Supporting Information to

Chiral Diboranes as Catalysts for the Stereoselective Organopolymerization of Epoxides

Ayla Sirin-Sariaslan and Stefan Naumann

University of Stuttgart, Institute of Polymer Chemistry, 70569 Stuttgart, Germany

E-Mail: Stefan.naumann@ipoc.uni-stuttgart.de
Contents

Experimental.. 1
 Materials and Synthesis... 1
 Procedural Information... 2
 General Polymerization Procedures... 13
 General Procedure for Kinetic Analyses ... 13
 General Procedure for Block Copolymer Preparation .. 14
 Characterization and Analysis ... 15

Polymerizations.. 16
 Polymerization Kinetics.. 16
 Polymerization of PO.. 18
 Polymerization of 1-Butylene oxide (BO) ... 19
 Polymerization of Allyl Glycidyl Ether (AGE) .. 19
 Preparation of Block Copolymers ... 19
 Representative Examples for Stereoanalysis via 13C NMR ... 20
 DSC Analysis... 24
 1H-DOSY NMR Analysis.. 26
 GPC traces, PPO and Copolymers.. 29

Crystal Structure Analysis, Tabular Data for Diborane 1 .. 32

References .. 53
Experimental
Materials and Synthesis

Propylene oxide (PO, TCI Chemicals, > 99.0 %), butylene oxide (BO, TCI Chemicals, > 99.0 %), styrene oxide (SO, TCI Chemicals, >98%) and allyl glycidyl ether (AGE, Sigma-Aldrich, > 99.0 %) were stirred over CaH₂ overnight. After distillation under nitrogen, the monomers PO, BO, SO and AGE were degassed twice by the freeze-pump-thaw method and then stored inside the glove box (LabMaster, MBraun, Germany, freezer at -36 °C). Toluene, THF and DCM used in polymerizations were taken from a solvent purification system (MBraun, Germany) and kept over molecular sieves (3 Å) inside the glove box. Allyl bromide (Sigma-Aldrich, > 99.0 %), (R)-(±)-1,1´-bi(2-naphtol) (Sigma-Aldrich, > 99.0 %), 1,4-benzenedimethanol (TCI Chemicals, > 99.0 %) and 1,1´-bi-2-naphtol (TCI Chemicals, > 99.0 %) were used as received. 9-Borabicyclo[3.3.1]nonane (Sigma Aldrich, 0.5 M solution in THF), 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU, Sigma-Aldrich) and the phosphazene base (P₂-tBu, Sigma-Aldrich, 2.0 M solution in THF) were used as received and stored in the glove box. The NHO was synthesized as described earlier and stored inside the glove box at -36 °C.[1,2] The commercial macroinitiator samples PCL10K (polycaprolactone with $M_n = 10 000$ g/mol, Sigma Aldrich), PEG8K (polyethylene glycol with $M_n = 8 000$ g/mol, abcr) and PLA20K (polylactide with $M_n = 20 000$ g/mol, Sigma Aldrich) were used as received. PCL7K[1] and PCL2K[3] were prepared according to published procedures. PCL11K-diol was prepared in the same manner as PCL2K but BDM (1,4-benzol-dimethanol) was used as an initiator. For the diborane (1-4) synthesis, see below.
Procedural Information

Synthesis of diallyl species

General Procedure: In an oven-dried Schlenk flask, (R)-BINOL ((R)-(+)1,1′-bi-2-naphthol) and allyl bromide were dissolved in acetonitrile. Then, K_2CO_3 was added and the reaction mixture was stirred at room temperature for 72 h. The reaction was monitored by GC-MS. After filtration and salt removal, the solvent and excess amount of allyl bromide were removed in vacuo to yield the colorless product.

Diallyl 1

First, (R)-BINOL ((R)-(+)1,1′-bi-2-naphthol) (5.00 g, 17.5 mmol) and allyl bromide (3.63 mL, 42.0 mmol, 2.4 equiv.) were dissolved in 30 mL acetonitrile, then K_2CO_3 (16.08 g, 0.116 mol) was added and the reaction mixture was stirred at room temperature for 72 h. The reaction was monitored by GC-MS. Via filtration, the potassium salts were removed. The solvent and excess amount of allyl bromide were removed under reduced pressure. Yield: 2.91 g (7.94 mmol, 45 %). 1H NMR (400 MHz, CDCl$_3$) $\delta = 7.85-7.95$ (dd, 4H), 7.14-7.41 (m, 8H), 5.70-5.80 (m, 2H), 4.97-5.04 (m, 4H), 4.51-4.53 (m, 4H) ppm.
Diallyl (S)-1’

First, (S)-BINOL ((S)-(−)-1,1’-bi-2-naphtol) (5.00 g, 17.5 mmol) and allyl bromide (3.63 mL, 42.0 mmol, 2.4 equiv.) were dissolved in 30 mL acetonitrile, then K₂CO₃ (16.08 g, 0.116 mol) was added and the reaction mixture was stirred at room temperature for 72 h. The reaction was monitored by GC-MS. Via filtration, the potassium salts were removed. The solvent and excess amount of allyl bromide were removed under reduced pressure. Yield: 2.81 g (7.67 mmol, 43 %). ¹H NMR (400 MHz, CDCl₃) δ = 7.84–7.95 (dd, 4H), 7.13–7.41 (m, 8H), 5.68–5.81 (m, 2H), 4.96–5.04 (m, 4H), 4.50–4.53 (m, 4H) ppm.

Diallyl rac-1’

First, BINOL 1,1’-bi-2-naphtol (5.00 g, 17.5 mmol) and allyl bromide (3.63 mL, 42.0 mmol, 2.4 equiv.) were dissolved in 30 mL acetonitrile, then K₂CO₃ (16.08 g, 0.116 mol) was added and the reaction mixture was stirred at room temperature for 72 h. The reaction was monitored by GC-MS. Via filtration, the potassium salts were removed. The solvent and excess amount of allyl bromide were removed under reduced pressure. Yield: 2.78 g (7.58 mmol, 43 %). ¹H NMR (400 MHz, CDCl₃) δ = 7.69–7.79 (dd, 4H), 7.25 (d, 2H), 7.13–7.18 (dt, 2H), 7.01–7.06 (dt, 2H), 6.94 (d, 2H), 5.54–5.63 (m, 2H), 4.81–4.87 (m, 4H), 4.35–4.37 (m, 4H) ppm.

Diallyl 2’

First, (R)-3,3’-diphenyl-[1,1’-binaphthalene]-2,2’-diol (1.00 g, 2.28 mmol) and allyl bromide (0.51 mL, 5.50 mmol, 2.4 equiv.) were dissolved in 4 mL acetonitrile, then K₂CO₃ (2.09 g, 0.015 mol) was added and the reaction mixture was stirred at room temperature for 72 h. The reaction was monitored by GC-MS. Via filtration the potassium salts were removed. The solvent and excess amount of allyl bromide were removed in vacuo. Yield: 0.500 g (0.964 mmol, 42 %). ¹H NMR (400 MHz, CDCl₃) δ = 7.95 (s, 2H), 7.91 (d, 2H), 7.75 (dd, 4H), 7.37–7.47 (m, 8H), 7.25 (dd, 4H), 5.23–5.33 (m, 2H), 4.53–4.67 (m, 4H), 3.93–3.98 (m, 2H), 3.69–3.74 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 128.5, 128.4, 127.1, 32.2, 31.8 22.1 ppm.
Diallyl 3’

First, 2,2’-biphenol (5.00 g, 26.85 mmol) and allyl bromide (6.10 mL, 64.44 mmol, 2.4 equiv.) were dissolved in 40 mL acetonitrile, then K₂CO₃ (24.00 g, 0.173 mol) was added and the reaction mixture was stirred at room temperature for 72 h. The reaction was monitored by GC-MS. Via filtration the potassium salts were removed. The solvent and excess amount of allyl bromide were removed in vacuo. Yield: 4.01 g (15.10 mmol, 56%). ¹H NMR (400 MHz, CDCl₃) δ = 7.26 (dd, 4H), 6.98 (dt, 2H), 6.91 (d, 2H), 5.84-5.93 (m, 2H), 5.08-5.21 (m, 4H), 4.67 (q, 4H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 156.1, 133.6, 133.6, 131.5, 128.4, 128.4, 120.5, 116.4, 112.3, 68.9 ppm.

Diallyl 4’

1,4-Butanediol (1.00 g, 11.09 mmol) and allyl bromide (2.30 mL, 26.61 mmol, 2.4 equiv.) were dissolved in 25 mL acetonitrile, then K₂CO₃ (8.10 g, 0.05 mol) was added and the reaction mixture was stirred at room temperature for 72 h. The reaction was monitored by GC-MS. Via filtration, the potassium salts were removed. Solvent and excess amount of allyl bromide were removed under reduced pressure. Yield: 0.400 g (2.35 mmol, 21%). ¹H NMR (400 MHz, CDCl₃) δ = 5.86-5.95 (m, 2H), 5.23-5.29 (m, 2H), 5.14-5.18 (m, 2H), 3.96 (dt, 4H), 3.43-3.46 (m, 4H), 1.64-1.67 (m, 4H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 135.0, 134.9, 116.7, 71.8, 70.1, 26.5 ppm.

Synthesis of Diborane Catalysts

Diboranes

General Procedure: To an oven-dried Schlenk flask the corresponding diallyl-species was added under nitrogen flow. The suitable amount of 9-borabicyclo[3.3.1]nonane in THF (0.5 M) was added via cannula/septum. The reaction mixture was stirred at 60 °C overnight (condenser). After cooling to room temperature, the mixture was concentrated in vacuo to afford the crude product which was transferred into the glove box. After recrystallization from pentane (-36°C), the diboranes were obtained as white solids.
Diborane 1

The general procedure was employed, using diallyl-species 1′ (0.400 g, 1.09 mmol, 1 equiv.) and 9-borabicyclo[3.3.1]nonane in THF (0.5 M) (4.4 mL, 3.16 mmol, 2.9 equiv.). The reaction mixture was stirred at 60 °C overnight. After purification, enantiopure diborane 1 was obtained as a white solid. Crystals suitable for structure analysis were received from recrystallization in pentane at -36°C in the glove box. Yield: 0.612 g (1.00 mmol, 92 %). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.82-7.92 (dd, 4H), 7.41-7.43 (d, 2H), 7.18-7.31 (m, 6H), 3.87-4.0 (m, 4H)\) ppm. \(^1\)C NMR (101 MHz, CDCl\(_3\)) \(\delta = 154.8, 134.4, 129.4, 129.2, 127.9, 126.2, 123.5, 120.9, 116.3, 116.3, 72.3, 33.1, 30.9, 24.6, 23.2\) ppm. \(^1\)B NMR (100 MHz, CDCl\(_3\)) \(\delta = 90.64\) ppm. HRMS (ESI): \(m/z\) calc. for C\(_{42}\)H\(_{52}\)B\(_2\)O\(_2\) = 610.42, found C\(_{42}\)H\(_{52}\)B\(_2\)O\(_2\)Na\(^+\): 633.36.

