Evaluating the Limits of the Hydrogen Bond Enhanced Halogen Bond —The Case of the C–H Hydrogen Bond

Daniel A. Decato, Jiyu Sun, Madeleine R. Boller, Orion B. Berryman* * Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive, Missoula, Montana, United States, 59812

Table of Contents

Content	Page
General Methods	S2
Single Crystal X-ray Diffraction Methods, Refinement, and Tables	S2-S5
General Synthetic Scheme	S6
Synthetic Procedures and Characterization	S6-S39
Computational Details, Results, and Atomic Coordinates	S39-S61
Titration Details and Data	S61-S64
References	S64

General methods

All reagents were obtained from commercial sources and were used without further purification unless otherwise noted. Thin layer chromatography (TLC)was performed using normal-phase silica gel glass-backed plates (0.25 mm, F-254, SiliCycle) and observed under UV light. Flash column chromatography was performed using normal-phase silica gel (230–400 mesh, SiliaFlash®P60, SiliCycle. All compounds were dried in vacuo at room temperature as needed. High-resolution mass spectrometry was carried out using an Agilent 6520 Accurate-Mass Q-TOF LC/MS. All UV-Vis spectra were collected on a Cary 60 spectrometer at 298 K. Nuclear magnetic resonance (NMR) spectra were obtained with a VNMRS Varian 500 MHz or a Bruker Avance 400 MHz or an Agilent 400 MHz spectrometer. Chemical shifts are reported in parts per million (ppm) from high to low frequency using the residual solvent peak as the internal reference and are reported at 25°C unless noted. For the ¹⁹F NMR spectra monofluorobenzene (-113.15ppm) was used as an internal standard. Signal splitting patterns are indicated as s, singlet; d, doublet; t, triplet; m, multiplet, b, broad. Coupling constants (J) are given in Hz.

Single Crystal X-ray Diffraction Methods and Refinement

X-ray diffraction data for all structures were collected at 100 K on a Bruker D8 Venture using MoK α -radiation (λ =0.71073 Å). Data have been corrected for absorption using SADABS¹area detector absorption correction program. Using Olex2², the structure was solved with the SHELXT³structure solution program using Direct Methods and refined with the SHELXL⁴refinement package using least squares minimization. All non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms attached to heteroatoms were found from the residual density maps, placed, and refined with isotropic thermal parameters. All other hydrogen atoms in the investigated structure were located from difference Fourier maps but finally their positions were placed in geometrically calculated positions, and refined using a riding model. Isotropic thermal parameters of the placed hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to. Calculations and refinement of structures were carried out using APEX3⁵, SHELXTL⁶, and Olex2 software. Crystallographic data for all structures are presented in a table below. Additionally, individual refinement details and crystal growth conditions are presented below.

Crystal growth conditions and additional refinement details

1•OTf-

Diffraction quality yellow rods were grown from slow evaporation of a methanol solution of 1•OTf⁻⁻.

2•OTf-

Diffraction quality colorless needles were grown by vapor diffusion of diethyl ether into a nitromethane solution of **2**•**OTf**⁻.

3•OTf-

Diffraction quality colorless needles were grown by vapor diffusion of diethyl ether into a nitromethane solution of **3**•**OTf**⁻.

4•OTf-

Diffraction quality colorless rods were grown by vapor diffusion of ether into a nitromethane solution of **4**•**OTf**⁻.

After initial solution and refinement of the data it was apparent that the triflate anion was disordered. The anion has been modeled over two positions using a PART instruction and tied to an individual free variable. Refinement of the free variable showed an approximate 70:30 disorder. The disorder model incorporated bond length similarity restraints (SADI). One of the amine hydrogen atoms after refinement elongated necessitating the use of bond length restraints (DFIX 0.87 0.02).

1•I−

Diffraction quality yellow prisms were grown by vapor diffusion of diethyl ether into a methanol solution of **1**•**OTf** and tetra-*n*-hexylammonium iodide.

2•I-

Diffraction quality yellow needles were grown by vapor diffusion of diethyl ether into a methanol solution of solution of **2**•**OTf** and tetra-*n*-hexylammonium iodide.

3•I-

Diffraction quality yellow rods were grown by vapor diffusion of diethyl ether into a methanol solution of **3**•**OTf** and tetra-*n*-hexylammonium iodide.

4•I—

Diffraction quality yellow rods were grown by vapor diffusion of diethyl ether into a methanol solution of **4**•**OTf** and tetra-*n*-hexylammonium iodide.

The amine hydrogen atoms necessitated bond distance restraints (DFIX 0.87 (0.02)) due to unreasonable bond length shortening upon refinement.

Figure 1S Asymmetric units of both **4**•I⁻and **4**•OTf⁻X-ray crystal structures. Spheres drawn using the default vdW radii within Olex2.

Table	1S:	Crystall	lographic	Data
1 4010	10.	CI y blui	ographie	Dutu

Identification code	UMT_OB149	UMT_OB206	UMT_OB191	UMT_OB216
Manu reference	1•OTf-	2•OTf	3•OTf-	4•OTf
CCDC number	2075099	2075104	2075103	2075102
Empirical formula	$C_{23}H_{14}F_3I_2NO_3S$	C ₂₄ H ₁₆ F ₃ I ₂ NO ₃ S	C ₂₃ H ₁₄ F ₃ I ₂ NO ₃ S	$C_{23}H_{15}F_{3}I_{2}N_{2}O_{3}S$
Formula weight	695.21	709.24	695.21	710.23
Crystal system	triclinic	triclinic	triclinic	tetragonal
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	$P-42_1c$
a/Å	8.5783(4)	7.2077(5)	7.1362(3)	22.544(3)
b/Å	11.1636(6)	12.3954(8)	12.3559(6)	22.544(3)
c/Å	13.3063(7)	14.0967(9)	14.2656(7)	9.5927(11)
α/°	74.307(2)	98.565(2)	98.460(2)	90
β/°	71.324(2)	101.823(2)	103.067(2)	90
γ/°	79.269(2)	91.413(2)	94.936(2)	90
Volume/Å ³	1155.23(10)	1216.98(14)	1202.63(10)	4875.1(13)
Ζ	2	2	2	8
$\rho_{\text{calc}} g/cm^3$	1.999	1.935	1.920	1.935
Crystal size/mm ³	0.59 imes 0.06 imes 0.04	0.24 imes 0.03 imes 0.02	0.20 imes 0.05 imes 0.03	$0.20 \times 0.15 \times 0.02$
2Θ range for data collection/ ^c	5.042 to 57.518	5.784 to 55.75	5.906 to 56.556	5.11 to 52.826
Reflections collected	36937	64454	86479	142896
Independent reflections	5990 [$R_{int} = 0.0493$,	$5808 [R_{int} = 0.0516,$	5965 [$R_{int} = 0.0345$,	4993 [$R_{int} = 0.0778$,
	$R_{sigma} = 0.0345$]	$R_{sigma} = 0.0271$]	$R_{sigma} = 0.0145$]	$R_{sigma} = 0.0257$]
Data/restraints/parameters	5990/0/299	5808/0/297	5965/0/299	4993/13/371
Goodness-of-fit on F ²	1.079	1.159	1.166	1.098
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0276, wR_2 = 0.0474$	$\begin{array}{c} R_1 = 0.0315, \ wR_2 = \\ 0.0650 \end{array}$	$R_1 = 0.0275, wR_2 = 0.0658$	$R_1 = 0.0248, wR_2 = 0.0467$
Final R indexes [all data]	$R_1 = 0.0451, wR_2 = 0.0517$	$\begin{array}{c} R_1 = 0.0441, \ wR_2 = \\ 0.0685 \end{array}$	$R_1 = 0.0330, wR_2 = 0.0678$	$R_1 = 0.0358, wR_2 = 0.0506$
Largest diff. peak/hole / e Å-3	3 1.00/-0.57	1.48/-0.61	2.15/-1.41	0.49/-0.35

Identification code	UMT_OB154	UMT_OB193	UMT_OB175	UMT_OB214a
Manu reference	1•I-	2•I-	3•I-	4•I—
CCDC number	2075101	2075098	2075105	2075100
Empirical formula	$C_{22}H_{14}I_{3}N$	C ₂₃ H ₁₆ I ₃ N	C ₂₂ H ₁₄ I ₃ N	$C_{22}H_{15}I_{3}N_{2}$
Formula weight	673.04	687.07	673.04	688.06
Crystal system	triclinic	orthorhombic	orthorhombic	orthorhombic
Space group	<i>P</i> -1	Pbcn	Pbcn	Pbcn
a/Å	8.0838(2)	21.1343(8)	21.0383(12)	21.0883(17)
b/Å	11.8898(4)	13.7339(7)	13.7820(8)	13.7730(11)
c/Å	12.2871(4)	7.3280(3)	7.3031(4)	7.3022(6)
$\alpha/^{\circ}$	64.3550(10)	90	90	90
β/°	77.9010(10)	90	90	90
γ/°	77.3900(10)	90	90	90
Volume/Å ³	1030.02(6)	2127.00(16)	2117.5(2)	2120.9(3)
Z	2	4	4	4
$\rho_{calc}g/cm^3$	2.170	2.146	2.111	2.155
Crystal size/mm ³	0.19 imes 0.1 imes 0.08	0.24 imes 0.01 imes 0.01	$0.45 \times 0.02 \times 0.02$	$0.61 \times 0.02 \times 0.02$
2 mange for data collection/c	5.208 to 56.716	5.932 to 50.154	5.912 to 59.212	5.916 to 61.014
Reflections collected	43567	28749	44308	29568
Independent reflections	$5147 [R_{int} = 0.0294, R_{sigma} = 0.0149]$	$\frac{1892 [R_{int} = 0.1025,}{R_{sigma} = 0.0325]}$	2984 [$R_{int} = 0.0595$, $R_{sigma} = 0.0283$]	$3244 [R_{int} = 0.0633, R_{sigma} = 0.0385]$
Data/restraints/parameters	5147/0/236	1892/0/127	2984/0/121	3244/1/130
Goodness-of-fit on F ²	1.097	1.053	1.058	1.063
Final R indexes [I>=2σ (I)]	$R_1 = 0.0171, wR_2 = 0.0352$	$R_1 = 0.0251, wR_2 = 0.0345$	$R_1 = 0.0265, WR_2 = 0.0446$	$R_1 = 0.0362, wR_2 = 0.0671$
Final R indexes [all data]	$R_1 = 0.0218, wR_2 = 0.0362$	$R_1 = 0.0453, wR_2 = 0.0382$	$R_1 = 0.0444, WR_2 = 0.0484$	$R_1 = 0.0636, wR_2 = 0.0744$
Largest diff. peak/hole / e Å ⁻³	0.76/-0.37	0.53/-0.53	0.76/-0.50	1.33/-1.21

