Supplementary information

Decoded fingerprints of hyperresponsive, expanding product space: Polyether cascade cyclizations as tools to elucidate supramolecular catalysis

Hao Chen, ${ }^{\text {a,b }}$ Tian-Ren Li, ${ }^{\text {a,c }}$ Naomi Sakai, ${ }^{\text {a,b }}$ Celine Besnard, ${ }^{\text {b }}$ Laure Guénée, ${ }^{\text {b }}$ Marion Pupier, ${ }^{\text {b }}$ Jasmine Viger-Gravel, ${ }^{\text {b }}$ Konrad Tiefenbacher ${ }^{\text {a,c,d }}$ and Stefan Matile ${ }^{*, \mathrm{~b}}$
${ }^{a}$ National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland.
${ }^{b}$ Department of Organic Chemistry University of Geneva, Geneva, Switzerland.
${ }^{c}$ Department of Chemistry, University of Basel, Basel, Switzerland.
${ }^{d}$ Department of Biosystems Science and Engineering, ETH, Zurich, Basel, Switzerland.
"E-mail: stefan.matile@unige.ch

Table of contents

1. Materials and methods S3
2. Synthesis S4
2.1. Synthesis of cis diepoxide substrates S5
2.2. \quad Synthesis of trans diepoxide substrates S8
3. Product identification S11
3.1. Identification of BB products S11
3.2. Identification of A-containing products S13
3.3. Identification of products with acyclic and rearrangement motifs S20
4. Catalysis S22
4.1. Catalysis with cis diepoxide substrates S22
4.1.1. Brønsted-acid catalyst AcOH S24
4.1.2. π-Basic capsule catalyst $\mathbf{8}$ S26
4.1.3. Pnictogen-bonding catalyst 9 S28
4.1.4. π-Acidic catalyst $\mathbf{1 0}$ S31
4.2. Catalysis with trans diepoxide substrates S33
4.2.1. Brønsted-acid catalyst AcOH S35
4.2.2. π-Basic capsule catalyst $\mathbf{8}$ S37
4.2.3. Pnictogen-bonding catalyst $\mathbf{9}$ S39
4.2.4. π-Acidic catalyst $\mathbf{1 0}$ S41
5. Kinetics analysis S43
6. NMR spectra S49
7. X-ray crystallography S77
8. Supplementary references S89

1. Materials and methods

As in reference S1, Supplementary Information. Reagents for synthesis were purchased from Fluka, Sigma-Aldrich, Apollo Scientific and Acros. All solvents used in this study were passed through a 3.0 cm ALOX basic column to remove acidic impurities (such as HCl). Column chromatography was carried out on silica gel (SiliaFlash ${ }^{\circledR}$ P60, SILICYCLE, 230-400 mesh). Analytical (TLC) and preparative thin layer chromatography (PTLC) were performed on silica gel 60 F254 (Merck) and silica gel (SiliCycle, $1000 \mu \mathrm{~m}$), respectively. Chiral Gas chromatography (GC) was performed on Agilent 6850 Series gas chromatographs equipped with a split-mode capillary injection system and flame ionization detectors using chiral stationary Hydrodex Gamma DiMOM column ($50 \mathrm{~m} x 0.25 \mathrm{~mm}$ ID). Separation parameters: $60{ }^{\circ} \mathrm{C}, 1$ ${ }^{\circ} \mathrm{C} / \mathrm{min}$, until $170^{\circ} \mathrm{C}$, then hold at $170^{\circ} \mathrm{C}$ for 20 min (Speed: $60 \mathrm{~cm} / \mathrm{s} \mathrm{H}$, injector temperature: $170{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded (as indicated) either on a Bruker 400 MHz or 500 MHz spectrometer and are reported as chemical shifts (δ) in ppm relative to TMS $(\delta=0)$. Spin multiplicities are reported as a singlet (s), doublet (d), triplet (t) and quartet (q), with coupling constants (J) given in Hz , or multiplet (m). Broad peaks are marked as br. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances were assigned with the aid of additional information from 1D and 2D NMR spectra.

[^0]
2. Synthesis

$11 \mathrm{R}=\mathrm{C}_{11} \mathrm{H}_{23}$

$8=11_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$
9

$\mathrm{LH}=$

Figure S1. Structure of catalysts utilized in the di-epoxide opening.

Compound 9 was prepared following previously reported procedures. ${ }^{\mathrm{S} 2}$

Compound 10 was prepared following previously reported procedures. ${ }^{53}$

Compound 11 was prepared following previously reported procedures. ${ }^{54}$

Compound cis-14 was prepared following previously reported procedures. ${ }^{\text {S5 }}$

Compounds cis-15, cis-16, trans-15 and trans-16 were prepared following previously reported procedures. ${ }^{\text {S6 }}$

Compounds cis-17 and trans-17 were prepared following previously reported procedures. ${ }^{57}$

Compound cis-1 was prepared following previously reported procedures. ${ }^{\text {S }}{ }^{2}$

Compound trans-1 was prepared following previously reported procedures. ${ }^{\text {S8 }}$

2.1. Synthesis of cis diepoxide substrates

Scheme $\mathbf{S 1}$ (a) $\mathrm{PBr}_{3}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (b) ethyl acetoacetate, NaH, THF, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 46 \%$ (two steps); (c) $\mathrm{NaOH}(\mathrm{aq}), \mathrm{EtOH}$, reflux, 52%; (d) $\mathrm{MeMgBr}, \mathrm{Et}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$ to rt, 98%; (e) $\mathrm{PhMe}_{2} \mathrm{SiCl}^{2}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 73 \%$; (f) m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, 85%; (g) TBAF, THF, $0^{\circ} \mathrm{C}$ to rt, 91% (cis-1), 94% (cis,syn-1), 91% (cis,anti-1); (h) $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \bullet 10 \mathrm{H}_{2} \mathrm{O}, \mathrm{Na}_{2} E D T A, n$ - $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}, \mathbf{2 0}$, Oxone, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOCH}_{2} \mathrm{OMe} / \mathrm{MeCN}$ (10:6:3), cis, syn-19a, 82\%, d.r. 89:11.

Compound cis-18. To a solution of cis-17 (1.05 g, 5.00 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added triethylamine ($836 \mu \mathrm{~L}, 6.00 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, then chloro(dimethyl)phenylsilane ($856 \mu \mathrm{~L}$, 5.10 mmol) was slowly added into the solution and the resulting mixture was gradually warmed to rt after 10 min . The mixture was stirred at rt and stopped after 8 h when the complete
consumption of the starting material was observed. The crude mixture was purified by silica gel column chromatography directly (pentane/EtOAc 100:0 to 80:1) to give cis-18(1.25 g, 73\%) as a light yellow oil. R_{f} (pentane/Et $\mathrm{E}_{2} \mathrm{O} 100: 1$): $0.8 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.60-7.59(\mathrm{~m}, 2 \mathrm{H})$, $7.35-7.34(\mathrm{~m}, 3 \mathrm{H}), 5.12-5.09(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 6 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.48-$ $1.45(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 0.37(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 140.7 (C), 135.0 (C), $133.5(\mathrm{CH}), 131.6(\mathrm{C}), 129.2(\mathrm{CH}), 127.8(\mathrm{CH}), 125.7(\mathrm{CH}), 124.5(\mathrm{CH}), 74.7(\mathrm{C}), 45.2\left(\mathrm{CH}_{3}\right)$, $32.1\left(\mathrm{CH}_{3}\right), 30.0\left(2 \mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{3}\right), 1.6\left(\mathrm{CH}_{3}\right)$.

Compound cis-19. To a solution of cis-18 ($0.41 \mathrm{~g}, 1.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added m-CPBA (70% purity, $1.3 \mathrm{~g}, 5.2 \mathrm{mmol}$) portionwisely at $0^{\circ} \mathrm{C}$. The resulting mixture was gradually warmed to rt after 10 min . The mixture was stirred at rt and stopped after 2 h when the complete consumption of the starting material was observed. The crude mixture was purified by silica gel column chromatography directly (pentane/ $\mathrm{Et}_{2} \mathrm{O} 19: 1$ to $3: 1$) to give cis-19 (0.38 g , 85%) as a light yellow oil. The two diastereomers cis,syn-19 and cis,anti-19 could be obtained by the separation of cis-19 with preparative HPLC (CHIRALPAK ${ }^{\circledR}$ IA ($20 \mathrm{~mm} \varnothing \times 250 \mathrm{mmL}$), $12.8 \mathrm{~mL} / \mathrm{min}$, hexane/Et $\mathrm{E}_{2} \mathrm{O} 4: 1$). R_{f} (pentane/Et $\mathrm{O} 3: 1$): 0.5 ; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.61-$ $7.50(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 2.77-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.58(\mathrm{~m}, 7 \mathrm{H}), 1.56-1.50(\mathrm{~m}$, $1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.281(\mathrm{~s}, 3 \mathrm{H}), 1.275(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $141.1(\mathrm{C}), 133.4(\mathrm{CH}), 129.3(\mathrm{CH}), 127.8(\mathrm{CH}), 74.3(\mathrm{C}), 65.3(\mathrm{CH}), 64.2$ $(\mathrm{CH}), 60.7(\mathrm{C}), 58.6(\mathrm{C}), 41.4\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{3}\right), 29.8\left(\mathrm{CH}_{3}\right), 29.6\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 25.0$ $\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{3}\right), 18.8\left(\mathrm{CH}_{3}\right), 1.54\left(\mathrm{CH}_{3}\right), 1.52\left(\mathrm{CH}_{3}\right)$.

