones (0.40 mmol, 1.0 equiv), PdCl₂ (3.6 mg, 0.020 mmol, 5.0 mol%), PPh₃ (21.0 mg, 0.080 mmol, 20 mol%), HCO₂Na (54.4 mg, 0.80 mmol, 2.0 equiv), and diphenylphosphine oxide (121.3 mg, 0.60 mmol, 1.5 equiv). The vessel was placed under vacuum and refilled N₂ gas three times. To this vessel was added DMSO (2.0 mL). The vessel was sealed with an O-ring tap and then heated at 150 °C for 1 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was added brine and extracted three times with hexane/EtOAc. The combined organic layer was dried over Na₂SO₄, filtrated, and then concentrated *in vacuo*. The residue was purified by PTLC to afford the corresponding product **2**.

Diphenylmethane (2A)

Because **2A** was volatile, the yield of **2A** was determined as 93% by ¹H NMR analysis of crude mixture by using CH_2Br_2 as an internal standard. Diphenylmethane (**2A**) is commercially available from TCI (D0896).

2-Benzylnaphthalene (2B)

Purification by PTLC (hexane/EtOAc = 4:1) afforded **2B** as a brown liquid (68.2 mg, 78% yield). The spectra were matched with those of the commercial reagent from Sigma-Aldrich (T154032).

1-Benzyl-3-methylbenzene (2C)

Purification by PTLC (hexane/EtOAc = 4:1) afforded **2C** as a colorless liquid (40.3 mg, 55% yield). The spectra were matched with those of the commercial reagent from FUJIFILM Wako Pure Chemical Corporation (OR311219).

4-Benzyl-1,1'-biphenyl (2D)

Purification by PTLC (hexane/EtOAc = 4:1) afforded **2D** as a white solid (62.6 mg, 64% yield). The spectra were matched with those of the commercial reagent from TCI (B1519).

4-Benzyl-4'-methoxy-1,1'-biphenyl (2E)^[7]

The reaction was conducted by using 10 mol% of PdCl₂ and 40 mol% of PPh₃. Purification by PTLC (hexane/EtOAc = 6:1) afforded **2E** as a white solid (36.3mg, 33% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.30 (t, *J* = 8.0 Hz, 2H), 7.27–7.18 (m, 5H), 6.95 (d, *J* = 8.0 Hz, 2H), 4.01 (s, 2H), 3.83 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.0, 141.1, 139.6, 138.6, 133.5, 129.3, 128.9, 128.5, 128.0, 126.8, 126.1, 114.1, 55.3, 41.5. The spectra matched with those of this compound reported in the literature.^[7]

Bis(4-fluorophenyl)methane (2F)

Purification by PTLC (hexane/EtOAc = 4:1) afforded 2F as a brown liquid (60.0 mg, 74% yield). The spectra were matched with those of the commercial reagent from TCI (D1925).

1-Fluoro-2-(4-fluorobenzyl)benzene (2G)

The reaction was conducted in 0.20 mmol scale. Purification by PTLC (hexane/CHCl₃ = 4:1) afforded **2G** as a colorless liquid (38.6 mg, 47% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.23–7.09 (m, 4H), 7.08–7.00 (m, 2H), 7.00–6.92 (m, 2H), 3.96 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.5 (d, *J*_{C-F} = 245.3 Hz), 160.9 (d, *J*_{C-F} = 246.6 Hz), 135.5 (d, *J*_{C-F} = 3.7 Hz), 130.9 (d, *J*_{C-F} = 4.7 Hz), 130.1 (d, *J*_{C-F} = 8.0 Hz), 128.1 (d, *J*_{C-F} = 8.0 Hz), 127.9 (d, *J*_{C-F} = 22.8 Hz), 124.1 (d, *J*_{C-F} = 3.7 Hz), 115.4 (d, *J*_{C-F} = 22.0 Hz), 115.2 (d, *J*_{C-F} = 21.4 Hz), 34.0 (d, *J*_{C-F} = 3.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –117.2, –118.0; HRMS (DART) *m*/*z* calcd for C₁₃H₉F₂ [M–H]⁻: 203.0667 found 203.0666.

1-Fluoro-4-(4-(phenylethynyl)benzyl)benzene (2H)

Purification by PTLC (hexane/CH₂Cl₂ = 9:1) afforded **2H** as a white solid (68.3 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.56–7.48 (m, 2H), 7.48–7.40 (m, 2H), 7.39–7.27 (m, 3H), 7.17–7.08 (m, 4H), 7.01–6.91 (m, 2H), 3.94 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.5 (d, *J*_{C-F} = 245.4 Hz), 141.2, 136.2 (d, *J*_{C-F} = 3.2 Hz), 131.8, 131.5, 130.3 (d, *J*_{C-F} = 8.1 Hz), 128.9, 128.3, 128.2, 123.3, 121.1, 115.3 (d, *J*_{C-F} = 21.4 Hz), 89.3, 89.2, 40.9; ¹⁹F NMR (376 MHz, CDCl₃) δ –117.1; HRMS (DART) *m/z* calcd for C₂₁H₁₉NF [M+NH₄]⁺: 304.1496 found 304.1495.

Bis(3-(trifluoromethyl)phenyl)methane (2I)

Purification by PTLC (hexane/EtOAc = 4:1) afforded **2I** as a yellow liquid (59.2 mg, 49% yield). The spectra were matched with those of the commercial reagent from FUJIFILM Wako Pure Chemical Corporation (006389).

Bis(4-methoxyphenyl)methane (2J)

Purification by PTLC (hexane/EtOAc = 4:1) afforded 2J as a colorless oil (42.3 mg, 46% yield). The spectra were matched with those of the commercial reagent from Sigma-Aldrich (AMBH97F060D7).

2-Benzylpyridine (2K)

Purification by PTLC (hexane/EtOAc = 4:1) afforded 2K as a yellow liquid (53.7 mg, 79% yield). The spectra were matched with those of the commercial reagent from TCI (B0436).

3-Benzylpyridine (2L)

Purification by PTLC (hexane/EtOAc = 4:1) afforded 2L as a colorless liquid (49.7 mg, 73% yield). The spectra were matched with those of the commercial reagent from TCI (B1553).

4-Benzylpyridine (2M)

Purification by PTLC (hexane/EtOAc = 4:1) afforded **2M** as a yellow liquid (61.7 mg, 91% yield). The spectra were matched with those of the commercial reagent from TCI (B0437).

4-Benzyl-2-phenylquinoline (2N)^[8]

The reaction was conducted for 12 h. Purification by PTLC (hexane/CHCl₃/CH₂Cl₂ = 2:1:1) afforded **2N** as a colorless liquid (105.0 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.4 Hz, 1H), 8.09 (d, *J* = 8.4 Hz, 2H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.65 (t, *J* = 7.2 Hz, 1H), 7.60 (s, 1H), 7.52–7.36 (m, 4H), 7.27 (t, *J* = 8.0 Hz, 2H), 7.23–7.15 (m, 3H), 4.42 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.0, 148.5, 146.9, 139.6, 138.7, 130.4, 129.3, 129.2, 128.8, 128.7, 128.6, 127.5, 126.53, 126.50, 126.2, 123.7, 119.8, 38.4. The spectra matched with those of this compound reported in the literature.^[8]

7*H*-Benzo[*de*]anthracene (2O)^[9]

Purification by PTLC (hexane/CHCl₃/CH₂Cl₂ = 8:1:1) afforded **2O** as a white solid (50.3 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.6 Hz, 1H), 8.00 (d, *J* = 7.6 Hz, 1H), 7.72 (d, *J* = 7.6 Hz, 1H), 7.66 (d, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.39–7.35 (m, 1H), 7.35–7.30 (m, 1H), 7.30–7.26 (m, 2H), 4.58 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 134.3, 134.0, 133.3, 132.4, 131.1, 128.93, 128.85, 127.7, 127.6, 126.8, 126.2, 125.9, 125.5, 124.5, 123.3, 118.6, 34.4. The spectra matched with those of this compound reported in the literature.^[9]

10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulene (2P)

The reaction was conducted by using 3.0 equiv of diphenylphosphine oxide for 12 h. Purification by PTLC (hexane/EtOAc = 4:1) afforded **2P** as a white solid (48.1 mg, 62% yield). The spectra were matched with those of the commercial reagent from Sigma-Aldrich (D104957).

9H-Fluorene (2Q)

Purification by PTLC (hexane/EtOAc = 4:1) afforded 2Q as a white solid (36.5 mg, 55% yield). The spectra were matched with those of the commercial reagent from TCI (F0017).

9H-Xanthene (2R)

The reaction was conducted by using 3.0 equiv of diphenylphosphine oxide for 12 h. Purification by PTLC (hexane/EtOAc = 4:1) afforded **2R** as a white solid (34.5 mg, 47% yield). The spectra were matched with those of the commercial reagent from TCI (X0003).

9H-Thioxanthene (2S)

The reaction was conducted by using 3.0 equiv of diphenylphosphine oxide for 12 h. Purification by PTLC (hexane/EtOAc = 4:1) afforded **2S** as a white solid (48.9 mg, 62% yield). The spectra were matched with those of the commercial reagent from FUJIFILM Wako Pure Chemical Corporation (327-27301).

2-(3-Benzylphenyl)propanoic acid (2T)

The reaction was conducted by using 10 mol% of PdCl₂, 40 mol% of PPh₃, 0.40 equiv of Cs₂CO₃ and DME at 150 °C for 12 h. Purification by PTLC (CHCl₃) afforded **2T** as a colorless liquid (32.6 mg, 34% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.26 (m, 2H), 7.25–7.14 (m, 6H), 7.08 (d, *J* = 7.2 Hz, 1H), 3.98 (s, 2H), 3.71 (q, *J* = 7.2 Hz, 1H), 1.50 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 178.6, 141.6, 140.8, 140.0, 128.9, 128.8, 128.5, 128.3, 128.0, 126.1, 125.2, 45.0, 41.8, 18.2; HRMS (ESI) *m/z* calcd for C₁₆H₁₆O₂Na [M+Na]⁺: 263.1042 found 263.1042.

2-(3-Benzylphenyl)propanenitrile (2U)

Purification by PTLC (hexane/EtOAc = 4:1) afforded **2U** as a yellow liquid (48.7 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.26 (m, 3H), 7.24–7.16 (m, 5H), 7.14 (d, *J* = 8.0 Hz, 1H), 3.99 (s, 2H), 3.85 (q, *J* = 7.6 Hz, 1H), 1.62 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.1, 140.4, 137.1, 129.2, 128.8, 128.54, 128.46, 127.2, 126.2, 124.3, 121.5, 41.7, 31.0, 21.3; HRMS (DART) *m*/*z* calcd for C₁₆H₁₄N [M–H]⁻: 220.1121 found 220.1119.

4-Benzyl-*N*,*N*-dipropylbenzenesulfonamide (2V)

Purification by PTLC (hexane/CHCl₃ = 9:1) afforded **2V** as a white solid (62.7 mg, 47% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.6 Hz, 2H), 7.37–7.27 (m, 4H), 7.26–7.21 (m, 1H), 7.17 (d, *J* = 7.6 Hz, 2H), 4.04 (s, 2H), 3.05 (t, *J* = 7.6 Hz, 4H), 1.62–1.48 (m, 4H), 0.86 (t, *J* = 7.6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 145.8, 139.7, 137.8, 129.4, 128.9, 128.6, 127.3, 126.5, 50.1, 41.6, 22.1, 11.1; HRMS (DART) *m/z* calcd for C₁₉H₂₆NO₂S [M+H]⁺: 332.1679 found 332.1676.

1-(5-(6-Benzylnaphthalen-2-yl)-2-methoxyphenyl)adamantane (2W)

The reaction was conducted by 0.20 mmol scale. Purification by PTLC (hexane/EtOAc = 6:1) afforded **2W** as a white solid (23.3 mg, 25% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.79 (dd, *J* = 8.4, 2.0 Hz, 2H), 7.69 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.63 (s, 1H), 7.57 (d, *J* = 2.4 Hz, 1H), 7.50 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.34–7.26 (m, 3H), 7.26–7.16 (m, 3H), 6.97 (d, *J* = 8.4 Hz, 1H), 4.14 (s, 2H), 3.88 (s, 3H), 2.18 (s, 6H), 2.09 (s, 3H), 1.79 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 158.5, 141.0, 138.8, 138.5, 138.3, 133.2, 132.4, 129.0, 128.5, 128.2, 128.0, 127.9, 126.8, 126.1, 125.8, 125.5, 124.8, 112.0, 55.1, 42.1, 40.6, 37.1, 29.1 (three peaks are missing due to overlapping); HRMS (ESI) *m/z* calcd for C₃₄H₃₅O [M+H]⁺: 459.2682 found 459.2681.