General Synthetic Scheme

Synthetic Procedures and Characterization

1CorePro Synthesis conducted according to previously reported procedure.⁷

1CoreDePro Synthesis conducted according to previously reported procedure.8

Procedure: A flame dried Schlenk flask was charged with 2,6-diethynylpyridine (**1CoreDePro**) (0.2 g, 1.57 mmol), Bis(triphenylphosphine)palladium (II) dichloride (0.044 g, 0.06 mmol) and Copper (I) iodide (0.011 g, 0.06 mmol) and then sealed with a rubber septum. The Schlenk flask was then evacuated and backfilled with dry nitrogen gas three times. To a flame dried 50 ml round bottom flask was added tetrahydrofuran and triethylamine. The round bottom was sealed with a rubber septum and then sparged with dry nitrogen gas for 20 minutes, after which 2-bromo-iodobenzene (1.11 g, 3.93 mmol) was added and sparging resumed for 2 minutes. The 2-bromo-iodobenzene solution was then canula transferred to the Schlenk flask and stirred at room temperature overnight. The crude reaction mixture was concentrated and purified by silica gel column chromatography (5% ethyl acetate in hexanes) to afford **1Br** (0.448 g, 1.02 mmol, 65 % yield) as a white solid.

¹H NMR (500 MHz, CDCl₃) δ 7.71 (t, J = 7.4 Hz, 1H), 7.66 – 7.61 (m, 4H) (overlap of two doublets), 7.57 (d, J = 7.8 Hz, 2H), 7.32 (td, J = 7.6, 1.2 Hz, 2H), 7.23 (td, J = 7.8, 1.7 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 143.76, 136.59, 134.04, 132.65, 130.38, 127.26, 127.09, 126.07, 124.50, 92.47, 88.24.
HRMS (ESI pos) m/z for C₂₁H₁₂Br₂N⁺ [M+H]⁺: calculated:437.9311; found:437.9354

Figure 2S ¹H NMR spectrum of **1Br** (500 MHz, CDCl3)

Procedure: An oven dried round bottom (50 mL) was charged with **1Br** (0.10 g, 0.228 mmol) was subsequently dissolved in 20 mL of dry tetrahydrofuran and cooled to $-67 \,^{\circ}$ C (dry ice and acetone bath). N-butyllithium (1.6 M in hexanes, 0.36 mL, 0.57 mmol) was added dropwise to the colorless solution producing a yellow solution that darkened overtime. The mixture was stirred for 30 min at $-67 \,^{\circ}$ C. Iodine (0.29 g, 1.14 mmol) in 5 mL of tetrahydrofuran was cooled to $-67 \,^{\circ}$ C then added dropwise. The resulting blood red solution was allowed to gradually warm to room temperature and stirred overnight. The crude reaction mixture was washed with a saturated aqueous sodium thiosulfate solution and extracted with diethyl ether. The organic layers were combined and dried with magnesium sulfate. The crude product was loaded onto C18 silica gel and subsequently purified via prep-HPLC to afford **1Neu** (0.1 g, 0.188 mmol, 82 % yield) as a beige solid.

¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 8.1 Hz, 1H), 7.73 (t, J = 7.2 Hz, 1H), 7.62 (dd, J = 7.8, 1.8 Hz, 2H), 7.61 (d, J = 7.8 Hz, 2H), 7.36 (t, J = 7.6 Hz, 1H), 7.07 (td, J = 7.8, 1.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 143.80, 138.95, 136.59, 133.39, 130.36, 128.87, 128.07, 127.06, 101.30, 91.74, 91.62.

HRMS (ESI pos) m/z for C₂₁H₁₂I₂N⁺ [M+H]⁺: calculated: 531.9054 found:531.9112

Procedure: To a flame dried scintillation vial, **1Neu** (0.1 g, 0.188 mmol) was dissolved in 12ml of dry dichloromethane. Methyl trifluoromethanesulfonate(0.046 g, 0.28 mmol) was added dropwise to the solution, after which the vial was capped then allowed to stir at room temperature for 1-2 days. A light yellow precipitate formed, addition of diethyl ether facilitated further precipitation allowing **1** to be isolated by filtration. The solid was then washed with diethyl ether to afford **1** (0.12 g, 0.172 mmol, 91 % yield) as a light yellow solid.

¹**H NMR (500 MHz, DMSO-d6)** δ 8.63 (t, *J* = 8.0 Hz, 1H), 8.41 (d, *J* = 8.0 Hz, 2H), 8.10 (dd, *J* = 8.0, 1.1 Hz, 2H), 7.93 (dd, *J* = 7.7, 1.6 Hz, 2H), 7.63 (td, *J* = 7.6, 1.1 Hz, 2H), 7.39 (td, *J* = 7.8, 1.7 Hz, 2H), 4.71 (s, 3H).

¹³C NMR (126 MHz, DMSO-d6) δ 144.12, 139.22, 138.28, 134.83, 133.24, 131.28, 128.78, 125.52, 106.53, 101.90, 83.37, 46.62. The ¹³C resonance of the triflate anion (quartet with relative intensities of 1:3:3:1) was not observed) ¹⁹F NMR (470 MHz, CD₃CN) δ -77.55

HRMS (ESI pos) m/z for $C_{22}H_{14}I_2N^+$ [M]⁺: calculated: 545.9210 found: 545.9232

Figure 6S ¹H NMR spectrum of **1** (500 MHz, DMSO)

Figure 7S ¹³C NMR spectrum of **1** (126 MHz, DMSO)

Figure 8S ¹⁹F NMR spectrum of 1 (470 MHz, CD₃CN). C₆H₅F (monofluorobenzene) internal reference.

TMS Me тмѕ

2CorePro synthesis and spectroscopic data in accordance with previously reported material. CrystEngComm (2017), 19, (23), 3094-3097.

Ŵе

2CoreDePro synthesis and spectroscopic data in accordance with previously reported material. CrystEngComm (2017), 19, (23), 3094-3097.

A flame dried Schlenk flask was charged with 3,5-diethynyl-4-methyl-pyridine (**2CoreDePro**) (0.3 g, 2.12 mmol), Bis(triphenylphosphine)palladium (II) dichloride (0.06 g, 0.085 mmol) and Copper (I) iodide (0.016 g, 0.085 mmol) and then sealed with a rubber septum. The Schlenk flask was then evacuated and backfilled with dry nitrogen gas three times. To a flame dried 50 ml round bottom flask was added tetrahydrofuran and triethylamine. The round bottom was sealed with a rubber septum and then sparged with dry nitrogen gas for 20 minutes, after which 2-bromo-iodobenzene (1.5 g, 5.31mmol) was added and sparging resumed for 2 minutes. The 2-bromo-iodobenzene solution was then canula transferred to the Schlenk flask and stirred at room temperature overnight. The crude reaction mixture was concentrated and purified by silica gel column chromatography (10% ethyl acetate in hexanes) to afford **2Br** (0.787 g, 1.74 mmol, 82 % yield) as a beige solid.

¹H NMR (500 MHz, CDCl₃) δ 8.67 (s, 2H), 7.65 (dd, J = 8.1, 1.2 Hz, 2H), 7.61 (dd, J = 7.7, 1.7 Hz, 2H), 7.34 (td, J = 7.6, 1.2 Hz, 2H), 7.24 (td, J = 7.8, 1.7 Hz, 2H), 2.81 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 151.50, 151.04, 133.60, 132.74, 130.13, 127.31, 125.75, 124.97, 120.41, 94.98, 89.17, 19.46.

HRMS (ESI pos) m/z for C₂₂H₁₄Br₂N⁺ [M+H]⁺ : calculated: 451.9467 found: 451.9479

Figure 9S ¹H NMR spectrum of **2Br** (500 MHz, CDCl₃)

Figure 10S ¹³C NMR spectrum of **2Br** (126 MHz, CDCl₃)

An oven dried round bottom (50 mL) was charged with **2Br** (0.2 g, 0.44 mmol) was subsequently dissolved in 20 mL of dry tetrahydrofuran and cooled to -67 °C (dry ice and acetone bath). N-butyllithium (1.6 M in hexanes, 0.7 mL, 1.12 mmol) was added dropwise producing a deep beet red colored solution. The mixture was stirred for 30 min at -67 °C. Iodine (0.56 g, 2.22 mmol) in 5 mL of tetrahydrofuran was cooled to -67 °C then added dropwise. The resulting dark red solution was allowed to gradually warm to room temperature and stirred overnight. The crude reaction mixture was washed with a saturated aqueous sodium thiosulfate solution and extracted with diethyl ether. The organic layers were combined and dried with magnesium sulfate. The crude product was loaded onto C18 silica gel and subsequently purified via prep-HPLC to afford **2Neu** (0.089 g, 0.163 mmol, 37 %) as a light yellow solid. ¹H NMR (**500 MHz, CDCl**₃) δ 8.70 (s, 2H), 7.91 (dd, *J* = 7.9, 1.2 Hz, 2H), 7.59 (dd, *J* = 7.7, 1.6 Hz, 2H), 7.38 (td, *J* = 7.6, 1.1 Hz, 2H), 7.07 (td, *J* = 7.6, 1.7 Hz, 2H), 2.85 (s, 3H).

¹³C NMR (126 MHz, CDCl₃, 50°C) δ 151.61, 150.84, 139.14, 133.08, 130.07, 129.60, 128.07, 120.50, 100.78, 98.28, 88.46, 19.86. HRMS (ESI pos) m/z for C₂₂H₁₄I₂N⁺ [M+H]⁺ : calculated:545.9210 found: 545.9189

Figure 11S ¹H NMR spectrum of **2Neu** (500 MHz, CDCl₃)

155 150 145 140 135 130 125 120 115 110 105 100 f1 (ppm) Figure 12S ¹³C NMR spectrum of **4Neu** (126 MHz, CDCl₃, 50°C)

Procedure: To a flame dried scintillation vial, **2Neu** (0.089 g, 0.163 mmol) was dissolved in 12ml of dry dichloromethane. Methyl trifluoromethanesulfonate (0.032 g, 0.2 mmol) was added dropwise to the solution, after which the vial was capped then allowed to stir at room temperature for 1-2 days. A white precipitate formed; diethyl ether was added to further the precipitation. The precipitate was isolated by filtration and washed with additional diethyl ether to afford **2** (0.105 g, 0.148 mmol, 91 % yield) as a white solid.