Shi epoxidation. Compound cis-18 ($856 \mathrm{mg}, 2.48 \mathrm{mmol}$) was dissolved in a mixture of $\mathrm{MeOCH}_{2} \mathrm{OMe} / \mathrm{MeCN}\left(2: 1,37.2 \mathrm{~mL}\right.$). A 0.05 M solution of $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (in $4 \times 10^{-4} \mathrm{M}$
aqueous solution of $\left.\mathrm{Na}_{2} \mathrm{EDTA}, 17.4 \mathrm{~mL}\right), n-\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(55.6 \mathrm{mg}, 0.160 \mathrm{mmol})$ and $\mathbf{2 0}(384 \mathrm{mg}$, 1.49 mmol) were sequentially added under vigorous stirring at $0^{\circ} \mathrm{C}$. To this mixtures solution of Oxone ($3.66 \mathrm{~g}, 11.9 \mathrm{mmol}$, in $4 \times 10^{-4} \mathrm{M}$ aqueous solution of Na_{2} EDTA, 12.4 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($3.43 \mathrm{~g}, 24.8 \mathrm{mmol}$, in water $(12.4 \mathrm{~mL})$), were simultaneously added over 1 h via syringe pump. At this point, the mixture was diluted with water (20 mL), and extracted with EtOAc (3×30 $\mathrm{mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and purified by flash column chromatography (pentane/Et $\mathrm{E}_{2} \mathrm{O} 19: 1$ to $3: 1$) to give cis,syn-19a $(0.77 \mathrm{~g}, 82 \%$, d.r. 89:11) as a light yellow oil. The diastereoselectivity of compound cis,syn-19a could be improved to $>20: 1$ after purification with preparative HPLC $\left(C H I R A L P A K ~{ }^{\circledR}\right.$ ID ($10 \mathrm{~mm} \varnothing \times 250 \mathrm{mmL}$), $3.2 \mathrm{~mL} / \mathrm{min}$, hexane $/ \mathrm{Et}_{2} \mathrm{O} 6: 1$).

Figure S2. HPLC chromatograms of a) cis-19 and b) cis,syn-19a (CHIRALPAK ${ }^{\circledR}$ ID (4.6 mm ø x 250 mmL), $0.8 \mathrm{~mL} / \mathrm{min}$, hexane/ $\mathrm{Et}_{2} \mathrm{O} 6: 1$).

2.2. Synthesis of trans diepoxide substrates

Scheme S2 (a) Ethyl acetoacetate, NaH, THF, $0{ }^{\circ} \mathrm{C}$ to rt, 66%; (b) NaOH (aq), EtOH, reflux, 79%; (c) $\mathrm{MeMgBr}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to rt, 99%; (d) $\mathrm{PhMe}_{2} \mathrm{SiCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ to rt, 68%; (e) mCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, 88%; (f) TBAF, THF, $0^{\circ} \mathrm{C}$ to rt, 91% (trans-1), 90% (trans, anti-1); (g) $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \bullet 10 \mathrm{H}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{EDTA}, n$ - $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}$, 20, Oxone, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOCH}_{2} \mathrm{OMe} / \mathrm{MeCN}$ (10:6:3), trans, anti-19a, 67%, d.r. 82:18.

Compound trans-18. To a solution of trans-17 (1.0 g, 4.9 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added triethylamine $(818 \mu \mathrm{~L}, 5.87 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, then chloro(dimethyl)phenylsilane ($837 \mu \mathrm{~L}$, 5.00 mmol) was slowly added into the solution and the resulting mixture was gradually warmed to rt after 10 min . The mixture was stirred at rt and stopped after 8 h when the complete consumption of the starting material was observed. The crude mixture was purified by silica gel column chromatography directly (pentane/EtOAc 100:0 to 80:1) to give trans-18 (1.15 g, 68\%) as a light yellow oil. R_{f} (pentane/Et $\mathrm{t}_{2} \mathrm{O} 100: 1$): $0.8 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.63-7.56(\mathrm{~m}$,
$2 H), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 5.15-5.03(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 4 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{H}-\mathrm{H}}=1.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.60(5)(\mathrm{s}, 3 \mathrm{H}), 1.60(0)(\mathrm{s}, 3 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 0.38(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): 140.8 (C), 134.9 (C), 133.5 (CH), 131.4 (C), $129.2(\mathrm{CH})$, $127.7(\mathrm{CH}), 124.9(\mathrm{CH}), 124.6(\mathrm{CH}), 74.7(\mathrm{C}), 44.9\left(\mathrm{CH}_{2}\right), 39.9\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{2}\right)$, $25.9\left(\mathrm{CH}_{3}\right), 23.2\left(\mathrm{CH}_{2}\right), 17.8\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{CH}_{3}\right), 1.6\left(\mathrm{CH}_{3}\right)$.

Compound trans-19. To a solution of trans-18 (187 mg, 0.543 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added m-CPBA (70% purity, $589 \mathrm{mg}, 2.39 \mathrm{mmol}$) portionwisely at $0^{\circ} \mathrm{C}$. The resulting mixture was gradually warmed to rt after 10 min . The mixture was stirred at rt and stopped after 2 h when the complete consumption of the starting material was observed. The crude mixture was purified by silica gel column chromatography directly (pentane/Et ${ }_{2} \mathrm{O} 19: 1$ to $3: 1$) to give trans-19 (0.18 g, 88\%) as a light yellow oil. The two diastereomers trans,syn-19 and trans,anti19 could be obtained by the separation of trans- $\mathbf{1 9}$ with preparative HPLC (CHIRALPAK ${ }^{\circledR}$ IA (20 mm ø x 250 mmL), $12.8 \mathrm{~mL} / \mathrm{min}$, hexane/Et $\mathrm{O}_{2} \mathrm{O}: 1$). R_{f} (pentane/Et $\mathrm{E}_{2} \mathrm{O}: 1$): $0.5 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.60-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 3 \mathrm{H}), 2.75-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.74$ $(\mathrm{m}, 1 \mathrm{H}), 1.70-1.57(\mathrm{~m}, 5 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.22$ (s, 3H), 1.21 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 140.4 (C), 133.4 (CH), 129.3 (CH), 127.8 $(\mathrm{CH}), 74.2(\mathrm{C}), 64.0(\mathrm{CH}), 63.5(\mathrm{CH}), 60.5(\mathrm{C}), 58.6(\mathrm{C}), 41.3\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{3}\right)$, $29.8\left(\mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{3}\right), 24.8\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{2}\right), 18.8\left(\mathrm{CH}_{3}\right), 16.7\left(\mathrm{CH}_{3}\right), 1.5\left(\mathrm{CH}_{3}\right)$.

Shi epoxidation. Compound trans $\mathbf{- 1 8}(856 \mathrm{mg}, 2.48 \mathrm{mmol})$ was dissolved in a mixture of $\mathrm{MeOCH}_{2} \mathrm{OMe} / \mathrm{MeCN}\left(2: 1,37.2 \mathrm{~mL}\right.$). A 0.05 M solution of $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (in $4 \times 10^{-4} \mathrm{M}$ aqueous solution of $\mathrm{Na}_{2} \mathrm{EDTA}, 17.4 \mathrm{~mL}$), $n-\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(55.6 \mathrm{mg}, 0.160 \mathrm{mmol})$ and $20(384 \mathrm{mg}$, 1.49 mmol) were sequentially added under vigorous stirring at $0^{\circ} \mathrm{C}$. To this mixtures solution of

Oxone ($3.66 \mathrm{~g}, 11.9 \mathrm{mmol}$, in $4 \times 10^{-4} \mathrm{M}$ aqueous solution of Na_{2} EDTA, 12.4 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($3.43 \mathrm{~g}, 24.8 \mathrm{mmol}$, in water $(12.4 \mathrm{~mL})$), were simultaneously added over 1 h via syringe pump. At this point, the mixture was diluted with water (20 mL), and extracted with EtOAc (3×30 $\mathrm{mL})$. The combined organic layers were washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, purified by flash column chromatography (pentane/Et $2 \mathrm{O} 19: 1$ to $3: 1$) to give trans,anti-19a $(0.63 \mathrm{~g}, 67 \%$, d.r. $82: 18$) as a light yellow oil. The diastereoselectivity of compound trans,anti-19a could be improved to $>20: 1$ after purification with preparative HPLC (CHIRALPAK ${ }^{\circledR}$ ID ($10 \mathrm{~mm} \varnothing \times 250$ $\mathrm{mmL}), 3.2 \mathrm{~mL} / \mathrm{min}$, hexane $/ \mathrm{Et}_{2} \mathrm{O} 6: 1$).

Figure S3. HPLC chromatograms of a) trans-19 and b) trans,anti-19a (CHIRALPAK ${ }^{\circledR}$ ID (4.6 $\mathrm{mm} \varnothing \times 250 \mathrm{mmL}), 0.8 \mathrm{~mL} / \mathrm{min}$, hexane $/ \mathrm{Et}_{2} \mathrm{O}$ 6:1).

3. Product identification

3.1. Identification of BB products

Scheme $\mathbf{S 3}$ (a) $\mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}, 48 \mathrm{~h}$.

Compounds cis,anti-(BB)-2 and cis,syn-(BB)-2. ${ }^{\text {S7 }}$ To a solution of cis-1 (243 mg, 1.00 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ was added $\mathrm{AcOH}(57.5 \mu \mathrm{~L}, 1.00 \mathrm{mmol})$, then the solution was heated to $40{ }^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy and stopped after 48 h when the complete consumption of the starting material was observed. The crude mixture was purified by silica gel column chromatography directly (pentane/Et $\mathrm{t}_{2} \mathrm{O} 19: 1$ to $4: 1$) to give cis,anti-(BB)-2 and cis-syn-(BB)-2 as light yellow oils. cis,anti-(BB)-2. R_{f} (pentane/Et $\mathrm{I}_{2} \mathrm{O}$ 1:1): $0.6 ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 3.86-3.80(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.71(\mathrm{~m}$, $2 \mathrm{H}), 1.56-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 85.9(\mathrm{CH}), 83.9(\mathrm{C}), 83.6(\mathrm{CH}), 81.3(\mathrm{C}), 72.1(\mathrm{C}), 38.9\left(\mathrm{CH}_{2}\right), 34.8$ $\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{3}\right)$, $27.6\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{3}\right)$. cis,syn-(BB)-2. $R_{\mathrm{f}}\left(\right.$ pentane/Et $\left.{ }_{2} \mathrm{O} 1: 1\right): 0.57 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 3.88-3.85(\mathrm{~m}, 1 \mathrm{H})$, $3.79-3.76(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 1 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 2 \mathrm{H})$, $1.72-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.21(2)(\mathrm{s}, 3 \mathrm{H}), 1.20(6)(\mathrm{s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}$,

3H), $1.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $87.5(\mathrm{CH}), 84.9(\mathrm{CH}), 84.4(\mathrm{C}), 81.3(\mathrm{C}), 70.6$ (C), $39.0\left(\mathrm{CH}_{2}\right), 35.0\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 24.4$ $\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{3}\right)$.