Figure S2. \(^1\)H NMR analysis (CDCl\(_3\), 400 MHz) of compound 1.
Diborane (S)-1

The general procedure was employed, using diallyl-species (S)-1' (0.600 g, 1.63 mmol, 1 equiv.) and 9-borabicyclo[3.3.1]nonane in THF (0.5 M) (7.5 mL, 5.38 mmol, 2.9 equiv.). The reaction mixture was stirred at 60 °C overnight. After purification, diborane rac-1 was obtained as a white solid. Yield: 0.890 g (1.45 mmol, 89 %). ^1H NMR (400 MHz, CDCl₃) δ = 7.90-8.00 (dd, 4H), 7.48-7.50 (d, 2H), 7.26-7.39 (m, 2H), 7.26-7.27 (m, 4H), 3.94-4.08 (m, 4H) ppm. ^13C NMR (101 MHz, CDCl₃) δ = 154.7, 154.3, 134.3, 129.1, 127.8, 126.2, 125.5, 123.4, 120.8, 115.9, 72.1, 33.0, 26.7, 25.7, 24.5, 23.1 ppm.

Figure S3. ^13C NMR analysis (CDCl₃, 101 MHz) of compound 1.
Figure S4. 1H NMR analysis (CDCl$_3$, 400 MHz) of compound (S)-1.

Diborane rac-1

The general procedure was employed, using diallyl-species rac-1' (0.400 g, 1.09 mmol, 1 equiv.) and 9-borabicyclo[3.3.1]nonane in THF (0.5 M) (4.4 mL, 3.16 mmol, 2.9 equiv.). The reaction mixture was stirred at 60 °C overnight. After purification, diborane rac-1 was obtained as a white solid. Yield: 0.572 g (0.93 mmol, 86 %). 1H NMR (400 MHz, CDCl$_3$) δ = 7.82-7.93 (dd, 4H), 7.41-7.43 (d, 2H), 7.18-7.30 (m, 6H), 3.87-4.01 (m, 4H) ppm. 13C NMR (101 MHz, CDCl$_3$) δ = 154.7, 134.3, 129.3, 129.0, 127.8, 126.0, 125.6, 123.4, 120.8, 116.1, 72.1, 33.0, 30.8, 24.5, 23.1 ppm. HRMS (ESI): m/z calc. for C$_{42}$H$_{52}$B$_2$O$_2$ = 610.42, found C$_{42}$H$_{52}$B$_2$O$_2$Na$: 633.35.
Figure S5. 1H NMR analysis (CDCl$_3$, 400 MHz) of compound rac-1.

Figure S6. 13C NMR analysis (CDCl$_3$, 101 MHz) of compound rac-1.
Diborane 2

The general procedure was employed, using diallyl-species 2’ (0.400 g, 0.771 mmol, 1 equiv.) and 9-borabicyclo[3.3.1]nonane in THF (0.5 M) (3 mL, 2.18 mmol, 2.9 equiv.). The reaction mixture was stirred at 60 °C overnight. After purification, enantiopure diborane 2 was obtained as a white solid. Yield: 0.490 g (6.42 mmol, 90%). 1H NMR (400 MHz, CDCl3) δ = 7.96 (s, 2H), 7.91 (d, 2H), 7.79 (dd, 4H), 7.38-7.48 (m, 8H), 7.27 (dd, 4H), 3.48 (q, 2H), 3.17 (q, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ = 152.8, 138.2, 134.6, 132.8, 129.6, 129.0, 128.4, 127.0, 126.9, 126.0, 125.3, 124.9, 123.6, 31.8, 29.5, 24.6, 23.7, 22.0 ppm. 11B NMR (100 MHz, CDCl3) δ = 58.53 ppm. HRMS (ESI): m/z calc. for C₅₂H₆₀B₂O₂ = 762.48, found C₅₂H₆₀B₂O₂Na⁺: 785.46.

Figure S7. 1H NMR analysis (CDCl3, 400 MHz) of compound 2.
Figure S8. 13C NMR analysis (CDCl$_3$, 101 MHz) of compound 2.

Diborane 3

The general procedure was employed, using dialyl-species 3’ (1.00 g, 3.75 mmol, 1 equiv.) and 9-borabicyclo[3.3.1]nonane in THF (0.5 M) (15 mL, 10.88 mmol, 2.9 equiv.). The reaction mixture was stirred at 60 °C overnight. After purification, diborane 3 was obtained as a white solid. Yield: 1.53 g (2.99 mmol, 80 %). 1H NMR (400 MHz, CDCl$_3$) δ = 7.25-7.29 (m, 4H), 6.94-6.98 (m, 4H), 3.88 (t, 4H) ppm. 13C NMR (101 MHz, CDCl$_3$) δ = 156.8, 131.8, 128.5, 128.4, 120.1, 112.5, 33.2, 24.5, 23.3 ppm. 11B NMR (100 MHz, CDCl$_3$) δ = 58.59 ppm. HRMS (ESI): m/z calc. for C$_{32}$H$_{48}$B$_2$O$_2$ = 510.38, found C$_{32}$H$_{49}$B$_2$O$_2$+: 511.39.
Figure S9. 1H NMR analysis (CDCl$_3$, 400 MHz) of compound 3.

Figure S10. 13C NMR analysis (CDCl$_3$, 101 MHz) of compound 3.
Diborane 4

The general procedure was employed, using diallyl-species 4' (0.180 g, 1.05 mmol, 1 equiv.) and 9-borabicyclo[3.3.1]nonane in THF (0.5 M) (4.3 mL, 3.06 mmol, 2.9 equiv.). The reaction mixture was stirred at 60 °C overnight. After aliphatic diborane 4 was obtained as a white solid. Yield: 0.387 g (0.933 mmol, 89 %). ¹H NMR (400 MHz, CDCl₃) δ = 3.48-3.51 (m, 4H), 3.42 (t, 4H), 1.76-1.87 (m, 18H), 1.62-1.72 (m, 14H), 1.22-1.30 (m, 8H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 73.2, 71.0, 33.6, 33.4, 26.3, 25.1, 23.5, 23.3 ppm. HRMS (ESI): m/z calc. for C₂₆H₄₈B₂O₂ = 414.38, found C₂₆H₄₉B₂O₂⁺: 415.26.

![Diagram of compound 4]

Figure S11. ¹H NMR analysis (CDCl₃, 400 MHz) of compound 4.
General Polymerization Procedures

All polymerizations were assembled inside the glove box. First the diborane (0.017 mmol, 2 equiv.) was dissolved in PO (0.987 g, 17.04 mmol, 2000 equiv.). Subsequently, the initiator (BnOH, 0.0425 mmol, 5 equiv.) and the corresponding organobase (0.0085 mmol, 1 equiv.) was added to result in a total molar ratio of organobase/diborane/initiator/PO = 1:2:5:2000. The reaction was quenched by evaporation of the monomer. The molecular weight of the polyether was determined via GPC analysis (CHCl₃) and ¹H NMR; the number of average PO-repeating units (x) was likewise calculated from ¹H-NMR (CDCl₃) using the PO(-CH₂)- (δ = 3.38-3.42 ppm) and Ph-CH₂-OR signal (δ = 4.55 ppm).

General Procedure for Kinetic Analyses

The polymerizations were assembled inside the glove box. First the diborane (0.017 mmol, 2 equiv.) was dissolved in (R)- or (S)-PO (0.493 g, 8.52 mmol, 1000 equiv.) and THF (4.28 mL). Subsequently, the initiator (BnOH, 0.0425 mmol, 5 equiv.) and the corresponding organobase (0.0085 mmol, 1 equiv.) was added to result in a total molar ratio of organobase/diborane/initiator/PO = 1:2:5:1000. After the polymerization was started, aliquots of
20 µL were collected via pipette (Eppendorf) in specific time intervals and quenched with wet CDCl₃. The molecular weight of the polyether was determined via GPC analysis (CHCl₃) and ¹H NMR; the number of average PO-repeating units (x) was likewise calculated from ¹H-NMR (CDCl₃) using the PO(-CH₂)- (δ = 3.38-3.42 ppm) and Ph-CH₂-OR signal (δ = 4.55 ppm).

General Procedure for Block Copolymer Preparation

Polymerizations were assembled inside the glovebox. First the diborane 1 (0.017 mmol, 2 equiv.) was dissolved in PO (0.493 g, 8.52 mmol, 1000 equiv.) and THF (4.28 mL). Subsequently, the macroinitiator (PCL₂⁻11K/PEO8K/PLA₂₀K, 0.021 mmol, 2.5 equiv.) and the NHO (0.0085 mmol, 1 equiv.) was added to result in a total molar ratio of NHO/initiator/PO = 1:2:5:1000. The reaction was quenched by evaporation of the monomer. The molecular weight and copolymer formation of the polyether was investigated via GPC analysis (CHCl₃), ¹H NMR and ¹H DOSY NMR analysis; the number of average PO repeat units (x) was calculated from ¹H-NMR (CDCl₃) using the PO(-CH₂)- (δ = 3.38-3.42 ppm) signal and a characteristic signal of the macroinitiator repeat units (PCL: δ = 4.17 ppm, PEO 8K: δ = 3.64 ppm, PLA: δ = 5.16 ppm).
Characterization and Analysis

NMR Spectroscopy

The 1H, 13C and 11B NMR spectra were recorded at room temperature on a *Bruker Avance III* 400 spectrometer (1H at 400 MHz and 13C at 101 MHz). The chemical shifts are being reported relative to reference peaks of the applied deuterated solvent (CDCl$_3$: $\delta = 7.26$ ppm for 1H and $\delta = 77.16$ ppm for 13C).

Gel Permeation Chromatography

Gel permeation chromatography (GPC) was used to determine relative molar masses and molar mass distribution (D_M) of the polymer samples. GPC was measured at 30 °C in chloroform on an *Agilent Technologies* 1200 Infinity Series instrument. The instrument was calibrated against polystyrene standards (800 g/mol – $2\cdot10^6$ g/mol). The setup consists of three consecutive SDS PSS (8 mm x 300 mm) columns and a RI detector *Agilent 1200 Series* G1362. A flow rate of 1.0 mL min$^{-1}$ and a sample concentration of 2 mg/ml was applied. The injection volume was 100 μL.

Differential Scanning Calorimetry

A DSC 4000 instrument (*Perkin Elmer*) was employed. For the measurements, approximately 2 mg of the sample was placed in a 50 μL sample container and heated from 0°C to 120°C at scan rates of 5-20 K/min with a nitrogen flow of 20 mL/min. All thermograms were analyzed using the second heating/cooling cycle.

MALDI-ToF

MALDI-ToF (matrix-assisted laser desorption ionization-time of flight) mass spectrometry measurements were conducted on a *Bruker Autoflex III* (337 nm, reflector mode). The samples were prepared by mixing a matrix solution (2,5-dihydroxybenzoic acid, 5 mg/mL in THF), PPO solution (7 mg/mL in THF) and sodium trifluoromethanesulfonate solution as cationization agent (0.1 M in 90% acetone/water = 9:1) with ratio of 2:1:2. For calibration, a polystyrene standard was employed.

Calculation of Polymer Tacticity via NMR Spectroscopy

13C NMR analysis can be used to conveniently determine tacticity of various aliphatic polyethers. For PPO and PBO, the well separated m- ($\delta = 73.5$ ppm/72.4 ppm) and r-diad ($\delta = 73.0$ ppm/71.5 ppm) signals can be directly used for evaluation. For AGE, the deconvolution of the signal at $\delta = 78.9$ ppm and analysis of the triad structure can be used to calculate the m-value, accordingly. Details for all three polyethers can be found in the cited literature.$^{[4]}$
Polymerizations

Polymerization Kinetics

Figure S13. Correlation of molar mass (determined by GPC/CHCl₃) vs. conversion for PO polymerization (molar ratio of NHO/1/BnOH/PO = 1:2:5:500, [M]₀ = 2.0 mol/L, THF, T = 25 °C).

