Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Surface Differences of Oxide Nanocrystals Determined by Geometry and Exogenously

Coordinated Water Molecules

Junchao Chen,^{#,a,b} Xin-Ping Wu,^{#,c} Michael A. Hope,^{#,d} Zhiye Lin,^a Lei Zhu,^e Yujie Wen,^a Yixiao Zhang,^b Tian Qin,^b Jia Wang,^c Tao Liu,^f Xifeng Xia,^g Di Wu,^h Xue-Qing Gong,^c Weiping Tang,^e Weiping Ding,^a Xi Liu,^b Liwei Chen,^{b,i} Clare P. Grey,^d and Luming Peng^{*,a,j,k}

^a Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.

^b School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and *in situ* Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.

^c Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

^d Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.

^e State Key Laboratory of Space Power Technology, Shanghai Institute of Space Power-Sources (SISP), Shanghai Academy of Spaceflight Technology, Shanghai 200245, China.

^f Shanghai Key Laboratory of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, Shanghai 200092, China.

^g Analysis and Testing Center, Nanjing University of Science and Technology, Nanjing 210094, China.

^h College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.

ⁱ i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China.

^j Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210093, China

^k Frontiers Science Center for Critical Earth Material Cycling (FSC-CEMaC), Nanjing University, Nanjing, Jiangsu, 210023, China.

* E-mails: <u>luming@nju.edu.cn</u> (Luming Peng)

[#] These authors contributed equally.

The Supporting file includes:

Section A: Supporting methods

Section B: Characterization of the ceria NRs700 and NRs300 (XRD, XPS, surface area and composition)

(Fig. S1 – S3, Table S1)

Section C: ¹⁷O NMR spectra of ceria NRs700 and NRs300 isotopically labeled with ¹⁷O₂.

(Fig. S4)

Section D: DFT calculations of ¹⁷O NMR parameters on clean ceria (110) O-t surfaces (pristine and reconstructed)

(Fig. S5 – S9, Tables S2 and S3)

Section E: Direct DNP ¹⁷O and conventional ¹H NMR data of ceria NRs700 and NRs300.

(Fig. S10 and S11, Table S4, Note S1)

Section F: DFT calculations of ¹⁷O NMR parameters on ceria (110) O-t surfaces (pristine and reconstructed) with one water molecule per surface unit (dissociatively or molecularly adsorption)

(Fig. S12 – S25, Tables S5 – S9)

Section G: DFT calculated adsorption energies of CO on ceria (111) at dry and hydrous conditions

(Fig. S26 - S28, Table S10)

Supporting References

Section A: Supporting methods

Characterization

Synchrotron X-ray diffraction measurements were conducted at Beamline BL14B1 of Shanghai Synchrotron Radiation Facility (SSRF) in China with a medium energy (18 keV, k = 0.6887 Å) X-ray beam (200 μ m × 200 μ m). The aberration-corrected (*C*s) field emission Scanning Transmission Electron Microscope (STEM) (Hitachi HF5000, 200 kV) was utilized to acquire the bright field (BF) imaging with a collection angle of β < 4.9 mrad, and the secondary electron (SE) images of surface morphology were recorded simultaneously. Conventional high-resolution transmission electron microscopy (HRTEM) experiments were carried out on a JEOL JEM-2010 instrument with an acceleration voltage of 200 kV. Brunauer-Emmett-Teller (BET) surface area data was recorded on a Micromeritics ASAP 2020 system based on N₂ adsorption isotherms. X-ray Photoelectron Spectra (XPS) were collected on a Thermo ESCALAB 250 X instrument using monochromatic Al K α radiation (1486.6 eV) as the excitation source. The binding energies were referenced to C 1s at 284.8 eV. The amount of Na cations was checked on an Optima 5300DV inductively coupled plasma mass spectrometer (ICP-MS). The amount of species containing N was determined on a Heraeus CHN-0-Rapid elemental analyzer.

Dynamic nuclear polarization (DNP) NMR spectroscopy

¹⁷O DNP NMR experiments were conducted on a 14.1 T Bruker Avance III HD 600 spectrometer equipped with a 395 GHz gyrotron microwave source. Radical solution (16 mM TEKPol¹ in dried tetrachloroethane, TCE) was mixed with ¹⁷O-labeled ceria NRs700 and NRs300 in an Ar glove box. ¹⁷O chemical shift is referenced to bulk ceria at 875 ppm.

¹H Solid-state NMR spectroscopy

¹H magic angle spinning nuclear magnetic resonance (MAS NMR) spectra were measured on a 9.4 T Bruker Avance III 400 spectrometer. The Larmor frequency for ¹H is 400 MHz. Every sample was packed into a ZrO₂ rotor in a N₂-filled glove box. ¹H shift was referenced to adamantane at 1.92 ppm.

DFT Calculations

Spin-polarized DFT calculations were conducted via the *Vienna Ab initio Simulation Package (VASP)*,² utilizing the Perdew-Burke-Ernzerhof (PBE) functional³ with a Hubbard *U* correction (PBE + *U*).⁴ The effective *U* value to the localized Ce 4*f* orbitals was 5.0 eV.^{5,6} The core interacts with valence electrons was described with the projector augmented wave (PAW) methodology.⁷ The plane-wave kinetic energy cutoff was 500 eV. Geometry optimizations were terminated by the Hellman–Feynman force on each relaxed ion reached 0.02 eV·Å⁻¹. 10⁻⁵ eV of the convergence criterion for electronic minimization was applied for geometry optimizations and 10⁻⁸ eV for chemical shift and electric field gradient (EFG) calculations.⁸ The lattice parameter of ceria was optimized to 5.448 Å, consisting with the experimental values of ~ 5.410 Å.