Compounds trans,anti-(BB)-2 and trans,syn-(BB)-2. ${ }^{\text {S7 }}$ To a solution of trans-1 (243 $\mathrm{mg}, 1.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ was added $\mathrm{AcOH}(57.5 \mu \mathrm{~L}, 1.00 \mathrm{mmol})$, then the solution was heated to $40{ }^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy and stopped after 48 h when the complete consumption of the starting material was observed. The crude mixture was purified by silica gel column chromatography directly (pentane/Et2 $\mathrm{O} 19: 1$ to $4: 1$) to give trans, anti-(BB)-2 and trans-syn-(BB)-2 as light yellow oils. trans,anti-(BB)-2. R_{f} (pentane/Et2 O 1:1): $0.59 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $4.00\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.80\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.7\right.$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{brs}, 1 \mathrm{H}), 2.12-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.63$ $-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.21(\mathrm{~m}, 6 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $86.0(\mathrm{CH}), 85.7(\mathrm{C}), 84.5(\mathrm{CH}), 81.4(\mathrm{C}), 71.9(\mathrm{C}), 38.9\left(\mathrm{CH}_{2}\right)$, $31.6\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{3}\right), 24.8\left(\mathrm{CH}_{3}\right)$. trans,syn-(BB)-2. R_{f} (pentane/Et ${ }_{2} \mathrm{O} 1: 1$): 0.61; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $3.90\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.74\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.02-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.66(\mathrm{~m}$, $3 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{brs}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$, $1.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $87.3(\mathrm{CH}), 85.0(\mathrm{C}), 84.7(\mathrm{CH}), 81.2(\mathrm{C}), 70.8(\mathrm{C})$, $38.9\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{3}\right)$, $23.8\left(\mathrm{CH}_{3}\right)$.

3.2. Identification of A-containing products

Scheme S4 (a) 9, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 1 h ; (b) 4-bromobenzoyl chloride, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ to rt, 72 h ; (c) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1), rt, $48 \mathrm{~h}, 68 \%$ (cis,anti-(BA)-3), 75% (cis,syn-(BA)-3), 76\% (cis,anti-(AB)-4), 51\% (cis,syn-(AA)-5), 76\% (trans,anti-(BA)-3), 74\% (trans,syn-(BA)-3) and 79\% (trans,syn-(AA)-5).

Compounds cis-(BA)-21, cis-(AB)-22 and cis-(AA)-23. To a solution of cis-1 (0.10 g, $0.41 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.33 \mathrm{~mL})$ was added catalyst $9(7.85 \mathrm{mg}, 10.3 \mu \mathrm{~mol})$ at rt . The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectra and stopped until full consumption of the starting material after 1 h . The resulting solution was cooled down to $0^{\circ} \mathrm{C}$, then $\mathrm{Et}_{3} \mathrm{~N}(345 \mu \mathrm{~L}, 2.48 \mathrm{mmol})$ and DMAP ($302 \mathrm{mg}, 2.48 \mathrm{mmol}$) were added to the solution successively, followed by the addition
of 4-bromobenzoyl chloride ($906 \mathrm{mg}, 4.13 \mathrm{mmol}$). The reaction was stirred for 72 h , the crude mixture was first purified by silica gel column chromatography (pentane/Et $\mathrm{t}_{2} \mathrm{O} 19: 1$ to $3: 2$) and then further purified with preparative HPLC (CHIRALPAK ${ }^{\circledR}$ IA ($20 \mathrm{~mm} \varnothing \mathrm{x} 250 \mathrm{mmL}$), 12.8 $\mathrm{mL} / \mathrm{min}$, pentane/Et $\mathrm{E}_{2} \mathrm{O}$ 19:1) to give cis,anti-(BA)-21, cis,syn-(BA)-21, cis,anti-(AB)-22 and cis,syn-(AA)-23 as colorless solids. Structures of cis,anti-(AB)-22 and cis,syn-(AA)-23 were determined by X-ray crystallography (crystal growth conditions: hexane/Et ${ }_{2} \mathrm{O}$ 10:1, rt). cis,anti-(BA)-21. R_{f} (pentane/Et $\mathrm{t}_{2} \mathrm{O}$ 6:1): $0.6 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $7.99-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.63-$ $7.60(\mathrm{~m}, 2 \mathrm{H}), 4.94-4.92(\mathrm{~m}, 1 \mathrm{H}), 3.81\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.22-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.84$ $(\mathrm{m}, 4 \mathrm{H}), 1.71-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.24(2)(\mathrm{s}, 3 \mathrm{H}), 1.23(5)(\mathrm{s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 165.3 (C), $132.1(\mathrm{CH}), 131.6(\mathrm{CH}), 130.2(\mathrm{C}), 128.2(\mathrm{C})$, $87.2(\mathrm{CH}), 81.2(\mathrm{C}), 75.0(\mathrm{C}), 73.5(\mathrm{CH}), 73.3(\mathrm{C}), 38.8\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 27.9$ $\left(\mathrm{CH}_{3}\right)$, $27.7\left(\mathrm{CH}_{3}\right)$, $26.9\left(\mathrm{CH}_{2}\right)$, $24.8\left(\mathrm{CH}_{2}\right)$, $23.0\left(\mathrm{CH}_{3}\right)$, $21.3\left(\mathrm{CH}_{2}\right)$. cis, syn-(BA)-21. R_{f} (pentane/Et 2 O 6:1): 0.6; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $7.89-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 2 \mathrm{H})$, $4.80\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=10.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.75\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.98-1.77(\mathrm{~m}, 5 \mathrm{H}), 1.69-1.66$ $(\mathrm{m}, 2 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 164.9 (C), $132.1(\mathrm{CH}), 131.4(\mathrm{CH}), 130.0(\mathrm{C}), 128.2$ (C), 86.3 $(\mathrm{CH}), 81.2(\mathrm{C}), 77.9(\mathrm{CH}), 75.3(\mathrm{C}), 73.6(\mathrm{C}), 38.8\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{3}\right), 28.8\left(\mathrm{CH}_{3}\right)$, $28.0\left(\mathrm{CH}_{3}\right)$, $27.0\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{3}\right)$, $22.5\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{2}\right)$. cis, anti-(AB)-22. R_{f} (pentane/Et2 O 6:1): $0.65 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $7.86-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.58$ $(\mathrm{m}, 1 \mathrm{H}), 3.32\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=3.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.71$ $(\mathrm{m}, 2 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.21(\mathrm{~m}$, $4 \mathrm{H}), 1.18(4)(\mathrm{s}, 3 \mathrm{H}), 1.17(9)(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 165.0 (C), 131.9 (CH),
$131.6(\mathrm{C}), 131.5(\mathrm{CH}), 127.6(\mathrm{C}), 84.8(\mathrm{C}), 81.0(\mathrm{CH}), 74.8(\mathrm{CH}), 71.4(\mathrm{C}), 69.3(\mathrm{C}), 39.2\left(\mathrm{CH}_{2}\right)$, $33.6\left(\mathrm{CH}_{3}\right), 30.5\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{2}\right), 21.8\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{2}\right)$. cis,syn-(AA)-23. R_{f} (pentane/Et $\mathrm{t}_{2} \mathrm{O} 6: 1$): 0.55; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 7.87-7.84(\mathrm{~m}, 2 \mathrm{H})$, $7.61-7.59(\mathrm{~m}, 2 \mathrm{H}), 4.85\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=10.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.54\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.06-1.97$ $(\mathrm{m}, 1 \mathrm{H}), 1.87-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.27(\mathrm{~m}, 4 \mathrm{H})$, $1.23(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.17(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 165.1 (C), $132.8(\mathrm{CH})$, $131.4(\mathrm{CH}), 130.1(\mathrm{C}), 128.2(\mathrm{C}), 81.7(\mathrm{CH}), 76.8(\mathrm{C}), 76.4(\mathrm{C}), 71.2(\mathrm{C}), 69.4(\mathrm{CH}), 38.7\left(\mathrm{CH}_{2}\right)$, $33.3\left(\mathrm{CH}_{3}\right), 30.2\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 19.3\left(\mathrm{CH}_{3}\right)$.