Figure S14. Conversion vs. time using 1 and (R)- and (S)-PO, respectively, under identical conditions (molar ratio of NHO/1/BnOH/PO = 1:2:5:2000, bulk, T = 25 °C).

Figure S15. Conversion vs. time using rac-1 and (R)- and (S)-PO, respectively, under identical conditions (molar ratio of NHO/rac-1/BnOH/PO = 1:2:5:2000, [M]₀ = 2.0 mol/L, THF, T = 25 °C).

S16
Figure S16. Conversion vs. time using (S)-1 and (R)- and (S)-PO, respectively, under identical conditions (molar ratio of NHO/(S)-1/BnOH/PO = 1:2:5:2000, bulk, T = 25 °C).

Figure S17. Conversion vs. time using diboranes 1 ((R)-configuration)) or (S)-1 and (S)-BO, respectively, under identical conditions (molar ratio of NHO/(S)-1/BnOH/(S)-BO = 1:2:2.5:1000, [M]₀ = 2.0 mol/L, THF, T = 25 °C).
Table S5. Data set of PO polymerizations using NHO, P$_2$-tBu and DBU in combination with various diboranes and BnOH (I) as initiator.

<table>
<thead>
<tr>
<th>#</th>
<th>Cat (C)</th>
<th>Organo- base (B)</th>
<th>B/C/I/PO</th>
<th>solvent</th>
<th>T [°C]</th>
<th>t [h]</th>
<th>x^2 ($D_m)^b$</th>
<th>$M_n\text{calc},^c$ [g/mol]</th>
<th>$M_n\text{GPC},^b$ [g/mol]</th>
<th>m^d [%]</th>
<th>Conv.e [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>NHO</td>
<td>1:2:5:2000</td>
<td>bulk</td>
<td>25</td>
<td>1.5</td>
<td>213 (1.18)</td>
<td>13000</td>
<td>16000</td>
<td>62</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>NHO</td>
<td>1:2:5:2000</td>
<td>bulk</td>
<td>-36</td>
<td>2.0</td>
<td>279 (1.18)</td>
<td>16000</td>
<td>20000</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>NHO</td>
<td>1:2:5:2000</td>
<td>bulk</td>
<td>-78</td>
<td>3.0</td>
<td>235 (1.17)</td>
<td>15000</td>
<td>18000</td>
<td>66</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>NHO</td>
<td>1:2:5:5000</td>
<td>toluene [2M]</td>
<td>-36</td>
<td>24</td>
<td>743 (1.12)</td>
<td>50000</td>
<td>67000</td>
<td>78</td>
<td>37</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>NHO</td>
<td>1:2:5:3000</td>
<td>toluene [2M]</td>
<td>-36</td>
<td>24</td>
<td>321 (1.14)</td>
<td>25000</td>
<td>26000</td>
<td>82</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>NHO</td>
<td>1:2:5:5000</td>
<td>Toluene [2M]</td>
<td>25</td>
<td>24</td>
<td>643 (1.05)</td>
<td>44000</td>
<td>54000</td>
<td>75</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>P$_2$-tBu</td>
<td>1:2:5:2000</td>
<td>bulk</td>
<td>25</td>
<td>2.0</td>
<td>197 (1.24)</td>
<td>12000</td>
<td>15000</td>
<td>69</td>
<td>49</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>P$_2$-tBu</td>
<td>1:2:5:2000</td>
<td>bulk</td>
<td>-36</td>
<td>3d</td>
<td>301 (1.16)</td>
<td>24000</td>
<td>24000</td>
<td>68</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>DBU</td>
<td>1:2:5:2000</td>
<td>bulk</td>
<td>25</td>
<td>24</td>
<td>106 (1.18)</td>
<td>6000</td>
<td>8000</td>
<td>62</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>NHO</td>
<td>1:2:5:3000</td>
<td>toluene [2M]</td>
<td>25</td>
<td>3.0</td>
<td>247 (1.13)</td>
<td>21000</td>
<td>24000</td>
<td>75</td>
<td>62</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>NHO</td>
<td>1:2:5:3000</td>
<td>toluene [2M]</td>
<td>-36</td>
<td>24</td>
<td>321 (1.14)</td>
<td>25000</td>
<td>26000</td>
<td>82</td>
<td>80</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>NHO</td>
<td>1:2:5:3000</td>
<td>toluene [2M]</td>
<td>-36</td>
<td>24</td>
<td>2130 (1.18)</td>
<td>123000</td>
<td>117000</td>
<td>79</td>
<td>63</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>NHO</td>
<td>1:1:1:000</td>
<td>bulk</td>
<td>25</td>
<td>32</td>
<td>48 (1.10)</td>
<td>3000</td>
<td>5000</td>
<td>77</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>NHO</td>
<td>1:1:1:000</td>
<td>bulk</td>
<td>25</td>
<td>4.4</td>
<td>266 (1.11)</td>
<td>16000</td>
<td>19000</td>
<td>72</td>
<td>27</td>
</tr>
<tr>
<td>15</td>
<td>rac-1</td>
<td>NHO</td>
<td>1:2:5:3000</td>
<td>bulk</td>
<td>25</td>
<td>20</td>
<td>256 (1.32)</td>
<td>19000</td>
<td>21000</td>
<td>59</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>rac-1</td>
<td>NHO</td>
<td>1:2:5:3000</td>
<td>THF [2M]</td>
<td>-36</td>
<td>4.8</td>
<td>138 (1.20)</td>
<td>28000</td>
<td>23000</td>
<td>75</td>
<td>35</td>
</tr>
<tr>
<td>17</td>
<td>rac-1</td>
<td>NHO</td>
<td>1:2:5:3000</td>
<td>bulk</td>
<td>-36</td>
<td>4.8</td>
<td>279 (1.22)</td>
<td>20000</td>
<td>21000</td>
<td>63</td>
<td>70</td>
</tr>
<tr>
<td>18</td>
<td>rac-1</td>
<td>NHO</td>
<td>1:2:5:3000</td>
<td>DCM [2M]</td>
<td>-36</td>
<td>72</td>
<td>44 (1.12)</td>
<td>3000</td>
<td>3000</td>
<td>70</td>
<td>11</td>
</tr>
<tr>
<td>19</td>
<td>rac-1</td>
<td>NHO</td>
<td>1:2:5:3000</td>
<td>pentane [2M]</td>
<td>-36</td>
<td>72</td>
<td>315 (1.10)</td>
<td>19000</td>
<td>23000</td>
<td>63</td>
<td>79</td>
</tr>
<tr>
<td>20</td>
<td>rac-1</td>
<td>NHO</td>
<td>1:2:5:3000</td>
<td>toluene [2M]</td>
<td>-36</td>
<td>72</td>
<td>235 (1.13)</td>
<td>14000</td>
<td>18000</td>
<td>80</td>
<td>59</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>NHO</td>
<td>1:4:5:1000</td>
<td>bulk</td>
<td>-36</td>
<td>24</td>
<td>88 (1.17)</td>
<td>5000</td>
<td>6000</td>
<td>74</td>
<td>22</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>NHO</td>
<td>1:4:5:10000</td>
<td>bulk</td>
<td>-36</td>
<td>24</td>
<td>134 (1.11)</td>
<td>8000</td>
<td>10000</td>
<td>80</td>
<td>7</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>NHO</td>
<td>1:2:5:3000</td>
<td>THF [4M]</td>
<td>25</td>
<td>24</td>
<td>280 (1.25)</td>
<td>16000</td>
<td>13000</td>
<td>78</td>
<td>70</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>NHO</td>
<td>1:2:5:3000</td>
<td>THF [2M]</td>
<td>25</td>
<td>8.0</td>
<td>65 (1.14)</td>
<td>4000</td>
<td>5000</td>
<td>88</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>NHO</td>
<td>1:2:5:3000</td>
<td>THF [2M]</td>
<td>50</td>
<td>2.4</td>
<td>67 (1.15)</td>
<td>4000</td>
<td>4000</td>
<td>73</td>
<td>17</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>NHO</td>
<td>1:2:5:3000</td>
<td>DCM [4M]</td>
<td>25</td>
<td>5.6</td>
<td>65 (1.17)</td>
<td>4000</td>
<td>4000</td>
<td>65</td>
<td>16</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>NHO</td>
<td>1:2:5:3000</td>
<td>DCM [2M]</td>
<td>25</td>
<td>12.0</td>
<td>50 (1.16)</td>
<td>3000</td>
<td>4000</td>
<td>75</td>
<td>13</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>P$_2$-tBu</td>
<td>1:4:5:2000</td>
<td>bulk</td>
<td>25</td>
<td>2</td>
<td>253 (1.3)</td>
<td>15000</td>
<td>14000</td>
<td>70</td>
<td>63</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>P$_2$-tBu</td>
<td>1:4:5:2000</td>
<td>bulk</td>
<td>-36</td>
<td>4</td>
<td>67 (1.16)</td>
<td>4000</td>
<td>5000</td>
<td>75</td>
<td>17</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>DBU</td>
<td>1:4:5:2000</td>
<td>bulk</td>
<td>25</td>
<td>7.2</td>
<td>98 (1.23)</td>
<td>6000</td>
<td>5000</td>
<td>68</td>
<td>24</td>
</tr>
<tr>
<td>31</td>
<td>3</td>
<td>NHO</td>
<td>1:4:5:2000</td>
<td>bulk</td>
<td>25</td>
<td>5 min</td>
<td>266 (1.21)</td>
<td>15000</td>
<td>14000</td>
<td>58</td>
<td>66</td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>P$_2$-tBu</td>
<td>1:4:5:2000</td>
<td>bulk</td>
<td>-36</td>
<td>1 min</td>
<td>303 (1.18)</td>
<td>18000</td>
<td>18000</td>
<td>57</td>
<td>75</td>
</tr>
<tr>
<td>33</td>
<td>3</td>
<td>DBU</td>
<td>1:4:5:2000</td>
<td>bulk</td>
<td>25</td>
<td>30 min</td>
<td>260 (1.06)</td>
<td>15000</td>
<td>15000</td>
<td>56</td>
<td>65</td>
</tr>
<tr>
<td>34</td>
<td>3</td>
<td>DBU</td>
<td>1:4:5:2000</td>
<td>bulk</td>
<td>-36</td>
<td>24</td>
<td>281 (1.26)</td>
<td>16000</td>
<td>19000</td>
<td>57</td>
<td>70</td>
</tr>
<tr>
<td>35</td>
<td>4</td>
<td>DBU</td>
<td>1:4:5:2000</td>
<td>bulk</td>
<td>25</td>
<td>24</td>
<td>207 (1.18)</td>
<td>12000</td>
<td>12000</td>
<td>57</td>
<td>52</td>
</tr>
<tr>
<td>36</td>
<td>4</td>
<td>DBU</td>
<td>1:4:5:5000</td>
<td>bulk</td>
<td>-36</td>
<td>72</td>
<td>853 (1.22)</td>
<td>49000</td>
<td>43000</td>
<td>56</td>
<td>85</td>
</tr>
</tbody>
</table>

a) Average number of PO repeat units determined via 1H NMR spectroscopy (CDCl$_3$). b) determined via GPC analysis (CHCl$_3$). c) determined via 1H NMR (CDCl$_3$). d) diad placement determined via 1H NMR spectroscopy.
Polymerization of 1-Butylene oxide (BO)

Table S2. Data set of BO polymerization using diborane (C)/NHO in combination with BnOH (I) as initiator.