The ceria (110) surfaces were simulated by 12-oxygen-layer surface slabs (six O-Ce-O tri-layers) with a (2×2) surface cell, using the DFT-D3 method⁹ to connect the water molecules with the ceria surfaces.

The experimental quadrupole moment (*Q*) of -0.02558 barns¹⁰ for ¹⁷O was used to calculate the ¹⁷O quadrupolar parameters (C_Q and η). The isotropic chemical shifts (δ_{iso}) were simulated by the following equation

$$\delta_{\rm iso} = \delta_{\rm cal} + \delta_{\rm ref}$$

where δ_{cal} is the unaligned DFT chemical shift and δ_{ref} represents the reference chemical shift.

Fig. S1 Synchrotron powder XRD patterns of ceria NRs700 and NRs300.

Fig. S2 N_2 sorption isotherms of ceria NRs700 and NRs300.

Table S1	Some pro	perties of	f ceria	NRs700	and	NRs300.
----------	----------	------------	---------	--------	-----	---------

Sample	Na Content ^a	N Content ^b	$\mathbf{S}_{\mathrm{BET}}^{\mathbf{c}}$
	/ wt %	/ wt %	$/ m^2 \cdot g^{-1}$
NRs700	< 0.1	< 0.1	110.9
NRs300	< 0.1	< 0.1	132.7

^a Na contents were determined with an inductively coupled plasma mass spectrometry (ICP-MS);

^b N contents were recorded at a CHN-0-Rapid elemental analyzer;

^c The surface area (S_{BET}) data is obtained from the N₂ sorption isotherms shown in Fig. S3.

Fig. S3 Full XPS spectra of ceria NRs700 and NRs300.

Section C: ¹⁷O NMR spectra of ceria NRs700 and NRs300 isotopically labeled with ¹⁷O₂.

Fig. S4 Untruncated ¹⁷O solid-state NMR spectra of the highly ¹⁷O-labeled ceria NRs700 and NRs300. Asterisks represent spinning sidebands.

Section D: DFT calculations of ¹⁷O NMR parameters on pristine ceria (110) O-t surfaces (pristine and reconstructed)

Fig. S5 Calculated structure of clean pristine ceria (110) O-t surface. Oxygen ions with the same chemical environment (thus the same NMR parameters) are marked with identical number. Red, off-white and white spheres denote bulk oxygen, hydrogen and cerium ions, respectively. Surface oxygen groups with variable chemical shifts are marked in different colors.

Fig. S6 The determination of the ¹⁷O reference chemical shift (δ_{ref}) from clean pristine ceria (110) O-t surface. Squares, diamonds, stars and circles denote the unaligned DFT chemical shifts of oxygen ions at the top/bottom 1st, 2nd, 3rd surface layers and the "bulk". The red dashed line show the average value of the unaligned ¹⁷O chemical shifts of the oxygen ions in the "bulk".

Table S2 Simulated ¹⁷O NMR parameters for oxygen ions in clean pristine ceria (110) O-t surface. Isotropic chemical shifts (δ_{iso}), quadrupolar parameters (C_Q and η) and calculated NMR shift (center of gravity, δ_{CG}) for each ¹⁷O resonance are displayed. δ_{CG} is simulated according to Lippmaa¹¹ at 9.4 T including the second order quadrupolar shift. The corresponding structure has been shown in Fig. S5.

O _{ion} No.	$\delta_{ m iso}$ / ppm	C _Q / MHz	η	$\delta_{ m CG}$ / ppm	Assignment
1	1052	0.64	0.19	1052	1 st Layer O _{3C}
2	800	0.26	0.39	800	2nd Layer O _{4C}
3	897	0.18	0.84	897	3rd Layer O _{4C}
4	870	0.07	0.15	870	Bulk Like
5	882	0.07	0.94	882	Bulk Like
6	876	0.05	0.16	876	Bulk Like
7	879	0.06	0.80	879	Bulk Like
8	877	0.05	0.13	877	Bulk Like
9	883	0.08	0.94	883	Bulk Like
10	871	0.07	0.22	871	Bulk Like
11	898	0.18	0.88	898	11 th Layer O _{4C}
12	801	0.26	0.40	801	12 th Layer O _{4C}
13	1053	0.63	0.19	1053	13 th Layer O _{3C}

Fig. S7 Calculated structure of clean reconstructed ceria (110) O-t surface. Oxygen ions with the same chemical environment (thus the same NMR parameters) are marked with identical number. Red, off-white and white spheres denote bulk oxygen, hydrogen and cerium ions, respectively. Surface oxygen groups with variable chemical shifts are marked in different colors.

Fig. S8 The determination of the ¹⁷O reference chemical shift (δ_{ref}) from clean reconstructed ceria (110) O-t surface. Squares, diamonds, stars and circles denote the unaligned DFT chemical shifts of oxygen ions at the top/bottom 1st, 2nd, 3rd surface layers and the "bulk". The red dashed line show the average value of the unaligned ¹⁷O chemical shifts of the oxygen ions in the "bulk".

Table S3 Simulated ¹⁷O NMR parameters for oxygen ions in clean reconstructed ceria (110) O-t surface. Isotropic chemical shifts (δ_{so}), quadrupolar parameters (C_Q and η) and simulated NMR shift (center of gravity, δ_{CG}) for each ¹⁷O resonance are displayed. The corresponding structure has been showed in Fig. S7.

