Supporting Information

Photoinduced transient activating strategy for late-stage

chemoselective C(sp³)-H trifluoromethylation of azines

Mengjun Huang,[†] Jiawei Ma,[†] Zhenlei Zou,[†] Heyin Li,[†] Jiyang Liu,[†] Lingyu Kong,[†] Yi Pan,[†] Weigang Zhang,^{*,†} Yong Liang,^{*,†} and Yi Wang ^{*,†}

[†]State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry & Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.

*E-mail: wgzhang@nju.edu.cn; yongliang@nju.edu.cn; yiwang@nju.edu.cn.

Table of Contents

I. General Methods	S2
II. Synthesis of Starting Materials	S3
III. Optimisations of the Reaction Conditions	S3
IV. General Procedure for the Synthesis of the Products 3-68	S7
V. Mechanistic studies	S7
VI. References	S29
VII. Characteristic Data	S30
VIII. X-ray crystallography data for 10, 54, 72	S60
IX. NMR Spectra for compounds 3-68	S65

I. General Methods

All reactions were performed in flame-dried glassware with magnetic stirring bar and sealed with a rubber septum. The solvents were distilled by standard methods. Reagents were obtained from commercial suppliers and used without further purification unless otherwise noted. Silica gel column chromatography was carried out using silica Gel 60 (230-400 mesh). Analytical thin layer chromatography (TLC) was done using silica Gel (silica gel 60 F254). TLC plates were analyzed by an exposure to ultraviolet (UV) light and/or submersion in phosphomolybdic acid solution or submersion in KMnO₄ solution or in I₂. NMR experiments were measured on a Bruker AVANCE III-400 or 500 spectrometer and carried out in chloroform-d (CDCl₃) or acetonitrile-d₃ (CD₃CN). ¹H NMR and ¹³C NMR spectra were recorded at 400 MHz or 500 MHz and 100 MHz or 125 MHz spectrometers, respectively.¹⁹F NMR spectra were recorded at 376 MHz or 470 MHz spectrometers. Chemical shifts are reported as δ values relative to internal TMS (δ 0.00 for ¹H NMR), chloroform (δ 7.26 for ¹H NMR), acetonitrile (δ 1.94 for ¹H NMR), chloroform (δ 77.00 for ¹³C NMR), and acetonitrile (δ 1.32 or 118.26 for ¹³C NMR) in parts per million (ppm). The following abbreviations are used for the multiplicities: s: singlet, d: doublet, dd: doublet of doublet, t: triplet, q: quadruplet, m: multiplet, br: broad signal for proton spectra; Coupling constants (J) are reported in Hertz (Hz). Melting points were uncorrected. Infrared spectra were obtained on agilent Cary630. HRMS were recorded on a Bruker miccOTOF-Q111. GC-MS spectra were performed on Agilent 5977B.

Medium-sized screw-cap test tubes (8 mL) were used for all 0.20 mmol scale reactions: Fisher 13 x 100 mm tubes (Cat. No.1495935C)

Cap with Septa: Thermo Scientific ASM PHN CAP w/PTFE/SIL (Cat. No.03378316)

II. Synthesis of Starting Materials

Substrates **S3-S6**, **S8-S9**, **S15**, **S16**, **S18-S21**, **S52**, **S53**, **S55**, **S57-S61** were purchased from commercial sources (Alfa, TCI, Energy and Macklin) and used as received. Substrates **2a-2i** were prepared according to the literature.¹ Substrates **S17** were prepared according to the literature.² Substrates **S7**, **S10-S14**, **S22-S27** were prepared according to the literature.³ Substrates **S28-S40**, **S42-S51** were prepared according to the literature.⁴ Substrates **S41** were prepared according to the literature.⁵

III. Optimizations of the Reaction Conditions

Table S1: Optimization of base ^a

H N	+ Me_{-} N OTf Ph O = S = O CE	Base CH ₃ CN, rt, Ar, 26 W CFL	CF ₃
1 , 0.2mmol	2a, IMDN-Tf		3
Entry	Base	pKa	Yield ^b
1	K ₃ PO ₄	12.32	38% ^c
2	Na ₂ CO ₃	10.33	29% ^d
3	Et ₃ N	10.75	40%
4	Pyridine	5.23	23%
5	4-tert-Butylpydrdine	5.99	40%
6	2,6-Lutidine	6.72	55%
7	4-Methoxypyridine	6.58	27%
8	DABCO	8.89	n.d.
9	DIPEA	10.98	30%

^{*a*} All reactions were carried out with **1** (28.6 mg, 0.20 mmol), **2a** (0.30 mmol, 1.2 equiv) and Base (0.24 mmol, 1.2 equiv) in CH₃CN (2.0 mL) at rt under Ar and 26W CFL. ^{*b*} Yields determined by ¹⁹F NMR spectroscopy using (trifluoromethoxy)benzene as an internal standard. ^{*c*} K₃PO₄ (0.2 equiv); ^{*d*} Na₂CO₃ (0.2 equiv). DABCO = Triethylenediamine; DIPEA = N,N-Diisopropylethylamine

Table S2: Optimization of solvent ^a

^{*a*} All reactions were carried out with **1** (28.6 mg, 0.20 mmol), **2a** (0.36 mmol, 1.8 equiv) and 2,6-Lutidine (0.35 mmol, 1.75 equiv) in Solvent (2.0 mL) at rt under Ar and 26W CFL. ^{*b*} Yields determined by ¹⁹F NMR spectroscopy using (trifluoromethoxy)benzene as an internal standard.

Table S3: Optimization of material ratio ^a

Entry	1 (equiv)	2a (equiv)	2,6-Lutidine (equiv)	Yield ^b
_				(by-product)
1	1	1.5	0.5	56%(8%)
2	1	1.5	1.2	58%(5%)
3	1	1.5	1.5	63%(5%)
4	1	1.5	2	66%(6%)
5	1	1.5	3	52%(6%)
6	1	1.6	1.75/(0.35mmol)	65%(5%)
7	1	1.7	1.75/(0.35mmol)	67%(6%)
8	1	1.8	1.75/(0.35mmol)	73%(6%)
9	1	1.9	1.75/(0.35mmol)	48%(23%)
10	1	2	1.2	37%(32%)
11	1	2	1.5	31%(32%)
12	1	2	2	37%(32%)

^{*a*} All reactions were carried out with **1** (28.6 mg, 0.20 mmol) in CH₃CN (2.0 mL) at rt under Ar and 26 W CFL. ^{*b*} Yields determined by ¹⁹F NMR spectroscopy using (trifluoromethoxy)benzene as an internal standard.

Entry	Light sources	Yield
1	5 W CFL	63%
2	13 W CFL	67%
3	40 W CFL	65%
4	30 W blue LEDs	54%
5	60 W blue LEDs	53%

^{*a*} All reactions were carried out with **1** (28.6 mg, 0.20 mmol), **2a** (0.36 mmol, 1.8 equiv) and 2,6-Lutidine (0.35 mmol, 1.75 eq.) in CH₃CN (2.0 mL) at rt under Ar. ^{*b*} Yields determined by ¹⁹F NMR spectroscopy using (trifluoromethoxy)benzene as an internal standard.

^a All reactions were carried out with **1** (28.6 mg, 0.20 mmol), **2** (0.36 mmol, 1.8 equiv) and 2,6-Lutidine (0.35 mmol, 1.75 equiv) in CH₃CN (2.0 mL) at rt under Ar and 26W CFL. ^{*b*} Yields determined by ¹⁹F NMR spectroscopy using (trifluoromethoxy)benzene as an internal standard.

IV. General Procedure for the Synthesis of the Products 3-68

General procedure for the synthesis of products 3-51

Condition A: Under argon, to a solution of **2a** (0.36 mmol, 1.8 equiv), 2,6-Lutidine (0.35 mmol, 1.75 eq.) in CH₃CN (2 mL) was added corresponding Substrates (0.2 mmol) at room temperature. After that, the tube was exposed to a 26 W compact fluorescent light at room temperature about 2-12 h until the reaction was completed as monitored by TLC analysis. The reaction mixture was evaporated in vacuo. The crude products were directly purified by flash chromatography on silica gel to give the desired product.

General procedure for the synthesis of products 52-68

Condition B: Under argon, to a solution of **2d** (0.3 mmol, 1.5 equiv) and alkenes (0.4 mmol, 2 equiv) in CH₃CN (2 mL) was added corresponding Substrates (0.2 mmol) at room temperature. After that, the tube was exposed to a 26 W compact fluorescent light at room temperature about 12 h until the reaction was completed as monitored by TLC analysis. The reaction mixture was evaporated in vacuo. The crude products were directly purified by flash chromatography on silica gel to give the desired product.

V. Mechanistic studies

V-1. Control Experiment

Control Experiment (I):

Under argon, to a solution of **2a** (0.36 mmol, 1.8 equiv), 2,6-Lutidine (0.35 mmol, 1.75 eq.) in CH₃CN (2 mL) was added lepidine (0.2 mmol) at room temperature. After that, the tube was exposed to a 26 W compact fluorescent light at room temperature about 2 h until the reaction was completed as monitored by TLC analysis. Subsequently, the reaction mixture was analyzed by GC-MS. The reaction mixturewas evaporated in vacuo. The crude products were directly purified by flash chromatography on silica gel to give the desired product **3**. At the same time, GC-MS analysis indicated that this Tf-shift product **69** was formed.

Control Experiment (II):

In order to verify the correctness of the Tf-shift process, we tried to introduce a cyano group at the benzyl position to enhance the acidity of the benzyl position, hoping to obtain a stable trifluoromethanesulfonyl transfer intermediate. Under argon, to a solution of **2a** (0.36 mmol, 1.8 equiv), 2,6-Lutidine (0.35 mmol, 1.75 eq.) in CH₃CN (2 mL) was added 4-Pyridineacetonitrile (0.2 mmol) at room temperature. After that, the tube was exposed to a 26 W compact fluorescent light at room temperature about 2-12 h until the reaction was completed as monitored by TLC analysis. Subsequently, The Tf-shift product were directly purified by flash chromatography on silica gel to give and confirmed its structure by single crystal diffraction.

Control Experiment (III):

Under argon, to a solution of **2a** (0.36 mmol, 1.8 equiv), TEMPO (3.0 equiv), 2,6-Lutidine (0.35 mmol, 1.75 eq.) in CH₃CN (2 mL) was added lepidine (0.2 mmol) at room temperature. After that, the tube was exposed to a 26 W compact fluorescent light at room temperature about 2-12 h until the reaction was completed as monitored by TLC analysis. Subsequently, the reaction mixture was analyzed by GC-MS. GC-MS analysis of this reaction mixture showed that the desired product was not formed.

Control Experiment (IV):

Under argon, to a solution of **2a** (0.3 mmol, 1.5 equiv), 2,6-Lutidine (0.35 mmol, 1.75 eq.) in CH₃CN (2 mL) was added 4-benzylpyridine (0.2 mmol) at standard conditions. After that, the tube was exposed to a 26 W compact fluorescent light at room temperature about 2-12 h until the reaction was completed as monitored by TLC analysis. Subsequently, add (trifluoromethoxy)benzene as an internal standard. ¹⁹F NMR analysis of this reaction mixture showed that the yield of desired product was 17% and the dimeric product can be monitored by HRMS (ESI): caled for C₂₄H₂₁N₂⁺ [M + H]⁺ 337.1699; found 337.1689. In our reaction, there are only reagents, substrates, 2,6-Lutidine and acetonitrile present. It is difficult to explain the production of the dimer without the involvement of radicals.

V-2. UV/Vis Absorption Spectra

The UV/Vis absorption spectra of CH₃CN solutions of quinoline **1** ($5x10^{-5}$ M), IMDN-SO₂CF₃ **2a** ($5x10^{-5}$ M), a mixture of **1** ($5x10^{-5}$ M) and **2a** ($5x10^{-5}$ M) are shown in Figure S1. A strong absorption band of the mixture [**1**+**2a**] with a maximum absorption wavelength at 280 nm and there is a significant redshift relative to the respective absorption may indicate the formation of Tf-shift intermediate.

Figure S1. UV/Vis spectra 1, 2a, and a 1:1 mixture of 1 and 2a in CH₃CN

Figure S2. Comparison of the colors of CH_3CN solutions of (i) **1**, (ii) **2a**, (iii) a mixture of **1** and **2a** after 5 min irradiation, (iv) a mixture of **1**, **2a** and 2,6-Lutidine.

V-3. EPR Experiments

Figure S3. EPR experiments

To demonstrate the possible reaction mechanism, electron paramagnetic resonance (EPR) experiments with *N-tert*-butyl- α -phenylnitrone (PBN) as the electron-spin trapping reagent were carried out. A significant EPR signal was observed when the reaction was run under standard conditions, the measured g-factor value is 2.030428. Combining the above results indicating that the reaction probably proceeded via a radical process.

V-4. Quantum Yield Measurement

Determination of the light intensity at 395 nm:

According to the standard procedure for iron oxalate actinometry⁷ and the works by Yoon and co-workers⁸, the photon flux of the LED (λ_{max} = 395 nm) was first determined by standard ferrioxalate actinometry. For this, a 10 mL 0.15 M solution of ferrioxalate was prepared by dissolving potassium ferrioxalate hydrate (0.737 g) in H₂SO₄ (10 mL of a 0.05 M solution). A 20 mL buffered solution of 1,10- phenanthroline was prepared by dissolving 1,10- phenanthroline (20 mg) and sodium acetate (4.5 g) in H₂SO₄ (20 mL of a 0.5 M solution). Both solutions were stored in the dark. To determine the photon flux of the LED, the ferrioxalate solution (2.0 mL) was placed in a cuvette and irradiated for 5 seconds at λ_{max} = 395 nm. After irradiation, the phenanthroline solution (0.35 mL) was added to the cuvette and the mixture was stirred in the dark for 1.0 h to allow all the ferrous ions to be coordinated by phenanthroline. The absorption of the solution was measured at 510 nm. A nonirradiated sample was also prepared identically and the absorption at 510 nm was also measured. Each sample preparation and measurements were repeated two more times. The average of the absorption of the irradiated and non-irradiated samples were determined and used for the calculation of photon flux.

mol Fe²⁺=
$$\frac{V \times \Delta A (510 \text{ nm})}{l \times \varepsilon}$$

Where V is the total volume (0.00235 L) of the solution after addition of phenanthroline, ΔA is the difference in absorption at 510 nm between the irradiated and non-irradiated solutions, I is the path length (1.00 cm), and ϵ is the molar absorptivity of the ferrioxalate actinometer at 510 nm (11,100 L mol⁻¹ cm⁻¹). The photon flux can be calculated based on the following equation:

photon flux =
$$\frac{\text{mol } Fe^{2+}}{\Phi \times t \times f}$$

Where Φ is the quantum yield for the ferrioxalate actinometer (1.13 for a 0.15 M solution at λ = 395 nm)⁶, *t* is the irradiation time (5 s), and *f* is the fraction of light absorbed at λ = 395 nm. This value is calculated using the following equation where (395 nm) is the absorption of the ferrioxalate solution at 395 nm. The absorbance of the above ferrioxalate solution at 395 nm was measured to be 3.972.

$$f = 1 - 10^{-A (395 \text{ nm})}$$

The average photon flux was thus calculated to be 9.276×10⁻⁸ einsteins s ⁻¹

Determination of the reaction quantum yield:

The reaction quantum yield (ϕ) was determined with the following formula:

$$\boldsymbol{\phi} = \frac{\text{mole of product formation rate}}{photon \ flux \times \ f}$$

Where, *f* is the fraction of light absorbed at λ_{max} = 395 nm by the reaction mixture. An absorption spectrum gave an A (395 nm) value of > 3, indicating that the fraction of absorbed light (*f*) is >0.999. The reaction quantum yield (ϕ) was thus determined to be ϕ = 0.99.

V-5. Computational details

All calculations were performed with Gaussian 09 program⁹. Geometry optimizations were performed using (U)M06-2X functionals¹⁰, while 6-31G(d,p) was used as basis set for all atoms. After optimization, frequency calculations were subsequently performed to confirm that all stationary points had correct number of imaginary frequencies (zero for minima and one for transition states) and to provide thermodynamic corrections at 298 K, 1 atm. For all transition states, Intrinsic Reaction Coordinate (IRC)¹¹ were calculated to confirm that they indeed connected between correct minima. Single-point energies of optimized structures were calculated using (U)M06-2X functionals, with 6-311+G(2d,p) as basis set. Methods M06-2X-D3^{10,12}, B3LYP-D3¹²⁻¹⁵ and ω B97X-D¹⁶ were also used for single-point energy calculations to evaluate the strength of π - π stacking (see Figure S7). SMD solvation model¹⁷ (solvent = MeCN) was used in geometry optimizations and single-point energy calculations to consider solvent effect. The final Gibbs free energy was calculated as the sum of Gibbs free energy correction (from frequency calculation) and the single point energy in solution. For each species, extensive conformational search was done and the reported value is from the conformer with lowest Gibbs free energy. Graphics in Scheme 4 was rendered using CYLview¹⁸. See Table S6 for detailed energies and atom coordinates for all species involved.

Figure S5. DFT study on the reaction using 2f as imidazolium sulfonate reagent. RelativeGibbsfreeenergies(kcal/mol)werecomputedwithSMD(MeCN)-(U)M06-2X/6-311+G(2d,p)//SMD(MeCN)-(U)M06-2X/6-31G(d,p).

Figure S6. DFT study on the deprotonation process of **INT1**. Computed with SMD(MeCN)-(U)M06-2X/6-311+G(2d,p)//SMD(MeCN)-(U)M06-2X/6-31G(d,p).

Figure S7. Relative free energies (kcal/mol) of the deprotonation transition states evaluated by different computational methods. Computed at

SMD(MeCN)-(U)Method/6-311+G(2d,p)//SMD(MeCN)-(U)M06-2X/6-31G(d,p).

To explain the preference of CF₃ radical attacking **69**, the condensed nucleophilicity index of the respective carbons in **1** and **69** have been calculated. The condensed nucleophilicity index of atom k is defined¹⁹ as:

$$N_k = N \cdot f_k^-$$

in which N is the global nucleophilicity index of the nucleophile. By definition²⁰,

$$N = \varepsilon_{\text{HOMO(Nu)}} - \varepsilon_{\text{HOMO(TCE)}}$$
 (TCE = tetracyanoethylene)

And f_k^- is the condensed Fukui function²¹ of atom k :

$$f_k^- = q_{N-1}^k - q_N^k$$

Here *q* was obtained by Hirshfeld charges²² of N and N-1 electrons states of the nucleophile²³. All results were computed at SMD(MeCN)-M06-2X/6-31G(d,p).

The condensed nucleophilicity index of selected carbon atoms in **1** and **69** are shown in Fig. S8. The results show that the terminal alkenyl carbon has the largest nucleophilicity index than any other atoms. We believe the reduced aromaticity of **69** and the electron-donating conjugative effect from the N atom activates this site, resulting in the observed regioselectivity.