Compounds cis-(BA)-3, cis-(AB)-4 and cis-(AA)-5. The above obtained compounds cis,anti-(BA)-21, cis,syn-(BA)-21, cis,anti-(AB)-22 and cis,syn-(AA)-23 were dissolved in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,25 \mathrm{mM})$ in separated vials, then corresponding amounts of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (5 equiv) were added to each vials and the reactions were stirred at rt . The mixture was stirred at rt and stopped after 48 h when the complete consumption of the starting material was observed. The crude mixture was purified by silica gel column chromatography directly (pentane/Et2 O 19:1 to 2:1) to give cis,anti-(BA)-3 (1.55 mg, 68\%), cis,syn-(BA)-3 (3.03 mg, 75\%), cis,anti-(AB)-4 ($2.84 \mathrm{mg}, 76 \%$) and cis,syn-(AA)-5 (1.29 mg, 51\%) as light yellow oils. cis,anti-(BA)-3. R_{f} (pentane/Et ${ }_{2} \mathrm{O} 1: 1$): $0.5 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $3.68\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$), $3.38-3.25$ $(\mathrm{m}, 1 \mathrm{H}), 2.06-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}$, $3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $87.6(\mathrm{CH}), 81.1(\mathrm{C})$, $75.8(\mathrm{C}), 73.7(\mathrm{C}), 70.3(\mathrm{CH}), 39.0\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 27.5\left(\mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{3}\right), 26.1$ $\left(\mathrm{CH}_{2}\right)$, $24.7\left(\mathrm{CH}_{3}\right), 24.7\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}\right)$. cis,syn-(BA)-3. $R_{\mathrm{f}}\left(\right.$ pentane/Et2O 1:1): 0.5; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $3.68\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.34\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.86-1.77(\mathrm{~m}$,
$2 H), 1.73-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.17(\mathrm{~m}, 12 \mathrm{H}), 1.15$ (s, 3 H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $86.6(\mathrm{CH}), 81.1(\mathrm{C}), 75.6(\mathrm{CH}), 75.1(\mathrm{C}), 74.9(\mathrm{C}), 38.8$ $\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{3}\right), 28.8\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{3}\right), 21.8$ $\left(\mathrm{CH}_{3}\right)$. cis, anti-(AB)-4. R_{f} (pentane/Et $\left.{ }_{2} \mathrm{O} 1: 1\right): 0.6 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 3.31\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}\right.$ $=3.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=11.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.61(\mathrm{brs}, 1 \mathrm{H}), 2.09-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.91$ $-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.28(\mathrm{~m}$, $3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 83.6(\mathrm{CH}), 74.6(\mathrm{CH}), 72.2(\mathrm{C}), 71.4(\mathrm{C}), 69.3(\mathrm{C}), 39.2\left(\mathrm{CH}_{2}\right), 33.6\left(\mathrm{CH}_{3}\right), 30.5\left(\mathrm{CH}_{2}\right)$, $28.5\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3}\right), 24.0\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right)$. cis,syn-(AA)-5. R_{f} (pentane/Et ${ }_{2} \mathrm{O} 1: 1$): $0.4 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $3.44-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.89(\mathrm{~m}, 1 \mathrm{H})$, $1.74-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.18-1.15(\mathrm{~m}, 6 \mathrm{H})$, $1.13(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 80.5(\mathrm{CH}), 77.6(\mathrm{C}), 77.0(\mathrm{C}), 71.9(\mathrm{C})$, $68.9(\mathrm{CH}), 39.2\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{3}\right), 30.4\left(\mathrm{CH}_{3}\right), 30.3\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{3}\right)$, $24.9\left(\mathrm{CH}_{2}\right), 17.8\left(\mathrm{CH}_{3}\right)$.

Compounds trans,anti-(AA)-5, ${ }^{\text {S8 }}$ trans-(BA)-21 and trans-(AA)-23. To a solution of trans-1 $(0.10 \mathrm{~g}, 0.41 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.33 \mathrm{~mL})$ was added catalyst $9(7.85 \mathrm{mg}, 10.3 \mu \mathrm{~mol})$ at rt. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy and stopped after 1 h when the complete consumption of the starting material was observed. The crude mixture was first purified by silica gel column chromatography (pentane/Et $\mathrm{t}_{2} \mathrm{O} 19: 1$ to $3: 2$) to give trans, anti-(AA)-5 as colorless solid and inseparable mixture of trans-(BA)-3 and trans-(AA)-4. The mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and cooled down to $0{ }^{\circ} \mathrm{C}$, then $\mathrm{Et}_{3} \mathrm{~N}(345 \mu \mathrm{~L}, 2.48$ mmol) and DMAP ($302 \mathrm{mg}, 2.48 \mathrm{mmol}$) were added to the solution successively, followed by
the addition of 4-bromobenzoyl chloride ($906 \mathrm{mg}, 4.13 \mathrm{mmol}$). The reaction was stirred for 72 h , the crude mixture was first purified by silica gel column chromatography (pentane/Et2 O 19:1 to $3: 2)$ and then was further purified with preparative HPLC (CHIRALPAK ${ }^{\circledR}$ IA ($20 \mathrm{~mm} \varnothing \mathrm{x} 250$ mmL), $12.8 \mathrm{~mL} / \mathrm{min}$, pentane $/ \mathrm{Et}_{2} \mathrm{O}$ 19:1) to give trans,anti-(BA)-21, trans,syn-(BA)-21 and trans,syn-(AA)-23 as colorless solids. Structures of trans,anti-(AA)-5, trans,anti-(BA)-21, trans,syn-(BA)-21 and trans,syn-(AA)-23 were determined by X-ray crystallography (crystal growth conditions: hexane/Et $\mathrm{E}_{2} \mathrm{O}=10: 1$, rt). trans,anti-(AA)-5. R_{f} (pentane/Et $\mathrm{t}_{2} \mathrm{O}$ 1:1): $0.4 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $3.77\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.59\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=11.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.81$ $-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.67(\mathrm{brs}, 1 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.35(\mathrm{~m}, 1 \mathrm{H})$, $1.23(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $78.4(\mathrm{C}), 77.0(\mathrm{C}), 76.7(\mathrm{CH}), 73.8(\mathrm{CH}), 71.2(\mathrm{C}), 37.7\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{3}\right), 28.9$ $\left(\mathrm{CH}_{3}\right)$, $27.4\left(\mathrm{CH}_{3}\right)$, $25.9\left(\mathrm{CH}_{2}\right)$, $25.5\left(\mathrm{CH}_{2}\right)$, $22.3\left(\mathrm{CH}_{3}\right)$, 20.2 $\left(\mathrm{CH}_{3}\right)$. trans, anti-(BA)-21. R_{f} (pentane/Et $2_{2} \mathrm{O}$ 6:1): 0.6; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $7.95-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 2 \mathrm{H})$, $4.93-4.91(\mathrm{~m}, 1 \mathrm{H}), 3.89\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.15-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.92$ $-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H})$, $1.18(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): 165.3 (C), $132.1(\mathrm{CH}), 131.5(\mathrm{CH})$, $130.1(\mathrm{C}), 128.2(\mathrm{C}), 85.6(\mathrm{CH}), 81.3(\mathrm{C}), 75.0(\mathrm{C}), 74.1(\mathrm{CH}), 73.3(\mathrm{C}), 38.8\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{3}\right)$, $28.3\left(\mathrm{CH}_{3}\right)$, $27.8\left(\mathrm{CH}_{3}\right)$, $27.6\left(\mathrm{CH}_{2}\right)$, $27.1\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{2}\right)$. trans, syn-(BA)-21. R_{f} (pentane/Et $\mathrm{E}_{2} \mathrm{O}$ 6:1): 0.6 ; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$): $7.89-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.62-$ $7.59(\mathrm{~m}, 2 \mathrm{H}), 4.82\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=10.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.79\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.00-1.84(\mathrm{~m}$, $4 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $165.4(\mathrm{C}), 132.8(\mathrm{CH}), 131.4(\mathrm{CH}), 130.0(\mathrm{C}), 128.2(\mathrm{C}), 85.7(\mathrm{CH})$,
$81.3(\mathrm{C}), 77.3(\mathrm{CH}), 75.0(\mathrm{C}), 73.5(\mathrm{C}), 38.8\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{3}\right), 28.7\left(\mathrm{CH}_{3}\right), 27.8$ $\left(\mathrm{CH}_{3}\right)$, $27.0\left(\mathrm{CH}_{2}\right)$, $24.1\left(\mathrm{CH}_{3}\right)$, $21.9\left(\mathrm{CH}_{2}\right)$, $21.5\left(\mathrm{CH}_{3}\right)$. trans,syn-(AA$)$-23. $R_{\mathrm{f}}\left(\right.$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$ 6:1): $0.55 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $7.88-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 5.13\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}}\right.$ H $=10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=11.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.02-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.55(\mathrm{~m}$, $7 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 165.3 (C), 132.1 (CH), 131.4 (CH), 129.9 (C), 128.3 (C), 80.9 (CH), 76.3 (C), 76.3 (C), 73.7 (CH), $71.4(\mathrm{C}), 42.6\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{3}\right)$, $23.3\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right)$.

Compounds trans-(BA)-3, and trans-(AA)-5. The above obtained compounds trans,anti-(BA)-21, trans,syn-(BA)-21 and trans,syn-(AA)-23 were dissolved in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1, 25 mM) in separated vials, then corresponding amounts of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (5 equiv) were added to each vials and the reactions were stirred at rt. The mixture was stirred at rt and stopped after 48 h when the complete consumption of the starting material was observed. The crude mixture was purified by silica gel column chromatography directly (pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 19:1 to $2: 1$) to give trans, anti-(BA)-3 (3.26 mg, 76\%), trans,syn-(BA)-3 (3.95 mg, 74\%) and trans,syn-(AA)-5 (4.5 $\mathrm{mg}, 79 \%$) as light yellow oils. trans,anti-(BA)-3. R_{f} (pentane/Et2O 1:1): 0.4; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 3.89\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.36\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=5.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.97-1.78(\mathrm{~m}$, $4 \mathrm{H}), 1.73-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}$, $3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $85.0(\mathrm{CH}), 81.3(\mathrm{C}), 74.8(\mathrm{C}), 74.7(\mathrm{C}), 71.4$ $(\mathrm{CH}), 38.8\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right)$, $27.8\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 24.1$ $\left(\mathrm{CH}_{3}\right)$, $24.0\left(\mathrm{CH}_{3}\right)$. trans,syn-(BA)-3. R_{f} (pentane/Et2O 1:1): 0.4; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $3.67\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.34\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=10.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.92-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.67$
$(\mathrm{m}, 2 \mathrm{H}), 1.66-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.46($ brs, 1 H$), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.16$ (s, 6H), $1.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $86.4(\mathrm{CH}), 81.1(\mathrm{C}), 75.3(\mathrm{CH}), 75.0(\mathrm{C})$, $74.6(\mathrm{C}), 38.7\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{3}\right), 28.7\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right)$, $22.4\left(\mathrm{CH}_{3}\right)$, $21.1\left(\mathrm{CH}_{3}\right)$. trans, syn-(AA)-5. $R_{\mathrm{f}}\left(\right.$ pentane $\left.^{2} \mathrm{Et}_{2} \mathrm{O} 1: 1\right): 0.4 ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 3.73\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=9.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.19\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=11.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.92-1.80(\mathrm{~m}, 1 \mathrm{H})$, $1.73-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.54-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.17\left(\mathrm{~d},{ }^{4} J_{\mathrm{H}-\mathrm{H}}=1.2 \mathrm{~Hz}, 3 \mathrm{H}\right)$, $1.10(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $79.2(\mathrm{CH}), 77.4(\mathrm{C}), 76.4$ (C), 73.2 $(\mathrm{CH}), 71.3(\mathrm{C}), 44.2\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{3}\right), 30.3\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{3}\right), 25.3\left(\mathrm{CH}_{2}\right), 25.2$ $\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right)$.