O _{ion} No.	$\delta_{ m iso}$ / ppm	C _Q /MHz	η	$\delta_{ m CG}$ / ppm	Assignment
1	1033	0.61	0.48	1033	1 st Layer O _{3C}
2	838	0.12	0.76	838	2 nd Layer O _{4C}
3	1009	0.15	0.76	1008	2 nd Layer O _{4C}
4	813	0.17	0.79	813	3rd Layer O _{4C}
5	881	0.12	0.99	881	3rd Layer O _{4C}
6	878	0.15	0.95	878	Bulk Like
7	885	0.10	0.66	884	Bulk Like
8	876	0.11	0.31	876	Bulk Like
9	873	0.11	0.62	873	Bulk Like
10	876	0.10	0.35	876	Bulk Like
11	877	0.13	0.12	877	Bulk Like
12	873	0.13	0.11	873	Bulk Like
13	878	0.14	0.49	878	Bulk Like
14	877	0.13	0.41	877	Bulk Like
15	875	0.13	0.12	875	Bulk Like
16	873	0.11	0.65	873	Bulk Like
17	877	0.11	0.38	877	Bulk Like
18	884	0.10	0.70	884	Bulk Like
19	814	0.11	0.44	814	11 th Layer O _{4C}
20	881	0.17	0.75	881	11 th Layer O _{4C}
21	838	0.12	0.54	838	12 th Layer O _{4C}
22	1009	0.12	0.70	1008	12 th Layer O _{3C}
23	1033	0.20	0.44	1033	13 th Layer O _{3C}

Fig. S9 ¹⁷O NMR spectra, calculated ¹⁷O NMR shifts and the clean O-t structure model of ceria. (a) ¹⁷O solidstate NMR spectra of ceria NRs300-¹⁷O₂. (b) The summarized ¹⁷O NMR shifts (δ cGS) predicted with DFT simulations for clean pristine and reconstructed ceria models with (110) O-t surfaces presented in (c) and (d), respectively. (c,d) Pristine and reconstructed models employed in DFT simulations with calculated shifts (δ cGS) for oxygen ions and the layer numbers displayed on the right. The spheres representing bulk oxygen, cerium and hydrogen ions consist with the color in Fig. S5 and S7. The simulated ¹⁷O NMR parameters for each oxygen ion have been displayed in Tables S2 and S3.

Fig. S10 Direct DNP spectra of ¹⁷O-labeled ceria (a) NRs700 and (b) NRs300 with and without microwave irradiation. The spectra were recorded at spinning speeds of 13.9 kHz and a recycle delay of 60 s using a presaturated rotor synchronized Hahn-echo pulse sequence ($\pi/2-\tau-\pi-\tau$ -acquisition). Asterisks represent spinning sidebands.

Fig. S11 Interpolation approach for measuring the content of hydrogen on ceria NRs700 and NRs300 from quantitative ¹H NMR, employing adamantane as the reference material.^{12,13} (a) The integrated intensity of ¹H NMR peaks as a function of the mass of center-packed adamantine. The integral range of 30 ~ -20 ppm is shown. The number of scans recorded for each spectrum was 1024 with a spinning speed of 20 kHz. A saturated recycle delay of 16 s was used to satisfy quantitative measurement. The linear correlation between peak intensity (y / a.u.) of the spectra and the content of hydrogen atoms (x / mg) is $y = -1.2 \times 10^8 + 2.6 \times 10^9$ x. (b) ¹H NMR spectra of adamantine, the ceria NRs700 and NRs300 enriched with ¹⁷O₂ and H₂¹⁷O, respectively. The identical integral range, spinning frequency, and number of scans were utilized with a saturated recycle delay of 4 s.

Table S4 The coverage of hydrogen on the surfaces of ceria NRs700 and NRs300 respectively enriched with $^{17}O_2$ and $H_2^{17}O_*^a$

	M	Intensity of	Total Content	Concentration
Sample	Mass	1024 Scans	of Hydrogen	of H ₂ O ^b
	/ mg	/ a.u.	$/ \text{mol} \cdot \text{g}^{-1}$	/ surface unit ⁻¹
Adamantane	22.7	$6.0 imes 10^{10}$	1.2×10^{-1}	_
NRs700- ¹⁷ O ₂	15.3	8.4×10^{7}	2.5×10^{-4}	0.3
NRs300- ¹⁷ O ₂	29.2	5.4×10^{8}	8.4×10^{-4}	1.4
NRs700-H2 ¹⁷ O	25.8	1.6×10^{9}	2.9×10^{-3}	4.0
NRs300-H2 ¹⁷ O	23.0	$8.1 imes 10^8$	1.6×10^{-3}	2.6

^a The concentrations of hydrogen are quantified with the interpolation method employing adamantane as the reference material;^{12,13}

^b The coverage of Hydrogen is acquired from the following formula:

The concentration of H₂O (surface unit⁻¹) = Total Content of Hydrogen (mol·g⁻¹) × N_A / S_{BET} (m²·g⁻¹) × S_{Unit} (m²) / 2, where N_A represents the Avogadro constant ($6.02 \times 10^{23} \text{ mol}^{-1}$), S_{BET} is the sample surface area from BET (see Table S1), and S_{Unit} denotes the surface area of one surface unit. Note that the surface units of ceria (111), (110), and (100) surfaces are 51.3, 83.9, and 59.3 Å², respectively. 51.3 Å² is used for NRs700, for (111) surfaces are dominating the surface of NRs700; while 71.6 Å² is used for NRs300 assuming it consists of about 50 % (110) and 50 % (100) surfaces, see the model of NRs300 displayed in Fig. 2.