Figure S8. Condensed nucleophilicity index ($e \cdot eV$) of selected carbon atoms in **1** and **69**. Computed at SMD(MeCN)-M06-2X/6-31G(d,p)

1	1			
G	(MeCN) = -44	41.064333 H	artree	
С	2.731840	-0.254115	0.000000	
С	1.792962	-1.254839	0.000000	
С	0.407885	-0.945476	0.000000	
С	0.000000	0.417120	0.000000	
С	0.994532	1.430070	0.000000	
С	2.328365	1.102208	0.000000	
Н	3.789310	-0.499518	0.000000	
Н	2.078044	-2.302572	0.000000	
С	-1.401382	0.703680	0.000000	
Н	0.691491	2.472561	0.000000	
Н	3.079497	1.886026	0.000000	
С	-2.265044	-0.364279	0.000000	
С	-1.756649	-1.684837	0.000000	
Н	-3.338960	-0.206359	0.000000	
Н	-2.453976	-2.521218	0.000000	
Ν	-0.478963	-1.985733	0.000000	
С	-1.901531	2.118860	0.000000	
Н	-1.542930	2.660231	0.881375	
Н	-1.542930	2.660231	-0.881375	
Н	-2.992671	2.140403	0.000000	
2a	cation			
G	(MeCN) = -15	536.006891 H	Hartree	
С	1.647795	-1.894689	-0.149803	
С	1.807733	-0.541881	0.138428	
С	-0.403282	-1.034917	-0.004373	
Ν	0.276816	-2.144891	-0.231140	
С	-0.274460	-3.457263	-0.575150	
Н	-1.334856	-3.354061	-0.792080	
Н	0.255399	-3.820978	-1.456253	
Н	-0.119965	-4.133673	0.266307	
С	-1.869663	-0.929260	-0.019564	
С	-2.611456	-1.643346	0.926102	
С	-2.499521	-0.149058	-0.993056	
С	-3.999027	-1.556877	0.903547	
Н	-2.104150	-2.247308	1.672505	
С	-3.887383	-0.078134	-1.008632	

Н	-1.911004	0.376241	-1.737799
С	-4.634105	-0.775223	-0.059827
Н	-4.582185	-2.100411	1.639128
Н	-4.385311	0.518751	-1.765217
Н	-5.717476	-0.712430	-0.074903
Ν	0.496463	-0.019777	0.224183
S	0.140393	1.530230	0.882443
0	-1.240778	1.553302	1.278319
0	1.231117	1.845657	1.767882
С	0.356775	2.581181	-0.636253
F	-0.703436	2.458060	-1.405259
F	1.440695	2.176558	-1.269686
F	0.495151	3.825024	-0.229709
С	3.069852	0.034577	0.262146
С	4.149803	-0.820264	0.091481
С	3.986647	-2.186911	-0.193649
С	2.728608	-2.754387	-0.322954
Н	3.212699	1.084597	0.481339
Н	5.151744	-0.415194	0.181213
Н	4.865269	-2.810492	-0.316652
Н	2.586313	-3.805779	-0.546360
H 	2.586313	-3.805779	-0.546360
H 3	2.586313	-3.805779	-0.546360
H 3 G (2.586313 MeCN) = -77	-3.805779 78.125904 Ha	-0.546360 artree
H 3 <i>G</i> (2.586313 (MeCN) = -77	-3.805779 78.125904 Ha	-0.546360 artree
H 3 G (2.586313 (MeCN) = -77 2.287977	-3.805779 78.125904 Ha 0.991990	-0.546360 artree 0.000000
H 3 G (C C	2.586313 (MeCN) = -77 2.287977 1.872582	-3.805779 78.125904 Ha 0.991990 -1.256070	-0.546360 artree 0.000000 0.000000
H 3 G (C C C	2.586313 (MeCN) = -77 2.287977 1.872582 0.465468	-3.805779 78.125904 Ha 0.991990 -1.256070 -1.051704	-0.546360 artree 0.000000 0.000000 0.000000
H 3 G (C C C C	2.586313 MeCN) = -77 2.287977 1.872582 0.465468 -0.019625	-3.805779 78.125904 Ha 0.991990 -1.256070 -1.051704 0.294747	-0.546360 artree 0.000000 0.000000 0.000000 0.000000
H 3 G(C C C C C C C	2.586313 (MeCN) = -77 2.287977 1.872582 0.465468 -0.019625 0.906523	-3.805779 78.125904 Ha 0.991990 -1.256070 -1.051704 0.294747 1.307732	-0.546360 artree 0.000000 0.000000 0.000000 0.000000 0.000000
H 3 G(C C C C C H	2.586313 MeCN) = -77 2.287977 1.872582 0.465468 -0.019625 0.906523 3.463498	-3.805779 78.125904 Ha 0.991990 -1.256070 -1.051704 0.294747 1.307732 -2.702964	-0.546360 artree 0.000000 0.000000 0.000000 0.000000 0.000000
H 3 G(C C C C C H H	2.586313 MeCN) = -77 2.287977 1.872582 0.465468 -0.019625 0.906523 3.463498 3.010184	-3.805779 78.125904 Ha 0.991990 -1.256070 -1.051704 0.294747 1.307732 -2.702964 1.806405	-0.546360 artree 0.000000 0.000000 0.000000 0.000000 0.000000
H 3 G(C C C C C C H H C	2.586313 MeCN) = -77 2.287977 1.872582 0.465468 -0.019625 0.906523 3.463498 3.010184 2.384796	-3.805779 78.125904 Ha 0.991990 -1.256070 -1.051704 0.294747 1.307732 -2.702964 1.806405 -2.579041	-0.546360 artree 0.000000 0.000000 0.000000 0.000000 0.000000
H 3 G(C C C C C C H H C C	2.586313 MeCN) = -77 2.287977 1.872582 0.465468 -0.019625 0.906523 3.463498 3.010184 2.384796 -0.389291	-3.805779 78.125904 Ha 0.991990 -1.256070 -1.051704 0.294747 1.307732 -2.702964 1.806405 -2.579041 -2.185716	-0.546360 artree 0.000000 0.000000 0.000000 0.000000 0.000000
H 3 G(C C C C C C H H C C H H C C	2.586313 MeCN) = -77 2.287977 1.872582 0.465468 -0.019625 0.906523 3.463498 3.010184 2.384796 -0.389291 0.619198	-3.805779 78.125904 Ha 0.991990 -1.256070 -1.051704 0.294747 1.307732 -2.702964 1.806405 -2.579041 -2.185716 2.352003	-0.546360 artree 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
H 3 G(C C C C C C C C H H C C H C C H C	2.586313 MeCN) = -77 2.287977 1.872582 0.465468 -0.019625 0.906523 3.463498 3.010184 2.384796 -0.389291 0.619198 0.133765	-3.805779 78.125904 Ha 0.991990 -1.256070 -1.051704 0.294747 1.307732 -2.702964 1.806405 -2.579041 -2.185716 2.352003 -3.455559	-0.546360 artree 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
H 3 G (C C C C C C C C H H C C H C C C C C C C C C C C C C	2.586313 MeCN) = -77 2.287977 1.872582 0.465468 -0.019625 0.906523 3.463498 3.010184 2.384796 -0.389291 0.619198 0.133765 1.534530	-3.805779 78.125904 Ha 0.991990 -1.256070 -1.051704 0.294747 1.307732 -2.702964 1.806405 -2.579041 -2.185716 2.352003 -3.455559 -3.655662	-0.546360 artree 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
H 3 G C C C C C C C C C H H C C H C C H C C C H H C C C C C C C C C C C C C	2.586313 MeCN) = -77 2.287977 1.872582 0.465468 -0.019625 0.906523 3.463498 3.010184 2.384796 -0.389291 0.619198 0.133765 1.534530 -1.465946	-3.805779 78.125904 Ha 0.991990 -1.256070 -1.256070 -1.051704 0.294747 1.307732 -2.702964 1.806405 -2.579041 -2.185716 2.352003 -3.455559 -3.655662 -2.049059	-0.546360 artree 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
H 3 G (C C C C C C C C H H C C H H C C H H C H H C H H C H H H C H H H H H H H H H H H H H	2.586313 MeCN) = -77 2.287977 1.872582 0.465468 -0.019625 0.906523 3.463498 3.010184 2.384796 -0.389291 0.619198 0.133765 1.534530 -1.465946 -0.530755	-3.805779 78.125904 Ha 78.125904 Ha 0.991990 -1.256070 -1.051704 0.294747 1.307732 -2.702964 1.806405 -2.579041 -2.185716 2.352003 -3.455559 -3.655662 -2.049059 -4.313688	-0.546360 artree 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
H 3 G C C C C C C C C C C H H C C H H C C H H H H H H H H	2.586313 MeCN) = -77 2.287977 1.872582 0.465468 -0.019625 0.906523 3.463498 3.010184 2.384796 -0.389291 0.619198 0.133765 1.534530 -1.465946 -0.530755 1.932421	-3.805779 78.125904 Ha 0.991990 -1.256070 -1.256070 -1.051704 0.294747 1.307732 -2.702964 1.806405 -2.579041 -2.185716 2.352003 -3.455559 -3.655662 -2.049059 -4.313688 -4.665522	-0.546360 artree 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 Table S6. Energies and Cartesian coordinates

Н	-1.964988	0.051687	0.881047	
Н	-1.964988	0.051687	-0.881047	
Ν	2.771360	-0.225759	0.000000	
С	-1.948172	1.956330	0.000000	
F	-1.511738	2.628969	1.079892	
F	-3.287526	2.046345	0.000000	
F	-1.511738	2.628969	-1.079892	
69				
G ((MeCN) = -13	326.645764 H	Hartree	
S	-1.627444	-0.689641	-0.541935	
0	-2.641041	-0.272642	-1.487688	
0	-1.506170	-2.063465	-0.106692	
С	-1.916104	0.295938	0.999960	
F	-2.142203	1.561285	0.686543	
F	-0.841268	0.211294	1.770548	
F	-2.963507	-0.200630	1.638165	
С	-0.202353	1.219117	-1.581322	
С	1.065898	-0.582240	-0.486103	
С	1.986412	0.365993	-0.010737	
С	1.708546	1.813554	-0.172927	
С	0.679601	2.129683	-1.168550	
Н	0.650465	-2.655769	-0.874169	
Н	-0.996564	1.416365	-2.289996	
С	1.352453	-1.947745	-0.452591	
С	3.190014	-0.102157	0.529216	
Н	0.625496	3.136162	-1.570417	
С	3.460150	-1.460808	0.614371	
С	2.541649	-2.384330	0.116396	
Н	3.929875	0.616111	0.867652	
Н	4.398408	-1.799852	1.041059	
Н	2.760317	-3.446567	0.145959	
С	2.346130	2.783816	0.497959	
Н	3.081809	2.573244	1.266892	
Н	2.121250	3.826451	0.295665	
Ν	-0.157977	-0.125072	-1.089711	
69	I			
G ((MeCN) = -13	326.571492	lartree	
S	-1.718263	-0.416385	-0.650970	
0	-2.676820	0.327685	-1.440383	

0	-1.768820	-1.858372	-0.553531		
С	-1.873084	0.200911	1.089485		
F	-1.821136	1.523214	1.101739		
F	-0.876558	-0.291557	1.809722		
F	-3.029476	-0.206001	1.588172		
С	-0.098917	1.478651	-1.410665		
С	0.977994	-0.562944	-0.571047		
С	1.991819	0.240908	0.005716		
С	1.931324	1.680575	-0.093822		
С	0.914916	2.232648	-0.893723		
Н	0.360128	-2.536089	-1.152636		
Н	-0.891415	1.869698	-2.032988		
С	1.113624	-1.947142	-0.646453		
С	3.090792	-0.417984	0.592074		
Н	0.931906	3.292177	-1.129411		
С	3.195289	-1.798786	0.571795		
С	2.216505	-2.564744	-0.064724		
Н	3.869073	0.185366	1.050115		
Н	4.050844	-2.282205	1.032267		
Н	2.311991	-3.643980	-0.117910		
С	2.963655	2.530661	0.510979		
Н	2.830176	2.953939	1.501241		
Н	3.877945	2.766401	-0.024808		
Ν	-0.183186	0.090702	-1.113346		
	I I				
CF	₃ radical				
G	G (MeCN) = -337.575339 Hartree				
			1		
С	-0.000000	0.000000	0.331513		
F	0.000000	1.254185	-0.073669		
F	-1.086156	-0.627093	-0.073669		
F	1.086156	-0.627093	-0.073669		
SC	02				
G ((MeCN) = -54	48.620719 H	artree		
0	0.000000	1.239202	-0.373452		
S	0.000000	-0.000000	0.373452		
0	-0.000000	-1.239202	-0.373452		
SC	2CF₃ radical				
G	(MeCN) = -88	36.191616 H	artree		

S	-0.578431	-0.886186	-0.000000	
0	-0.172103	-1.469968	1.284591	
0	-0.172103	-1.469968	-1.284591	
С	0.221755	0.837862	0.000000	
F	1.530652	0.692821	0.000000	
F	-0.172103	1.468662	1.083985	
F	-0.172103	1.468662	-1.083985	
в				
G ((MeCN) = -32	26.766390 Ha	artree	
С	0.000000	1.155343	0.266119	
С	0.000000	1.197915	-1.129881	
С	0.000000	0.000000	-1.834979	
С	-0.000000	-1.197915	-1.129881	
С	-0.000000	-1.155343	0.266119	
Н	0.000000	2.153208	-1.644214	
Н	0.000000	0.000000	-2.921030	
Н	-0.000000	-2.153208	-1.644214	
Ν	-0.000000	-0.000000	0.945591	
С	0.000000	-2.413516	1.090797	
Н	-0.881281	-2.441278	1.738700	
Н	0.000000	-3.304751	0.460487	
Н	0.881281	-2.441278	1.738700	
С	0.000000	2.413516	1.090797	
Н	0.000000	3.304751	0.460487	
Н	-0.881281	2.441278	1.738700	
Н	0.881281	2.441278	1.738700	
I I I				
BH	+			
G ((MeCN) = -32	27.209682 H	artree	
С	0.000000	1.200327	0.224458	
С	0.000000	1.208483	-1.161001	
С	0.000000	0.000000	-1.851330	
С	-0.000000	-1.208483	-1.161001	
С	-0.000000	-1.200327	0.224458	
Н	0.000000	2.157876	-1.682189	
Н	0.000000	0.000000	-2.936452	
Н	-0.000000	-2.157876	-1.682189	
Ν	-0.000000	-0.000000	0.844320	
С	0.000000	-2.418352	1.085813	
Н	-0.885551	-2.426621	1.727737	

Н	0.000000	-3.313688	0.465379
Н	0.885551	-2.426621	1.727737
С	0.000000	2.418352	1.085813
Η	0.885551	2.426621	1.727737
Н	0.000000	3.313688	0.465379
Н	-0.885551	2.426621	1.727737
Н	-0.000000	-0.000000	1.865624
INT	Г1		
G ((MeCN) = -13	327.076601 H	Hartree
S	1.728093	-0.382705	-0.781066
0	2.309566	-1.691979	-0.923125
0	1.807535	0.626552	-1.803135
С	2.344001	0.293512	0.859399
F	1.665371	-0.289187	1.823742
F	2.182659	1.596884	0.891775
F	3.617598	-0.020788	0.927679
С	-0.335710	-1.934639	-0.219500
С	-0.895793	0.404730	-0.281094
С	-2.241915	0.055848	0.020679
С	-2.615841	-1.310967	0.192284
С	-1.637797	-2.285919	0.069411
Н	0.475128	2.056984	-0.674891
Н	0.445555	-2.678394	-0.321402
С	-0.533964	1.755985	-0.437382
С	-3.197208	1.093905	0.149938
Н	-1.871528	-3.335892	0.194870
С	-2.834847	2.407345	-0.006299
С	-1.497321	2.730795	-0.298771
Н	-4.224272	0.835440	0.379066
Н	-3.572802	3.194795	0.096487
Н	-1.208058	3.768973	-0.421887
С	-4.024057	-1.694252	0.499972
Н	-4.345527	-1.228474	1.437085
Н	-4.692920	-1.336414	-0.289122
Н	-4.118852	-2.776182	0.587764
Ν	0.022720	-0.647765	-0.394489
IN	Г2		
G (MeCN) = -649.984243 Hartree			
С	-1.844316	0.497145	0.063726

С	-1.769046	-0.893831	-0.146802	
С	0.249950	-0.186652	-0.024587	
Ν	-0.536846	0.927558	0.144778	
С	-0.144038	2.286220	0.485326	
Н	0.833289	2.274311	0.966707	
Н	-0.107191	2.920146	-0.404088	
Н	-0.874626	2.692408	1.187312	
Ν	-0.448093	-1.291024	-0.195956	
С	1.724643	-0.162069	-0.023667	
С	2.409819	-1.248650	0.533244	
С	2.450257	0.880857	-0.611094	
С	3.799480	-1.281850	0.519509	
Н	1.842361	-2.059607	0.978742	
С	3.842024	0.842773	-0.622734	
Н	1.931119	1.708694	-1.084091	
С	4.518935	-0.234173	-0.054646	
Н	4.321838	-2.124742	0.961033	
Н	4.396136	1.652717	-1.086418	
Н	5.604106	-0.260418	-0.064028	
С	-2.944502	-1.645986	-0.272111	
С	-4.155006	-0.976709	-0.178088	
С	-4.210970	0.415841	0.035953	
С	-3.059213	1.179852	0.160435	
Н	-2.897774	-2.718085	-0.436210	
Н	-5.082931	-1.532295	-0.270500	
Н	-5.179195	0.901946	0.103253	
Н	-3.100665	2.252577	0.319749	
IN	Г3			
G ((MeCN) = -65	50.424654 H	artree	
			I	
С	-1.847155	0.497995	0.074639	
С	-1.810598	-0.881292	-0.149544	
С	0.281624	-0.126538	-0.013205	
Ν	-0.526278	0.927759	0.162898	
С	-0.139816	2.299433	0.486840	
Н	0.854384	2.295924	0.930239	
Н	-0.150572	2.913392	-0.414858	
Η	-0.855522	2.688148	1.211341	
Ν	-0.470264	-1.220229	-0.193664	
С	1.746418	-0.138158	-0.016246	
С	2.415318	-1.211166	0.585641	
С	2.466559	0.881730	-0.649595	

С	3.804116	-1.252194	0.563317
Н	1.852765	-1.994942	1.084443
С	3.855666	0.828571	-0.667250
Н	1.945904	1.693393	-1.147602
С	4.523587	-0.233566	-0.060028
Н	4.324219	-2.077202	1.038210
Н	4.414934	1.614484	-1.163493
Н	5.608207	-0.269347	-0.075164
С	-2.973688	-1.637956	-0.285778
С	-4.170192	-0.946432	-0.184310
С	-4.208131	0.443857	0.042959
С	-3.050895	1.195098	0.176549
Н	-2.934477	-2.706770	-0.461531
Н	-5.104376	-1.488763	-0.283096
Н	-5.170386	0.939371	0.114169
Н	-3.075236	2.265578	0.346647
Н	-0.090934	-2.142266	-0.387890
INT	Г4		
G ((MeCN) = -44	40.423995 Ha	artree
С	-1.829348	-1.599223	0.000000
С	0.362764	-0.904778	0.000000
С	0.000000	0.469419	0.000000
С	-1.415411	0.800171	0.000000
С	-2.309985	-0.283791	0.000000
Н	1.981429	-2.317580	0.000000
Н	-2.540851	-2.423233	0.000000
С	1.735264	-1.260085	0.000000
С	1.024677	1.441943	0.000000
Н	-3.379506	-0.099606	0.000000
С	2.351336	1.071526	0.000000
С	2.711234	-0.292989	0.000000
Н	0.768281	2.496128	0.000000
Н	3.124705	1.833312	0.000000
Н	3.759450	-0.575053	0.000000
С	-1.902644	2.111440	0.000000
Н	-1.257145	2.979775	0.000000
Н	-2.973106	2.281271	0.000000
Ν	-0.550083	-1.928116	0.000000
INT	Г5		
G (G (MeCN) = -1664.292152 Hartree		

S	2.188543	-0.589593	0.776560	
0	2.250202	0.425774	1.804288	
0	2.209250	-2.004375	1.082431	
С	3.639667	-0.325113	-0.330736	
F	3.693428	0.939474	-0.716590	
F	3.516572	-1.110480	-1.388600	
F	4.738862	-0.635812	0.335515	
С	0.326613	-1.435463	-0.863447	
С	0.177127	0.938974	-0.231845	
С	-1.226169	0.879528	-0.437600	
С	-1.843260	-0.357673	-0.845778	
С	-1.013752	-1.458036	-1.108576	
Н	1.897194	2.197591	0.087439	
Н	0.989335	-2.264498	-1.067994	
С	0.820250	2.154891	-0.011512	
С	-1.947338	2.085580	-0.305135	
н	-1.434115	-2.361039	-1.540071	
С	-1.311090	3.284219	-0.033609	
С	0.077732	3.324575	0.096419	
Н	-3.024703	2.072405	-0.422681	
Н	-1.894708	4.194098	0.061080	
Н	0.587862	4.264263	0.278280	
С	-3.323776	-0.481246	-1.058318	
Н	-3.539387	-1.321290	-1.723893	
Н	-3.765785	0.416411	-1.499894	
Ν	0.920168	-0.286408	-0.290632	
С	-4.063120	-0.757505	0.227644	
F	-3.661659	-1.905719	0.798708	
F	-5.387000	-0.860901	0.024817	
F	-3.880923	0.212640	1.141530	
TS	1			
G	(MeCN) = -19	977.039828 H	lartree	
С	-3.450584	1.894517	-0.345444	
С	-2.048949	1.864833	-0.329806	
С	-2.766488	-0.202117	-0.193949	
Ν	-3.865925	0.579337	-0.261553	
С	-5.260481	0.158977	-0.248189	
Н	-5.308688	-0.925786	-0.321469	
Н	-5.733318	0.489127	0.679003	
Н	-5.772041	0.605809	-1.102404	

С	-2.878776	-1.675369	-0.069017
С	-2.820497	-2.484288	-1.206217
С	-3.122573	-2.237802	1.185464
С	-2.987475	-3.859432	-1.081549
Н	-2.638984	-2.035425	-2.177648
С	-3.284211	-3.616107	1.303683
Н	-3.184978	-1.599616	2.061788
С	-3.215542	-4.425690	0.172318
Н	-2.941885	-4.489258	-1.964095
Н	-3.466724	-4.054945	2.279312
Н	-3.344564	-5.499509	0.266289
Ν	-1.655228	0.532807	-0.230032
S	0.368952	-0.138184	-0.433389
0	-0.083423	-1.454115	-0.831066
0	0.600279	1.011758	-1.285043
С	0.290737	0.093886	1.464685
F	-0.644917	-0.714717	1.908732
F	-0.004113	1.353081	1.715784
F	1.433862	-0.213143	2.038694
С	-1.324814	3.063973	-0.385480
С	-2.049896	4.242206	-0.463933
С	-3.458572	4.253250	-0.485726
С	-4.187429	3.077401	-0.425196
Н	-0.242159	3.075401	-0.376210
Н	-1.515764	5.185632	-0.510144
Н	-3.980858	5.202132	-0.548892
Н	-5.272124	3.069077	-0.434531
С	3.952647	2.575576	0.469286
С	2.938274	1.671865	0.263465
С	3.243952	0.340593	-0.104036
С	4.604031	-0.056146	-0.224592
С	5.619796	0.911426	-0.016859
С	5.303646	2.202565	0.318723
Н	3.702625	3.592434	0.752905
Н	1.916847	2.003293	0.388514
С	4.924058	-1.416442	-0.527722
Н	6.657210	0.613186	-0.118236
Н	6.087355	2.934887	0.478172
С	3.884693	-2.305454	-0.681544
С	2.563723	-1.865771	-0.577133
Н	4.066877	-3.350730	-0.900692
Н	1.736625	-2.548728	-0.725487
Ν	2.252823	-0.605603	-0.313917

С	6.344335	-1.867118	-0.662473
Н	6.847286	-1.315001	-1.462347
Н	6.895562	-1.677918	0.263995
Н	6.386823	-2.933026	-0.887664
TS	2		
G ((MeCN) = -19	977.032896 H	Hartree
			1
S	3.854534	0.428503	-0.533813
0	4.242326	0.378083	-1.922638
0	3.766070	1.672231	0.189362
С	5.009346	-0.698844	0.381130
F	5.031249	-1.862360	-0.238298
F	4.585470	-0.848651	1.621692
F	6.203812	-0.142400	0.365860
С	2.044414	-1.207982	-1.489987
С	1.538131	-0.398042	0.744061
С	0.331530	-1.140276	0.698116
С	-0.024656	-1.932458	-0.466341
С	0.895564	-1.920673	-1.547853
Н	2.781961	0.894463	1.976862
Н	2.751379	-1.199490	-2.309720
С	1.859418	0.340761	1.896208
С	-0.542772	-1.070016	1.803415
Н	0.689013	-2.497020	-2.441511
С	-0.236068	-0.320424	2.916748
С	0.978572	0.374194	2.959633
Н	-1.478043	-1.616830	1.769974
Н	-0.922819	-0.277348	3.754679
Н	1.244585	0.953782	3.837245
С	-1.260030	-2.597426	-0.592362
Н	-1.726990	-2.986015	0.310839
Н	-2.093139	-1.561170	-0.772494
Н	-1.351200	-3.249811	-1.458211
Ν	2.382680	-0.447116	-0.392533
С	-4.988399	0.331606	0.050902
С	-4.386946	-0.859574	-0.384367
С	-2.867654	0.701144	-0.447672
Ν	-4.001432	1.301525	-0.006365
С	-4.225166	2.714126	0.274856
Н	-3.452001	3.306259	-0.212163
Н	-5.198707	2.995624	-0.129716
Н	-4.208754	2.895330	1.351529