Isopropyl 2-(4-(4-chlorobenzyl)phenoxy)-2-methylpropanoate (2X)

Purification by PTLC (hexane/EtOAc = 4:1) afforded **2X** as a colorless liquid (58.3 mg, 42% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 2H), 6.77 (d, *J* = 8.4 Hz, 2H), 5.12–5.02 (m, 1H), 3.87 (s, 2H), 1.56 (s, 6H), 1.21 (d, *J* = 6.0 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 154.0, 139.8, 134.0, 131.8, 130.2, 129.4, 128.5, 119.2, 79.1, 68.9, 40.3, 25.3, 21.5; HRMS (ESI) *m/z* calcd for C₂₀H₂₂ClO₃ [M–H]⁺: 345.1252 found 345.1249.

3. Pd-Catalyzed Deoxygenative Synthesis of Tetraarylethanes from Diarylketones

General Procedure

A 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar and Cs_2CO_3 (52.1 mg, 0.16 mmol, 0.40 equiv) was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this were added diarylketones **1** (0.40 mmol, 1.0 equiv), PdCl₂ (3.6 mg, 0.020 mmol, 5.0 mol%), PPh₃ (21.0 mg, 0.080 mmol, 20 mol%), HCO₂Na (54.4 mg, 0.80 mmol, 2.0 equiv), and diphenylphosphine oxide (121.3 mg, 0.60 mmol, 1.5 equiv). The vessel was placed under vacuum and refilled N₂ gas three times. To this vessel was added DME (2.0 mL). The vessel was sealed with an O-ring tap and then heated at 150 °C for 12 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica-gel pad with EtOAc as an eluent. The filtrate was concentrated *in vacuo*. The residue was purified by PTLC or GPC to afford the corresponding product **3**.

1,1,2,2-Tetraphenylethane (3A)^[10]

Purification by PTLC (hexane/CH₂Cl₂ = 5:1) afforded **3A** as a white solid (38.6 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.16 (d, *J* = 7.6 Hz, 8H), 7.10 (t, *J* = 7.6 Hz, 8H), 7.01 (t, *J* = 7.6 Hz, 4H), 4.77 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 143.4, 128.5, 128.1, 125.8, 56.3. The spectra matched with those of this compound reported in the literature.^[10]

1,1,2,2-Tetra-*p*-tolylethane (**3B**)^[11]

The reaction was conducted by using 2.0 equiv of Cs_2CO_3 for 3 h. Purification by PTLC (CHCl₃) afforded **3B** as a white solid (35.6 mg, 46% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.04 (d, J = 8.0 Hz, 8H), 6.89 (d, J = 8.0 Hz, 8H), 4.68 (s, 2H), 2.17 (s, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 141.1, 134.9, 128.8, 128.2, 55.3, 20.9. The spectra matched with those of this compound reported in the literature.^[11]

1,2-Diphenyl-1,2-di-*m*-tolylethane (3C)

The reaction was conducted by using 10 mol% of PdCl₂, 40 mol% of P(*m*-tolyl)₃, 2.0 equiv of Rb₂CO₃ and MeCN at 110 °C. Purification by PTLC (hexane/EtOAc = 4:1) and then GPC to afford **3C** as a white solid (43.4 mg, 60% yield). The product was characterized by the mixture of diastereomers (1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.19–7.13 (m, 4H), 7.12–7.05 (m, 4H), 7.02–6.92 (m, 8H), 6.84–6.78 (m, 2H), 4.71 (s, 2H), 2.18 (s, 3H), 2.17 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 143.6, 143.4, 143.3, 137.5, 137.4, 129.5, 128.5, 128.0, 127.9, 126.6, 125.7, 125.38, 125.35, 56.2, 21.4; HRMS (DART) *m/z* calcd for C₂₈H₃₀N [M+NH₄]⁺: 380.2373 found 380.2372.

1,2-Diphenyl-1,2-di-*o*-tolylethane (3D)

The reaction was conducted by using 10 mol% of PdCl₂, 40 mol% of P(*m*-tolyl)₃, 2.0 equiv of Rb₂CO₃ and MeCN at 110 °C. Crude ¹H NMR analysis showed **major-3D**:**minor-3D** = 53:47; ¹H NMR peaks at 5.02 ppm (s, 2H) and 4.81 ppm (s, 1.74H) were used. Purification by PTLC (hexane/EtOAc = 4:1) afforded **3D** as a white solid (35.5 mg, 49% yield, as a mixture of diastereomers; major/minor = 53:47).

For major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, *J* = 8.0 Hz, 2H), 7.10–6.91 (m, 14H), 6.88 (d, *J* = 8.0 Hz, 2H), 5.02 (s, 2H), 2.14 (s, 6H); For minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.0 Hz, 2H), 7.10–6.91 (m, 14H), 6.88 (d, *J* = 8.0 Hz, 2H), 4.81 (s, 2H), 2.28 (s, 6H). ¹³C NMR of diastereomer mixture (101 MHz, CDCl₃) δ 142.8, 142.3, 141.7, 141.0, 136.2, 135.9, 130.4, 130.2, 129.3, 128.9, 128.2, 127.8, 127.7, 127.0, 125.81, 125.75, 125.7, 52.7, 51.1, 20.0, 19.9; HRMS (DART) *m*/*z* calcd for C₂₈H₃₀N [M+NH₄]⁺: 380.2373 found 380.2372.

1,2-Bis(3,4-dimethylphenyl)-1,2-diphenylethane (3E)

The reaction was conducted by using 10 mol% of PdCl₂, 40 mol% of P(*m*-tolyl)₃, 2.0 equiv of Rb₂CO₃ and MeCN at 110 °C. Purification by PTLC (hexane/EtOAc = 4:1) and then GPC to afford **3C**

as a beige solid (29.2 mg, 37% yield). The product was characterized by the mixture of diastereomers. ¹H NMR (400 MHz, CDCl₃) δ 7.23–7.15 (m, 2H), 7.15–7.02 (m, 6H), 7.02–6.93 (m, 4H), 6.93–6.81 (m, 4H), 4.68 (s, 2H), 2.20–2.06 (m, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 144.1, 141.0, 140.9, 136.0, 133.7, 130.0, 129.9, 129.33, 129.28, 128.4, 128.03, 127.99, 125.6, 125.53, 125.48, 55.8, 19.81, 19.77, 19.3; HRMS (DART) *m/z* calcd for C₃₀H₃₄N [M+NH₄]⁺: 408.2686 found 408.2682.

1,2-Di([1,1'-biphenyl]-4-yl)-1,2-diphenylethane (3F)

The reaction was conducted for 3 h. Purification by PTLC (hexane/EtOAc = 6:1) afforded **3F** as a white solid (41.3 mg, 42% yield). The product was characterized by the mixture of diastereomers. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.0 Hz, 4H), 7.40–7.33 (m, 8H), 7.30–7.18 (m, 10H), 7.17–7.10 (m, 4H), 7.04 (t, *J* = 8.0 Hz, 2H), 4.85 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 143.41, 143.36, 142.6, 142.5, 140.7, 138.54, 138.49, 128.9, 128.6, 128.5, 128.3, 128.2, 127.0, 126.9, 126.8, 126.0, 125.9, 56.0; HRMS (DART) *m/z* calcd for C₃₈H₃₄N [M+NH₄]⁺: 504.2686 found 504.2682.

1,2-Di(naphthalen-2-yl)-1,2-diphenylethane (3G)

The reaction was conducted by using 0.40 equiv of K_2CO_3 . Crude ¹H NMR analysis showed **major-3G:minor-3G** = 51:49; ¹H NMR peaks at 5.09 ppm (s, 2H) and 5.08 ppm (s, 1.95H) were used. Purification by PTLC (hexane/EtOAc = 6:1) afforded **3G** as a cream solid (50.6 mg, 58% yield, as a mixture of diastereomers; major/minor = 51:49).

For major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.71–7.56 (m, 8H), 7.44–7.20 (m, 10H), 7.14– 6.92 (m, 6H), 5.09 (s, 2H); For minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.71–7.56 (m, 8H), 7.44– 7.26 (m, 7H), 7.25–7.20 (m, 3H), 7.14–6.92 (m, 6H), 5.08 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) of diastereomer mixture δ 143.4, 143.2, 141.0, 140.8, 133.38, 133.35, 131.9, 128.63, 128.56, 128.22, 128.16, 127.9, 127.8, 127.69, 127.66, 127.5, 127.4, 127.1, 127.0, 125.9, 125.7, 125.6, 125.24, 125.21, 56.2; HRMS (DART) *m/z* calcd for C₃₄H₃₀N [M+NH₄]⁺: 452.2373 found 452.2369.

1,1,2,2-Tetrakis(4-fluorophenyl)ethane (3H)^[10]

Purification by PTLC (hexane/EtOAc = 6:1) afforded **3H** as a white solid (75.8 mg, 93% yield, 0.40 mmol scale). Purification by Isolera[®] (hexane/EtOAc = 9:1 to 3:2) afforded **3H** as a white solid (747 mg, 61% yield, 6.0 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.08–7.01 (m, 8H), 6.87–6.79 (m, 8H), 4.62 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.1 (d, *J*_{C-F} = 247.2 Hz), 138.5 (d, *J*_{C-F} = 2.9 Hz), 129.7 (d, *J*_{C-F} = 7.8 Hz), 115.2 (d, *J*_{C-F} = 21.3 Hz), 55.2; ¹⁹F NMR (376 MHz, CDCl₃) δ –116.6. The spectra matched with those of this compound reported in the literature.^[10]

1,2-Bis(4-fluorophenyl)-1,2-diphenylethane (3I)

The reaction was conducted for 1 h. Purification by PTLC (hexane/CHCl₃/CH₂Cl₂ = 4:1:1) afforded **3I** as a white solid (39.2 mg, 53% yield). The product was characterized by the mixture of diastereomers. ¹H NMR (400 MHz, CDCl₃) δ 7.20–6.97 (m, 14H), 6.86–6.72 (m, 4H), 4.70 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.03 (d, *J*_{C-F} = 246.3 Hz), 161.01 (d, *J*_{C-F} = 245.1 Hz), 143.0, 142.9, 139.1 (d, *J*_{C-F} = 3.2 Hz), 139.0 (d, *J*_{C-F} = 3.3 Hz), 129.81 (d, *J*_{C-F} = 7.7 Hz), 129.78 (d, *J*_{C-F} = 7.8 Hz), 128.4, 128.3, 126.12, 126.07, 115.1 (d, *J*_{C-F} = 21.0 Hz), 115.0 (d, *J*_{C-F} = 21.3 Hz), 55.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.1, -117.2; HRMS (DART) *m*/*z* calcd for C₂₆H₂₄NF₂ [M+NH₄]⁺: 388.1871 found 388.1863.

1,2-Bis(4-fluorophenyl)-1,2-bis(4-(phenylethynyl)phenyl)ethane (3J)

The reaction was conducted by 2.0 equiv of Cs₂CO₃. Purification by PTLC (hexane/EtOAc = 4:1) afforded **3J** as a yellow solid (33.2 mg, 29% yield). The product was characterized by the mixture of diastereomers. ¹H NMR (400 MHz, CDCl₃) δ 7.51–7.43 (m, 4H), 7.39–7.27 (m, 10H), 7.14–7.02 (m, 8H), 6.87–6.77 (m, 4H), 4.69 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.2 (d, *J*_{C-F} = 246.4 Hz), 143.1, 143.0, 138.3 (d, *J*_{C-F} = 3.2 Hz), 138.2 (d, *J*_{C-F} = 3.0 Hz), 131.7, 131.5, 129.8 (d, *J*_{C-F} = 8.1 Hz), 128.4, 128.3, 128.21, 128.18, 123.22, 123.19, 121.12, 121.09, 115.3 (d, *J*_{C-F} = 21.3 Hz), 115.23 (d, *J*_{C-F} = 21.4

Hz), 89.3, 89.1, 55.5; ¹⁹F NMR (376 MHz, CDCl₃) δ –116.5; HRMS (DART) *m*/*z* calcd for C₄₂H₂₉F₂ [M+H]⁺: 571.2232 found 571.2227.

1,1,2,2-Tetrakis(4-methoxyphenyl)ethane (3K)^[11]

The reaction was conducted by using 2.0 equiv of K₂CO₃ and MeCN. Purification by PTLC (hexane/EtOAc = 6:1) afforded **3K** as a white solid (50.9 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.02 (d, *J* = 8.8 Hz, 8H), 6.65 (d, *J* = 8.8 Hz, 8H), 4.57 (s, 2H), 3.68 (s, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 157.9, 133.7, 129.7, 113.8, 55.2, 40.1.