<table>
<thead>
<tr>
<th>#</th>
<th>Cat (C)</th>
<th>NHO/C/I/BO (molar)</th>
<th>solvent</th>
<th>[BO]</th>
<th>T [°C]</th>
<th>t [h]</th>
<th>x<sup>a</sup> (D<sub>M</sub>)<sup>b</sup> [g/mol]</th>
<th>M<sub>calc</sub><sup>c</sup> [g/mol]</th>
<th>M<sub>GPC</sub><sup>b</sup> [g/mol]</th>
<th>M<sub>d</sub> [%]</th>
<th>Conv. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1:2.5:3:0000</td>
<td>toluene [2M]</td>
<td>-36</td>
<td>19 d</td>
<td>142 (1.36)</td>
<td>10300</td>
<td>10300</td>
<td>85</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1:2.5:3:0000</td>
<td>toluene [2M]</td>
<td>-36</td>
<td>10 d</td>
<td>59 (1.13)</td>
<td>4300</td>
<td>4200</td>
<td>84</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1:2.5:3:0000</td>
<td>toluene [2M]</td>
<td>25</td>
<td>3 d</td>
<td>109 (1.16)</td>
<td>8000</td>
<td>7900</td>
<td>75</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1:2.5:3:0000</td>
<td>bulk</td>
<td>25</td>
<td>24</td>
<td>42 (1.17)</td>
<td>3100</td>
<td>3000</td>
<td>75</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1:2.5:3:0000</td>
<td>THF [2M]</td>
<td>25</td>
<td>3 d</td>
<td>44 (1.07)</td>
<td>3300</td>
<td>3100</td>
<td>72</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1:2.5:3:0000</td>
<td>bulk</td>
<td>-36</td>
<td>48</td>
<td>86 (1.16)</td>
<td>6300</td>
<td>6400</td>
<td>85</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

a Average number of PO repeat units determined via 1H NMR spectroscopy (CDCl₃). *b* determined via GPC analysis (CHCl₃). *c* diad placement determined via 1H NMR spectroscopy.

Polymerization of Allyl Glycidyl Ether (AGE)

Table S3. Data set of AGE polymerization using diborane (C)/NHO in combination with BnOH (I) as initiator.

<table>
<thead>
<tr>
<th>#</th>
<th>Cat (C)</th>
<th>NHO/C/I/AGE (molar)</th>
<th>solvent</th>
<th>[AGE]</th>
<th>T [°C]</th>
<th>t [h]</th>
<th>x<sup>a</sup> (D<sub>M</sub>)<sup>b</sup> [g/mol]</th>
<th>M<sub>calc</sub><sup>c</sup> [g/mol]</th>
<th>M<sub>GPC</sub><sup>b</sup> [g/mol]</th>
<th>M<sub>d</sub> [%]</th>
<th>Conv. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1:2.5:3:0000</td>
<td>toluene [2M]</td>
<td>-36</td>
<td>14 d</td>
<td>114 (1.33)</td>
<td>13100</td>
<td>12700</td>
<td>62</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1:2.5:3:0000</td>
<td>bulk</td>
<td>-36</td>
<td>24</td>
<td>272 (1.15)</td>
<td>31100</td>
<td>31300</td>
<td>78</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

a Average number of PO repeat units determined via 1H NMR spectroscopy (CDCl₃). *b* determined via GPC analysis (CHCl₃). *c* diad placement determined via 1H NMR spectroscopy.

Preparation of Block Copolymers

Table S4. Preparation of block copolymers using different macroinitiators (I) and rac-PO as monomer in the presence of 1/NHO.

<table>
<thead>
<tr>
<th>#</th>
<th>Initiator</th>
<th>NHO/I/PO (molar)</th>
<th>solvent</th>
<th>T [°C]</th>
<th>t [h]</th>
<th>x<sup>a</sup> (D<sub>M</sub>)<sup>b</sup> [g/mol]</th>
<th>M<sub>calc</sub><sup>c</sup> [g/mol]</th>
<th>M<sub>GPC</sub><sup>b</sup> [g/mol]</th>
<th>M<sub>d</sub> [%]</th>
<th>Conv. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCL1K</td>
<td>1:2.5:3:0000</td>
<td>toluene [2M]</td>
<td>25</td>
<td>48</td>
<td>211 (1.24)</td>
<td>38000</td>
<td>80</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PCL7K</td>
<td>1:2.5:3:0000</td>
<td>toluene [2M]</td>
<td>25</td>
<td>20</td>
<td>150 (1.20)</td>
<td>12000</td>
<td>76</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PCL2K</td>
<td>1:2.5:3:0000</td>
<td>toluene [2M]</td>
<td>25</td>
<td>4</td>
<td>53 (1.20)</td>
<td>6000</td>
<td>77</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCL1K-diol</td>
<td>1:2.5:3:0000</td>
<td>toluene [2M]</td>
<td>25</td>
<td>24</td>
<td>124 (1.16)</td>
<td>13000</td>
<td>76</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PEO8K</td>
<td>1:2.5:2:0000</td>
<td>bulk</td>
<td>25</td>
<td>2.5</td>
<td>780 (1.11)</td>
<td>84000</td>
<td>67</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PLA2K</td>
<td>1:2.5:3:0000</td>
<td>THF [2M]</td>
<td>25</td>
<td>7</td>
<td>106 (1.23)</td>
<td>47000</td>
<td>68</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

a Average number of PO repeat units determined via 1H NMR spectroscopy (CDCl₃). *b* determined via GPC analysis (CHCl₃). *c* diad placement determined via 1H NMR analysis. *d* determined via 1H NMR spectroscopy (CDCl<sub>3</sub)}.

S19
Representative Examples for Stereoanalysis via 13C NMR

Figure S18. 13C NMR analysis (CDCl$_3$, 300 K) with diad/triad sequence assignment of PPO. Polymer resulting from application of NHO/t after 3 h at -85°C.
NHO/8/BnOH/PO = 1:2:5:2000 (t = 2 h, bulk, -36°C)

DBU/2/BnOH/PO = 1:4:5:2000 (t = 4 d, bulk, -36°C)

DBU/2/BnOH/PO = 1:4:5:10000 (t = 7 d, bulk, -36°C)

Figure S19. Examples of 13C NMR analysis (CDCl$_3$, 300 K) with diad sequence analysis of PPO prepared under different conditions.
Figure S20. Example for 13C NMR analysis (CDCl$_3$, 300 K) with diad sequence analysis of PBO resulting from application NHO/1 after 72 h at room temperature.

Figure S21. Example for 13C NMR spectroscopy (CDCl$_3$, 300 K) with triad sequence analysis of PAGE resulting from application NHO/1 after 14 d at -36 °C.
Figure S22. 1H NMR analysis (CDCl$_3$, 400 MHz) of PO in the presence of diborane 3 (middle); the separate compounds are shown top and bottom.
DSC Analysis

Figure S23. DSC investigation (5K/min, second cycle) of PPO with $m = 88\%$ (semicrystalline).

Figure S24. DSC investigation (5K/min, second cycle) of PPO with $m = 65\%$ (amorphous).
Figure S25. DSC investigation (5K/min, second cycle) of PBO with $m = 75\%$ (amorphous).

Figure S26. DSC investigation (5K/min, second cycle) of PAGE with $m = 62\%$ (amorphous).
Figure S27. TGA curves of PPO recorded between 45 °C and 600 °C applying a heating rate of 10 K/min.

'H-DOSY NMR Analysis

Figure S28. 'H-DOSY NMR analysis of PCL-b-(it)-PPO. Conditions: NHO/1/PCL2K/PO = 1:2:2.5:1000, [PO]₀ = 2.0 mol/L, toluene, T = 25 °C, see Table S4, entry 3).
Figure S29. 'H-DOSY NMR analysis of PCL-b-(it)-PPO. Conditions: NHO/1/PCL7K/PO = 1:2:2:5:1000, [PO]0 = 2.0 mol/L, toluene, T = 25 °C, see Table S4, entry 2).

Figure S30. 'H-DOSY NMR analysis of PCL-b-(it)-PPO. Conditions: NHO/1/PCL10K/PO = 1:2:2:5:1000, [PO]0 = 2.0 mol/L, Toluene, T = 25 °C, see Table S4, entry 1.
Figure S31. 1H-DOSY NMR analysis of (it)-PPO-b-PEO-b-(it)-PPO. Conditions: NHO/PEO8K/PO = 1:2:5:2000, bulk, $T = 25$ °C, see Table S4, entry 4.

Figure S32. 1H-DOSY NMR spectroscopy of PLA-b-(it)-PPO. Conditions: NHO/PLA/PO = 1:2:5:3000, [PO]$_0$ = 2.0 mol/L, THF, $T = 25$ °C, see Table S4, entry 5.
GPC traces, PPO and Copolymers

Figure S33. GPC trace received from PCL10K (starting material) and PCL10K stirred in the presence of diborane 1/NHO (THF, no PO) for 24 h at RT.

Figure S34. GPC trace received from PCL10K (macroinitiator) and after polymerization of PO (PCL-b-(it)-PPO).
Figure S35. GPC trace received from PEO8K (macroinitiator) and after polymerization of PO ((it)-PPO-\(b\)-PEO-\(b\)-\((it)\)-PPO).

Figure S36. GPC trace received from PLA20K (macroinitiator) and after polymerization of PO (PLA-\(b\)-(it)-PPO)
Figure S37. GPC traces received from polymerization of (S)-PO using 1/NHO. Conditions: NHO/1/8nOH/(S)-PO = 1:2:5:2000 [M]₀ = 2.0 mol/L, THF, room temperature.
Crystal Structure Analysis, Tabular Data for Diborane 1

![Diborane 1 structure](image)

Figure S38. Single crystal X-ray structure of diborane 1.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C₄₂H₅₂B₂O₂</td>
</tr>
<tr>
<td>Formula weight</td>
<td>610.45</td>
</tr>
<tr>
<td>Temperature</td>
<td>140(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>1.54178 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Monoclinic, P2(1)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>11.4900(7) Å</td>
</tr>
<tr>
<td>α</td>
<td>90°</td>
</tr>
<tr>
<td>b</td>
<td>7.2911(6) Å</td>
</tr>
<tr>
<td>β</td>
<td>93.200(4)°</td>
</tr>
<tr>
<td>c</td>
<td>20.7910(16) Å</td>
</tr>
<tr>
<td>γ</td>
<td>90°</td>
</tr>
<tr>
<td>Volume</td>
<td>1739.0(2) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Calculated density</td>
<td>1.166 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.518 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>660</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.223 x 0.100 x 0.025 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.128 to 65.995 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-13<=h<=10, -8<=k<=8, -23<=l<=24</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>21005 / 5877 [R(int) = 0.0605]</td>
</tr>
<tr>
<td>Completeness to theta =</td>
<td>98.3 %</td>
</tr>
</tbody>
</table>
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.7528 and 0.6606
Refinement method Full-matrix least-squares on F²
Data / restraints / parameters 5877 / 13 / 415
Goodness-of-fit on F² 1.041
Final R indices [I>2sigma(I)] R1 = 0.0484, wR2 = 0.1187
R indices (all data) R1 = 0.0680, wR2 = 0.1278
Absolute structure parameter 0.04(21)
Extinction coefficient n/a
Largest diff. peak and hole 0.364 and -0.222 e.A⁻³

