Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

Supporting information

## Large Optical Anisotropy-Oriented Construction of Carbonate-

## Nitrate Chloride as Potential Ultraviolet Birefringent Materials

Meng Cheng, <sup>ab</sup> Wenqi Jin, <sup>ab</sup> Zhihua Yang, <sup>ab</sup> Shilie Pan\*<sup>ab</sup> <sup>a</sup>Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China. <sup>b</sup>Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

\*Corresponding author: slpan@ms.xjb.ac.cn



Figure S1. Photograph of crystals grown via mild solvent evaporation method.



Figure S2. (a) UV-vis-NIR diffuse reflectance spectra for  $Na_3Rb_6(CO_3)_3(NO_3)_2Cl\cdot(H_2O)_6$ ; (b) IR spectrum for  $Na_3Rb_6(CO_3)_3(NO_3)_2Cl\cdot(H_2O)_6$ ; (c) XRD patterns; (d) TG and DSC curves of  $Na_3Rb_6(CO_3)_3(NO_3)_2Cl\cdot(H_2O)_6$  in the temperature region from 40 to 800 °C.



Figure S3. Calculated birefringence curve.



Figure S4. The structure of the title compounds in the *ab* plane excluding C, N and Cl atoms.



Figure S5. Alignments of planar triangular anion groups by the  $NaO_5(H_2O)_2$  and  $RbO_9Cl$  polyhedra.



Figure S6. a) Two-dimensional (2D) layer of NaO<sub>7</sub> pentagonal bipyramid,  $C(1)O_3$  and NO<sub>3</sub> trigonal plane units; b) The  $C(2)O_3$  trigonal plane units in the *ab* plane.



Figure S7. Theoretical crystal morphology of Na<sub>3</sub>Rb<sub>6</sub>(CO<sub>3</sub>)<sub>3</sub>(NO<sub>3</sub>)<sub>2</sub>Cl·(H<sub>2</sub>O)<sub>6</sub>.

|       | Wyckoff sites | x       | у       | z       | U(eq) | BVS  |
|-------|---------------|---------|---------|---------|-------|------|
| Na(1) | 6g            | 3703(2) | 0       | 2500    | 24(1) | 1.22 |
| Rb(1) | 12k           | 2737(1) | 2737(1) | 1192(1) | 27(1) | 1.10 |
| C(1)  | 2a            | 0       | 0       | 2500    | 16(2) | 4.08 |
| C(2)  | 4d            | 6667    | 3333    | 0       | 24(2) | 4.04 |
| N(1)  | 4c            | 6667    | 3333    | 2500    | 22(1) | 4.91 |
| O(1)  | 6g            | 0       | 1334(4) | 2500    | 28(1) | 2.09 |
| O(2)  | 12j           | 5123(4) | 2562(2) | 0       | 33(1) | 1.60 |
| O(3)  | 12k           | 5997(4) | 5997(4) | 1053(2) | 36(1) | 0.45 |
| O(4)  | 6g            | 5256(4) | 3088(4) | 2500    | 34(1) | 2.08 |
| Cl(1) | 2b            | 0       | 0       | 0       | 29(1) | 1.26 |

Table S1. Atomic coordinates (×10<sup>4</sup>), equivalent isotropic displacement parameters (Å<sup>2</sup>×10<sup>3</sup>) and bond valence sum (BVS) calculation for Na<sub>3</sub>Rb<sub>6</sub>(CO<sub>3</sub>)<sub>3</sub>(NO<sub>3</sub>)<sub>2</sub>Cl·(H<sub>2</sub>O)<sub>6</sub>. U(eq) is defined as one third of the trace of the orthogonalized U<sub>ij</sub> tensor.