1,2-Bis(2-methoxyphenyl)-1,2-bis(4-methoxyphenyl)ethane (3L)^[12]

The reaction was conducted by using 2.0 equiv of K_2CO_3 and MeCN. Crude ¹H NMR analysis showed **major-3L**:**minor-3L** = 55:45; ¹H NMR peaks at 5.23 ppm (s, 2H) and 5.33 ppm (s, 1.61H) were used. Purification by PTLC (CHCl₃) afforded **3L** as a white solid (28.0 mg, 31% yield, as a mixture of diastereomers; major/minor = 55:45).

For major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.28 (dd, J = 7.6, 1.6 Hz, 2H), 7.13–7.06 (m, 4H), 7.01–6.93 (m, 2H), 6.73 (td, J = 7.6, 1.6 Hz, 2H), 6.68–6.57 (m, 6H), 5.23 (s, 2H), 3.72 (s, 6H), 3.68 (s, 6H); For minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, J = 7.6, 1.6 Hz, 2H), 7.13–7.06 (m, 4H), 7.01–6.93 (m, 2H), 6.79 (td, J = 7.6, 1.6 Hz, 2H), 6.68–6.57 (m, 6H), 5.33 (s, 2H), 3.68 (s, 6H), 3.66 (s, 6H); ¹³C NMR of diastereomer mixture (101 MHz, CDCl₃) δ 157.2, 157.1, 156.62, 156.56, 136.0, 135.9, 133.0, 132.8, 129.7, 129.5, 128.4, 127.9, 126.51, 126.45, 120.4, 120.2, 113.1, 112.9, 110.6, 110.4, 55.5, 54.99, 54.98. The spectra matched with those of this compound reported in the literature.^[12]

1,2-Bis(4'-methoxy-[1,1'-biphenyl]-4-yl)-1,2-diphenylethane (3M)

Purification by PTLC (hexane/CHCl₃ = 1:9) afforded **3M** as a white solid (35.6 mg, 33% yield). The product was characterized by the mixture of diastereomers. ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.38 (m, 4H), 7.35–7.28 (m, 4H), 7.28–7.17 (m, 8H), 7.17–7.07 (m, 4H), 7.07–6.98 (m, 2H), 6.93–6.85 (m, 4H), 4.84 (s, 2H), 3.80 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 143.6, 141.9, 138.1, 133.3, 128.8, 128.5, 128.23, 128.16, 127.8, 126.42, 126.35, 125.9, 114.0, 55.9, 55.3; HRMS (DART) *m/z* calcd for C₄₀H₃₈O₂N [M+NH₄]⁺: 564.2897 found 564.2892.

1,2-Bis(4-phenoxyphenyl)-1,2-diphenylethane (3N)

The reaction was conducted by using 10 mol% of PdCl₂, 40 mol% of P(*m*-tolyl)₃, 2.0 equiv of Rb₂CO₃ and MeCN at 110 °C. Purification by PTLC (hexane/CHCl₃ = 9:1) afforded **3N** as a white solid (36.9 mg, 36% yield). The product was characterized by the mixture of diastereomers. ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.22 (m, 4H), 7.22–7.00 (m, 16H), 7.03–6.98 (m, 4H), 6.82–6.70 (m, 4H), 4.71 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.4, 155.0, 154.9, 143.4, 143.2, 138.7, 138.5, 129.8, 129.7, 129.60, 129.55, 128.51, 128.45, 128.2, 126.0, 122.89, 122.87, 118.8, 118.47, 118.45, 55.9; HRMS (DART) *m/z* calcd for C₃₈H₃₄O₂N [M+NH₄]⁺: 536.2584 found 536.2584.

1,2-Bis(4-(benzyloxy)phenyl)-1,2-diphenylethane (3O)

The reaction was conducted by using 2.0 equiv of Cs₂CO₃. Purification by PTLC (hexane/EtOAc = 4:1) and then GPC afforded **3O** as a white solid (50.3 mg, 46% yield, as a mixture of diastereomers; major/minor = 50:50). The product was characterized by the mixture of diastereomers. ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.26 (m, 10H), 7.22–6.96 (m, 14H), 6.80–6.66 (m, 4H), 4.92 (s, 2H), 4.90 (s, 2H), 4.67 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 156.79, 156.78, 143.89, 143.85, 137.1, 136.10, 136.07, 129.42, 129.39, 128.5, 128.4, 128.12, 128.08, 127.9, 127.5, 125.7, 114.5, 114.4, 69.9, 69.8, 55.7; HRMS (ESI) *m/z* calcd for C₄₀H₃₈O₂N [M+NH₄]⁺: 564.2897 found 564.2896.

4,4'-(1,2-Diphenylethane-1,2-diyl)bis(*N*,*N*-dimethylaniline) (3P)

The reaction was conducted by using 2.0 equiv of Cs_2CO_3 , 10 mol% of PdCl₂ and 40 mol% of PPh₂. Purification by PTLC (CHCl₃/MeOH 19:1, and then hexane/EtOAc = 4:1) and then GPC afforded **3P** as a white solid (30.3 mg, 36% yield). The product was characterized by the mixture of diastereomers. ¹H NMR (400 MHz, CDCl₃) δ 7.18–7.13 (m, 4H), 7.11–7.07 (m, 4H), 7.00–6.97 (m, 6H), 6.50–6.46 (m, 4H), 4.63 (s, 2H), 2.80 (s, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 148.5, 144.8, 132.1, 129.1, 128.5, 128.0, 125.3, 112.5, 55.4, 40.6; HRMS (ESI) *m/z* calcd for C₃₀H₃₃N₂ [M+H]⁺: 421.2638 found 421.2636.

Note: The product contains some impurities that were unable to remove using GPC.

3,3'-(1,2-Diphenylethane-1,2-diyl)dianiline (3Q)

The reaction using **S1** was conducted by using 2.0 equiv of Cs₂CO₃, 10 mol% of PdCl₂ and 40 mol% of PPh₂ for 12 h. Crude mixture of **S2** was dissolved in CH₂Cl₂ (1.75 mL). To this solution, NEt₃ (166 μ L, 1.2 mmol, 3.0 equiv) and then Ac₂O (79 μ L, 0.84 mmol, 2.1 equiv) were slowly added at 0 °C. After stirring the mixture for 3 h at room temperature, the reaction mixture was added saturated Na₂S₂O₃ aq. The mixture was extracted three times with CH₂Cl₂. The combined organic layer was washed with brine, dried over MgSO₄, filtrated, and concentrated *in vacuo*. The residue was purified by PTLC (CHCl₃/MeOH = 19:1) to afford a cream solid. The obtained solid was washed with Et₂O to afford **3Q** as a cream solid (29.1 mg, 32% yield). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.77 (s, 2H), 7.61–7.51 (m, 2H), 7.40–7.28 (m, 4H), 7.28–7.20 (m, 2H), 7.20–7.13 (m, 2H), 7.13–6.98 (m, 6H), 6.98–6.87 (m, 2H), 4.97 (s, 2H), 3.38 (s, 6H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.2, 144.6, 144.1, 139.1, 128.4, 128.2, 128.1, 125.7, 122.8, 119.0, 116.7, 54.6, 24.0; HRMS (ESI) *m/z* calcd for C₃₀H₂₉N₂O₂ [M+H]⁺: 449.2226 found 449.2224.

10,10',11,11'-Tetrahydro-5*H*,5'*H*-5,5'-bidibenzo[*a*,*d*][7]annulene (3**R**)^[13]

The reaction was conducted by using 20 mol% of P^{*n*}Bu₃, 2.0 equiv of K₂CO₃ and MeCN. Purification by PTLC (hexane/EtOAc = 4:1) and then GPC afforded **3R** as a white solid (33.6 mg, 43% yield). The product was characterized by the mixture of isomers. ¹H NMR (400 MHz, CDCl₃) δ 7.06 (d, J = 7.6 Hz, 4H), 6.96 (t, J = 7.6 Hz, 4H), 6.69 (t, J = 7.6 Hz, 4H), 6.53 (d, J = 7.6 Hz, 4H), 4.78 (s, 2H), 3.81–3.69 (m, 4H), 3.09–2.97 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 139.4, 139.2, 131.9, 130.1, 126.4, 125.1, 60.7, 33.9. The spectra matched with those of this compound reported in the literature.^[13]

9H,9'H-9,9'-Bifluorene (3S)^[10]

The reaction was conducted in 0.20 mmol scale by using 0.40 equiv of K₂CO₃. Purification by PTLC (hexane/EtOAc = 6:1) afforded **3S** as a yellow solid (10.6 mg, 32% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.2 Hz, 4H), 7.35–7.27 (m, 4H), 7.09 (t, *J* = 7.2 Hz, 4H), 7.01–6.90 (m, 4H), 4.84 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 144.6, 141.6, 127.4, 126.8, 124.2, 119.8, 49.9. The spectra matched with those of this compound reported in the literature.^[10]

2,2',4,4'-Tetraethyl-9H,9'H-9,9'-bithioxanthene (3T)

The reaction was conducted by using 20 mol% of MePPh₂, 2.0 equiv of K_2CO_3 and MeCN. Crude ¹H NMR analysis showed **major-3T:minor-3T** = 58:42; ¹H NMR peaks at 4.53 ppm (s, 2H) and 4.50 ppm (s, 1.44H) were used. Purification by PTLC (hexane) afforded **3T** as a white solid (20.6 mg, 20% yield, as a mixture of diastereomers; major/minor = 58:42).

For major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.0 Hz, 2H), 7.12–7.02 (m, 2H), 6.84–6.74 (m, 4H), 6.32 (d, J = 8.0 Hz, 2H), 6.08–6.04 (m, 2H), 4.53 (s, 2H), 2.96–2.73 (m, 4H), 2.34–2.20 (m, 4H), 1.33 (t, J = 7.6 Hz, 6H), 0.91 (t, J = 7.6 Hz, 6H); For minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.0 Hz, 2H), 7.12–7.02 (m, 2H), 6.84–6.74 (m, 4H), 6.29 (d, J = 8.0 Hz, 2H), 6.08–6.04 (m, 2H), 4.50 (s, 2H), 2.96–2.73 (m, 4H), 2.34–2.20 (m, 4H), 1.33 (t, J = 7.6 Hz, 6H), 0.91 (t, J = 7.6 Hz, 6H); ¹³C NMR of diastereomer mixture (101 MHz, CDCl₃) δ 141.6, 141.5, 140.10, 140.05, 136.6, 136.5, 135.9, 132.5, 132.3, 130.0, 129.9, 127.64, 127.57, 127.3, 126.4, 126.2, 126.1, 125.94, 125.89, 125.4, 48.5, 48.3, 28.13, 28.05, 27.2, 15.8, 15.5, 15.0, 14.7; HRMS (DART) *m/z* calcd for C₃₄H₃₈S₂N [M+NH₄]⁺: 524.2440 found 524.2446.

2,2'-((1,2-Diphenylethane-1,2-diyl)bis(4,1-phenylene))dipropanenitrile (3U)

The reaction was conducted by using 2.0 equiv of K_2CO_3 and MeCN. Purification by PTLC (CHCl₃) afforded **3U** as a white solid (21.7 mg, 25% yield). The product was characterized by the mixture of isomers. ¹H NMR (400 MHz, CDCl₃) δ 7.23–7.10 (m, 12H), 7.10–7.03 (m, 4H), 7.03–6.96 (m, 2H), 4.77–4.72 (m, 2H), 3.77–3.66 (m, 2H), 1.46–1.39 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 144.50, 144.47, 144.4, 144.2, 144.14, 144.09, 142.6, 142.52, 142.50, 142.46, 142.32, 142.27, 142.25, 142.2, 136.84, 136.80, 136.7, 129.1, 129.0, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.10, 127.07, 127.01, 126.99, 126.97, 126.9, 126.2, 124.4, 124.29, 124.26, 121.51, 121.49, 56.4, 56.3, 31.1, 31.0, 29.7, 21.44, 21.39, 21.3; HRMS (DART) *m/z* calcd for $C_{32}H_{29}N_2$ [M+H]⁺: 441.2325 found 441.2321.

Diisopropyl 2,2'-(((1,2-bis(4-chlorophenyl)ethane-1,2-diyl)bis(4,1-phenylene))bis(oxy))bis(2-methylpropanoate) (3V)

The reaction was conducted by using 10 mol% of PdCl₂, 40 mol% of PPh₃ and 0.40 equiv of K₂CO₃. Purification by PTLC (CHCl₃) afforded **3V** as a beige solid (38.1 mg, 28% yield). The product was characterized by the mixture of diastereomers. ¹H NMR (400 MHz, CDCl₃) δ 7.09–6.95 (m, 8H), 6.95–6.88 (m, 4H), 6.65–6.54 (m, 4H), 5.04–4.94 (m, 2H), 4.52 (s, 2H), 1.503 (s, 6H), 1.497 (s, 6H), 1.10 (t, *J* = 6.4 Hz, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 153.8, 141.9, 135.9, 131.5, 129.7, 128.9, 128.2, 118.5, 78.9, 68.8, 55.2, 25.3, 25.2, 21.41, 21.39.; HRMS (ESI) *m/z* calcd for C₄₀H₄₈O₆NCl₂ [M+NH₄]⁺: 708.2853 found 708.2847.