3.3. Identification of products with acyclic and rearrangement motifs

Scheme S5 (a) 8, CHCl_{3}, rt, 7 days; (b) 2,4-dinitrophenylhydrazine, $\mathrm{AcOH}, \mathrm{EtOH}$, reflux, 12 h.

Compounds trans-(A-HM)-6, 7 and trans-(A-HM)-24. To a solution of trans-1 (0.10 g, 0.41 mmol) in $\mathrm{CHCl}_{3}(12.4 \mathrm{~mL})$ was added capsule monomer $11(274 \mathrm{mg}, 0.250 \mathrm{mmol}$, capsule catalyst $\mathbf{8}$ was self-assembled from six molecules of $\mathbf{1 1}$ in the solution) at rt. The mixture was stirred at rt and stopped after 7 days when the complete consumption of the starting material was observed. The crude mixture was purified by silica gel column chromatography directly (pentane/Et $\mathrm{E}_{2} \mathrm{O}$ 19:1 to 1:2) to give trans-(A-HM)-6 and $\mathbf{7}$ as light yellow oils. The isolated trans-(A-HM)-6 was dissolved in EtOH (6.0 mL), then 2,4-dinitrophenylhydrazine ($818 \mathrm{mg}, 4.13$ $\mathrm{mmol})$ and $\mathrm{AcOH}(236 \mu \mathrm{~L}, 4.13 \mathrm{mmol})$ were added to the solution successively. The reaction mixture was refluxed for 12 h , the crude mixture was purified by silica gel column chromatography (pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 19:1 to $2: 3$) to give trans-(A-HM)-24 as yellow oil trans-(A-HM)-6. R_{f} (pentane/Et ${ }_{2} \mathrm{O} 1: 1$): $0.35 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $3.44-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.24$ (brs, 1H), $2.07-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 4 \mathrm{H})$, $1.39(\mathrm{~s}, 3 \mathrm{H}), 1.20-1.18(\mathrm{~m}, 6 \mathrm{H}), 0.98\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.97(6)\left(\mathrm{d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right) ;$ ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $112.4(\mathrm{C}), 86.5(\mathrm{C}), 85.9(\mathrm{CH}), 69.5(\mathrm{C}), 41.9\left(\mathrm{CH}_{2}\right), 33.6\left(\mathrm{CH}_{2}\right)$,
$31.7(\mathrm{CH}), 30.2\left(\mathrm{CH}_{3}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{2}\right), 17.9\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right), 17.5\left(\mathrm{CH}_{3}\right)$. 7 (d.r. $59: 41$). R_{f} (pentane/Et $\mathrm{E}_{2} \mathrm{O} 1: 1$): 0.2; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $5.00-4.96(\mathrm{~m}, 1 \mathrm{H})$, $4.79-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.50$ $(\mathrm{m}, 8 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.18-1.16(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 146.7 (C), 146.1 (C), $110.1\left(\mathrm{CH}_{2}\right), 86.7(\mathrm{C}), 86.5(\mathrm{C}), 84.3(\mathrm{CH}), 81.1(\mathrm{CH}), 77.7(0)(\mathrm{CH})$, $77.6(8)(\mathrm{CH}), 70.6(2)(\mathrm{C}), 70.5(7)(\mathrm{C}), 41.5\left(\mathrm{CH}_{2}\right), 41.4\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 31.9$ $\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{3}\right), 29.3(3)\left(\mathrm{CH}_{3}\right), 29.3(0)\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{2}\right), 24.1\left(\mathrm{CH}_{3}\right), 22.9$ $\left(\mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{3}\right)$, $18.0\left(\mathrm{CH}_{3}\right)$. trans-(A-HM)-24. $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $\left.2: 1\right): 0.4 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 11.16(\mathrm{~s}, 1 \mathrm{H}), 9.07\left(\mathrm{~d},{ }^{4} J_{\mathrm{H}-\mathrm{H}}=2.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.27\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=9.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}-\mathrm{H}}=2.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.99\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=9.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.45\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=10.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.73-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.53-$ $2.45(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.21(\mathrm{~m}$, $15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 167.1 (C), 146.0 (C), 137.9 (C), 130.2 (CH), 129.4 (C), $123.8(\mathrm{CH}), 117.0(\mathrm{CH}), 79.6(\mathrm{CH}), 74.3(\mathrm{C}), 71.3(\mathrm{C}), 41.2\left(\mathrm{CH}_{2}\right), 36.9(\mathrm{CH}), 31.2\left(\mathrm{CH}_{2}\right), 30.6$ $\left(\mathrm{CH}_{3}\right), 29.0\left(\mathrm{CH}_{3}\right)$, $26.6\left(\mathrm{CH}_{2}\right)$, $23.4\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{3}\right)$.

4. Catalysis

4.1. Catalysis with cis diepoxide substrates

Table S1 Catalyst comparison on the diepoxide substrates cis-1, cis,syn-1 and cis,anti-1 ${ }^{a}$

cis, anti-1

cis-(BB)-2

cis-(AB)-4

cis-(BA)-3

cis-(AA)-5

Entry	Sub ${ }^{\text {b }}$	Cat (mol\%) ${ }^{\text {c }}$	$T\left({ }^{\circ} \mathrm{C}\right){ }^{\text {d }}$	t^{e}	$\eta_{\mathrm{t}}(\%)^{f}$	BB:BA:AB:AA ${ }^{g}$
1	cis-1	AcOH (500)	40	2 d	>95	88:11:1:0
2	cis,syn-1	AcOH (500)	40	2 d	>95	83:16:1:0
3	cis,anti-1	AcOH (500)	40	2 d	>95	94:5:1:0 ${ }^{h}$
4	cis-1	8 (10)	30	7 d	>95	51:43:4:2
5	cis,syn-1	8 (10)	30	7 d	>95	41:57:0:2
6	cis,anti-1	8 (10)	30	7 d	>95	62:27:9:2 ${ }^{h}$
7	cis-1	9 (2.5)	rt	1 h	>95	2:56:31:11
8	cis,syn-1	9 (2.5)	rt	1 h	>95	2:79:0:19
9	cis,anti-1	9 (2.5)	rt	1 h	>95	0:29:67:2 ${ }^{h}$
10	cis,anti-1	9 (2.5)	rt	1 h	>95	3:39:58:0

Table S1 (continued) Catalyst comparison on the diepoxide substrates cis-1, cis,syn-1 and cis,anti-1 ${ }^{a}$

Entry	Sub b	Cat $(\mathrm{mol} \%)^{c}$	$T\left({ }^{\circ} \mathrm{C}\right)^{d}$	t^{e}	$\eta_{\mathrm{t}}(\%)^{f}$	$\mathrm{BB}: \mathrm{BA}: \mathrm{AB}: \mathrm{AA}^{g}$
11	cis- $\mathbf{1}$	$\mathbf{1 0}(10)$	rt	8 d	>95	$79: 17: 3: 1$
12	cis,syn- $\mathbf{1}$	$\mathbf{1 0}(10)$	rt	8 d	>95	$86: 14: 0: 0$
13	cis,anti- $\mathbf{1}$	$\mathbf{1 0}(10)$	rt	8 d	>95	$71: 21: 7: 1^{h}$

${ }^{a}$ Reaction conditions and data are indicated in the table. ${ }^{b}$ Substrates. ${ }^{c}$ Catalysts (Figure S1). In parethesis, catalyst concentration in $\mathrm{mol} \%$ relative to concentration of di-epoxide substrates. ${ }^{d}$ Reaction temperature; rt: room temperature. ${ }^{e}$ Reaction time. ${ }^{f}$ Substrate conversion, in percent, from ${ }^{1} \mathrm{H}$ NMR spectra of product mixtures. ${ }^{g}$ Selectivities were obtained from GC-FID analysis and the corresponding substrate was indicated in parenthesis. ${ }^{h}$ Results for cis,anti isomer $\mathbf{1}$ are calculated (from data for the other diastereomer and the mixture of diastereomers in the respective series)

4.1.1. Brønsted-acid catalyst AcOH

To a solution of cis diepoxide substrates $(125 \mathrm{mM})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was added AcOH (500 $\mathrm{mol} \%$), then the mixture was stirred at $40{ }^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy and stopped after 2 days when full consumption of the starting material was observed. An aliquot $(50 \mu \mathrm{~L})$ of the resulting solution was filtered over a filter tip using diethyl ether as the eluent and the resulting sample was subjected to GC-FID analysis (Conditions are described in the Materials and methods section).
a)

b)

c)

Figure S4. Crude ${ }^{1} \mathrm{H}$ NMR spectra analysis of the epoxide-opening cascade cyclization of cis-1 (bottom) and cis,syn-1 (top) catalyzed by AcOH. a) Full ${ }^{1} \mathrm{H}$ NMR spectra. b) Zoomed ${ }^{1} \mathrm{H}$ NMR spectra. c) Decoded NMR fingerprint region for products of cis diepoxide substrates.
a)

b)

Figure S5. GC analysis of epoxides a) cis-1 and b) cis,syn- $\mathbf{1}$ opening catalyzed by AcOH .

