Supporting Information: Computational Details

Enabling Suzuki-Miyaura coupling of Lewis-basic arylboronic esters with a nonprecious metal catalyst

Michael C. Haibach^{1*}, Andrew R. Ickes¹, Sergei Tcyrulnikov², Shashank Shekhar¹, Sebastien Monfette², Rafal Swiatowiec¹, Brian J. Kotecki¹, Jason Wang¹, Amanda L. Wall², Rodger F. Henry¹ and Eric C. Hansen²

¹Process Research and Development, AbbVie, Inc., 1 N Waukegan Road, North Chicago, IL 60064 USA

² Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, USA

Corresponding author email: michael.haibach@abbvie.com

Computational Details

Calculations were performed using Gaussian 16, Revision C.01 software¹. Optimizations of intermediates and transition states was carried out in the gas phase, using M05-2x functional² with Grimme D3 dispersion correction and def2TZVP basis set.³. Vibrational frequencies were computed at the specified level of theory to characterize the stationary points as minima (zero imaginary frequencies). All structures were also assessed for conversion using default Gaussian thresholds for maximum force, RMS force, maximum displacement, and RMS displacement. Computations were performed for molecules in their singlet electronic ground states. For a set of pyridines, parameters describing electron density on nitrogen atom were computed at the specified level of theory: Hirshfeld charge⁴, CM5 charge⁵ and NBO energy of

¹ Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.

² Y. Zhao, N. E. Schultz and D. G. Truhlar, Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. *J. Chem. Theory Comput.*, **2006**, *2*, 364–382

³ Goerigk, L., Hansen, A., Bauer, C., Ehrlich, S., Najibi, A and Grimme, S. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. *Phys. Chem. Chem. Phys.*, **2017**, *19*, 32184-32215

⁴ F. L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities, *Theor. Chem. Acc.*, **1977**, *44*, 129-38. DOI: 10.1007/BF00549096

⁵ A. V. Marenich, S. V. Jerome, C. J. Cramer and D. G. Truhlar, Charge Model 5: An Extension of Hirshfeld Population Analysis for the Accurate Description of Molecular Interactions in Gaseous and Condensed Phases, *J. Chem. Theory*

lone pair⁶. A set of pyridines included 4 training pyridines and 2 pyridines of interest: product of the reaction and the starting material (in the box on the scheme below):

For a 'training set', computed parameters were related to experimentally determined Lewis basicity⁷.

	4CN	3Cl	Н	40Me	pdt	SM
Experimental Lewis basicity	3.92	4.83	6.14	7.16	-	-
Charge on N atom						
Hirshfeld	-0.146	-0.153	-0.164	-0.181	-0.16	-0.167
CM5	-0.343	-0.35	-0.361	-0.377	-0.357	-0.363
NBO N-LP energy	-0.448	-0.434	-0.422	-0.416	-0.426	-0.417

Graphical representation of obtained trends between computed parameters and experimental Lewis basicity:

Regression analysis was performed in MS Excel to obtain accurate slope values:

and Comput. 2012, 8, 527. DOI: 10.1021/ct200866d

⁶ J. P. Foster and F. Weinhold, Natural hybrid orbitals, J. Am. Chem. Soc., **1980**, 102, 7211-18. DOI:

⁷ Mayer, R. J., Hampel, N., Ofial, A. R. Lewis Acidic Boranes, Lewis Bases, and Equilibrium Constants: A Reliable Scaffold for a Quantitative Lewis Acidity/Basicity Scale. *Chem. Eur.J.* **2021**,*27*, 4070

^{10.1021/}ja00544a007

	Hirshfel	d chai	rge vs	Lewis b	asicity	/			
			0						
SUMMARY OU	ГРИТ								
					Estimated	Lewis basic	ity of product	and SM	
Regression	Statistics								
Multiple R	0.982778934				pdt	5.420552			
R Square	0.965854433				SM	6.064191			
Adjusted R Squ	-2								
Standard Error	0.322974568				delta	0.643639			
Observations	1								
ANOVA									
	df	SS	MS	F	ignificance	F			
Regression	4	5.90125	1.475312	56.5727579	#NUM!				
Residual	2	0.208625	0.104313						
Total	6	6.109875							
	Coefficients	andard Erro	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	'pper 95.0%	
Intercept							-7.67E-307	7.7E-307	
X Variable 1							0	0	
X Variable 2	0	0	65535	#NUM!	0	0	0	0	
X Variable 3	-9.29119628	1.974801	-4.70488	#NUM!	-17.7881	-0.79431	-17.788081	-0.79431	
X Variable 4	-91.9484241	12.22477	-7.52149	0.01722107	-144.547	-39.3495	-144.54735	-39.3495	

