Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

> Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

Supplementary information

Decoded fingerprints of hyperresponsive, expanding product space: Polyether cascade

cyclizations as tools to elucidate supramolecular catalysis

Hao Chen,^{a,b} Tian-Ren Li,^{a,c} Naomi Sakai,^{a,b} Celine Besnard,^b Laure Guénée,^b Marion Pupier,^b

Jasmine Viger-Gravel,^b Konrad Tiefenbacher^{a,c,d} and Stefan Matile^{*a,b}

^aNational Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR

1095, Basel, Switzerland.

^bDepartment of Organic Chemistry University of Geneva, Geneva, Switzerland.

^{*c*}Department of Chemistry, University of Basel, Basel, Switzerland.

^dDepartment of Biosystems Science and Engineering, ETH, Zurich, Basel, Switzerland.

^{*}E-mail: stefan.matile@unige.ch

Table of contents

1.	Mate	Materials and methods			
2.	Synthesis				
	2.1.	Synthesis of <i>cis</i> diepoxide substrates	S 5		
	2.2.	Synthesis of trans diepoxide substrates	S 8		
3.	Product identification				
	3.1.	Identification of BB products	S11		
	3.2.	Identification of A-containing products	S13		
	3.3.	Identification of products with acyclic and rearrangement motifs	S20		
4.	Catalysis				
	4.1.	Catalysis with cis diepoxide substrates	S22		
		4.1.1. Brønsted-acid catalyst AcOH	S24		
		4.1.2. π -Basic capsule catalyst 8	S26		
		4.1.3. Pnictogen-bonding catalyst 9	S28		
		4.1.4. π -Acidic catalyst 10	S 31		
	4.2.	Catalysis with trans diepoxide substrates	S 33		
		4.2.1. Brønsted-acid catalyst AcOH	S35		
		4.2.2. π -Basic capsule catalyst 8	S 37		
		4.2.3. Pnictogen-bonding catalyst 9	S 39		
		4.2.4. π -Acidic catalyst 10	S41		
5.	Kine	tics analysis	S43		
6.	NMF	S49			
7.	X-ra	X-ray crystallography			
8.	Supp	S89			

1. Materials and methods

As in reference S1, Supplementary Information. Reagents for synthesis were purchased from Fluka, Sigma-Aldrich, Apollo Scientific and Acros. All solvents used in this study were passed through a 3.0 cm ALOX basic column to remove acidic impurities (such as HCl). Column chromatography was carried out on silica gel (SiliaFlash® P60, SILICYCLE, 230-400 mesh). Analytical (TLC) and preparative thin layer chromatography (PTLC) were performed on silica gel 60 F254 (Merck) and silica gel (SiliCycle, 1000 µm), respectively. Chiral Gas chromatography (GC) was performed on Agilent 6850 Series gas chromatographs equipped with a split-mode capillary injection system and flame ionization detectors using chiral stationary Hydrodex Gamma DiMOM column (50 m x 0.25 mm ID). Separation parameters: 60 °C, 1 °C/min, until 170 °C, then hold at 170 °C for 20 min (Speed: 60 cm/s H₂, injector temperature: 170 °C). ¹H and ¹³C NMR spectra were recorded (as indicated) either on a Bruker 400 MHz or 500 MHz spectrometer and are reported as chemical shifts (δ) in ppm relative to TMS ($\delta = 0$). Spin multiplicities are reported as a singlet (s), doublet (d), triplet (t) and quartet (q), with coupling constants (J) given in Hz, or multiplet (m). Broad peaks are marked as br. ¹H and ¹³C resonances were assigned with the aid of additional information from 1D and 2D NMR spectra.

Abbreviations. A: anti-Baldwin; B: Baldwin; *m*-CPBA: *meta*-Chloroperoxybenzoic acid; DMAP: 4-Dimethylaminopyridine; EDTA: Ethylenediaminetetraacetic acid; GC-FID: Gas chromatography flame ionization detector; HM: House-Meinwald; HPLC: High-performance liquid chromatography; HSQC: Heteronuclear single quantum coherence spectroscopy; NMR: Nuclear magnetic resonance; rt: Room temperature; TBAF: Tetra-*n*-butylammonium fluoride; THF: Tetrahydrofuran; TMS: Tetramethylsilane.

2. Synthesis

Figure S1. Structure of catalysts utilized in the di-epoxide opening.

Compound 9 was prepared following previously reported procedures.^{S2}

Compound 10 was prepared following previously reported procedures.^{S3}

Compound 11 was prepared following previously reported procedures.^{S4}

Compound cis-14 was prepared following previously reported procedures.^{S5}

Compounds *cis***-15**, *cis***-16**, *trans***-15** and *trans***-16** were prepared following previously reported procedures.^{S6}

Compounds *cis*-17 and *trans*-17 were prepared following previously reported procedures.^{S7}

Compound cis-1 was prepared following previously reported procedures.^{S2}

Compound trans-1 was prepared following previously reported procedures.⁵⁸

2.1. Synthesis of *cis* diepoxide substrates

Scheme S1 (a) PBr₃, Et₂O, 0 °C; (b) ethyl acetoacetate, NaH, THF, 0 °C to rt, 46% (two steps); (c) NaOH (aq), EtOH, reflux, 52%; (d) MeMgBr, Et₂O, 0 °C to rt, 98%; (e) PhMe₂SiCl, Et₃N, CH₂Cl₂, 0 °C to rt, 73%; (f) *m*-CPBA, CH₂Cl₂, 0 °C to rt, 85%; (g) TBAF, THF, 0 °C to rt, 91% (*cis*.1), 94% (*cis*.syn-1), 91% (*cis*.anti-1); (h) Na₂B₄O₇•10H₂O, Na₂EDTA, *n*-Bu₄NHSO₄, **20**, Oxone, K₂CO₃, H₂O/MeOCH₂OMe/MeCN (10:6:3), *cis*.syn-**19a**, 82%, d.r. 89:11.

Compound *cis***-18.** To a solution of *cis***-17** (1.05 g, 5.00 mmol) in CH_2Cl_2 (20 mL) was added triethylamine (836 µL, 6.00 mmol) at 0 °C, then chloro(dimethyl)phenylsilane (856 µL, 5.10 mmol) was slowly added into the solution and the resulting mixture was gradually warmed to rt after 10 min. The mixture was stirred at rt and stopped after 8 h when the complete

consumption of the starting material was observed. The crude mixture was purified by silica gel column chromatography directly (pentane/EtOAc 100:0 to 80:1) to give *cis*-**18** (1.25 g, 73%) as a light yellow oil. R_f (pentane/Et₂O 100:1): 0.8; ¹H NMR (500 MHz, CDCl₃): 7.60 – 7.59 (m, 2H), 7.35 – 7.34 (m, 3H), 5.12 – 5.09 (m, 2H), 2.08 – 2.04 (m, 6H), 1.68 (s, 6H), 1.60 (s, 3H), 1.48 – 1.45 (m, 2H), 1.21 (s, 6H), 0.37 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): 140.7 (C), 135.0 (C), 133.5 (CH), 131.6 (C), 129.2 (CH), 127.8 (CH), 125.7 (CH), 124.5 (CH), 74.7 (C), 45.2 (CH₃), 32.1 (CH₃), 30.0 (2CH₂), 26.8 (CH₃), 25.9 (CH₂), 23.6 (CH₂), 23.1 (CH₃), 1.6 (CH₃).

Compound *cis*-**19.** To a solution of *cis*-**18** (0.41 g, 1.2 mmol) in CH₂Cl₂ (15 mL) was added *m*-CPBA (70% purity, 1.3 g, 5.2 mmol) portionwisely at 0 °C. The resulting mixture was gradually warmed to rt after 10 min. The mixture was stirred at rt and stopped after 2 h when the complete consumption of the starting material was observed. The crude mixture was purified by silica gel column chromatography directly (pentane/Et₂O 19:1 to 3:1) to give *cis*-**19** (0.38 g, 85%) as a light yellow oil. The two diastereomers *cis*,syn-**19** and *cis*,*anti*-**19** could be obtained by the separation of *cis*-**19** with preparative HPLC (CHIRALPAK[®] IA (20 mm ø x 250 mmL), 12.8 mL/min, hexane/Et₂O 4:1). *R*_f (pentane/Et₂O 3:1): 0.5; ¹H NMR (500 MHz, CDCl₃): 7.61 – 7.50 (m, 2H), 7.38 – 7.31 (m, 3H), 2.77 – 2.56 (m, 2H), 1.73 – 1.58 (m, 7H), 1.56 – 1.50 (m, 1H), 1.30 (s, 3H), 1.281 (s, 3H), 1.275 (s, 3H), 1.22 (s, 3H), 1.21 (s, 3H), 0.37 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): 141.1 (C), 133.4 (CH), 129.3 (CH), 127.8 (CH), 74.3 (C), 65.3 (CH), 64.2 (CH), 60.7 (C), 58.6 (C), 41.4 (CH₂), 30.2 (CH₃), 29.8 (CH₃), 29.6 (CH₂), 25.2 (CH₂), 25.0 (CH₃), 23.8 (CH₂), 22.4 (CH₃), 18.8 (CH₃), 1.54 (CH₃), 1.52 (CH₃).

Shi epoxidation. Compound *cis*-18 (856 mg, 2.48 mmol) was dissolved in a mixture of MeOCH₂OMe/MeCN (2:1, 37.2 mL). A 0.05 M solution of Na₂B₄O₇·10H₂O (in 4×10^{-4} M

aqueous solution of Na₂EDTA, 17.4 mL), *n*-Bu₄NHSO₄ (55.6 mg, 0.160 mmol) and **20** (384 mg, 1.49 mmol) were sequentially added under vigorous stirring at 0 °C. To this mixtures solution of Oxone (3.66 g, 11.9 mmol, in 4×10^{-4} M aqueous solution of Na₂EDTA, 12.4 mL), and K₂CO₃ (3.43 g, 24.8 mmol, in water (12.4 mL)), were simultaneously added over 1 h via syringe pump. At this point, the mixture was diluted with water (20 mL), and extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and purified by flash column chromatography (pentane/Et₂O 19:1 to 3:1) to give *cis,syn*-**19a** (0.77 g, 82%, d.r. 89:11) as a light yellow oil. The diastereoselectivity of compound *cis,syn*-**19a** could be improved to >20:1 after purification with preparative HPLC (CHIRALPAK[®] ID (10 mm \emptyset x 250 mmL), 3.2 mL/min, hexane/Et₂O 6:1).