Ν	-3.068569	-0.587609	-0.695275		
С	-1.569598	1.365162	-0.638008		
С	-0.823969	1.059712	-1.781683		
С	-1.055239	2.245910	0.321610		
С	0.416437	1.659023	-1.980179		
Н	-1.226536	0.367397	-2.515799		
С	0.192656	2.828575	0.123051		
Н	-1.614951	2.453218	1.229047		
С	0.921691	2.548127	-1.032872		
Н	0.987732	1.431263	-2.875479		
Н	0.596924	3.502683	0.871464		
Н	1.887160	3.018895	-1.189960		
С	-5.116804	-2.051354	-0.444618		
С	-6.448154	-1.995234	-0.063236		
С	-7.045113	-0.792114	0.365440		
С	-6.330031	0.394518	0.431366		
Н	-4.655595	-2.974240	-0.781018		
Н	-7.049317	-2.897969	-0.094973		
H	-8.091384	-0.795899	0.652950		
Η	-6.785552	1.320778	0.765429		
	TS3 ^s				
ΤS	3 ^s				
TS G (3^s (MeCN) = -13	326.606512 H	Hartree		
TS G (3^s (MeCN) = -13	326.606512 F	Hartree		
TS <i>G</i> (S	3^s (MeCN) = -13 1.538367	326.606512 H -0.092130	Hartree 0.909599		
TS G (S O	3^s (MeCN) = -13 1.538367 1.558452	326.606512 H 	Hartree 0.909599 1.561924		
TS G (S O O	3^s (MeCN) = -13 1.538367 1.558452 2.009715	326.606512 H -0.092130 1.228741 -1.291235	Hartree 0.909599 1.561924 1.625212		
TS G (S O O C	3^s (MeCN) = -13 1.538367 1.558452 2.009715 2.740444	326.606512 H -0.092130 1.228741 -1.291235 0.082376	Hartree 0.909599 1.561924 1.625212 -0.492395		
TS G (S O O C F	3^s (MeCN) = -13 1.538367 1.558452 2.009715 2.740444 2.413860	326.606512 H -0.092130 1.228741 -1.291235 0.082376 1.127821	Hartree 0.909599 1.561924 1.625212 -0.492395 -1.238673		
TS <i>G</i> (S O O C F F	3^s (MeCN) = -13 1.538367 1.558452 2.009715 2.740444 2.413860 2.713822	326.606512 H -0.092130 1.228741 -1.291235 0.082376 1.127821 -1.017383	Hartree 0.909599 1.561924 1.625212 -0.492395 -1.238673 -1.233631		
TS <i>G</i> (S O C F F F	3^s (MeCN) = -13 1.538367 1.558452 2.009715 2.740444 2.413860 2.713822 3.967196	-0.092130 1.228741 -1.291235 0.082376 1.127821 -1.017383 0.254954	Hartree 0.909599 1.561924 1.625212 -0.492395 -1.238673 -1.233631 -0.014173		
TS G (3^s (MeCN) = -13 1.538367 1.558452 2.009715 2.740444 2.413860 2.713822 3.967196 -0.362886	-0.092130 1.228741 -1.291235 0.082376 1.127821 -1.017383 0.254954 -1.785055	Hartree 0.909599 1.561924 1.625212 -0.492395 -1.238673 -1.233631 -0.014173 -0.608615		
TS G (3 ^s (MeCN) = -13 1.538367 1.558452 2.009715 2.740444 2.413860 2.713822 3.967196 -0.362886 -1.172618	-0.092130 1.228741 -1.291235 0.082376 1.127821 -1.017383 0.254954 -1.785055 0.412923	Hartree 0.909599 1.561924 1.625212 -0.492395 -1.238673 -1.233631 -0.014173 -0.608615 -0.369911		
TS G (S O C F F C C C C	3 ^s (MeCN) = -13 1.538367 1.558452 2.009715 2.740444 2.413860 2.713822 3.967196 -0.362886 -1.172618 -2.475934	326.606512 H -0.092130 1.228741 -1.291235 0.082376 1.127821 -1.017383 0.254954 -1.785055 0.412923 -0.044291	Hartree 0.909599 1.561924 1.625212 -0.492395 -1.238673 -1.233631 -0.014173 -0.608615 -0.369911 -0.060344		
TS G (3 ^s (MeCN) = -13 1.538367 1.558452 2.009715 2.740444 2.413860 2.713822 3.967196 -0.362886 -1.172618 -2.475934 -2.717444	326.606512 H -0.092130 1.228741 -1.291235 0.082376 1.127821 -1.017383 0.254954 -1.785055 0.412923 -0.044291 -1.488868	Hartree 0.909599 1.561924 1.625212 -0.492395 -1.238673 -1.233631 -0.014173 -0.608615 -0.369911 -0.060344 -0.041193		
TS G (3^s (MeCN) = -13 1.538367 1.558452 2.009715 2.740444 2.413860 2.713822 3.967196 -0.362886 -1.172618 -2.475934 -2.717444 -1.596278	326.606512 H -0.092130 1.228741 -1.291235 0.082376 1.127821 -1.017383 0.254954 -1.785055 0.412923 -0.044291 -1.488868 -2.322776	Hartree 0.909599 1.561924 1.625212 -0.492395 -1.238673 -1.233631 -0.014173 -0.608615 -0.369911 -0.060344 -0.041193 -0.348723		
TS G (3 ^s (MeCN) = -13 1.538367 1.558452 2.009715 2.740444 2.413860 2.713822 3.967196 -0.362886 -1.172618 -2.475934 -2.717444 -1.596278 0.101947	326.606512 H -0.092130 1.228741 -1.291235 0.082376 1.127821 -1.017383 0.254954 -1.785055 0.412923 -0.044291 -1.488868 -2.322776 2.112512	Iartree 0.909599 1.561924 1.625212 -0.492395 -1.238673 -1.233631 -0.014173 -0.608615 -0.369911 -0.060344 -0.041193 -0.348723 -0.702626		
TS G (3 ^s (MeCN) = -13 1.538367 1.558452 2.009715 2.740444 2.413860 2.713822 3.967196 -0.362886 -1.172618 -2.475934 -2.717444 -1.596278 0.101947 0.486698	326.606512 F -0.092130 1.228741 -1.291235 0.082376 1.127821 -1.017383 0.254954 -1.785055 0.412923 -0.044291 -1.488868 -2.322776 2.112512 -2.423938	Hartree 0.909599 1.561924 1.625212 -0.492395 -1.238673 -1.233631 -0.014173 -0.608615 -0.369911 -0.041193 -0.348723 -0.702626 -0.833129		
TS G (G	3 ^s (MeCN) = -13 1.538367 1.558452 2.009715 2.740444 2.413860 2.713822 3.967196 -0.362886 -1.172618 -2.475934 -2.717444 -1.596278 0.101947 0.486698 -0.904522	326.606512 H -0.092130 1.228741 -1.291235 0.082376 1.127821 -1.017383 0.254954 -1.785055 0.412923 -0.044291 -1.488868 -2.322776 2.112512 -2.423938 1.794895	Iartree 0.909599 1.561924 1.625212 -0.492395 -1.238673 -1.233631 -0.014173 -0.608615 -0.369911 -0.041193 -0.348723 -0.348723 -0.702626 -0.833129 -0.450436		
TS G (G (3 ^s (MeCN) = -13 1.538367 1.558452 2.009715 2.740444 2.413860 2.713822 3.967196 -0.362886 -1.172618 -2.475934 -2.717444 -1.596278 0.101947 0.486698 -0.904522 -3.480876	326.606512 H -0.092130 1.228741 -1.291235 0.082376 1.127821 -1.017383 0.254954 -1.785055 0.412923 -0.044291 -1.488868 -2.322776 2.112512 -2.423938 1.794895 0.911919	Hartree 0.909599 1.561924 1.625212 -0.492395 -1.238673 -1.233631 -0.014173 -0.608615 -0.369911 -0.041193 -0.348723 -0.702626 -0.450436 0.168282		
TS G S O O C F F F C C C H H C C H H C C H H C C H	3 ^s (MeCN) = -13 1.538367 1.558452 2.009715 2.740444 2.413860 2.713822 3.967196 -0.362886 -1.172618 -2.475934 -2.717444 -1.596278 0.101947 0.486698 -0.904522 -3.480876 -1.735261	326.606512 H -0.092130 1.228741 -1.291235 0.082376 1.127821 -1.017383 0.254954 -1.785055 0.412923 -0.044291 -1.488868 -2.322776 2.112512 -2.423938 1.794895 0.911919 -3.397901	Iartree 0.909599 1.561924 1.625212 -0.492395 -1.238673 -1.233631 -0.014173 -0.608615 -0.369911 -0.041193 -0.348723 -0.702626 -0.833129 -0.450436 0.168282 -0.397830		
TS G (G (3 ^s (MeCN) = -13 1.538367 1.558452 2.009715 2.740444 2.413860 2.713822 3.967196 -0.362886 -1.172618 -2.475934 -2.717444 -1.596278 0.101947 0.486698 -0.904522 -3.480876 -1.735261 -3.201566	-0.092130 1.228741 -1.291235 0.082376 1.127821 -1.017383 0.254954 -1.785055 0.412923 -0.044291 -1.488868 -2.322776 2.112512 -2.423938 1.794895 0.911919 -3.397901 2.264103	Iartree 0.909599 1.561924 1.625212 -0.492395 -1.238673 -1.233631 -0.014173 -0.608615 -0.369911 -0.041193 -0.702626 -0.833129 -0.450436 0.168282 -0.397830 0.099930		

Н	-4.491406	0.590358	0.396393
Н	-3.991459	2.985666	0.281427
Н	-1.698323	3.773397	-0.274228
С	-3.926987	-2.062720	0.240129
Н	-4.808148	-1.486722	0.495430
Н	-4.026981	-3.142626	0.218565
Ν	-0.116578	-0.451869	-0.628414
TS	3 [⊤]		
G ((MeCN) = -13	326.564684 H	Hartree
S	1.828536	0.094755	-0.676243
0	2.688594	-1.012163	-1.074572
0	2.166483	1.468896	-1.021407
С	1.740390	0.023957	1.192214
F	1.140715	-1.110132	1.528449
F	1.033390	1.050902	1.634731
F	2.955883	0.057248	1.715008
С	-0.122391	-1.706616	-1.352764
С	-0.945008	0.452920	-0.772528
С	-1.996313	-0.137709	-0.029435
С	-2.094013	-1.571304	0.048481
С	-1.167366	-2.315671	-0.668318
Н	-0.089771	2.267790	-1.550409
Н	0.622735	-2.280592	-1.890342
С	-0.885413	1.844365	-0.947704
С	-2.948536	0.717941	0.570063
Н	-1.251429	-3.396930	-0.709554
С	-2.865399	2.085744	0.418503
С	-1.835513	2.652137	-0.352539
Н	-3.753404	0.273583	1.148371
Н	-3.605197	2.728242	0.885044
Н	-1.788956	3.727283	-0.490158
С	-3.166507	-2.222632	0.812888
Н	-2.967963	-2.659187	1.785299
Н	-4.167616	-2.303667	0.403366
Ν	0.064420	-0.349632	-1.344393
TS	4		
G ((MeCN) = -88	36.183893 H	artree
		 I	
С	-1.204022	0.005268	0.004093
F	-1.366807	-0.740493	-1.057619

F	-1.556740	1.247873	-0.197536
F	-1.772165	-0.509545	1.063774
S	1.422324	0.000581	0.407501
0	1.686022	1.241242	-0.299469
0	1.655023	-1.243920	-0.303298
TS	5		
G (MeCN) = -77	77.989734 H	artree
С	-1.476817	2.254641	-0.904586
С	-1.589127	0.014303	-0.397759
С	-0.710872	0.151064	0.710947
С	-0.159391	1.468087	0.985312
С	-0.583172	2.510105	0.143953
Н	-2.765314	-1.339292	-1.579893
Н	-1.790763	3.077894	-1.543782
С	-2.100115	-1.266718	-0.724873
С	-0.384218	-0.999787	1.464684
Н	-0.204937	3.515672	0.297288
С	-0.891953	-2.234156	1.124456
С	-1.755912	-2.370771	0.017325
Н	0.278937	-0.916480	2.319291
Н	-0.626292	-3.107369	1.711693
Н	-2.148110	-3.348592	-0.244061
С	0.783290	1.713357	1.989770
Н	1.160839	0.939427	2.645364
Н	1.164069	2.718617	2.128647
Ν	-1.971414	1.064643	-1.192768
С	1.922982	-0.336709	-0.583878
F	1.439973	-1.335840	-1.296146
F	2.697970	-0.782342	0.387057
F	2.573535	0.516752	-1.350608
ΤS	6		
G (MeCN) = -16	64.211516 H	Hartree
S	2.717848	-0.060469	-0.731645
0	3.275855	-1.010872	-1.669294
0	3.279575	1.259551	-0.553625
С	2.799364	-0.864161	0.937152
F	2.454598	-2.137325	0.840075
F	1.968052	-0.236978	1.757320
F	4.036965	-0.769997	1.395859

С	0.449882	-1.225377	-1.226426	
С	0.302619	1.094596	-0.423256	
С	-0.841890	0.755639	0.318511	
С	-1.251616	-0.660094	0.433662	
С	-0.655319	-1.556314	-0.554625	
Н	1.503656	2.665542	-1.267885	
Н	0.942965	-1.869307	-1.943635	
С	0.648552	2.427502	-0.648282	
С	-1.610572	1.797138	0.852979	
Н	-1.117260	-2.521069	-0.738462	
С	-1.243795	3.123710	0.676384	
С	-0.115502	3.438684	-0.080482	
Н	-2.520221	1.557485	1.393894	
Н	-1.852377	3.913467	1.104436	
Н	0.157980	4.474393	-0.252572	
С	-2.159071	-1.113517	1.323629	
Η	-2.563900	-0.484970	2.110021	
Н	-2.425548	-2.166201	1.340947	
Ν	1.078906	0.043907	-1.025538	
С	-4.296890	-0.722955	-0.083194	
F	-4.233299	0.549692	-0.435753	
F	-5.483443	-1.001813	0.428563	
F	-4.049675	-1.499994	-1.123244	
ΤS	7			
G ((MeCN) = -16	64.283765 H	Hartree	
S	2.730008	-0.533020	-0.677312	
0	3.081238	-1.924672	-0.928200	
0	3.546155	0.554169	-1.200882	
С	2.723742	-0.346208	1.187395	
F	1.708769	-1.053330	1.664849	
F	2.569120	0.928235	1.503261	
F	3.859573	-0.800629	1.691500	
С	0.224181	-1.526865	-1.199821	
С	0.266664	0.814452	-0.764068	
С	-0.917951	0.709087	0.009646	
С	-1.519639	-0.583009	0.184027	
С	-0.951868	-1.660856	-0.474186	
Н	1.732098	2.113954	-1.652102	
Н	0.692497	-2.367939	-1.696255	
С	0.846555	2.065904	-1.028414	
С	-1.466424	1.903150	0.535753	

Н	-1.423846	-2.637457	-0.431151
С	-0.871689	3.123384	0.296494
С	0.285850	3.209350	-0.495465
Н	-2.376481	1.860458	1.123010
Н	-1.309291	4.025352	0.711656
Η	0.735303	4.175707	-0.698295
С	-2.779603	-0.780320	0.982250
Ν	0.888667	-0.335946	-1.288130
С	-4.014911	-0.561141	0.143014
F	-4.078657	0.683403	-0.362059
F	-5.134618	-0.753523	0.857185
F	-4.062333	-1.405221	-0.901761
Н	-2.841748	-0.110185	1.842922
Н	-2.834586	-1.807924	1.350237
тs	8		
G ((MeCN) = -77	78.620833 H	artree
С	2.997235	-1.707326	-0.215992
С	1.795839	-1.856539	0.430993
С	0.923619	-0.748596	0.602550
С	1.316794	0.528252	0.103341
С	2.562667	0.649719	-0.557646
С	3.384397	-0.442635	-0.715934
Н	3.655648	-2.560510	-0.346504
Н	1.473975	-2.816441	0.822999
С	0.435368	1.643585	0.313178
Н	2.869619	1.617780	-0.940702
Н	4.336953	-0.334976	-1.224907
С	-0.749589	1.401238	0.949255
С	-1.088434	0.067859	1.348993
Η	-1.463160	2.199929	1.126966
Н	-1.967474	-0.080658	1.976927
Ν	-0.250993	-0.963331	1.256369
С	0.817289	3.021076	-0.145148
Н	1.754116	3.343244	0.320570
Н	0.969148	3.041760	-1.229182
Н	0.036477	3.740157	0.108676
С	-2.368071	-0.422970	-0.390070
F	-1.576151	-0.403152	-1.449392
F	-3.344528	0.459395	-0.530823
F	-2.864992	-1.635015	-0.214291

2f	2f cation				
G	(MeCN) = -13	344.342418 H	Hartree		
С	2.208841	0.109759	0.072096		
С	1.067774	-0.616061	-0.256799		
С	0.560861	1.601275	-0.134429		
Ν	1.847653	1.460248	0.123090		
С	2.815180	2.516393	0.431365		
Н	2.410363	3.483438	0.147178		
Н	3.716315	2.317723	-0.148692		
Н	3.037879	2.488204	1.498672		
Ν	0.042935	0.350771	-0.385147		
S	-1.568752	-0.018238	-0.823121		
0	-1.510112	-1.217172	-1.616550		
0	-2.206725	1.195768	-1.257967		
С	-2.251478	-0.474418	0.840797		
F	-1.512334	-1.446268	1.339135		
F	-2.210130	0.586445	1.620819		
F	-3.492394	-0.875457	0.664636		
С	1.092741	-2.003036	-0.381927		
С	2.321003	-2.612511	-0.162614		
С	3.472296	-1.879161	0.168929		
С	3.439949	-0.498688	0.295618		
Н	0.214191	-2.580840	-0.637375		
Н	2.388644	-3.691268	-0.251279		
Н	4.406837	-2.404266	0.332195		
Н	4.319764	0.077134	0.558743		
С	-0.194037	2.876966	-0.149546		
Н	-1.136606	2.764312	0.386219		
Н	-0.410828	3.168169	-1.180597		
Н	0.388989	3.657709	0.333150		
4-r	nethylpyridin	e			
G ((MeCN) = -28	37.480214 H	artree		
			r		
С	1.215662	-1.139907	0.002198		
С	1.219999	1.137229	0.002219		
С	-0.170202	1.191430	-0.007746		
С	-0.902013	0.002709	-0.010689		
С	-0.173677	-1.189385	-0.007769		
Н	1.791919	-2.062725	0.003233		
Н	-0.683309	-2.148431	-0.015770		
С	-2.404712	0.001431	0.006475		

Н	-2.770409	-0.113136	1.032567
Ν	1.919626	-0.002074	0.007478
Н	-0.676331	2.152210	-0.015828
Н	1.798880	2.058445	0.003290
Н	-2.803256	-0.830580	-0.579444
Н	-2.805225	0.937693	-0.388529
70			
G ((MeCN) = -37	79.727865 Ha	artree
С	-2.384112	0.175290	0.000000
С	-1.096114	-1.703739	0.000000
С	0.083835	-0.962226	0.000000
С	0.000000	0.426141	0.000000
С	-1.269693	1.004397	0.000000
Н	-3.381782	0.608219	0.000000
Н	-1.390615	2.083251	0.000000
С	1.210780	1.337602	0.000000
Н	1.189226	1.988886	0.879859
Ν	-2.315353	-1.161369	0.000000
Н	1.041912	-1.472393	0.000000
Н	-1.048647	-2.790335	0.000000
С	2.485769	0.620535	0.000000
Ν	3.489338	0.047866	0.000000
Н	1.189226	1.988886	-0.879859
72			
G ((MeCN) = -12	265.320528	Hartree
-			
S	1.786576	0.287516	-0.759312
0	1.995454	-0.635739	-1.849497
0	2.347711	1.617476	-0.724352
С	2.337154	-0.571172	0.782887
F	1.683903	-1.715548	0.887098
F	2.068757	0.201423	1.820470
F	3.635760	-0.792255	0.700392
С	-0.706474	-0.646207	-0.848194
С	-0.378358	1.514779	0.199579
С	-1.680954	1.571250	0.520771
С	-2.601629	0.502609	0.176055
С	-2.013114	-0.616110	-0.539485
Н	-0.239050	-1.460890	-1.387298
Н	-2.632223	-1.452694	-0.843521

С	-3.921222	0.577240	0.511921
Н	-4.314959	1.434931	1.045282
Ν	0.134901	0.414438	-0.496596
Н	-2.048668	2.444875	1.046981
Н	0.331315	2.298756	0.432868
С	-4.834611	-0.455825	0.180078
Ν	-5.581687	-1.303169	-0.093094
IN	Г2-а		
G ((MeCN) = -48	58.316592 H	artree
С	0.302296	0.477263	-0.006214
С	0.512231	-0.916528	0.000858
С	-1.610985	-0.624058	-0.003319
Ν	-1.067395	0.634244	-0.017322
С	-1.772898	1.902035	0.012921
Н	-2.781591	1.766188	-0.377134
Н	-1.246502	2.618083	-0.621199
Н	-1.827278	2.293886	1.032223
Ν	-0.705037	-1.577275	0.003250
С	1.817173	-1.422495	0.003485
С	2.867224	-0.514454	0.002756
С	2.637001	0.875212	-0.000197
С	1.350482	1.398744	-0.003578
Н	1.993454	-2.493831	0.006855
Н	3.889612	-0.879181	0.005647
Н	3.485615	1.552057	0.002048
Н	1.169831	2.469023	-0.001560
С	-3.085123	-0.844395	0.001102
Η	-3.280889	-1.915782	0.043462
Η	-3.546850	-0.435657	-0.902983
Η	-3.552785	-0.361513	0.864272
IN	Г6		
G ((MeCN) = -1 ⁻	173.062455 H	Hartree
	0.045455	4 40 4700	0.000000
S	-0.845457	-1.194700	0.000000
0	-1.413/38	-1.5868//	1.270605
0	-1.413/38		-1.270605
	0.894762	-1.811054	0.000000
	1.508393	-1.360337	1.082/22
	1.508393	-1.360337	-1.082/22
F	0.890257	-3.132818	0.000000