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10⁻³) for buch350.
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>3621(2)</td>
<td>7575(4)</td>
<td>5252(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>3796(3)</td>
<td>7488(5)</td>
<td>4138(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>B(1)</td>
<td>2773(4)</td>
<td>7285(7)</td>
<td>7587(2)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>4332(3)</td>
<td>7674(5)</td>
<td>4748(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>2992(2)</td>
<td>4186(3)</td>
<td>3677(1)</td>
<td>30(1)</td>
</tr>
<tr>
<td>B(2)</td>
<td>2520(4)</td>
<td>1897(7)</td>
<td>1350(2)</td>
<td>42(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>5544(3)</td>
<td>7918(5)</td>
<td>4837(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>6217(3)</td>
<td>7938(5)</td>
<td>4320(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>5730(3)</td>
<td>7771(5)</td>
<td>3688(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>6423(3)</td>
<td>7821(5)</td>
<td>3142(2)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>5930(3)</td>
<td>7708(5)</td>
<td>2536(2)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>4715(3)</td>
<td>7582(5)</td>
<td>2434(2)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>4020(3)</td>
<td>7539(5)</td>
<td>2948(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>4498(3)</td>
<td>7597(5)</td>
<td>3591(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>4151(3)</td>
<td>7731(5)</td>
<td>5892(2)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>4498(3)</td>
<td>7597(5)</td>
<td>3591(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>4151(3)</td>
<td>7731(5)</td>
<td>5892(2)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>3202(3)</td>
<td>7649(6)</td>
<td>6358(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>3202(3)</td>
<td>7649(6)</td>
<td>6358(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>1282(5)</td>
<td>4890(9)</td>
<td>8137(3)</td>
<td>82(2)</td>
</tr>
<tr>
<td>C(17)</td>
<td>646(5)</td>
<td>6272(9)</td>
<td>7801(3)</td>
<td>73(2)</td>
</tr>
<tr>
<td>C(18)</td>
<td>1435(3)</td>
<td>7644(8)</td>
<td>7489(2)</td>
<td>52(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>1330(4)</td>
<td>9561(7)</td>
<td>7787(2)</td>
<td>55(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>1965(3)</td>
<td>10170(5)</td>
<td>4483(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>1965(3)</td>
<td>10170(5)</td>
<td>4483(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(22)</td>
<td>1446(5)</td>
<td>419(8)</td>
<td>386(3)</td>
<td>52(1)</td>
</tr>
<tr>
<td>C(23)</td>
<td>1446(5)</td>
<td>419(8)</td>
<td>386(3)</td>
<td>52(1)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [deg] for buch350.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-C(2)</td>
<td>1.368(4)</td>
<td></td>
</tr>
<tr>
<td>O(1)-C(11)</td>
<td>1.436(4)</td>
<td></td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.384(4)</td>
<td></td>
</tr>
<tr>
<td>C(1)-C(10)</td>
<td>1.434(4)</td>
<td></td>
</tr>
<tr>
<td>C(1)-C(22)</td>
<td>1.499(4)</td>
<td></td>
</tr>
<tr>
<td>B(1)-C(18)</td>
<td>1.561(6)</td>
<td></td>
</tr>
<tr>
<td>B(1)-C(14)</td>
<td>1.569(6)</td>
<td></td>
</tr>
<tr>
<td>B(1)-C(13)</td>
<td>1.574(5)</td>
<td></td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.405(4)</td>
<td></td>
</tr>
<tr>
<td>O(2)-C(23)</td>
<td>1.374(4)</td>
<td></td>
</tr>
<tr>
<td>O(2)-C(32)</td>
<td>1.442(4)</td>
<td></td>
</tr>
<tr>
<td>B(2)-C(35)</td>
<td>1.558(7)</td>
<td></td>
</tr>
<tr>
<td>B(2)-C(34)</td>
<td>1.557(6)</td>
<td></td>
</tr>
<tr>
<td>B(2)-C(39)</td>
<td>1.564(7)</td>
<td></td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.358(5)</td>
<td></td>
</tr>
<tr>
<td>C(3)-H(3)</td>
<td>0.9500</td>
<td></td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.404(5)</td>
<td></td>
</tr>
<tr>
<td>C(4)-H(4)</td>
<td>0.9500</td>
<td></td>
</tr>
<tr>
<td>C(5)-C(10)</td>
<td>1.424(4)</td>
<td></td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.425(5)</td>
<td></td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.355(5)</td>
<td></td>
</tr>
<tr>
<td>C(6)-H(6)</td>
<td>0.9500</td>
<td></td>
</tr>
</tbody>
</table>
C(7)-C(8) 1.403(5)
C(7)-H(7) 0.9500
C(8)-C(9) 1.370(5)
C(8)-H(8) 0.9500
C(9)-C(10) 1.415(4)
C(9)-H(9) 0.9500
C(11)-C(12) 1.499(4)
C(11)-H(11A) 0.9900
C(11)-H(11B) 0.9900
C(12)-C(13) 1.527(4)
C(12)-H(12A) 0.9900
C(12)-H(12B) 0.9900
C(13)-H(13A) 0.9900
C(13)-H(13B) 0.9900
C(14)-C(21) 1.549(7)
C(14)-C(15) 1.607(8)
C(14)-H(14) 1.0000
C(15)-C(16) 1.558(8)
C(15)-H(15A) 0.9900
C(15)-H(15B) 0.9900
C(16)-C(17) 1.409(8)
C(16)-H(16A) 0.9900
C(16)-H(16B) 0.9900
C(17)-C(18) 1.519(7)
C(17)-H(17A) 0.9900
C(17)-H(17B) 0.9900
C(18)-C(19) 1.535(7)
C(18)-H(18) 1.0000
C(19)-C(20) 1.524(6)
C(19)-H(19A) 0.9900
C(19)-H(19B) 0.9900
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(20)-C(21)</td>
<td>1.524(7)</td>
</tr>
<tr>
<td>C(20)-H(20A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(20)-H(20B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(21)-H(21A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(21)-H(21B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(22)-C(23)</td>
<td>1.385(5)</td>
</tr>
<tr>
<td>C(22)-C(31)</td>
<td>1.434(5)</td>
</tr>
<tr>
<td>C(23)-C(24)</td>
<td>1.412(5)</td>
</tr>
<tr>
<td>C(24)-C(25)</td>
<td>1.371(5)</td>
</tr>
<tr>
<td>C(24)-H(24)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(25)-C(26)</td>
<td>1.406(5)</td>
</tr>
<tr>
<td>C(25)-H(25)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(26)-C(27)</td>
<td>1.417(5)</td>
</tr>
<tr>
<td>C(26)-C(31)</td>
<td>1.421(5)</td>
</tr>
<tr>
<td>C(27)-C(28)</td>
<td>1.354(5)</td>
</tr>
<tr>
<td>C(27)-H(27)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(28)-C(29)</td>
<td>1.403(5)</td>
</tr>
<tr>
<td>C(28)-H(28)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(29)-C(30)</td>
<td>1.365(5)</td>
</tr>
<tr>
<td>C(29)-H(29)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(30)-C(31)</td>
<td>1.421(5)</td>
</tr>
<tr>
<td>C(30)-H(30)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(32)-C(33)</td>
<td>1.509(5)</td>
</tr>
<tr>
<td>C(32)-H(32A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(32)-H(32B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(33)-C(34)</td>
<td>1.526(5)</td>
</tr>
<tr>
<td>C(33)-H(33A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(33)-H(33B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(34)-H(34A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(34)-H(34B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(35)-C(36)</td>
<td>1.533(7)</td>
</tr>
</tbody>
</table>
C(35)-C(42) 1.544(8)
C(35)-H(35) 1.0000
C(36)-C(37) 1.501(8)
C(36)-H(36A) 0.9900
C(36)-H(36B) 0.9900
C(37)-C(38) 1.504(9)
C(37)-H(37A) 0.9900
C(37)-H(37B) 0.9900
C(38)-C(39) 1.553(7)
C(38)-H(38A) 0.9900
C(38)-H(38B) 0.9900
C(39)-C(40) 1.531(7)
C(39)-H(39) 1.0000
C(40)-C(41) 1.505(9)
C(40)-H(40A) 0.9900
C(40)-H(40B) 0.9900
C(41)-C(42) 1.503(10)
C(41)-H(41A) 0.9900
C(41)-H(41B) 0.9900
C(42)-H(42A) 0.9900
C(42)-H(42B) 0.9900