Figure S2. HPLC chromatograms of a) *cis*-**19** and b) *cis*,*syn*-**19a** (CHIRALPAK[®] ID (4.6 mm Ø x 250 mmL), 0.8 mL/min, hexane/Et₂O 6:1).

2.2. Synthesis of *trans* diepoxide substrates

Scheme S2 (a) Ethyl acetoacetate, NaH, THF, 0 °C to rt, 66%; (b) NaOH (aq), EtOH, reflux, 79%; (c) MeMgBr, Et₂O, 0 °C to rt, 99%; (d) PhMe₂SiCl, Et₃N, CH₂Cl₂, 0 °C to rt, 68%; (e) *m*-CPBA, CH₂Cl₂, 0 °C to rt, 88%; (f) TBAF, THF, 0 °C to rt, 91% (*trans*-1), 90% (*trans,anti*-1); (g) Na₂B₄O₇•10H₂O, Na₂EDTA, *n*-Bu₄NHSO₄, **20**, Oxone, K₂CO₃, H₂O/MeOCH₂OMe/MeCN (10:6:3), *trans,anti*-19a, 67%, d.r. 82:18.

Compound *trans*-**18.** To a solution of *trans*-**17** (1.0 g, 4.9 mmol) in CH₂Cl₂ (20 mL) was added triethylamine (818 μ L, 5.87 mmol) at 0 °C, then chloro(dimethyl)phenylsilane (837 μ L, 5.00 mmol) was slowly added into the solution and the resulting mixture was gradually warmed to rt after 10 min. The mixture was stirred at rt and stopped after 8 h when the complete consumption of the starting material was observed. The crude mixture was purified by silica gel column chromatography directly (pentane/EtOAc 100:0 to 80:1) to give *trans*-**18** (1.15 g, 68%) as a light yellow oil. *R*_f (pentane/Et₂O 100:1): 0.8; ¹H NMR (500 MHz, CDCl₃): 7.63 – 7.56 (m,

2H), 7.38 - 7.31 (m, 3H), 5.15 - 5.03 (m, 2H), 2.11 - 2.02 (m, 4H), 2.00 - 1.95 (m, 2H), 1.68 (d, ${}^{4}J_{\text{H-H}} = 1.4$ Hz, 3H), 1.60(5) (s, 3H), 1.60(0) (s, 3H), 1.50 - 1.40 (m, 2H), 1.21 (s, 6H), 0.38 (s, 6H); 13 C NMR (125 MHz, CDCl₃): 140.8 (C), 134.9 (C), 133.5 (CH), 131.4 (C), 129.2 (CH), 127.7 (CH), 124.9 (CH), 124.6 (CH), 74.7 (C), 44.9 (CH₂), 39.9 (CH₂), 30.0 (CH₃), 26.9 (CH₂), 25.9 (CH₃), 23.2 (CH₂), 17.8 (CH₃), 16.1 (CH₃), 1.6 (CH₃).

Compound *trans*-19. To a solution of *trans*-18 (187 mg, 0.543 mmol) in CH₂Cl₂ (5 mL) was added *m*-CPBA (70% purity, 589 mg, 2.39 mmol) portionwisely at 0 °C. The resulting mixture was gradually warmed to rt after 10 min. The mixture was stirred at rt and stopped after 2 h when the complete consumption of the starting material was observed. The crude mixture was purified by silica gel column chromatography directly (pentane/Et₂O 19:1 to 3:1) to give *trans*-19 (0.18 g, 88%) as a light yellow oil. The two diastereomers *trans*,syn-19 and *trans*,*anti*-19 could be obtained by the separation of *trans*-19 with preparative HPLC (CHIRALPAK[®] IA (20 mm \emptyset x 250 mmL), 12.8 mL/min, hexane/Et₂O 4:1). *R*_f (pentane/Et₂O 3:1): 0.5; ¹H NMR (500 MHz, CDCl₃): 7.60 – 7.52 (m, 2H), 7.38 – 7.32 (m, 3H), 2.75 – 2.65 (m, 2H), 1.82 – 1.74 (m, 1H), 1.70 – 1.57 (m, 5H), 1.55 – 1.46 (m, 2H), 1.31 (s, 3H), 1.27 (s, 3H), 1.26 (s, 3H), 1.22 (s, 3H), 1.21 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): 140.4 (C), 133.4 (CH), 129.3 (CH), 127.8 (CH), 74.2 (C), 64.0 (CH), 63.5 (CH), 60.5 (C), 58.6 (C), 41.3 (CH₂), 35.4 (CH₂), 30.2 (CH₃), 29.8 (CH₃), 25.0 (CH₃), 24.8 (CH₂), 24.0 (CH₂), 18.8 (CH₃), 16.7 (CH₃), 1.5 (CH₃).

Shi epoxidation. Compound *trans*-18 (856 mg, 2.48 mmol) was dissolved in a mixture of MeOCH₂OMe/MeCN (2:1, 37.2 mL). A 0.05 M solution of Na₂B₄O₇·10H₂O (in 4×10^{-4} M aqueous solution of Na₂EDTA, 17.4 mL), *n*-Bu₄NHSO₄ (55.6 mg, 0.160 mmol) and **20** (384 mg, 1.49 mmol) were sequentially added under vigorous stirring at 0 °C. To this mixtures solution of

Oxone (3.66 g, 11.9 mmol, in 4×10^{-4} M aqueous solution of Na₂EDTA, 12.4 mL), and K₂CO₃ (3.43 g, 24.8 mmol, in water (12.4 mL)), were simultaneously added over 1 h via syringe pump. At this point, the mixture was diluted with water (20 mL), and extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with brine, and dried over Na₂SO₄, purified by flash column chromatography (pentane/Et₂O 19:1 to 3:1) to give *trans,anti*-**19a** (0.63 g, 67%, d.r. 82:18) as a light yellow oil. The diastereoselectivity of compound *trans,anti*-**19a** could be improved to >20:1 after purification with preparative HPLC (CHIRALPAK[®] ID (10 mm \emptyset x 250 mmL), 3.2 mL/min, hexane/Et₂O 6:1).

Figure S3. HPLC chromatograms of a) *trans*-**19** and b) *trans,anti*-**19a** (CHIRALPAK[®] ID (4.6 mm ø x 250 mmL), 0.8 mL/min, hexane/Et₂O 6:1).

3. Product identification

3.1. Identification of BB products

Scheme S3 (a) AcOH, CH₂Cl₂, 40 °C, 48 h.

Compounds *cis,anti*-(**BB**)-2 and *cis,syn*-(**BB**)-2.^{S7} To a solution of *cis*-1 (243 mg, 1.00 mmol) in CH₂Cl₂ (4.0 mL) was added AcOH (57.5 μ L, 1.00 mmol), then the solution was heated to 40 °C. The reaction was monitored by ¹H NMR spectroscopy and stopped after 48 h when the complete consumption of the starting material was observed. The crude mixture was purified by silica gel column chromatography directly (pentane/Et₂O 19:1 to 4:1) to give *cis,anti*-(**BB**)-2 *and cis-syn*-(**BB**)-2 as light yellow oils. *cis,anti*-(**BB**)-2. *R*_f (pentane/Et₂O 1:1): 0.6; ¹H NMR (500 MHz, CD₂Cl₂): 3.86 – 3.80 (m, 2H), 2.15 – 2.10 (m, 1H), 2.00 – 1.85 (m, 4H), 1.74 – 1.71 (m, 2H), 1.56 – 1.51 (m, 1H), 1.25 (s, 3H), 1.20 (s, 3H), 1.19 (s, 3H), 1.11 (s, 3H), 1.02 (s, 3H); ¹³C NMR (125 MHz, CD₂Cl₂): 85.9 (CH), 83.9 (C), 83.6 (CH), 81.3 (C), 72.1 (C), 38.9 (CH₂), 34.8 (CH₂), 28.9 (CH₃), 28.1 (CH₃), 27.9 (CH₃), 27.6 (CH₂), 26.1 (CH₂), 25.2 (CH₃), 24.1 (CH₃). *cis,syn*-(**BB**)-2. *R*_f (pentane/Et₂O 1:1): 0.57; ¹H NMR (500 MHz, CD₂Cl₂): 3.88 – 3.85 (m, 1H), 3.79 – 3.76 (m, 1H), 2.12 (s, 1H), 2.05 – 1.99 (m, 1H), 1.94 – 1.84 (m, 2H), 1.80 – 1.75 (m, 2H), 1.72 – 1.68 (m, 2H), 1.62 – 1.58 (m, 1H), 1.21(2) (s, 3H), 1.20(6) (s, 3H), 1.17 (s, 3H), 1.10 (s,

3H), 1.07 (s, 3H); ¹³C NMR (125 MHz, CD₂Cl₂): 87.5 (CH), 84.9 (CH), 84.4 (C), 81.3 (C), 70.6 (C), 39.0 (CH₂), 35.0 (CH₂), 28.6 (CH₃), 28.2 (CH₃), 28.0 (CH₃), 27.8 (CH₂), 26.7 (CH₂), 24.4 (CH₃), 23.8 (CH₃).

Compounds trans, anti-(BB)-2 and trans, syn-(BB)-2.^{S7} To a solution of trans-1 (243 mg, 1.00 mmol) in CH₂Cl₂ (4.0 mL) was added AcOH (57.5 µL, 1.00 mmol), then the solution was heated to 40 °C. The reaction was monitored by ¹H NMR spectroscopy and stopped after 48 h when the complete consumption of the starting material was observed. The crude mixture was purified by silica gel column chromatography directly (pentane/Et₂O 19:1 to 4:1) to give trans, anti-(BB)-2 and trans-syn-(BB)-2 as light yellow oils. trans, anti-(BB)-2. Rf (pentane/Et₂O 1:1): 0.59; ¹H NMR (500 MHz, CD₂Cl₂): 4.00 (dd, ${}^{3}J_{H-H} = 8.9, 6.5$ Hz, 1H), 3.80 (dd, ${}^{3}J_{H-H} = 7.7,$ 5.2 Hz, 1H), 3.77 (brs, 1H), 2.12 – 1.99 (m, 2H), 1.97 – 1.85 (m, 2H), 1.79 – 1.67 (m, 2H), 1.63 -1.56 (m, 1H), 1.55 - 1.47 (m, 1H), 1.23 - 1.21 (m, 6H), 1.16 (s, 3H), 1.11 (s, 3H), 1.01 (s, 3H); ¹³C NMR (125 MHz, CD₂Cl₂): 86.0 (CH), 85.7 (C), 84.5 (CH), 81.4 (C), 71.9 (C), 38.9 (CH₂), 31.6 (CH₂), 29.0 (CH₂), 28.6 (CH₃), 28.2 (CH₃), 28.1 (CH₃), 26.7 (CH₂), 25.4 (CH₃), 24.8 (CH₃). *trans,syn*-(**BB**)-2. $R_{\rm f}$ (pentane/Et₂O 1:1): 0.61; ¹H NMR (400 MHz, CD₂Cl₂): 3.90 (t, ³J_{H-H} = 7.1 Hz, 1H), 3.74 (t, ${}^{3}J_{H-H} = 7.8$ Hz, 1H), 2.02 – 1.88 (m, 2H), 1.83 – 1.77 (m, 2H), 1.76 – 1.66 (m, 3H), 1.65 – 1.58 (m, 1H), 1.55 (brs, 1H), 1.22 (s, 3H), 1.21 (s, 3H), 1.16 (s, 3H), 1.12 (s, 3H), 1.07 (s, 3H); ¹³C NMR (100 MHz, CD₂Cl₂): 87.3 (CH), 85.0 (C), 84.7 (CH), 81.2 (C), 70.8 (C), 38.9 (CH₂), 34.2 (CH₂), 28.8 (CH₃), 28.2 (CH₂), 28.1 (CH₃), 27.8 (CH₃), 26.8 (CH₂), 24.3 (CH₃), 23.8 (CH₃).