Notes S1

In Table S4, the concentration of H₂O for H₂¹⁷O labeled NRs300 is 2.6 per surface unit. The H₂¹⁷O labeled ceria (100) surface contains 3.7 dissociated H₂O molecules per surface unit according to our previous study,¹² and assuming NRs300 consists of 50 % (110) and 50 % (100) surfaces (Fig. 1), the H₂¹⁷O labeled ceria (110) surfaces in NRs300 is therefore estimated to contain 1.5 H₂O per surface unit.

Section F: DFT calculations of ¹⁷O NMR parameters on ceria (110) O-t surfaces (pristine and reconstructed) with one water molecule on per surface unit (dissociatively or molecularly adsorption)

Fig. S12 Top views of calculated ceria (110) hydrated surfaces at the water coverages of one water molecule per surface unit. The unreconstructed ceria (110) O-t surfaces with one dissociated and molecular water molecule on per sure unit are marked as UOD and UOM, respectively; the reconstructed surfaces with one dissociated and molecular water molecule on per surface unit are RODa–d and ROMa–d, respectively. Red, off-white and white spheres represent oxygen, hydrogen and cerium ions, respectively. Blue dashed lines denote hydrogen bonds, for which the hydrogen bond distances are also given.

Fig. S13 Calculated structure of UOD. Oxygen ions with the same chemical environment (thus the same NMR parameters) are marked with identical number. Red, off-white and white spheres denote bulk oxygen, hydrogen and cerium ions, respectively. Surface oxygen groups with variable chemical shifts are marked in different colors.

Fig. S14 The determination of the ¹⁷O reference chemical shift (δ_{ref}) from UOD. Squares, diamonds, stars and circles denote the unaligned DFT chemical shifts of oxygen ions at the top/bottom 1st, 2nd, 3rd surface layers and the "bulk". The red dashed line show the average value of the unaligned ¹⁷O chemical shifts of the oxygen ions in the "bulk".

Table S5 Simulated ¹⁷O NMR parameters for oxygen ions in UOD. Isotropic chemical shifts (δ_{iso}), quadrupolar parameters (C_Q and η) and simulated NMR shift (center of gravity, δ_{CG}) for each ¹⁷O resonance are displayed. The corresponding structure has been showed in Fig. S13.

O _{ion} No.	$\delta_{ m iso}$ / ppm	C _Q /MHz	η	$\delta_{ m CG}$ / ppm	Assignment
1	286	7.61	0.03	168	Surface -OH
2	303	6.58	0.24	213	Surface -OH
3	1053	0.40	0.36	1053	1 st Layer O _{3C}
4	1065	0.80	0.07	1063	1 st Layer O _{3C}
5	1041	0.86	0.30	1039	1 st Layer O _{3C}
6	1058	0.87	0.06	1057	1 st Layer O _{3C}
7	995	0.61	0.97	994	1 st Layer O _{3C}
8	1057	0.68	0.89	1056	1 st Layer O _{3C}
9	824	0.22	0.76	824	2 nd Layer O _{4C}
10	808	0.24	0.58	807	2 nd Layer O _{4C}
11	810	0.18	0.81	810	2 nd Layer O _{4C}
12	805	0.18	0.50	805	2 nd Layer O _{4C}
13	798	0.20	0.82	798	2 nd Layer O _{4C}
14	807	0.19	0.54	807	2 nd Layer O _{4C}
15	796	0.30	0.69	796	2 nd Layer O _{4C}
16	864	0.34	0.90	864	2 nd Layer O _{4C}
17	895	0.25	0.62	895	3rd Layer O _{4C}
18	898	0.23	0.96	898	3rd Layer O _{4C}
19	871	0.22	0.51	871	3rd Layer O _{4C}
20	882	0.22	0.58	882	3rd Layer O _{4C}
21	895	0.24	0.50	895	3rd Layer O _{4C}
22	894	0.21	0.86	893	3rd Layer O _{4C}
23	868	0.18	0.45	867	Bulk Like
24	873	0.11	0.68	873	Bulk Like
25	868	0.12	0.34	868	Bulk Like
26	869	0.15	0.67	869	Bulk Like
27	877	0.18	0.35	877	Bulk Like
28	881	0.15	0.58	881	Bulk Like
29	876	0.15	0.27	876	Bulk Like
30	874	0.13	0.12	874	Bulk Like
31	877	0.15	0.52	877	Bulk Like
32	875	0.15	0.18	875	Bulk Like
33	875	0.13	0.15	875	Bulk Like
34	878	0.17	0.40	878	Bulk Like
35	881	0.15	0.53	881	Bulk Like
36	868	0.17	0.42	868	Bulk Like
37	872	0.11	0.65	872	Bulk Like
38	868	0.12	0.36	868	Bulk Like
39	869	0.15	0.61	869	Bulk Like

40	895	0.25	0.61	895	11 th Layer O _{4C}
41	872	0.22	0.52	872	11 th Layer O _{4C}
42	898	0.23	0.98	898	11 th Layer O _{4C}
43	895	0.24	0.50	895	11 th Layer O _{4C}
44	882	0.22	0.55	882	11 th Layer O _{4C}
45	893	0.21	0.88	893	11 th Layer O _{4C}
46	807	0.24	0.59	807	12 th Layer O _{4C}
47	822	0.21	0.81	822	12 th Layer O _{4C}
48	805	0.18	0.50	804	12 th Layer O _{4C}
49	810	0.17	0.84	810	12 th Layer O _{4C}
50	806	0.19	0.53	806	12 th Layer O _{4C}
51	798	0.20	0.84	798	12 th Layer O _{4C}
52	865	0.34	0.86	864	12 th Layer O _{4C}
53	796	0.30	0.70	796	12 th Layer O _{4C}
54	1052	0.41	0.33	1052	13 th Layer O _{3C}
55	1044	0.86	0.29	1043	13 th Layer O _{3C}
56	1064	0.80	0.07	1063	13 th Layer O _{3C}
57	1059	0.81	0.04	1057	13 th Layer O _{3C}
58	1056	0.69	0.87	1055	13 th Layer O _{3C}
59	994	0.62	0.94	994	13 th Layer O _{3C}
60	310	6.47	0.25	223	Surface -OH
61	281	7.60	0.03	163	Surface -OH

Fig. S15 The UOD structure model of ceria employed in DFT simulations with calculated shifts (δ_{CGS}) for oxygen ions and the layer numbers displayed on the right. The spheres representing bulk oxygen, cerium and hydrogen ions consist with the color in Fig. S13. The simulated ¹⁷O NMR parameters for each oxygen ion have been displayed in Table S5.