4. Pd-Catalyzed Deoxygenative Synthesis of Triarylmethanes from Diarylketones

Friedel–Crafts Alkylation

A 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar and Cs₂CO₃ (52.1 mg, 0.16 mmol, 0.40 equiv) was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this were added diarylketones (0.40 mmol, 1.0 equiv) and diphenylphosphine oxide (121.3 mg, 0.60 mmol, 1.5 equiv). The vessel was placed under vacuum and refilled N₂ gas three times. To this vessel was added DME (2.0 mL). The vessel was sealed with an O-ring tap and then heated at 80 °C for 3 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was concentrated *in vacuo*. To the residue were added arene (1.0 mL) and TfOH (0.80 mmol, 2.0 equiv) at 0 °C. After stirring the mixture for several minutes with monitoring reaction progress with TLC, the reaction was quenched with saturated NaHCO₃ aq. The mixture was extracted three times with EtOAc. The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated *in vacuo*. The residue was purified by PTLC to afford **6**.

(*p*-Tolylmethylene)dibenzene (*p*-6A)^[14]

Crude ¹H NMR analysis showed p-6A:o-6A = 85:15; ¹H NMR peaks at 5.68 ppm (s, 0.17H) and 5.52 ppm (s, 1H) were used. Purification by PTLC (hexane/EtOAc = 4:1) afforded **6A** as a colorless liquid (67.6 mg, 65% yield, as a mixture of structural isomer; p-6A:o-6A = 85:15).

For *p*-6A: ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.22 (m, 4H), 7.22–7.14 (m, 2H), 7.14–7.03 (m, 6H), 7.03–6.96 (m, 2H), 5.50 (s, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.1, 140.9, 135.8, 129.4, 129.3, 129.0, 128.2, 126.2, 56.4, 21.0. The spectra matched with those of this compound reported in the literature.^[14]

For *o*-6A^[14]: ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.03 (m, 13H), 6.85–6.79 (m, 1H), 5.68 (s, 1H), 2.22 (s, 3H).

2-Benzhydrylthiophene (2-6B)^[15]

The reaction was conducted by using thiophene (0.50 mL). Crude ¹H NMR analysis showed **2-6B:3-6B** = 93:7; ¹H NMR peaks at 5.69 ppm (s, 1H) and 5.52 ppm (s, 0.07H) were used. Purification by PTLC (hexane/CHCl₃ = 9:1) afforded **6B** as a white solid (57.1 mg, 57% yield, as a mixture of structural isomer; **2-6B/3-6B** = 93:7).

For **2-6B**: ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.27 (m, 4H), 7.25–7.19 (m, 7H), 6.97–6.92 (m, 1H), 6.72–6.67 (m, 1H), 5.69 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 147.9, 143.8, 128.8, 128.4, 126.7, 126.6, 126.4, 124.5, 52.1. The spectra matched with those of this compound reported in the literature.^[15]

For **3-6B**^[14]: ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.13 (m, 11H), 6.90–6.86 (m, 1H), 6.75–6.73 (m, 1H), 5.52 (s, 1H).

(Mesitylmethylene)dibenzene (6C)^[16]

Purification by PTLC (hexane/EtOAc = 6:1) afforded **6C** as a colorless liquid (55.9 mg, 49% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.30–7.22 (m, 4H), 7.22–7.16 (m, 2H), 7.13–7.07 (m, 4H), 6.86 (s, 2H), 6.00 (s, 1H), 2.29 (s, 3H), 2.01 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 142.5, 137.6, 137.0, 136.0, 130.1, 129.3, 128.1, 125.9, 51.0, 22.0, 20.8. The spectra matched with those of this compound reported in the literature.^[16]

2-(Mesityl(phenyl)methyl)naphthalene (6D)

The reaction was conducted by using mesitylene (0.50 mL). Purification by PTLC (hexane/CHCl₃ = 9:1) afforded **6D** as a beige solid (62.0 mg, 46% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.83–7.77 (m, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.69–7.64 (m, 1H), 7.45–7.38 (m, 3H), 7.32–7.18 (m, 5H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.14 (s, 1H), 2.30 (s, 3H), 2.03 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 142.4, 140.2, 137.7,

136.8, 136.1, 133.4, 132.0, 130.2, 129.5, 128.23, 128.19, 127.9, 127.6, 127.5, 127.4, 126.0, 125.8, 125.4, 51.3, 22.0, 20.8; HRMS (DART) *m/z* calcd for C₂₆H₂₈N [M+NH₄]⁺: 354.2216 found 354.2213.

9-Mesityl-9*H*-fluorene (6E)

The reaction was conducted by using mesitylene (0.50 mL). Purification by PTLC (hexane/EtOAc = 4:1) afforded **6E** as a yellow solid (78.3 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.25–7.19 (m, 3H), 7.02 (s, 1H), 6.65 (s, 1H), 5.48 (s, 1H), 2.67 (s, 3H), 2.28 (s, 3H), 1.08 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.2, 140.9, 137.8, 137.7, 136.2, 133.8, 130.5, 128.8, 127.1, 126.8, 124.1, 120.0, 49.7, 21.7, 20.8, 18.6; HRMS (DART) *m/z* calcd for C₂₂H₂₄N [M+NH₄]⁺: 302.1903 found 302.1901.

Isopropyl 2-(4-((4-chlorophenyl)(mesityl)methyl)phenoxy)-2-methylpropanoate (6F)

Purification by PTLC (hexane/EtOAc = 6:1) afforded **6F** as a colorless liquid (85.5 mg, 46% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, *J* = 8.8 Hz, 2H), 7.00 (d, *J* = 8.8 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 6.83 (s, 2H), 6.75 (d, *J* = 8.8 Hz, 2H), 5.86 (s, 1H), 5.12–5.01 (m, 1H), 2.27 (s, 3H), 1.96 (s, 6H), 1.57 (s, 6H), 1.21 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 153.7, 141.3, 137.3, 136.7, 136.1, 135.3, 131.6, 130.5, 130.2, 129.7, 128.2, 118.8, 79.0, 68.8, 49.6, 25.4, 25.3, 21.9, 21.5, 20.7; HRMS (ESI) *m/z* calcd for C₂₉H₃₃ClO₃Na [M+Na]⁺: 487.2010 found 487.2011.

Suzuki-Miyaura Coupling

A 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar and Cs_2CO_3 (260.7 mg, 0.80 mmol, 2.0 equiv) was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this were added benzophenone (1: 72.9 mg, 0.40 mmol, 1.0 equiv) and diphenylphosphine oxide (97.1 mg, 4.8 mmol, 1.2 equiv). The vessel was placed under vacuum and refilled N₂ gas three times. To this vessel was added 1,4-dioxane (2.0 mL). The vessel was sealed with an O-ring tap and then heated at 150 °C for 1 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, to this mixture were added Pd(OAc)₂ (9.0 mg, 0.040 mmol, 10 mol%), P(*p*-tolyl)₃ (48.7 mg, 0.16 mmol, 40 mol%) and arylboronic acid (6.0 mmol, 1.5 equiv) under a stream of N₂ gas. The vessel was sealed with an O-ring tap and then heated at 150 °C for 1 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica-gel pad with EtOAc as an eluent. The filtrate was concentrated *in vacuo*. The residue was purified by PTLC or GPC to afford **6**.

((4-(Trifluoromethyl)phenyl)methylene)dibenzene (6G)^[14]

Purification by PTLC (hexane/EtOAc = 4:1) and then GPC to afford **6G** as a white solid (50.8 mg, 41% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.0 Hz, 2H), 7.34–7.26 (m, 4H), 7.26–7.18 (m, 4H), 7.13–7.05 (m, 4H), 5.59 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 148.0, 142.9, 129.8, 129.4, 128.6 (q, *J*_{C-F} = 32.3 Hz), 128.5, 126.7, 125.2 (q, *J*_{C-F} = 3.9 Hz), 124.3 (q, *J*_{C-F} = 272 Hz), 56.6; ¹⁹F NMR (376 MHz, CDCl₃) δ –62.5. The spectra matched with those of this compound reported in the literature.^[14]

4-Benzhydrylbenzonitrile (6H)^[17]

Purification by PTLC (hexane/Et₂O = 10:1) and then GPC to afford **6H** as a colorless liquid (37.8 mg, 35% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.0 Hz, 2H), 7.31 (t, *J* = 8.0 Hz, 4H), 7.27–7.20 (m, 4H), 7.07 (d, *J* = 8.0 Hz, 4H), 5.58 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 149.5, 142.4, 132.1, 130.2, 129.3, 128.6, 126.8, 118.9, 110.2, 56.8. The spectra matched with those of this compound reported in the literature.^[17]

Methyl 4-benzhydrylbenzoate (6I)

Purification by PTLC (hexane/EtOAc = 4:1) and then GPC to afford **6I** as a white solid (44.5 mg, 37% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.99–7.93 (m, 2H), 7.32–7.25 (m, 4H), 7.25–7.17 (m, 4H), 7.14–7.07 (m, 4H), 5.59 (s, 1H), 3.89 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 149.2, 143.0, 129.6, 129.5, 129.4, 128.4, 128.3, 126.6, 56.8, 52.0; HRMS (ESI) *m/z* calcd for C₂₁H₁₉O₂ [M+H]⁺: 303.1380 found 303.1379.

((4-Methoxyphenyl)methylene)dibenzene (6J)^[14]

Purification by PTLC (hexane/EtOAc = 4:1) and then GPC to afford **6J** as a colorless liquid (53.8 mg, 49% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.23 (m, 4H), 7.23–7.16 (m, 2H), 7.11 (d, *J* = 7.6 Hz, 4H), 7.06–6.99 (m, 2H), 6.85–6.79 (m, 2H), 5.50 (s, 1H), 3.76 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.0, 144.2, 136.1, 130.3, 129.4, 128.2, 126.2, 113.6, 56.0, 55.2. The spectra matched with those of this compound reported in the literature.^[14]

4-Benzhydryl-1,1'-biphenyl (6K)^[18]

Purification by PTLC (hexane/EtOAc = 4:1) and then GPC to afford **6K** as a white solid (56.1 mg, 44% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.53 (m, 2H), 7.53–7.47 (m, 2H), 7.41 (t, *J* = 8.0 Hz, 2H), 7.34–7.26 (m, 5H), 7.24–7.18 (m, 3H), 7.18–7.13 (m, 5H), 5.58 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 143.0, 140.8, 139.1, 129.8, 129.4, 128.7, 128.3, 127.1, 127.0, 126.4, 56.5 (one peak is missing due to overlapping). The spectra matched with those of this compound reported in the literature.^[18]

((4-Phenoxyphenyl)methylene)dibenzene (6L)

Purification by PTLC (hexane/CHCl₃/MeOH = 4:1:1) and then GPC to afford **6L** as a white solid (44.2 mg, 33% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.16 (m, 8H), 7.16–7.09 (m, 4H), 7.09–7.02 (m, 3H), 7.03–6.95 (m, 2H), 6.95–6.86 (m, 2H), 5.53 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 157.2, 155.6, 143.9, 138.7, 130.6, 129.7, 129.4, 128.3, 126.3, 123.2, 118.8, 118.6, 56.1; HRMS (DART) *m*/*z* calcd for C₂₅H₂₄ON [M+NH₄]⁺: 354.1852 found 354.1851.

5. One-Pot Synthesis of Diphenylmethane (2A)

A 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar and Cs_2CO_3 (52.1 mg, 0.16 mmol, 0.40 equiv) was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this were added benzoic acid (0.40 mmol, 1.0 equiv), Pd(OAc)₂ (4.5 mg, 0.020 mmol, 5.0 mol%), PPh₃ (21.0 mg, 0.080 mmol, 20 mol%), and phenylboronic acid (58.5 mg, 0.48 mmol, 1.2 equiv). The vessel was placed under vacuum and refilled N₂ gas three times. To this vessel were added Boc₂O (183 µL, 0.80 mmol, 2.0 equiv), water (18 µL, 1.0 mmol, 2.5 equiv), and THF (1.6 mL). The vessel was sealed with an O-ring tap and then heated at 150 °C for 12 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was concentrated in vacuo. The vessel was filled with N2 gas. To the same vessel were added PdCl2 (3.6 mg, 0.020 mmol, 5.0 mol%), HCO₂Na (54.4 mg, 0.80 mmol, 2.0 equiv), diphenylphosphine oxide (121.3 mg, 0.60 mmol, 1.5 equiv), dried Cs₂CO₃ (260.7 mg, 0.80 mmol, 2.0 equiv), and MS4Å (100 mg). The vessel was placed under vacuum and refilled N2 gas three times. To this vessel was added DMSO (2.0 mL). The vessel was sealed with an O-ring tap and then heated at 150 °C for 1 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was added brine and then extracted three times with hexane/EtOAc. The combined organic layer was dried over Na₂SO₄, filtrated, and then concentrated in vacuo. The yield of 2A was estimated as 70% according to the ¹H NMR analysis of crude mixture by using CH₂Br₂ as an internal standard.