C(2)-O(1)-C(11) 117.7(2)
C(2)-C(1)-C(10) 118.7(3)
C(2)-C(1)-C(22) 122.3(3)
C(10)-C(1)-C(22) 119.0(3)
C(18)-B(1)-C(14) 111.2(4)
C(18)-B(1)-C(13) 124.8(4)
C(14)-B(1)-C(13) 122.9(4)
O(1)-C(2)-C(1) 116.3(3)
O(1)-C(2)-C(3) 122.4(3)
C(1)-C(2)-C(3) 121.4(3)
C(23)-O(2)-C(32) 119.5(3)
C(35)-B(2)-C(34) 126.6(4)
C(35)-B(2)-C(39) 111.5(4)
C(34)-B(2)-C(39) 121.5(4)
C(4)-C(3)-C(2) 120.0(3)
C(4)-C(3)-H(3) 120.0
C(2)-C(3)-H(3) 120.0
C(3)-C(4)-C(5) 121.6(3)
C(3)-C(4)-H(4) 119.2
C(5)-C(4)-H(4) 119.2
C(4)-C(5)-C(10) 118.8(3)
C(4)-C(5)-C(6) 122.2(3)
C(10)-C(5)-C(6) 118.9(3)
C(7)-C(6)-C(5) 121.1(3)
C(7)-C(6)-H(6) 119.4
C(5)-C(6)-H(6) 119.4
C(6)-C(7)-C(8) 120.3(3)
C(6)-C(7)-H(7) 119.8
C(8)-C(7)-H(7) 119.8
C(9)-C(8)-C(7) 120.1(3)
C(9)-C(8)-H(8) 119.9
C(7)-C(8)-H(8) 119.9
C(8)-C(9)-C(10) 121.6(3)
C(8)-C(9)-H(9) 119.2
C(10)-C(9)-H(9) 119.2
C(9)-C(10)-C(5) 117.9(3)
C(9)-C(10)-C(1) 122.8(3)
C(5)-C(10)-C(1) 119.4(3)
O(1)-C(11)-C(12) 108.0(2)
O(1)-C(11)-H(11A) 110.1
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(12)-C(11)-H(11A)</td>
<td>110.1</td>
</tr>
<tr>
<td>O(1)-C(11)-H(11B)</td>
<td>110.1</td>
</tr>
<tr>
<td>C(12)-C(11)-H(11B)</td>
<td>110.1</td>
</tr>
<tr>
<td>H(11A)-C(11)-H(11B)</td>
<td>108.4</td>
</tr>
<tr>
<td>C(11)-C(12)-C(13)</td>
<td>112.4(3)</td>
</tr>
<tr>
<td>C(11)-C(12)-H(12A)</td>
<td>109.1</td>
</tr>
<tr>
<td>C(13)-C(12)-H(12A)</td>
<td>109.1</td>
</tr>
<tr>
<td>C(11)-C(12)-H(12B)</td>
<td>109.1</td>
</tr>
<tr>
<td>C(13)-C(12)-H(12B)</td>
<td>109.1</td>
</tr>
<tr>
<td>H(12A)-C(12)-H(12B)</td>
<td>107.9</td>
</tr>
<tr>
<td>C(12)-C(13)-B(1)</td>
<td>117.0(3)</td>
</tr>
<tr>
<td>C(12)-C(13)-H(13A)</td>
<td>108.1</td>
</tr>
<tr>
<td>B(1)-C(13)-H(13A)</td>
<td>108.1</td>
</tr>
<tr>
<td>C(12)-C(13)-H(13B)</td>
<td>108.1</td>
</tr>
<tr>
<td>B(1)-C(13)-H(13B)</td>
<td>108.1</td>
</tr>
<tr>
<td>H(13A)-C(13)-H(13B)</td>
<td>107.3</td>
</tr>
<tr>
<td>C(21)-C(14)-B(1)</td>
<td>101.9(4)</td>
</tr>
<tr>
<td>C(21)-C(14)-C(15)</td>
<td>111.1(4)</td>
</tr>
<tr>
<td>B(1)-C(14)-C(15)</td>
<td>110.2(4)</td>
</tr>
<tr>
<td>C(21)-C(14)-H(14)</td>
<td>111.1</td>
</tr>
<tr>
<td>B(1)-C(14)-H(14)</td>
<td>111.1</td>
</tr>
<tr>
<td>C(15)-C(14)-H(14)</td>
<td>111.1</td>
</tr>
<tr>
<td>C(16)-C(15)-C(14)</td>
<td>112.3(4)</td>
</tr>
<tr>
<td>C(16)-C(15)-H(15A)</td>
<td>109.1</td>
</tr>
<tr>
<td>C(14)-C(15)-H(15A)</td>
<td>109.1</td>
</tr>
<tr>
<td>C(16)-C(15)-H(15B)</td>
<td>109.1</td>
</tr>
<tr>
<td>C(14)-C(15)-H(15B)</td>
<td>109.1</td>
</tr>
<tr>
<td>H(15A)-C(15)-H(15B)</td>
<td>107.9</td>
</tr>
<tr>
<td>C(17)-C(16)-C(15)</td>
<td>117.0(6)</td>
</tr>
<tr>
<td>C(17)-C(16)-H(16A)</td>
<td>108.1</td>
</tr>
<tr>
<td>C(15)-C(16)-H(16A)</td>
<td>108.1</td>
</tr>
</tbody>
</table>
C(17)-C(16)-H(16B) 108.1
C(15)-C(16)-H(16B) 108.1
H(16A)-C(16)-H(16B) 107.3
C(16)-C(17)-C(18) 112.1(5)
C(16)-C(17)-H(17A) 109.2
C(18)-C(17)-H(17A) 109.2
C(16)-C(17)-H(17B) 109.2
C(18)-C(17)-H(17B) 109.2
H(17A)-C(17)-H(17B) 107.9
C(17)-C(18)-C(19) 111.5(4)
C(17)-C(18)-B(1) 116.2(5)
C(19)-C(18)-B(1) 101.5(3)
C(17)-C(18)-H(18) 109.1
C(19)-C(18)-H(18) 109.1
B(1)-C(18)-H(18) 109.1
C(20)-C(19)-C(18) 113.6(4)
C(20)-C(19)-H(19A) 108.9
C(18)-C(19)-H(19A) 108.9
C(20)-C(19)-H(19B) 108.9
C(18)-C(19)-H(19B) 108.9
H(19A)-C(19)-H(19B) 107.7
C(19)-C(20)-C(21) 112.2(4)
C(19)-C(20)-H(20A) 109.2
C(21)-C(20)-H(20A) 109.2
C(19)-C(20)-H(20B) 109.2
C(21)-C(20)-H(20B) 109.2
H(20A)-C(20)-H(20B) 107.9
C(20)-C(21)-C(14) 112.9(4)
C(20)-C(21)-H(21A) 109.0
C(14)-C(21)-H(21A) 109.0
C(20)-C(21)-H(21B) 109.0
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(14)-C(21)-H(21B)</td>
<td>109.0</td>
</tr>
<tr>
<td>H(21A)-C(21)-H(21B)</td>
<td>107.8</td>
</tr>
<tr>
<td>C(23)-C(22)-C(31)</td>
<td>118.9(3)</td>
</tr>
<tr>
<td>C(23)-C(22)-C(1)</td>
<td>119.5(3)</td>
</tr>
<tr>
<td>C(31)-C(22)-C(1)</td>
<td>121.6(3)</td>
</tr>
<tr>
<td>O(2)-C(23)-C(22)</td>
<td>116.2(3)</td>
</tr>
<tr>
<td>O(2)-C(23)-C(24)</td>
<td>122.4(3)</td>
</tr>
<tr>
<td>C(22)-C(23)-C(24)</td>
<td>121.4(3)</td>
</tr>
<tr>
<td>C(25)-C(24)-C(23)</td>
<td>119.5(3)</td>
</tr>
<tr>
<td>C(25)-C(24)-H(24)</td>
<td>120.3</td>
</tr>
<tr>
<td>C(23)-C(24)-H(24)</td>
<td>120.3</td>
</tr>
<tr>
<td>C(24)-C(25)-C(26)</td>
<td>121.7(3)</td>
</tr>
<tr>
<td>C(24)-C(25)-H(25)</td>
<td>119.1</td>
</tr>
<tr>
<td>C(26)-C(25)-H(25)</td>
<td>119.1</td>
</tr>
<tr>
<td>C(25)-C(26)-C(27)</td>
<td>122.2(3)</td>
</tr>
<tr>
<td>C(25)-C(26)-C(31)</td>
<td>118.9(3)</td>
</tr>
<tr>
<td>C(27)-C(26)-C(31)</td>
<td>118.9(3)</td>
</tr>
<tr>
<td>C(28)-C(27)-C(26)</td>
<td>121.8(3)</td>
</tr>
<tr>
<td>C(28)-C(27)-H(27)</td>
<td>119.1</td>
</tr>
<tr>
<td>C(26)-C(27)-H(27)</td>
<td>119.1</td>
</tr>
<tr>
<td>C(27)-C(28)-C(29)</td>
<td>119.4(4)</td>
</tr>
<tr>
<td>C(27)-C(28)-H(28)</td>
<td>120.3</td>
</tr>
<tr>
<td>C(29)-C(28)-H(28)</td>
<td>120.3</td>
</tr>
<tr>
<td>C(30)-C(29)-C(28)</td>
<td>121.1(4)</td>
</tr>
<tr>
<td>C(30)-C(29)-H(29)</td>
<td>119.5</td>
</tr>
<tr>
<td>C(28)-C(29)-H(29)</td>
<td>119.5</td>
</tr>
<tr>
<td>C(29)-C(30)-C(31)</td>
<td>120.9(3)</td>
</tr>
<tr>
<td>C(29)-C(30)-H(30)</td>
<td>119.6</td>
</tr>
<tr>
<td>C(31)-C(30)-H(30)</td>
<td>119.6</td>
</tr>
<tr>
<td>C(30)-C(31)-C(26)</td>
<td>117.9(3)</td>
</tr>
<tr>
<td>C(30)-C(31)-C(22)</td>
<td>122.5(3)</td>
</tr>
</tbody>
</table>
C(26)-C(31)-C(22) 119.6(3)
O(2)-C(32)-C(33) 113.4(3)
O(2)-C(32)-H(32A) 108.9
C(33)-C(32)-H(32A) 108.9
O(2)-C(32)-H(32B) 108.9
C(33)-C(32)-H(32B) 108.9
H(32A)-C(32)-H(32B) 107.7
C(32)-C(33)-C(34) 110.9(3)
C(32)-C(33)-H(33A) 109.5
C(34)-C(33)-H(33A) 109.5
C(32)-C(33)-H(33B) 109.5
C(34)-C(33)-H(33B) 109.5
H(33A)-C(33)-H(33B) 108.1
C(33)-C(34)-B(2) 119.3(4)
C(33)-C(34)-H(34A) 107.5
B(2)-C(34)-H(34A) 107.5
C(33)-C(34)-H(34B) 107.5
B(2)-C(34)-H(34B) 107.5
H(34A)-C(34)-H(34B) 107.0
C(36)-C(35)-C(42) 114.2(4)
C(36)-C(35)-B(2) 109.2(4)
C(42)-C(35)-B(2) 105.3(4)
C(36)-C(35)-H(35) 109.4
C(42)-C(35)-H(35) 109.4
B(2)-C(35)-H(35) 109.4
C(37)-C(36)-C(35) 115.1(5)
C(37)-C(36)-H(36A) 108.5
C(35)-C(36)-H(36A) 108.5
C(37)-C(36)-H(36B) 108.5
C(35)-C(36)-H(36B) 108.5
H(36A)-C(36)-H(36B) 107.5
C(36)-C(37)-C(38) 116.1(5)
C(36)-C(37)-H(37A) 108.3
C(38)-C(37)-H(37A) 108.3
C(36)-C(37)-H(37B) 108.3
C(38)-C(37)-H(37B) 108.3
H(37A)-C(37)-H(37B) 107.4
C(37)-C(38)-C(39) 115.1(4)
C(37)-C(38)-H(38A) 108.5
C(39)-C(38)-H(38A) 108.5
C(37)-C(38)-H(38B) 108.5
C(39)-C(38)-H(38B) 108.5
H(38A)-C(38)-H(38B) 107.5
C(40)-C(39)-C(38) 114.6(4)
C(40)-C(39)-B(2) 105.3(4)
C(38)-C(39)-B(2) 108.9(4)
C(40)-C(39)-H(39) 109.3
C(39)-C(39)-H(39) 109.3
B(2)-C(39)-H(39) 109.3
C(41)-C(40)-C(39) 114.5(5)
C(41)-C(40)-H(40A) 108.6
C(39)-C(40)-H(40A) 108.6
C(41)-C(40)-H(40B) 108.6
C(39)-C(40)-H(40B) 108.6
H(40A)-C(40)-H(40B) 107.6
C(42)-C(41)-C(40) 115.3(5)
C(42)-C(41)-H(41A) 108.4
C(40)-C(41)-H(41A) 108.4
C(42)-C(41)-H(41B) 108.4
C(40)-C(41)-H(41B) 108.4
H(41A)-C(41)-H(41B) 107.5
C(41)-C(42)-C(35) 115.2(5)
C(41)-C(42)-H(42A) 108.5
C(35)-C(42)-H(42A) 108.5
C(41)-C(42)-H(42B) 108.5
C(35)-C(42)-H(42B) 108.5
H(42A)-C(42)-H(42B) 107.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (\(A^2 \times 10^3\)) for buch350.
The anisotropic displacement factor exponent takes the form:
-2 \(\pi^2\) \([h^2 a^*^2 U_{11} + ... + 2 h k a^* b^* U_{12}]\)