¹**H NMR (500 MHz, CD₃CN)** δ 8.73 (s, 2H), 8.02 (dd, J = 8.0, 1.2 Hz, 2H), 7.72 (dd, J = 7.7, 1.6 Hz, 2H), 7.52 (td, J = 7.6, 1.2 Hz, 2H), 7.26 (td, J = 7.8, 1.6 Hz, 2H), 4.27 (s, 4H), 3.07 (s, 3H).

¹³C NMR (126 MHz, CD₃CN) δ 162.01, 146.27, 140.31, 134.74, 132.82, 129.64, 128.36, 125.27, 103.09, 101.01, 84.66, 49.09, 21.76. The ¹³C resonance of the triflate anion (quartet with relative intensities of 1:3:3:1) was not observed)

¹⁹F NMR (470 MHz, CD₃CN) δ -77.56.

HRMS (ESI pos) m/z for C₂₃H₁₆I₂N⁺ [M]⁺ : calculated: 559.9367 found: 559.9342

Figure 14S ¹³C NMR spectrum of **2** (126 MHz, CD₃CN)

20 -80 -90 f1 (ppm) 10 0 -10 -20 -30 -40 -50 -60 -70 -140 -150 -160 -170 -180 -190 -100 -110 -120 -130 Figure 15S ¹⁹F NMR spectrum of 2 (470 MHz, CD₃CN). C₆H₅F (monofluorobenzene) internal reference.

3CorePro Synthesis conducted according to previously reported procedure.

3CoreDePro Synthesis conducted according to previously reported procedure.

Procedure: A flame dried Schlenk flask was charged with 3,5-diethynylpyridine (**3CoreDePro**) (0.16 g, 1.26 mmol), Bis(triphenylphosphine)palladium (II) dichloride (0.035 g, 0.05 mmol) and Copper (I) iodide (0.01 g, 0.05 mmol) and then sealed with a rubber septum. The Schlenk flask was then evacuated and backfilled with dry nitrogen gas three times. To a flame dried 50 ml round bottom flask was added tetrahydrofuran and triethylamine. The round bottom was sealed with a rubber septum and then sparged with dry nitrogen gas for 20 minutes, after which 2-bromo-iodobenzene (0.89 g, 3.14 mmol) was added and sparging resumed for 2 minutes. The 2-bromo-iodobenzene solution was then canula transferred to the Schlenk flask and stirred at room temperature overnight. The crude reaction mixture was concentrated and purified by silica gel column chromatography (5% ethyl acetate in hexanes) to afford **3Br** (0.433 g, 0.99 mmol, 79 %) as a white solid.

¹**H NMR (500 MHz, CDCl₃)** δ 8.75 (d, *J* = 2.0 Hz, 2H), 8.02 (t, *J* = 2.0 Hz, 1H), 7.65 (dd, *J* = 8.1, 1.2 Hz, 2H), 7.58 (dd, *J* = 7.7, 1.7 Hz, 2H), 7.33 (td, *J* = 7.6, 1.2 Hz, 2H), 7.24 (td, *J* = 7.7, 1.6 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 151.31, 140.79, 133.58, 132.76, 130.29, 127.32, 125.91, 124.66, 120.00, 91.96, 89.64.

HRMS (ESI pos) m/z for C₂₁H₁₂Br₂N⁺ [M+H]⁺ : calculated: 437.9311 found: 437.9307

Figure 16S ¹H NMR spectrum of **3Br** (500 MHz, CDCl₃)

Procedure: An oven dried round bottom (50 mL) was charged with **3Br** (0.2 g, 0.46 mmol) was subsequently dissolved in 20 mL of dry tetrahydrofuran and cooled to $-67 \degree C$ (dry ice and acetone bath). N-butyllithium (1.6 M in hexanes, .072 mL, 1.14 mmol) was added dropwise producing a red solution. The mixture was stirred for 30 min at -67 $\degree C$. Iodine (0.58 g, 2.29 mmol) in 5 mL of tetrahydrofuran was cooled to $-67 \degree C$ then added dropwise. The resulting red solution was allowed to gradually warm to room temperature and stirred overnight. The crude reaction mixture was washed with a saturated aqueous sodium thiosulfate solution and extracted with diethyl ether. The organic layers were combined and dried with magnesium sulfate. The crude product was loaded onto C18 silica gel and subsequently purified via prep-HPLC to afford **3Neu** (0.103 g, 0.194mmol, 42%) as a very light yellow solid.

¹**H NMR (500 MHz, CDCl₃)** δ 8.77 (s, 2H), 8.04 (s, 1H), 7.91 (dd, J = 8.1, 1.2 Hz, 2H), 7.56 (dd, J = 7.7, 1.6 Hz, 2H), 7.37 (t, J = 7.6 Hz, 2H), 7.07 (td, J = 7.7, 1.7 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃, 50°) δ 151.31, 140.56, 139.15, 132.89, 130.22, 129.23, 128.10, 120.17, 101.24, 95.57, 88.96. HRMS (ESI pos) m/z for $C_{21}H_{12}I_2N^+$ [M+H]⁺ : calculated: 531.9054 found: 531.9018

Figure 18S ¹H NMR spectrum of **3Neu** (500 MHz, CDCl₃)

Procedure: To a flame dried scintillation vial, **3Neu** (0.05 g, 0.094 mmol) was dissolved in 12ml of dry dichloromethane. Methyl trifluoromethanesulfonate(0.023 g, 0.141 mmol) was added dropwise to the solution, after which the vial was capped then allowed to stir at room temperature for 1-2 days. A white precipitate formed; diethyl ether was added to further the precipitation. The precipitate was isolated by filtration and washed with additional diethyl ether to afford **3** (0.06 g, 0.086 mmol, 91 % yield) as a white solid.

¹**H** NMR (500 MHz, CD₃CN) δ 8.81 (s, 2H), 8.68 (s, 1H), 8.02 (dd, J = 8.0, 1.1 Hz, 2H), 7.69 (dd, J = 7.7, 1.7 Hz, 2H), 7.52 (td, J = 7.6, 1.2 Hz, 2H), 7.26 (td, J = 7.8, 1.7 Hz, 2H). ¹³C NMR (126 MHz, CD₃CN) δ 147.84, 146.09, 139.34, 133.55, 131.93, 128.68, 127.05, 124.22, 100.30, 99.53, 84.13, 48.87. The ¹³C resonance of the triflate anion (quartet with relative intensities of 1:3:3:1) was not observed) ¹⁹F NMR (470 MHz, CD₃CN) δ -77.55.

HRMS (ESI pos) m/z for $C_{22}H_{14}I_2N^+$ [M]⁺: calculated: 545.9210 found: 545.9233

Figure 20S ¹H NMR spectrum of **3** (500 MHz, CD₃CN)

Figure 21S ¹³C NMR spectrum of **3** (126 MHz, CD₃CN)

Figure 22S ¹⁹F NMR spectrum of **3** (470 MHz, CD₃CN). C₆H₅F (monofluorobenzene) internal reference.

Synthesis adopted from.¹⁰ An oven dried Schlenk flask was charged with 3,5-dibromo-4-amino-pyridine (9.022 g, 35.7 mmol), bis(triphenylphosphine)palladium(II) dichloride (1.5 g, 2.14 mmol), and copper (I) iodide (0.68 g, 3.7 mmol) and subsequently vacuumed and backfilled with dry N_2 gas three times. While under nitrogen, the solid reagents were then dissolved in 180ml of dimethylformamide (DMF). To this stirring solution was added N,N-Diisopropylethylamine (31ml, 178.6 mmol) and trimethylsilylacetylene (10.52 g 107.2 mmol). The brown solution was then heated to 60°C and stirred for up to 2 days. Reaction progress was monitored by TLC and the reaction was pulled when consumption of starting material was observed. The reaction mixture was then run through a silica plug with a hexane/ethyl acetate solvent mixture (50:50) to remove any excess salts and catalysts. Subsequent removal of DMF, hexanes and ethyl acetate by roto-evaporation left a brown solid that was purified by silica gel column chromatography (15% ethyl acetate in hexanes) to afford **4CorePro** (5.54 g, 19.33 mmol, 54 % yield) as an off-white solid.

¹H NMR (500 MHz, CDCl₃) δ 8.27 (s, 2H), 5.20 (s, 2H), 0.27 (s, 18H). ¹³C NMR (126 MHz, CDCl₃) δ 154.24, 151.77, 103.92, 103.55, 97.85, 0.07. HRMS (ESI pos) m/z for C₁₅H₂₃N₂Si₂⁺ [M+H]⁺ : calculated:287.1394 found: 287.1409

4CorePro (1.5 g, 5.24 mmol) was dissolved in 20 mL methanol and 20 mL DCM in a 250 mL round bottom flask. Potassium carbonate (1.81 g, 13.09 mmol) was added to the organic mixture. The reaction stirred vigorously for 4 hours at room temperature. The reaction progress was checked via TLC. When the reaction came to completion, water was added to quench the reaction. The crude product was extracted with ethyl acetate/hexanes (1:1) mix. The organic fractions were then dried over magnesium sulfate and vacuum filtered. The organic solution was reduced under vacuum producing an off-white solid of **4CoreDePro** (0.621 g, 4.37 mmol, 83%). Often the material can then be used in the next step without further purification. If further purification is needed, sublimation is suggested which will produce colorless crystals.