3.2. Identification of A-containing products

Scheme S4 (a) 9, CH₂Cl₂, rt, 1 h; (b) 4-bromobenzoyl chloride, DMAP, Et₃N, CH₂Cl₂, 0 °C to rt, 72 h; (c) K₂CO₃, MeOH/CH₂Cl₂ (1:1), rt, 48 h, 68% (*cis,anti-*(BA)-3), 75% (*cis,syn-*(BA)-3), 76% (*cis,anti-*(AB)-4), 51% (*cis,syn-*(AA)-5), 76% (*trans,anti-*(BA)-3), 74% (*trans,syn-*(BA)-3) and 79% (*trans,syn-*(AA)-5).

Compounds *cis*-(**BA**)-21, *cis*-(**AB**)-22 and *cis*-(**AA**)-23. To a solution of *cis*-1 (0.10 g, 0.41 mmol) in CH₂Cl₂ (3.33 mL) was added catalyst 9 (7.85 mg, 10.3 μ mol) at rt. The reaction was monitored by ¹H NMR spectra and stopped until full consumption of the starting material after 1 h. The resulting solution was cooled down to 0 °C, then Et₃N (345 μ L, 2.48 mmol) and DMAP (302 mg, 2.48 mmol) were added to the solution successively, followed by the addition

of 4-bromobenzovl chloride (906 mg, 4.13 mmol). The reaction was stirred for 72 h, the crude mixture was first purified by silica gel column chromatography (pentane/Et₂O 19:1 to 3:2) and then further purified with preparative HPLC (CHIRALPAK[®] IA (20 mm ø x 250 mmL), 12.8 mL/min, pentane/Et₂O 19:1) to give cis, anti-(BA)-21, cis, syn-(BA)-21, cis, anti-(AB)-22 and cis, syn-(AA)-23 as colorless solids. Structures of cis, anti-(AB)-22 and cis, syn-(AA)-23 were determined by X-ray crystallography (crystal growth conditions: hexane/Et₂O 10:1, rt). cis,anti-**(BA)-21.** $R_{\rm f}$ (pentane/Et₂O 6:1): 0.6; ¹H NMR (400 MHz, CD₂Cl₂): 7.99 - 7.96 (m, 2H), 7.63 -7.60 (m, 2H), 4.94 - 4.92 (m, 1H), 3.81 (t, ${}^{3}J_{H-H} = 7.3$ Hz, 1H), 2.22 - 2.14 (m, 1H), 1.99 - 1.84(m, 4H), 1.71 – 1.67 (m, 2H), 1.34 (s, 3H), 1.24(2) (s, 3H), 1.23(5) (s, 3H), 1.21 (s, 3H), 1.16 (s, 3H); ¹³C NMR (100 MHz, CD₂Cl₂): 165.3 (C), 132.1 (CH), 131.6 (CH), 130.2 (C), 128.2 (C), 87.2 (CH), 81.2 (C), 75.0 (C), 73.5 (CH), 73.3 (C), 38.8 (CH₂), 28.9 (CH₃), 28.1 (CH₃), 27.9 (CH₃), 27.7 (CH₃), 26.9 (CH₂), 24.8 (CH₂), 23.0 (CH₃), 21.3 (CH₂). cis,syn-(BA)-21. R_f (pentane/Et₂O 6:1): 0.6; ¹H NMR (500 MHz, CD₂Cl₂): 7.89 – 7.86 (m, 2H), 7.62 – 7.59 (m, 2H), 4.80 (dd, ${}^{3}J_{H-H} = 10.8$, 4.6 Hz, 1H), 3.75 (t, ${}^{3}J_{H-H} = 7.4$ Hz, 1H), 1.98 – 1.77 (m, 5H), 1.69 – 1.66 (m, 2H), 1.53 – 1.47 (m, 1H), 1.39 (s, 3H), 1.23 (s, 3H), 1.22 (s, 3H), 1.20 (s, 3H), 1.18 (s, 3H); ¹³C NMR (125 MHz, CD₂Cl₂): 164.9 (C), 132.1 (CH), 131.4 (CH), 130.0 (C), 128.2 (C), 86.3 (CH), 81.2 (C), 77.9 (CH), 75.3 (C), 73.6 (C), 38.8 (CH₂), 30.6 (CH₂), 30.1 (CH₃), 28.8 (CH₃), 28.0 (CH₃), 27.0 (CH₂), 23.4 (CH₃), 22.5 (CH₃), 22.0 (CH₂). *cis,anti-(AB)-22.* R_f (pentane/Et₂O 6:1): 0.65; ¹H NMR (500 MHz, CD₂Cl₂): 7.86 – 7.83 (m, 2H), 7.57 – 7.55 (m, 2H), 3.70 – 3.58 (m, 1H), 3.32 (dd, ${}^{3}J_{H-H} = 3.7, 2.2$ Hz, 1H), 2.05 – 1.95 (m, 1H), 1.93 – 1.85 (m, 1H), 1.82 – 1.71 (m, 2H), 1.66 – 1.62 (m, 1H), 1.60 (s, 3H), 1.57 (s, 3H), 1.44 – 1.39 (m, 2H), 1.25 – 1.21 (m, 4H), 1.18(4) (s, 3H), 1.17(9) (s, 3H); ¹³C NMR (125 MHz, CD₂Cl₂): 165.0 (C), 131.9 (CH),

131.6 (C), 131.5 (CH), 127.6 (C), 84.8 (C), 81.0 (CH), 74.8 (CH), 71.4 (C), 69.3 (C), 39.2 (CH₂), 33.6 (CH₃), 30.5 (CH₂), 28.5 (CH₃), 27.0 (CH₃), 23.1 (CH₃), 22.9 (CH₂), 21.8 (CH₃), 21.7 (CH₂). *cis,syn-*(**AA**)-23. R_f (pentane/Et₂O 6:1): 0.55; ¹H NMR (500 MHz, CD₂Cl₂): 7.87 – 7.84 (m, 2H), 7.61 – 7.59 (m, 2H), 4.85 (dd, ³*J*_{H-H} = 10.8, 3.4 Hz, 1H), 3.54 (t, ³*J*_{H-H} = 3.6 Hz, 1H), 2.06 – 1.97 (m, 1H), 1.87 – 1.82 (m, 1H), 1.79 – 1.62 (m, 3H), 1.61 – 1.54 (m, 2H), 1.31 – 1.27 (m, 4H), 1.23 (s, 3H), 1.20 (s, 6H), 1.17 (m, 3H); ¹³C NMR (125 MHz, CD₂Cl₂): 165.1 (C), 132.8 (CH), 131.4 (CH), 130.1 (C), 128.2 (C), 81.7 (CH), 76.8 (C), 76.4 (C), 71.2 (C), 69.4 (CH), 38.7 (CH₂), 33.3 (CH₃), 30.2 (CH₃), 27.8 (CH₃), 27.1 (CH₃), 24.9 (CH₂), 24.7 (CH₂), 19.3 (CH₃).

Compounds *cis*-(**BA**)-**3**, *cis*-(**AB**)-**4** and *cis*-(**AA**)-**5**. The above obtained compounds *cis*,*anti*-(**BA**)-**21**, *cis*,*syn*-(**BA**)-**21**, *cis*,*anti*-(**AB**)-**22** and *cis*,*syn*-(**AA**)-**23** were dissolved in MeOH/CH₂Cl₂ (1:1, 25 mM) in separated vials, then corresponding amounts of K₂CO₃ (5 equiv) were added to each vials and the reactions were stirred at rt. The mixture was stirred at rt and stopped after 48 h when the complete consumption of the starting material was observed. The crude mixture was purified by silica gel column chromatography directly (pentane/Et₂O 19:1 to 2:1) to give *cis*,*anti*-(**BA**)-**3** (1.55 mg, 68%), *cis*,*syn*-(**BA**)-**3** (3.03 mg, 75%), *cis*,*anti*-(**AB**)-**4** (2.84 mg, 76%) *and cis*,*syn*-(**AA**)-**5** (1.29 mg, 51%) as light yellow oils. *cis*,*anti*-(**BA**)-**3**. *R*_f (pentane/Et₂O 1:1): 0.5; ¹H NMR (500 MHz, CD₂Cl₂): 3.68 (t, ³J_{H-H} = 7.5 Hz, 1H), 3.38 – 3.25 (m, 1H), 2.06 – 1.93 (m, 3H), 1.84 – 1.75 (m, 1H), 1.74 – 1.64 (m, 4H), 1.24 (s, 3H), 1.22 (s, 3H), 1.20 (s, 3H), 1.16 (s, 3H), 1.11 (s, 3H); ¹³C NMR (125 MHz, CD₂Cl₂): 87.6 (CH), 81.1 (C), 75.8 (C), 73.7 (C), 70.3 (CH), 39.0 (CH₂), 28.7 (CH₃), 28.1 (CH₃), 27.5 (CH₃), 27.4 (CH₃), 26.1 (CH₂), 24.7 (CH₃), 24.7 (CH₂), 23.5 (CH₂). *cis*,*syn*-(**BA**)-**3**. *R*_f (pentane/Et₂O 1:1): 0.5; ¹H NMR 2H), 1.73 - 1.67 (m, 2H), 1.66 - 1.63 (m, 3H), 1.47 - 1.37 (m, 2H), 1.20 - 1.17 (m, 12H), 1.15 (s, 3H); 13 C NMR (100 MHz, CD₂Cl₂): 86.6 (CH), 81.1 (C), 75.6 (CH), 75.1 (C), 74.9 (C), 38.8 (CH₂), 31.2 (CH₂), 30.1 (CH₃), 28.8 (CH₃), 28.0 (CH₃), 27.0 (CH₂), 25.4 (CH₂), 22.3 (CH₃), 21.8 (CH₃). *cis,anti-*(**AB**)-**4**. *R*_f (pentane/Et₂O 1:1): 0.6; ¹H NMR (400 MHz, CD₂Cl₂): 3.31 (dd, ³*J*_{H-H} = 3.7, 2.2 Hz, 1H), 3.09 (dd, ³*J*_{H-H} = 11.5, 1.8 Hz, 1H), 2.61 (brs, 1H), 2.09 - 1.95 (m, 1H), 1.91 - 1.81 (m, 1H), 1.79 - 1.72 (m, 1H), 1.72 - 1.64 (m, 1H), 1.62 - 1.56 (m, 1H), 1.39 - 1.28 (m, 3H), 1.23 (s, 3H), 1.17 (s, 3H), 1.15 (s, 3H), 1.14 (s, 3H), 1.11 (s, 3H); ¹³C NMR (100 MHz, CD₂Cl₂): 83.6 (CH), 74.6 (CH), 72.2 (C), 71.4 (C), 69.3 (C), 39.2 (CH₂), 33.6 (CH₃), 30.5 (CH₂), 28.5 (CH₃), 27.0 (CH₃), 25.8 (CH₃), 24.0 (CH₃), 22.9 (CH₂), 22.3 (CH₂). *cis,syn-*(**AA**)-**5.** *R*_f (pentane/Et₂O 1:1): 0.4; ¹H NMR (400 MHz, CD₂Cl₂): 3.44 - 3.35 (m, 2H), 2.04 - 1.89 (m, 1H), 1.74 - 1.63 (m, 2H), 1.63 - 1.56 (m, 3H), 1.53 - 1.38 (m, 3H), 1.25 (s, 3H), 1.18 - 1.15 (m, 6H), 1.13 (s, 3H), 1.11 (s, 3H); ¹³C NMR (100 MHz, CD₂Cl₂): 80.5 (CH), 77.6 (C), 77.0 (C), 71.9 (C), 68.9 (CH), 39.2 (CH₂), 33.3 (CH₃), 30.4 (CH₃), 30.3 (CH₂), 28.6 (CH₂), 27.6 (CH₃), 27.0 (CH₃).