С	-0.421290	1.127623	1.220825
С	-0.421290	1.127623	-1.220825
С	-0.026680	2.405150	-1.230254
С	0.214382	3.164245	0.000000
С	-0.026680	2.405150	1.230254
Н	-0.620939	0.551016	2.115176
Н	0.108353	2.893665	2.189476
С	0.614560	4.447125	0.000000
Н	0.782171	4.980556	-0.930183
Н	0.782171	4.980556	0.930183
Ν	-0.646002	0.448715	0.000000
Н	0.108353	2.893665	-2.189476
Н	-0.620939	0.551016	-2.115176
TS	1-a		
G ((MeCN) = -17	785.375962 H	Hartree
С	-4.178748	0.443944	-0.364679
С	-2.814020	0.755294	-0.258022
С	-3.013307	-1.409610	-0.046300
Ν	-4.265222	-0.930000	-0.237544
С	-5.503627	-1.693287	-0.269578
Н	-5.287613	-2.726284	-0.537989
Н	-5.997925	-1.658762	0.704149
Н	-6.159117	-1.262351	-1.027568
Ν	-2.115012	-0.431099	-0.061039
S	0.110382	-0.624692	-0.366254
0	-0.099726	-2.000792	-0.761756
0	-0.001079	0.549198	-1.204048
С	-0.008489	-0.388137	1.528238
F	-0.715718	-1.384409	2.008674
F	-0.580665	0.772300	1.765337
F	1.190237	-0.407594	2.074165
С	-2.396716	2.090401	-0.331554
С	-3.373393	3.058582	-0.514801
С	-4.737389	2.727859	-0.622712
С	-5.166856	1.411869	-0.546875
Н	-1.350657	2.361246	-0.253709
Н	-3.077565	4.101040	-0.574299
Н	-5.467026	3.518656	-0.762522
Н	-6.216054	1.144771	-0.617859
С	3.019487	2.799191	0.428582
С	2.210736	1.702493	0.248143

С	2.779757	0.465501	-0.130243
С	4.188798	0.361161	-0.289100
С	4.984485	1.520113	-0.105742
С	4.413873	2.717472	0.241474
Н	2.569291	3.741198	0.723508
Н	1.146729	1.814011	0.403395
С	4.781139	-0.900902	-0.603967
Н	6.058279	1.444594	-0.234424
Н	5.030970	3.597743	0.384525
С	3.951603	-1.993960	-0.727948
С	2.573554	-1.846558	-0.586842
Н	4.346066	-2.977406	-0.953704
Н	1.905155	-2.688889	-0.712422
Ν	2.009255	-0.675547	-0.314921
С	6.258912	-1.038503	-0.784287
Н	6.609492	-0.378102	-1.583412
Н	6.784475	-0.751716	0.131960
Н	6.519087	-2.067173	-1.033876
С	-2.757234	-2.862170	0.162256
Н	-3.505448	-3.276297	0.841983
Н	-2.822395	-3.399193	-0.789195
Н	-1.768674	-3.019937	0.582626
TS	2-a		
G	(MeCN) = -17	785.363218 H	Hartree
S	-3.925873	-0.069047	-0.236835
0	-4.602351	-0.211896	-1.502539
0	-4.579537	-0.349710	1.016654
С	-3.262088	1.666569	-0.201907
F	-2.478119	1.825096	-1.251945
F	-2.583167	1.868587	0.910408
F	-4.293647	2.483095	-0.268203
С	-2.128105	-1.399804	-1.608025
С	-1.581642	-1.167314	0.748131
С	-0.351153	-1.822886	0.490862
С	0.012977	-2.237498	-0.852841
С	-0.952573	-2.017854	-1.871183
Н	-2.807250	-0.225543	2.278489
Н	-2.865354	-1.221527	-2.379773
С	-1.879474	-0.725743	2.048120
С	0.547720	-2.007825	1.563048
н	-0.750132	-2.331937	-2.887891

С	0.250612	-1.571301	2.834141		
С	-0.970283	-0.928654	3.068444		
Н	1.494881	-2.500357	1.378520		
Н	0.956143	-1.722344	3.643226		
н	-1.219926	-0.578924	4.064596		
С	1.314141	-2.654533	-1.197088		
н	1.433682	-3.034678	-2.208894		
н	1.862443	-1.449235	-1.129983		
н	1.918398	-3.163728	-0.449688		
Ζ	-2.458346	-0.960480	-0.346313		
С	4.187053	1.073375	-0.034845		
С	3.885638	-0.199297	-0.543473		
С	2.026912	0.936449	-0.496124		
Ν	2.987073	1.762612	-0.012993		
С	2.826775	3.137350	0.434474		
н	1.770548	3.343176	0.600893		
н	3.365960	3.267843	1.374335		
н	3.223694	3.826916	-0.313817		
Ν	2.531028	-0.243620	-0.824537		
С	4.886117	-1.164746	-0.690959		
С	6.172711	-0.805602	-0.316136		
С	6.464833	0.476793	0.188640		
С	5.479359	1.442932	0.338806		
Н	4.660751	-2.150201	-1.085917		
Н	6.976317	-1.527854	-0.416813		
Н	7.486833	0.715229	0.464753		
Н	5.700332	2.433110	0.723627		
С	0.594566	1.326658	-0.613907		
Н	0.134095	1.396888	0.377460		
Н	0.497502	2.297424	-1.106477		
Н	0.061698	0.580331	-1.204701		
TS2-b					
G (G (MeCN) = -1823.452208 Hartree				
·					
S	-3.825481	0.512425	0.082918		
0	-4.058201	0.835500	1.469123		
0	-3.718852	1.497075	-0.964917		
С	-5.111509	-0.717251	-0.437800		
F	-5.124458	-1.710697	0.430005		
F	-4.800038	-1.158961	-1.640225		
F	-6.277167	-0.103840	-0.457061		
С	-2.106361	-1.265594	1.092429		

С	-1.610694	-0.406433	-1.097879
С	-0.476223	-1.143927	-1.143392
С	-0.081743	-1.976049	-0.045750
С	-0.973249	-2.007243	1.075213
Н	-2.794498	-1.248012	1.929777
Н	-0.741344	-2.623499	1.936147
С	1.166461	-2.624641	-0.032263
Н	1.601513	-2.854486	-1.005169
Н	1.995552	-1.588492	0.280062
Н	1.322896	-3.376850	0.738499
Ν	-2.424839	-0.464028	0.014701
С	4.947542	0.282222	-0.176355
С	4.297330	-0.921830	0.134145
С	2.798756	0.660408	0.174300
Ν	3.971829	1.265033	-0.136367
С	4.234052	2.688335	-0.310587
Н	3.443757	3.262455	0.170518
Н	5.186804	2.921765	0.167172
Н	4.283637	2.939683	-1.372034
Ν	2.962352	-0.644479	0.356496
С	1.501829	1.339316	0.313773
С	0.671767	0.977074	1.380523
С	1.075025	2.297128	-0.613152
С	-0.565658	1.593343	1.536185
Н	1.009627	0.228806	2.092125
С	-0.170150	2.899107	-0.459130
Н	1.703049	2.554521	-1.460921
С	-0.985101	2.557573	0.620499
Н	-1.202028	1.320746	2.373465
Н	-0.504657	3.637247	-1.180746
Н	-1.945958	3.047455	0.749020
С	5.001472	-2.129515	0.174823
С	6.359503	-2.075731	-0.096951
С	7.005914	-0.859952	-0.399867
С	6.315961	0.342315	-0.446272
Н	4.500298	-3.062204	0.412400
Н	6.943233	-2.990127	-0.075865
Н	8.071462	-0.866355	-0.604390
Н	6.810874	1.278287	-0.683008
Н	0.151547	-1.079267	-2.025142
Н	-1.931606	0.252790	-1.895485
TS2-c			

G (MeCN) = -1915.705033 Hartree				
S	4.035485	0.576880	-0.185193	
0	4.253043	0.968393	-1.554179	
0	3.961332	1.496944	0.920016	
С	5.261941	-0.749442	0.253185	
F	5.203768	-1.694356	-0.662195	
F	4.944379	-1.226375	1.437976	
F	6.452109	-0.190386	0.274755	
С	2.178109	-1.004155	-1.300525	
С	1.813319	-0.372228	0.978469	
С	0.636120	-1.060599	0.996646	
С	0.184965	-1.741709	-0.158955	
С	1.002687	-1.694485	-1.313319	
Н	2.835712	-0.931451	-2.159290	
Н	0.703633	-2.202952	-2.222546	
С	-1.116526	-2.370781	-0.220652	
Н	-1.929931	-1.362962	-0.514152	
Н	-1.244212	-3.088702	-1.030828	
Ν	2.568232	-0.352962	-0.161812	
С	-4.899130	0.524212	-0.013535	
С	-4.255316	-0.640409	-0.458982	
С	-2.728882	0.888856	-0.198154	
Ν	-3.905129	1.476418	0.135110	
С	-4.152211	2.868616	0.489460	
Н	-3.306971	3.477918	0.173356	
Н	-5.049398	3.202614	-0.034410	
Н	-4.298121	2.967064	1.567208	
Ν	-2.903546	-0.371222	-0.574862	
С	-1.415486	1.550661	-0.145617	
С	-0.530587	1.397214	-1.218297	
С	-1.037896	2.300839	0.973988	
С	0.713160	2.020644	-1.183010	
Н	-0.830571	0.811600	-2.082635	
С	0.213969	2.905898	1.010714	
Н	-1.715128	2.393801	1.817941	
С	1.084853	2.777485	-0.071342	
Н	1.389302	1.923220	-2.027960	
Н	0.507373	3.483384	1.881197	
Н	2.051681	3.271336	-0.048953	
С	-4.979514	-1.813086	-0.696064	
С	-6.347879	-1.764562	-0.480094	
С	-6.986263	-0.586658	-0.041058	

С	-6.277227	0.580334	0.201580
Н	-4.484644	-2.717470	-1.035132
Н	-6.945181	-2.653756	-0.653600
Н	-8.059957	-0.595371	0.115166
Н	-6.764410	1.486155	0.546911
Н	0.048325	-1.060101	1.907881
Н	2.193615	0.182266	1.829016
С	-1.678450	-2.821902	1.026169
Ν	-2.172230	-3.139058	2.025671
TS	3-b ^s		
G ((MeCN) = -1 ²	173.017514 H	Hartree
S	1.072245	0.493558	0.722055
0	1.357472	1.928266	0.575357
0	1.307195	-0.200815	1.999357
С	2.231181	-0.345147	-0.454676
F	2.168053	0.234386	-1.642402
F	1.887990	-1.622635	-0.562722
F	3.472971	-0.265631	0.008454
С	-1.248281	-1.190556	0.041365
С	-1.386033	1.002132	-0.794368
С	-2.731662	1.042670	-0.583606
С	-3.412805	-0.094998	-0.029896
С	-2.588163	-1.229179	0.282798
Н	-0.608239	-2.041623	0.254369
Н	-3.040744	-2.132673	0.678605
С	-4.769910	-0.099330	0.184384
C H	-4.769910 -5.374039	-0.099330 0.767253	0.184384 -0.060992

Ν	-0.623776	-0.105477	-0.520989
Н	-3.298015	1.924098	-0.866632
Н	-0.849620	1.843564	-1.222875
ΤS	3-с ^ѕ		
G ((MeCN) = -12	265.270807 H	Hartree
S	1.751813	0.307044	-0.568597
0	1.928417	-0.467086	-1.800417
0	2.218486	1.692872	-0.471482
С	2.895005	-0.598977	0.646714
F	2.513202	-1.863917	0.736468
F	2.812232	-0.020719	1.835240
F	4.148849	-0.546185	0.217247
С	-1.035931	-0.418512	-1.036979
С	-0.769924	1.573710	0.182170
С	-2.059188	1.512483	0.638746
С	-2.901272	0.437610	0.233884
С	-2.334694	-0.548280	-0.624917
Н	-0.560869	-1.135365	-1.699559
Н	-2.929651	-1.384904	-0.976054
С	-4.224192	0.382287	0.687218
Н	-4.617419	1.152287	1.342310
Ν	-0.277189	0.646969	-0.676738
Н	-2.445952	2.294752	1.282692
Н	-0.093226	2.379535	0.449093
С	-5.097687	-0.667505	0.325984
Ν	-5.816862	-1.530514	0.027700

S27

TS2-base			
G(MeCN) = -1653.814053 Hartree			
S	3.140957	-0.940283	-0.564720
0	3.456831	-2.253374	-0.057480
0	3.089906	-0.656224	-1.976726
С	4.342736	0.220618	0.249393
F	4.167345	0.142039	1.553729
F	4.139093	1.453385	-0.169427
F	5.552887	-0.183998	-0.079826
С	1.224558	-1.271596	1.198987
С	0.933022	0.693439	-0.197723
С	-0.267775	0.968672	0.503707
С	-0.722197	0.112852	1.584468
С	0.081194	-1.018072	1.880135
Н	2.272377	1.385620	-1.767686
Н	1.846983	-2.126877	1.428329
С	1.356513	1.555410	-1.223202
С	-1.032337	2.088769	0.112139
Н	-0.207961	-1.696508	2.673579
С	-0.621493	2.918472	-0.906261
С	0.584701	2.649218	-1.563830
Н	-1.964098	2.295698	0.626363
Н	-1.222775	3.773897	-1.192623

Н	0.928428	3.300826	-2.360143
С	-1.958850	0.295654	2.239174
Н	-2.327441	1.313253	2.351117
Н	-2.814925	-0.125884	1.313800
Н	-2.114738	-0.330075	3.116058
Ν	1.665088	-0.459128	0.179875
С	-4.922232	0.308650	0.335843
С	-5.905480	0.065530	-0.619209
С	-5.699011	-0.936532	-1.560782
С	-4.521865	-1.675839	-1.531689
С	-3.569423	-1.391413	-0.556146
Н	-6.814119	0.656938	-0.613824
Н	-6.454344	-1.141640	-2.312856
Н	-4.333964	-2.466879	-2.249053
Ν	-3.792779	-0.417317	0.339455
С	-2.267972	-2.132913	-0.455915
Н	-2.097040	-2.472295	0.570044
Н	-2.268242	-2.997944	-1.120429
Н	-1.433832	-1.480056	-0.736894
С	-5.063728	1.371683	1.385681
Н	-6.051366	1.831016	1.329833
Н	-4.926212	0.947521	2.384447
Н	-4.308177	2.151382	1.244912

VI. References

- W. Zhang, Z. Zou, W. Zhao, S. Lu, Z. Wu, M. Huang, X. Wang, Y. Wang, Y. Liang, Y. Zhu, Y. Zheng, Y. Pan, *Nat. Commun.*, 2020, **11**, 2572.
- 2. A. El Hadri, G. J. Leclerc, Heterocycl. Chem., 1993, 30, 631-635.
- 3. J. A. Leitch, T. Rogova, F. Duarte, D. J. Dixon, *Angew. Chem. Int. Ed.*, 2020, **59**, 4121-4130.
- 4. A. Boutros, J. Y. Legros, J. C. Fiaud, Tetrahedron., 2000, 56, 2239-2246.
- 5. J. Nithyanandhan, N. Jayaraman, *Tetrahedron.*, 2005, **61**, 11184-11191.
- W. Zhang, Z. Zou, Y. Wang, Y. Liang, Z. Wu, Y. Zheng, Y. Pan, *Angew. Chem. Int. Ed.* 2019, **58**, 624-627.
- C. G. Hatchard, C. A. Parker, Proc. R. Soc. Lond. Ser. Math. Phys. Sci., 1956, 235, 518-536.
- 8. M. A. Cismesia, T. P. Yoon, Chem. Sci. 2015, 6, 5426-5434.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09, Revision E.01. Gaussian, Inc., Wallingford CT, 2013.
- 10. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.
- 11. K. Fukui, Acc. Chem. Res. 1981, 14, 363-368.
- 12. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 13. A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
- 14. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B. 1988, 37, 785-789.
- 15. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
- 16. J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
- 17. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B. 2009, 113, 6378-6396.
- 18. C. Y. Legault. CYLview, 1.0b. Université de Sherbrooke, 2009 (http://www.cylview.org).
- P. Pérez, L. R. Domingo, M. Duque-Noreña, E. Chamorro, *Theochem-J. Mol. Struct.* 2009, 895, 86-91.
- 20. L. R. Domingo, E. Chamorro, P. Pérez, J. Org. Chem. 2008, 73, 4615-4624.
- 21. W. Yang, W. J. Mortier, J. Am. Chem. Soc. 1986,108, 5708-5711.
- 22. F. L. Hirshfeld, Theor. Chim. Acta. 1977, 44, 129-138.
- 23. B. Wang, C. Rong, P. K. Chattaraj, S. Liu, Theor. Chem. Acc. 2019, 138, 124.

VII. Characteristic Data

2-(4-methoxyphenyl)-3-methyl-1-((trifluoromethyl)sulfonyl)-1H-benzo[d]imidazol-3-ium

Trifluoromethanesulfonate (2b)

85%; white solid; mp 132.5-134.0 °C; ¹H NMR (400 MHz, CD₃CN) δ 8.24 - 8.18 (m, 1H), 8.16 - 8.12 (m, 1H), 8.07 (s, 4H), 8.02 - 7.94 (m, 2H), 3.92 (s, 3H). ¹³C NMR (101 MHz, CD₃CN) δ 165.1, 155.9, 133.7, 133.2, 131.5, 131.0, 130.5, 122.0 (q, J = 320.9 Hz), δ 119.9 (q, J = 323.7 Hz). 116.3, 116.0, 115.7, 111.8, 56.7, 35.5. ¹⁹F NMR (376 MHz, CD₃CN) δ -73.88, -79.30. HRMS (ESI): caled for

C₁₆H₁₄F₃N₂O₃S+ [M]⁺ 371.0672; found 377.0669.

3-methyl-2-(4-(trifluoromethyl)phenyl)-1-((trifluoromethyl)sulfonyl)-1H-benzo[d]imidazol -3-ium Trifluoromethanesulfonate (2c)

(101 MHz, CD₃CN) δ 153.6, 135.7 (q, J = 33.0 Hz), 133.3, 132.7, 132.0, 131.2, 130.8, 127.3 (q, J = 3.8 Hz), 124.9 (m), 124.6 (q, J = 272.4 Hz), 122.0 (q, J = 320.6 Hz), 119.8 (q, J = 323.7 Hz), 118.4, 116.2, 35.7. ¹⁹F NMR (376 MHz, CD₃CN) δ -63.95, -73.87, -79.37. HRMS (ESI): caled for $C_{16}H_{11}F_6N_2O_2S^+$ [M]⁺ 409.0440; found 409.0437.

4-(2,2,2-trifluoroethyl)quinoline (3)

65% (27.5 mg); colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, J = 4.3 Hz, 1H), 8.16 (dd, J = 8.4, 1.2 Hz, 1H), 7.99 (d, J = 8.5 Hz, 1H), 7.81 – 7.70 (m, 1H), 7.68 – 7.57 (m, 1H), 7.38 (d, J = 4.3 Hz, 1H), 3.86 (q, J = 10.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 149.8, 148.5, 135.9 (q, *J* = 2.7 Hz), 130.4, 129.6, 127.4, 127.2, 125.4(q, J = 277.6 Hz), 123.4, 123.2, 36.1 (q, J = 30.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.07 (t, J = 10.3 Hz). IR (neat) v (cm⁻¹): 3041.5, 1595.3, 1511.4, 1354.9, 1250.5, 1133.1, 1095.8, 1030.6, 911.3, 825.6, 760.4, 598.2; HRMS (ESI): caled for C₁₁H₉F₃N⁺ [M + H]⁺ 212.0682; found 212.0681.

4-(2,2,2-trifluoroethyl)pyridine (4)

CF₃ 51% yield was determined by ¹⁹F NMR with (Trifluoromethoxy)benzene (-58.50 ppm) as internal standard. The product could not be isolated due to its volatility. Consequently, ¹H NMR and ¹³C NMR were not obtained. ¹⁹F NMR (376 MHz,

CDCl₃) δ -65.87 (t, *J* = 10.6 Hz). GC-MS m/z: 161.1, 142.1, 92.1, 65.1, 51.1.

Gas chromatography-mass spectrometry of product 4

In situ ¹⁹F NMR Spectra of product **4**:

4-(2,2,2-trifluoroethyl)pyrimidine (5)

CF₃ 80% yield was determined by ¹⁹F NMR with (Trifluoromethoxy)benzene (-58.50 ppm) as internal standard. The product could not be isolated due to its volatility.
 N
 Consequently, ¹H NMR and ¹³C NMR were not obtained. ¹⁹F NMR (376 MHz,

CDCl₃) δ -64.69 (t, *J* = 10.5 Hz). GC-MS m/z: 162.1, 143.1, 93.1, 79.0, 53.0.

