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Preparation of VB4/rGO Composite: GO was first prepared by modified Hummers 

methods.1 Subsequently, 120 mg GO and 0.3 mL ammonium hydroxide (Macklin, AR, 

25%-28%) were dispersed in 60 mL DI-water under sonication for 0.5 h. Then, 400 

mg VB4 (Bide Pharmatech Ltd. 99%) and 1.5 mL hydrazine hydrate (Aladdin, 98%) 

were added inside and kept at 100 ℃ for 1.5 h. After cooled down to room 

temperature, the products were obtained by vacuum filtration with water and ethyl 

alcohol (Hushi, 99.7%) washing. Finally, the sample was dried in a vacuum at 80 ℃.

Preparation of rGO: GO was first prepared by modified Hummers methods.1 

Subsequently, 120 mg GO and 0.3 mL ammonium hydroxide (Macklin, AR, 25%-

28%) were dispersed in 60 mL DI-water under sonication for 0.5 h. Then, 1.5 mL 

hydrazine hydrate (Aladdin, 98%) were added inside and kept at 100 ℃ for 1.5 h. 

After cooled down to room temperature, the products were obtained by vacuum 

filtration with water and ethyl alcohol (Hushi, 99.7%) washing. Finally, the sample 

was dried in a vacuum at 80 ℃ (62.4 mg, yield: 52%). According to the yield of rGO 

(52%, γ% = mrGO/mGO*100%), the mass of rGO in VB4/rGO can be calculated to be 

about 62.4 mg (i.e. 120*γ%). Therefore, the contents of rGO and VB4 in VB4/rGO 

hybrid can be calculated to be about 13% and 87% (ωrGO% = 

mrGO/(mrGO+mVB4)*100%), respectively.

Materials characterizations: The morphology of samples was observed by SEM 

(JEOL-6300F) and TEM (JEM-2100). The compositions and specific surface areas 

were conducted on X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi), 

Fourier-transform infrared (FT-IR, Vertex80+Hyperion2000), and BET (ASAP-2010 



surface area analyzer).

Electrochemical Measurements: The anodes were prepared by mixing products (70 

wt%), Ketjen Black (20 wt%), and polyvinylidene fluoride (PVDF, 10 wt%) in NMP 

solvent. The areal mass loading of VB4/rGO is approximately 0.5-1.0 mg cm−2. 

Afterward, the electrodes, coin-type cells (CR2032), separator, Li foil, and electrolyte 

(1 M LiPF6) were assembled in a glove box. The Li-ion storage performance was 

measured on NEWARE tester (5 V/10 mA, Shenzhen, China) and electrochemical 

workstation (PMC1000) at temperature of 25 ºC.

Theoretical Calculation: VB4 molecule adsorbed within the graphite sheets was 

constructed. Periodic density functional theory (DFT) computations were performed 

by using Material studio software. The generalized gradient approximation (GGA) 

and Perdew-Burke-Ernzerhof (PBE) functions were employed.2 The plane-wave 

cutoff energy is 300 eV. An energy tolerance of 10−6 eV atom−1 was used for the 

convergence. The charge-density differences and the density of states on this adsorbed 

model were explored. Additionally, the adsorption energy ( ) was calculated as E

follows:

VB4/rGO VB4    rGOE E E E

in which the , , and  are the energies of the VB4 molecule, rGO VB4E rGOE VB4/rGOE

model, and the total adsorbed system, respectively.



Fig. S1 XPS survey spectra of the VB4/rGO, VB4, and GO.



Fig. S2 The optimized models of pristine VB4 and VB4/rGO hybrid.



Fig. S3 N2 adsorption/desorption isotherms of the pristine VB4.



Fig.S4 EIS plots for VB4/rGO upon cycling at the current density of 1 A g-1.



Fig. S5 E vs. t profiles for the GITT measurement.



Fig. S6 SEM cross-section image of the VB4/rGO electrode.



Fig. S7 The ex-situ XPS spectra of VB4/rGO anode under different charge/discharge 

states: (a) C 1s and (b) O 1s.



Table S1. Comparison of the Li-storage performance of reported organic anode 

materials with resultant VB4/rGO.

Electrode 

materials
electrolyte

Capacity 

(mAh g–1)

Cycling performance 

(mAh g–1)
Ref.

VB4/rGO 1 M LiPF6

1097@0.1 A g–1

315@5.0 A g–1

537@1 A g–1, 

1000 cycles

This

work

HPB-COOH 1 M LiPF6

997@0.1 A g–1

290@5.0 A g–1

750@2 A g–1

500 cycles
3

Li4C8H2O6 1 M LiPF6

251.7@0.05 A g–1

102.8@2.0 A g–1

102.8@2.0 A g–1

220 cycles
4

Tp-Ta-COF 1 M LiPF6

441@0.2 A g–1

195@2.0 A g–1

441@0.2 A g–1

800 cycles
5

cPAN 1 M LiPF6

551@0.05 A g–1

213@5.0 A g–1

810@1 A g–1

1090 cycles
6

TP–OH–COF 1 M LiPF6

764.1@0.1 A g–1

114.7@10 A g–1

156.3@5.0 A g–1

8000 cycles
7

Cl-cHBC 1.3 M LiPF6

393@0.1 A g–1

75@20 A g–1

220@8.0 A g–1

1000 cycles
8

Tp-Azo-COF 1 M LiTFSI
613.8@0.1 A g–1

90.76@2.4 A g–1

305.9@1 A g–1

3000 ycles
9

Li6 -HAT 1 M LiTFSI
588@0.1 A g–1

210@1.6 A g–1

294.5@0.8 A g–1

3000 cycles
10

EA 1 M LiPF6

644@0.1 A g–1

162@1 A g–1

162@1 A g–1

1000 cycles
11

Te-BnV 1 M LiPF6

502@0.1 A g–1

252@2 A g–1

502@0.1 A g–1

40 cycles
12
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