Compounds *trans,anti-*(**AA**)-**5**,^{S8} *trans-*(**BA**)-**21** and *trans-*(**AA**)-**23**. To a solution of *trans-***1** (0.10 g, 0.41 mmol) in CH₂Cl₂ (3.33 mL) was added catalyst **9** (7.85 mg, 10.3 μ mol) at rt. The reaction was monitored by ¹H NMR spectroscopy and stopped after 1 h when the complete consumption of the starting material was observed. The crude mixture was first purified by silica gel column chromatography (pentane/Et₂O 19:1 to 3:2) to give *trans,anti-*(AA)-**5** as colorless solid and inseparable mixture of *trans-*(BA)-**3** and *trans-*(AA)-**4**. The mixture was dissolved in CH₂Cl₂ (3 mL) and cooled down to 0 °C, then Et₃N (345 μ L, 2.48 mmol) and DMAP (302 mg, 2.48 mmol) were added to the solution successively, followed by

the addition of 4-bromobenzoyl chloride (906 mg, 4.13 mmol). The reaction was stirred for 72 h, the crude mixture was first purified by silica gel column chromatography (pentane/Et₂O 19:1 to 3:2) and then was further purified with preparative HPLC (CHIRALPAK[®] IA (20 mm ø x 250 mmL), 12.8 mL/min, pentane/Et₂O 19:1) to give trans, anti-(BA)-21, trans, syn-(BA)-21 and trans, syn-(AA)-23 as colorless solids. Structures of trans, anti-(AA)-5, trans, anti-(BA)-21, trans, syn-(BA)-21 and trans, syn-(AA)-23 were determined by X-ray crystallography (crystal growth conditions: hexane/Et₂O = 10:1, rt). *trans,anti-(AA)-5.* R_f (pentane/Et₂O 1:1): 0.4; ¹H NMR (500 MHz, CD₂Cl₂): 3.77 (d, ${}^{3}J_{H-H} = 6.3$ Hz, 1H), 3.59 (dd, ${}^{3}J_{H-H} = 11.6$, 4.5 Hz, 1H), 1.81 -1.71 (m, 3H), 1.67 (brs, 1H), 1.62 -1.56 (m, 2H), 1.54 -1.44 (m, 2H), 1.39 -1.35 (m, 1H), 1.23 (s, 3H), 1.22 (s, 3H), 1.18 (s, 3H), 1.11 (s, 3H), 1.06 (s, 3H); ¹³C NMR (125 MHz, CD₂Cl₂): 78.4 (C), 77.0 (C), 76.7 (CH), 73.8 (CH), 71.2 (C), 37.7 (CH₂), 36.7 (CH₂), 33.4 (CH₃), 28.9 (CH₃), 27.4 (CH₃), 25.9 (CH₂), 25.5 (CH₂), 22.3 (CH₃), 20.2(CH₃). trans, anti-(BA)-21. R_f (pentane/Et₂O 6:1): 0.6; ¹H NMR (500 MHz, CD₂Cl₂): 7.95 – 7.93 (m, 2H), 7.63 – 7.60 (m, 2H), 4.93 - 4.91 (m, 1H), 3.89 (t, ${}^{3}J_{H-H} = 7.2$ Hz, 1H), 2.15 - 2.08 (m, 1H), 2.02 - 1.93 (m, 2H), 1.92-1.84 (m, 2H), 1.73 - 1.63 (m, 2H), 1.42 - 1.37 (m, 1H), 1.31 (s, 3H), 1.23 (s, 3H), 1.21 (s, 3H), 1.18 (s, 3H), 1.16 (s, 3H); ¹³C NMR (125 MHz, CD₂Cl₂): 165.3 (C), 132.1 (CH), 131.5 (CH), 130.1 (C), 128.2 (C), 85.6 (CH), 81.3 (C), 75.0 (C), 74.1 (CH), 73.3 (C), 38.8 (CH₂), 28.7 (CH₃), 28.3 (CH₃), 27.8 (CH₃), 27.6 (CH₂), 27.1 (CH₃), 27.0 (CH₂), 22.3 (CH₃), 21.3 (CH₂). trans,syn-**(BA)-21.** R_f (pentane/Et₂O 6:1): 0.6; ¹H NMR (500 MHz, CD₂Cl₂): 7.89 - 7.87 (m, 2H), 7.62 -7.59 (m, 2H), 4.82 (dd, ${}^{3}J_{H-H} = 10.2$, 4.3 Hz, 1H), 3.79 (t, ${}^{3}J_{H-H} = 7.1$ Hz, 1H), 2.00 – 1.84 (m, 4H), 1.71 – 1.61 (m, 4H), 1.35 (s, 3H), 1.23 (s, 3H), 1.20 (s, 3H), 1.18 (s, 3H), 1.17 (s, 3H); ¹³C NMR (125 MHz, CD₂Cl₂): 165.4 (C), 132.8 (CH), 131.4 (CH), 130.0 (C), 128.2 (C), 85.7 (CH),

81.3 (C), 77.3 (CH), 75.0 (C), 73.5 (C), 38.8 (CH₂), 32.2 (CH₂), 29.9 (CH₃), 28.7 (CH₃), 27.8 (CH₃), 27.0 (CH₂), 24.1 (CH₃), 21.9 (CH₂), 21.5 (CH₃). *trans,syn-*(**AA**)-23. R_f (pentane/Et₂O 6:1): 0.55; ¹H NMR (400 MHz, CD₂Cl₂): 7.88 – 7.85 (m, 2H), 7.62 – 7.59 (m, 2H), 5.13 (dd, ³*J*_{H-H} = 10.8, 1.2 Hz, 1H), 3.36 (dd, ³*J*_{H-H} = 11.6, 4.5 Hz, 1H), 2.02 – 1.92 (m, 1H), 1.79 – 1.55 (m, 7H), 1.25 (s, 3H), 1.24 (s, 3H), 1.22 (s, 6H), 1.13 (s, 3H); ¹³C NMR (100 MHz, CD₂Cl₂): 165.3 (C), 132.1 (CH), 131.4 (CH), 129.9 (C), 128.3 (C), 80.9 (CH), 76.3 (C), 76.3 (C), 73.7 (CH), 71.4 (C), 42.6 (CH₂), 37.8 (CH₂), 33.4 (CH₃), 27.8 (CH₃), 26.8 (CH₂), 25.2 (CH₂), 25.0 (CH₃), 23.3 (CH₃), 20.6 (CH₃).

Compounds *trans-*(**BA**)-**3**, and *trans-*(**AA**)-**5**. The above obtained compounds *trans,anti-*(**BA**)-**21**, *trans,syn-*(**BA**)-**21** and *trans,syn-*(**AA**)-**23** were dissolved in MeOH/CH₂Cl₂ (1:1, 25 mM) in separated vials, then corresponding amounts of K₂CO₃ (5 equiv) were added to each vials and the reactions were stirred at rt. The mixture was stirred at rt and stopped after 48 h when the complete consumption of the starting material was observed. The crude mixture was purified by silica gel column chromatography directly (pentane/Et₂O 19:1 to 2:1) to give *trans,anti-*(**BA**)-**3** (3.26 mg, 76%), *trans,syn-*(**BA**)-**3** (3.95 mg, 74%) and *trans,syn-*(**AA**)-**5** (4.5 mg, 79%) as light yellow oils. *trans,anti-*(**BA**)-**3**. *R*_f (pentane/Et₂O 1:1): 0.4; ¹H NMR (500 MHz, CD₂Cl₂): 3.89 (t, ³J_{H-H} = 7.4 Hz, 1H), 3.36 (dd, ³J_{H-H} = 5.8, 3.0 Hz, 1H), 1.97 – 1.78 (m, 4H), 1.73 – 1.55 (m, 4H), 1.35 – 1.30 (m, 1H), 1.23 (s, 3H), 1.22 (s, 3H), 1.19 (s, 3H), 1.13 (s, 3H), 1.10 (s, 3H); ¹³C NMR (125 MHz, CD₂Cl₂): 85.0 (CH₂), 26.4 (CH₂), 26.2 (CH₂), 24.1 (CH₃), 24.0 (CH₃). *trans,syn-*(**BA**)-**3**. *R*_f (pentane/Et₂O 1:1): 0.4; ¹H NMR (500 MHz, CD₂Cl₂); 26.7 (c, ³J_{H-H} = 7.1 Hz, 1H), 3.34 (dd, ³J_{H-H} = 10.2, 5.2 Hz, 1H), 1.92 – 1.83 (m, 2H), 1.76 – 1.67