4.1.2. π-Basic capsule catalyst 8

To a solution of cis diepoxide substrates (33.3 mM) in CHCl_{3} (Pre-treated as described in the Materials and methods section) was added capsule monomer 11 ($60 \mathrm{~mol} \%$, capsule catalyst $\mathbf{8}$ was self-assembled from six molecules of $\mathbf{1 1}$ in the solution). The mixture was stirred at rt and stopped after 7 days when the complete consumption of the starting material was observed. An aliquot $(100 \mu \mathrm{~L})$ of the resulting solution was filtered over a filter tip using diethyl ether as the eluent and the resulting sample was subjected to GC-FID analysis (Conditions are described in the Materials and methods section). Then the resulting GC sample was subjected to ${ }^{1} \mathrm{H}$ NMR spectroscopy analysis.
a)

b)

Figure S6. Crude ${ }^{1}$ H NMR spectra analysis of the epoxide-opening cascade cyclization of cis-1 (bottom) and cis,syn-1 (top) catalyzed by capsule catalyst 8. a) Full ${ }^{1}$ H NMR spectra. b) Zoomed ${ }^{1}$ H NMR spectra. c) Decoded NMR fingerprint region for products of cis diepoxide substrates.

Figure S7. GC analysis of epoxides a) cis-1 and b) cis,syn-1 opening catalyzed by capsule catalyst 8.

4.1.3. Pnictogen-bonding catalyst 9

To a solution of cis diepoxide substrates $(125 \mathrm{mM})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was added catalyst 9 (2.5 $\mathrm{mol} \%$), then the mixture was stirred at rt . The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy and stopped after 1 h when the complete consumption of the starting material was observed. An aliquot $(50 \mu \mathrm{~L})$ of the resulting solution was filtered over a filter tip using diethyl ether as the eluent and the resulting sample was subjected to GC-FID analysis (Conditions are described in the Materials and methods section).
a)

b)

Figure S8. Crude ${ }^{1} \mathrm{H}$ NMR spectra analysis of the epoxide-opening cascade cyclization of cis-1 (bottom), cis,syn-1 (middle) and cis,anti-1 (top) catalyzed by pnictogen-bonding catalyst 9. a) Full ${ }^{1} \mathrm{H}$ NMR spectra. b) Zoomed ${ }^{1} \mathrm{H}$ NMR spectra. c) Decoded NMR fingerprint region for products of cis diepoxide substrates.
a)

b)

Figure S9. GC analysis of epoxides a) cis-1 and b) cis,syn-1 opening catalyzed by pnictogenbonding catalyst 9 .
c)

Figure S9 (continued). GC analysis of epoxide c) cis,anti-1 opening catalyzed by pnictogenbonding catalyst 9 .

4.1.4. π-Acidic catalyst 10

To a solution of cis diepoxide substrates (1.5 M) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was added catalyst $\mathbf{1 0}$ (10 $\mathrm{mol} \%$), then the mixture was stirred at rt . The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy and stopped after 8 days when the complete consumption of the starting material was observed. An aliquot $(50 \mu \mathrm{~L})$ of the resulting solution was filtered over a filter tip using diethyl ether as the eluent and the resulting sample was subjected to GC-FID analysis (Conditions are described in the Materials and methods section).
a)

Figure S10. Crude ${ }^{1} \mathrm{H}$ NMR spectra analysis of the epoxide-opening cascade cyclization of cis-1 (bottom) and cis,syn-1 (top) catalyzed by π-acidic catalyst 10. a) Full ${ }^{1} \mathrm{H}$ NMR spectra. b) Zoomed ${ }^{1} \mathrm{H}$ NMR spectra. c) Decoded NMR fingerprint region for products of cis diepoxide substrates.
a)

b)

Figure S11. GC analysis of epoxides a) cis-1 and b) cis,syn-1 opening catalyzed by anion- π catalyst 10.

4.2. Catalysis with trans diepoxide substrates

Table S2 Catalyst comparison on the diepoxide substrates trans-1, trans,syn-1 and trans,anti-1 ${ }^{a}$

Entry	Sub b	Cat $(\mathrm{mol} \%)^{c}$	$T\left({ }^{\circ} \mathrm{C}\right)^{d}$	t^{e}	$\eta_{\mathrm{t}}(\%)^{f}$	$\mathrm{BB}: \mathrm{BA}:(6+7): \mathrm{AA}^{g}$
1	trans-1	$\mathrm{AcOH}(500)$	40	2 d	>95	$89: 8: 0: 3$
2	trans,anti-1	$\mathrm{AcOH}(500)$	40	2 d	>95	$92: 4: 0: 4$
3	trans,syn-1	$\mathrm{AcOH}(500)$	40	2 d	>95	$86: 12: 0: 2^{h}$
4	trans-1	$\mathbf{8}(10)$	30	7 d	>95	$28: 6: 47: 18$
5	trans,anti-1	$\mathbf{8}(10)$	30	7 d	>95	$20: 4: 48: 28$
6	trans,syn-1	$\mathbf{8}(10)$	30	7 d	>95	$37: 8: 47: 8^{h}$
7	trans-1	$\mathbf{9}(2.5)$	rt	1 h	>95	$9: 11: 0: 80$
8	trans,anti-1	$\mathbf{9}(2.5)$	rt	1 h	>95	$10: 13: 0: 77$
9	trans,syn-1	$\mathbf{9}(2.5)$	rt	1 h	>95	$8: 9: 0: 83^{h}$

Table S2 (continued) Catalyst comparison on the diepoxide substrates trans-1, trans,syn-1 and trans,anti-1 ${ }^{a}$

Entry	Sub b	Cat $(\mathrm{mol} \%)^{c}$	$T\left({ }^{\circ} \mathrm{C}\right)^{d}$	t^{e}	$\eta_{\mathrm{t}}(\%)^{f}$	$\mathrm{BB}: \mathrm{BA}: \mathrm{AB}: \mathrm{AA}^{g}$
10	trans $\mathbf{- 1}$	$\mathbf{1 0}(10)$	rt	8 d	>95	$80: 13: 0: 7$
11	trans,anti-1	$\mathbf{1 0}(10)$	rt	8 d	>95	$82: 10: 0: 8$
12	trans,syn- $\mathbf{1}$	$\mathbf{1 0}(10)$	rt	8 d	>95	$78: 16: 0: 6^{h}$

${ }^{a}$ Reaction conditions and data are indicated in the table. ${ }^{b}$ Substrates. ${ }^{c}$ Catalysts (Figure S1). In parethesis, catalyst concentration in $\mathrm{mol} \%$ relative to concentration of di-epoxide substrates. ${ }^{d}$ Reaction temperature; rt: room temperature. ${ }^{e}$ Reaction time. ${ }^{f}$ Substrate conversion, in percent, from ${ }^{1} \mathrm{H}$ NMR spectra of product mixtures. ${ }^{g}$ Selectivities were obtained from GC-FID analysis and the corresponding substrate was indicated in parenthesis. ${ }^{h}$ Results for trans,syn isomer $\mathbf{1}$ are calculated (from data for the other diastereomer and the mixture of diastereomers in the respective series).

4.2.1. Brønsted-acid catalyst AcOH

To a solution of trans diepoxide substrates $(125 \mathrm{mM})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{AcOH}(500$ $\mathrm{mol} \%$), then the mixture was stirred at $40{ }^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy and stopped after 2 days when the complete consumption of the starting material was observed. An aliquot $(50 \mu \mathrm{~L})$ of the resulting solution was filtered over a filter tip using diethyl ether as the eluent and the resulting sample was subjected to GC-FID analysis (Conditions are described in the Materials and methods section).
a)

Figure S12. Crude ${ }^{1} \mathrm{H}$ NMR spectra analysis of the epoxide-opening cascade cyclization of trans $\mathbf{- 1}$ (bottom) and trans,anti-1 (top) catalyzed by AcOH. a) Full ${ }^{1} \mathrm{H}$ NMR spectra. b) Zoomed ${ }^{1}$ H NMR spectra. c) Decoded NMR fingerprint region for products of trans diepoxide substrates.
a)

b)

Figure S13. GC analysis of epoxides a) trans-1 and b) trans,anti-1 opening catalyzed by AcOH .

4.2.2. π-Basic capsule catalyst 8

To a solution of trans diepoxide substrates (33.3 mM) in CHCl_{3} (Pre-treated as described in the Materials and methods section) was added capsule monomer 11 ($60 \mathrm{~mol} \%$, capsule catalyst 8 was self-assembled from six molecules of $\mathbf{1 1}$ in the solution), then the mixture was stirred at rt . The mixture was stirred at rt and stopped after 7 days when the complete consumption of the starting material was observed. An aliquot $(100 \mu \mathrm{~L})$ of the resulting solution was filtered over a filter tip using diethyl ether as the eluent and the resulting sample was subjected to GC-FID analysis (Conditions are described in the Materials and methods section). Another aliquot (500 $\mu \mathrm{L}$) of the reaction mixture was chromatographed by a silica gel column using hexane/diethyl ether $(9: 1$ to $1: 1)$ as the eluent to remove capsule monomer 11 and the resulting sample was subjected to ${ }^{1} \mathrm{H}$ NMR spectroscopy analysis, GC analysis of the mixture showed the same products distribution as the crude.
a)

Figure S14. Crude ${ }^{1} \mathrm{H}$ NMR spectra analysis of the epoxide-opening cascade cyclization of trans-1 (bottom) and trans,anti-1 (top) catalyzed by capsule catalyst 8. a) Full ${ }^{1} \mathrm{H}$ NMR spectra. b) Zoomed ${ }^{1} \mathrm{H}$ NMR spectra. c) Decoded NMR fingerprint region for products of trans diepoxide substrates.
a)

b)

Figure S15. GC analysis of epoxides a) trans-1 and b) trans,anti-1 opening catalyzed by capsule catalyst 8.