6. One-Pot Synthesis of 1,1,2,2-Tetraphenylethane (3A)

A 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar and Cs₂CO₃ (52.1 mg, 0.16 mmol, 0.40 equiv) was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this were added benzoic acid (0.40 mmol, 1.0 equiv), Pd(OAc)₂ (4.5 mg, 0.020 mmol, 5.0 mol%), PPh₃ (21.0 mg, 0.080 mmol, 20 mol%), and phenylboronic acid (58.5

mg, 0.48 mmol, 1.2 equiv). The vessel was placed under vacuum and refilled N₂ gas three times. To this vessel were added Boc₂O (183 µL, 0.80 mmol, 2.0 equiv), water (18 µL, 1.0 mmol, 2.5 equiv), and THF (1.6 mL). The vessel was sealed with an O-ring tap and then heated at 150 °C for 12 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was concentrated *in vacuo*. The vessel was filled with N₂ gas. To the same vessel were added Pd(OAc)₂ (4.5 mg, 0.020 mmol, 5.0 mol%), HCO₂Na (54.4 mg, 0.80 mmol, 2.0 equiv), diphenylphosphine oxide (121.3 mg, 0.60 mmol, 1.5 equiv), dried Cs₂CO₃ (260.7 mg, 0.80 mmol, 2.0 equiv), and MS4Å (100 mg). The vessel was placed under vacuum and refilled N₂ gas three times. To this vessel was added DME (2.0 mL). The vessel was sealed with an O-ring tap and then heated at 150 °C for 12 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was added DME (2.0 mL). The vessel was sealed with an O-ring tap and then heated at 150 °C for 12 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica-gel pad with EtOAc as an eluent. The filtrate was concentrated *in vacuo*. The residue was purified by PTLC (hexane/EtOAc = 4:1) to afford 1,1,2,2-tetraphenylethane (**3A**) as a white solid (28.5 mg, 43% yield).

7. One-Pot Synthesis of 2-(1-(p-Tolyl)but-3-en-1-yl)naphthalene (8)^[19]

An 8-mL glass tube equipped with a screw cap containing a magnetic stirring bar and Cs₂CO₃ (65.2 mg, 0.20 mmol, 1.0 equiv) was dried with a heat-gun in vacuo and filled N₂ after cooling to room temperature. To this tube were added naphthalen-2-yl(p-tolyl)methanone (7: 49.3 mg, 0.20 mmol, 1.0 equiv) and diphenylphosphine oxide (40.4 mg, 0.20 mmol, 1.0 equiv). The tube was placed under vacuum and refilled N_2 gas three times. To this tube was added EtOAc (1.0 mL). The vessel was sealed with a screw cap and then heated at 80 °C for 12 h in a 16-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was refilled N_2 gas. To the same vessel were added Pd(OAc)₂ (4.5 mg, 0.020 mmol, 10 mol%), L1 (24.4 mg, 0.080 mmol, 40 mol%), potassium allyltrifluoroborate (59.2 mg, 0.40 mmol, 2.0 equiv), and THF (1.0 mL) under a stream of N2 gas. The vessel was sealed with a screw cap and then heated at 60 °C for 12 h in a 16-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica-gel pad with EtOAc as an eluent. The filtrate was concentrated in vacuo. The residue was purified by PTLC (hexane/EtOAc = 9:1) to afford 2-(1-(p-tolyl)but-3-en-1-yl) naphthalene (8) as a colorless liquid (28.2 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.75 (m, 2H), 7.73 (d, J = 8.4 Hz, 1H), 7.69 (s, 1H), 7.47–7.36 (m, 2H), 7.33 (d, J = 8.4 Hz, 1H), 7.17 (d, J = 8.0 Hz, 2H), 7.09 (d, J 2H), 5.83–5.67 (m, 1H), 5.11–4.91 (m, 2H), 4.14 (t, *J* = 7.6 Hz, 1H), 2.97–2.81 (m, 2H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.2, 141.4, 136.9, 135.7, 133.5, 132.1, 129.1, 128.0, 127.9, 127.7,

127.5, 126.8, 125.9, 125.3, 116.3, 50.8, 39.8, 21.0 (one peak is missing due to overlapping). The spectra matched with those of this compound reported in the literature.^[19]

8. One-Pot Synthesis of 2-(4-Allylbenzyl)naphthalene (10)

An 8-mL glass tube equipped with a screw cap containing a magnetic stirring bar and Cs_2CO_3 (26.1 mg, 0.080 mmol, 0.40 equiv) was dried with a heat-gun in vacuo and filled N₂ after cooling to room temperature. To this tube were added naphthalen-2-yl(phenyl)methanone (9: 46.5 mg, 0.20 mmol, 1.0 equiv) and diphenylphosphine oxide (40.4 mg, 0.20 mmol, 1.0 equiv). The tube was placed under vacuum and refilled N_2 gas three times. To this tube was added THF (2.0 mL). The vessel was sealed with a screw cap and then heated at 60 °C for 6 h in a 16-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was refilled N_2 gas. To the same vessel were added acetic acid (AcOH: 9.2 µL, 0.16 mmol, 0.80 equiv), Pd(OAc)₂ (4.5 mg, 0.020 mmol, 10 mol%), L1 (24.4 mg, 0.080 mmol, 40 mol%), and potassium allyltrifluoroborate (59.2 mg, 0.40 mmol, 2.0 equiv) under a stream of N₂ gas. The vessel was sealed with a screw cap and then heated at 60 $^{\circ}$ C for 12 h in a 16-well reaction block with stirring. After cooling the reaction mixture to room temperature, the reaction was quenched with H₂O. The mixture was extracted three times with Et₂O. The combined organic layer was dried over Na₂SO₄, filtrated, and concentrated *in vacuo*. The residue was purified by PTLC (hexane) to afford 2-(4-allylbenzyl)naphthalene (10) as a white solid (36.9 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ7.80–7.71 (m, 3H), 7.62 (s, 1H), 7.47–7.36 (m, 2H), 7.33–7.25 (m, 1H), 7.15 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 6.01–5.87 (m, 1H), 5.11–4.99 (m, 2H), 4.10 (s, 2H), 3.35 (d, J = 6.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 138.73, 138.69, 137.9, 137.5, 133.6, 132.0, 129.0, 128.7, 128.0, 127.62, 127.59, 127.5, 127.0, 125.9, 125.3, 115.7, 41.7, 39.8; HRMS (DART) m/z calcd for C₂₀H₂₂N [M+NH₄]⁺: 276.1747 found 276.1745.

9. Intramolecular Dimerization/ Oxidation

A 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar and Cs₂CO₃ (130.3 mg, 0.40 mmol, 2.0 equiv) was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this were added [1,1'-biphenyl]-2,2'-diylbis(phenylmethanone) (**11**: 0.20 mmol, 1.0 equiv), PdCl₂ (1.8 mg, 0.010 mmol, 5.0 mol%), PPh₃ (10.5 mg, 0.040 mmol, 20 mol%), HCO₂Na (27.2 mg, 0.40 mmol, 2.0 equiv), and diphenylphosphine oxide (60.7 mg, 0.30 mmol, 1.5 equiv). The vessel was placed under vacuum and refilled N₂ gas three times. To this vessel was added DME (1.0 mL). The vessel was sealed with an O-ring tap and then heated at 150 °C for 12 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was concentrated *in vacuo*. To the same vessel were added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ: 136.2 mg, 0.60 mmol, 6.0 equiv), CH₂Cl₂ (10 mL), and then TfOH (2.7 mL, 30 mmol, 150 equiv) at 0 °C. After stirring the mixture at 0 °C for 5 h, the reaction was quenched with NaHCO₃ aq. The mixture was extracted three times with CH₂Cl₂. The combined organic layer was washed with water and brine, dried over MgSO₄, filtrated, and concentrated *in vacuo*. The residue was purified by PTLC (hexane/CHCl₃ = 9:1) to afford dibenzo[*g*,*p*]chrysene (**14**) as a white solid (25.1 mg, 38% yield). The spectra of **14** were matched with those of the commercial reagent from TCI (D3736).

10. 2-Benzylnaphthalene (2B) Synthesis from Arylaldehyde

A 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar and Cs₂CO₃ (260.7 mg, 0.80 mmol, 2.0 equiv) was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this were added 2-naphthaldehyde (**15**: 62.5 mg, 0.40 mmol, 1.0 equiv) and diphenylphosphine oxide (121.3 mg, 0.60 mmol, 1.5 equiv). The vessel was placed under vacuum and refilled N₂ gas three times. To this vessel was added DME (2.0 mL). The vessel was sealed with an O-ring tap and then heated at 80 °C for 6 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was refilled N₂ gas. To the same vessel were added phenylboronic acid (73.2 mg, 0.60 mmol, 1.5 equiv), Pd(OAc)₂ (9.0 mg, 0.040 mmol, 10 mol%) and P(*p*-tolyl)₃ (48.7 mg, 0.16 mmol, 40 mol%) under a stream of N₂ gas. The vessel was sealed with an O-ring tap and then heated at 80 °C for 3 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica-gel pad with EtOAc as an eluent. The filtrate was concentrated *in vacuo*. The residue was purified by PTLC (hexane/EtOAc = 9:1) to afford 2-benzylnaphthalene (**2B**) as a colorless liquid (50.9 mg, 58% yield).

11. 2-(1,2-Diphenylethyl)naphthalene (16) Synthesis from Diarylketone^[20]

A 20-mL glass vessel equipped with J. Young® O-ring tap containing a magnetic stirring bar and Cs₂CO₃ (130.3 mg, 0.40 mmol, 2.0 equiv) was dried with a heat-gun in vacuo and filled with N₂ gas after cooling to room temperature. To this was added naphthalen-2-yl(phenyl)methanone (9: 46.5 mg, 0.20 mmol, 1.0 equiv) and diphenylphosphine oxide (38.4 mg, 0.19 mmol, 0.95 equiv). The vessel was placed under vacuum and refilled N_2 gas three times. To this vessel was added DME (2.0 mL). The vessel was sealed with an O-ring tap and then heated at 80 °C for 5 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the vessel was refilled N₂ gas. To the same vessel were added bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methane (53.6 mg, 0.20 mmol, 1.0 equiv), Pd(OAc)₂ (2.3 mg, 0.010 mmol, 5.0 mol%), PPh₃ (5.3 mg, 0.020 mmol, 10 mol%), and dried K_2CO_3 (55.3 mg, 0.40 mmol, 2.0 equiv) under a stream of N_2 gas. The vessel was sealed with an O-ring tap and then heated at 100 °C for 12 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the vessel was refilled N₂ gas. To the same vessel were added Pd₂(dba)₃·CHCl₃ (11.4 mg, 0.011 mmol, 5.5 mol%), P(p-tolyl)₃ (60.9 mg, 0.20 mmol, 1.0 equiv), Ag₂O (92.7 mg, 0.40 mmol, 2.0 equiv), and iodobenzene (78 µL, 0.70 mmol, 3.5 equiv). The vessel was sealed with an O-ring tap and then heated at 90 °C for 24 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica-gel pad with EtOAc as an eluent. The filtrate was concentrated in vacuo. The residue was purified by PTLC (hexane/EtOAc = 6:1) to afford 2-(1,2-diphenylethyl)naphthalene (16) as a white solid (22.9 mg, 37%yield). ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.73 (m, 2H), 7.72 (d, J = 8.4 Hz, 1H), 7.66 (s, 1H), 7.46– 7.38 (m, 2H), 7.33 (dd, J = 8.4, 2.0 Hz, 1H), 7.25–7.21 (m, 4H), 7.20–7.07 (m, 4H), 7.06–6.99 (m, 2H), 4.40 (t, J = 7.6 Hz, 1H), 3.54–3.39 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 144.3, 141.9, 140.2, 133.4, 132.1, 129.1, 128.4, 128.2, 128.1, 128.0, 127.7, 127.5, 126.9, 126.2, 126.1, 125.90, 125.89, 125.4, 53.1, 41.9. The spectra matched with those of this compound reported in the literature.^[20]

12. 2-Tritylbenzofuran (18) Synthesis from Benzophenone (1)