| Bond           | Distances (Å) |
|----------------|---------------|
| Na(1)-O(4)     | 2.560(3)      |
| Na(1)-O(4)#4   | 2.715(4)      |
| Na(1)-O(4)#11  | 2.560(3)      |
| Na(1)-O(4)#12  | 2.715(4)      |
| Na(1)-O(3)#4   | 2.307(3)      |
| Na(1)-O(3)#13  | 2.307(3)      |
| Na(1)-O(1)#6   | 2.268(4)      |
| Rb(1)- $Cl(1)$ | 3.2282(4)     |
| Rb(1)-O(4)     | 3.066(2)      |
| Rb(1)-O(4)#2   | 3.066(2)      |
| Rb(1)-O(2)     | 3.030(2)      |
| Rb(1)-O(2)#3   | 3.030(2)      |
| Rb(1)-O(3)#4   | 3.400(3)      |
| Rb(1)-O(3)     | 3.128(4)      |
| Rb(1)-O(3)#5   | 3.400(3)      |
| Rb(1)-O(1)     | 3.0718(4)     |
| Rb(1)-O(1)#6   | 3.0718(4)     |
| C(1)-O(1)#1    | 1.277(4)      |
| C(1)-O(1)      | 1.277(4)      |
| C(1)-O(1)#6    | 1.277(4)      |
| C(2)-O(2)#4    | 1.280(3)      |
| C(2)-O(2)#17   | 1.280(3)      |
| N(1)-O(4)#15   | 1.250(3)      |
| N(1)-O(4)#4    | 1.250(3)      |

| Bond                 | Angles (deg) | Bond                | Angles (deg) |
|----------------------|--------------|---------------------|--------------|
| O(4)#4-Na(1)-O(4)#12 | 82.91(13)    | O(2)#3-Rb(1)-Cl(1)  | 85.41(4)     |
| O(4)#11-Na(1)-       | 48.36(13)    | O(2)-Rb(1)-O(4)#2   | 132.40(7)    |
| O(4)#12              |              |                     |              |
| O(4)-Na(1)-O(4)#12   | 131.27(8)    | O(2)#3-Rb(1)-O(4)#2 | 81.55(5)     |
| O(4)-Na(1)-O(4)#4    | 48.36(13)    | O(2)-Rb(1)-O(4)     | 81.55(5)     |
| O(4)#11-Na(1)-O(4)#4 | 131.27(8)    | O(2)#3-Rb(1)-O(4)   | 132.40(7)    |
| O(4)-Na(1)-O(4)#11   | 179.63(17)   | O(2)#3-Rb(1)-O(2)   | 88.984(13)   |
| O(3)#13-Na(1)-       | 84.62(8)     | O(2)#3-Rb(1)-O(3)   | 66.93(5)     |
| O(4)#12              |              |                     |              |
| O(3)#13-Na(1)-O(4)#4 | 84.62(8)     | O(2)-Rb(1)-O(3)#4   | 49.30(5)     |
| O(3)#13-Na(1)-       | 89.977(11)   | O(2)-Rb(1)-O(3)     | 66.93(5)     |
| O(4)#11              |              |                     |              |
| O(3)#4-Na(1)-O(4)#11 | 89.977(11)   | O(2)#3-Rb(1)-O(3)#4 | 135,74(6)    |