4.2.3. Pnictogen-bonding catalyst 9

To a solution of trans diepoxide substrates $(125 \mathrm{mM})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was added catalyst 9 (2.5 $\mathrm{mol} \%$), then the mixture was stirred at rt . The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy and stopped after 1 h when the complete consumption of the starting material was observed. An aliquot $(50 \mu \mathrm{~L})$ of the resulting solution was filtered over a filter tip using diethyl ether as the eluent and the resulting sample was subjected to GC-FID analysis (Conditions are described in the Materials and methods section).
a)

Figure S16. Crude ${ }^{1} \mathrm{H}$ NMR spectra analysis of the epoxide-opening cascade cyclization of trans-1 (bottom) and trans,anti-1 (top) catalyzed by pnictogen-bonding catalyst 9. a) Full ${ }^{1} \mathrm{H}$ NMR spectra. b) Zoomed ${ }^{1}$ H NMR spectra. c) Decoded NMR fingerprint region for products of trans diepoxide substrates.
a)

b)

Figure S17. GC analysis of epoxides a) trans-1 and b) trans,anti-1 opening catalyzed by pnictogen-bonding catalyst 9 .

4.2.4. π-Acidic catalyst 10

To a solution of trans diepoxide substrates $(1.5 \mathrm{M})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was added catalyst $\mathbf{1 0}$ (10 $\mathrm{mol} \%$), then the mixture was stirred at rt . The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy and stopped after 8 days when the complete consumption of the starting material was observed. An aliquot ($50 \mu \mathrm{~L}$) of the resulting solution was filtered over a filter tip using diethyl ether as the eluent and the resulting sample was subjected to GC-FID analysis (Conditions are described in the Materials and methods section).
a)

Figure S18. Crude ${ }^{1} \mathrm{H}$ NMR spectra analysis of the epoxide-opening cascade cyclization of trans-1 (bottom) and trans,anti-1 (top) catalyzed by π-acidic catalyst 10. a) Full ${ }^{1} \mathrm{H}$ NMR spectra. b) Zoomed ${ }^{1} \mathrm{H}$ NMR spectra. c) Decoded NMR fingerprint region for products of trans diepoxide substrates.
a)

b)

Figure S19. GC analysis of epoxides a) trans-1 and b) trans,anti-1 opening catalyzed by anion- π catalyst 10.

5. Kinetics analysis

Procedures for anion- π catalyst 10.
General procedure A. To a solution of cis-1, cis,syn-1, trans-1 or trans,anti-1 diepoxide substrate ($18.1 \mathrm{mg}, 75 \mu \mathrm{~mol}$) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(50 \mu \mathrm{~L})$ was added catalyst $10(8.4 \mathrm{mg}, 7.5 \mu \mathrm{~mol})$, then the mixture was stirred at rt . The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Kinetic studies. Concentrations of products were estimated from the consumption of the substrate and were plotted against time. Here pseudo-first-order conditions are assumed for the analysis of the autocatalysis, ${ }^{\text {S9 }}$ and the reaction rate (r) can be expressed as

$$
\begin{equation*}
r=k_{1}[\mathrm{R}]+k_{2}[\mathrm{R}][\mathrm{P}] \tag{S1}
\end{equation*}
$$

where k_{1} and k_{2} are the rate constants corresponding to the non(auto)catalytic and the (auto)catalytic mechanisms, respectively. Assuming first order in both reactant (R) and autocatalytic product (P), and

$$
\begin{equation*}
[\mathrm{P}]=[\mathrm{R}]_{0}-[\mathrm{R}] \tag{S2}
\end{equation*}
$$

then,

$$
\begin{equation*}
[\mathrm{P}]=[\mathrm{R}]_{0} \times\left(1-\frac{b+k_{1}}{b+k_{1} \exp \left(k_{1}+b\right) t}\right) \tag{S3}
\end{equation*}
$$

where,

$$
\begin{equation*}
b=[\mathrm{R}]_{0} k_{2} \tag{S4}
\end{equation*}
$$

The rate constants k_{1} and k_{2} were obtained by fitting the data to the equations (S3) and (S4). The substrate half-lifetimes (t_{50}) were obtained using Equation (S5).

$$
\begin{equation*}
t_{50}=\ln \left(b / k_{1}+2\right) /\left(b+k_{1}\right) \tag{S5}
\end{equation*}
$$

Procedures for AcOH .

General procedure B. To a solution of cis-1, cis,syn-1, trans-1 or trans,anti-1 diepoxide substrate $(18.1 \mathrm{mg}, 75 \mu \mathrm{~mol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(600 \mu \mathrm{~L})$ was added $\mathrm{AcOH}(21.4 \mu \mathrm{~L}, 374 \mu \mathrm{~mol})$, then the mixture was stirred at $40^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Kinetic studies. The pseudo-first-order rate constant (k) was estimated by fitting the data to the Equation (S6):

$$
\begin{equation*}
[\mathrm{P}]=[\mathrm{R}]_{0}-\left([\mathrm{R}]_{0}-[\mathrm{P}]_{0}\right) \cdot \exp (-k t) \tag{S6}
\end{equation*}
$$

$[\mathrm{P}]$ starts at $[\mathrm{P}]_{0}=0$, then goes up to $[\mathrm{R}]_{0}$ with one phase. The rate constants k was obtained by fitting the data to Equation (S6). The substrate half-lifetimes (t_{50}) were obtained using Equation (S7).

$$
\begin{equation*}
t_{50}=\ln \left[2 \cdot\left([\mathrm{R}]_{0}-[\mathrm{P}]_{0}\right) /[\mathrm{R}]_{0}\right] / k \tag{S7}
\end{equation*}
$$

a)

Figure S20. Kinetic studies of cis-1 with a) anion- π catalyst $\mathbf{1 0}$ and b) Brønsted acid catalyst. AcOH .

Figure S21. Kinetic studies of cis,syn-1 with a) anion- π catalyst $\mathbf{1 0}$ and b) Brønsted acid catalyst AcOH .

Figure S22. Kinetic studies of trans-1 with a) anion- π catalyst $\mathbf{1 0}$ and b) Brønsted acid catalyst AcOH .

Figure S23. Kinetic studies of trans,anti-1 with a) anion- π catalyst $\mathbf{1 0}$ and b) Brønsted acid catalyst AcOH.
6. NMR spectra

Figure S24. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of cis-18 in CDCl_{3}.

Figure S25. $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of cis-18 in CDCl_{3}.

Figure S26. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of cis-19 in CDCl_{3}.

Figure S27. $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of cis-19 in CDCl_{3}.

Figure S28. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of trans-18 in CDCl_{3}.

Figure S29. $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of trans-18 in CDCl_{3}.

Figure S30. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of trans-19 in CDCl_{3}.

Figure S31. $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of trans-19 in CDCl_{3}.

Figure S32. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of cis, anti-(BB)-2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S33. $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of cis, anti-(BB)-2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S34. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of cis,syn-(BB)-2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S35. $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of cis,syn-(BB)-2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S36. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of trans, anti-(BB)-2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S37. $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of trans, anti-(BB)-2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S38. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of trans, syn-(BB)-2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S39. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of trans, syn-(BB)-2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S40. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of cis, anti-(BA)-21 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S41. $100 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of spectrum of cis,anti-(BA)-21 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S42. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $c i s$, syn-(BA)-21 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S43. $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of cis, syn-(BA)-21 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S44. 500 MHz spectrum of cis, anti-(AB)-22 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S45. $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of cis, anti-(AB)-22 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S46. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of cis, syn-(AA)-23 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S47. $125 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of cis,syn-(AA)-23 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S48. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of cis, anti-(BA)-3 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S49. $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of cis, anti-(BA)-3 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S50. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of cis, syn-(BA)-3 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S51. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of $c i s$,syn-(BA)-3 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S52. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of cis, anti- $(\mathrm{AB})-4$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S53. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of cis, anti-(AB)-4 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S54. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of cis, syn-(AA)-5 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S55. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of cis,syn-(AA)-5 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S56. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of trans, anti-(AA)-5 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S57. $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of trans, anti-(AA)-5 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S58. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of trans, anti-(BA)-21 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S59. $125 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of trans, anti-(BA)-21 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S60. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of trans, syn-(BA)-21 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S61. $125 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of trans,syn-(BA)-21 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S62. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of trans, syn-(AA)-23 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S63. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of trans,syn-(AA)-23 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S64. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of trans, anti-(BA)-3 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S65. $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of trans, anti-(BA)-3 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S66. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of trans, syn-(BA)-3 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S67. $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of trans, syn-(BA)-3 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S68. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of trans, syn-(AA)-5 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S69. $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of trans, syn-(AA)-5 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S70. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of trans-(A-HM)-6 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S71. $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of trans-(A-HM)-6 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S72. HSQC spectrum of trans-(A-HM)-6 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S73. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 7 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S74. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 7 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S75. Zoomed HSQC spectrum of $\mathbf{7}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S76. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of trans-(A-HM)-24 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S77. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of trans-(A-HM)-24 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

7. X-ray crystallography

Figure S78. cis,anti-(AB)-22: View of the molecule (displacement ellipsoids drawn at 50 percent probability level).

Table S3 Crystal data and structure refinement for cis,anti-(AB)-22.

CCDC number	2176606
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{BrO}_{4}$
Formula weight	425.35
Temperature	$119.99(10) \mathrm{K}$
Wavelength	$1.54184 \AA$
Crystal system	$\mathrm{P} 121 / \mathrm{c} 1$
Space group	$\mathrm{a}=14.0432(5) \AA$
Unit cell dimensions	$\mathrm{b}=7.0309(3) \AA$

	$\mathrm{c}=21.1186(8) \AA \AA^{\circ} \quad \gamma=90^{\circ}$
Volume	2050.61(14) \AA^{3}
Z	4
Density (calculated)	$1.378 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.911 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	888
Crystal size	$0.451 \times 0.035 \times 0.026 \mathrm{~mm}^{3}$
Theta range for data collection	3.200 to 74.569°.
Index ranges	$-17<=\mathrm{h}<=16,-8<=\mathrm{k}<=7,-25<=1<=26$
Reflections collected	30520
Independent reflections	$4126[\mathrm{R}(\mathrm{int})=0.0285]$
Completeness to theta $=67.684^{\circ}$	100.0 \%
Absorption correction	Gaussian
Max. and min. transmission	1.000 and 0.435
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4126 / 0 / 240
Goodness-of-fit on F^{2}	1.072
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0264, \mathrm{wR} 2=0.0677$
R indices (all data)	$\mathrm{R} 1=0.0292, \mathrm{wR} 2=0.0691$
Extinction coefficient	n / a
Largest diff. peak and hole	0.298 and -0.480 e. \AA^{-3}
	S78

Figure S79. cis,syn-(AA)-23: View of the molecule (displacement ellipsoids drawn at 50 percent probability level).