(m, 2H), 1.66 - 1.58 (m, 3H), 1.55 - 1.49 (m, 1H), 1.46 (brs, 1H), 1.21 (s, 3H), 1.18 (s, 3H), 1.16 (s, 6H), 1.13 (s, 3H); 13 C NMR (125 MHz, CD₂Cl₂): 86.4 (CH), 81.1 (C), 75.3 (CH), 75.0 (C), 74.6 (C), 38.7 (CH₂), 33.2 (CH₂), 30.0 (CH₃), 28.7 (CH₃), 27.8 (CH₃), 27.0 (CH₂), 25.3 (CH₂), 22.4 (CH₃), 21.1 (CH₃). *trans,syn-*(AA)-5. *R*_f (pentane/Et₂O 1:1): 0.4; 1 H NMR (500 MHz, CD₂Cl₂): 3.73 (d, ${}^{3}J_{H-H} = 9.8$ Hz, 1H), 3.19 (dd, ${}^{3}J_{H-H} = 11.6$, 4.5 Hz, 1H), 1.92 – 1.80 (m, 1H), 1.73 – 1.57 (m, 3H), 1.54 – 1.42 (m, 4H), 1.25 (s, 3H), 1.21 (s, 3H), 1.17 (d, ${}^{4}J_{H-H} = 1.2$ Hz, 3H), 1.10 (s, 3H), 1.04 (s, 3H); 13 C NMR (125 MHz, CD₂Cl₂): 79.2 (CH), 77.4 (C), 76.4 (C), 73.2 (CH), 71.3 (C), 44.2 (CH₂), 37.8 (CH₂), 33.4 (CH₃), 30.3 (CH₃), 27.3 (CH₃), 25.3 (CH₂), 25.2 (CH₂), 22.0 (CH₃), 20.6 (CH₃).

3.3. Identification of products with acyclic and rearrangement motifs

Scheme S5 (a) 8, CHCl₃, rt, 7 days; (b) 2,4-dinitrophenylhydrazine, AcOH, EtOH, reflux, 12 h.

Compounds *trans*-(**A-HM**)-**6**, **7** and *trans*-(**A-HM**)-**24**. To a solution of *trans*-**1** (0.10 g, 0.41 mmol) in CHCl₃ (12.4 mL) was added capsule monomer **11** (274 mg, 0.250 mmol, capsule catalyst **8** was self-assembled from six molecules of **11** in the solution) at rt. The mixture was stirred at rt and stopped after 7 days when the complete consumption of the starting material was observed. The crude mixture was purified by silica gel column chromatography directly (pentane/Et₂O 19:1 to 1:2) to give *trans*-(A-HM)-**6** and **7** as light yellow oils. The isolated *trans*-(A-HM)-**6** was dissolved in EtOH (6.0 mL), then 2,4-dinitrophenylhydrazine (818 mg, 4.13 mmol) and AcOH (236 μ L, 4.13 mmol) were added to the solution successively. The reaction mixture was refluxed for 12 h, the crude mixture was purified by silica gel column chromatography (pentane/Et₂O 19:1 to 2:3) to give *trans*-(A-HM)-**24** as yellow oil. *trans*-(A-HM)-**6**. *R*_f (pentane/Et₂O 19:1 to 2:3) to give *trans*-(A-HM)-**24** as yellow oil. *trans*-(A-HM)-**6**. *R*_f (pentane/Et₂O 19:1 to 2:3) to give *trans*-(A-HM)-**24** as yellow oil. *trans*-(A-HM)-**6**. *R*_f (pentane/Et₂O 19:1 to 2:3) to give *trans*-(A-HM)-**24** as yellow oil. *trans*-(A-HM)-**6**. *R*_f (pentane/Et₂O 19:1 to 2:3) to give *trans*-(A-HM)-**24** as yellow oil. *trans*-(A-HM)-**6**. *R*_f (pentane/Et₂O 1:1): 0.35; ¹H NMR (500 MHz, CD₂Cl₂): 3.44 – 3.41 (m, 1H), 2.24 (brs, 1H), 2.07 – 1.97 (m, 2H), 1.77 – 1.73 (m, 2H), 1.66 – 1.63 (m, 1H), 1.55 – 1.44 (m, 4H), 1.39 (s, 3H), 1.20 – 1.18 (m, 6H), 0.98 (d, ³J_{H-H} = 7.0 Hz, 3H), 0.97(6) (d, ³J_{H-H} = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₂Cl₂): 112.4 (C), 86.5 (C), 85.9 (CH), 69.5 (C), 41.9 (CH₂), 33.6 (CH₂),

31.7 (CH), 30.2 (CH₃), 29.7 (CH₂), 29.0 (CH₃), 26.5 (CH₂), 17.9 (CH₃), 17.8 (CH₃), 17.5 (CH₃). 7 (d.r. 59:41). $R_{\rm f}$ (pentane/Et₂O 1:1): 0.2; ¹H NMR (400 MHz, CD₂Cl₂): 5.00 – 4.96 (m, 1H), 4.79 – 4.77 (m, 1H), 4.38 – 4.31 (m, 1H), 3.50 – 3.47 (m, 1H), 2.15 – 2.02 (m, 2H), 1.84 – 1.50 (m, 8H), 1.42 – 1.32 (m, 1H), 1.20 (s, 6H), 1.18 – 1.16 (m, 3H); ¹³C NMR (100 MHz, CD₂Cl₂): 146.7 (C), 146.1 (C), 110.1 (CH₂), 86.7 (C), 86.5 (C), 84.3 (CH), 81.1 (CH), 77.7(0) (CH), 77.6(8) (CH), 70.6(2) (C), 70.5(7) (C), 41.5 (CH₂), 41.4 (CH₂), 32.1 (CH₂), 32.0 (CH₂), 31.9 (CH₂), 31.8 (CH₂), 30.0 (CH₃), 29.3(3) (CH₃), 29.3(0) (CH₃), 26.6 (CH₂), 24.1 (CH₃), 22.9 (CH₃), 18.4 (CH₃), 18.0 (CH₃). *trans*-(A-HM)-24. $R_{\rm f}$ (Et₂O/pentane 2:1): 0.4; ¹H NMR (400 MHz, CD₂Cl₂): 11.16 (s, 1H), 9.07 (d, ⁴J_{H-H} = 2.6 Hz, 1H), 8.27 (dd, ³J_{H-H} = 9.7 Hz, ⁴J_{H-H} = 2.7 Hz, 1H), 7.99 (d, ³J_{H-H} = 9.7 Hz, 1H), 3.45 (d, ³J_{H-H} = 10.3 Hz, 1H), 2.73 – 2.65 (m, 2H), 2.53 – 2.45 (m, 1H), 1.93 – 1.80 (m, 1H), 1.72 – 1.56 (m, 4H), 1.48 – 1.39 (m, 1H), 1.25 – 1.21 (m, 15H); ¹³C NMR (100 MHz, CD₂Cl₂): 167.1 (C), 146.0 (C), 137.9 (C), 130.2 (CH), 129.4 (C), 123.8 (CH), 117.0 (CH), 79.6 (CH), 74.3 (C), 71.3 (C), 41.2 (CH₂), 36.9 (CH), 31.2 (CH₂), 30.6 (CH₃), 29.0 (CH₃), 26.6 (CH₂), 23.4 (CH₂), 22.9 (CH₃), 20.4 (CH₃), 20.3 (CH₃).

4. Catalysis

4.1. Catalysis with *cis* diepoxide substrates

	OH cis, OH cis,s OH cis,a	∠ <u>Cat.</u> yn-1	cis-(AB)-4	н Хон ОН	cis-(BA)	н Сон
Entry	Sub^b	Cat $(mol\%)^c$	$T (^{\circ}\mathrm{C})^d$	ť	$\eta_{\mathrm{t}}(\%)^{f}$	BB:BA:AB:AA ^g
1	cis- 1	AcOH (500)	40	2 d	>95	88:11:1:0
2	cis,syn- 1	AcOH (500)	40	2 d	>95	83:16:1:0
3	cis,anti- 1	AcOH (500)	40	2 d	>95	94:5:1:0 ^h
4	cis-1	8 (10)	30	7 d	>95	51:43:4:2
5	cis,syn- 1	8 (10)	30	7 d	>95	41:57:0:2
6	cis,anti- 1	8 (10)	30	7 d	>95	$62:27:9:2^{h}$
7	cis-1	9 (2.5)	rt	1 h	>95	2:56:31:11
8	cis,syn- 1	9 (2.5)	rt	1 h	>95	2:79:0:19
9	cis,anti- 1	9 (2.5)	rt	1 h	>95	$0:29:67:2^{h}$
10	cis,anti- 1	9 (2.5)	rt	1 h	>95	3:39:58:0

Table S1 Catalyst comparison on the diepoxide substrates cis-1, cis, syn-1 and cis, anti-1^a

<i>cis,anti-</i> 1 <i>cis-</i> (AB)-4 <i>cis-</i> (AB)-4 <i>cis-</i> ($^{\prime}$ Sub ^b Cat (mol%) ^c T (°C) ^d t^{e} η_{t} (%) ^f	
cis,anti- 1 cis-(AB)- 4 cis-(BB:BA:AB
Cis, syn-1	
OH Cat. cis-(BB)-2 cis-(BA)- 3
	н он

Table S1 (continued) Catalyst comparison on the diepoxide substrates *cis*-1, *cis*,*syn*-1 and *cis*,*anti*- 1^a

Entry	Sub^b	Cat $(mol\%)^c$	$T(^{\circ}\mathrm{C})^{d}$	ť	$\eta_{\mathrm{t}}(\%)^{f}$	BB:BA:AB:AA ^g	
 11	cis-1	10 (10)	rt	8 d	>95	79:17:3:1	_
12	cis,syn- 1	10 (10)	rt	8 d	>95	86:14:0:0	
13	cis,anti- 1	10 (10)	rt	8 d	>95	$71:21:7:1^{h}$	

^{*a*}Reaction conditions and data are indicated in the table. ^{*b*}Substrates. ^{*c*}Catalysts (Figure S1). In parethesis, catalyst concentration in mol% relative to concentration of di-epoxide substrates. ^{*d*}Reaction temperature; rt: room temperature. ^{*e*}Reaction time. ^{*f*}Substrate conversion, in percent, from ¹H NMR spectra of product mixtures. ^{*g*}Selectivities were obtained from GC-FID analysis and the corresponding substrate was indicated in parenthesis. ^{*h*}Results for *cis,anti* isomer **1** are calculated (from data for the other diastereomer and the mixture of diastereomers in the respective series)

4.1.1. Brønsted-acid catalyst AcOH

To a solution of *cis* diepoxide substrates (125 mM) in CD_2Cl_2 was added AcOH (500 mol%), then the mixture was stirred at 40 °C. The reaction was monitored by ¹H NMR spectroscopy and stopped after 2 days when full consumption of the starting material was observed. An aliquot (50 µL) of the resulting solution was filtered over a filter tip using diethyl ether as the eluent and the resulting sample was subjected to GC-FID analysis (Conditions are described in the Materials and methods section).