		CDAE	ah a va a						
		CIVI5	cnarge	e vs Le	WIS Da	isicity			
		I							
		L]							
SUMMARY	OUTPUT	l							
					Estimated	Lewis basic	ity of produ	uct and SM	I
Regressior	1 Statistics								
Multiple R	0.985665			I	pdt	5.441306			
R Square	0.971535				SM	6.010861			
Adjusted R	-2								
Standard E	0.294886				delta	0.569556			
Observatic	1								
ANOVA									
	df	SS	MS	F	ignificance	F			
Regressior	4	5.93596	1.48399	68.26271	#NUM!				
Residual	2	0.173915	0.086958						
Total	6	6.109875							
(Coefficients	andard Erre	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%	6
Intercept							0	0	
X Variable	1						0	0	
X Variable	2						0	0	
X Variable	-28.4473	4.112939	-6.91653	0.02027	-46.1438	-10.7507	-46.1438	-10.7507	
X Variable	-94.926	11.4893	-8.26213	0.014335	-144.36	-45.4915	-144.36	-45.4915	

					norgy		wis ha	cicity	
			NDO		пству	VJLC		SICILY	
SLIMA	MARY								
301011		001101				Estimated	Lewis hasic	ity of prod	uct and SM
Rear	ession	Statistics				Lotinateu		ity of prou	
Multi	nle R	0 982379				ndt	5 909033		
R Sau	are	0.965069				SM	6.801233		
Adjus	ted R	-2							
Stand	lard E	0.326668				delta	0.8922		
Obser	rvatic	1							
ANOV	/A								
		df	SS	MS	F	ignificance	F		
Regre	essior	4	5.896451	1.474113	55.25566	#NUM!			
Resid	ual	2	0.213424	0.106712					
Total		6	6.109875						
	C	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	1pper 95.0%
Interd	cept							0	0
X Vari	iable	1						0	0
X Vari	iable	2						-5E-306	5.4E-306
X Vari	iable	48.13983	5.736882	8.391289	0.013906	23.45602	72.82364	23.45602	72.82364
X Vari	iable	99.13333	13.33618	7.433415	0.017621	41.7524	156.5143	41.7524	156.5143

Using each of the computed parameters, Lewis basicities of product and starting material were estimated:

Estimated Lewis	Average	St dev	st error
basicity	using		
	3 models		
Product	5.590296804	0.22554	0.130216
Starting material	6.292095119	0.360673	0.208235
Difference	0.701798315		

Difference between obtained basicity values can be related to relative binding abilities of corresponding pyridines, as can be derived from the original paper.⁸

$$\log\left(K_{eq}\right) = LA_B + LB_B$$

,where LA_b is a Lewis acidity parameter of a given Lewis acid, and LB_b parameter refers to a specific Lewis base. Therefore, for a pair of Lewis bases, we have:

⁸ Chem. Eur.J. 2021,27, 4070

$$\log\left(\frac{K_{eq1}}{K_{eq2}}\right) = \log\left(K_{eq1}\right) - \log\left(K_{eq2}\right) = LB_{B1} - LB_{B2}$$

And

$$\frac{K_{eq1}}{K_{eq2}} = 10^{\left(LB_{B1} - LB_{B2}\right)}$$

We estimate that an average difference between computed Lewis basicities (~0.7) corresponds to ~5-fold difference in Keq

$$\frac{K_{eq1}}{K_{eq2}} = 10^{(0.7)} = 5.01$$

As can be seen from the graphics below, performed analysis is interpolative as the training set pf pyridines covers a wide range of computed parameters and experimental basicities.

