Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Palladium/GF-Phos-Catalyzed Asymmetric Carbenylative Amination to Access Chiral Pyrrolidines and Piperidines

Yue Sun, Chun Ma, Zhiming Li* and Junliang Zhang*

Contents

1. General Information	S2
2. Optimization of Reaction Conditions	S3
3. General Procedure for the Synthesis of Substrates 1, 4	S6
4. General Procedure for the Synthesis of Products 3, 5	S12
5. Gram-scale Reaction and Synthetic Applications	S45
6. Nonlinear Effect Study	S48
7. References	S49
8. X-ray Single Crystal Data for Compound 3ac	S50
9. ¹ H, ¹³ C, ¹⁹ F NMR Spectra	S51

1. General Information

¹H NMR spectra, ¹³C NMR spectra and ¹⁹F NMR spectra were recorded on a Bruker 400 MHz spectrometer in CDCl₃. All signals are reported in parts per million (ppm), and were referenced to CDCl₃ (δ 7.26 ppm for ¹H NMR and 77.0 ppm for ¹³C NMR) as the internal standard. Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, m = multiplet), coupling constant (Hz) and integration. HRMS analysis was performed on a Q-TOF mass analyzer using the ESI ionization method. Optical rotation values were measured with instruments operating at λ = 589 nm, corresponding to the sodium D line at the temperatures indicated. The *er* value was determined by HPLC with a chiral stationary phase using a Chiralpak AD-H, OD-H, OJ-H. All samples tested by chiral stationary phase HPLC were dissolved in *n*-hexane/isopropanol.

Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere in sealed tube with magnetic stirring. All commercial materials were used without further purification. 2-Methyltetrahydrofuran (anhydrous) was purchased from Energy Chemical. Visualization of the developed chromatogram was performed by UV light, staining with iodine (dispersed in silica gel), or by KMnO₄ stain. Flash column chromatography was performed over silica gel (300-400 mesh, purchased from Yantai, China). Substrates (*E*)-vinyl iodides **1**, **4**^[1-3], *N*-tosylhydrazones **2**^[4] were synthesized according to the literature method.

2. Optimization of Reaction Conditions

٢	∧ _{NHBn N} .	NHTs [Pd]	(5 mol%), GF2 (15 mol%)	/NBn
Ĺ	1a 2	<i>t-</i> BuOLi (2. a Et ₃ N	2 equiv), TEBAC (1.0 equiv), 12 h (2.0 equiv), THF, 30 °C, N ₂	3aa
entry		[Pd]	yield (%) ^b	er ^c
1		Pd ₂ (dba) ₃	77	91.5:8.5
2	Р	d ₂ (dba) ₃ •CHCl ₃	75	92:8
3		Pd(dba) ₂	86	89.5:10.5
4		[Pd(C ₃ H ₅)Cl] ₂	80	91.5:8.5
5		Pd(OAc) ₂	82	85:15
6		PdBr ₂	78	88:12
7		PdI ₂	74	88.5:11.5
8		Pd(TFA) ₂	81	89:11
9		Pd(acac) ₂	89	86.5:13.5

2.1 Table S1. Optimization of palladium catalyst.^a

^aReaction conditions: **1a** (0.1 mmol), **2a** (0.16 mmol), [Pd] (5 mol%), **GF2** (15 mol%), *t*-BuOLi (2.2 equiv), TEBAC (1.0 equiv), Et₃N (2.0 equiv) in 0.1 M THF at 30 °C for 12 h. ^bDetermined by GC analysis with *n*-tetradecane as an internal standard. ^cThe *er* value was determined by HPLC.