Fig. S16 Calculated structure of UOM. Oxygen ions with the same chemical environment (thus the same NMR parameters) are marked with identical number. Red, off-white and white spheres denote bulk oxygen, hydrogen and cerium ions, respectively. Surface oxygen groups with variable chemical shifts are marked in different colors.

Fig. S17 The determination of the ¹⁷O reference chemical shift (δ_{ref}) from UOM. Squares, diamonds, stars and circles denote the unaligned DFT chemical shifts of oxygen ions at the top/bottom 1st, 2nd, 3rd surface layers and the "bulk". The red dashed line show the average value of the unaligned ¹⁷O chemical shifts of the oxygen ions in the "bulk".

Table S6 Simulated ¹⁷O NMR parameters for oxygen ions in UOM. Isotropic chemical shifts (δ_{so}), quadrupolar parameters (C_Q and η) and simulated NMR shift (center of gravity, δ_{CG}) for each ¹⁷O resonance are displayed. The corresponding structure has been showed in Fig. S16.

O _{ion} No.	$\delta_{ m iso}$ / ppm	$C_{\rm Q}/{\rm MHz}$	η	$\delta_{ m CG}$ / ppm	Assignment
1	-11	7.78	0.94	-171	Surface H ₂ O
2	1055	0.72	0.04	1054	1 st Layer O _{3C}
3	903	1.05	0.45	900	1 st Layer O _{3C}
4	1053	0.87	0.22	1052	1 st Layer O _{3C}
5	1047	0.89	0.30	1045	1 st Layer O _{3C}
6	1057	0.86	0.10	1056	1 st Layer O _{3C}
7	1041	0.77	0.35	1040	1 st Layer O _{3C}
8	1066	0.80	0.24	1065	1 st Layer O _{3C}
9	806	0.18	0.25	806	2 nd Layer O _{4C}
10	802	0.22	0.56	802	2 nd Layer O _{4C}
11	799	0.22	0.60	799	2 nd Layer O _{4C}
12	797	0.24	0.58	797	2 nd Layer O _{4C}
13	829	0.27	0.70	829	2 nd Layer O _{4C}
14	895	0.27	0.93	895	3rd Layer O _{4C}
15	896	0.26	0.80	896	3rd Layer O _{4C}
16	891	0.24	0.61	891	3rd Layer O _{4C}
17	894	0.23	0.76	894	3rd Layer O _{4C}
18	867	0.15	0.25	867	Bulk Like
19	871	0.12	0.41	871	Bulk Like
20	868	0.12	0.20	868	Bulk Like
21	867	0.13	0.14	867	Bulk Like
22	881	0.16	0.52	881	Bulk Like
23	880	0.16	0.55	880	Bulk Like
24	875	0.14	0.15	875	Bulk Like
25	878	0.15	0.38	878	Bulk Like
26	875	0.14	0.20	875	Bulk Like
27	880	0.17	0.55	880	Bulk Like
28	881	0.16	0.56	881	Bulk Like
29	867	0.15	0.25	867	Bulk Like
30	870	0.12	0.37	870	Bulk Like
31	869	0.11	0.22	869	Bulk Like
32	867	0.13	0.15	867	Bulk Like
33	895	0.26	0.73	895	11 th Layer O _{4C}
34	894	0.25	0.84	894	11 th Layer O _{4C}
35	891	0.24	0.61	891	11 th Layer O _{4C}
36	893	0.25	0.91	893	11 th Layer O _{4C}
37	806	0.19	0.49	806	12 th Layer O _{4C}
38	802	0.19	0.87	802	12 th Layer O _{4C}
39	799	0.22	0.60	799	12 th Layer O _{4C}

40 829 0.27 0.70 829 12^{tr}	aver O _{4C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Layer O _{4C}
42 900 1.07 0.45 898 13 th I	Layer O _{3C}
43 1055 0.72 0.03 1054 13 th I	Layer O _{3C}
44 1048 0.90 0.31 1046 13 th I	Layer O _{3C}
45 1054 0.88 0.22 1052 13 th I	Layer O _{3C}
46 1057 0.86 0.09 1056 13 th I	Layer O _{3C}
47 1066 0.80 0.25 1065 13 th I	Layer O _{3C}
48 1040 0.77 0.36 1039 13 th I	Layer O _{3C}
<u>49</u> -11 7.79 0.94 -171 Surf	ace H ₂ O

Fig. S18 The UOM structure model of ceria employed in DFT simulations with calculated shifts (δ_{CGS}) for oxygen ions and the layer numbers displayed on the right. The spheres representing bulk oxygen, cerium and hydrogen ions consist with the color in Fig. S16. The simulated ¹⁷O NMR parameters for each oxygen ion have been displayed in Table S6.