Gas chromatography-mass spectrometry of 5

In situ ¹⁹F NMR Spectra of product **5**:

3-bromo-4-(2,2,2-trifluoroethyl)pyridine (6)

 $\begin{array}{c} {}^{\mbox{CF}_3} & 61\% \ (29 \ {\rm mg}); \ {\rm colorless \ liquid}; \ {}^1{\rm H} \ {\rm NMR} \ (400 \ {\rm MHz}, \ {\rm CDCl}_3) \ \delta \ 8.78 \ ({\rm s}, \ 1{\rm H}), \ 8.52 \\ & ({\rm d}, \ J = 5.0 \ {\rm Hz}, \ 1{\rm H}), \ 7.33 \ ({\rm d}, \ J = 4.9 \ {\rm Hz}, \ 1{\rm H}), \ 3.62 \ ({\rm q}, \ J = 10.3 \ {\rm Hz}, \ 2{\rm H}). \ {}^{13}{\rm C} \ {\rm NMR} \\ & (101 \ {\rm MHz}, \ {\rm CDCl}_3) \ \delta \ 152.5, \ 148.4, \ 138.8 \ ({\rm q}, \ J = 2.8 \ {\rm Hz}), \ 126.1, \ 124.9 \ ({\rm q}, \ J = 277.9 \ {\rm Hz}), \ 123.9 \ ({\rm q}, \ J = 2.5 \ {\rm Hz}), \ 39.0 \ ({\rm q}, \ J = 30.7 \ {\rm Hz}). \ {}^{19}{\rm F} \ {\rm NMR} \ (376 \ {\rm MHz}, \ {\rm CDCl}_3) \ \delta \ -64.36 \ ({\rm t}, \ J = 10.4 \ {\rm Hz}). \ {\rm IR} \ ({\rm neat}) \ {\rm v} \ ({\rm cm}^{-1}): \ 2918.5, \ 2849.5, \ 1463.0, \ 1377.3, \ 1261.7, \ 1092.1, \ 1090.6, \ 803.2, \ 719.4; \ {\rm HRMS} \ ({\rm ESI}): \ {\rm caled} \ {\rm for} \ {\rm C}_7{\rm H}_6{\rm Br}{\rm F}_3{\rm N}^+ \ [{\rm M} + {\rm H}]^+ \ 239.9630; \ {\rm found} \ 239.9620. \end{array}$

3-phenyl-4-(2,2,2-trifluoroethyl)pyridine (7)

Ph Ph N CF₃ 51% (24.2 mg); colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 8.60 (d, J = 5.2Hz, 1H), 8.55 (s, 1H), 7.50 – 7.43 (m, 3H), 7.40 (d, J = 5.1 Hz, 1H), 7.28 (d, J = 6.6 Hz, 2H), 3.40 (q, J = 10.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 150.9, 148.6, 138.9, 136.5, 129.4, 128.9, 128.7, 128.2, 125.3 (q, J = 277.4 Hz), 124.6, 36.1 (q, J = 30.0Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.87 (t, J = 10.6 Hz). IR (neat) v (cm⁻¹): 3028.5, 2927.8, 1589.7, 1401.5, 1358.6, 1252.4, 1211.4, 1135.0, 1073.5, 911.3, 821.9, 702.6, 669.1, 602.0, 520.0; HRMS (ESI): caled for C₁₃H₁₁F₃N⁺ [M + H]⁺ 238.0838; found 238.0837.

6-bromo-4-(2,2,2-trifluoroethyl)quinoline (8)

CF₃ 75% (43.3 mg); white solid; mp 60.8-62.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.91 (s, 1H), 8.14 (d, *J* = 2.0 Hz, 1H), 8.03 (d, *J* = 8.9 Hz, 1H), 7.82 (dd, *J* = 8.9, 2.1 Hz, 1H), 7.41 (d, *J* = 4.4 Hz, 1H), 3.82 (q, *J* = 10.3 Hz, 2H). ¹³C

NMR (126 MHz, CDCl₃) δ 150.1, 147.1, 135.1 (q, *J* = 2.5 Hz), 133.2, 132.1, 125.7, 125.1 (q, *J* = 277.6 Hz), 124.2, 121.7, 36.1 (q, *J* = 30.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.04 (t, *J* = 10.2 Hz). IR (neat) v (cm⁻¹): 3058.9, 2920.4, 2849.5, 1593.4, 1494.7, 1448.1, 1354.9, 1276.6, 1246.8, 1149.9, 1090.2, 1023.2, 915.1, 827.5, 585.2, 495.7; HRMS (ESI): caled for C₁₁H₈BrF₃N⁺ [M + H]⁺ 289.9787; found 289.9788.

7-chloro-4-(2,2,2-trifluoroethyl)quinoline (9)

66% (32.3 mg); white solid; mp 84.6-85.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, J = 4.4 Hz, 1H), 8.17 (d, J = 2.2 Hz, 1H), 7.94 (d, J = 9.0 Hz, 1H), 7.59 (dd, J = 9.0, 2.2 Hz, 1H), 7.40 (d, J = 4.4 Hz, 1H), 3.86 (q, J = 10.3 Hz, 2H).¹³C NMR (126 MHz, CDCl₃) δ 150.9, 149.0, 136.0 (q, *J* = 2.6 Hz), 135.6, 129.3, 128.3, 125.8, 125.2 (q, *J* = 277.9 Hz), 124.7, 123.7, 36.2 (q, *J* = 30.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.10 (t, *J* = 10.2 Hz). IR (neat) v (cm⁻¹): 3043.4, 2922.2, 2851.4, 1608.3, 1500.3, 1354.9, 1235.6, 1138.7, 1095.8, 911.3, 825.6, 773.4, 684.0, 598.2; HRMS (ESI): caled for C₁₁H₈ClF₃N⁺ [M + H]⁺ 246.0292; found 246.0291.

4-(4-(2,2,2-trifluoroethyl)quinolin-7-yl)benzonitrile (10)

74% (46.2 mg); white solid; mp 158.4-159.8 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.96 (d, *J* = 4.4 Hz, 1H), 8.39 (d, *J* = 1.9 Hz, 1H), 8.12 (d, *J* = 8.7 Hz, 1H), 7.89 – 7.76 (m, 5H), 7.44 (d, *J* = 4.4 Hz, 1H), 3.91 (q, *J* =

10.3 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 150.8, 148.7, 144.2, 140.1, 135.9 (q, *J* = 2.7 Hz), 132.8, 128.7, 128.0, 127.2, 126.2, 125.3 (q, *J* = 277.7 Hz), 124.4, 124.0, 118.7, 111.7, 36.2 (q, *J* = 30.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.05 (t, *J* = 10.2 Hz). IR (neat) v (cm⁻¹): 2924.1, 2853.3, 2223.4, 1604.6, 1500.3, 1433.2, 1353.0, 1250.5, 1138.7, 1090.2, 896.4, 829.3, 739.9, 568.4; HRMS (ESI): caled for C₁₈H₁₂F₃N₂⁺ [M + H]⁺ 313.0947; found 313.0946.

X-ray crystallography for **10** (CCDC number: 2075782)

7-phenyl-4-(2,2,2-trifluoroethyl)quinoline (11)

53% (30.4 mg); white solid; mp 76.1-77.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.93 (d, *J* = 4.5 Hz, 1H), 8.39 (d, *J* = 1.9 Hz, 1H), 8.07 (d, *J* = 8.8 Hz, 1H), 7.91 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.77 (d, *J* = 7.0 Hz, 2H), 7.52 (t, *J* = 7.5 Hz,

2H), 7.46 – 7.37 (m, 2H), 3.90 (q, *J* = 10.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 150.3, 148.9,

142.3, 139.7, 135.8 (q, J = 2.9 Hz), 129.0, 128.1, 127.9, 127.4, 126.9, 126.5, 125.4 (q, J = 278.8 Hz), 123.7, 123.3, 36.2 (q, J = 30.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.03 (t, J = 10.2 Hz). IR (neat) v (cm⁻¹): 3058.3, 2963.2, 2920.4, 2849.5, 1595.3, 1492.8, 1425.7, 1347.4, 1246.8, 1127.5, 1090.2, 898.3, 829.3, 758.5, 691.4, 423.1; HRMS (ESI): caled for C₁₇H₁₃F₃N⁺ [M + H]⁺ 288.0995; found 288.0996.

7-(4-fluorophenyl)-4-(2,2,2-trifluoroethyl)quinoline (12)

65% (39.7 mg); white solid; mp 131.6-132.4 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.94 (s, 1H), 8.34 (s, 1H), 8.07 (d, *J* = 8.8 Hz, 1H), 7.85 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.76 – 7.68 (m, 2H), 7.40 (d, *J* = 4.2 Hz, 1H), 7.23 –

7.16 (m, 2H), 3.90 (q, J = 10.3 Hz, 2H).¹³C NMR (126 MHz, CDCl₃) δ 163.9, 162.0, 150.4, 148.8, 141.3, 136.0 – 135.7 (m), 129.1 (d, J = 8.2 Hz), 127.7, 126.7, 125.3 (q, J = 277.9 Hz), 123.9, 123.5, 116.1, 115.9, 36.2 (q, J = 30.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.05 (t, J = 10.4 Hz), -114.24 – -114.34 (m). IR (neat) v (cm⁻¹): 3058.3, 2920.4, 2851.4, 1593.4, 1504.0, 1356.8, 1250.5, 1135.0, 1092.1, 900.2, 829.3, 650.4, 503.2; HRMS (ESI): caled for C₁₇H₁₂F₄N⁺ [M + H]⁺ 306.0901; found 306.0900.

4-(2,2,2-trifluoroethyl)-7-(4-(trifluoromethoxy)phenyl)quinoline (13)

54% (40.1 mg); white solid; mp 107.3-108.4 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.94 (d, *J* = 4.4 Hz, 1H), 8.35 (d, *J* = 1.9 Hz, 1H), 8.08 (d, *J* = 8.8 Hz, 1H), 7.86 (dd, *J* = 8.7, 2.0 Hz, 1H), 7.80 – 7.74 (m, 2H), 7.41

(d, J = 4.4 Hz, 1H), 7.36 (d, J = 8.2 Hz, 2H), 3.90 (q, J = 10.3 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 150.5, 149.2 (q, J = 1.9 Hz), 148.8, 140.9, 138.5, 135.8 (q, J = 2.4 Hz), 128.8, 128.1, 126.7, 126.6, 125.3 (q, J = 277.6 Hz), 124.1, 123.6, 121.5, 120.5 (q, J = 257.1 Hz), 36.2 (q, J = 30.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -57.76, -64.06 (t, J = 10.2 Hz). IR (neat) v (cm⁻¹): 3054.6, 1597.2 1505.8, 1354.9, 1248.7, 1209.5, 1176.0, 1138.7, 1094.0, 915.1, 831.2, 603.8; HRMS (ESI): caled for C₁₈H₁₂F₆NO⁺ [M + H]⁺ 372.0818; found 372.0819.

4-(2,2,2-trifluoroethyl)-7-(4-(trifluoromethyl)phenyl)quinoline (14)

60% (42.6mg); white solid; mp 148.4-149.2 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.96 (d, *J* = 4.4 Hz, 1H), 8.40 (d, *J* = 1.9 Hz, 1H), 8.11 (d, *J* = 8.7 Hz, 1H), 7.92 – 7.73 (m, 5H), 7.43 (d, *J* = 4.4 Hz, 1H), 3.91 (q, *J* =

10.3 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 150.6, 148.8, 143.3, 140.8, 135.9 (q, *J* = 2.5 Hz), 130.1 (q, *J* = 32.7 Hz), 128.6, 128.5, 127.7, 127.0, 126.5, 126.4, 126.0 (q, *J* = 3.9 Hz), 124.2 (q, *J*= 1.0 HZ), 124.2 (q, *J* = 271.7 Hz), 123.8, 123.1 (q, *J* = 278.5 Hz), 36.2 (q, *J* = 30.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.52, -64.05 (t, *J* = 10.2 Hz). IR (neat) v (cm⁻¹): 3058.3, 2922.2, 1597.2, 1354.9, 1325.1, 1248.7, 1142.4, 1108.9, 1067.9, 1038.1, 831.2, 684.0, 600.1; HRMS (ESI): caled for C₁₈H₁₂F₆N⁺ [M + H]⁺ 356.0869; found 356.0868.

4-(1,1,1-trifluoropropan-2-yl)pyridine (15)

F₃**C** 46% yield was determined by ¹⁹F NMR with (Trifluoromethoxy)benzene (-58.50 ppm) as internal standard. The product could not be isolated due to its volatility. **N** Consequently, ¹H NMR and ¹³C NMR were not obtained. ¹⁹F NMR (376 MHz, CDCl₃) δ -71.74 (d, J = 8.9 Hz). GC-MS m/z: 175.0, 156.1, 106.1, 78.1, 69.0.

Gas chromatography-mass spectrometry of 15

In situ ¹⁹F NMR Spectra of product **15**:

4-(1,1,1-trifluorobutan-2-yl)pyridine (16)

CDCl₃) δ -69.92 (d, *J* = 9.2 Hz). GC-MS m/z: 189.1, 174.1, 161.0, 142.1, 120.1, 111.0, 69.0.

Gas chromatography-mass spectrometry of 16

In situ ¹⁹F NMR Spectra of product **16**:

4-(1-((tert-butyldimethylsilyl)oxy)-2,2,2-trifluoroethyl)pyridine (17)

F₃C OTBS 21% (12.3 mg); colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 8.65 (d, J = 4.3Hz, 2H), 7.38 (d, J = 5.1 Hz, 2H), 4.91 (q, J = 6.3 Hz, 1H), 0.90 (s, 9H), 0.13 (s, 3H), 0.00 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.9, 144.3, 123.6 (q, J = 282.8 Hz), 122.3, 72.6 (q, J = 32.4 Hz), 25.4, 18.1, -5.3 (d, J = 23.5 Hz). ¹⁹F{H} NMR (471 MHz, CDCl₃) δ -78.13 . IR (neat) v (cm⁻¹): 2931.6, 2860.7, 1600.9, 1474.2, 1414.5, 1269.2, 1170.4, 1131.2, 1006.4, 836.8, 780.9, 670.9, 631.8; HRMS (ESI): caled for C₁₃H₂₁F₃NOSi⁺ [M + H]⁺ 292.1339; found 292.1337.

4,4,4-trifluoro-3-(pyridin-4-yl)butan-2-one (18)

 F_3C 47% yield was determined by ¹⁹F NMR with (Trifluoromethoxy)benzene (-58.50 ppm) as internal standard. The product could not be isolated due to its volatility. Consequently, ¹H NMR and ¹³C NMR were not obtained. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.52 (d, *J* = 8.5 Hz). GC-MS m/z: 203.1, 161.1, 142.0, 111.1, 69.0.

Gas chromatography-mass spectrometry of 18

5-(trifluoromethyl)-5,6-dihydro-7H-cyclopenta[c]pyridin-7-one (19)

35% (14 mg); colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.11 (s, 1H), 8.88 (d, *J* = 5.2 Hz, 1H), 7.70 – 7.66 (m, 1H), 4.20 – 4.08 (m, 1H), 3.03 – 2.81 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 200.4, 154.9 (q, *J* = 2.3 Hz), 154.6, 146.9,

132.6, 125.6 (q, J = 278.2 Hz), 122.0, 42.7 (q, J = 30.3 Hz), 36.5 (q, J = 1.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -69.79 (d, J = 8.4 Hz). IR (neat) v (cm⁻¹): 3239.1, 3095.6, 2922.2, 2851.4,

1727.6, 1597.2, 1448.1, 1351.2, 1261.7, 1159.2, 1107.0, 1021.3, 933.7, 836.8, 717.5, 661.6, 467.8; HRMS (ESI): caled for C₉H₇F₃NO⁺ [M + H]⁺ 202.0474; found 202.0473.

5-(trifluoromethyl)-5,6,7,8-tetrahydroisoquinoline (20)

CF₃ 40% (16.1 mg); colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 2H), 7.29 (s, 1H), 3.57 – 3.44 (m, 1H), 2.88 – 2.70 (m, 2H), 2.16 – 1.95 (m, 2H), 1.87 – 1.72 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 151.0, 146.9, 138.1, 134.3 – 134.1 (m), 126.8 (q, J = 281.0 Hz), 124.5 – 124.0 (m), 41.3 (q, J = 26.2 Hz), 26.0, 22.6 (q, J = 2.4 Hz), 19.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -67.53 (d, J = 9.9 Hz). IR (neat) v (cm⁻¹): 2927.8, 2853.3, 1699.7, 1595.3, 1412.7, 1366.1, 1244.9, 1146.2, 1112.6, 1045.5, 833.1, 695.1, 611.3; HRMS (ESI): caled for C₁₀H₁₁F₃N⁺ [M + H]⁺ 202.0838; found 202.0839.

8-(trifluoromethyl)-5,6,7,8-tetrahydroquinazoline (21)

58% (23.4 mg); colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 9.07 (s, 1H), 8.54 (s, 1H), 3.67 – 3.57 (m, 1H), 2.88 – 2.72 (m, 2H), 2.22 – 2.00 (m, 2H), 1.85 – 1.75 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 158.4 (q, *J* = 1.9 Hz), 157.9, 156.3,

131.7, 126.2 (q, J = 281.3 Hz), 44.3 (q, J = 25.9 Hz), 25.2, 22.7 (q, J = 2.4 Hz), 19.0. ¹⁹F{H} NMR (471 MHz, CDCl₃) δ -66.23. IR (neat) v (cm⁻¹): 2927.8, 2851.4, 1556.2, 1451.8, 1399.6, 1330.7, 1243.1, 1108.9, 1045.5, 950.5, 874.1, 695.1, 635.5, 542.3; HRMS (ESI): caled for C₉H₁₀F₃N₂⁺ [M + H]⁺ 203.0791; found 203.0788.

4-(1,1,1-trifluoropropan-2-yl)quinoline (22)

 $\begin{array}{l} \textbf{F_3} \\ \textbf{Me} \\ \textbf{N} \\ \textbf{N}$

4-(1,1,1-trifluorobutan-2-yl)quinoline (23)

$$\begin{array}{c} \mathbf{CF_3} \\ \mathbf{Me} \\ \mathbf{N} \\ \mathbf{N}$$

122.5, 119.7, 45.0 – 43.9 (m), 22.7 (q, J = 2.0 Hz), 11.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -68.41. IR (neat) v (cm⁻¹): 3069.5, 2974.4, 2883.1, 1591.6, 1509.6, 1464.8, 1302.7, 1250.5, 1161.1, 1123.8, 1097.7, 1067.9, 833.1, 758.5, 622.5; HRMS (ESI): caled for C₁₃H₁₃F₃N⁺ [M + H]⁺ 240.0995; found 240.0994.

4-(1,1,1-trifluoro-3-methylbutan-2-yl)quinoline (24)

$$\begin{array}{c} \textbf{CF_3} \\ \textbf{Me} \\ \textbf{Me} \\ \textbf{N} \end{array} \begin{array}{c} 70\% \ (35.5 \text{ mg}); \text{ colorless liquid}; \ ^1\text{H NMR} \ (500 \text{ MHz}, \text{ CDCl}_3) \ \delta \ 8.93 \ (d, J) \\ = 4.6 \ \text{Hz}, \ 1\text{H}, \ 8.17 \ (dd, J = 8.4, \ 1.2 \ \text{Hz}, \ 1\text{H}), \ 8.04 \ (d, J = 8.5 \ \text{Hz}, \ 1\text{H}), \\ 7.77 - 7.73 \ (m, \ 1\text{H}), \ 7.65 - 7.60 \ (m, \ 1\text{H}), \ 7.48 \ (d, J = 4.5 \ \text{Hz}, \ 1\text{H}), \ 4.06 \end{array}$$

-3.95 (m, 1H), 2.51 -2.41 (m, 1H), 1.23 (dd, *J* = 6.6, 1.7 Hz, 3H), 0.77 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.9, 148.6, 141.9 (q, *J* = 2.8 Hz), 130.7, 129.3, 127.9, 127.1, 126.7 (q, *J* = 281.6 Hz), 122.5, 119.6, 49.1 (q, *J* = 25.6 Hz), 30.4, 21.3 (q, *J* = 2.1 Hz), 21.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.11 (d, *J* = 9.2 Hz). IR (neat) v (cm⁻¹): 3067.6, 2968.8, 2881.2, 1589.7, 1511.4, 1466.7, 1394.0, 1250.5, 1161.1, 1129.4, 1080.9, 844.2, 754.8, 631.8; HRMS (ESI): caled for C₁₄H₁₅F₃N⁺ [M + H]⁺ 254.1151; found 254.1150.

4-(1,1,1-trifluorooctan-2-yl)quinoline (25)

65% (38.2 mg); colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.95 (d, J = 4.6 Hz, 1H), 8.18 (dd, J = 8.5, 1.2 Hz, 1H), 8.05 (d, J = 8.5 Hz, 1H), 7.79 – 7.72 (m, 1H), 7.66 – 7.60

(m, 1H), 7.48 (d, J = 4.6 Hz, 1H), 4.31 – 4.18 (m, 1H), 2.25 – 2.14 (m, 1H), 2.09 – 1.96 (m, 1H), 1.33 – 1.05 (m, 8H), 0.81 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.0, 148.6, 141.2 (q, J = 1.7 Hz), 130.7, 129.4, 128.0, 127.2, 126.6 (q, J = 280.2 Hz), 122.4, 119.8, 42.8 (q, J = 30.5 Hz), 31.3, 29.3 (d, *J* = 2.2 Hz), 28.9, 26.6, 22.4, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -68.58. IR (neat) v (cm-1): 3053.7, 2959.3, 2927.8, 2859.2, 1594.0, 1512.6, 1463.9, 1423.9, 1263.8, 1163.7, 1129.4, 1099.4, 896.4, 733.4, 700.5; HRMS (ESI): caled for C₁₇H₂₁F₃N⁺ [M + H]⁺ 295.1621; found 295.1613.