Coordinates and Thermochemical Data

4CN pyridine

Electronic I	Energy (EE) -34	0.6151	4				
Zero-point Energy Correction 0.089044							
Thermal Correction to Energy 0.094973							
Thermal Co	prrection to En	ithalpy	0.095	917			
Thermal Co	prrection to Fr	ee Energ	3y	(0.05885	3	
EE + Zero-p	oint Energy		-340.5	5261			
EE + Therm	al Energy Cori	rection	-340.5	52017			
EE + Therm	al Enthalpy Co	orrection	า		-340.519) 22	
EE + Therm	al Free Energy	/ Correc	tion		-340.556	529	
С	1.49549300	1.13683	3400	-0.000	014500		
С	1.49544700	-1.1368	3500	0.00	010900		
С	0.11169600	1.1978	4300	-0.00	012400		
Н	2.07720100	2.0478	9200	-0.00	023300		
С	0.11156600	-1.1977	7300	0.00	012100		
Н	2.07701300	-2.0479	9800	0.00	018400		
С	-0.59017600	0.0000	5400	0.00	000700		
Н	-0.40561000	2.1435	51000	-0.00	0021000		
N	2.18101200	-0.0000	07500	-0.00	002600		
Н	-0.40582200	-2.1433	38100	0.00	0022000		
С	-2.02610200	-0.0001	8300	0.00	002400		
N	-3.17106000	0.0001	L2300	0.00	003800		

3Cl pyridine

Electronic Energy (EE) -707.9544 Zero-point Energy Correction 0.080848

Thermal C Thermal C	orrection to En orrection to En	ergy Ithalpy	0.086 0.087	141 086	
Thermal C	orrection to Fr	ee Energ	y	0.0)51187
EE + Zero-	point Energy		-707.8	37355	
EE + Therr	nal Energy Cori	rection	-707.8	36826	
EE + Therr	nal Enthalpy Co	prrection		-70	07.86731
EE + Therr	nal Free Energy	/ Correct	ion	-70	07.90321
С	-2.19993800	-0.09596	5700	0.0003	9900
С	-0.20169100	-1.1821	4000	-0.0002	24000
С	-1.58847900	1.1482	9300	0.0001	6100
Н	-3.27788100	-0.1762	8000	0.0002	24000
С	0.49214300	0.01878	3600	-0.0000	6300
Н	0.33972400	-2.1177	7300	-0.0002	14400
С	-0.20620000	1.2110	2800	0.0000	6200
Н	-2.18226700	2.0487	8900	0.0001	4400
Н	0.32143600	2.1519	9300	0.0000	3600
Ν	-1.52519900	-1.2395	3100	0.000	07600
Cl	2.21766900	0.00999	900	-0.0001	.6000

40Me pyridine

Electronic Energy (EE) -362.90675 Zero-point Energy Correction 0.12398 Thermal Correction to Energy 0.130579 Thermal Correction to Enthalpy 0.131523 Thermal Correction to Free Energy 0.093131 EE + Zero-point Energy -362.78277

EE + Thermal Energy Correction -362.77618							
EE + Thermal Enthalpy Correction -362.7752							
EE +	Thermal Free Energy	y Correction	-362.81362				
С	1.33987800	1.29065200	-0.00002700				
С	1.85201800	-0.90962100	0.00012800				
С	-0.02665300	1.04162600	-0.00014000				
Н	1.68803200	2.31517900	0.00000900				
С	0.52460200	-1.28178000	-0.00001300				
Н	2.62127500	-1.66983800	0.00021200				
С	-0.44416300	-0.28270000	-0.00020000				
Н	-0.71886900	1.86627700	-0.00016600				
Ν	2.27566800	0.35451700	0.00008700				
Н	0.22537000	-2.31768300	0.00000600				
С	-2.73093600	0.32330800	0.00023300				
Н	-3.67928400	-0.19995800	0.00058400				
Н	-2.65321600	0.94448700	0.89155600				
Н	-2.65390000	0.94453700	-0.89111400				
0	-1.73094400	-0.68169200	-0.00019700				

pyridine

Electronic Energy (EE) -248.34691						
Zero-point Energy Correction	0.090498					
Thermal Correction to Energy	0.094716					
Thermal Correction to Enthalpy	0.09566					
Thermal Correction to Free Energy	gy 0.063138					
EE + Zero-point Energy	-248.25641					
EE + Thermal Energy Correction	-248.25219					
EE + Thermal Enthalpy Correction	n -248.25125					
EE + Thermal Free Energy Correc	tion -248.28377					
C -1.13495600 -0.7174	4500 -0.00037200					
C 1.13447900 -0.7181	18000 0.00040200					
C -1.18999800 0.6683	34900 0.00014500					
Н -2.04701300 -1.299	12500 0.00063300					
C 1.19040700 0.6676	52400 -0.00019400					
Н 2.04621400 -1.3003	36200 -0.00003800					
C 0.00045500 1.3749	5800 -0.00005900					
Н -2.14288700 1.1743	12700 0.00047400					
H 2.14365700 1.1727	74300 -0.00021100					
Н 0.00078900 2.4547	73500 0.00018900					
N -0.00044100 -1.407	70800 -0.00008300					