A 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar and $C_{s_2}CO_3$ (260.6 mg, 0.80 mmol, 2.0 equiv) was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this were added benzophenone (1: 72.8 mg, 0.40 mmol, 1.0 equiv) and diphenylphosphine oxide (97.1 mg, 0.48 mmol, 1.2 equiv). The vessel was placed under vacuum and refilled N₂ gas three times. To this vessel was added 1,4-dioxane (2.0 mL). The vessel was sealed with an O-ring tap and then heated at 160 °C for 1 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the vessel was refilled N₂ gas. To the same vessel were added Pd(OAc)₂ (9.0 mg, 0.040 mmol, 10 mol%), P(p-tolyl)₃ (48.7 mg, 0.16 mmol, 40 mol%), and phenylboronic acid (73.2 mg, 0.60 mmol, 1.5 equiv) under a stream of N_2 gas. The vessel was sealed with an O-ring tap and then heated at 160 °C for 1 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was passed through a pad of Celite[®] with EtOAc as an eluent. The filtrate was concentrated in vacuo. The tetraarylmethane synthesis follows Nambo's procedure. To an 8-mL glass tube equipped with a screw cap containing a magnetic stirring bar were added the obtained mixture and Sc(OTf)₃ (19.7 mg, 0.040 mmol, 10 mol%). The tube was placed under vacuum and refilled N₂ gas three times. To this mixture were added ClCH₂CH₂Cl (1.2 mL), benzofuran (215 µL, 2.0 mmol, 5.0 equiv), and 4,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,2dicarbonitrile (DDQ: 181.6 mg, 0.80 mmol, 2.0 equiv). The tube was sealed with a screw cap and then heated at 100 °C for 13 h in a 16-well aluminum reaction block with stirring After cooling the reaction mixture to room temperature, the mixture was passed through a pad of Celite[®] with EtOAc as an eluent. The filtrate was concentrated in vacuo. The residue was purified by PTLC (hexane/EtOAc = 9:1) to afford 2-tritylbenzofuran (18) as a white solid (85.6 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.0 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.33–7.25 (m, 9H), 7.23–7.20 (m, 1H), 7.20–7.13 (m, 7H), 6.47 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) 162.3, 155.1, 144.6, 130.4, 128.0, 127.8, 126.8, 123.9, 122.7, 120.9, 111.4, 108.4, 61.4. The spectra matched with those of this compound reported in the literature.^[21]

13. Effect of Parameters

13-1. Variations from Standard Conditions

	5.0 mol% PdCl ₂ 20 mol% PPh ₃ HP(O)Ph ₂ (1.5 equiv) Cs ₂ CO ₃ (2.0 equiv) HCO ₂ Na (2.0 equiv) DMSO (1.0 mL) 150 °C, 1 h standard conditions for diaryImethanes	2A +		BA	
entry	variations from 'standard' conditions	recovery of 1/%	yield of 2A / %	yield of 3A / %	yield o
1	10 mol% dcype, w/o Cs ₂ CO ₃ , DME, 12 h	0	10	4	
2	none	0	93	0	
3	W/O PdCl ₂	35	0	0	4
4	w/o PPfi ₃	14	50	0	
5		00 97	21	12	
7	w/o UCs2003	64	13	12	
8	100 °C	4	83	4	
9	$Cs_{0}CO_{0}$ (0.40 equiv) DMF	35	36	0	
10	20 mol% AsPh ₂ , Cs ₂ CO ₂ (0.40 equiv), DME	4	19	35	
11	20 mol% XPhos. Cs ₂ CO ₂ (0.40 equiv), DME	Ö	19	31	
12	HP(O)Ph ₂ (1.0 equiv), Cs ₂ CO ₃ (0.40 equiv), DME	20	18	51	
13	HP(O)Ph ₂ (2.0 equiv), Cs ₂ CO ₃ (0.40 equiv), DME	0	40	44	
14	HCO ₂ Na (0.50 equiv), Cs ₂ CO ₃ (0.40 equiv), DME	42	4	17	
15	HCO ₂ Cs (2.0 equiv) Cs ₂ CO ₂ (0.40 equiv) DME	0	53	46	

entry	variations from 'standard' conditions	recovery of $1/~\%$	yield of 2A / %	yield of 3A / %	yield of 2A'/ %
1	10 mol% dcype, w/o Cs ₂ CO ₃ , DME, 12 h	0	10	4	0
2	none	0	93	0	0
3	w/o PdCl ₂	35	0	0	44
4	w/o PPh ₃	14	56	0	15
5	w/o HP(O)Ph ₂	86	0	0	12
6	w/o Cs ₂ CO ₃	27	31	12	28
7	w/o HCO ₂ Na	64	13	4	14
8	100 °Č	4	83	0	0
9	Cs ₂ CO ₃ (0.40 equiv), DME	35	36	0	4
10	20 mol% AsPh ₃ , Cs ₂ CO ₃ (0.40 equiv), DME	4	19	35	13
11	20 mol% XPhos, Cs ₂ CO ₃ (0.40 equiv), DME	0	19	31	0
12	HP(O)Ph ₂ (1.0 equiv), Cs ₂ CO ₃ (0.40 equiv), DME	20	18	51	0
13	HP(O)Ph ₂ (2.0 equiv), Cs ₂ CO ₃ (0.40 equiv), DME	0	40	44	2
14	HCO ₂ Na (0.50 equiv), Cs ₂ CO ₃ (0.40 equiv), DME	42	4	17	0
15	HCO ₂ Cs (2.0 equiv), Cs ₂ CO ₃ (0.40 equiv), DME	0	53	46	0
16	Cs ₂ CO ₃ (0.40 equiv), DME, 12 h	0	13	76	0
17	K ₂ CO ₃ (0.40 equiv), DME, 12 h	5	18	54	23
18	CsF (0.40 equiv), DME, 12 h	24	11	28	28
19	5.0 mol% Pd(OAc) ₂ , Cs ₂ CO ₃ (0.40 equiv), DME, 12 h	0	6	67	27
20	5.0 mol% Pd(PPh ₃) ₄ , w/o PPh ₃ , Cs ₂ CO ₃ (0.40 equiv), DME, 12 h	0	18	69	13
21	5.0 mol% [Pd(allyl)Cl] ₂ , Cs ₂ CO ₃ (0.40 equiv), DME, 12 h	5	8	26	65
22	Cs ₂ CO ₃ (0.40 equiv), MeCN, 12 h	0	43	50	7
23	Cs ₂ CO ₃ (0.40 equiv), toluene, 12 h	0	34	60	0
24	Cs ₂ CO ₃ (0.40 equiv), DMF, 12 h	2	47	31	19
25	Cs ₂ CO ₃ (0.40 equiv), ^t AmylOH, 12 h	0	24	36	19

Recoveries and yields were determined by ${}^{1}H$ NMR using $CH_{2}Br_{2}$ as an internal standard.

13-2. Variations from Standard Conditions of Phosphinate

	$ \begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	2 (1.5 eq 0.40 equ ME C, 3 h	uiv) uiv) iv) 4A	Ph Ph
entry	variations from 'standard' cond	litions r	ecovery of 1A / %	yield of 4A / %
1 2 3 4 5 6 7 8 9	$\begin{array}{c} \text{Cs}_2\text{CO}_3 \ (2.0 \ \text{equiv}), \ \text{EtOA} \\ \text{DMSO} \\ \text{toluene} \\ 5.0 \ \text{mol}\% \ \text{Pd}(\text{OAc})_2 \\ 20 \ \text{mol}\% \ \text{Ph}_3 \\ 5.0 \ \text{mol}\% \ \text{Pd}(\text{OAc})_2, \ 20 \ \text{mol}\% \\ \text{HCO}_2\text{Na} \ (2.0 \ \text{equiv}), \ 150 \ \text{O} \\ \text{H}_2\text{O} \ (2.5 \ \text{equiv}) \end{array}$	c PPh ₃ C	0 0 85 10 0 28 0 60	quant. 87 93 15 89 91 72 80 35

Recoveries and yields were determined by ^1H NMR using CH_2Br_2 as an internal standard.

14. Mechanistic Study

14-1. Phosphinate 4A from Benzophenone 1

A 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar and Cs_2CO_3 (26.3 mg, 0.080 mmol, 0.40 equiv) was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this were added benzophenone (1: 36.0 mg, 0.20 mmol, 1.0 equiv) and diphenylphosphine oxide (60.7 mg, 0.30 mmol, 1.5 equiv). The vessel was placed under vacuum and refilled N₂ gas three times. To this vessel was added DME (1.0 mL). The vessel was sealed with an O-ring tap and then heated at 80 °C for 3 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was passed through a pad of Celite[®] with EtOAc as an eluent. The filtrate was concentrated *in vacuo*. The yield of benzhydryl diphenylphosphinate (4A) was determined by crude ¹H NMR analysis as >99% using CH₂Br₂ as an internal standard. The spectra of 4A matched with those of this compound reported in the literature.^[22]

14-2. Crossover Reaction

A 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar and K_2CO_3 (110.6 mg, 0.80 mmol, 4.0 equiv) was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this were added benzhydryl diphenylphosphinate (**4A**: 76.5 mg, 0.20 mmol, 1.0 equiv), PdCl₂ (3.1 mg, 0.020 mmol, 10 mol%), PPh₃ (21.6 mg, 0.080 mmol, 40 mol%), HCO₂Na (54.4 mg, 0.80 mmol, 4.0 equiv), and **5** (42.7 mg, 0.20 mmol, 1.0 equiv) or **2Y** (32.5 mg, 0.20 mmol, 1.0 equiv). The vessel was placed under vacuum and refilled N₂ gas three times. To this vessel was added MeCN (1.0 mL). The vessel was sealed with an O-ring tap and then heated at 150 °C for 12 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica-gel pad with EtOAc as an eluent. The filtrate was concentrated

in vacuo. The yields of **3A** and **3A'** were determined by crude ¹H NMR analysis (using CH_2Br_2 as an internal standard) as 44% and 0%, respectively, when **5** was added. In the case of **2Y**, the yields of **3A** and **3A'** were determined as 37% and 0%, respectively.

14-3. Deuterium Label Experiments

Following the General Procedure for the synthesis of tetraarylethanes from diarylketones (page S10), the deoxygenative reaction of **1** was conducted with following modification.

1) When using DCO₂Na instead of HCO₂Na, d-**2A** (1.8 mg, 3% yield, 30%D) and d-**3A** (36.4 mg, 54% yield, 9%D) were isolated.

2) When using DP(O)Ph₂ instead of HP(O)Ph₂, d-**2A** (2.3 mg, 3% yield, 77%D) and d-**3A** (41.9 mg, 62% yield, 61%D) were isolated.

3) When using DCO₂Na and DP(O)Ph₂ instead of HCO₂Na and HP(O)Ph₂, *d*-**2**A (1.8 mg, 3% yield, 84%D) and *d*-**3**A (22.0 mg, 32% yield, 73%D) were isolated.

Reaction of Deuterated Compound S3

14-4. Deoxygenative Reaction of 1 in the Presence of TEMPO.

A 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar and Cs_2CO_3 (26.1 mg, 0.080 mmol, 0.40 equiv) was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this were added benzophenone (1: 36.4 mg, 0.20 mmol, 1.0 equiv), PdCl₂ (1.8 mg, 0.010 mmol, 5.0 mol%), PPh₃ (10.5 mg, 0.040 mmol, 20 mol%), HCO₂Na (27.2 mg, 0.40 mmol, 2.0 equiv), diphenylphosphine oxide (60.7 mg, 0.30 mmol, 1.5 equiv), and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO: 15.6 mg, 0.10 mmol, 0.50 equiv). The vessel was placed under vacuum and refilled N₂ gas three times. To this vessel was added DME (1.0 mL). The vessel was sealed with an O-ring tap and then heated at 150 °C for 1 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica-gel pad with EtOAc as an eluent. The filtrate was concentrated *in vacuo*. The yields of **2A** and **3A** were determined by crude ¹H NMR analysis as 34% and 66%, respectively, using CH₂Br₂ as an internal standard.