¹H NMR (500 MHz, CDCl₃) δ 8.34 (s, 2H), 5.25 (s, 2H), 3.50 (s, 2H). ¹³C NMR (126 MHz, DMSO) δ 154.98, 151.89, 102.32, 88.62, 77.11. HRMS (ESI pos) m/z for C₉H₇N₂⁺ [M+H]⁺ : calculated: 143.0604 found: 143.0627

165 160 155 150 145 140 135 130 125 120 115 30 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 110 f1 (ppm) Figure 26S ¹³C NMR spectrum of 4CoreDePro (126 MHz, CDCl₃)

A flame dried Schlenk flask was charged with **4CoreDePro** (0.25 g, 1.76 mmol), Bis(triphenylphosphine)palladium (II) dichloride (0.05 g, 0.07 mmol) and Copper (I) iodide (0.013 g, 0.07 mmol) and then sealed with a rubber septum. The Schlenk flask was then evacuated and backfilled with dry nitrogen gas three times. To a flame dried 50 ml round bottom flask was added tetrahydrofuran and triethylamine. The round bottom was sealed with a rubber septum and then sparged with dry nitrogen gas for 20 minutes, after which 2-bromo-iodobenzene (1.24 g, 4.39 mmol) was added and sparging resumed for 2 minutes. The 2-bromo-iodobenzene solution was then canula transferred to the Schlenk flask and stirred at room temperature overnight. The crude reaction mixture was concentrated and purified by silica gel column chromatography (30% ethyl acetate in hexanes) to afford **4Br** (0.48 g, 1.06 mmol, 60 %) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.42 (s, 2H), 7.65 (d, *J* = 7.9 Hz, 2H), 7.60 (d, *J* = 7.9 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.23 (t, *J* = 7.8 Hz, 2H), 5.77 (s, 2H).
¹³C NMR (126 MHz, CDCl₃) δ 154.32, 151.69, 133.15, 132.54, 129.98, 127.49, 125.33, 124.91, 103.78, 96.28, 87.25.

HRMS (ESI pos) m/z for C₂₁H₁₃Br₂N₂⁺ [M+H]⁺ : calculated:452.9420 found:452.9448

4Br (0.1 g, 0.22 mmol), copper iodide (0.004 g, 0.022 mmol), sodium iodide (0.13 g, 0.88 mmol) were added to a 10-20 mL microwave reaction vial containing a stir bar and dissolved in 10-15ml 1,4-dioxane. To the reaction mixture, transN,N'-dimethylcyclohexane-1,2-diamine (0.15 mL, 0.95 mmol) was added. The microwave vial was sealed and placed in a microwave. The reaction was performed in a Biotage Initiator+ microwave reactor for 16 hours at 150 °C. After cooling, an aliquot was run through pipet silica plug with EtOAc to remove catalysts and salts. The EtOAc crude was then ran through GCMS in order to obtain % conversion of bromines to iodines. If the reaction was unfinished, it would be submitted again at 30 min increments. When the reaction ran to completion, the crude reaction was run through a silica plug with EtOAc. The crude product was loaded onto C18 silica gel and subsequently purified via prep-HPLC to afford **4Neu** (0.028 g, 0.051 mmol, 23 % yield) as a beige solid.

¹H NMR (500 MHz, CDCl₃) δ 8.44 (s, 2H), 7.90 (dd, J = 8.1, 1.2 Hz, 2H), 7.58 (dd, J = 7.8, 1.6 Hz, 2H), 7.38 (td, J = 7.6, 1.2 Hz, 2H), 7.07 (td, J = 7.9, 1.7 Hz, 2H), 5.86 (s, 2H).
¹³C NMR (126 MHz, CDCl₃, 45°C) δ 154.39, 151.91, 138.87, 132.74, 129.93, 129.52, 128.24, 103.89, 100.77, 99.49, 86.57.

HRMS (ESI pos) m/z for C₂₁H₁₃I₂N₂⁺ [M+H]⁺ : calculated: 546.9163 found: 546.9183

To a flame dried scintillation vial, **4Neu** (0.07 g, 0.128 mmol) was dissolved in 5 ml of dry dichloromethane. Methyl trifluoromethanesulfonate(0.033 g, 0.2 mmol) was added dropwise to the solution, after which the vial was capped then allowed to stir at room temperature for 1-2 days. A white precipitate formed; diethyl ether was added to further the precipitation. The precipitate was isolated by filtration and washed with additional diethyl ether to afford **4** (0.063 g, 0.089 mmol, 69 % yield) as a white solid.

¹**H** NMR (500 MHz, DMSO) δ 8.66 (s, 2H), 8.47 (s, 2H), 8.02 (dt, J = 8.1, 1.2 Hz, 2H), 7.82 (dt, J = 7.8, 1.4 Hz, 2H), 7.54 (tt, J = 7.6, 1.3 Hz, 2H), 7.25 (tt, J = 7.5, 1.5 Hz, 2H), 3.99 (s, 3H). ¹³C NMR (126 MHz, DMSO) δ 156.71, 145.78, 138.70, 133.70, 131.37, 128.33, 127.41, 104.18, 101.46, 100.43, 82.09, 45.17. The ¹³C resonance of the triflate anion (quartet with relative intensities of 1:3:3:1) was not observed) ¹⁹F NMR (470 MHz, CD₃CN) δ -77.57.

HRMS (ESI pos) m/z for $C_{22}H_{15}I_2N_2^+$ [M]⁺ : calculated:560.9319 found: 560.9288

Figure 31S ¹H NMR spectrum of 4 (500 MHz, DMSO)

Figure 32S ¹³C NMR spectrum of 4 (126 MHz, DMSO)

20 10 -20 0 -10 -30 -40 -50 -70 -80 -90 f1 (ppm) -150 -60 -100 -110 -120 -130 -140 -160 -170 -180 -190 Figure 33S ¹⁹F NMR spectrum of **4** (470 MHz, CD₃CN). C₆H₃F (monofluorobenzene) internal reference.

Computational details

Gas-phase density functional theory (DFT) calculations were performed with the M06-2X functional¹¹ using the Gaussian 09 suite of programs.¹² The def2-TZVPP basis set¹³ was used for all atoms and for iodine a small-core energy-consistent relativistic effective core potential (def2-ECP)¹⁴ was applied to iodine. The basis set and effective core potential was downloaded from the EMSL Basis Set Exchange.¹⁵ Employing optimized geometries, frequency calculations were carried out confirm molecules and complexes were at local minima. The electrostatic potential surface maps (isodensity = 0.001au)were constructed using optimized structures (coordinates below) The interaction energy was computed as the difference in energy between the complex and the sum of the energies of the individual components in their complex geometry (equation below) and were corrected for basis set superposition error (BSSE) by the counterpoise technique.¹⁶ The alkyne driver study was conducted using a relaxed scan procedure and utilized 8 steps with each step being 45 degrees.

Binding energy (complexation energy) is the energy of the complex minus the energy of the isolated monomers (host & guest) in their minima configuration.

	Complexation		
Scaffold	energy	Interaction energy	Deformation energy
1	-76.02	-77.36	1.34
2	-69.05	-70.37	1.32
3	-65.95	-67.11	1.16
4	-74.28	-76.70	2.43
2-tridendate	-69.68	-71.49	1.81

Table 2S Gas phase complex results. All values in kcal/mol. Deformation energy is the difference between complexation energy and interaction energy.

Table 3S Alkyne Driver Study Results-Relative energy in kcal/mol

	Receptor			
Dihedral	1	2	3	4
0	0.00	0.04	0.34	0.00
45	0.89	0.48	0.95	0.79
90	2.25	1.31	1.52	2.58
135	1.54	0.59	0.56	2.52
180	0.93	0.00	0.00	2.35
225	1.54	0.60	0.82	2.47
270	2.25	1.31	1.53	2.68
315	0.89	0.48	0.71	1.13
360	0.00	0.04	0.34	0.00

Chemdraw depicting the alkyne bond that provided the rotation axis. The carbon atoms labeled as blue circles were used to dictate the dihedral angle.

Figure 34S. Alkyne driver analysis plot.

Optimized coordinates for single point conformational analysis and MEP analysis

Bidentate

	A A	
ړ 1		
Ι	3.18164000 -1.8892710	00 -0.00034300
Ι	-3.12845200 -1.863714	00 0.00010800
С	7.22859600 -0.379898	800 -0.00005400
С	-7.21911500 -0.47739	700 -0.00024200
С	7.09929900 1.002912	200 0.00017800
Н	7.97687100 1.63322:	500 0.00029100
С	5.84154700 1.572222	200 0.00026100
Н	5.72238200 2.646628	800 0.00044100
С	6.10515200 -1.19545	800 -0.00020100
Н	6.21479300 -2.27020	900 -0.00038100
С	4.84157400 -0.62845	700 -0.00011600
С	4.69490100 0.765892	200 0.00011700
С	3.42232200 1.396738	800 0.00021400

2.36024800	1.96782400	0.00028700
1.15619600	2.70778300	0.00028900
1.18146100	4.09824600	0.00031900
2.14160000	4.58983900	0.00035200
-0.00324600	4.80961500	0.00029900
-1.20923500	4.13315700	0.00024100
-2.15590700	4.65032000	0.00021300
-0.03940100	2.05725500	0.00025200
-1.21599000	2.74487000	0.00021400
-2.42239800	2.01154700	0.00014200
-3.46777400	1.40982000	0.00006400
-4.72156000	0.74402200	-0.00003900
-5.89179900	1.51597600	-0.00013500
-5.80459700	2.59343500	-0.00012800
-7.13161000	0.90885600	-0.00023600
-8.02787300	1.51228400	-0.00031000
-4.82602900	-0.65438300	-0.00004600
-6.07192700	-1.25914300	-0.00014700
-6.14930300	-2.33669000	-0.00014900
0.01306800	5.89063900	0.00032200
8.21034400	-0.83315000	-0.00012100
-8.18687900	-0.95980000	-0.00031900
-0.10220300	0.58608700	0.00023100
0.90380100	0.18489600	0.00042700
-0.64579900	0.26050700	-0.88412900
-0.64614800	0.26050300	0.88437300
	2.36024800 1.15619600 1.18146100 2.14160000 -0.00324600 -1.20923500 -2.15590700 -0.03940100 -1.21599000 -2.42239800 -3.46777400 -4.72156000 -5.89179900 -5.89179900 -5.80459700 -7.13161000 -8.02787300 -4.82602900 -6.07192700 -6.14930300 0.01306800 8.21034400 -8.18687900 -0.10220300 0.90380100 -0.64579900 -0.64614800	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