Figure S4. Crude ¹H NMR spectra analysis of the epoxide-opening cascade cyclization of *cis*-**1** (bottom) and *cis*,*syn*-**1** (top) catalyzed by AcOH. a) Full ¹H NMR spectra. b) Zoomed ¹H NMR spectra. c) Decoded NMR fingerprint region for products of *cis* diepoxide substrates.

Figure S5. GC analysis of epoxides a) *cis*-1 and b) *cis*,*syn*-1 opening catalyzed by AcOH.

4.1.2. π -Basic capsule catalyst 8

To a solution of *cis* diepoxide substrates (33.3 mM) in CHCl₃ (Pre-treated as described in the Materials and methods section) was added capsule monomer **11** (60 mol%, capsule catalyst **8** was self-assembled from six molecules of **11** in the solution). The mixture was stirred at rt and stopped after 7 days when the complete consumption of the starting material was observed. An aliquot (100 μ L) of the resulting solution was filtered over a filter tip using diethyl ether as the eluent and the resulting sample was subjected to GC-FID analysis (Conditions are described in the Materials and methods section). Then the resulting GC sample was subjected to ¹H NMR spectroscopy analysis.

a)

Figure S6. Crude ¹H NMR spectra analysis of the epoxide-opening cascade cyclization of *cis*-**1** (bottom) and *cis,syn*-**1** (top) catalyzed by capsule catalyst **8**. a) Full ¹H NMR spectra. b) Zoomed ¹H NMR spectra. c) Decoded NMR fingerprint region for products of *cis* diepoxide substrates.

Figure S7. GC analysis of epoxides a) *cis*-1 and b) *cis*,*syn*-1 opening catalyzed by capsule catalyst 8.

4.1.3. Pnictogen-bonding catalyst 9

To a solution of *cis* diepoxide substrates (125 mM) in CD₂Cl₂ was added catalyst **9** (2.5 mol%), then the mixture was stirred at rt. The reaction was monitored by ¹H NMR spectroscopy and stopped after 1 h when the complete consumption of the starting material was observed. An aliquot (50 μ L) of the resulting solution was filtered over a filter tip using diethyl ether as the eluent and the resulting sample was subjected to GC-FID analysis (Conditions are described in the Materials and methods section).

Figure S8. Crude ¹H NMR spectra analysis of the epoxide-opening cascade cyclization of *cis*-**1** (bottom), *cis,syn*-**1** (middle) and *cis,anti*-**1** (top) catalyzed by pnictogen-bonding catalyst **9**. a) Full ¹H NMR spectra. b) Zoomed ¹H NMR spectra. c) Decoded NMR fingerprint region for products of *cis* diepoxide substrates.

Figure S9. GC analysis of epoxides a) *cis*-1 and b) *cis*,*syn*-1 opening catalyzed by pnictogenbonding catalyst 9.

c)

Figure S9 (continued). GC analysis of epoxide c) *cis,anti*-1 opening catalyzed by pnictogenbonding catalyst 9.

4.1.4. π -Acidic catalyst 10

To a solution of *cis* diepoxide substrates (1.5 M) in CD_2Cl_2 was added catalyst **10** (10 mol%), then the mixture was stirred at rt. The reaction was monitored by ¹H NMR spectroscopy and stopped after 8 days when the complete consumption of the starting material was observed. An aliquot (50 µL) of the resulting solution was filtered over a filter tip using diethyl ether as the eluent and the resulting sample was subjected to GC-FID analysis (Conditions are described in the Materials and methods section).

Figure S10. Crude ¹H NMR spectra analysis of the epoxide-opening cascade cyclization of *cis*-1 (bottom) and *cis*,*syn*-1 (top) catalyzed by π -acidic catalyst 10. a) Full ¹H NMR spectra. b) Zoomed ¹H NMR spectra. c) Decoded NMR fingerprint region for products of *cis* diepoxide substrates.

Figure S11. GC analysis of epoxides a) *cis*-1 and b) *cis*,*syn*-1 opening catalyzed by anion- π catalyst 10.

4.2. Catalysis with *trans* diepoxide substrates

Table S2 Catalyst comparison on the diepoxide substrates trans-1, trans, syn-1 and trans, anti-1^a

Table S2 (continued) Catalyst comparison on the diepoxide substrates *trans*-1, *trans*, *syn*-1 andtrans, anti-1^a

^{*a*}Reaction conditions and data are indicated in the table. ^{*b*}Substrates. ^{*c*}Catalysts (Figure S1). In parethesis, catalyst concentration in mol% relative to concentration of di-epoxide substrates. ^{*d*}Reaction temperature; rt: room temperature. ^{*e*}Reaction time. ^{*f*}Substrate conversion, in percent, from ¹H NMR spectra of product mixtures. ^{*g*}Selectivities were obtained from GC-FID analysis and the corresponding substrate was indicated in parenthesis. ^{*h*}Results for *trans,syn* isomer **1** are calculated (from data for the other diastereomer and the mixture of diastereomers in the respective series).

4.2.1. Brønsted-acid catalyst AcOH

To a solution of *trans* diepoxide substrates (125 mM) in CD_2Cl_2 was added AcOH (500 mol%), then the mixture was stirred at 40 °C. The reaction was monitored by ¹H NMR spectroscopy and stopped after 2 days when the complete consumption of the starting material was observed. An aliquot (50 µL) of the resulting solution was filtered over a filter tip using diethyl ether as the eluent and the resulting sample was subjected to GC-FID analysis (Conditions are described in the Materials and methods section).

Figure S12. Crude ¹H NMR spectra analysis of the epoxide-opening cascade cyclization of *trans*-**1** (bottom) and *trans,anti*-**1** (top) catalyzed by AcOH. a) Full ¹H NMR spectra. b) Zoomed ¹H NMR spectra. c) Decoded NMR fingerprint region for products of *trans* diepoxide substrates.

b)

Figure S13. GC analysis of epoxides a) *trans-*1 and b) *trans,anti-*1 opening catalyzed by AcOH.

4.2.2. π -Basic capsule catalyst 8

To a solution of *trans* diepoxide substrates (33.3 mM) in CHCl₃ (Pre-treated as described in the Materials and methods section) was added capsule monomer **11** (60 mol%, capsule catalyst **8** was self-assembled from six molecules of **11** in the solution), then the mixture was stirred at rt. The mixture was stirred at rt and stopped after 7 days when the complete consumption of the starting material was observed. An aliquot (100 μ L) of the resulting solution was filtered over a filter tip using diethyl ether as the eluent and the resulting sample was subjected to GC-FID analysis (Conditions are described in the Materials and methods section). Another aliquot (500 μ L) of the reaction mixture was chromatographed by a silica gel column using hexane/diethyl ether (9:1 to 1:1) as the eluent to remove capsule monomer **11** and the resulting sample was subjected to ¹H NMR spectroscopy analysis, GC analysis of the mixture showed the same products distribution as the crude.

Figure S14. Crude ¹H NMR spectra analysis of the epoxide-opening cascade cyclization of *trans*-**1** (bottom) and *trans,anti*-**1** (top) catalyzed by capsule catalyst **8**. a) Full ¹H NMR spectra. b) Zoomed ¹H NMR spectra. c) Decoded NMR fingerprint region for products of *trans* diepoxide substrates.

Figure S15. GC analysis of epoxides a) *trans*-1 and b) *trans*,*anti*-1 opening catalyzed by capsule catalyst 8.

S38

4.2.3. Pnictogen-bonding catalyst 9

To a solution of *trans* diepoxide substrates (125 mM) in CD_2Cl_2 was added catalyst **9** (2.5 mol%), then the mixture was stirred at rt. The reaction was monitored by ¹H NMR spectroscopy and stopped after 1 h when the complete consumption of the starting material was observed. An aliquot (50 µL) of the resulting solution was filtered over a filter tip using diethyl ether as the eluent and the resulting sample was subjected to GC-FID analysis (Conditions are described in the Materials and methods section).

Figure S16. Crude ¹H NMR spectra analysis of the epoxide-opening cascade cyclization of *trans*-**1** (bottom) and *trans,anti*-**1** (top) catalyzed by pnictogen-bonding catalyst **9**. a) Full ¹H NMR spectra. b) Zoomed ¹H NMR spectra. c) Decoded NMR fingerprint region for products of *trans* diepoxide substrates.

Figure S17. GC analysis of epoxides a) *trans*-1 and b) *trans*,*anti*-1 opening catalyzed by pnictogen-bonding catalyst 9.

4.2.4. π -Acidic catalyst 10

To a solution of *trans* diepoxide substrates (1.5 M) in CD_2Cl_2 was added catalyst **10** (10 mol%), then the mixture was stirred at rt. The reaction was monitored by ¹H NMR spectroscopy and stopped after 8 days when the complete consumption of the starting material was observed. An aliquot (50 µL) of the resulting solution was filtered over a filter tip using diethyl ether as the eluent and the resulting sample was subjected to GC-FID analysis (Conditions are described in the Materials and methods section).

Figure S18. Crude ¹H NMR spectra analysis of the epoxide-opening cascade cyclization of *trans*-1 (bottom) and *trans,anti*-1 (top) catalyzed by π -acidic catalyst 10. a) Full ¹H NMR spectra. b) Zoomed ¹H NMR spectra. c) Decoded NMR fingerprint region for products of *trans* diepoxide substrates.

Figure S19. GC analysis of epoxides a) *trans*-1 and b) *trans,anti*-1 opening catalyzed by anion- π catalyst 10.

5. Kinetics analysis

Procedures for anion- π *catalyst* **10***.*

General procedure A. To a solution of *cis*-1, *cis*,*syn*-1, *trans*-1 or *trans*,*anti*-1 diepoxide substrate (18.1 mg, 75 μ mol) in CD₂Cl₂ (50 μ L) was added catalyst 10 (8.4 mg, 7.5 μ mol), then the mixture was stirred at rt. The reaction was monitored by ¹H NMR spectroscopy.