A 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar and Cs_2CO_3 (26.1 mg, 0.080 mmol, 0.40 equiv) was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this were added benzophenone (1: 36.4 mg, 0.20 mmol, 1.0 equiv), PdCl₂ (1.8 mg, 0.010 mmol, 5.0 mol%), PPh₃ (10.5 mg, 0.040 mmol, 20 mol%), HCO₂Na (27.2 mg, 0.40 mmol, 2.0 equiv), and diethyl phosphonate (39 µL, 0.30 mmol, 1.5 equiv). The vessel was placed under vacuum and refilled N₂ gas three times. To this vessel was added DME (1.0 mL). The vessel was sealed with an O-ring tap and then heated at 150 °C for 1 h in a 9-well reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica-gel pad with EtOAc as an eluent. The filtrate was concentrated *in vacuo*. The yields of **3A** was determined by crude ¹H NMR analysis as 4% using CH₂Br₂ as an internal standard. In this case, we observed the generation of benzhydryl diethyl phosphate (**4B**, 96% yield determined by ¹H NMR).^[23]

14-6. Preparation of Diphenylmethyl-d Diphenylphosphinate (S3)

To a solution of benzophenone (1: 182.2 mg, 1.0 mmol, 1.0 equiv) in methanol (2.5 mL) was added sodium tetrahydroborate- d_4 (117.2 mg, 2.8 mmol, 2.8 equiv). This mixture was stirred for 3 h at room temperature. The mixture was added water and then extracted three times with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄, filtrated, and then concentrated *in vacuo*. To the resulted mixture were added pyridine (0.50 mL) and diphenylphosphinic chloride (223.6 µL, 1.2 mmol, 1.2 equiv) at 0 °C. After stirring the mixture for 2 h at room temperature, the mixture was added 1M HCl aq. and extracted three times with EtOAc. The combined organic layer was dried over Na₂SO₄, filtrated, and then concentrated *in vacuo*. The residue was purified by recrystallization (CH₂Cl₂/hexane) to afford diphenylphosphinate (**S3**) as a colorless solid (131.1 mg, 34% yield, 98% D). ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.63 (m, 4H), 7.49–7.41 (m, 2H), 7.39–7.18 (m, 14H), 6.49 (d, *J* = 10 Hz, 0.02H); ¹³C NMR (101 MHz, CDCl₃) δ 140.6 (d, *J*_{C-P} = 4.3 Hz), 132.0 (d, *J*_{C-P} = 2.8 Hz), 131.73 (d, *J*_{C-P} = 10.4 Hz), 131.66 (d, *J*_{C-P} = 137.4 Hz), 128.3, 128.2, 127.8, 127.2 (the peak of OCHPh₂ was overlapped with CDCl₃); ³¹P NMR (162 MHz, CDCl₃) δ 31.7; HRMS (ESI) *m/z* calcd for C₂₅H₂₀DO₂NaP [M+Na]⁺: 408.1234 found 408.1233.

15. X-ray Crystal Structure Analysis

15-1. 3A

Recrystallization from CHCl₃/hexane solution (vapor diffusion) gave crystals of **3A** suitable for Xray analysis. A suitable crystal was mounted with Paratone oil on a MiTeGen MicroMounts and transferred to the 3-axis Eulerian Goniometer of a Rigaku R-AXIS RAPID II system with Ultrax 18 kW rotating anode X-ray generator using graphite-monochromated Cu-K α radiation and imaging plate area detector. Cell parameters were determined and refined, and raw frame data were integrated using RAPID-AUTO (RIGAKU, 1998). The structures were solved by direct methods with (SHELXT)^[24] and refined by full-matrix least-squares techniques against F^2 (SHELXL-2018/3)^[25] by using Olex2 software package.^[26] The intensities were corrected for Lorentz and polarization effects. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed using AFIX instructions.

Figure 1. ORTEP drawing of one symmetry unique complete conformation of **3A** with 50% thermal ellipsoid. All hydrogen atoms and the disordered molecule are omitted for clarity.
Table 1 Crystal data and structure refinement for 3A.

Compound	3A
CCDC Number	2121107
Empirical formula	$C_{26}H_{22}$
Formula weight	334.43
T/K	173(2)
Crystal system	monoclinic
Space group	<i>C</i> 2/c
<i>a</i> / Å	17.661(3)
<i>b</i> / Å	5.8999(12)
<i>c</i> / Å	17.598(3)
α / °	90
β / °	91.211(7)
γ / °	90
$V/\text{\AA}^3$	1833.4(6)
Ζ	4
D_{calc} , / g cm ⁻³	1.212
μ / mm $^{-1}$	0.513
F(000)	712.0
Crystal size / mm	0.1 imes 0.1 imes 0.1
λ/Å	1.5418
2 heta range / °	10.018 to 136.368
Reflections collected	9136
Indep reflns/ <i>R</i> _{int}	1672/0.0393
Params	187
GOF on F^2	1.124
$R_1, WR_2[I > 2\sigma(I)]$	0.0541, 0.1341
R_1 , w R_2 [all data]	0.0707, 0.1497
Max./Mini. Peak / e Å ⁻³ 0.16/–0.22	

15-2. 3R

Recrystallization from acetone/methanol solution (vapor diffusion) gave crystals of **3R** suitable for X-ray analysis. A suitable crystal was mounted with Paratone oil on a MiTeGen MicroMounts and transferred to the 3-axis Eulerian Goniometer of a Rigaku R-AXIS RAPID II system with Ultrax 18 kW rotating anode X-ray generator using graphite-monochromated Cu-K α radiation and imaging plate area detector. Cell parameters were determined and refined, and raw frame data were integrated using RAPID-AUTO (RIGAKU, 1998). The structures were solved by direct methods with (SHELXT)^[24] and refined by full-matrix least-squares techniques against F^2 (SHELXL-2018/3)^[25] by using Olex2 software package.^[26] The intensities were corrected for Lorentz and polarization effects. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed using AFIX instructions.

Figure 2. ORTEP drawing of **3R** with 50% thermal ellipsoid. All hydrogen atoms are omitted for clarity. Compound **3R** crystallizes with two independent molecules in the unit cell (only one molecule is shown in Figure 2).

 Table 2 Crystal data and structure refinement for 3R.

Compound	3R
CCDC Number	2121108
Empirical formula	$C_{30}H_{26}$
Formula weight	386.51
T/K	173(2)
Crystal system	triclinic
Space group	<i>P</i> –1
<i>a</i> / Å	9.9103(12)
b / Å	10.3946(13)
<i>c</i> / Å	10.4347(13)
α / °	98.955(7)
eta / °	91.413(6)
γ / °	103.689(7)
$V/\text{\AA}^3$	1029.5(2)
Ζ	2
D_{calc} , / $g \ cm^{-3}$	1.247
μ / mm $^{-1}$	0.527
F(000)	412.0
Crystal size / mm	$0.2\times0.2\times0.1$
λ/Å	1.5418
2 heta range / °	8.596 to 136.42
Reflections collected	11946
Indep reflns/ <i>R</i> _{int}	3689/0.0480
Params	271
GOF on F^2	0.948
$R_1, WR_2[I > 2\sigma(I)]$	0.0485, 0.1124
R_1 , w R_2 [all data]	0.0816, 0.1241
Max./Mini. Peak / e Å	-3 0.13/-0.22

15-3.18

Recrystallization from toluene/hexane solution (vapor diffusion) gave crystals of **18** suitable for Xray analysis. A suitable crystal was mounted with Immersion oil viscosity 1,250 cSt (lit.) (SIGMA– ALDRICH) on a MiTeGen MicroMounts and transferred to Rigaku XtaLAB Synergy-S diffractometer equipped with a HyPix-6000HE Hybrid Photon Counting detector and dual Mo and Cu microfocus sealed tube. Cell parameters were determined and refined, and raw frame data were integrated using CrysAlis^{Pro} (Rigaku Oxford Diffraction, 2021).^[27] The structures were solved by direct methods with (SHELXT)^[24] and refined by full-matrix least-squares techniques against F^2 (SHELXL-2018/3)^[25] by using Olex2 software package.^[26] The intensities were corrected for Lorentz and polarization effects. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed using AFIX instructions.

Figure 3. ORTEP drawing of **18** with 50% thermal ellipsoid. All hydrogen atoms are omitted for clarity.

 Table 3 Crystal data and structure refinement for 18.

Compound	18
CCDC Number	2159413
Empirical formula	$C_{27}H_{20}O$
Formula weight	360.43
T/K	100(10)
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁
<i>a</i> / Å	7.33910(10)
<i>b</i> / Å	10.8689(2)
<i>c</i> / Å	11.7668(2)
α/°	90
eta / °	96.0850(10)
γ / °	90
$V/\text{\AA}^3$	933.33(3)
Ζ	2
D_{calc} , / g cm ⁻³	1.283
μ / mm $^{-1}$	0.588
F(000)	380.0
Crystal size / mm	$0.28 \times 0.09 \times 0.05$
λ/Å	1.54184
2 heta range / °	7.556 to 150.166
Reflections collected	11335
Indep reflns/ <i>R</i> _{int}	3526/0.0401
Params	253
GOF on F^2	1.043
$R_1, WR_2[I > 2\sigma(I)]$	0.0315, 0.0761
R_1 , w R_2 [all data]	0.0331, 0.0773
Max./Mini. Peak / e Å ⁻³ 0.14/-0.17	

16. References

[1] Seo, T.; Ishiyama, T.; Kubota, K.; Ito, H. Solid-State Suzuki–Miyaura Cross-Coupling Reactions: Olefin-Accelerated C–C Coupling Using Mechanochemistry. *Chem. Sci.* **2019**, *10*, 8202–8210.

[2] Gao, G.-L.; Niu, Y.-N.; Yan, Z.-Y.; Wang, H.-L.; Wang, G.-W.; Shaukat, A.; Liang, Y.-M. Unexpected Domino Reaction via Pd-Catalyzed Sonogashira Coupling of Benzimidoyl Chlorides with 1,6-Enynes and Cyclization to Synthesize Quinoline Derivatives. *J. Org. Chem.* **2010**, *75*, 1305–1308.

[3] Idris, M. A.; Lee, S. Palladium-Catalyzed Amide N–C Hiyama Cross-Coupling: Synthesis of Ketones. *Org. Lett.* **2020**, *22*, 9190–9195.

[4] Mai, S.; Li, W.; Li, X.; Zhao, Y.; Song, Q. Palladium-Catalyzed Suzuki–Miyaura Coupling of Thioureas or Thioamides. *Nat. Chem.* **2019**, *10*, 5709–5720.

[5] Liu, J.; Zhou, X.; Rao, H.; Xiao, F.; Li, C.-J., Deng, G.-J. Direct Synthesis of Aryl Ketones by Palladium-Catalyzed Desulfinative Addition of Sodium Sulfinates to Nitriles. *Chem. Eur. J.* **2011**, *17*, 7996–7999.

[6] Zhang, C.; Rao, Y. Weak Coordination Promoted Regioselective Oxidative Coupling Reaction for 2,2'-Difunctional Biaryl Synthesis in Hexafluoro-2-propanol. *Org. Lett.* **2015**, *17*, 4456–4459.

[7] Kim, C.-B.; Jo, H.; Ahn, B.-K.; Kim, C. K.; Park, K. Nickel N-Heterocyclic Carbene Catalyst for Cross-Coupling of Neopentyl Arenesulfonates with Methyl and Primary Alkyl Grignard Reagents. *J. Org. Chem.* **2009**, *74*, 9566–9569.

[8] Huang, C.-Y.; Li, J.; Liu, W.; Li, C.-J. Diacetyl as a "Traceless" Visible Light Photosensitizer in Metal-Free Cross-Dehydrogenative Coupling Reactions. *Chem. Sci.* **2019**, *10*, 5018–5024.

[9] Xue, C.; Wang, L.; Han, J. Palladium-Catalyzed Site-Selective Benzocyclization of Naphthoic Acids with Diaryliodonium Salts: Efficient Access to Benzanthrones. *J. Org. Chem.* **2020**, *85*, 15406–15414.

[10] Sumiyama, K.; Toriumi, N.; Iwasawa, N. Use of Isopropyl Alcohol as a Reductant for Catalytic Dehydoxylative Dimerization of Benzylic Alcohols Utilizing Ti–O Bond Photohomolysis. *Eur. J. Org. Chem.* **2021**, 2474–2478.

[11] Wakui, H.; Kawasaki, S.; Satoh, T.; Miura, M.; Nomura, M. Palladium-Catalyzed Reaction of 2-Hydroxy-2-methylpropiophenone with Aryl Bromides: A Unique Multiple Arylation via Successive C– C and C–H Bond Cleavages. J. Am. Chem. Soc. 2004, 126, 8658–8659.

[12] Chung, M.-K.; Qi, G.; Stryker, J. M. Synthesis of Sterically Hindered Ortho-Substituted Tetraphenylethenes. Electronic Effects in the McMurry Olefination Reaction. *Org. Lett.* **2006**, *8*, 1491–1494.

[13] Agranat, I.; Cohen, S.; Isaksson, R.; Sandstroem, J.; Suissa, M. R. Static and Dynamic Stereochemistry of a Chiral, Doubly Bridged 9,10-Diphenylanthracene from a Stereospecific Polycyclic Aromatic Dicarbonyl Coupling. *J. Org. Chem.* **1990**, *55*, 4943–4950.

[14] Nambo, M.; Crudden, C. M. Modular Synthesis of Triarylmethanes Through Palladium-Catalyzed

Sequential Arylation of Methyl Phenyl Sulfone. Angew. Chem., Int. Ed. 2014, 53, 742-746.