С	3.50919800	1.20235100	-0.00269000
С	2.43327500	1.74429500	-0.00298800
С	1.17326500	2.40023500	-0.00290400
С	1.15076500	3.78887600	-0.00867100
Н	2.05843700	4.37248900	-0.01078800
Ν	-0.00490100	4.46469600	-0.01272600
С	-1.18268600	3.82332500	-0.00914100
Н	-2.07206800	4.43491400	-0.01170500
С	-0.04290700	1.69432500	-0.00008100
С	-1.23929300	2.43966600	-0.00292000
С	-2.50172000	1.79286100	-0.00295900
С	-3.56174500	1.21967800	-0.00249600
С	-4.83782800	0.59015600	-0.00195300
С	-5.98521700	1.39450800	-0.00297300
Н	-5.86609900	2.46894000	-0.00413700
С	-7.24377300	0.82645600	-0.00247000
Н	-8.12077400	1.45774200	-0.00325900
С	-4.98639900	-0.80352700	-0.00040100
С	-6.25112600	-1.37032900	0.00009900
Н	-6.35967800	-2.44518500	0.00129000
Н	8.37552100	-0.87033000	-0.00176300
Н	-8.35657600	-1.00909300	-0.00053000
С	0.00939100	5.93813300	0.02735800
Н	0.95320700	6.29219400	-0.37327700
Н	-0.10617000	6.26823100	1.05695800
Н	-0.80799800	6.31436100	-0.57967700
С	-0.09941200	0.21072300	0.00259400
Н	0.89159700	-0.23246700	0.00794000
Н	-0.66642000	-0.13185500	0.87149300
Н	-0.65770200	-0.13518800	-0.87070500

100	0.221/1200	

Н	8.00132400	0.83653400	0.31559800
С	5.88312100	1.09297400	0.19949000
Н	5.92016400	2.17066100	0.27568900
С	5.74538600	-1.67593200	0.00194100
Н	5.69826900	-2.75240200	-0.07502100
С	4.57850700	-0.92946900	-0.02058800
С	4.63562400	0.46841500	0.07894600
С	3.45634500	1.26168900	0.06136100
С	2.44882200	1.92079100	0.04634900
С	1.21145500	2.60917600	0.02224200
С	1.17180700	3.99949700	0.01503700
Н	2.06654500	4.60252200	0.03078500
Ν	0.00028000	4.64955100	-0.01392000
С	-1.17130800	3.99930800	-0.03506400
Н	-2.06602900	4.60219600	-0.05622600
С	0.00020700	1.91577100	-0.00052200
С	-1.21103000	2.60899100	-0.02907800
С	-2.44832900	1.92047100	-0.05259900
С	-3.45586900	1.26136400	-0.06616400
С	-4.63530700	0.46829700	-0.08197200
С	-5.88264700	1.09285500	-0.20412600
Н	-5.91943300	2.17037000	-0.28284800
С	-7.04346400	0.34484400	-0.22472700
Н	-8.00089600	0.83663700	-0.31989400
С	-4.57852200	-0.92935800	0.02086200
С	-5.74557200	-1.67559900	-0.00001700
Н	-5.69871200	-2.75189600	0.07947300
Н	7.87663700	-1.63147500	0.13970400
Н	-7.87680000	-1.63098300	-0.13814400
Н	0.00024500	0.83401000	0.00151100
С	-0.00074900	6.12505000	0.02706200
Н	0.89689500	6.49072500	-0.46033200
Н	-0.02308800	6.44985800	1.06450700
Н	-0.87675500	6.49050800	-0.49838000

С	7.04386100	-0.94404600	-0.11333200
С	-7.04448900	-0.94356700	0.09988800
С	7.06222800	0.44183400	-0.19214600
Н	8.00105600	0.97104500	-0.27121000
С	5.87459400	1.14693700	-0.16972800
Н	5.87353800	2.22614300	-0.23076400
С	5.83971400	-1.62623100	-0.01182100
Н	5.83032900	-2.70468500	0.04942600
С	4.64851800	-0.91972900	0.01084900
С	4.64821600	0.47836900	-0.06797300
С	3.44617900	1.24115900	-0.04869800
С	2.45257900	1.92232700	-0.03480800
С	1.22143300	2.62530100	-0.01772900
С	1.16914100	3.99525100	-0.02348700
Н	2.06905700	4.59137800	-0.03645800
N	-0.00024500	4.66662900	-0.01465700
С	-1.16947600	3.99537400	0.00539400
Н	-2.06946000	4.59142800	0.01479300
С	-0.00013400	1.88695800	0.00064800
С	-1.22168200	2.62536300	0.01171800
С	-2.45292400	1.92248700	0.02599200
С	-3.44656900	1.24137000	0.03920300
С	-4.64866600	0.47863900	0.05735600
С	-5.87544200	1.14767300	0.15087300
Н	-5.87462500	2.22716300	0.20667800
С	-7.06316600	0.44268000	0.17186000
Н	-8.00230400	0.97225400	0.24454600
С	-4.64865100	-0.91983200	-0.01459100
С	-5.83994500	-1.62622100	0.00665800
Н	-5.83031900	-2.70496100	-0.04927700
Н	7.96917600	-1.50298900	-0.13056700
Н	-7.96986900	-1.50243300	0.11604600
С	0.00114100	6.13510800	0.03918300
Н	0.87503400	6.50748200	-0.48627500
Н	0.02282700	6.46663800	1.07512000
Н	-0.89383600	6.50771300	-0.44920500
Ν	-0.00010700	0.56845500	0.00334000
Н	0.87276700	0.05403700	-0.00279100
Н	-0.87297500	0.05403100	0.00996500

S conformation

1

-			
Ι	5.74625500	-1.07999300	-0.07925400
Ι	-4.38615900	1.89831500	-0.02774400
С	6.14187100	3.22140300	0.04918600
С	-7.90783400	-0.60258500	-0.04608700
С	4.84034700	3.70398700	0.10111500
Н	4.65391500	4.76752800	0.14009100
С	3.78237400	2.81699800	0.10294400
Н	2.76319500	3.17552900	0.14361400
С	6.39008800	1.85648700	-0.00110600
Н	7.40596500	1.49108900	-0.04193000
С	5.33272400	0.96155300	0.00094200
С	4.01294200	1.43606400	0.05337900
С	2.91066500	0.54234700	0.05861900
С	1.98274000	-0.22733100	0.06354400
С	1.02706000	-1.26700700	0.07069700
С	1.44929400	-2.59231300	0.09393400
Н	2.51198800	-2.78232600	0.10645400
С	0.51626700	-3.61070300	0.10097700
С	-0.83333100	-3.30510000	0.08454000
Н	-1.59332800	-4.07064900	0.08948600
Ν	-0.30304900	-0.98276000	0.05432400
С	-1.23581500	-1.97750000	0.06062100
С	-2.60083500	-1.61725900	0.04102400
С	-3.77376000	-1.33684300	0.02267600
С	-5.16536600	-1.05708600	0.00021600
С	-6.06553600	-2.13181700	0.00186300
Н	-5.67348100	-3.13901600	0.02110500
С	-7.42712500	-1.90548000	-0.02116600
Н	-8.11298700	-2.74035900	-0.01986600
С	-5.66581600	0.25248900	-0.02460000
С	-7.03246100	0.47493500	-0.04773500
Н	-7.41507100	1.48496100	-0.06697600
Н	0.83880500	-4.64245400	0.11953900
Н	6.97560100	3.91004400	0.04734300
Н	-8.97304800	-0.41759300	-0.06450100
С	-0.78254300	0.40831200	0.02701800
Н	0.07076100	1.07415900	0.02909500
Н	-1.40860300	0.58113300	0.89963700
Н	-1.38315500	0.55490000	-0.86807300

2		3	
Ι	5.79000200	0.93546000	-0.08199500
Ι	-4.59277400	-2.00793800	-0.02066100
С	6.30674700	-3.35165800	0.05611300
С	-8.02091200	0.61866000	-0.04139400
С	5.01946100	-3.86952900	0.10558600
Н	4.86262400	-4.93788300	0.14613500
С	3.93551200	-3.01305800	0.10288000
Н	2.92693200	-3.40050200	0.14120800
С	6.51386800	-1.98011800	0.00374900
Н	7.51819700	-1.58396000	-0.03522700
С	5.42881100	-1.11896600	0.00128000
С	4.12295700	-1.62673400	0.05104300
С	2.99205000	-0.76459000	0.05128700
С	2.04749800	-0.01843900	0.05208400
С	1.01661100	0.95750000	0.05332700
С	1.40071600	2.29295100	0.06518200
Н	2.44205700	2.57948400	0.07528600
Ν	0.49131300	3.27362500	0.06368900
С	-0.82261700	3.00050800	0.05240200
Н	-1.49633000	3.84386600	0.05291400
С	-0.34904500	0.63272600	0.04023300
С	-1.27836000	1.69310300	0.04027000
С	-2.67430200	1.44075900	0.02420500
С	-3.85553800	1.20290800	0.00999200
С	-5.25987800	0.97391100	-0.00710600
С	-6.12233600	2.07829600	-0.00905000
Н	-5.69478300	3.07109100	0.00284100
С	-7.49186200	1.90263100	-0.02609100
Н	-8.14622700	2.76254500	-0.02750600
С	-5.80915500	-0.31541400	-0.02250600
С	-7.18410000	-0.48818700	-0.03957200
Н	-7.60175000	-1.48442700	-0.05141100
Н	7.16014500	-4.01565500	0.05772400
Н	-9.09216500	0.47230500	-0.05490800
С	0.92869400	4.68033100	0.11960900

Н	1.95727500	4.74233800	-0.21875800
Н	0.85116500	5.03669900	1.14393800
Н	0.29331300	5.27238700	-0.53175900
С	-0.83242600	-0.77226900	0.02310500
Н	-0.00937700	-1.47971500	0.02721400
Н	-1.47973400	-0.94930100	0.88497600
Н	-1.45796100	-0.93523100	-0.85749300

