Supporting Information

Enhanced cycling stability and rate capability of the graphene-supported commercialized Vat Blue 4 anode for advanced Li-ion batteries

Hongwei Kang,^{a,b,1} Quanwei Ma,^{b,c,1} Rui Wang,^{b,c} Longhai Zhang,^{a,b,c*} Shuisheng

Chen,^a* Xinrui Wang, ^a Chaofeng Zhang ^{a,b,c}*

^a School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, China

^b Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China

^c Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China

*Corresponding Authors: zlhedu@163.com (L. Zhang); chenss@fynu.edu.cn (S. Chen); <u>cfz@ahu.edu.cn</u> (C. Zhang)

¹ These authors contributed equally to this work

Preparation of VB4/rGO Composite: GO was first prepared by modified Hummers methods.¹ Subsequently, 120 mg GO and 0.3 mL ammonium hydroxide (Macklin, AR, 25%-28%) were dispersed in 60 mL DI-water under sonication for 0.5 h. Then, 400 mg VB4 (Bide Pharmatech Ltd. 99%) and 1.5 mL hydrazine hydrate (Aladdin, 98%) were added inside and kept at 100 °C for 1.5 h. After cooled down to room temperature, the products were obtained by vacuum filtration with water and ethyl alcohol (Hushi, 99.7%) washing. Finally, the sample was dried in a vacuum at 80 °C.

Preparation of rGO: GO was first prepared by modified Hummers methods.1 Subsequently, 120 mg GO and 0.3 mL ammonium hydroxide (Macklin, AR, 25%-28%) were dispersed in 60 mL DI-water under sonication for 0.5 h. Then, 1.5 mL hydrazine hydrate (Aladdin, 98%) were added inside and kept at 100 °C for 1.5 h. After cooled down to room temperature, the products were obtained by vacuum filtration with water and ethyl alcohol (Hushi, 99.7%) washing. Finally, the sample was dried in a vacuum at 80 °C (62.4 mg, yield: 52%). According to the yield of rGO (52%, $\gamma\% = m_{rGO}/m_{GO}*100\%$), the mass of rGO in VB4/rGO can be calculated to be about 62.4 mg (*i.e.* $120*\gamma\%$). Therefore, the contents of rGO and VB4 in VB4/rGO hybrid be calculated be about 13% $(\omega_{rGO}\%)$ can to and 87% $m_{rGO}/(m_{rGO}+m_{VB4})*100\%)$, respectively.

Materials characterizations: The morphology of samples was observed by SEM (JEOL-6300F) and TEM (JEM-2100). The compositions and specific surface areas were conducted on X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi), Fourier-transform infrared (FT-IR, Vertex80+Hyperion2000), and BET (ASAP-2010

surface area analyzer).

Electrochemical Measurements: The anodes were prepared by mixing products (70 wt%), Ketjen Black (20 wt%), and polyvinylidene fluoride (PVDF, 10 wt%) in NMP solvent. The areal mass loading of VB4/rGO is approximately 0.5-1.0 mg cm⁻². Afterward, the electrodes, coin-type cells (CR2032), separator, Li foil, and electrolyte (1 M LiPF₆) were assembled in a glove box. The Li-ion storage performance was measured on NEWARE tester (5 V/10 mA, Shenzhen, China) and electrochemical workstation (PMC1000) at temperature of 25 °C.

Theoretical Calculation: VB4 molecule adsorbed within the graphite sheets was constructed. Periodic density functional theory (DFT) computations were performed by using Material studio software. The generalized gradient approximation (GGA) and Perdew-Burke-Ernzerhof (PBE) functions were employed.² The plane-wave cutoff energy is 300 eV. An energy tolerance of 10^{-6} eV atom⁻¹ was used for the convergence. The charge-density differences and the density of states on this adsorbed model were explored. Additionally, the adsorption energy (ΔE) was calculated as follows:

$$\Delta E = E_{\rm VB4/rGO} - E_{\rm VB4} - E_{rGO}$$

in which the E_{VB4} , E_{rGO} , and $E_{VB4/rGO}$ are the energies of the VB4 molecule, rGO model, and the total adsorbed system, respectively.

Fig. S1 XPS survey spectra of the VB4/rGO, VB4, and GO.

Fig. S2 The optimized models of pristine VB4 and VB4/rGO hybrid.

Fig. S3 N_2 adsorption/desorption isotherms of the pristine VB4.

Fig.S4 EIS plots for VB4/rGO upon cycling at the current density of 1 A g⁻¹.

Fig. S5 E vs. t profiles for the GITT measurement.

Fig. S6 SEM cross-section image of the VB4/rGO electrode.

Fig. S7 The ex-situ XPS spectra of VB4/rGO anode under different charge/discharge states: (a) C 1s and (b) O 1s.