product

Electronio	Energy (EE) -70	07.4197	6				
Zero-point Energy Correction 0.216787							
Thermal Correction to Energy 0.229901							
Thermal (Correction to Er	thalpy	0.230	846			
Thermal (Correction to Fr	ee Ener	gy	0.175748			
EE + Zero	-point Energy		-707.2	20297			
EE + Ther	mal Energy Cor	rection	-707.2	18986			
EE + Ther	mal Enthalpy Co	orrectio	n	-707.1889	1		
EE + Ther	mal Free Energy	y Correc	tion	-707.2440	1		
С	-3.11351400	0.9975	3800	-0.52784600			
С	-5.06948600	-0.0619	96400	-0.07537600			
С	-2.34710500	-0.0374	10800	0.00594900			
Н	-2.62129800	1.8596	51500	-0.95887800			
С	-4.41083400	-1.1524	17000	0.47182500			
Н	-6.14975200	-0.038	17800	-0.11715200			
С	-3.02927100	-1.1375	53500	0.51262400			
Н	-4.97141200	-1.986	28300	0.86443400			
Н	-2.48150200	-1.957	91800	0.95305300			
Ν	-4.43800900	0.9958	86100	-0.57080900			
С	-0.87389500	0.0397	78100	0.02131100			
С	-0.10414800	-1.0863	39300	-0.26463800			
С	-0.22925100	1.2393	30500	0.32107100			
С	1.27683500	-1.0198	3400	-0.25164400			
н	-0.59353800	-2.013	45800	-0.52368900			

С	1.15050900	1.31020300	0.33336900
Н	-0.81484700	2.11157600	0.56962200
С	1.90797400	0.18146500	0.04757900
Н	1.86846600	-1.89123300	-0.48070900
Н	1.66119900	2.23037100	0.57100700
С	3.38683700	0.31265400	0.07540700
0	4.01397600	-0.83385200	-0.21441400
0	3.97038200	1.33296900	0.32930100
С	5.44365800	-0.75762400	-0.20230900
Н	5.78233900	-0.03141700	-0.93451600
Н	5.79080800	-0.46147700	0.78256700
Н	5.79088000	-1.75186200	-0.45310700

Starting material

Electronic I	Energy (EE) -65	59.16087					
Zero-point Energy Correction 0.264994							
Thermal Correction to Energy 0.278974							
Thermal Correction to Enthalpy 0.279918							
Thermal Co	prrection to Fre	ee Energy	0.224591				
EE + Zero-p	oint Energy	-658.8	39587				
EE + Therm	al Energy Corr	rection -658.8	38189				
EE + Therm	al Enthalpy Co	orrection	-658.88095				
EE + Therm	al Free Energy	/ Correction	-658.93628				
С	2.41010900	-1.16052600	0.18233500				
С	4.39924900	-0.08634800	0.01330800				
С	1.68124000	0.01333700	-0.00110000				
Н	1.88514400	-2.09550600	0.32816800				
С	3.78473100	1.14246000	-0.18006700				
Н	5.47883100	-0.15857900	0.02452200				
С	2.40289100	1.18904000	-0.18587800				
Н	4.38019100	2.03111300	-0.32030500				
Н	1.87810500	2.12248200	-0.33119700				
Ν	3.73632400	-1.22402700	0.19258300				
С	-1.99502900	-0.77105800	-0.09291200				
С	-1.99758800	0.77323300	0.09213400				
В	0.13179500	0.00354500	0.00060800				
0	-0.62769300	1.12225600	-0.23153400				
0	-0.62473100	-1.11576300	0.23255300				
С	-2.93311600	1.52099600	-0.83260100				
Н	-3.95977600	1.19320400	-0.67250100				
Н	-2.87498000	2.58568900	-0.61854100				
Н	-2.66836700	1.36339800	-1.87319200				
С	-2.22258800	-1.19240400	-1.53641600				
Н	-1.99893700	-2.25277400	-1.62449800				
Н	-3.25477100	-1.02494200	-1.83696600				
Н	-1.56454600	-0.64402200	-2.20785400				
С	-2.92921200	-1.52189400	0.83068300				
Н	-3.95685900	-1.19784900	0.66912800				
Н	-2.86660600	-2.58630500	0.61681600				
Н	-2.66622500	-1.36358200	1.87160600				
С	-2.22840200	1.19352000	1.53539700				
н	-2.00949600	2.25489700	1.62410600				
н	-3.26019900	1.02174900	1.83476200				
Н	-1.56907200	0.64740000	2.20739000				