[15] Saha, T.; Kumar, M. S. L.; Bera, S.; Karkara, B. B.; Panda, G. Efficient Access to Triarylmethanes Through Decarboxylation. *RSC Adv.* **2017**, *7*, 6966–6971.

[16] Sato, Y.; Aoyama, T.; Takido, T.; Kodomari, M. Direct Alkylation of Aromatics Using Alcohols in the Presence of NaHSO₄/SiO₂. *Tetrahedron* **2012**, *68*, 7077–7081.

[17] Prakash, G. K. S.; Panja, C.; Shakhmin, A.; Shah, E.; Mathew, T.; Olah, G. A. BF₃-H₂O Catalyzed Hydroxyalkylation of Aromatics with Aromatic Aldehydes and Dicarboxaldehydes: Efficient Synthesis of Triarylmethanes, Diarylmethylbenzaldehydes, and Anthracene Derivatives. *J. Org. Chem.* **2009**, *74*, 8659–8668.

[18] Zhang, Z.; Wang, H.; Qiu, N.; Kong, Y.; Zeng, W.; Zhang, Y.; Zhao, J. Synthesis of Triarylmethanes via Palladium-Catalyzed Suzuki Coupling of Trimethylammonium Salts and Arylboronic Acids. *J. Org. Chem.* **2018**, *83*, 8710–8715.

[19] Peng, B.; Feng, X.; Zhang, X.; Ji, L.; Bao, M. Regioselective Control Using a Catalyst Switch in the Reaction of Diarylmethyl Chlorides with Allyltributylstannane. *Tetrahedron* **2010**, *66*, 6013–6018.

[20] Anthony, D.; Lin, Q.; Baudet, J.; Diao, T. Nickel-Catalyzed Asymmetric Reductive Diarylation of Vinylarenes. *Angew. Chem., Int. Ed.* **2019**, *58*, 3198–3202.

[21] Nambo, M.; Yim, J. C.-H.; Fowler, K. G.; Crudden, C. M. Synthesis of Tetraarylmethanes by the Triflic Acid-Promoted Formal Cross-Dehydrogenative Coupling of Triarylmethanes with Arenes. *Synlett* **2017**, *28*, 2936–2940.

[22] Qian, Y.; Dai, Q.; Li, Z.; Liu, Y.; Zhang, J. *O*-Phosphination of Aldehydes/Ketones Toward Phosphoric Esters: Experimental and Mechanistic Studies. *Org. Lett.* **2020**, *22*, 4742–4748.

[23] Dai, Q.; Liu, L.; Zhang, J. Palladium/Xiao-Phos-Catalyzed Kinetic Resolution of *sec*-Phosphine Oxides by *P*-Benzylation. *Angew. Chem., Int. Ed.* **2021**, *60*, 27247–27252.

[24] Sheldrick, G. M. *SHELXT* – Integrated Space-Group and Crystal-Structure Determination. *Acta Cryst.* **2015**, *A71*, 3–8.

[25] Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.

[26] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341.

[27] Matsumoto, T.; Yamano, Y.; Sato, T.; Ferrara, J. D.; White, F. J.; Meyer, M. "What is this?" A Structure Analysis Tool for Rapid and Automated Solution of Small Molecule Structures. *J. Chem. Crystallogr.* **2021**, *51*, 438–450.

17. ¹H , ¹³C, ¹⁹F and ³¹P NMR Spectra ¹H NMR of **2E** (400 MHz, CDCl₃)

əsluq_əlgniz — H197188

¹³C NMR of **2E** (101 MHz, CDCl₃)

BB1791C — single pulse decoupled gated NOE

MW371PTLC_1_PTLC_2 — single_pulse

¹³C NMR of **2G** (101 MHz, CDCl₃)

BB1853C — single pulse decoupled gated NOE

¹⁹F NMR of **2G** (376 MHz, CDCl₃)

B1853_F - single pulse decoupled gated NOE

¹H NMR of **2H** (400 MHz, CDCl₃)

S49

¹³C NMR of **2H** (101 MHz, CDCl₃)

B1901 more decoupled gated NOE

¹⁹F NMR of **2H** (376 MHz, CDCl₃)

F

-80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 --113.153--6--09--ß -4 -လို -9 -ę -0 -9 -8 -8 -4 -23 -8 -8 -8 -8 Ľ₽

BB1901F — single pulse decoupled gated NOE

¹H NMR of **2N** (400 MHz, CDCl₃)

əsluq_əlgniz — H_063188

¹³C NMR of **2N** (101 MHz, CDCl₃)

BB1630_C - single pulse decoupled gated NOE

¹H NMR of **2O** (400 MHz, CDCl₃)

MW353_1_PTLC_1 - single_pulse

¹³C NMR of **2O** (101 MHz, CDCl₃)

MW353monomer - single pulse decoupled gated NOE

¹H NMR of **2T** (400 MHz, CDCl₃)

¹³C NMR of **2T** (101 MHz, CDCl₃)

S57

¹H NMR of **2**U (400 MHz, CDCl₃)

MM379PTLC_2second — single_pulse

¹³C NMR of **2**U (101 MHz, CDCl₃)

B1855C — single pulse decoupled gated NOE

¹H NMR of **2V** (400 MHz, CDCl₃)

B1602_p2_50 - single_pulse

¹³C NMR of **2V** (101 MHz, CDCl₃)

BB1602_C - single pulse decoupled gated NOE

¹H NMR of **2W** (400 MHz, CDCl₃)

əsluq_əlgniz — H028188

¹³C NMR of **2W** (101 MHz, CDCl₃)

B1850C — single pulse decoupled gated NOE

¹H NMR of **2X** (400 MHz, CDCl₃)

S64

¹³C NMR of **2X** (101 MHz, CDCl₃)

BB1834C — single pulse decoupled gated NOE

¹H NMR of **3A** (400 MHz, CDCl₃)

¹³C NMR of **3A** (101 MHz, CDCl₃)

BBtetraphenylethane — single pulse decoupled gated NOE

¹H NMR of **3B** (400 MHz, CDCl₃)

əsluq_əlgniz — H928188

¹³C NMR of **3B** (101 MHz, CDCl₃)

BB1859C — single pulse decoupled gated NOE

¹H NMR of **3C** (400 MHz, CDCl₃)

əsluq_əlgniz — 1g_3e3188

¹³C NMR of **3**C (101 MHz, CDCl₃)

BB1696_C - single pulse decoupled gated NOE

¹H NMR of **3D** (400 MHz, CDCl₃)

MW324dimer_PTLC — single_pulse
¹³C NMR of **3D** (101 MHz, CDCl₃)

BB1715_p2_70_C - single pulse decoupled gated NOE

¹H NMR of **3E** (400 MHz, CDCl₃)

S74

¹³C NMR of **3**E (101 MHz, CDCl₃)

BB1698_C - single pulse decoupled gated NOE

¹H NMR of **3F** (400 MHz, CDCl₃)

Ph,

MW365PTLC_4and5_PTLCsecond - single_pulse

¹³C NMR of **3F** (101 MHz, CDCl₃)

MW346dimer – single_pulse

¹H NMR of **3H** (400 MHz, CDCl₃)

MW309dimerPTLC3 - single_pulse

¹³C NMR of **3H** (101 MHz, CDCl₃)

MW309dimer - single pulse decoupled gated NOE

¹⁹F NMR of **3H** (376 MHz, CDCl₃)

B12177_F - single pulse decoupled gated NOE

¹H NMR of **3I** (400 MHz, CDCl₃)

əsluq_əlgniz — H_418188

¹³C NMR of **3I** (101 MHz, CDCl₃)

BB1814_C - single pulse decoupled gated NOE

¹⁹F NMR of **3I** (376 MHz, CDCl₃)

BB1814 - single pulse decoupled gated NOE

BB1849diC — single pulse decoupled gated NOE

¹⁹F NMR of **3J** (376 MHz, CDCl₃)

B1849F2 — single pulse decoupled gated NOE

¹H NMR of **3K** (400 MHz, CDCl₃)

esluq_elgnis - 02_5q_5t188

¹³C NMR of **3K** (101 MHz, CDCl₃)

B1157_C - single pulse decoupled gated NOE

¹H NMR of **3L** (400 MHz, CDCl₃)

MM372PTLC_4 - single_pulse

¹³C NMR of **3**L (101 MHz, CDCl₃)

MW372PTLC_4 - single pulse decoupled gated NOE

əsluq_əlgniz — Hib197188

BB1791diC — single pulse decoupled gated NOE

¹³C NMR of **3N** (101 MHz, CDCl₃)

BB1704_C - single pulse decoupled gated NOE

¹H NMR of **3O** (400 MHz, CDCl₃)

əsluq_əlgniz — 848188

¹³C NMR of **3O** (101 MHz, CDCl₃)

BB1848 — single pulse decoupled gated NOE

¹H NMR of **3P** (400 MHz, CDCl₃)

əsluq_əlgniz — 1g_0ce188

¹³C NMR of **3P** (101 MHz, CDCl₃)

BB1930C — single pulse decoupled gated NOE

¹H NMR of **3Q** (400 MHz, DMSO-*d*₆)

esluq_elgniz - O2MQ_156188

¹³C NMR of **3Q** (101 MHz, DMSO- d_6)

əsluq_əlgniz — 1g_878188

¹³C NMR of **3R** (101 MHz, CDCl₃)

BBDBS_C - single pulse decoupled gated NOE

¹H NMR of **3S** (400 MHz, CDCl₃)

MW314PTLC2_2 - single_pulse

¹³C NMR of **3S** (101 MHz, CDCl₃)

MW314dimer - single pulse decoupled gated NOE

¹H NMR of **3T** (400 MHz, CDCl₃)

MW373PTLC_1_PTLC_1_PTLC_2 - single_pulse

¹³C NMR of **3T** (101 MHz, CDCl₃)

MW373PTLC_1_PTLC_1_PTLC_2 - single pulse decoupled gated NOE

¹³C NMR of **3**U (101 MHz, CDCl₃)

əsluq_əlgniz — 05_2q_437188

BB1761re — single pulse decoupled gated NOE

S113

¹³C NMR of **6A** (101 MHz, CDCl₃)

BB1561_C - single pulse decoupled gated NOE

¹H NMR of **6B** (400 MHz, CDCl₃)

S115

¹³C NMR of **6B** (101 MHz, CDCl₃)

BB1541_p100C — single pulse decoupled gated NOE

¹H NMR of **6C** (400 MHz, CDCl₃)

esluq_elpris - 0e_Eq_200188

¹³C NMR of **6**C (101 MHz, CDCl₃)

BB1605_C - single pulse decoupled gated NOE

¹H NMR of **6D** (400 MHz, CDCl₃)

əsluq_əlgniz — H_ð82188

¹H NMR of **6E** (400 MHz, CDCl₃)

əsluq_əlgniz — 001_142188

¹³C NMR of **6**E (101 MHz, CDCl₃)

BB1542_p100C — single pulse decoupled gated NOE

əsluq_əlgniz — H_742188

BB1547_C — single pulse decoupled gated NOE

əsluq_əlgniz — H163188

¹³C NMR of **6G** (151 MHz, CDCl₃)

- 697188

¹⁹F NMR of **6G** (376 MHz, CDCl₃)

BB1631 — single pulse decoupled gated NOE

BB1636_C - single pulse decoupled gated NOE

¹H NMR of **6I** (400 MHz, CDCl₃)

əsluq_əlgniz — H828188

¹³C NMR of **6I** (101 MHz, CDCl₃)

B1858C — single pulse decoupled gated NOE

¹H NMR of **6J** (400 MHz, CDCl₃)

əsluq_əlgniz — tg_208188

¹³C NMR of **6J** (101 MHz, CDCl₃)

B1805_C - single pulse decoupled gated NOE

əsluq_əlgniz — t_Sg_087188

¹³C NMR of **6K** (101 MHz, CDCl₃)

BB1780_C - single pulse decoupled gated NOE

BB1782C — single pulse decoupled gated NOE

¹H NMR of **8** (400 MHz, CDCl₃)

esluq_elgniz - 05_rq_620288

¹³C NMR of **8** (101 MHz, CDCl₃)

S#305531 - single pulse decoupled gated NOE

¹H NMR of **10** (400 MHz, CDCl₃)

S140

¹³C NMR of **16** (101 MHz, CDCl₃)

AW718_tm — single pulse decoupled gated NOE

¹H NMR of **18** (400 MHz, CDCl₃)

¹³C NMR of **18** (101 MHz, CDCl₃)

BB2009 — single pulse decoupled gated NOE

¹H NMR of S3 (400 MHz, CDCl₃)

BB2043re – single_pulse

¹³C NMR of **S3** (101 MHz, CDCl₃)

BB2043C - single pulse decoupled gated NOE

³¹P NMR of **S3** (162 MHz, CDCl₃)

BB2043P - single_pulse