<table>
<thead>
<tr>
<th></th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U23</th>
<th>U13</th>
<th>U12</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>23(1)</td>
<td>36(1)</td>
<td>21(1)</td>
<td>-1(1)</td>
<td>1(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>25(2)</td>
<td>23(2)</td>
<td>25(2)</td>
<td>-1(2)</td>
<td>3(1)</td>
<td>2(2)</td>
</tr>
<tr>
<td>B(1)</td>
<td>48(2)</td>
<td>36(3)</td>
<td>33(2)</td>
<td>-3(2)</td>
<td>7(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>26(2)</td>
<td>22(2)</td>
<td>22(2)</td>
<td>0(2)</td>
<td>1(1)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>O(2)</td>
<td>30(1)</td>
<td>28(1)</td>
<td>30(1)</td>
<td>-6(1)</td>
<td>-4(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>B(2)</td>
<td>45(3)</td>
<td>46(3)</td>
<td>35(3)</td>
<td>-8(2)</td>
<td>-2(2)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>28(2)</td>
<td>25(2)</td>
<td>30(2)</td>
<td>0(2)</td>
<td>-2(1)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>19(2)</td>
<td>30(2)</td>
<td>37(2)</td>
<td>1(2)</td>
<td>0(1)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>28(2)</td>
<td>21(2)</td>
<td>33(2)</td>
<td>-1(2)</td>
<td>6(1)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>28(2)</td>
<td>31(2)</td>
<td>36(2)</td>
<td>-1(2)</td>
<td>9(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(7)</td>
<td>42(2)</td>
<td>30(2)</td>
<td>34(2)</td>
<td>1(2)</td>
<td>14(2)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(8)</td>
<td>44(2)</td>
<td>31(2)</td>
<td>24(2)</td>
<td>0(2)</td>
<td>5(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(9)</td>
<td>31(2)</td>
<td>26(2)</td>
<td>26(2)</td>
<td>-1(2)</td>
<td>-1(1)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(10)</td>
<td>27(2)</td>
<td>18(2)</td>
<td>30(2)</td>
<td>1(2)</td>
<td>2(1)</td>
<td>3(2)</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>C(11)</td>
<td>26(2)</td>
<td>29(2)</td>
<td>22(2)</td>
<td>-1(2)</td>
<td>-2(1)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>27(2)</td>
<td>31(2)</td>
<td>24(2)</td>
<td>1(2)</td>
<td>0(1)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>33(2)</td>
<td>31(2)</td>
<td>29(2)</td>
<td>-2(2)</td>
<td>1(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(14)</td>
<td>57(3)</td>
<td>27(2)</td>
<td>29(2)</td>
<td>22(2)</td>
<td>-1(2)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>138(5)</td>
<td>47(3)</td>
<td>43(3)</td>
<td>13(2)</td>
<td>30(3)</td>
<td>23(3)</td>
</tr>
<tr>
<td>C(16)</td>
<td>63(3)</td>
<td>74(4)</td>
<td>112(5)</td>
<td>0(4)</td>
<td>30(3)</td>
<td>-3(3)</td>
</tr>
<tr>
<td>C(17)</td>
<td>69(3)</td>
<td>71(4)</td>
<td>81(4)</td>
<td>-15(3)</td>
<td>23(3)</td>
<td>-16(3)</td>
</tr>
<tr>
<td>C(18)</td>
<td>44(2)</td>
<td>72(3)</td>
<td>40(2)</td>
<td>-11(2)</td>
<td>11(2)</td>
<td>-15(3)</td>
</tr>
<tr>
<td>C(19)</td>
<td>49(3)</td>
<td>69(3)</td>
<td>46(3)</td>
<td>-1(2)</td>
<td>-5(2)</td>
<td>7(2)</td>
</tr>
<tr>
<td>C(20)</td>
<td>74(3)</td>
<td>47(3)</td>
<td>41(3)</td>
<td>-5(2)</td>
<td>-4(2)</td>
<td>9(2)</td>
</tr>
<tr>
<td>C(21)</td>
<td>64(3)</td>
<td>67(3)</td>
<td>37(3)</td>
<td>-3(2)</td>
<td>-9(2)</td>
<td>3(3)</td>
</tr>
<tr>
<td>C(22)</td>
<td>26(2)</td>
<td>27(2)</td>
<td>19(2)</td>
<td>1(1)</td>
<td>-2(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(23)</td>
<td>25(2)</td>
<td>28(2)</td>
<td>22(2)</td>
<td>0(2)</td>
<td>-1(1)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(24)</td>
<td>30(2)</td>
<td>30(2)</td>
<td>34(2)</td>
<td>-3(2)</td>
<td>-5(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(25)</td>
<td>21(2)</td>
<td>35(2)</td>
<td>36(2)</td>
<td>-1(2)</td>
<td>-5(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(26)</td>
<td>24(2)</td>
<td>32(2)</td>
<td>23(2)</td>
<td>4(2)</td>
<td>0(1)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(27)</td>
<td>20(2)</td>
<td>40(2)</td>
<td>34(2)</td>
<td>3(2)</td>
<td>-2(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(28)</td>
<td>32(2)</td>
<td>37(2)</td>
<td>33(2)</td>
<td>1(2)</td>
<td>3(2)</td>
<td>9(2)</td>
</tr>
<tr>
<td>C(29)</td>
<td>35(2)</td>
<td>31(2)</td>
<td>30(2)</td>
<td>-2(2)</td>
<td>0(2)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(30)</td>
<td>27(2)</td>
<td>33(2)</td>
<td>23(2)</td>
<td>0(2)</td>
<td>0(1)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(31)</td>
<td>24(2)</td>
<td>31(2)</td>
<td>18(2)</td>
<td>2(1)</td>
<td>3(1)</td>
<td>3(2)</td>
</tr>
<tr>
<td>C(32)</td>
<td>35(2)</td>
<td>26(2)</td>
<td>28(2)</td>
<td>-4(2)</td>
<td>-3(1)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(33)</td>
<td>38(2)</td>
<td>29(2)</td>
<td>28(2)</td>
<td>-2(2)</td>
<td>-2(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(34)</td>
<td>44(2)</td>
<td>32(2)</td>
<td>32(2)</td>
<td>-4(2)</td>
<td>-3(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(35)</td>
<td>79(3)</td>
<td>44(3)</td>
<td>32(2)</td>
<td>1(2)</td>
<td>-4(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(36)</td>
<td>65(3)</td>
<td>78(4)</td>
<td>59(3)</td>
<td>8(3)</td>
<td>6(3)</td>
<td>19(3)</td>
</tr>
<tr>
<td>C(37)</td>
<td>77(4)</td>
<td>95(5)</td>
<td>77(4)</td>
<td>-9(4)</td>
<td>-36(3)</td>
<td>8(4)</td>
</tr>
<tr>
<td>C(38)</td>
<td>63(3)</td>
<td>80(4)</td>
<td>53(3)</td>
<td>-14(3)</td>
<td>-5(3)</td>
<td>-18(3)</td>
</tr>
<tr>
<td>C(39)</td>
<td>68(3)</td>
<td>48(3)</td>
<td>34(2)</td>
<td>-3(2)</td>
<td>1(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(40)</td>
<td>59(3)</td>
<td>76(4)</td>
<td>69(4)</td>
<td>-18(3)</td>
<td>2(3)</td>
<td>16(3)</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>y</td>
<td>z</td>
<td>U(eq)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(3)</td>
<td>5892</td>
<td>8068</td>
<td>5259</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(4)</td>
<td>7037</td>
<td>8069</td>
<td>4388</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(6)</td>
<td>7246</td>
<td>7937</td>
<td>3203</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(7)</td>
<td>6408</td>
<td>7713</td>
<td>2178</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(8)</td>
<td>4373</td>
<td>7526</td>
<td>2008</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(9)</td>
<td>3199</td>
<td>7469</td>
<td>2873</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(11A)</td>
<td>4578</td>
<td>8906</td>
<td>5940</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(11B)</td>
<td>4711</td>
<td>6715</td>
<td>5977</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(12A)</td>
<td>2721</td>
<td>6543</td>
<td>6267</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(12B)</td>
<td>2692</td>
<td>8736</td>
<td>6294</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(13A)</td>
<td>4091</td>
<td>8763</td>
<td>7153</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(13B)</td>
<td>4267</td>
<td>6600</td>
<td>7099</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(14)</td>
<td>3971</td>
<td>6547</td>
<td>8371</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(15A)</td>
<td>2729</td>
<td>4441</td>
<td>8782</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(15B)</td>
<td>1929</td>
<td>6097</td>
<td>9003</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(16A)</td>
<td>1628</td>
<td>4079</td>
<td>7817</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(16B)</td>
<td>728</td>
<td>4139</td>
<td>8373</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(17A)</td>
<td>155</td>
<td>6927</td>
<td>8103</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(17B)</td>
<td>122</td>
<td>5701</td>
<td>7464</td>
<td>88</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for buch350.
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H(18)</td>
<td>1216</td>
<td>7713</td>
<td>7018</td>
<td>62</td>
</tr>
<tr>
<td>H(19A)</td>
<td>1784</td>
<td>10439</td>
<td>7537</td>
<td>66</td>
</tr>
<tr>
<td>H(19B)</td>
<td>503</td>
<td>9947</td>
<td>7748</td>
<td>66</td>
</tr>
<tr>
<td>H(20A)</td>
<td>1228</td>
<td>8939</td>
<td>8754</td>
<td>65</td>
</tr>
<tr>
<td>H(20B)</td>
<td>1743</td>
<td>10946</td>
<td>8639</td>
<td>65</td>
</tr>
<tr>
<td>H(21A)</td>
<td>3199</td>
<td>8868</td>
<td>9071</td>
<td>68</td>
</tr>
<tr>
<td>H(21B)</td>
<td>3545</td>
<td>9757</td>
<td>8404</td>
<td>68</td>
</tr>
<tr>
<td>H(24)</td>
<td>711</td>
<td>3997</td>
<td>3420</td>
<td>38</td>
</tr>
<tr>
<td>H(25)</td>
<td>-655</td>
<td>6237</td>
<td>3606</td>
<td>37</td>
</tr>
<tr>
<td>H(27)</td>
<td>-1160</td>
<td>9314</td>
<td>4013</td>
<td>38</td>
</tr>
<tr>
<td>H(28)</td>
<td>-621</td>
<td>12005</td>
<td>4519</td>
<td>41</td>
</tr>
<tr>
<td>H(29)</td>
<td>1352</td>
<td>12552</td>
<td>4815</td>
<td>38</td>
</tr>
<tr>
<td>H(30)</td>
<td>2759</td>
<td>10421</td>
<td>4605</td>
<td>33</td>
</tr>
<tr>
<td>H(32A)</td>
<td>2005</td>
<td>2118</td>
<td>3332</td>
<td>36</td>
</tr>
<tr>
<td>H(32B)</td>
<td>3373</td>
<td>1752</td>
<td>3303</td>
<td>36</td>
</tr>
<tr>
<td>H(33A)</td>
<td>3404</td>
<td>3991</td>
<td>2450</td>
<td>38</td>
</tr>
<tr>
<td>H(33B)</td>
<td>2010</td>
<td>4065</td>
<td>2449</td>
<td>38</td>
</tr>
<tr>
<td>H(34A)</td>
<td>1936</td>
<td>875</td>
<td>2209</td>
<td>44</td>
</tr>
<tr>
<td>H(34B)</td>
<td>3319</td>
<td>840</td>
<td>2193</td>
<td>44</td>
</tr>
<tr>
<td>H(35)</td>
<td>2525</td>
<td>4791</td>
<td>1307</td>
<td>62</td>
</tr>
<tr>
<td>H(36A)</td>
<td>775</td>
<td>4060</td>
<td>764</td>
<td>81</td>
</tr>
<tr>
<td>H(36B)</td>
<td>1556</td>
<td>5007</td>
<td>246</td>
<td>81</td>
</tr>
<tr>
<td>H(37A)</td>
<td>1833</td>
<td>2373</td>
<td>-274</td>
<td>102</td>
</tr>
<tr>
<td>H(37B)</td>
<td>487</td>
<td>2346</td>
<td>-123</td>
<td>102</td>
</tr>
<tr>
<td>H(38A)</td>
<td>1519</td>
<td>-506</td>
<td>42</td>
<td>79</td>
</tr>
<tr>
<td>H(38B)</td>
<td>735</td>
<td>122</td>
<td>612</td>
<td>79</td>
</tr>
<tr>
<td>H(39)</td>
<td>2459</td>
<td>-929</td>
<td>118</td>
<td>60</td>
</tr>
<tr>
<td>H(40A)</td>
<td>4317</td>
<td>38</td>
<td>901</td>
<td>82</td>
</tr>
<tr>
<td>H(40B)</td>
<td>3717</td>
<td>-642</td>
<td>231</td>
<td>82</td>
</tr>
<tr>
<td>H(41A)</td>
<td>4803</td>
<td>2152</td>
<td>170</td>
<td>108</td>
</tr>
<tr>
<td>H(41B)</td>
<td>3509</td>
<td>2241</td>
<td>-151</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>H(42A)</td>
<td>3747</td>
<td>4898</td>
<td>388</td>
<td>105</td>
</tr>
<tr>
<td>H(42B)</td>
<td>4357</td>
<td>3920</td>
<td>1006</td>
<td>105</td>
</tr>
</tbody>
</table>