4-(1-cyclohexyl-2,2,2-trifluoroethyl)quinoline (26)

 $\begin{array}{c} \textbf{CF_3} \\ \textbf{N} \end{array} \begin{array}{c} 37\% \ (21.7 \ \text{mg}); \ \text{colorless liquid}; \ ^1\text{H NMR} \ (400 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 8.94 \ (\text{s}, \\ 1\text{H}), \ 8.17 \ (\text{d}, \ J = 8.4 \ \text{Hz}, \ 1\text{H}), \ 8.04 \ (\text{d}, \ J = 8.6 \ \text{Hz}, \ 1\text{H}), \ 7.79 - 7.71 \ (\text{m}, \\ 1\text{H}), \ 7.62 \ (\text{m}, \ 1\text{H}), \ 7.50 \ (\text{m}, \ 1\text{H}), \ 4.14 - 4.00 \ (\text{m}, \ 1\text{H}), \ 2.21 - 2.06 \ (\text{m}, \\ 2\text{H}), \ 1.85 - 1.77 \ (\text{m}, \ 1\text{H}), \ 1.67 - 1.52 \ (\text{m}, \ 2\text{H}), \ 1.38 - 1.21 \ (\text{m}, \ 3\text{H}), \ 1.16 - 1.06 \ (\text{m}, \ 2\text{H}), \ 0.94 - \\ 0.82 \ (\text{m}, \ 1\text{H}). \ ^{13}\text{C NMR} \ (101 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 149.9, \ 148.6, \ 141.8, \ 130.7, \ 129.3, \ 127.1, \ 126.7 \ (\text{q}, \\ J = 281.8 \ \text{Hz}), \ 122.5, \ 119.6, \ 48.4 \ (\text{q}, \ J = 25.5 \ \text{Hz}), \ 39.9, \ 31.3, \ 30.9, \ 26.0, \ 26.0, \ 25.9. \ ^{19}\text{F NMR} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ -62.33 \ (\text{d}, \ J = 9.5 \ \text{Hz}). \ \text{IR} \ (\text{neat}) \ \text{v} \ (\text{cm}^{-1}): \ 3055.1, \ 2986.5, \ 1422.5, \ 1263.8, \end{array}$

896.4, 733.4, 700.5; HRMS (ESI): caled for C₁₇H₁₉F₃N⁺ [M + H]⁺ 294.1464; found 294.1456.

4-(2,2,2-trifluoro-1-phenylethyl)quinoline (27)

3065.7, 3035.9, 2926.0, 2853.3, 1591.6, 1509.6, 1354.9, 1252.4, 1151.7, 1112.6, 1030.6, 821.9, 751.1, 700.7, 631.8, 516.2; HRMS (ESI): caled for $C_{17}H_{13}F_3N^+$ [M + H]⁺ 288.0995; found 288.0994.

2,2,2-trifluoro-1-(pyrimidin-4-yl)ethyl cyclohexanecarboxylate (28)

25% (14.4 mg); colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 9.29 (s, 1H), 8.87 (s, 1H), 7.49 (d, *J* = 5.0 Hz, 1H), 6.16 (q, *J* = 6.7 Hz, 1H), 2.58 – 2.48 (m, 1H), 2.04 – 1.94 (m, 2H), 1.83 – 1.75 (m, 2H), 1.71 – 1.64 (m, 1H), 1.58 – 1.44 (m, 2H), 1.38 – 1.19 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.4, 159.8, 158.8, 158.0, 122.4 (q, *J* = 281.5 Hz), 119.6 – 119.3 (m), 71.6 (q, *J* = 32.6 Hz), 42.6, 28.7 (d, *J* = 7.7 Hz), 25.5, 25.2 (d, *J* = 2.5 Hz). ¹⁹F{H} NMR (471 MHz, CDCl₃) δ -74.52. IR (neat) v (cm⁻¹): 2935.3, 2858.9, 1753.7, 1578.5, 1451.8, 1388.4, 1261.7, 1187.2, 1123.8, 1064.2, 939.3, 844.2, 700.7, 641.1, 527.4; HRMS (ESI): caled for C₁₃H₁₆F₃N₂O₂⁺ [M + H]⁺ 289.1159; found 289.1160.

N-(2,2,2-trifluoro-1-(pyrimidin-4-yl)ethyl)benzamide (29)

30% (16.9 mg); white solid; mp 67.9-70.9 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.31 (s, 1H), 8.87 (s, 1H), 7.93 – 7.89 (m, 2H), 7.81 (d, *J* = 8.6 Hz, 1H), 7.60 – 7.56 (m, 1H), 7.55 – 7.49 (m, 3H), 6.06 – 5.97 (m,

1H).¹³C NMR (126 MHz, CDCl₃) δ 167.1, 158.8, 158.8, 157.8, 132.9, 132.5, 128.8, 127.4, 123.6 (q, *J* = 283.3 Hz), 121.7 – 121.4 (m), 54.0 (q, *J* = 31.7 Hz). ¹⁹F{H} NMR (471 MHz, CDCl₃) δ -73.58 . IR (neat) v (cm⁻¹): 3315.5, 3244.6, 3058.3, 2955.8, 2851.4, 1669.8, 1522.6, 1470.4, 1390.3, 1336.3, 1252.4, 1123.8, 997.1, 892.7, 821.9, 777.1, 684.0, 650.4, 609.4, 527.4, 456.6; HRMS (ESI): caled for C₁₃H₁₁F₃N₃O⁺ [M + H]⁺ 282.0849; found 282.0848.

2,2,2-trifluoro-1-(quinolin-4-yl)ethyl 2-methylbenzoate (30)

(t, J = 7.6 Hz, 1H), 7.30 (d, J = 7.7 Hz, 1H), 7.20 (q, J = 6.4 Hz, 1H), 2.60 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 164.6, 149.8, 148.5, 141.5, 137.0, 133.3, 132.1, 131.1, 130.6, 129.8, 127.8, 127.1, 126.1, 125.9, 123.3 (q, J = 281.5 Hz), 122.8, 120.3, 67.6 (q, J = 33.8 Hz), 21.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.39 (d, J = 6.2 Hz). IR (neat) v (cm⁻¹): 3069.5, 2974.4, 1735.1, 1595.3, 1511.4, 1459.3, 1351.2, 1237.5, 1183.4, 1133.1, 1071.6, 915.1, 829.3, 734.3, 629.9; HRMS (ESI): called for C₁₉H₁₅F₃NO₂⁺ [M + H]⁺ 346.1050; found 346.1049.

2,2,2-trifluoro-1-(quinolin-4-yl)ethyl 3-(trifluoromethyl)benzoate (31)

48% (38.3 mg); colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 9.00 (d, J = 4.5 Hz, 1H), 8.38 (s, 1H), 8.34 (d, J = 7.9 Hz, 1H), 8.21 (d, J = 8.5 Hz, 2H), 7.90 (d, J = 7.8

Hz, 1H), 7.81 (t, J = 7.8 Hz, 1H), 7.76 – 7.62 (m, 3H), 7.22 (q, J = 6.3 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 163.0, 149.8, 148.5, 136.3, 133.2, 131.6 (q, J = 33.5 Hz), 130.7 (q, J = 3.6 Hz), 130.7, 129.9, 129.6, 129.0, 127.9, 126.9 (q, J = 3.8 Hz), 125.7, 123.4 (q, J = 272.4 Hz), 123.0 (q, J = 281.5 Hz), 122.6, 120.2, 68.4 (q, J = 34.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.91, -74.44 (d, J = 6.2 Hz). IR (neat) v (cm⁻¹): 3076.9, 1742.5, 1511.4, 1332.5, 1233.7, 1168.5, 1127.5, 1071.6, 918.8, 838.7, 751.1, 691.4, 629.9, 512.5; HRMS (ESI): caled for C₁₉H₁₂F₆NO₂⁺ [M + H]⁺ 400.0767; found 400.0766.

2,2,2-trifluoro-1-(quinolin-4-yl)ethyl benzoate (32)

68% (45.1 mg); white solid; mp 57.1-58.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.99 (d, J = 4.6 Hz, 1H), 8.22 (t, J = 8.7 Hz, 2H), 8.20 – 8.12 (m, 2H), 7.85 – 7.76 (m, 1H), 7.75 – 7.61 (m, 3H), 7.52 (t, J =

7.8 Hz, 2H), 7.20 (q, J = 6.3 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 164.2, 149.8, 148.5, 136.9, 134.2, 130.6, 130.1, 129.8, 128.8, 128.1, 127.8, 125.8, 123.2 (q, J = 281.5 Hz), 122.8, 120.2, 68.0 (q, J = 34.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -74.48 (d, J = 6.7 Hz). IR (neat) v (cm⁻¹): 3067.6, 3037.8, 2991.2, 1738.8, 1597.2, 1511.4, 1453.7, 1340.0, 1261.7, 1164.8, 1094.0, 915.1, 866.6, 752.9, 698.9, 628.1, 508.8; HRMS (ESI): caled for C₁₈H₁₃F₃NO₂⁺ [M + H]⁺ 332.0893; found 332.0894.

2,2,2-trifluoro-1-(quinolin-4-yl)ethyl 4-fluorobenzoate (33)

53% (37.0 mg); colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 8.99 (d, *J* = 4.6 Hz, 1H), 8.24 – 8.13 (m, 4H), 7.82 – 7.77 (m, 1H), 7.72 – 7.67 (m, 2H), 7.21 – 7.14 (m, 3H). ¹³C NMR (126

MHz, CDCl₃) δ 167.5, 165.4, 163.2, 149.8, 148.5, 136.7, 132.8 (d, *J* = 9.7 Hz), 130.6, 129.8, 127.8, 125.8, 124.3 (d, *J* = 3.1 Hz), 123.1 (q, *J* = 281.5 Hz), 122.7, 120.2, 116.2, 116.0, 68.1 (q, *J* = 34.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -74.49 (d, J = 6.6 Hz), -102.82 – -102.93 (m). IR

(neat) v (cm⁻¹): 3075.1, 1736.9, 1599.0, 1507.7, 1250.5, 1183.4, 1135.0, 1080.9, 913.2, 851.7, 760.4, 598.2; HRMS (ESI): caled for C₁₈H₁₂F₄NO₂⁺ [M + H]⁺ 350.0799; found 350.0797.

2,2,2-trifluoro-1-(quinolin-4-yl)ethyl 4-bromobenzoate (34)

Br CF_3 64% (52.4 mg); white solid; mp 102.0-102.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.99 (d, J = 4.5 Hz, 1H), 8.20 (dd, J = 8.3, 1.5 Hz, 2H), 8.04 - 7.96 (m, 2H), 7.84 - 7.76 (m, 1H), 7.74 - 7.61 (m, 1H), 7.

4H), 7.18 (q, J = 6.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.6, 149.8, 148.6, 136.6, 132.2, 131.5, 130.7, 129.9, 129.7, 127.9, 127.0, 125.8, 123.1 (q, J = 281.6 Hz), 122.7, 120.2, 68.2 (q, J = 34.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -74.46 (d, J = 6.2 Hz). IR (neat) v (cm⁻¹): 2983.7, 1735.1, 1593.4, 1511.4, 1340.0, 1254.2, 1170.4, 1135.0, 915.1, 844.2, 745.5, 680.2, 628.1; HRMS (ESI): caled for C₁₈H₁₂BrF₃NO₂ ⁺ [M + H]⁺ 409.9998; found 409.9999.

2,2,2-trifluoro-1-(quinolin-4-yl)ethyl 4-methoxybenzoate (35)

MeO CF_3 60% (43.3 mg); white solid; mp 115.7-116.7 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.98 (d, J = 4.5 Hz, 1H), 8.28 – 8.17 (m, 2H), 8.15 – 8.07 (m, 2H), 7.82 – 7.75 (m, 1H), 7.73 – 7.66 (m,

2H), 7.17 (q, J = 6.4 Hz, 1H), 7.01 – 6.93 (m, 2H), 3.88 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 163.8, 149.8, 148.5, 137.1, 132.3, 130.5, 129.8, 127.7, 125.9, 123.3 (q, J = 281.5 Hz), 122.8, 120.3, 120.2, 114.1, 67.7 (q, J = 33.9 Hz), 55.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.47 (d, J = 6.4 Hz). IR (neat) v (cm⁻¹): 3080.6, 2967.0, 2935.3, 2840.2, 1723.9, 1604.6, 1511.4, 1425.7, 1334.4, 1258.0, 1101.4, 1019.4, 916.9, 849.8, 752.9, 506.9; HRMS (ESI): caled for C₁₉H₁₅F₃NO₃⁺ [M + H]⁺ 362.0999; found 362.0999.

2,2,2-trifluoro-1-(quinolin-4-yl)ethyl 2-naphthoate (36)

= 8.5 Hz, 1H), 8.02 (d, J = 8.1 Hz, 1H), 7.97 – 7.88 (m, 2H), 7.85 – 7.76 (m, 2H), 7.76 – 7.69 (m,

1H), 7.68 – 7.57 (m, 2H), 7.27 (q, J = 6.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 149.9, 148.5, 136.9, 136.0, 132.4, 132.1, 130.6, 129.8, 129.5, 129.0, 128.7, 127.9, 127.8, 127.1, 125.9, 125.2, 125.0, 123.3 (q, J = 281.5 Hz), 122.8, 1203, 68.1 (q, J = 33.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -74.36 (d, J = 6.2 Hz). IR (neat) v (cm⁻¹): 3062.0, 2927.8, 2853.3, 1729.5, 1628.8, 1593.4, 1511.4, 1466.7, 1354.9, 1258.0, 1187.2, 1127.5, 1090.2, 905.7, 838.7, 758.5, 628.1, 473.4; HRMS (ESI): caled for C₂₂H₁₅F₃NO₂⁺ [M + H]⁺ 382.1050; found 382.1049.

2,2,2-trifluoro-1-(quinolin-4-yl)ethyl furan-2-carboxylate (37)

65% (41.7 mg); colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 8.99 (d, *J* = 4.5 Hz, 1H), 8.24 – 8.16 (m, 2H), 7.83 – 7.76 (m, 1H), 7.74 – 7.65 (m, 3H), 7.41 (dd, *J* = 3.5, 0.9 Hz, 1H), 7.16 (q, *J* = 6.3 Hz,

1H), 6.59 (dd, J = 3.6, 1.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 155.9, 149.8, 148.5, 147.8, 142.6, 136.4, 130.5, 129.8, 127.8, 125.7, 123.0 (q, J = 281.6 Hz), 122.8, 120.4, 112.4, 67.7 (q, J = 34.3 Hz). ¹⁹F{H} NMR (471 MHz, CDCl₃) δ -74.51. IR (neat) v (cm⁻¹): 3145.9, 2928.0, 2853.3, 1736.9, 1567.3, 1470.4, 1395.9, 1267.3, 1192.7, 1105.2, 1017.6, 903.9, 853.6, 756.6, 693.3, 628.1, 588.9; HRMS (ESI): caled for C₁₆H₁₁F₃NO₃⁺ [M + H]⁺ 322.0686; found 322.0685.

2,2,2-trifluoro-1-(quinolin-4-yl)ethyl nicotinate (38)

66% (43.8 mg); colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 9.36
(d, J = 2.2 Hz, 1H), 9.00 (d, J = 4.5 Hz, 1H), 8.86 (dd, J = 4.9, 1.7 Hz, 1H), 8.38 (dt, J = 8.0, 2.0 Hz, 1H), 8.20 (dd, J = 8.3, 1.4 Hz, 2H),

7.84 – 7.77 (m, 1H), 7.74 – 7.68 (m, 2H), 7.49 – 7.44 (m, 1H), 7.22 (q, J = 6.3 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 163.0, 154.6, 151.2, 149.8, 148.5, 137.5, 136.3, 130.6, 129.9, 128.0, 125.7, 124.3, 123.6, 123.0 (q, J = 281.5 Hz), 122.6, 120.2, 68.3 (q, J = 34.2 Hz). ¹⁹F{H} NMR (471 MHz, CDCl₃) δ -74.46. IR (neat) v (cm⁻¹): 3043.4, 2926.0, 2855.1, 1742.5, 1591.6, 1511.4, 1422.0, 1354.9, 1256.1, 1183.4, 1135.0, 1099.6, 1021.3, 915.1, 823.7, 734.3, 698.9, 629.9; HRMS (ESI): caled for C₁₇H₁₂F₃N₂O₂⁺ [M + H]⁺ 333.0846; found 333.0845.

2,2,2-trifluoro-1-(quinolin-4-yl)ethyl cyclopropanecarboxylate (39)

63% (37.2 mg); colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 9.00 (d, J = 4.6 Hz, 1H), 8.19 (m, 1H), 8.12 (d, J = 8.5 Hz, 1H), 7.81 – 7.76 (m, 1H), 7.69 – 7.62 (m, 2H), 6.97 (q, J = 6.4 Hz, 1H), 1.87 – 1.79 (m,

1H), 1.20 - 1.11 (m, 1H), 1.08 - 0.96 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.6, 149.8, 148.6, 136.9, 130.5, 129.8, 127.7, 125.8, 123.1 (q, *J* = 281.4 Hz), 122.8, 120.3, 67.3 (q, *J* = 34.0 Hz), 12.6, 9.6. ¹⁹F{H} NMR (471 MHz, CDCl₃) δ -74.69. IR (neat) v (cm⁻¹): 3017.3, 2927.8, 1746.3, 1595.3, 1511.4, 1466.7, 1390.3, 1321.3, 1267.3, 1131.2, 941.2, 754.8, 628.1; HRMS (ESI): caled for C₁₅H₁₃F₃NO₂⁺ [M + H]⁺ 296.0893; found 296.0893.

2,2,2-trifluoro-1-(quinolin-4-yl)ethyl cyclohexanecarboxylate (40)

64% (43.2 mg); white solid; mp 54.5-55.3 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.99 (d, *J* = 4.5 Hz, 1H), 8.18 (d, *J* = 8.2 Hz, 1H), 8.13 (d, *J* = 8.5 Hz, 1H), 7.82 – 7.75 (m, 1H), 7.70 – 7.64 (m, 1H), 7.61 (d,

J = 4.4 Hz, 1H), 6.97 (q, J = 6.4 Hz, 1H), 2.56 – 2.48 (m, 1H), 2.04 – 1.91 (m, 2H), 1.82 – 1.72 (m, 2H), 1.70 – 1.62 (m, 1H), 1.57 – 1.41 (m, 2H), 1.39 – 1.19 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.5, 149.8, 148.5, 137.0, 130.5, 129.8, 127.7, 125.8, 123.1 (q, J = 281.6 Hz), 122.8, 120.2, 67.0 (q, J = 33.9 Hz), 42.7, 28.7 (d, J = 4.7 Hz), 25.5, 25.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.71 (d, J = 6.6 Hz). IR (neat) v (cm⁻¹): 2937.1, 2857.0, 1742.5, 1593.4, 1511.4, 1448.1, 1336.3, 1256.1, 1198.3, 1123.8, 1066.0, 939.3, 853.6, 756.6, 628.1, 508.8, 443.6; HRMS (ESI): caled for C₁₈H₁₉F₃NO₂⁺ [M + H]⁺ 338.1363; found 338.1363.

4-(2,2,2-trifluoro-1-phenoxyethyl)quinoline (41)

35% (21.2 mg); white solid; mp 65.1-66.7 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.97 (d, *J* = 4.5 Hz, 1H), 8.23 (d, *J* = 8.3 Hz, 1H), 8.16 (d, *J* = 8.5 Hz, 1H), 7.86 – 7.79 (m, 1H), 7.76 – 7.68 (m, 2H), 7.20 (t, *J* = 8.0

Hz, 2H), 6.98 (t, J = 7.3 Hz, 1H), 6.83 (d, J = 8.2 Hz, 2H), 6.22 (q, J = 5.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 156.4, 150.1, 148.5, 137.5, 130.8, 129.8, 129.7, 127.8, 125.9, 123.3 (q, J = 282.2 Hz), 122.9, 122.4, 120.7, 115.7, 73.9 (q, J = 32.9 Hz). ¹⁹F{H} NMR (471 MHz, CDCl₃) δ -75.26. IR (neat) v (cm⁻¹): 3071.3, 2944.6, 1591.6, 1485.3, 1366.1, 1271.0, 1224.4, 1138.7,

1095.8, 1002.7, 903.9, 851.7, 756.6, 691.4, 637.4, 553.5, 499.5, 423.1; HRMS (ESI): caled for C₁₇H₁₃F₃NO⁺ [M + H]⁺ 304.0944; found 304.0945.

2,2,2-trifluoro-1-(quinolin-4-yl)ethyl 2-((3r,5r,7r)-adamantan-1-yl)acetate (42)

(m, 2H), 1.98 - 1.93 (m, 3H), 1.72 - 1.57 (m, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 169.3, 149.7, 148.5, 136.9, 130.5, 129.7, 127.7, 125.8, 123.1 (q, J = 281.6 Hz), 122.8, 120.5, 66.9 (q, J = 33.9 Hz), 48.2, 42.2, 36.5, 33.2, 28.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.44 (d, J = 6.5 Hz). IR (neat) v (cm⁻¹):2901.7, 2849.5, 1751.8, 1593.4, 1511.4, 1451.8, 1347.4, 1265.4, 1181.6, 1135.0, 1062.3, 1002.7, 913.2, 840.5, 754.8, 732.4, 628.1, 488.3; HRMS (ESI): caled for C₂₃H₂₅F₃NO₂⁺ [M + H]⁺ 404.1832; found 404.1829.

2,2,2-trifluoro-1-(pyridin-4-yl)ethyl 4-fluorobenzoate (43)

$$F = \begin{bmatrix} \mathbf{O} & \mathbf{CF_3} \\ \mathbf{O} & \mathbf{CF_3} \\ \mathbf{O} & \mathbf{CF_3} \\ \mathbf{O} & \mathbf{CF_3} \\ \mathbf{O} & \mathbf{O} & \mathbf{CF_3} \\ \mathbf{O} & \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} &$$

167.8, 165.2, 163.1, 150.4, 139.8, 132.8 (d, J = 9.6 Hz), 122.7 (q, J = 281.0 Hz), 122.3, 116.1 (d, J = 22.2 Hz), 71.3 (q, J = 33.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -75.46 (d, J = 6.6 Hz), -102.78 – -102.91 (m). IR (neat) v (cm⁻¹):3039.6, 2963.2, 1736.9, 1600.9, 1507.7, 1414.5, 1351.2, 1252.4, 1181.6, 1135.0, 1086.5, 1015.7, 915.1, 851.7, 810.7, 762.2, 596.4, 523.7; HRMS (ESI): caled for C₁₄H₁₀F₄NO₂⁺ [M + H]⁺ 300.0642; found 300.0642.