0			
Ι	5.71398800	0.84535100	0.01895100
Ι	-4.29002900	-1.99341300	0.02460800
С	5.99092800	-3.46608400	-0.02654200
С	-8.00732300	0.20792700	-0.01549300
С	4.67647200	-3.91315600	-0.04009100
Н	4.46040700	-4.97179200	-0.05306300
С	3.64166000	-2.99825000	-0.03706600
Н	2.61242400	-3.32852400	-0.04759000
С	6.27497900	-2.10729900	-0.00988500
Н	7.30040100	-1.76737900	0.00065100
С	5.23979200	-1.18697100	-0.00684400
С	3.90734500	-1.62353900	-0.02050300
С	2.82426500	-0.70338900	-0.01839600
С	1.91503100	0.08556000	-0.01683700
С	0.91523500	1.08876800	-0.01437200
С	1.31002400	2.42522700	-0.01599400
Н	2.35131700	2.71074300	-0.01727500
Ν	0.40055200	3.40578100	-0.01679300
С	-0.91713200	3.15092800	-0.01465400
Н	-1.57952100	4.00305000	-0.01482500
С	-0.44872300	0.80537900	-0.01278000
С	-1.38557100	1.84318100	-0.01255400
С	-2.77595000	1.57339600	-0.01308200
С	-3.94000100	1.26553400	-0.01294800
С	-5.31075100	0.88925500	-0.01315500
С	-6.29643400	1.88390700	-0.02809900
Н	-5.98953500	2.92038200	-0.03882700
С	-7.63551200	1.54580600	-0.02931500

Н	-8.38797800	2.32119200	-0.04108400
С	-5.70062300	-0.45779300	0.00082300
С	-7.04519400	-0.79227400	-0.00037500
Н	-7.34222500	-1.83088900	0.01052500
Н	6.80632000	-4.17626800	-0.02883600
Н	-9.05365300	-0.06490500	-0.01634200
Н	-0.79182300	-0.21989000	-0.01376500
С	0.84730600	4.81213300	0.02159200
Н	1.87880400	4.86271000	-0.30913900
Н	0.76283900	5.18122300	1.04076100
Н	0.21956500	5.39767700	-0.64282300

4			
Ι	5.78444700	0.79908100	-0.00136700
Ι	-4.27001200	-2.00308100	0.00830600
С	5.89371000	-3.51982100	-0.00325000
С	-7.96148200	0.23242600	-0.01019000
С	4.56275400	-3.91473400	-0.00346700
Η	4.30479400	-4.96407300	-0.00393300
С	3.56510400	-2.95947100	-0.00315300
Н	2.52483000	-3.25404500	-0.00344600
С	6.22814300	-2.17305800	-0.00269600
Н	7.26562300	-1.87183800	-0.00256600
С	5.22967600	-1.21206200	-0.00231300
С	3.88140100	-1.59584600	-0.00254500
С	2.83457300	-0.63114900	-0.00223100
С	1.97423900	0.21191400	-0.00202500
С	0.98303900	1.22588000	-0.00134300
С	1.33805800	2.55139400	-0.00740800
Н	2.37604100	2.85017300	-0.00879400
Ν	0.41847100	3.53656700	-0.01336200
С	-0.89617100	3.24022000	-0.00860700
Н	-1.58113400	4.07456700	-0.01090700
С	-0.39913900	0.88237100	0.00174600
С	-1.34921000	1.94512200	-0.00263700
С	-2.73272800	1.63440900	-0.00467400
С	-3.88214900	1.27333800	-0.00556300
С	-5.25466200	0.89466600	-0.00692300

С	-6.23511800	1.89464700	-0.01362700
Н	-5.92125600	2.92898700	-0.01753100
С	-7.57697000	1.56631200	-0.01526200
Н	-8.32239500	2.34860700	-0.02051900
С	-5.66081900	-0.44536700	-0.00187700
С	-7.00642200	-0.77416000	-0.00349100
Н	-7.31038400	-1.81083300	0.00045900
Н	6.68099800	-4.26091100	-0.00354500
Н	-9.00972500	-0.03236200	-0.01143100
С	0.85281500	4.93997700	0.03903800
Н	1.80317100	5.03481100	-0.47688000
Н	0.96073000	5.25330800	1.07517700
Н	0.11248400	5.55796500	-0.45922400
Ν	-0.79045600	-0.38036300	0.00480400
Н	-0.10219700	-1.11690400	0.00553400
Н	-1.77457900	-0.62092400	0.00470000

W conformation

1

Ι	-5.77608900	-1.46336400	0.08285400
Ι	5.80197600	-1.45819000	-0.08828000
С	-7.36415300	2.54998400	-0.12624700
С	7.32349600	2.58059000	0.11976800
С	-6.25050700	3.37931300	-0.16704500
Н	-6.37053500	4.45173700	-0.22094800
С	-4.98572900	2.82657300	-0.13893800
Н	-4.10834300	3.45753000	-0.17110200
С	-7.21853300	1.17124000	-0.05656400
Н	-8.09080000	0.53462400	-0.02510800
С	-5.95207500	0.61066400	-0.02750300
С	-4.81872900	1.43736000	-0.06956700
С	-3.50925900	0.89075300	-0.04643800
С	-2.40192700	0.41430800	-0.02843600
С	-1.19064000	-0.31169400	-0.00975000
С	-1.21831100	-1.70180700	-0.00772800
Н	-2.18321300	-2.18601100	-0.01969500
С	-0.03388400	-2.41397500	0.00814700
С	1.17284300	-1.73805000	0.02242600
Н	2.12315700	-2.24996800	0.03531300

Ν	0.00486300	0.33929400	0.00547800
С	1.18018500	-0.35003400	0.02153500
С	2.39640300	0.36550600	0.03738600
С	3.49596400	0.86041200	0.05178400
С	4.79685100	1.42622100	0.07069500
С	4.94116900	2.81820900	0.14034500
Η	4.05321100	3.43404900	0.17572800
С	6.19660200	3.39174700	0.16467400
Η	6.29931500	4.46594700	0.21883300
С	5.94345200	0.61781400	0.02414700
С	7.20042000	1.19967900	0.04956500
Η	8.08307600	0.57772700	0.01480300
Η	-0.05076600	-3.49504200	0.00931400
Η	-8.35799700	2.97554700	-0.14827800
Η	8.31033200	3.02233000	0.13892000
С	0.06673400	1.80909500	0.00526500
Η	-0.94111500	2.20349000	-0.00881700
Η	0.61518600	2.13537500	-0.87503600
Н	0.59022700	2.13656300	0.90020900

	-	۰.	
	1	,	
	,	,	
- 4	-		

Ι	-5.80649800	-1.37804500	-0.07802500
Ι	5.83019000	-1.37696300	0.08090200
С	-7.49910800	2.59258500	0.11234300
С	7.46843600	2.61617900	-0.10993900
С	-6.40728600	3.44938400	0.15267200
Н	-6.55460000	4.51869100	0.20270100
С	-5.12745500	2.92997100	0.12895100
Н	-4.26690500	3.58366700	0.16033100
С	-7.31532300	1.21826500	0.04765900
Н	-8.16933900	0.55739700	0.01631700
С	-6.03305000	0.69454700	0.02343700
С	-4.92070200	1.54687500	0.06457100
С	-3.59324000	1.03703500	0.04482700
С	-2.47557600	0.59019900	0.02940700
С	-1.20625100	-0.04526100	0.01145000
С	-1.18480900	-1.43473000	0.00167200
Н	-2.09715000	-2.01269500	0.00932700
Ν	-0.02892800	-2.10861100	-0.01855600
С	1.14767900	-1.46531700	-0.02815800
Н	2.04285600	-2.06959400	-0.04363200

С	0.00615400	0.66285600	0.00072700
С	1.20089600	-0.08089600	-0.01929900
С	2.47334400	0.54495000	-0.03442400
С	3.58425700	1.00928400	-0.04752800
С	4.90484600	1.53574600	-0.06506800
С	5.09271300	2.92174200	-0.12927500
Н	4.22306000	3.56325700	-0.16177300
С	6.36527800	3.45845900	-0.15152600
Н	6.49841400	4.52962400	-0.20144400
С	6.02839000	0.69790100	-0.02229500
С	7.30331100	1.23950300	-0.04525600
Н	8.16630700	0.59044500	-0.01287300
Н	-8.50395100	2.99149200	0.13075700
Н	8.46785200	3.02858200	-0.12730400
С	-0.03973500	-3.58260000	0.01540600
Н	-0.99328800	-3.93586000	-0.36207800
Н	0.10274800	-3.91574200	1.04058200
Н	0.76323200	-3.95397200	-0.61349000
С	0.05803300	2.15006800	0.00634400
Н	-0.93604100	2.58476900	0.03270900
Н	0.63193500	2.49379900	0.86886600
Н	0.58688800	2.50136200	-0.88176900

Ι	-5.83687300	-1.29416400	0.07788300
Ι	5.83740400	-1.29406600	-0.07615100
С	-7.45666500	2.70671800	-0.10712400
С	7.45610600	2.70710800	0.11143400
С	-6.34977400	3.54415400	-0.14640300
Н	-6.47815800	4.61596700	-0.19444200
С	-5.07943700	3.00211600	-0.12420800
Н	-4.20668400	3.63923200	-0.15479900
С	-7.29826600	1.32898700	-0.04477300
Н	-8.16434600	0.68397300	-0.01413400
С	-6.02594400	0.78192300	-0.02191100
С	-4.89868900	1.61502700	-0.06239900
С	-3.58137400	1.08188300	-0.04507700
С	-2.47125400	0.61649800	-0.03234200
С	-1.20972800	-0.02741200	-0.01810800

С	-1.17062700	-1.41856900	-0.02658000
Н	-2.07111000	-2.01443100	-0.04118400
Ν	-0.00004100	-2.06966700	-0.01794600
С	1.17050100	-1.41871100	0.00098600
Н	2.07100400	-2.01468600	0.00767600
С	-0.00009400	0.66739500	0.00055600
С	1.20955400	-0.02756400	0.01087200
С	2.47110400	0.61621800	0.02815600
С	3.58118300	1.08163100	0.04331300
С	4.89839100	1.61494800	0.06299200
С	5.07880600	3.00205100	0.12555700
Н	4.20589400	3.63899600	0.15514600
С	6.34900700	3.54432400	0.14957100
Н	6.47712500	4.61614700	0.19809900
С	6.02585800	0.78207000	0.02375400
С	7.29804300	1.32936800	0.04846800
Н	8.16428200	0.68452200	0.01883200
Н	-8.45418600	3.12371500	-0.12443900
Н	8.45352700	3.12428500	0.13015600
Н	-0.00007700	1.74796200	0.00470200
С	-0.00055800	-3.54545400	0.01840300
Н	-0.88219500	-3.90862700	-0.49912100
Н	-0.01250600	-3.87267900	1.05522000
Н	0.89270000	-3.90876500	-0.47869000