Table 6. Torsion angles [deg] for buch350.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Torsion Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(11)-O(1)-C(2)-C(1)</td>
<td>179.0(3)</td>
</tr>
<tr>
<td>C(11)-O(1)-C(2)-C(3)</td>
<td>0.0(5)</td>
</tr>
<tr>
<td>C(10)-C(1)-C(2)-O(1)</td>
<td>179.4(3)</td>
</tr>
<tr>
<td>C(22)-C(1)-C(2)-O(1)</td>
<td>-2.3(5)</td>
</tr>
<tr>
<td>C(10)-C(1)-C(2)-C(3)</td>
<td>-1.6(5)</td>
</tr>
<tr>
<td>C(22)-C(1)-C(2)-C(3)</td>
<td>176.6(3)</td>
</tr>
<tr>
<td>O(1)-C(2)-C(3)-C(4)</td>
<td>177.5(3)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-C(4)</td>
<td>-1.3(5)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-C(5)</td>
<td>1.8(6)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)-C(10)</td>
<td>0.7(5)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)-C(6)</td>
<td>178.9(3)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)-C(7)</td>
<td>-178.2(4)</td>
</tr>
<tr>
<td>C(10)-C(5)-C(6)-C(7)</td>
<td>0.0(6)</td>
</tr>
<tr>
<td>C(5)-C(6)-C(7)-C(8)</td>
<td>1.6(6)</td>
</tr>
<tr>
<td>C(6)-C(7)-C(8)-C(9)</td>
<td>-1.2(6)</td>
</tr>
<tr>
<td>C(7)-C(8)-C(9)-C(10)</td>
<td>-0.8(6)</td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)-C(5)</td>
<td>2.3(5)</td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)-C(1)</td>
<td>-177.7(4)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(10)-C(9)</td>
<td>176.4(4)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(10)-C(9)</td>
<td>-1.9(5)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(10)-C(1)</td>
<td>-3.7(5)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(10)-C(1)</td>
<td>178.1(3)</td>
</tr>
<tr>
<td>C(2)-C(1)-C(10)-C(9)</td>
<td>-175.9(3)</td>
</tr>
<tr>
<td>C(22)-C(1)-C(10)-C(9)</td>
<td>5.8(5)</td>
</tr>
</tbody>
</table>
C(2)-C(1)-C(10)-C(5) 4.1(5)
C(22)-C(1)-C(10)-C(5) -174.2(3)
C(2)-O(1)-C(11)-C(12) 178.1(3)
O(1)-C(11)-C(12)-C(13) 173.8(3)
C(11)-C(12)-C(13)-B(1) -173.4(4)
C(18)-B(1)-C(13)-C(12) -20.3(6)
C(14)-B(1)-C(13)-C(12) 172.7(4)
C(18)-B(1)-C(14)-C(21) -70.4(5)
C(13)-B(1)-C(14)-C(21) 98.2(5)
C(18)-B(1)-C(14)-C(15) 47.6(5)
C(13)-B(1)-C(14)-C(15) -143.8(4)
C(21)-C(14)-C(15)-C(16) 109.9(5)
B(1)-C(14)-C(15)-C(16) -2.2(6)
C(14)-C(15)-C(16)-C(17) -50.6(7)
C(15)-C(16)-C(17)-C(18) 50.8(7)
C(16)-C(17)-C(18)-C(19) -115.0(5)
C(16)-C(17)-C(18)-B(1) 0.6(7)
C(14)-B(1)-C(18)-C(17) -50.4(6)
C(13)-B(1)-C(18)-C(17) 141.3(5)
C(14)-B(1)-C(18)-C(19) 70.6(5)
C(13)-B(1)-C(18)-C(19) -97.7(5)
C(17)-C(18)-C(19)-C(20) 65.2(6)
B(1)-C(18)-C(19)-C(20) -59.1(5)
C(18)-C(19)-C(20)-C(21) 53.2(6)
C(19)-C(20)-C(21)-C(14) -52.3(6)
B(1)-C(14)-C(21)-C(20) 58.0(5)
C(15)-C(14)-C(21)-C(20) -59.4(5)
C(2)-C(1)-C(22)-C(23) -114.2(4)
C(10)-C(1)-C(22)-C(23) 64.1(4)
C(2)-C(1)-C(22)-C(31) 68.7(4)
C(10)-C(1)-C(22)-C(31) -113.0(4)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(32)-O(2)-C(23)-C(22)</td>
<td>-161.1(3)</td>
</tr>
<tr>
<td>C(32)-O(2)-C(23)-C(24)</td>
<td>19.9(5)</td>
</tr>
<tr>
<td>C(31)-C(22)-C(23)-O(2)</td>
<td>-176.2(3)</td>
</tr>
<tr>
<td>C(1)-C(22)-C(23)-O(2)</td>
<td>6.6(4)</td>
</tr>
<tr>
<td>C(31)-C(22)-C(23)-C(24)</td>
<td>2.8(5)</td>
</tr>
<tr>
<td>C(1)-C(22)-C(23)-C(24)</td>
<td>-174.3(3)</td>
</tr>
<tr>
<td>O(2)-C(23)-C(24)-C(25)</td>
<td>178.3(3)</td>
</tr>
<tr>
<td>C(22)-C(23)-C(24)-C(25)</td>
<td>-0.6(5)</td>
</tr>
<tr>
<td>C(23)-C(24)-C(25)-C(26)</td>
<td>-1.2(5)</td>
</tr>
<tr>
<td>C(24)-C(25)-C(26)-C(27)</td>
<td>-179.3(3)</td>
</tr>
<tr>
<td>C(24)-C(25)-C(26)-C(31)</td>
<td>0.6(5)</td>
</tr>
<tr>
<td>C(25)-C(26)-C(27)-C(28)</td>
<td>177.8(3)</td>
</tr>
<tr>
<td>C(31)-C(26)-C(27)-C(28)</td>
<td>-2.1(5)</td>
</tr>
<tr>
<td>C(26)-C(27)-C(28)-C(29)</td>
<td>1.0(6)</td>
</tr>
<tr>
<td>C(27)-C(28)-C(29)-C(30)</td>
<td>0.2(6)</td>
</tr>
<tr>
<td>C(28)-C(29)-C(30)-C(31)</td>
<td>-0.3(6)</td>
</tr>
<tr>
<td>C(29)-C(30)-C(31)-C(26)</td>
<td>-0.8(5)</td>
</tr>
<tr>
<td>C(29)-C(30)-C(31)-C(22)</td>
<td>179.6(3)</td>
</tr>
<tr>
<td>C(25)-C(26)-C(31)-C(30)</td>
<td>-177.9(3)</td>
</tr>
<tr>
<td>C(27)-C(26)-C(31)-C(30)</td>
<td>1.9(5)</td>
</tr>
<tr>
<td>C(25)-C(26)-C(31)-C(22)</td>
<td>1.7(5)</td>
</tr>
<tr>
<td>C(27)-C(26)-C(31)-C(22)</td>
<td>-178.5(3)</td>
</tr>
<tr>
<td>C(23)-C(22)-C(31)-C(30)</td>
<td>176.2(3)</td>
</tr>
<tr>
<td>C(1)-C(22)-C(31)-C(30)</td>
<td>-6.7(5)</td>
</tr>
<tr>
<td>C(23)-C(22)-C(31)-C(26)</td>
<td>-3.3(5)</td>
</tr>
<tr>
<td>C(1)-C(22)-C(31)-C(26)</td>
<td>173.8(3)</td>
</tr>
<tr>
<td>C(23)-O(2)-C(32)-C(33)</td>
<td>71.7(4)</td>
</tr>
<tr>
<td>O(2)-C(32)-C(33)-C(34)</td>
<td>172.0(3)</td>
</tr>
<tr>
<td>C(32)-C(33)-C(34)-B(2)</td>
<td>178.4(3)</td>
</tr>
<tr>
<td>C(35)-B(2)-C(34)-C(33)</td>
<td>3.0(6)</td>
</tr>
<tr>
<td>C(39)-B(2)-C(34)-C(33)</td>
<td>176.0(4)</td>
</tr>
</tbody>
</table>
\[
\begin{align*}
&C(34)-B(2)-C(35)-C(36) & \quad -127.6(5) \\
&C(39)-B(2)-C(35)-C(36) & \quad 58.9(5) \\
&C(34)-B(2)-C(35)-C(42) & \quad 109.4(5) \\
&C(39)-B(2)-C(35)-C(42) & \quad -64.2(5) \\
&C(42)-C(35)-C(36)-C(37) & \quad 66.8(7) \\
&B(2)-C(35)-C(36)-C(37) & \quad -50.7(6) \\
&C(35)-C(36)-C(37)-C(38) & \quad 43.5(7) \\
&C(36)-C(37)-C(38)-C(39) & \quad -42.6(7) \\
&C(37)-C(38)-C(39)-C(40) & \quad -68.7(7) \\
&C(37)-C(38)-C(39)-B(2) & \quad 48.9(6) \\
&C(35)-B(2)-C(39)-C(40) & \quad 65.5(5) \\
&C(34)-B(2)-C(39)-C(40) & \quad -108.4(5) \\
&C(35)-B(2)-C(39)-C(38) & \quad -57.8(5) \\
&C(34)-B(2)-C(39)-C(38) & \quad 128.3(4) \\
&C(38)-C(39)-C(40)-C(41) & \quad 65.7(6) \\
&B(2)-C(39)-C(40)-C(41) & \quad -53.9(6) \\
&C(39)-C(40)-C(41)-C(42) & \quad 45.8(7) \\
&C(40)-C(41)-C(42)-C(35) & \quad -44.7(8) \\
&C(36)-C(35)-C(42)-C(41) & \quad -67.8(7) \\
&B(2)-C(35)-C(42)-C(41) & \quad 52.0(7)
\end{align*}
\]
References