Kinetic studies. Concentrations of products were estimated from the consumption of the substrate and were plotted against time. Here pseudo-first-order conditions are assumed for the analysis of the autocatalysis,^{S9} and the reaction rate (r) can be expressed as

$$r = k_1[\mathbf{R}] + k_2[\mathbf{R}][\mathbf{P}]$$
 (S1)

where k_1 and k_2 are the rate constants corresponding to the non(auto)catalytic and the (auto)catalytic mechanisms, respectively. Assuming first order in both reactant (R) and autocatalytic product (P), and

$$[P] = [R]_0 - [R]$$
(S2)

then,

$$[P] = [R]_0 \times \left(1 - \frac{b + k_1}{b + k_1 \exp(k_1 + b)t}\right)$$
(S3)^{S10}

where,

$$b = [\mathbf{R}]_0 k_2 \tag{S4}$$

The rate constants k_1 and k_2 were obtained by fitting the data to the equations (S3) and (S4). The substrate half-lifetimes (t_{50}) were obtained using Equation (S5).

$$t_{50} = \ln(b/k_1 + 2)/(b + k_1) \tag{S5}$$

Procedures for AcOH.

General procedure B. To a solution of *cis*-1, *cis*,*syn*-1, *trans*-1 or *trans*,*anti*-1 diepoxide substrate (18.1 mg, 75 μ mol) in CD₂Cl₂ (600 μ L) was added AcOH (21.4 μ L, 374 μ mol), then the mixture was stirred at 40 °C. The reaction was monitored by ¹H NMR spectroscopy.

Kinetic studies. The pseudo-first-order rate constant (*k*) was estimated by fitting the data to the Equation (S6):

$$[P] = [R]_0 - ([R]_0 - [P]_0) \cdot exp(-kt)$$
(S6)

[P] starts at $[P]_0 = 0$, then goes up to $[R]_0$ with one phase. The rate constants *k* was obtained by fitting the data to Equation (S6). The substrate half-lifetimes (*t*₅₀) were obtained using Equation (S7).

$$t_{50} = \ln[2 \cdot ([\mathbf{R}]_0 - [\mathbf{P}]_0)/[\mathbf{R}]_0]/k$$
(S7)

Figure S20. Kinetic studies of *cis*-1 with a) anion- π catalyst 10 and b) Brønsted acid catalyst. AcOH.

Figure S22. Kinetic studies of *trans*-1 with a) anion- π catalyst 10 and b) Brønsted acid catalyst AcOH.

Figure S23. Kinetic studies of *trans, anti*-1 with a) anion- π catalyst 10 and b) Brønsted acid catalyst AcOH.

6. NMR spectra

Figure S24. 500 MHz ¹H NMR spectrum of *cis*-18 in CDCl₃.

Figure S25. 125 MHz ¹³C NMR spectrum of *cis*-18 in CDCl₃.

Figure S26. 500 MHz ¹H NMR spectrum of *cis*-19 in CDCl₃.

Figure S27. 125 MHz ¹³C NMR spectrum of *cis*-19 in CDCl₃.

Figure S28. 500 MHz ¹H NMR spectrum of *trans*-18 in CDCl₃.

Figure S29. 125 MHz ¹³C NMR spectrum of *trans*-18 in CDCl₃.

Figure S30. 500 MHz ¹H NMR spectrum of *trans*-19 in CDCl₃.

Figure S31. 125 MHz ¹³C NMR spectrum of *trans*-19 in CDCl₃.

Figure S32. 500 MHz ¹H NMR spectrum of *cis, anti-*(BB)-2 in CD₂Cl₂.

Figure S33. 125 MHz ¹³C NMR spectrum of *cis,anti*-(BB)-2 in CD₂Cl₂.

Figure S34. 500 MHz ¹H NMR spectrum of *cis,syn*-(BB)-2 in CD₂Cl₂.

Figure S35. 125 MHz ¹³C NMR spectrum of *cis,syn*-(BB)-2 in CD₂Cl₂.

Figure S36. 500 MHz ¹H NMR spectrum of *trans, anti-*(BB)-2 in CD₂Cl₂.

Figure S37. 125 MHz ¹³C NMR spectrum of *trans,anti-*(BB)-2 in CD₂Cl₂.

Figure S38. 400 MHz ¹H NMR spectrum of *trans,syn-*(BB)-**2** in CD₂Cl₂.

Figure S39. 100 MHz ¹³C NMR spectrum of *trans,syn-*(BB)-2 in CD₂Cl₂.

Figure S40. 400 MHz ¹H NMR spectrum of *cis,anti-*(BA)-21 in CD₂Cl₂.

Figure S41. 100 MHz ¹³C NMR spectrum of spectrum of *cis,anti*-(BA)-21 in CD₂Cl₂.

Figure S42. 500 MHz ¹H NMR spectrum of *cis,syn*-(BA)-21 in CD₂Cl₂.

Figure S43. 125 MHz ¹³C NMR spectrum of *cis,syn*-(BA)-21 in CD₂Cl₂.

Figure S44. 500 MHz spectrum of *cis,anti*-(AB)-22 in CD₂Cl₂.

Figure S45. 125 MHz ¹³C NMR spectrum of *cis,anti*-(AB)-22 in CD₂Cl₂.

Figure S46. 500 MHz ¹H NMR spectrum of *cis,syn*-(AA)-23 in CD₂Cl₂.

Figure S47. 125 MHz 13 C NMR spectrum of *cis*, *syn*-(AA)-23 in CD₂Cl₂.

Figure S48. 500 MHz ¹H NMR spectrum of *cis,anti-*(BA)-3 in CD₂Cl₂.

Figure S49. 125 MHz ¹³C NMR spectrum of *cis,anti-*(BA)-3 in CD₂Cl₂.

Figure S50. 400 MHz ¹H NMR spectrum of *cis,syn*-(BA)-3 in CD₂Cl₂.

Figure S51. 100 MHz 13 C NMR spectrum of *cis*,*syn*-(BA)-**3** in CD₂Cl₂.

Figure S52. 400 MHz ¹H NMR spectrum of *cis,anti-*(AB)-4 in CD₂Cl₂.

Figure S53. 100 MHz ¹³C NMR spectrum of *cis,anti*-(AB)-4 in CD₂Cl₂.

Figure S54. 400 MHz ¹H NMR spectrum of *cis*, *syn*-(AA)-5 in CD₂Cl₂.

Figure S55. 100 MHz ¹³C NMR spectrum of *cis,syn*-(AA)-5 in CD₂Cl₂.

Figure S56. 500 MHz ¹H NMR spectrum of *trans,anti-*(AA)-5 in CD₂Cl₂.

Figure S57. 125 MHz ¹³C NMR spectrum of *trans,anti-*(AA)-5 in CD₂Cl₂.

Figure S58. 500 MHz ¹H NMR spectrum of *trans,anti-*(BA)-21 in CD₂Cl₂.

Figure S59. 125 MHz ¹³C NMR spectrum of *trans,anti-*(BA)-21 in CD₂Cl₂.

Figure S60. 500 MHz ¹H NMR spectrum of *trans,syn-*(BA)-21 in CD₂Cl₂.

Figure S61. 125 MHz ¹³C NMR spectrum of *trans,syn*-(BA)-21 in CD₂Cl₂.

Figure S62. 400 MHz ¹H NMR spectrum of *trans,syn*-(AA)-23 in CD₂Cl₂.

Figure S63. 100 MHz ¹³C NMR spectrum of *trans, syn*-(AA)-23 in CD₂Cl₂.

Figure S64. 500 MHz ¹H NMR spectrum of *trans,anti-*(BA)-3 in CD₂Cl₂.

Figure S65. 125 MHz ¹³C NMR spectrum of *trans,anti-*(BA)-3 in CD₂Cl₂.

Figure S66. 500 MHz ¹H NMR spectrum of *trans,syn*-(BA)-3 in CD₂Cl₂.

Figure S67. 125 MHz ¹³C NMR spectrum of *trans,syn*-(BA)-3 in CD₂Cl₂.

Figure S68. 500 MHz ¹H NMR spectrum of *trans,syn*-(AA)-5 in CD₂Cl₂.

Figure S69. 125 MHz ¹³C NMR spectrum of *trans,syn*-(AA)-5 in CD₂Cl₂.

Figure S70. 500 MHz ¹H NMR spectrum of *trans*-(A-HM)-6 in CD₂Cl₂.

Figure S71. 125 MHz 13 C NMR spectrum of *trans*-(A-HM)-6 in CD₂Cl₂.

Figure S72. HSQC spectrum of *trans*-(A-HM)-6 in CD₂Cl₂.

Figure S73. 400 MHz ¹H NMR spectrum of 7 in CD₂Cl₂.

Figure S74. 100 MHz 13 C NMR spectrum of 7 in CD₂Cl₂.

Figure S75. Zoomed HSQC spectrum of 7 in CD₂Cl₂.

Figure S76. 400 MHz ¹H NMR spectrum of *trans*-(A-HM)-24 in CD₂Cl₂.

Figure S77. 100 MHz 13 C NMR spectrum of *trans*-(A-HM)-24 in CD₂Cl₂.

7. X-ray crystallography

Figure S78. *cis,anti-*(AB)-**22**: View of the molecule (displacement ellipsoids drawn at 50 percent probability level).

Table S3 Crystal data and structure refinement for	or <i>cis,anti-</i> (AB)- 22 .
--	---------------------------------------

CCDC number	2176606	
Empirical formula	$C_{21}H_{29}BrO_4$	
Formula weight	425.35	
Temperature	119.99(10) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P 1 21/c 1	
Unit cell dimensions	a = 14.0432(5) Å	$\alpha=90^\circ$
	b = 7.0309(3) Å	$\beta = 100.447(4)^{\circ}$

	$c = 21.1186(8) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	2050.61(14) Å ³
Z	4
Density (calculated)	1.378 Mg/m ³
Absorption coefficient	2.911 mm ⁻¹
F(000)	888
Crystal size	0.451 x 0.035 x 0.026 mm ³
Theta range for data collection	3.200 to 74.569°.
Index ranges	-17<=h<=16, -8<=k<=7, -25<=l<=26
Reflections collected	30520
Independent reflections	4126 [R(int) = 0.0285]
Completeness to theta = 67.684°	100.0 %
Absorption correction	Gaussian
Max. and min. transmission	1.000 and 0.435
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4126 / 0 / 240
Goodness-of-fit on F ²	1.072
Final R indices [I>2sigma(I)]	R1 = 0.0264, wR2 = 0.0677
R indices (all data)	R1 = 0.0292, wR2 = 0.0691
Extinction coefficient	n/a
Largest diff. peak and hole	0.298 and -0.480 e.Å ⁻³
	~- 0

Figure S79. *cis,syn*-(AA)-**23**: View of the molecule (displacement ellipsoids drawn at 50 percent probability level).