-			
Ι	-5.87679700	-1.28118000	-0.30150500
Ι	5.87522000	-1.28122000	0.30569400
С	-7.35545900	2.71373500	0.42023700
С	7.35723200	2.71226500	-0.41757900
С	-6.21991800	3.49189700	0.60062400
Н	-6.30967000	4.55013400	0.79993500
С	-4.97029000	2.90784800	0.52626600
Н	-4.07839900	3.50197300	0.66940100
С	-7.24401700	1.35419300	0.16557100
Н	-8.13115300	0.75362700	0.02634500
С	-5.99205100	0.76522900	0.08909200
С	-4.83646700	1.53845300	0.26965500

С	-3.53946300	0.95558700	0.20148900
С	-2.46197600	0.42035300	0.14271800
С	-1.21624000	-0.25319000	0.06782500
С	-1.16667500	-1.62560600	0.05294700
Н	-2.07004700	-2.21563000	0.10272000
Ν	-0.00088800	-2.29558200	-0.02483300
С	1.16576900	-1.62542700	-0.08659600
Н	2.06868600	-2.21531300	-0.14538200
С	0.00052500	0.47986500	0.00191200
С	1.21655200	-0.25300600	-0.07775400
С	2.46238400	0.42071000	-0.14969200
С	3.54013600	0.95567700	-0.20585700
С	4.83749800	1.53810500	-0.27136400
С	4.97237900	2.90713300	-0.52937900
Н	4.08103000	3.50130400	-0.67566500
С	6.22239700	3.49063500	-0.60152300
Н	6.31301000	4.54857300	-0.80202400
С	5.99235500	0.76465200	-0.08722000
С	7.24471400	1.35306400	-0.16158100
Н	8.13129700	0.75231800	-0.01964800
Н	-8.33725800	3.16302700	0.47736000
Н	8.33932800	3.16111800	-0.47301600
С	0.00185100	-3.76545900	0.01929400
Н	-0.91190400	-4.13373400	-0.43633300
Н	0.06303600	-4.10124600	1.05212100
Н	0.85549700	-4.13352000	-0.54107800
Ν	0.00096400	1.80563000	0.01079600
Н	-0.86893400	2.31195400	0.05966200
Н	0.87111500	2.31202300	-0.03266700

Iodide Complexes

1•I-

Ι	3.14306200	-1.28951400	-0.00020300
Ι	-3.10706400	-1.27344400	-0.00013700
С	7.26483200	0.15776300	-0.00061900
С	-7.25822600	0.08919500	-0.00061200
С	7.14645600	1.54395400	-0.00034200

Η	8.02873200	2.16821900	-0.00033700
С	5.89198200	2.11897600	-0.00007300
Η	5.77722500	3.19440200	0.00013800
С	6.13674900	-0.64877600	-0.00060900
Η	6.24041200	-1.72499100	-0.00081900
С	4.86600100	-0.08726300	-0.00032200
С	4.74526700	1.31267400	-0.00006900
С	3.46679000	1.93476900	0.00016200
С	2.37986200	2.45820600	0.00030400
С	1.16091600	3.17083300	0.00031200
С	1.18150700	4.56329100	0.00026200
Η	2.14206400	5.05349800	0.00025900
С	-0.00263900	5.27231400	0.00019900
С	-1.20272000	4.58939900	0.00016200
Η	-2.15350900	5.09840500	0.00007700
Ν	-0.02934300	2.51046400	0.00035200
С	-1.20514900	3.19878100	0.00023500
С	-2.42305000	2.48833900	0.00019300
С	-3.49905300	1.94196500	0.00006600
С	-4.76436100	1.29622300	-0.00012700
С	-5.92754300	2.07931100	-0.00018200
Η	-5.83490400	3.15686200	-0.00003600
С	-7.16924500	1.47801800	-0.00041900
Η	-8.06462500	2.08332900	-0.00045600
С	-4.85469100	-0.10606200	-0.00030200
С	-6.11389700	-0.69368100	-0.00055400
Η	-6.19509600	-1.77183800	-0.00069900
Η	0.00966700	6.35336600	0.00016900
Η	8.24536000	-0.29961700	-0.00084100
Η	-8.22909000	-0.38840600	-0.00080700
С	-0.08159500	1.02745700	0.00067400
Η	0.92494400	0.62814700	0.00037500
Η	-0.62105600	0.68955300	-0.88177100
Η	-0.62037100	0.69001100	0.88372000
Ι	0.00412400	-2.67512300	0.00050100

I 3.11071500 -1.42585600 0.000279	00
I -3.15139200 -1.44712500 0.00046	500
C 7.27788400 -0.12737800 -0.00891	1700
C -7.28589300 -0.05004200 -0.00902	5500
C 7.21688000 1.26221900 -0.01095	5500
Н 8.12406200 1.84998100 -0.01340)700
C 5.98664400 1.88806700 -0.00982	2200
Н 5.91727600 2.96748000 -0.01135	5900
C 6.11617000 -0.88363200 -0.00577	7400
Н 6.17344500 -1.96336500 -0.00418	8300
C 4.86836300 -0.27043800 -0.00463	1900
C 4.80587000 1.13307900 -0.00669	0000
C 3.55379900 1.81190800 -0.00561	500
C 2.49665000 2.39170200 -0.00464	1500
C 1.23300900 3.03399400 -0.00254	1000
C 1.18081900 4.41703600 -0.00451	500
Н 2.07339400 5.02359200 -0.00506	6500
C -1.15310000 4.39301100 -0.00435	5400
Н -2.05797500 4.98085300 -0.00469	9900
C -1.18230700 3.00653500 -0.0026	7900
C -2.44648300 2.35979600 -0.0048	7700
C -3.51507000 1.80223800 -0.0058	1200
C -4.78261800 1.15003600 -0.00684	4800
C -5.94490600 1.93256000 -0.01015	5600
Н -5.84948900 3.00999200 -0.01184	4700
C -7.19054300 1.33719400 -0.01128	8600
Н -8.08282700 1.94735500 -0.0138	8100
C -4.88067600 -0.25144000 -0.0045	7300
C -6.14259500 -0.83433800 -0.00572	2400
Н -6.22620400 -1.91234000 -0.0039	9300
Н 8.23805900 -0.62609600 -0.0097	7600
Н -8.25784200 -0.52535800 -0.0099	1300
C 0.07253900 0.80893800 -0.00315	5300
Н 0.63261600 0.44167600 -0.86790)600
Н -0.91557200 0.36390800 -0.00432	2000
Н 0.63074500 0.44035900 0.86232	2100
I -0.00243400 -2.91801400 0.00895	600
C 0.03237500 2.28776000 -0.00180)300
N 0.00629300 5.06566600 -0.00659	9800
C -0.00563100 6.53377900 0.04531	000
Н 0.85072300 6.91364600 -0.50286	5900
Н -0.91945700 6.89608200 -0.41416	6800
Н 0.04280100 6.85981300 1.08180	0800

2•I⁻⁻--Tridentate structure with CH hydrogen bonding from central methyl group to iodide

Ι	3.10593600	-1.40774900	0.01426600
Ι	-3.10595100	-1.40775300	0.01295400
С	7.21783500	-0.15369200	0.77846200
С	-7.21755600	-0.15417800	0.77946500
С	7.15764000	1.23461100	0.82635500
Η	8.05251600	1.81540400	1.00058600
С	5.94400300	1.86954700	0.64984800
Η	5.87589600	2.94842800	0.68550600
С	6.07177600	-0.90149900	0.55445300
Η	6.12836000	-1.98055500	0.51564900
С	4.84228400	-0.27879400	0.37553900
С	4.78009200	1.12377400	0.42641300
С	3.53790400	1.79993500	0.25040500
С	2.47467100	2.34512800	0.09567600
С	1.20695800	2.94902900	-0.10941400
С	1.16599700	4.25625400	-0.56241500
Н	2.06592800	4.81824200	-0.75930500
Ν	0.00002000	4.88194200	-0.78142100
С	-1.16609400	4.25623000	-0.56236500
Н	-2.06587300	4.81851400	-0.75933500
С	-0.00003900	2.25083000	0.12861800
С	-1.20714700	2.94915300	-0.10936000
С	-2.47480300	2.34518400	0.09586200
С	-3.53794000	1.79985000	0.25074700
С	-4.78003000	1.12355300	0.42693900
С	-5.94386500	1.86917400	0.65127100
Η	-5.87577700	2.94803900	0.68743200
С	-7.15739500	1.23410300	0.82802500
Н	-8.05221200	1.81477400	1.00296700
С	-4.84218400	-0.27899200	0.37538800
С	-6.07157400	-0.90183000	0.55454900
Η	-6.12813900	-1.98086900	0.51522900
Η	8.16485300	-0.65877000	0.91510200
Н	-8.16449200	-0.65936000	0.91629200
С	-0.00112600	6.28444900	-1.21681600
Н	0.89314900	6.47330700	-1.80195500
Н	-0.01852000	6.93535800	-0.34548400
Н	-0.87861200	6.46323700	-1.83006600

С	-0.00009800	0.84814400	0.58829800
Η	0.89835300	0.61429700	1.15547300
Η	-0.89868800	0.61426000	1.15520100
Η	0.00014200	0.15693900	-0.27237200
_			

I 0.00014900 -2.77949100 -0.66432600

Figure 35S Tridentate binding mode of **2**•I⁻ obtained from DFT evaluations, shown from two different perspectives.