NHBn	N ^{NHTs}	Pd ₂ (dba) ₃ •CHCl ₃ (2	.5 mol%), GF2 (15 m	ol%) / NBn
1a	Ph 2a	<i>t-</i> BuOLi (2.2 equiv), Et ₃ N (2.0 equiv	TEBAC (1.0 equiv), /), <mark>solvent</mark> , 30 °C, N ₂	12 h Arrow Ph 3aa
entry	solve	nt	yield (%) ^b	er ^c
1	THF	:	75	92:8
2	2-MeT	HF	89	93:7
3	1,4-Dioxane		38	88.5:11.5
4	MTBE		28	93:7
5	DMF		90	80:20
6	MeOH		23	86.5:13.5
7	DCE		38	79.5:20.5
8	Toluene		23	92.5:7.5
9	DMSO		71	66.5:33.5
10	CH ₃ CN		53	80:20
11	EtOAc		67	93:7

2.2 Table S2. Optimization of solvent.^a

^aReaction conditions: **1a** (0.1 mmol), **2a** (0.16 mmol), $Pd_2(dba)_3 \cdot CHCl_3$ (2.5 mol%), **GF2** (15 mol%), *t*-BuOLi (2.2 equiv), TEBAC (1.0 equiv), Et₃N (2.0 equiv) in 0.1 M solvent at 30 °C for 12 h. ^bDetermined by GC analysis with *n*-tetradecane as an internal standard. ^cThe *er* value was determined by HPLC. THF = Tetrahydrofuran. MTBE = methyl *tert*-butyl ether. DMF = *N*,*N*-Dimethylformamide. DCE = 1,2-Dichloroethane. DMSO = Dimethyl sulfoxide.

NHBn -	+ II Pd ₂	(dba)₃•CHCl₃ (2.5 mol%), GF2 (15 mol%)	NBn
1a	Ph t-Bi	uOLi (2.2 equiv), TEBAC (1.0 equiv), 12 h Et ₃ N (2.0 equiv), 2-MeTHF, T $^{\circ}$ C, N ₂	Yaaa Ph
entry	T (°C)	yield (%) ^b	er ^c
1	15	26	94.5:5.5
2	30	89	93:7
3	45	71	90:10
4	60	63	88:12

2.3 Table S3 Optimization of temperature.^a

^aReaction conditions: **1a** (0.1 mmol), **2a** (0.16 mmol), Pd₂(dba)₃•CHCl₃ (2.5 mol%), **GF2** (15 mol%), *t*-BuOLi (2.2 equiv), TEBAC (1.0 equiv), Et₃N (2.0 equiv) in 0.1 M 2-MeTHF for 12 h. ^{*b*}Determined by GC analysis with *n*-tetradecane as an internal standard. ^{*c*}The *er* value was determined by HPLC.

NHBn	, NHTs	Pd ₂ (dba) ₃ •Cł	HCl ₃ (2.5 mol%), GF2 (15 mol%)	/~NBn
1a	Ph 2a	<i>t-</i> BuOLi (2.2 Base (2.0	equiv), TEBAC (1.0 equiv), 12 h equiv), 2-MeTHF, 30 °C, N ₂	3aa
entry	Bas	e	yield (%) ^b	er ^c
1	Nor	ie	83	93:7
2	Et ₃	N	89	93:7
3	DAB	00	76	94:6
4	DIPE	ĒA	86	93:7
5	PhNHMe		91	92.5:7.5
6	PhNM	/le ₂	83	92.5:7.5
7	КО	Н	89	93:7
8	KHCO3		70	93.5:6.5
9	NaHCO ₃		83	93:7
10	Na ₂ CO ₃		83	92:8
11	Cs ₂ CO ₃		93	92.5:7.5
12	CsOAc		69	88:12
13 ^d	Nor	ie	84	91:9

2.4 Table S4. Optimization of base.^a

^aReaction conditions: **1a** (0.1 mmol), **2a** (0.16 mmol), Pd₂(dba)₃•CHCl₃ (2.5 mol%), **GF2** (15 mol%), *t*-BuOLi (2.2 equiv), TEBAC (1.0 equiv), Base (2.0 equiv) in 0.1 M 2-MeTHF at 30 °C for 12 h. ^bDetermined by GC analysis with *n*-tetradecane as an internal standard. ^cThe *er* value was determined by HPLC. ^dWithout TEBAC. DABCO = Triethylenediamine. DIPEA = *N*,*N*-Diisopropylethylamine.