Table S4	Crystal data	and structure	refinement for	<i>cis,syn-</i> (AA)- 23 .
----------	--------------	---------------	----------------	-----------------------------------

CCDC number	2176601	
Empirical formula	$C_{21}H_{29}BrO_4$	
Formula weight	425.35	
Temperature	129(14) K	
Wavelength	1.54184 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 6.36017(18) Å	$\alpha = 91.523(4)^{\circ}$
	b = 7.8529(2) Å	$\beta = 91.016(4)^{\circ}$
	c = 20.1551(10) Å	$\gamma = 93.880(2)^{\circ}$

Volume	1003.82(6) Å ³
Z	2
Density (calculated)	1.407 Mg/m ³
Absorption coefficient	2.973 mm ⁻¹
F(000)	444
Crystal size	0.247 x 0.171 x 0.045 mm ³
Theta range for data collection	2.193 to 74.639°.
Index ranges	-7<=h<=4, -9<=k<=9, -24<=l<=24
Reflections collected	20722
Independent reflections	3968 [R(int) = 0.0412]
Completeness to theta = 67.684°	99.8 %
Completeness to theta = 67.684° Absorption correction	99.8 % Gaussian
-	
Absorption correction	Gaussian
Absorption correction Max. and min. transmission	Gaussian 1.000 and 0.415
Absorption correction Max. and min. transmission Refinement method	Gaussian 1.000 and 0.415 Full-matrix least-squares on F ²
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters	Gaussian 1.000 and 0.415 Full-matrix least-squares on F ² 3968 / 0 / 240
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ²	Gaussian 1.000 and 0.415 Full-matrix least-squares on F ² 3968 / 0 / 240 1.033
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)]	Gaussian 1.000 and 0.415 Full-matrix least-squares on F ² 3968 / 0 / 240 1.033 R1 = 0.0344, wR2 = 0.0768

Figure S80. *trans,anti-*(AA)-**5**. View of the molecule (displacement ellipsoids drawn at 50 percent probability level)

Table S5	Crystal	data and	structure	refinement	for	trans,anti-	(AA)-5.
----------	---------	----------	-----------	------------	-----	-------------	---------

CCDC number	2176603	
Empirical formula	$C_{14}H_{26}O_{3}$	
Formula weight	242.35	
Temperature	119.99(10) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 5.8614(2) Å	$\alpha = 90^{\circ}$
	b = 15.5412(7) Å	$\beta = 90.764(4)^{\circ}$

	$c = 14.8746(7) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	1354.85(10) Å ³
Z	4
Density (calculated)	1.188 Mg/m ³
Absorption coefficient	0.646 mm ⁻¹
F(000)	536
Crystal size	0.083 x 0.041 x 0.023 mm ³
Theta range for data collection	4.114 to 74.876°.
Index ranges	-3<=h<=7, -19<=k<=19, -18<=l<=18
Reflections collected	18499
Independent reflections	2728 [R(int) = 0.0827]
Completeness to theta = 67.684°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.49864
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2728 / 1 / 162
Goodness-of-fit on F ²	1.088
Final R indices [I>2sigma(I)]	R1 = 0.0735, wR2 = 0.1494
R indices (all data)	R1 = 0.0840, wR2 = 0.1561
Extinction coefficient	n/a
Largest diff. peak and hole	0.254 and -0.257 e.Å ⁻³

Figure S81. *trans,anti-*(BA)-**21**. View of the molecule (displacement ellipsoids drawn at 50 percent probability level).

Table S6	Crystal	data and	structure	refinement	for trans	,anti-(BA)-21.
----------	---------	----------	-----------	------------	-----------	----------------

CCDC number	2176605	
Empirical formula	$C_{21}H_{29}BrO_4$	
Formula weight	425.35	
Temperature	120.01(10) K	
Wavelength	1.54184 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 7.44418(10) Å	$\alpha = 69.1422(14)^{\circ}$
	b = 11.53654(18) Å	$\beta = 81.6780(12)^{\circ}$

	$c = 12.84945(19) \text{ Å}$ $\gamma = 84.3027(12)^{\circ}$
Volume	1018.98(3) Å ³
Z	2
Density (calculated)	1.386 Mg/m ³
Absorption coefficient	2.929 mm ⁻¹
F(000)	444
Crystal size	0.33 x 0.26 x 0.09 mm ³
Theta range for data collection	3.707 to 74.780°.
Index ranges	-9<=h<=7, -14<=k<=14, -15<=l<=15
Reflections collected	22323
Independent reflections	4059 [R(int) = 0.0242]
Completeness to theta = 67.684°	99.9 %
Absorption correction	Analytical
Max. and min. transmission	0.786 and 0.465
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4059 / 0 / 240
Goodness-of-fit on F^2	1.053
Final R indices [I>2sigma(I)]	R1 = 0.0247, wR2 = 0.0620
R indices (all data)	R1 = 0.0251, wR2 = 0.0623
Extinction coefficient	n/a
Largest diff. peak and hole	0.499 and -0.416 e.Å ⁻³

Figure S82. *trans,syn-*(BA)-**21**. View of the molecule (displacement ellipsoids drawn at 50 percent probability level).

Table S7 Crystal data and structure refinement for *trans,syn-*(BA)-21.

CCDC number	2176607	
Empirical formula	$C_{21}H_{29}BrO_4$	
Formula weight	425.35	
Temperature	119.99(10) K	
Wavelength	1.54184 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 6.41587(11) Å	$\alpha = 94.139(2)^{\circ}$
	b = 12.0405(3) Å	$\beta = 91.6023(17)^{\circ}$

	c = 13.3039(3) Å	$\gamma = 101.2879(17)^{\circ}$
Volume	1004.29(4) Å ³	
Z	2	
Density (calculated)	1.407 Mg/m ³	
Absorption coefficient	2.972 mm ⁻¹	
F(000)	444	
Crystal size	0.31 x 0.04 x 0.03 mm ³	
Theta range for data collection	3.334 to 74.508°.	
Index ranges	-4<=h<=7, -14<=k<=14, -	-16<=l<=16
Reflections collected	14479	
Independent reflections	3964 [R(int) = 0.0303]	
Completeness to theta = 67.684°	99.9 %	
Absorption correction	Analytical	
Max. and min. transmission	0.928 and 0.638	
Refinement method	Full-matrix least-squares of	on F ²
Data / restraints / parameters	3964 / 0 / 240	
Goodness-of-fit on F ²	1.060	
Final R indices [I>2sigma(I)]	R1 = 0.0361, wR2 = 0.096	50
R indices (all data)	R1 = 0.0412, wR2 = 0.098	36
Extinction coefficient	n/a	
Largest diff. peak and hole	0.447 and -0.839 e.Å ⁻³	

Figure S83. *trans,syn-*(AA)-**23**. View of the molecule (displacement ellipsoids drawn at 50 percent probability level).

Table S8 Crystal data and structure refinement for *trans,syn-*(AA)-23.

CCDC number	2176602	
Empirical formula	$C_{21}H_{29}BrO_4$	
Formula weight	425.35	
Temperature	296.0(3) K	
Wavelength	1.54184 Å	
Crystal system	Orthorhombic	
Crystal system Space group	Orthorhombic Pbca	
		$\alpha = 90^{\circ}$
Space group	Pbca	$\alpha = 90^{\circ}$ $\beta = 90^{\circ}$
Space group	Pbca a = 10.6941(3) Å	

Volume	4075.8(2) Å ³
Z	8
Density (calculated)	1.386 Mg/m ³
Absorption coefficient	2.929 mm ⁻¹
F(000)	1776
Crystal size	0.335 x 0.257 x 0.064 mm ³
Theta range for data collection	3.813 to 73.231°.
Index ranges	-12<=h<=10, -9<=k<=9, -56<=l<=56
Reflections collected	69471
Independent reflections	3965 [R(int) = 0.0305]
Completeness to theta = 67.684°	99.9 %
Completeness to theta = 67.684° Absorption correction	99.9 % Semi-empirical from equivalents
-	
Absorption correction	Semi-empirical from equivalents
Absorption correction Max. and min. transmission	Semi-empirical from equivalents 1.00000 and 0.60349
Absorption correction Max. and min. transmission Refinement method	Semi-empirical from equivalents 1.00000 and 0.60349 Full-matrix least-squares on F ²
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters	Semi-empirical from equivalents 1.00000 and 0.60349 Full-matrix least-squares on F ² 3965 / 0 / 240
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ²	Semi-empirical from equivalents 1.00000 and 0.60349 Full-matrix least-squares on F ² 3965 / 0 / 240 1.051
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)]	Semi-empirical from equivalents 1.00000 and 0.60349 Full-matrix least-squares on F ² 3965 / 0 / 240 1.051 R1 = 0.0430, wR2 = 0.1083

8. Supplementary references

- S1 M. Paraja, X. Hao and S. Matile, *Angew. Chem. Int. Ed.*, 2020, **59**, 15093–15097.
- S2 A. Gini, M. Paraja, B. Galmés, C. Besnard, A. I. Poblador-Bahamonde, N. Sakai, A. Frontera and S. Matile, *Chem. Sci.*, 2020, 11, 7086–7091.
- S3 X. Zhang, X. Hao, L. Le, A.-T. Pham, J. López-Andarias, A. Frontera, N. Sakai and S. Matile, J. Am. Chem. Soc., 2018, 140, 17867–17871.
- S4 J. M. Köster and K. Tiefenbacher, *ChemCatChem*, 2018, **10**, 2941–2944.
- S5 S. Sakane, J. Fujiwara, K. Maruoka and H. Yamamoto, *Tetrahedron*, 1986, **42**, 2193–2201.
- S6 P. Ondet, L. Lempenauer, E. Duñach and G. Lemière, Org. Chem. Front., 2016, 3, 999–1003.
- S7 T. B. Towne and F. E. McDonald, J. Am. Chem. Soc., 1997, 119, 6022–6028.
- S8 F.-X. Li, S.-J. Ren, P.-F. Li, P. Yang and J. Qu, Angew. Chem. Int. Ed., 2020, 59, 18473– 18478.
- S9 M.-P. Fernando and P.-B. Joaquin, J. Chem. Educ., 1987, 64, 925–927.
- S10 L. M. Schwartz, J. Chem. Educ., 1989, 66, 677.