3•I-

Ι	2.95714700	-1.35070800	-0.01791900
Ι	-2.95710300	-1.35067800	-0.01799700
С	7.16227500	-0.21086700	-0.36852100
С	-7.16228900	-0.21094400	-0.36838200
С	7.15937300	1.18063500	-0.36382100
Н	8.08729600	1.73017900	-0.43707800
С	5.95986100	1.85578600	-0.26521200
Η	5.93402600	2.93719500	-0.26053100
С	5.97506400	-0.92032000	-0.27415600

Η	5.98953800	-2.00158100	-0.27718700
С	4.75565800	-0.25912000	-0.17419400
С	4.75497000	1.14612000	-0.17148200
С	3.52897200	1.85978800	-0.07740400
С	2.46946300	2.42886300	-0.00162400
С	1.21117100	3.06888500	0.07652600
С	1.16921100	4.45445100	0.20347300
Η	2.06601000	5.05167700	0.25664100
Ν	-0.00002900	5.10406300	0.26522700
С	-1.16926400	4.45444600	0.20343300
Η	-2.06606900	5.05166300	0.25657400
С	-0.00001600	2.36883500	0.02109500
С	-1.21120500	3.06888000	0.07647300
С	-2.46949100	2.42884700	-0.00170800
С	-3.52901100	1.85979900	-0.07751900
С	-4.75499800	1.14609400	-0.17151000
С	-5.95990300	1.85573100	-0.26521200
Η	-5.93408600	2.93714100	-0.26058200
С	-7.15940800	1.18055600	-0.36373900
Η	-8.08734200	1.73008300	-0.43698100
С	-4.75566400	-0.25915400	-0.17415900
С	-5.97506200	-0.92037700	-0.27404600
Η	-5.98952100	-2.00163800	-0.27704300
Η	8.09851900	-0.74784700	-0.44588700
Η	-8.09852800	-0.74794200	-0.44568700
Η	-0.00001700	1.28791300	-0.07053300
С	-0.00002200	6.56300100	0.45662300
Η	0.88683500	6.97966900	-0.00942400
Η	0.00016400	6.78304800	1.52154600
Η	-0.88705900	6.97963600	-0.00910600
Ι	0.00000000	-2.96912700	0.28438900

4•]	_
т	

Ι	3.17178300	-1.44936800	-0.00212200
Ι	-3.17183900	-1.44934500	-0.00225600
С	7.32584600	-0.11049400	-0.03666300
С	-7.32587400	-0.11039000	-0.03653400
С	7.24062200	1.27696600	-0.03791500
Н	8.13796800	1.87967500	-0.04563000

С	6.00020000	1.88490500	-0.02922800
Н	5.91493500	2.96307700	-0.03009100
С	6.17576100	-0.88555400	-0.02673700
Н	6.24953900	-1.96426300	-0.02576600
С	4.92206600	-0.28791700	-0.01793400
С	4.83267200	1.11245300	-0.01923700
С	3.56346100	1.76133400	-0.01061800
С	2.48696400	2.30198500	-0.00340400
С	1.22241700	2.94285000	0.00472400
С	1.16618100	4.31052500	0.00783000
Н	2.06931000	4.90167400	0.00958400
Ν	0.00001600	4.98937700	0.00632200
С	-1.16614500	4.31057100	0.00786300
Η	-2.06928300	4.90169200	0.00966800
С	-0.00001600	2.18561300	0.00561600
С	-1.22240300	2.94287700	0.00474100
С	-2.48697800	2.30206300	-0.00337900
С	-3.56343300	1.76133100	-0.01059100
С	-4.83266200	1.11248500	-0.01920500
С	-6.00017200	1.88497100	-0.02915100
Н	-5.91487500	2.96314000	-0.03001200
С	-7.24061200	1.27706900	-0.03780200
Η	-8.13794300	1.87979900	-0.04550800
С	-4.92209800	-0.28787800	-0.01792500
С	-6.17580800	-0.88548000	-0.02665700
Н	-6.24961200	-1.96418700	-0.02565100
Η	8.29392100	-0.59336800	-0.04344200
Н	-8.29396300	-0.59323700	-0.04326300
С	0.00030300	6.45053200	0.07997400
Η	0.88286600	6.83173600	-0.42511800
Η	0.00395200	6.77499000	1.11907500
Η	-0.88582200	6.83168100	-0.41883000
Ν	-0.00002000	0.87517200	0.00286600
Н	0.85818500	0.32832200	0.00327800
Η	-0.85822400	0.32832000	0.00327600
Ι	0.00000600	-2.76215100	0.03150100

Figure 36S. Visualization of AIM analysis. Bond path are orange lines. (3,-1) BCPs are orange dots, (3,+1) BCPs are yellow dots.

UV-vis Titration Details and Data

UV-vis titrations were carried out on an Agilent Cary 60 UV-Vis spectrometer equipped with a Peltier 1x1 Cell Holder Accessory which can control the liquid sample temperature at 20 °C during the titrations. Association constants were determined by non-linear regression in Bindfit^{17, 18} fitting the complete spectrum simultaneously. Hamilton gas-tight micro-syringes were used during serial dilutions and titrations. The reported association constants and errors were obtained from the average and standard deviation of three repeated titrations. Full binding data and fitting parameters for each titration can be obtained from the Bindfit using the links found below figures below.

Considering both the solubilities and changes of absorbance, the solvent mixture used in all titrations is made by 90% spectra grade Tetrahydrofuran, 9.9% spectra grade Dimethyl sulfoxide, and 0.1% deionized water. A stock solution of **1-4 OTf** was prepared with the solvent mixture. The stock solution of each host was then used to make TBA Bromide guest solutions. An aliquot (2.0 mL) of the stock host solution was transferred to a quartz cuvette with cap and a magnetic stir bar as the starting volume. Aliquots of guest solution were added to the cuvette, after each addition and stirring for three minutes, a spectrum was recorded.

-		, ,	1	
Receptor	Assay 1 (M ⁻ 1)	Assay 2 (M ⁻ 1)	Assay 3 (M⁻ ¹)	Average (M ⁻¹)
1-OTf	25516	27268	25182	25989 ±915
2-OTf	16940	11189	16181	14700 ±2551
3-OTf	12511	10300	13529	12113 ±1348
4-OTf	19417	16997	18654	18356 ±1010

Table S4. Association constants for binding of TBA bromide to all receptors in 90% THF/9.9% DMSO/0.1% deionized H₂O solvent system at 293 K.

1-OTf with TBA bromide

Figure 37S UV-Vis titration spectra of 1-OTf with TBABr in THF-DMSO-H₂O solvent mixture at 20 °C.

Assay 1 K_a= 25516 M⁻¹ http://app.supramolecular.org/bindfit/view/bc8348fa-c18f-4738-a858-6afee54be274

Assay 2 K_a= 27268 M⁻¹ http://app.supramolecular.org/bindfit/view/d0db7fb8-e521-422a-89f9-65a8afc351dd

Assay 3 K_a = 25182 M⁻¹ http://app.supramolecular.org/bindfit/view/80d9e25a-a4a8-4829-ab9e-ab413d6650cf

Figure 38S UV-vis titration spectra of 2-OTf with TBABr in THF-DMSO-H₂O solvent mixture at 20 °C.

Assay 1 K_a= 16940 M⁻¹ http://app.supramolecular.org/bindfit/view/67f16bc8-3f4f-40b6-a488-0e53de34ae04

Assay 2 K_a= 11189 M⁻¹ http://app.supramolecular.org/bindfit/view/f35feff3-f714-4875-92ae-a7e9fc66cf5c

Assay 3 K_a= 16181 M⁻¹ http://app.supramolecular.org/bindfit/view/0134f156-85a4-492a-90c9-51c19ab9d406

Figure 39S UV-Vis titration spectra of **3-OTf** with TBABr in THF-DMSO-H₂O solvent mixture at 20 °C.

Assay 1 K_a= 12511 M⁻¹ http://app.supramolecular.org/bindfit/view/25834360-3d81-4204-abda-afb68c0b3b57

Assay 2 K_a= 10300 M⁻¹ http://app.supramolecular.org/bindfit/view/78e57c1c-3dde-48e2-8601-0ecbb7e80fc5

Assay 3 K_a= 13529 M⁻¹ http://app.supramolecular.org/bindfit/view/9a833e73-82cd-40fc-aadc-1c983a81025e

4-OTf with TBA bromide

Figure 40S UV-Vis titration spectra of 4-OTf with TBABr in THF-DMSO-H₂O solvent mixture at 20 °C.

Assay 1 K_a= 19417 M⁻¹ http://app.supramolecular.org/bindfit/view/339d3d49-a9e4-4c6f-b716-2b9bc59a0c02

Assay 2 K_a= 16997 M⁻¹ http://app.supramolecular.org/bindfit/view/b56dd4e1-3cc5-494f-8772-4b704f48a1da Assay 3 K_a= 18654 M⁻¹ http://app.supramolecular.org/bindfit/view/16b0f1e1-2ff0-4b28-b7f5-

6454fab4b65f

References:

- 1) Sheldrick, G. M. (1996). SADABS: Area Detector Absorption Correction; University of Göttingen, Germany.
- 2) Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H., (2009). J. Appl. Cryst., 42, 339-341.
- 3) Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- 4) Sheldrick, G. M. (2015).Acta Cryst.C71, 3-8.
- 5) Bruker (2016). APEX3. Bruker AXSInc., Madison, Wisconsin, USA.
- 6) Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
- 7) Scattergood, P.A.; Roberts, J.; Omar, S.A.E.; Elliott, P.I., (2019) Inorg. Chem., 58(13), 8607-8621.
- Hou, Y.; Cao, S.; Li, X.; Pei, Y.; Wang, B.; Wang, L.; Pei, Z., (2014) ACS Appl. Mater. Interfaces, 6(19), 16909-16917.
- 9) Bosch, E.; Barnes, B.L., (2000) Organometallics, 19(25), 5522-5524.
- 10) Riel, A.S.M,; Decato, D.A.; Sun, J.; Massena, C.J.; Jessop, M.J.; Berryman, O.B., (2018) Chem. Sci., 9, 5828-5836.
- 11) Zhao, Y.; Truhlar, D.G., (2008) Theor Chem Account 120, 215–241.
- 12) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc.: Wallingford, CT 2009.
- 13) Weigend, F.; Ahlrichs, R., (2005) Phys. Chem. Chem. Phys. 7, 3297.
- 14) Peterson, K.A., (2003) J. Chem. Phys. 119, 11113-11123.
- 15) Pritchard, B.P.; Altarawy, D.; Didier, B.; Gibsom, T.D.; Windus, T.L., (2019) J. Chem. Inf. Model. 59, 4814-4820
- 16) Boys, F.; Bernardi, F., (1970) Mol. Phys. 19, 553.
- 17) http://supramolecular.org/
- 18) Hibbert, D.B.; Thordarson, P.; (2016) Chem. Commun., 52, 12792-12805.