Table S4 Crystal data and structure refinement for cis,syn-(AA)-23.
CCDC number
Empirical formula
Formula weight

Temperature
Wavelength

Crystal system
Space group
Unit cell dimensions

$$
\begin{array}{ll}
\mathrm{a}=6.36017(18) \AA & \alpha=91.523(4)^{\circ} \\
\mathrm{b}=7.8529(2) \AA & \beta=91.016(4)^{\circ} \\
\mathrm{c}=20.1551(10) \AA & \gamma=93.880(2)^{\circ}
\end{array}
$$

Volume	1003.82(6) \AA^{3}
Z	2
Density (calculated)	$1.407 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.973 \mathrm{~mm}^{-1}$
$F(000)$	444
Crystal size	$0.247 \times 0.171 \times 0.045 \mathrm{~mm}^{3}$
Theta range for data collection	2.193 to 74.639°.
Index ranges	$-7<=\mathrm{h}<=4,-9<=\mathrm{k}<=9,-24<=1<=24$
Reflections collected	20722
Independent reflections	$3968[\mathrm{R}(\mathrm{int})=0.0412]$
Completeness to theta $=67.684^{\circ}$	99.8\%
Absorption correction	Gaussian
Max. and min. transmission	1.000 and 0.415
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3968 / 0 / 240
Goodness-of-fit on F^{2}	1.033
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0344, \mathrm{wR} 2=0.0768$
R indices (all data)	$\mathrm{R} 1=0.0375, \mathrm{wR} 2=0.0788$
Extinction coefficient	n / a
Largest diff. peak and hole	0.994 and -1.163 e. \AA^{-3}

Figure S80. trans,anti-(AA)-5. View of the molecule (displacement ellipsoids drawn at 50 percent probability level)

Table S5 Crystal data and structure refinement for trans,anti-(AA)-5.

CCDC number 2176603
Empirical formula $\quad \mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{3}$
Formula weight
242.35

Temperature
119.99(10) K

Wavelength
$1.54184 \AA$

Crystal system
Monoclinic

Space group
P 1 21/n 1
Unit cell dimensions

$$
\begin{array}{ll}
a=5.8614(2) \AA & \alpha=90^{\circ} \\
b=15.5412(7) \AA & \beta=90.764(4)^{\circ}
\end{array}
$$

	$\mathrm{c}=14.8746(7) \AA \AA^{\circ} \quad \gamma=90^{\circ}$
Volume	1354.85(10) \AA^{3}
Z	4
Density (calculated)	$1.188 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.646 \mathrm{~mm}^{-1}$
$F(000)$	536
Crystal size	$0.083 \times 0.041 \times 0.023 \mathrm{~mm}^{3}$
Theta range for data collection	4.114 to 74.876°.
Index ranges	$-3<=\mathrm{h}<=7,-19<=\mathrm{k}<=19,-18<=1<=18$
Reflections collected	18499
Independent reflections	$2728[\mathrm{R}(\mathrm{int})=0.0827]$
Completeness to theta $=67.684^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.49864
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2728 / 1/162
Goodness-of-fit on F^{2}	1.088
Final R indices [$\mathrm{I}>2$ sigma(I)]	$\mathrm{R} 1=0.0735, \mathrm{wR} 2=0.1494$
R indices (all data)	$\mathrm{R} 1=0.0840, \mathrm{wR} 2=0.1561$
Extinction coefficient	n / a
Largest diff. peak and hole	0.254 and -0.257 e. \AA^{-3}
	S82

Figure S81. trans,anti-(BA)-21. View of the molecule (displacement ellipsoids drawn at 50 percent probability level).

Table S6 Crystal data and structure refinement for trans,anti-(BA)-21.

CCDC number	2176605
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{BrO}_{4}$
Formula weight	425.35
Temperature	$120.01(10) \mathrm{K}$
Wavelength	$1.54184 \AA$
Crystal system	Triclinic
Space group	$\mathrm{a}=7.44418(10) \AA$
Unit cell dimensions	$\mathrm{b}=11.53654(18) \AA$

	$\mathrm{c}=12.84945(19) \AA{ }^{\text {A }}$ (${ }^{\text {a }}$
Volume	1018.98(3) \AA^{3}
Z	2
Density (calculated)	$1.386 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.929 \mathrm{~mm}^{-1}$
$F(000)$	444
Crystal size	$0.33 \times 0.26 \times 0.09 \mathrm{~mm}^{3}$
Theta range for data collection	3.707 to 74.780°.
Index ranges	$-9<=\mathrm{h}<=7,-14<=\mathrm{k}<=14,-15<=1<=15$
Reflections collected	22323
Independent reflections	$4059[\mathrm{R}(\mathrm{int})=0.0242]$
Completeness to theta $=67.684^{\circ}$	99.9 \%
Absorption correction	Analytical
Max. and min. transmission	0.786 and 0.465
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4059 / 0 / 240
Goodness-of-fit on F^{2}	1.053
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0247, \mathrm{wR} 2=0.0620$
R indices (all data)	$\mathrm{R} 1=0.0251, \mathrm{wR} 2=0.0623$
Extinction coefficient	n / a
Largest diff. peak and hole	0.499 and -0.416 e. \AA^{-3}

Figure S82. trans,syn-(BA)-21. View of the molecule (displacement ellipsoids drawn at 50 percent probability level).

Table S7 Crystal data and structure refinement for trans,syn-(BA)-21.

CCDC number	2176607
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{BrO}_{4}$
Formula weight	425.35
Temperature	$119.99(10) \mathrm{K}$
Wavelength	$1.54184 \AA$
Crystal system	Triclinic
Space group	$\mathrm{P}-1$
Unit cell dimensions	$\mathrm{b}=12.0405(3) \AA$

	$\mathrm{c}=13.3039(3) \AA$ ¢ ${ }^{\circ} \mathrm{C}=101.2879(17)^{\circ}$
Volume	1004.29(4) \AA^{3}
Z	2
Density (calculated)	$1.407 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.972 \mathrm{~mm}^{-1}$
$F(000)$	444
Crystal size	$0.31 \times 0.04 \times 0.03 \mathrm{~mm}^{3}$
Theta range for data collection	3.334 to 74.508°.
Index ranges	$-4<=\mathrm{h}<=7,-14<=\mathrm{k}<=14,-16<=1<=16$
Reflections collected	14479
Independent reflections	$3964[\mathrm{R}(\mathrm{int})=0.0303]$
Completeness to theta $=67.684^{\circ}$	99.9 \%
Absorption correction	Analytical
Max. and min. transmission	0.928 and 0.638
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3964 / 0 / 240
Goodness-of-fit on F^{2}	1.060
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0361, \mathrm{wR} 2=0.0960$
R indices (all data)	$\mathrm{R} 1=0.0412, \mathrm{wR} 2=0.0986$
Extinction coefficient	n / a
Largest diff. peak and hole	0.447 and -0.839 e. \AA^{-3}
	S86

Figure S83. trans,syn-(AA)-23. View of the molecule (displacement ellipsoids drawn at 50 percent probability level).

Table S8 Crystal data and structure refinement for trans,syn-(AA)-23.

CCDC number	2176602	
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{BrO}_{4}$	
Formula weight	425.35	
Temperature	$296.0(3) \mathrm{K}$	
Wavelength	$1.54184 \AA$	
Crystal system	Pbca	
Space group	$\mathrm{a}=10.6941(3) \AA$	$\alpha=90^{\circ}$
Unit cell dimensions	$\mathrm{b}=8.2180(2) \AA$	$\beta=90^{\circ}$
	$\mathrm{c}=46.3766(14) \AA$	$\gamma=90^{\circ}$

Volume	4075.8(2) \AA^{3}
Z	8
Density (calculated)	$1.386 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.929 \mathrm{~mm}^{-1}$
$F(000)$	1776
Crystal size	$0.335 \times 0.257 \times 0.064 \mathrm{~mm}^{3}$
Theta range for data collection	3.813 to 73.231°.
Index ranges	$-12<=\mathrm{h}<=10,-9<=\mathrm{k}<=9,-56<=1<=56$
Reflections collected	69471
Independent reflections	$3965[\mathrm{R}(\mathrm{int})=0.0305]$
Completeness to theta $=67.684^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.60349
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3965 / 0 / 240
Goodness-of-fit on F^{2}	1.051
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0430, \mathrm{wR} 2=0.1083$
R indices (all data)	$\mathrm{R} 1=0.0444, \mathrm{wR} 2=0.1094$
Extinction coefficient	n/a
Largest diff. peak and hole	0.782 and -0.872 e. ${ }^{\text {A }}$ - 3

8. Supplementary references

S1 M. Paraja, X. Hao and S. Matile, Angew. Chem. Int. Ed., 2020, 59, 15093-15097.
A. Gini, M. Paraja, B. Galmés, C. Besnard, A. I. Poblador-Bahamonde, N. Sakai, A. Frontera and S. Matile, Chem. Sci., 2020, 11, 7086-7091.
M.-P. Fernando and P.-B. Joaquin, J. Chem. Educ., 1987, 64, 925-927.

[^0]: Abbreviations. A: anti-Baldwin; B: Baldwin; m-CPBA: meta-Chloroperoxybenzoic acid; DMAP: 4-Dimethylaminopyridine; EDTA: Ethylenediaminetetraacetic acid; GC-FID: Gas chromatography flame ionization detector; HM: House-Meinwald; HPLC: High-performance liquid chromatography; HSQC: Heteronuclear single quantum coherence spectroscopy; NMR: Nuclear magnetic resonance; rt: Room temperature; TBAF: Tetra- n-butylammonium fluoride; THF: Tetrahydrofuran; TMS: Tetramethylsilane.