Fig. S19 Calculated structure of RODb. Oxygen ions with the same chemical environment (thus the same NMR parameters) are marked with identical number. Red, off-white and white spheres denote bulk oxygen, hydrogen and cerium ions, respectively. Surface oxygen groups with variable chemical shifts are marked in different colors.

Fig. S20 The determination of the ¹⁷O reference chemical shift (δ_{ref}) from RODb. Squares, diamonds, stars and circles denote the unaligned DFT chemical shifts of oxygen ions at the top/bottom 1st, 2nd, 3rd surface layers and the "bulk". The red dashed line show the average value of the unaligned ¹⁷O chemical shifts of the oxygen ions in the "bulk".

Table S7 Simulated ¹⁷O NMR parameters for oxygen ions in RODb. Isotropic chemical shifts (δ_{iso}), quadrupolar parameters (C_Q and η) and simulated NMR shift (center of gravity, δ_{CG}) for each ¹⁷O resonance are displayed. The corresponding structure has been showed in Fig. S19.

O _{ion} No.	$\delta_{ m iso}$ / ppm	C _Q /MHz	η	$\delta_{ m CG}$ / ppm	Assignment
1	268	7.54	0.06	152	Surface-OH
2	297	5.84	0.09	227	Surface-OH
3	1045	0.29	0.35	1045	1^{st} Layer O_{3C}
4	934	0.48	0.32	933	1^{st} Layer O_{3C}
5	1026	0.40	0.84	1026	1^{st} Layer O_{3C}
6	858	0.34	0.88	858	2^{nd} Layer O_{4C}
7	847	0.46	0.78	847	2^{nd} Layer O_{4C}
8	1025	0.56	0.43	1025	2^{nd} Layer O_{3C}
9	1021	0.58	0.14	1020	2^{nd} Layer O_{3C}
10	836	0.26	0.47	836	2^{nd} Layer O_{4C}
11	904	0.35	0.63	903	2^{nd} Laver O_{4C}
12	808	0.17	0.41	808	3^{rd} Laver O_{4C}
13	822	0.22	0.72	821	3^{rd} Laver O_{4C}
14	883	0.25	0.36	883	3^{rd} Laver O_{4C}
15	861	0.34	0.58	861	3^{rd} Layer O_{4C}
16	873	0.28	0.39	873	3^{rd} Layer Ω_{4C}
17	880	0.20	0.18	880	3^{rd} Layer O_{4C}
18	821	0.17	0.10	820	3^{rd} Layer O_{4C}
19	808	0.17	0.00	808	3^{rd} Layer O_{4C}
20	885	0.14	0.42	885	$\frac{1}{2}$ Bulk Like
20	886	0.10	0.82	886	Bulk Like
22	886	0.27	0.89	885	Bulk Like
23	879	0.09	0.65	879	Bulk Like
24	873	0.12	0.25	873	Bulk Like
25	876	0.18	0.22	876	Bulk Like
26	876	0.17	0.16	876	Bulk Like
27	873	0.11	0.51	873	Bulk Like
28	877	0.14	0.14	877	Bulk Like
29	878	0.17	0.55	878	Bulk Like
30	877	0.17	0.67	877	Bulk Like
31	876	0.13	0.21	876	Bulk Like
32	874	0.14	0.42	874	Bulk Like
33	878	0.16	0.26	878	Bulk Like
34	877	0.15	0.22	877	Bulk Like
35	874	0.13	0.34	874	Bulk Like
30 27	8//	0.13	0.14	8//	Bulk Like
3/ 29	8/9	0.18	0.5/	8/9	Bulk Like
38	878	0.17	0.64	878	Bulk Like

39	876	0.13	0.21	876	Bulk Like
40	879	0.11	0.48	879	Bulk Like
41	876	0.18	0.22	876	Bulk Like
42	871	0.19	0.12	871	Bulk Like
43	878	0.10	0.24	878	Bulk Like
44	878	0.14	0.72	877	Bulk Like
45	886	0.27	0.99	886	Bulk Like
46	883	0.27	0.98	883	Bulk Like
47	879	0.10	0.75	879	Bulk Like
48	821	0.22	0.69	821	11^{tn} Layer O_{4C}
49	808	0.18	0.35	808	11^{th} Layer O_{4C}
50	862	0.34	0.56	862	11^{th} Layer O_{4C}
51	882	0.25	0.39	882	11^{th} Layer O_{4C}
52	879	0.20	0.19	879	11^{th} Layer O_{4C}
53	872	0.28	0.40	872	11^{th} Layer O_{4C}
54	808	0.14	0.42	808	11^{th} Layer O_{4C}
55	821	0.17	0.79	821	11^{th} Layer O_{4C}
56	847	0.47	0.75	847	12^{th} Layer O_{4C}
57	856	0.34	0.91	856	12^{th} Layer O_{4C}
58	1025	0.56	0.40	1024	12^{th} Layer O_{3C}
59	1021	0.59	0.15	1020	12^{th} Layer O_{3C}
60	903	0.36	0.68	903	12^{th} Layer O_{4C}
61	837	0.26	0.44	837	12^{th} Layer O_{4C}
62	1045	0.30	0.37	1045	13^{th} Layer O_{3C}
63	1025	0.39	0.88	1024	13^{th} Layer O_{3C}
64	931	0.49	0.38	930	13^{th} Layer O_{3C}
65	316	5.56	0.08	253	Surface-OH
66	255	7.54	0.07	139	Surface-OH

Fig. S21 The RODb structure model of ceria employed in DFT simulations with calculated shifts (δ_{CGS}) for oxygen ions and the layer numbers displayed on the right. The spheres representing bulk oxygen, cerium and hydrogen ions consist with the color in Fig. S19. The simulated ¹⁷O NMR parameters for each oxygen ion have been displayed in Table S7.