2,2,2-trifluoro-1-(pyridin-4-yl)ethyl 4-(tert-butyl)benzoate (44)

 $\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\$

164.1, 158.2, 150.3, 140.1, 130.0, 125.8, 125.2, 122.8 (q, J = 281.1 Hz), 122.8 – 122.2 (m), 71.0 (q, J = 33.5 Hz), 35.3, 31.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -75.48 (d, J = 6.7 Hz). IR (neat)

v (cm⁻¹):2965.1, 2871.9, 1735.1, 1606.5, 1410.8, 1351.2, 1258.0, 1181.6, 1135.0, 1086.5, 1026.9, 915.1, 851.7, 827.5, 771.6, 706.3, 633.6, 525.6; HRMS (ESI): caled for C₁₈H₁₉F₃NO_{2⁺} [M + H]⁺ 338.1363; found 338.1362.

2,2,2-trifluoro-1-(quinolin-4-yl)ethyl benzo[d][1,3]dioxole-5-carboxylate (45)

1H), 7.18 (q, J = 6.4 Hz, 1H), 6.93 (d, J = 8.2 Hz, 1H), 6.10 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 163.5, 152.7, 149.8, 148.5, 148.1, 137.0, 130.5, 129.8, 127.8, 126.4, 125.8, 123.2 (q, J =281.4 Hz), 122.8, 121.8, 120.2, 109.7, 108.4, 102.1, 67.9 (q, J = 34.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -74.48 (d, J = 6.4 Hz). IR (neat) v (cm⁻¹):3080.6, 2905.5, 1727.6, 1606.5, 1489.1, 1442.5, 1366.1, 1254.2, 1183.4, 1135.0, 1036.2, 924.4, 846.1, 752.9, 732.4, 629.9, 510.6, 449.1; HRMS (ESI): caled for C₁₉H₁₃F₃NO₄⁺ [M + H]⁺ 376.0791; found 376.0792.

2,2,2-trifluoro-1-(quinolin-4-yl)ethyl 4-(N,N-dipropylsulfamoyl)benzoate (46)

^{F₃} 67% (66.2 mg); colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.00 (d, J = 4.5 Hz, 1H), 8.28 – 8.24 (m, 2H), 8.21 (d, J = 8.6 Hz, 2H), 7.97 – 7.93 (m, 2H), 7.84 – 7.79 (m, 1H), 7.74 – 7.68 (m, 2H), 7.20

(q, J = 6.3 Hz, 1H), 3.15 - 3.06 (m, 4H), 1.62 - 1.49 (m, 4H), 0.87 (t, J = 7.4 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 163.0, 149.8, 148.6, 145.6, 136.3, 131.2, 130.7, 130.7, 129.9, 127.9, 127.3, 125.7, 123.0 (q, J = 281.5 Hz), 122.6, 120.2, 68.5 (q, J = 34.2 Hz), 50.0, 22.0, 11.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.44 (d, J = 6.2 Hz). IR (neat) v (cm⁻¹):2968.8, 2935.3, 2877.5, 1742.5, 1597.2, 1511.4, 1466.7, 1399.6, 1341.8, 1252.4, 1157.3, 1135.0, 1092.1, 991.5, 913.2, 866.6, 736.1, 600.1; HRMS (ESI): caled for C₂₄H₂₆F₃N₂O₄S⁺ [M + H]⁺ 495.1560; found 495.1558.

2,2,2-trifluoro-1-(quinolin-4-yl)ethyl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (47)

48% (44.1 mg); colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.97 (d, *J* = 4.5 Hz, 1H), 8.24 – 8.11 (m, 2H), 7.83 – 7.75 (m, 1H), 7.72 – 7.60 (m,

2H), 7.06 – 6.95 (m, 2H), 6.68 (d, J = 7.4 Hz, 1H), 6.60 (s, 1H), 3.98 – 3.86 (m, 2H), 2.31 (s, 3H), 2.19 (s, 3H), 1.92 – 1.65 (m, 4H), 1.33 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 156.8, 149.7, 148.5, 136.8, 136.5, 130.5, 130.3, 129.8, 127.7, 125.8, 123.5, 123.1 (q, J = 281.5 Hz), 122.8, 120.8, 120.2, 111.9, 67.6, 67.3 (q, J = 33.9 Hz), 42.3, 37.0 , 25.0 (d, J = 3.5 Hz), 24.8, 21.3, 15.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.65 (d, J = 6.4 Hz). IR (neat) v (cm⁻¹): 2926.0, 2870.1, 1750.0, 1615.8, 1586.0, 1507.7, 1474.2, 1392.2, 1263.6, 1183.4, 1114.5, 1047.4, 926.2, 840.5, 754.8, 631.8; HRMS (ESI): caled for C₂₆H₂₉F₃NO₃⁺ [M + H]⁺ 460.2094; found 460.2092.

2,2,2-trifluoro-1-(quinolin-4-yl)ethyl

(1R,4R)-4,7,7-trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptane-1-carboxylate (48)

4.4 Hz, 1H), 7.12 (q, J = 6.2 Hz, 1H), 2.54 – 2.46 (m, 1H), 2.18 – 2.10 (m, 1H), 2.03 – 1.96 (m, 1H), 1.80 – 1.72 (m, 1H), 1.14 (s, 3H), 1.11 (s, 3H), 0.92 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 177.4, 165.6, 149.8, 148.5, 135.7, 130.7, 130.0, 128.0, 125.5, 122.7 (q, J = 281.6 Hz), 122.6, 120.4, 90.4, 67.9 (q, J = 34.3 Hz), 54.8, 30.9, 29.7, 28.9, 16.6, 16.5, 9.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.50 (d, J = 6.2 Hz). IR (neat) v (cm⁻¹): 3360.2, 2965.1, 2922.1, 2853.3, 1787.3, 1770.5, 1600.9, 1513.3, 1466.7, 1399.6, 1340.0, 1261.7, 1179.7, 1135.0, 1069.7, 1019.4, 935.6, 848.0, 758.5, 695.1, 628.1, 510.6; HRMS (ESI): caled for C₂₁H₂₁F₃NO₄+ [M + H]⁺ 408.1417; found 408.1414.

2,2,2-trifluoro-1-(quinolin-4-yl)ethyl dodecanoate (49)

42% (34.4 mg); colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 8.99 (s, 1H), 8.19 (d, *J* = 8.4 Hz, 1H), 8.13 (d, *J* = 8.5 Hz, 1H), 7.80 – 7.75 (m, 1H), 7.69 – 7.64 (m, 1H), 7.61 (d, J = 4.4 Hz, 1H), 6.98 (q, J = 6.4 Hz, 1H), 2.56 – 2.43 (m, 2H), 1.71 – 1.62 (m, 2H), 1.35 – 1.19 (m, 16H), 0.87 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 151.0, 149.7, 148.5, 136.8, 130.5, 129.7, 127.7, 123.1 (q, J = 281.5 Hz), 122.8, 120.4, 67.2 (q, J = 33.8 Hz), 33.8, 31.9, 29.5, 29.5, 29.4, 29.3, 29.1, 28.9, 24.7, 22.7, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.68 (d, J = 6.6 Hz). IR (neat) v (cm⁻¹): 2924.1, 2855.1, 1759.3, 1595.3, 1511.4, 1466.7, 1351.2, 1267.3, 1183.4, 1135.0, 1064.2, 840.5, 756.6, 629.9, 424.9; HRMS (ESI): caled for C₂₃H₃₁F₃NO₂⁺ [M + H]⁺ 410.2302; found 410.2301.

N-(((1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl)methyl)-4-(2,2,2-trifluoroethyl)nicotinamide (50)

60% (58.4 mg) (dr=5:1); colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 8.61 (d, *J* = 5.1 Hz, 1H), 7.30 (d, *J* = 5.1 Hz, 1H), 7.16 (d, *J* = 8.2 Hz, 1H), 7.02 - 6.96 (m, 1H),

6.87 (d, 1H), 6.12 (t, J = 6.3 Hz, 1H), 3.92 - 3.67 (m, 2H), 3.47 - 3.25 (m, 2H), 2.98 - 2.75 (m, 2H), 2.32 (d, J = 12.7 Hz, 1H), 1.99 - 1.64 (m, 5H), 1.58 - 1.44 (m, 2H), 1.40 - 1.19 (m, 9H), 1.04 - 0.77 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 151.2, 147.7, 146.8, 145.7, 138.2 (q, J = 3.1 Hz), 134.4, 133.2, 126.9, 126.4, 125.1 (q, J = 277.3 Hz), 124.1, 123.9, 50.6, 46.0, 38.3, 37.5, 37.5, 36.3, 35.7 (q, J = 30.1 Hz), 33.4, 30.1, 25.2, 24.0, 23.9, 19.1, 18.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.43 (t, J = 10.9 Hz), -64.47 (t, J = 10.8 Hz). IR (neat) v (cm⁻¹): 3293.1, 2924.1, 2855.1, 1647.5, 1541.3, 1459.3, 1356.8, 1252.4, 1220.7, 1140.6, 1082.8, 825.6, 665.3, 605.7, 527.4; HRMS (ESI): caled for C₂₈H₃₆F₃N₂O⁺ [M + H]⁺ 473.2774; found 473.2769.

N-(cyanomethyl)-4-(2,2,2-trifluoroethyl)nicotinamide (51)

F₃C
O
N
C
N
C
N
C
C
D₃CN)
$$\delta$$
 8.81 – 8.61 (m, 2H), 7.56 (s, 1H), 7.45 (d, J = 5.0 Hz, 1H),
4.25 (d, J = 5.8 Hz, 2H), 3.91 (q, J = 11.0 Hz, 2H). ¹³C NMR (126 MHz, 1H),
C
C
D₃CN) **C**
C
D₃CN) **C**
C
D₃CN) **C**
D₃CN

CD₃CN) δ 168.0, 152.8, 149.5, 139.3 (q, *J* = 2.9 Hz), 132.1, 127.6, 126.7 (q, *J* = 276.4 Hz), 117.4, 36.0 (q, *J* = 29.8 Hz), 28.6. ¹⁹F{H} NMR (471 MHz, CD₃CN) δ -65.37 . IR (neat) v (cm⁻¹): 3285.6, 2912.9, 1641.9, 1535.7, 1408.9, 1354.9, 1310.2, 1248.7, 1218.8, 1131.2, 1080.9,

916.9, 833.1, 780.9, 708.2, 635.5, 609.4, 527.4; HRMS (ESI): caled for C₁₀H₉F₃N₃O⁺ [M + H]⁺ 244.0692; found 244.0691.

methyl 4,4,4-trifluoro-2-(quinolin-4-ylmethyl)butanoate (52)

40% (23.8 mg); colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, *J* = 4.4 Hz, 1H), 8.16 (d, *J* = 8.3 Hz, 1H), 7.99 (d, *J* = 8.3 Hz, 1H), 7.79 – 7.71 (m, 1H), 7.66 – 7.59 (m, 1H), 7.22 (d, *J* = 4.4 Hz, 1H), 3.57 (s, 3H), 3.48 – 3.40 (m, 1H), 3.36 – 3.28 (m, 1H), 3.25 – 3.15 (m, 1H), 2.82 – 2.66 (m, 1H), 2.40 – 2.24 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 149.9, 148.4, 143.3, 130.5, 129.5, 127.1, 125.9 (q, *J* = 277.3 Hz), 122.8, 121.7, 52.3, 40.1 (q, *J* = 2.3 Hz), 35.9 (q, *J* = 29.2 Hz), 34.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.93 (t, *J* = 10.5 Hz). IR (neat) v (cm⁻¹): 3055.1, 2957.9, 2925.0, 2853.6, 1741.3, 1676.9, 1595.5, 1511.1, 1435.4, 1383.9, 1263.8, 1208.0, 1143.7, 1110.8, 1073.7, 960.7, 897.8, 846.3, 736.3, 701.9; HRMS (ESI): caled for C₁₅H₁₅F₃NO₂⁺ [M + H]⁺ 298.1050; found 298.1043.

phenyl 4,4,4-trifluoro-2-(quinolin-4-ylmethyl)butanoate (53)

F₃C 55% (39.5 mg); colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 8.88 (d, J = 4.4 Hz, 1H), 8.19 (d, J = 8.3 Hz, 1H), 8.05 (d, J = 8.3 Hz, 1H), 7.80 – 7.75 (m, 1H), 7.68 – 7.62 (m, 1H), 7.33 – 7.28 (m, 3H), 7.22 – 7.17 (m, 1H), 6.74 – 6.69 (m, 2H), 3.59 – 3.52 (m, 1H), 3.50 – 3.42 (m, 2H), 2.96 – 2.82 (m, 1H), 2.53 – 2.41 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 171.6, 150.0, 149.9, 148.5, 142.8, 130.6, 129.6, 129.4, 127.3, 127.0, 126.2, 125.9 (q, J = 277.2 Hz), 122.8, 121.9, 121.0, 40.3 (q, J = 2.3 Hz), 36.2 (q, J = 29.4 Hz), 34.6. ¹⁹F{H} NMR (471 MHz, CDCl₃) δ -64.71. IR (neat) v (cm⁻¹): 3053.7, 2985.1, 2929.3, 1759.9, 1594.0, 1488.3, 1429.6, 1383.9, 1263.8, 1193.7, 1142.3, 1108.0, 1067.9, 907.8, 734.8, 699.1; HRMS (ESI): caled for C₂₀H₁₇F₃NO₂⁺ [M + H]⁺ 360.1206; found 360.1198.

4,4,4-trifluoro-N-methyl-N-phenyl-2-(quinolin-4-ylmethyl)butanamide (54)

54% (40.2 mg); white solid; mp 121.0-122.2 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.79 (d, *J* = 4.2 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 7.69 – 7.63 (m, 1H), 7.41 (d, J = 8.3 Hz, 1H), 7.35 – 7.30 (m, 1H), 7.13 – 7.07 (m, 2H),

3.32 – 3.23 (m, 1H), 3.21 – 3.13 (m, 2H), 3.07 (s, 3H), 2.91 – 2.77 (m, 1H), 2.22 – 2.09 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 172.1, 149.9, 148.3, 143.7, 142.1, 130.2, 129.3, 129.3, 127.8, 127.4, 126.7, 126.7, 126.2 (q, J = 277.2 Hz), 122.7, 122.3, 37.4, 36.7 (q, J = 2.5 Hz), 36.5 (q, J = 28.6 Hz), 35.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.33 (t, J = 10.9 Hz). IR (neat) v (cm⁻¹): 3055.1, 2923.6, 2853.6, 1422.5, 1263.8, 896.4, 734.8, 700.5; HRMS (ESI): caled for C₂₁H₂₀F₃N₂O⁺ [M + H]⁺ 373.1522; found 373.1520.

X-ray crystallography for 54 (CCDC number: 2075783)

N,N-diethyl-4,4,4-trifluoro-2-(quinolin-4-ylmethyl)butanamide (55)

F₃C N O

39% (26.4 mg); colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 8.79 (d, J = 3.6 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.2 Hz, 1H), 7.76 – 7.70

(m, 1H), 7.65 – 7.59 (m, 1H), 7.25 (d, J = 4.3 Hz, 1H), 3.45 – 3.31 (m, 3H), 3.28 – 3.18 (m, 1H), 3.12 – 3.03 (m, 1H), 2.91 – 2.77 (m, 1H), 2.63 (q, J = 7.2 Hz, 2H), 2.44 – 2.32 (m, 1H), 0.87 (t, J = 7.1 Hz, 3H), 0.55 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 150.0, 148.2, 144.0, 130.4, 129.4, 127.3, 127.1, 126.4 (q, J = 277.0 Hz), 122.9, 122.3, 41.5, 40.7, 37.3 (q, J = 28.4 Hz), 35.9 (q, J = 4.4 Hz), 35.5, 13.6, 12.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.50 (t, J = 10.9 Hz). IR (neat) v (cm⁻¹): 3053.7, 2983.6, 2933.6, 1636.9, 1511.1, 1461.1, 1431.1, 1373.9, 1263.8, 1143.7, 1103.7, 907.8, 734.8, 700.5; HRMS (ESI): caled for C₁₈H₂₂F₃N₂O⁺ [M + H]⁺ 339.1679; found 339.1672.

6,6,6-trifluoro-4-(quinolin-4-ylmethyl)hexyl benzoate (56)

28% (22.5 mg); colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.94 (s, 1H), 8.18 (d, *J* = 8.4 Hz, 1H), 8.10 – 7.98 (m, 3H), 7.82 – 7.74 (m, 1H), 7.68 – 7.61 (m, 1H), 7.60 – 7.52 (m, 1H), 7.49 – 7.40 (m, 3H),

4.82 – 4.68 (m, 2H), 4.42 – 4.27 (m, 2H), 3.46 – 3.36 (m, 1H), 3.03 – 2.87 (m, 1H), 2.64 – 2.46 (m, 1H), 2.30 – 2.17 (m, 1H), 2.14 – 1.89 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 149.7, 148.8, 133.1, 132.4, 130.6, 130.0, 129.9, 129.5, 128.5, 127.8, 127.2, 125.5 (q, J = 277.3 Hz), 124.4, 123.4, 63.7, 56.2 (q, J = 2.4 Hz), 53.9, 32.8 (q, J = 30.4 Hz), 25.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.54 (t, J = 10.5 Hz). IR (neat) v (cm⁻¹): 3056.6, 2987.9, 2926.5, 2853.6, 1715.6, 1595.5, 1512.6, 1451.1, 1389.6, 1318.1, 1266.7, 1150.9, 1120.8, 1070.8, 1029.3, 907.8, 734.8, 704.8; HRMS (ESI): caled for C₂₃H₂₃F₃NO₂⁺ [M + H]⁺ 402.1676; found 402.1675.

methyl 4,4,4-trifluoro-2-(pyrimidin-4-ylmethyl)butanoate (57)

34% (16.9 mg); colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.14 (s, 1H), 8.65 (s, 1H), 7.19 (d, *J* = 4.8 Hz, 1H), 3.68 (s, 3H), 3.42 – 3.32 (m, 1H), 3.23 – 3.14 (m, 1H), 3.11 – 3.02 (m, 1H), 2.76 – 2.60 (m, 1H), 2.49 – 2.33 (m, 1H). ¹³C

NMR (126 MHz, CDCl₃) δ 173.2, 166.2, 158.7, 156.9, 126.1 (q, *J* = 276.9 Hz), 121.3 – 121.1 (m), 52.4, 38.4, 38.0 (q, *J* = 2.5 Hz), 35.1 (q, *J* = 29.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.59 (t, *J* = 10.8 Hz). IR (neat) v (cm⁻¹): 3053.7, 2925.0, 2853.6, 1741.3, 1584.0, 1551.2, 1442.5, 1388.2, 1263.8, 1203.8, 1143.7, 1107.9, 899.2, 734.8, 701.9; HRMS (ESI): caled for C₁₀H₁₂F₃N₂O₂⁺ [M + H]⁺ 249.0846; found 249.0844.

(R)-4,4,4-trifluoro-2-(pyrimidin-4-ylmethyl)butanenitrile (58)

phenyl 2-((3-chloropyridin-4-yl)methyl)-4,4,4-trifluorobutanoate (59)

41% (28.1 mg); colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s,
Ph
CF₃ 1H), 8.46 (d,
$$J = 4.9$$
 Hz, 1H), 7.37 – 7.30 (m, 2H), 7.25 – 7.19 (m, 2H),
6.84 – 6.79 (m, 2H), 3.47 – 3.36 (m, 1H), 3.17 (d, $J = 7.7$ Hz, 2H), 2.91
– 2.74 (m, 1H), 2.50 – 2.35 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 150.0, 149.9, 148.0,
143.7, 132.4 – 132.2 (m), 129.5, 126.3, 125.8 (q, $J = 277.0$ Hz), 125.6, 121.0, 38.9 (q, $J = 2.4$
Hz), 36.1 (q, $J = 29.5$ Hz), 35.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.72 (t, $J = 10.3$ Hz). IR (neat)
v (cm⁻¹): 3047.1, 2935.3, 1757.4, 1587.8, 1492.8, 1377.3, 1254.2, 1189.0, 1136.8, 1105.2,
1038.1, 833.1, 749.2, 689.6, 534.9, 499.5; HRMS (ESI): caled for C₁₆H₁₄ClF₃NO₂⁺ [M + H]⁺
344.0660; found 344.0660.

2-((3-chloropyridin-4-yl)methyl)-4,4,4-trifluorobutanenitrile (60)

-2.39 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 149.9, 148.4, 141.7, 131.9 (q, *J* = 4.7 Hz), 125.7, 124.8 (q, *J* = 277.4 Hz), 118.2, 36.1 (q, *J* = 30.4 Hz), 34.9, 25.3 (q, *J* = 2.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.52 (t, *J* = 9.8 Hz). IR (neat) v (cm⁻¹): 3047.1, 2920.4, 2249.4, 1586.0, 1399.6, 1250.5, 1146.2, 1108.9, 1036.2, 836.8, 713.8, 637.4, 559.1; HRMS (ESI): caled for C₁₀H₉ClF₃N₂⁺ [M + H]⁺ 249.0401; found 249.0401.