| O(3)#4-Na(1)-O(4)#4                                         | 84.62(8)   | O(2)#3-Rb(1)-O(3)#5 | 49.30(5)   |  |
|-------------------------------------------------------------|------------|---------------------|------------|--|
| O(3)#4-Na(1)-O(4)#12                                        | 84.62(8)   | O(2)-Rb(1)-O(3)#5   | 135.74(6)  |  |
| O(3)#4-Na(1)-O(4)                                           | 89.977(11) | O(2)#3-Rb(1)-O(1)#6 | 153.72(7)  |  |
| O(3)#13-Na(1)-O(4)                                          | 89.977(11) | O(2)-Rb(1)-O(1)#6   | 113.09(6)  |  |
| O(3)#13-Na(1)-O(3)#4                                        | 165.6(2)   | O(2)-Rb(1)-O(1)     | 153.72(7)  |  |
| O(1)#6-Na(1)-O(4)#12                                        | 138.55(7)  | O(2)#3-Rb(1)-O(1)   | 113.09(6)  |  |
| O(1)#6-Na(1)-O(4)#4                                         | 138.55(7)  | O(3)-Rb(1)-Cl(1)    | 140.24(6)  |  |
| O(1)#6-Na(1)-O(4)#11                                        | 90.19(8)   | O(3)-Rb(1)-O(3)#4   | 101.65(4)  |  |
| O(1)#6-Na(1)-O(4)                                           | 90.19(8)   | O(3)#5-Rb(1)-O(3)#4 | 154.95(9)  |  |
| O(1)#6-Na(1)-O(3)#4                                         | 97.18(11)  | O(3)-Rb(1)-O(3)#5   | 101.65(4)  |  |
| O(1)#6-Na(1)-O(3)#13                                        | 97.18(11)  | O(1)#6-Rb(1)-Cl(1)  | 82.51(3)   |  |
| Cl(1)-Rb(1)-O(3)#5                                          | 78.12(5)   | O(1)-Rb(1)-Cl(1)    | 82.51(3)   |  |
| Cl(1)-Rb(1)-O(3)#4                                          | 78.12(5)   | O(1)-Rb(1)-O(3)#5   | 63.81(8)   |  |
| O(4)#2-Rb(1)-Cl(1)                                          | 139.29(6)  | O(1)-Rb(1)-O(3)     | 133.72(7)  |  |
| O(4)-Rb(1)-Cl(1)                                            | 139.29(6)  | O(1)#6-Rb(1)-O(3)#5 | 105.15(8)  |  |
| O(4)-Rb(1)-O(4)#2                                           | 71.74(10)  | O(1)#6-Rb(1)-O(3)#4 | 63.81(8)   |  |
| O(4)#2-Rb(1)-O(3)#4                                         | 135.11(7)  | O(1)-Rb(1)-O(3)#4   | 105.15(8)  |  |
| O(4)-Rb(1)-O(3)#5                                           | 135.11(7)  | O(1)#6-Rb(1)-O(3)   | 133.72(7)  |  |
| O(4)#2-Rb(1)-O(3)                                           | 66.45(7)   | O(1)#6-Rb(1)-O(1)   | 42.18(13)  |  |
| O(4)#2-Rb(1)-O(3)#5                                         | 64.18(7)   | O(1)-C(1)-O(1)#1    | 120        |  |
| O(4)-Rb(1)-O(3)                                             | 66.45(7)   | O(1)-C(1)-O(1)#6    | 120.000(1) |  |
| O(4)-Rb(1)-O(3)#4                                           | 64.18(7)   | O(1)#1-C(1)-O(1)#6  | 120        |  |
| O(4)-Rb(1)-O(1)#6                                           | 67.88(8)   | O(2)#4-C(2)-O(2)    | 120.000(1) |  |
| O(4)#2-Rb(1)-O(1)#6                                         | 92.59(4)   | O(2)#4-C(2)-O(2)#17 | 120        |  |
| O(4)-Rb(1)-O(1)                                             | 92.59(4)   | O(4)#4-N(1)-O(4)#15 | 120.000(1) |  |
| O(4)#2-Rb(1)-O(1)                                           | 67.88(8)   | O(4)#4-N(1)-O(4)    | 120        |  |
| O(2)-Rb(1)-Cl(1)                                            | 85.41(4)   | O(4)#15-N(1)-O(4)   | 120        |  |
| Symmetry transformations used to generate equivalent atoms: |            |                     |            |  |