Fig. S22 Calculated structure of ROMb. Oxygen ions with the same chemical environment (thus the same NMR parameters) are marked with identical number. Red, off-white and white spheres denote bulk oxygen, hydrogen and cerium ions, respectively. Surface oxygen groups with variable chemical shifts are marked in different colors.

Fig. S23 The determination of the ¹⁷O reference chemical shift (δ_{ref}) from ROMb. Squares, diamonds, stars and circles denote the unaligned DFT chemical shifts of oxygen ions at the top/bottom 1st, 2nd, 3rd surface layers and the "bulk". The red dashed line show the average value of the unaligned ¹⁷O chemical shifts of the oxygen ions in the "bulk".

Table S8 Simulated ¹⁷O NMR parameters for oxygen ions in ROMb. Isotropic chemical shifts (δ_{so}), quadrupolar parameters (C_Q and η) and simulated NMR shift (center of gravity, δ_{CG}) for each ¹⁷O resonance are displayed. The corresponding structure has been showed in Fig. S22.

O _{ion} No.	$\delta_{ m iso}$ / ppm	C _Q /MHz	η	$\delta_{ m CG}$ / ppm	Assignment
1	-6	7.80	0.93	-166	Surface H ₂ O
2	1043	0.46	0.26	1043	1^{st} Layer O_{3C}
3	1002	0.48	0.93	1002	1^{st} Layer O_{3C}
4	856	0.77	0.88	855	1^{st} Layer O_{3C}
5	1036	0.37	0.98	1036	1^{st} Layer O_{3C}
6	873	0.25	0.83	873	2^{nd} Layer O_{4C}
7	839	0.17	0.86	839	2^{nd} Layer O_{4C}
8	1011	0.57	0.22	1010	2^{nd} Laver O_{3C}
9	1011	0.52	0.23	1011	2^{nd} Laver O_{3C}
10	847	0.25	0.95	847	2^{nd} Laver Ω_{4C}
11	818	0.16	0.56	818	3^{rd} Layer Ω_{4C}
12	880	0.10	0.28	880	3^{rd} Layer O_{4C}
12	881	0.27	0.23	881	3^{rd} Layer O_{4C}
13	818	0.28	0.22	818	3^{rd} Layer O
14	818	0.10	0.81	818 878	3 Layer O_{4C}
15	886	0.09	0.33	070 886	Bulk like
10	880 887	0.29	0.93	880	Bulk like
18	878	0.30	0.57	878	Bulk like
19	870	0.12	0.50	877	Bulk like
20	876	0.19	0.09	876	Bulk like
21	876	0.19	0.19	876	Bulk like
22	877	0.11	0.47	877	Bulk like
23	878	0.13	0.05	878	Bulk like
24	879	0.18	0.63	878	Bulk like
25	879	0.18	0.63	879	Bulk like
26	878	0.13	0.16	878	Bulk like
27	874	0.13	0.46	874	Bulk like
28	879	0.16	0.07	879	Bulk like
29	879	0.16	0.25	878	Bulk like
30	874	0.14	0.35	874	Bulk like
31	878	0.13	0.04	878	Bulk like
32	878	0.18	0.65	878	Bulk like
33	879	0.18	0.64	879	Bulk like
34	878	0.13	0.16	878	Bulk like
35	877	0.10	0.48	877	Bulk like
36	876	0.19	0.10	876	Bulk like
37	874	0.20	0.13	874	Bulk like
38	877	0.11	0.47	877	Bulk like

39	878	0.09	0.56	878	Bulk like
40	887	0.29	0.94	886	Bulk like
41	887	0.30	0.87	887	Bulk like
42	878	0.12	0.65	878	Bulk like
43	818	0.16	0.55	818	11^{th} Layer O_{4C}
44	879	0.27	0.30	879	11^{th} Layer O_{4C}
45	881	0.28	0.21	881	11^{th} Layer O_{4C}
46	818	0.16	0.83	818	11^{th} Layer O_{4C}
47	839	0.17	0.85	839	12^{th} Layer O_{4C}
48	872	0.25	0.86	872	12^{th} Layer O_{4C}
49	1011	0.57	0.23	1010	12^{th} Layer O_{3C}
50	1012	0.52	0.20	1011	12^{th} Layer O_{3C}
51	847	0.25	0.98	847	12^{th} Layer O_{4C}
52	1002	0.48	0.91	1002	13^{th} Layer O_{3C}
53	1043	0.46	0.22	1042	13^{th} Layer O_{3C}
54	1036	0.38	0.97	1036	13^{th} Layer O_{3C}
55	858	0.77	0.88	857	13^{th} Layer O_{3C}
56	-8	7.81	0.93	-169	Surface H ₂ O

Fig. S24 The ROMb structure model of ceria employed in DFT simulations with calculated shifts (δ_{CGS}) for oxygen ions and the layer numbers displayed on the right. The spheres representing bulk oxygen, cerium and hydrogen ions consist with the color in Fig. S22. The simulated ¹⁷O NMR parameters for each oxygen ion have been displayed in Table S8.

Fig. S25 ¹⁷O NMR spectra and calculated ¹⁷O NMR shifts from UOD, UOM, RODb and ROMb, which are the most possible models for each circumstance of hydrated ceria (110) surfaces (unreconstruction and reconstruction, molecular and dissociated water molecules). (a,b) ¹⁷O single pulse and ¹⁷O{¹H} cross polarization solid-state NMR spectra of H₂¹⁷O-enriched ceria NRs300. (c) The summarized ¹⁷O NMR shifts (δ cGs) predicted with DFT simulations for UOD, UOM, RODb, ROMb and hydrated (100) surfaces^[11a]. The simulated ¹⁷O NMR parameters for each oxygen ion have been displayed in Tables S5 – S8.