Electrode	electrolyte	Capacity	Cycling performance	Ref.
materials		$(mAh g^{-1})$	$(mAh g^{-1})$	
VB4/rGO	1 M LiPF ₆	1097@0.1 A g ⁻¹	537@1 A g ⁻¹ ,	This
		$315@5.0 \text{ A g}^{-1}$	1000 cycles	work
НРВ-СООН	1 M LiPF ₆	997@0.1 A g^{-1}	$750@2 \text{ A g}^{-1}$	3
		$290@5.0 \text{ A g}^{-1}$	500 cycles	
Li ₄ C ₈ H ₂ O ₆	1 M LiPF ₆	$251.7@0.05 \text{ A g}^{-1}$	$102.8@2.0 \text{ A g}^{-1}$	4
		$102.8@2.0 \text{ A g}^{-1}$	220 cycles	
Tp-Ta-COF	1 M LiPF ₆	441@0.2 A g ⁻¹	441@0.2 A g ⁻¹	5
		$195@2.0 \text{ A g}^{-1}$	800 cycles	
cPAN	1 M LiPF ₆	$551@0.05 \text{ A g}^{-1}$	810@1 A g ⁻¹	6
		$213@5.0 \text{ A g}^{-1}$	1090 cycles	
TP-OH-COF	1 M LiPF ₆	764.1@0.1 A g^{-1}	$156.3@5.0 \text{ A g}^{-1}$	7
		$114.7@10 \text{ A g}^{-1}$	8000 cycles	
Cl-cHBC	1.3 M LiPF ₆	393@0.1 A g ⁻¹	$220@8.0 \text{ A g}^{-1}$	8
		$75@20 \text{ A g}^{-1}$	1000 cycles	
Tp-Azo-COF	1 M LiTFSI	$613.8@0.1 \text{ A g}^{-1}$	$305.9@1 \text{ A g}^{-1}$	9
		90.76@2.4 A g ⁻¹	3000 ycles	
Li ₆ -HAT	1 M LiTFSI	$588@0.1 \text{ A g}^{-1}$	294.5@0.8 A g^{-1}	10
		$210@1.6 \text{ A g}^{-1}$	3000 cycles	
EA	1 M LiPF ₆	$644@0.1 \text{ A g}^{-1}$	162@1 A g ⁻¹	11
		$162@1 \text{ A g}^{-1}$	1000 cycles	
Te-BnV	1 M LiPF ₆	$502@0.1 \text{ A g}^{-1}$	502@0.1 A g ⁻¹	12
		$252@2 \text{ A g}^{-1}$	40 cycles	

Table S1. Comparison of the Li-storage performance of reported organic anodematerials with resultant VB4/rGO.

Reference

- Y. Wu, B. Wang, Y. Ma, Y. Huang, N. Li, F. Zhang and Y. Chen, *ACS Nano*, 2008, 2, 463-470.
- 2. J. Perdew, K.Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- J. Zhang, Y. Xia, C. Ye, H. Qiu, N. Zhang, G. Yin, G. Ren, C. Chen, Y. Yuan and H.-L. Wang, *Energy Storage Mater.*, 2021, 42, 109-117.
- 4. H. Zhang, Y. Lin, L. Chen, D. Wang, H. Hu and C. Shen, *ChemElectroChem*, 2020, 7, 306-313.
- 5. G. Zhao, Y. Sun, Y. Yang, C. Zhang, Q. An and H. Guo, *EcoMat*, 2022, e212221.
- W. Zhang, M. Sun, J. Yin, E. Abou-Hamad, U. Schwingenschlogl, P. Costa and H. N. Alshareef, *Angew Chem Int Ed Engl*, 2021, 60, 1355-1363.
- L. Zhai, G. Li, X. Yang, S. Park, D. Han, L. Mi, Y. Wang, Z. Li and S. Y. Lee, Advanced Functional Materials, 2021, 32, 2108798.
- 8. K. Eom, M. Kang, J. H. Park, S. H. Joo, J. Park, J. Lee, S. K. Kwak, S. Ahn and S. J. Kang, *Journal of Materials Chemistry A*, 2021, **9**, 20607-20614.
- 9. G. Zhao, Y. Zhang, Z. Gao, H. Li, S. Liu, S. Cai, X. Yang, H. Guo and X. Sun, ACS Energy Letters, 2020, 5, 1022-1031.
- S.-B. Xia, T. Liu, W.-J. Huang, H.-B. Suo, F.-X. Cheng, H. Guo and J.-J. Liu, Journal of Energy Chemistry, 2020, 51, 303-311.
- T. Xia, Y. Wang, B. Wang, Z. Yang, G. Pan, L. Zhang and J. Zhang, ChemElectroChem, 2019, 6, 4765-4772.
- 12. G. Li, B. Zhang, J. Wang, H. Zhao, W. Ma, L. Xu, W. Zhang, K. Zhou, Y. Du and G. He, *Angew Chem Int Ed Engl*, 2019, **58**, 8468-8473.