Symmetry transformations used to generate equivalent atoms:

| # 1 x-y,x,-z       | #2 y,x,z           | # 3-y,x-y,z            |
|--------------------|--------------------|------------------------|
| # 4 -x+y,-x+1,z    | #5 -y+1,x-y,z      | # 6-x,-y,-z            |
| # 7 y,-x+y,-z      | #8 -x+y,-x,z       | # 9-y+1,x-y,-z+1/2     |
| # 10 x-y,-y,-z+1/2 | #11 -x+1,-x+y,z    | # 12y,x-1,z            |
| # 13 x,y,-z+1/2    | #14 -x+y,-x,-z+1/2 | # 15-x+y+1,-x+1,-z+1/2 |
| # 16 -y+1,x-y+1,z  | # 17-x+y+1,-x+1,z  | # 18-y,x-y,-z+1/2      |

|       | <b>U</b> <sub>11</sub> | $U_{22}$ | $U_{33}$ | $U_{23}$ | <b>U</b> <sub>13</sub> | $U_{12}$ |
|-------|------------------------|----------|----------|----------|------------------------|----------|
| Na(1) | 21(1)                  | 24(1)    | 26(1)    | 0        | 0                      | 12(1)    |
| Rb(1) | 26(1)                  | 26(1)    | 28(1)    | 0(1)     | 0(1)                   | 11(1)    |
| C(1)  | 21(3)                  | 21(3)    | 6(4)     | 0        | 0                      | 10(2)    |
| C(2)  | 26(2)                  | 26(2)    | 19(4)    | 0        | 0                      | 13(1)    |
| N(1)  | 21(2)                  | 21(2)    | 25(3)    | 0        | 0                      | 10(1)    |
| Cl(1) | 27(1)                  | 27(1)    | 31(1)    | 0        | 0                      | 14(1)    |
| O(1)  | 33(2)                  | 19(2)    | 35(3)    | 0        | 0                      | 16(1)    |
| O(2)  | 24(2)                  | 30(1)    | 44(2)    | 4(1)     | 0                      | 12(1)    |
| O(3)  | 46(2)                  | 46(2)    | 26(2)    | -3(1)    | -3(1)                  | 31(2)    |
| O(4)  | 19(2)                  | 39(2)    | 48(2)    | 0        | 0                      | 16(1)    |

Table S3. Anisotropic displacement parameters for Na<sub>3</sub>Rb<sub>6</sub>(CO<sub>3</sub>)<sub>3</sub>(NO<sub>3</sub>)<sub>2</sub>Cl·(H<sub>2</sub>O)<sub>6</sub>.

Table S4. Hydrogen bonds for Na<sub>3</sub>Rb<sub>6</sub>(CO<sub>3</sub>)<sub>3</sub>(NO<sub>3</sub>)<sub>2</sub>Cl·(H<sub>2</sub>O)<sub>6</sub>.

| D-H···A             | d(D-A)/Å | D-H····A/° |  |
|---------------------|----------|------------|--|
| O(3)-H(3)····O(2)#1 | 2.702(5) | 176(3)     |  |

Symmetry transformations used to generate equivalent atoms: # 1 1-x+y,1-x,z

|                 | Energy gap | S     |  |
|-----------------|------------|-------|--|
|                 | (eV)       | 0     |  |
| BO <sub>3</sub> | 7.84       | 9.45  |  |
| NO <sub>3</sub> | 5.39       | 17.67 |  |
| CO3             | 7.36       | 12.80 |  |

Table S5. HOMO-LUMO energy gap and polarizability anisotropy of BO<sub>3</sub>, NO<sub>3</sub>, and CO<sub>3</sub>.

Table S6. Real-space atom-cutting analysis of calculated birefringence in  $Na_3Rb_6(CO_3)_3(NO_3)_2Cl \cdot (H_2O)_6$ . The cutting radii of Na, Rb, C, N, O (CO<sub>3</sub>, NO<sub>3</sub>, H<sub>2</sub>O), Cl, and H were set as 0.76, 0.94, 0.28, 0.63, (1.01, 0.63, 0.72) and 0.27 Å, respectively.

| Cut unit                         | Birefringence (@ 546 nm) |
|----------------------------------|--------------------------|
| None                             | 0.12                     |
| $H_2O$                           | 0.12                     |
| Na, Rb, Cl, and H <sub>2</sub> O | 0.14                     |
| $CO_3$                           | 0.09                     |
| $NO_3$                           | 0.07                     |
| $CO_3 + NO_3$                    | 0.03                     |