Table S9 Predicted ¹⁷O NMR shifts (δ_{CGS}) of the 1st layer oxygen ions interacting directly and indirectly with water (dissociated and molecular) in pristine and hydrated ceria (111), (110) and (100) surfaces, respectively, as well as corresponding calculated models.

		(111)		(110)			(100)		
				Unrecor	structed	Recons	tructed		
		Dissociated	Molecular	Dissociated	Molecular	Dissociated	Molecular	Dissociated	Molecular
Pristine	17 O $\delta_{ m CG}$ / ppm	1026		1052		1008	1033	968	
	Model	P(111) ^a		PU(110) ^b		PR(110) ^b		$D(100)_2^{c}$	
– Hydrated	Direct 17 O δ_{CG} / ppm	291	883	213	900	202	855	206	_
	Indirect $^{17}\mathrm{O}~\delta_{\mathrm{CG}}$ / ppm	997 984 974	1045 1019 1016	1063, 1057 1056, 1053 1039, 994	1065, 1056 1054, 1052 1045, 1040	1045 1026	1043 1036 1002	996 910	_
	Model	D(111) ^a	M(111) ^a	UOD	UOM	RODb	ROMb	D(100)3 ^c	_

^a P(111) indicates a model with pristine (111) surface; D(111) or M(111) denotes a model with one dissociated or molecular water molecule per (111) surface unit, respectively, whose ¹⁷O NMR shifts models are extracted from *Ref*.12.

^b PU(110) or PR(110) represents a model with pristine (110) surface.

^c $D(100)_2$ or $D(100)_3$ represents a model with two or three dissociated molecules per (100) surface unit, respectively. The ¹⁷O NMR shifts models are extracted from *Ref.*12.

Section G: DFT calculated adsorption energies of CO on ceria (111) at dry and hydrous conditions

Fig. S26 Adsorption energies of CO on ceria (111) at dry and hydrous conditions. (a) CO adsorbed on P(111), the pristine $CeO_2(111)$ surface; (b) CO adsorbed on M(111), in which one water molecule is pre-adsorbed molecularly per surface unit of $CeO_2(111)$ (water coverage = 1/4 ML). Off-white and white spheres represent cerium and hydrogen ions, respectively. Surface oxygen groups with different chemical shifts are in different colors.

Table S10 Adsorption energies (E_{ads}) of CO on the 1st layer oxygen ions at P(111) and M(111) obtained with DFT calculations and the corresponding ¹⁷O chemical shifts (δ_{isos}) of bare oxygen ion.

Level of Hydration	Model	Adsorption Sites	$\delta_{ m iso}$ / ppm	Eads / eV
Dry	P(111)	O1P(111)	1026	-0.134
		O2M(111)	1016	-0.198
Hydrous	M(111)	O3M(111)	1019	-0.203
		O4M(111)	1045	-0.158

Fig. S27 Adsorption energies of CO on the different oxygen sites of different surfaces (P(111) and M(111)).

Fig. S28 CO adsorption energies and corresponding ¹⁷O chemical shifts of the 1^{st} layer bare oxygen ions at P(111) and M(111).

Supporting References

- A. Zagdoun, G. Casano, O. Ouari, M. Schwarzwälder, A. J. Rossini, F. Aussenac, M. Yulikov, G. Jeschke, C. Copéret, A. Lesage, P. Tordo and L. Emsley, *J. Am. Chem. Soc.* 2013, 135, 12790–12797.
- 2 G. Kresse and J. Hafner, *Phys. Rev. B* 1994, **49**, 14251–14269.
- 3 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.* 1996, **77**, 3865–3868.
- 4 S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P. Sutton, *Phys. Rev. B* 1998, **57**, 1505–1509.
- 5 M. Nolan, S. C. Parker and G. W. Watson, *Surf. Sci.* 2005, **595**, 223–232.
- 6 X. -P. Wu, X. -Q. Gong, *Phys. Rev. Lett.* 2016, **116**, 086102.
- 7 P. E. Blöchl, *Phys. Rev. B* 1994, **50**, 17953–17979.
- Y. Li, X. -P. Wu, N. Jiang, M. Lin, L. Shen, H. Sun, Y. Wang, M. Wang, X. Ke, Z. Yu, F. Gao, L.
 Dong, X. Guo, W. Hou, W. Ding, X. -Q. Gong, C. P. Grey and L. Peng, *Nat. Commun.* 2017, 8, 581.
- 9 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 10 D. Sundholm and J. Olsen, J. Phys. Chem. 1992, 96, 627–630.
- 11 E. Lippmaa, A. Samoson, M. Magi, J. Am. Chem. Soc. 1986, 108, 1730–1735.
- J. Chen, X. -P. Wu, M. A. Hope, K. Qian, D. M. Halat, T. Liu, Y. Li, L. Shen, X. Ke, Y. Wen, J. -H.
 Du, P. C. M. M. Magusin, S. Paul, W. Ding, X. -Q. Gong, C. P. Grey and L. Peng, *Nat. Commun.* 2019, 10, 5420.
- J. Chen, M. A. Hope, Z. Lin, M. Wang, T. Liu, D. M. Halat, Y. Wen, T. Chen, X. Ke, P. C. M. M. Magusin, W. Ding, X. Xia, X. -P. Wu, X. -Q. Gong, C. P. Grey and L. Peng, *J. Am. Chem. Soc.* 2020, 142, 11173–11182.