1,1,1,3,3,3-hexafluoropropan-2-yl

2-((3-chloropyridin-4-yl)methyl)-4,4,4-trifluorobutanoate (61)

-73.92 (m). IR (neat) v (cm⁻¹): 2974.4, 1779.8, 1587.8, 1384.7, 1287.8, 1226.3, 1198.3, 1107.0, 905.7, 836.8, 691.4, 542.3; HRMS (ESI): caled for C₁₃H₁₀ClF₉NO₂⁺ [M + H]⁺ 418.0251; found 418.0250.

phenyl 2-((3-((cyanomethyl)carbamoyl)pyridin-4-yl)methyl)-4,4,4-trifluorobutanoate (62)

47% (36.8 mg) (dr=1:1); white solid; mp 158.7-160.0 °C; ¹H NMR (400 MHz, CD₃CN) δ 8.71 – 8.60 (m, 3H), 7.68 (s, 1H), 7.43 (d, J = 5.1 Hz, 1H), 7.40 – 7.33 (m, 2H), 7.29 – 7.22 (m, 1H), 6.87 – 6.81 (m, 1H), 4.29 – 4.24 (m, 2H), 3.91 (q, J = 11.0 Hz, 2H), 3.46 – 3.37 (m, 1H), 3.35 –

3.13 (m, 1H), 2.92 – 2.47 (m, 1H). ¹³C NMR (101 MHz, (CD₃)₂CO) δ 172.3, 168.0, 152.5 (d, *J* = 7.0 Hz), 149.4, 146.9, 139.3 (q, *J* = 3.2 Hz), 130.3, 127.6, 126.9, 126.7, 123.9 (q, *J* = 277.2 Hz), 122.2, 41.5 (q, *J* = 2.5 Hz), 37.0 – 35.2 (m), 35.9, 28.4 (d, *J* = 9.5 Hz). ¹⁹F NMR (376 MHz, CD₃CN) δ -65.34 (t, *J* = 11.3 Hz), -65.41 (t, *J* = 11.1 Hz). IR (neat) v (cm⁻¹): 3285.6, 2912.9, 1757.4, 1641.9, 1535.7, 1407.1, 1356.8, 1250.5, 1131.2, 916.9, 833.1, 751.1, 609.4, 527.4; HRMS (ESI): caled for C₁₉H₁₇F₃N₃O₃⁺ [M + H]⁺ 392.1217; found 392.1215.

((3aR,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyr an-3a-yl)methyl 2-((3-chloropyridin-4-yl)methyl)-4,4,4-trifluorobutanoate (63)

 $N_{CI} = \frac{1.4:1}{1000}; \text{ cloorless liquid; } ^{1}\text{H NMR (400 MHz, } \\ CDCI_{3}) \delta 8.56 (d, J = 5.3 \text{ Hz, } 1\text{H}), 8.39 (d, J = 4.9 \text{ Hz, } 1\text{H}), 7.16 - 7.09 (m, 1\text{H}), 4.57 - 4.47 (m, 1\text{H}), 4.25 - 4.16 (m, 2\text{H}), 4.11 - 4.04 \text{Hz}$

(m, 1H), 3.91 (d, J = 11.6 Hz, 1H), 3.86 - 3.80 (m, 1H), 3.73 - 3.64 (m, 1H), 3.22 - 2.96 (m, 3H), 2.80 - 2.60 (m, 1H), 2.39 - 2.22 (m, 1H), 1.48 (d, J = 3.4 Hz, 3H), 1.44 (d, J = 3.8 Hz, 3H), 1.32 (d, J = 7.0 Hz, 3H), 1.25 (d, J = 18.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 149.7, 148.2, 143.9, 132.0, 125.8 (q, J = 276.8 Hz), 125.4, 108.9 (d, J = 27.3 Hz), 100.9, 70.7, 70.5, 70.1, 66.0, 61.2 (d, J = 2.5 Hz), 39.0 - 38.7 (m), 35.8 (q, J = 29.4 Hz), 35.3, 29.7, 26.4 (d, J = 4.2 Hz), 25.8 (d, J = 2.9 Hz), 25.0, 24.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.77 (t, J = 10.5 Hz). IR (neat) v (cm⁻¹): 2991.2, 2939.0, 1744.4, 1586.0, 1449.9, 1377.3, 1250.5, 1207.7, 1144.3, 1103.3, 1069.7, 982.2, 885.2, 756.6, 542.3; HRMS (ESI): caled for C₂₂H₂₈ClF₃NO₇⁺ [M + H]⁺ 510.1501; found 510.1500.

4-acetamidophenyl 2-((3-chloropyridin-4-yl)methyl)-4,4,4-trifluorobutanoate (64)

47% (37.6 mg); colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 8.45 (d, J = 4.9 Hz, 1H), 7.46 (d, J = 8.9 Hz, 2H), 7.32 (s, 1H), 7.20 (d, J = 4.9 Hz, 1H), 6.77 (d, J = 8.9 Hz, 2H), 3.45 – 3.34 (m, 1H), 3.19 – 3.13 (m, 2H), 2.89 – 2.73 (m, 1H), 2.50 – 2.34 (m, 1H), 2.16 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 168.2, 149.9, 148.0, 146.1, 143.7, 136.0 132.3,

125.8 (q, *J* = 277.0 Hz), 125.6, 121.5, 120.8, 38.9 (q, *J* = 2.5 Hz), 36.1 (q, *J* = 29.5 Hz), 35.3, 24.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.73 (t, *J* = 10.4 Hz). IR (neat) v (cm⁻¹): 3268.9, 3060.1, 2924.1, 1753.7, 1669.8, 1612.1, 1543.1, 1505.8, 1373.5, 1254.2, 1190.9, 1135.0, 1105.2, 1015.7, 885.2, 821.9, 657.9, 516.2; HRMS (ESI): caled for C₁₈H₁₇ClF₃N₂O₃⁺ [M + H]⁺ 401.0875; found 401.0874.

sec-butyl

2-(2-((2-((3-chloropyridin-4-yl)methyl)-4,4,4-trifluorobutanoyl)oxy)ethyl)piperidine-1-car boxylate (65)

41% (39.2 mg); colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.40 (s, 1H), 7.14 (d, *J* = 4.5 Hz, 1H), 4.79 – 4.63 (m, 1H), 4.30 (d, *J* = 24.3 Hz, 1H), 4.10 – 3.89 (m, 3H), 3.16 – 2.97 (m, 2H), 2.78 – 2.59 (m, 2H), 2.34 – 2.17 (m, 1H), 2.00 – 1.86 (m, 2H), 1.64 – 1.30 (m,

9H), 1.21 - 1.12 (m, 3H), 0.94 - 0.81 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.4 (d, J = 8.1 Hz), 155.4, 149.6, 147.8, 144.1, 132.5 - 131.9 (m), 125.8 (q, J = 277.9 Hz), 125.4, 73.4 - 71.8 (m), 63.0 (d, J = 14.0 Hz), 47.8 - 47.3 (m), 38.8, 35.7 (q, J = 29.2 Hz), 34.9 (d, J = 12.8 Hz), 29.6, 29.0 (d, J = 4.4 Hz), 28.6, 28.4 (d, J = 6.0 Hz), 25.4 (d, J = 5.6 Hz), 19.9 - 19.6 (m), 18.9, 9.7 - 9.4 (m). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.81 (t, J = 10.5 Hz). IR (neat) v (cm⁻¹): 2968.8, 2937.1, 2862.6, 1736.9, 1682.9, 1586.0, 1422.0, 1377.3, 1254.2, 1138.7, 1108.9, 1038.1, 833.1, 766.0, 544.2; HRMS (ESI): caled for C₂₂H₃₁CIF₃N₂O₄⁺ [M + H]⁺ 479.1919; found 479.1918.

ethyl 4-(2-((3-chloropyridin-4-yl)methyl)-4,4,4-trifluorobutanamido)benzoate (66)

132.0, 130.7, 126.6, 125.9 (q, J = 277.1 Hz), 125.9, 119.4, 61.0, 41.4 (q, J = 2.5 Hz), 36.3 (q, J = 29.3 Hz), 36.1, 14.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.78 (t, J = 10.5 Hz). IR (neat) v (cm⁻¹): 3322.9, 3049.0, 2983.7, 1686.6, 1599.0, 1533.8, 1408.9, 1367.9, 1256.1, 1140.6, 1101.4, 1017.6, 855.4, 769.7, 697.0, 546.1; HRMS (ESI): caled for C₁₉H₁₉ClF₃N₂O₃⁺ [M + H]⁺ 415.1031; found 415.1036.

(3aS,5S,6S,6aS)-5-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl 2-((3-chloropyridin-4-yl)methyl)-4,4,4-trifluorobutanoate (67)

48% (48.8 mg)(dr=1.5:1); colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.41 (d, *J* = 4.6 Hz, 1H), 7.23 – 7.11 (m, 1H), 5.84 – 5.56 (m, 1H), 5.16 (d, *J* = 3.1 Hz, 1H), 4.40 – 3.89 (m, 6H), 3.22 – 3.09 (m, 1H), 3.09 – 2.88 (m, 1H), 2.79 – 2.60 (m, 1H), 2.39 – 2.16 (m, 1H),

1.47 (d, J = 9.3 Hz, 3H), 1.36 (d, J = 10.4 Hz, 3H), 1.29 – 1.22 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 149.8, 148.0 143.7, 125.7 (q, J = 277.3 Hz), 125.8 – 125.6 (m), 125.4, 112.4, 109.4, 105.0, 82.8, 79.5, 77.2, 72.2, 67.3, 38.6 (q, J = 2.5 Hz), 35.5 (q, J = 29.4 Hz), 34.8, 26.8, 26.6, 26.1, 25.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.84(t, J = 10.2 Hz), -64.90 (t, J = 10.2 Hz). IR (neat) v (cm⁻¹): 2989.3, 2939.0, 1746.3, 1586.0, 1373.5, 1254.2, 1215.1, 1146.2, 1073.5, 1019.4, 840.5, 732.4, 637.4, 534.9, 512.5; HRMS (ESI): caled for C₂₂H₂₈ClF₃NO₇⁺ [M + H]⁺ 510.1501; found 510.1501.

(3S,5S,8R,9S,10S,13S,14S)-10,13-dimethyl-17-oxohexadecahydro-1H-cyclopenta[a]phe nanthren-3-yl 2-((3-chloropyridin-4-yl)methyl)-4,4,4-trifluorobutanoate (68)

J = 4.9 Hz, 1H), 4.65 - 4.55 (m, 1H), 3.11 - 2.96 (m, 3H), 2.76 - 2.58 (m, 1H), 2.46 - 2.36 (m, 1H), 2.33 - 2.17 (m, 1H), 2.10 - 1.98 (m, 1H), 1.95 - 1.85 (m, 2H), 1.80 - 1.08 (m, 15H), 1.01 - 0.89 (m, 2H), 0.83 (s, 3H), 0.78 (s, 3H), 0.71 - 0.60 (m, 1H).¹³C NMR (126 MHz, CDCl₃) δ 221.2, 172.0 (d, J = 4.9 Hz), 149.6, 147.7, 144.1, 132.3, 125.8 (q, J = 277.1 Hz), 125.5, 74.6, 54.2, 51.3, 47.7, 44.5, 39.1 - 38.8 (m), 36.5, 36.0 (q, J = 29.3 Hz), 35.8, 35.5, 35.2 (d, J = 3.7 Hz), 34.9, 33.4, 31.4, 30.7 (d, J = 2.9 Hz), 28.1, 26.9 (d, J = 4.6 Hz), 21.7, 20.4, 13.8, 12.1 (d, J = 1.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.76 (t, J = 10.5 Hz), -64.77 (t, J = 10.5 Hz). IR (neat) v (cm⁻¹): 2931.6, 2853.3, 1727.6, 1586.0, 1449.9, 1375.4, 1245.2, 1179.7, 1136.8, 1101.4, 1010.1, 823.7, 732.4, 587.1, 540.5; HRMS (ESI): caled for C₂₉H₃₈ClF₃NO₃⁺ [M + H]⁺ 540.2487; found 540.2487.

2-(1-((trifluoromethyl)sulfonyl)pyridin-4(1H)-ylidene)acetonitrile (72)

 $\begin{array}{c} \mathbf{CN} \\ 92\% (46 \text{ mg}); \text{ white solid}; \text{ mp } 77.1-78.3 \ ^\circ C; \ ^1 \text{H NMR} (400 \text{ MHz}, \text{CDCI}_3) \ \delta \ 7.02 \ (\text{d}, J \\ = 8.2 \ \text{Hz}, \ 1 \text{H}), \ 6.92 \ (\text{d}, J = 8.1 \ \text{Hz}, \ 1 \text{H}), \ 6.56 \ (\text{dd}, J = 8.2, \ 2.3 \ \text{Hz}, \ 1 \text{H}), \ 6.17 \ (\text{dd}, J = 8.2 \ \text{Hz}, \ 1 \text{H}), \ 6.17 \ (\text{dd}, J = 8.1 \ \text{Hz}, \ 1 \text{H}), \ 6.56 \ (\text{dd}, J = 8.2, \ 2.3 \ \text{Hz}, \ 1 \text{H}), \ 6.17 \ (\text{dd}, J = 8.1 \ \text{Hz}, \ 1 \text{H}), \ 6.17 \ (\text{dd}, J = 8.1 \ \text{Hz}, \ 1 \text{H}), \ 6.56 \ (\text{dd}, J = 8.2, \ 2.3 \ \text{Hz}, \ 1 \text{H}), \ 6.17 \ (\text{dd}, J = 8.1 \ \text{Hz}, \ 1 \text{H}), \ 6.17 \ (\text{dd}, J = 8.1 \ \text{Hz}, \ 1 \text{H}), \ 6.17 \ (\text{dd}, J = 8.1 \ \text{Hz}, \ 1 \text{H}), \ 6.17 \ (\text{dd}, J = 8.1 \ \text{Hz}, \ 1 \text{Hz}, \$

-74.52. IR (neat) v (cm⁻¹): 3114.2, 3065.7, 2922.2, 2853.3, 2195.4, 1660.5, 1429.4, 1306.4, 1215.1, 1142.4, 1053.0, 971.0, 810.7, 769.7, 702.6, 575.9, 484.6; HRMS (ESI): caled for $C_8H_6F_3N_2O_2S^+$ [M + H]⁺ 251.0102; found 251.0098.

VIII. X-ray crystallography data for 10

Table 1 Crystal data and structure refinement

Identification code	10
Empirical formula	C ₁₈ H ₁₁ F ₃ N ₂
Formula weight	312.29
Temperature/K	193
Crystal system	monoclinic
Space group	P21/n
a/Å	11.3732(4)
b/Å	7.0194(3)
c/Å	17.8991(6)
α/°	90
β/°	100.7770(10)
γ/°	90
Volume/Å ³	1403.74(9)
Z	4
ρ _{calc} g/cm ³	1.478
µ/mm ⁻¹	0.116
F(000)	640.0
Crystal size/mm ³	0.17 × 0.13 × 0.11
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.67 to 55.006
Index ranges	-14 ≤ h ≤ 14, -9 ≤ k ≤ 7, -23 ≤ l ≤ 23

Reflections collected	12337
Independent reflections	3191 [R _{int} = 0.0267, R _{sigma} = 0.0236]
Data/restraints/parameters	3191/0/216
Goodness-of-fit on F ²	1.068
Final R indexes [I>=2σ (I)]	R ₁ = 0.0381, wR ₂ = 0.0969
Final R indexes [all data]	R ₁ = 0.0464, wR ₂ = 0.1029
Largest diff. peak/hole / e Å-3	0.32/-0.21

Crystal structure determination of 10

Crystal Data for C₁₈H₁₁F₃N₂ (*M* = 312.29 g/mol): monoclinic, space group P2₁/n (no.14), *a* = 11.3732(4) Å, *b* = 7.0194(3) Å, *c* = 17.8991(6) Å, *β* = 100.7770(10)°, *V* = 1403.74(9) Å³, *Z* = 4, *T* = 193 K, μ (MoK α)= 0.116 mm⁻¹, *Dcalc*= 1.478 g/cm³, 12337 reflections measured (4.67° ≤ 2 Θ ≤ 55.006°), 3191 unique (*R*_{int} = 0.0267, R_{sigma} = 0.0236) which were used in all calculations. The final *R*₁ was 0.0381 (I > 2 σ (I)) and *wR*₂ was 0.1029 (all data).

X-ray crystallography data for 54

Table 1 Crystal data and structure refinement

Identification code	54
Empirical formula	$C_{21}H_{19}F_3N_2O$
Formula weight	372.38
Temperature/K	293.0
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	8.832(2)
b/Å	11.476(2)
c/Å	17.721(4)

α/°	90.00(3)
β/°	91.06(3)
γ/°	90.00(3)
Volume/Å ³	1796.0(7)
Z	4
ρ _{calc} g/cm ³	1.377
µ/mm ⁻¹	0.107
F(000)	776.0
Crystal size/mm ³	0.1 × 0.1 × 0.1
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.228 to 54.994
Index ranges	-10 ≤ h ≤ 11, -14 ≤ k ≤ 14, -23 ≤ l ≤ 20
Reflections collected	16006
Independent reflections	4117 [R_{int} = 0.0456, R_{sigma} = 0.0430]
Data/restraints/parameters	4117/0/245
Goodness-of-fit on F ²	1.020
Final R indexes [I>=2σ (I)]	R ₁ = 0.0462, wR ₂ = 0.0976
Final R indexes [all data]	R ₁ = 0.0775, wR ₂ = 0.1138
Largest diff. peak/hole / e Å ⁻³	0.21/-0.22

Crystal structure determination of 54

Crystal Data for C₂₁H₁₉F₃N₂O (*M* = 372.38 g/mol): monoclinic, space group P2₁/n (no.14), *a* = 8.832(2) Å, *b* = 11.476(2) Å, *c* = 17.721(4) Å, *β* = 91.06(3)°, *V* = 1796.0(7) Å³, *Z* = 4, *T* = 293.0 K, μ (MoKα)= 0.107 mm⁻¹, *Dcalc*= 1.377 g/cm³, 16006 reflections measured (4.228° ≤ 2Θ ≤ 54.994°), 4117 unique (*R*_{int} = 0.0456, R_{sigma} = 0.0430) which were used in all calculations. The final *R*₁ was 0.0462 (I > 2σ(I)) and *wR*₂ was 0.1138 (all data).

X-ray crystallography data for 72

Table 1 Crystal data and structure refinement

Identification code	72
Empirical formula	$C_8H_5F_3N_2O_2S$
Formula weight	250.20
Temperature/K	193.0
Crystal system	monoclinic
Space group	P21/c
a/Å	10.810(2)
b/Å	5.693(2)
c/Å	16.013(3)
α/°	90.00(3)
β/°	93.45(3)
γ/°	90.00(3)
Volume/Å ³	983.7(4)
Z	4
ρ _{calc} g/cm ³	1.689
µ/mm ⁻¹	0.360
F(000)	504.0
Crystal size/mm ³	0.17 × 0.13 × 0.11
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	5.1 to 54.98
Index ranges	-14 ≤ h ≤ 13, -7≤ k ≤ 7, -20 ≤ l ≤ 15

Reflections collected	8493
Independent reflections	2243 [R_{int} = 0.0499, R_{sigma} = 0.0472]
Data/restraints/parameters	2243/0/145
Goodness-of-fit on F ²	1.044
Final R indexes [I>=2σ (I)]	R ₁ = 0.0364, wR ₂ = 0.0940
Final R indexes [all data]	R ₁ = 0.0419, wR ₂ = 0.0987
Largest diff. peak/hole / e Å-3	0.32/-0.25

Crystal structure determination of 72

Crystal Data for C₈H₅F₃N₂O₂S (*M* = 250.20 g/mol): monoclinic, space group P2₁/c (no.14), *a* = 10.810(2) Å, *b* = 5.693(2) Å, *c* = 16.013(3) Å, β = 93.45(3)°, *V* = 987.3(4) Å³, *Z* = 4, *T* = 193.0 K, μ (MoK α)= 0.360 mm⁻¹, *Dcalc*= 1.689 g/cm³, 8493 reflections measured (5.1° ≤ 2Θ ≤ 54.98°), 2243 unique (R_{int} = 0.0499, R_{sigma} = 0.0472) which were used in all calculations. The final R_1 was 0.0364 (I > 2 σ (I)) and wR_2 was 0.0987 (all data).

IX. NMR Spectra for compounds 2b, 2c, 3-68

NMR Spectra of product **2b**:

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

NMR Spectra of product 2c:

NMR Spectra of product 3:

NMR Spectra of product 7:

NMR Spectra of product 8:

NMR Spectra of product 9:

NMR Spectra of product 10:

NMR Spectra of product 11:

NMR Spectra of product **12**:

NMR Spectra of product 13:

90 80 f1 (ppm) ò

NMR Spectra of product 14:

NMR Spectra of product 17:

NMR Spectra of product 20:

NMR Spectra of product 21:

NMR Spectra of product 22:

NMR Spectra of product 23:

NMR Spectra of product 24:

NMR Spectra of product 25:

NMR Spectra of product 26:

NMR Spectra of product 27:

NMR Spectra of product 28:

NMR Spectra of product 29:

NMR Spectra of product 30:

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

NMR Spectra of product 31:

NMR Spectra of product 32:

NMR Spectra of product 33:

NMR Spectra of product 34:

8.8.99 8.8.20 8.8.20 8.8.19 8.8.01 8.8.01 8.8.01 7.7.99 7.7.99 7.7.79 7.7.79 7.7.70

NMR Spectra of product 35:

NMR Spectra of product 36:

- 9,01 - 9,01 - 9,02 - 9,00 - 9,02 - 9,02 - 9,02 - 9,02 - 1,02 - 1,02 - 1,02 - 1,02 - 1,02 - 1,02 - 1,02 - 1,02 - 1,05 -

NMR Spectra of product 37:

NMR Spectra of product 38:

NMR Spectra of product 39:

8

NMR Spectra of product 40:

88.88 88.18 88.18 88.18 88.18 88.18 88.14 88.14 7.77 7.77 88.14 7.77 68.05 66.98

NMR Spectra of product 41:

NMR Spectra of product 42:

90 80 f1 (ppm) o

NMR Spectra of product **43**:

NMR Spectra of product 44:

NMR Spectra of product 45:

NMR Spectra of product 46:

NMR Spectra of product 47:

88,88 88,92 89

NMR Spectra of product 48:

NMR Spectra of product 49:

NMR Spectra of product 50:

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)

NMR Spectra of product 51:

NMR Spectra of product 52:

NMR Spectra of product 53:

NMR Spectra of product 54:

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

NMR Spectra of product 55:

NMR Spectra of product 56:

NMR Spectra of product 57:

NMR Spectra of product 58:

NMR Spectra of product 59:

NMR Spectra of product 60:

NMR Spectra of product 61:

NMR Spectra of product 62:

NMR Spectra of product 63:

NMR Spectra of product 64:

NMR Spectra of product 65:

NMR Spectra of product 66:

NMR Spectra of product 67:

NMR Spectra of product 68:

NMR Spectra of product 72:

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 f1 (ppm)