NHBn	+ N ^{NHTs}	Pd ₂ (dba) ₃ •CHCl ₃ (2.5 mol%), GF2 (15 mol%)	NBn
	Ph	<i>t</i> -BuOLi (2.2 equiv), TEBAC (1.0 equiv), 12 h	V * Ph
1a	2a	Additive (20 mol%), 2-MeTHF, 30 °C, N ₂	3aa
entry	Additiv	ve yield (%) ^b	er ^c
1	None	83	93:7
2	AcOF	1 71	93:7
3	TsOH	l 64	93:7
4	Sc(OT	f) ₃ 57	92.5:7.5
5	Zn(OT	f) ₂ 56	92.5:7.5
6	AgOT	f 87	93:7
7	AgCIC	D ₄ 76	92.5:7.5
8	AgPF	6 78	93:7
9	AgBF	4 75	93:7
10	AgF	77	94:6
11	Ag ₂ SC	D ₄ 79	94:6
12	Ag ₂ CC	D ₃ 81	94.5:5.5
13 ^d	Ag ₂ CC	D ₃ 77	94.5:5.5
14 ^e	Ag ₂ CC	D ₃ 67	92.5:7.5

2.5 Table S5. Optimization of additive.^a

^aReaction conditions: **1a** (0.1 mmol), **2a** (0.16 mmol), Pd₂(dba)₃•CHCl₃ (2.5 mol%), **GF2** (15 mol%), *t*-BuOLi (2.2 equiv), TEBAC (1.0 equiv), additive (20 mol%) in 0.1 M 2-MeTHF at 30 °C for 12 h. ^bDetermined by GC analysis with *n*-tetradecane as an internal standard. ^cThe *er* value was determined by HPLC. ^d15 mol% Ag₂CO₃.

3. General Procedure for the Synthesis of Substrates 1, 4

The materials **1** and **4** were prepared according to the known synthetic route in literature.^[1-3]

Step 1: To a solution of alkynol (1.0 equiv), Et₃N (1.5 equiv), and 4-(dimethylamino) pyridine (5 mol%) in DCM (0.5 M) at 0 °C was added *p*toluenesulfonyl chloride (1.3 equiv) in three portions. The reaction mixture was stirred at room temperature until the starting material was no longer detectable by thin layer chromatography (2 h). The reaction mixture was added aqueous NaOH solution (1 M) and vigorously stirred for 30 min at room temperature, and then was extracted with DCM. The combined organic phases were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel chromatography using PE/EA = 20/1 as the eluent to afford the desired product.

Step 2: A flame-dried flask equipped with a stir bar under N₂ was charged with Cp₂ZrCl₂ (1.2 equiv) in dry THF to give a 2.5 M suspension. The reaction mixture was kept in ice bath, DIBAL-H (1.22 equiv) was added dropwise and stirred for 1 h at room temperature. Then the reaction mixture was cooled to 0 °C again and the alkyne obtained above in THF was added dropwise and stirred for 1 h at room temperature. After cooling to -78 °C, iodine (1.4 equiv) in THF (1 M) was added dropwise and the reaction mixture was stirred for 3 h at room temperature. Upon completion, the reaction was quenched with water at 0 °C and then added aqueous NaOH solution (3 M). The mixture was extracted with EtOAc and washed with Na₂S₂O₃. The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel

chromatography using PE/EA = 20/1 as the eluent to afford the desired vinyl iodide.

Step 3: To a solution of the above obtained vinyl iodide (1.0 equiv), NaI (0.055 equiv) in DMSO (0.3 M) was added corresponding primary amine (1.5 equiv). The mixture was heated to 55 °C until the starting material was no longer detectable by thin layer chromatography (3-6 h). The reaction mixture was cooled to room temperature and quenched with a saturated solution of NH₄Cl. Then the mixture was extracted with EtOAc and washed with water. The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel chromatography using PE/EA/Et₃N as the eluent to afford the desired product **1a-1j**, **4a-4d**.

Step 3': To a solution of the above obtained vinyl iodide (1.0 equiv), K₂CO₃ (2 equiv), KI (0.1 equiv) in DMF (0.5 M) was added corresponding primary amine (1.5 equiv). The mixture was heated to 90 °C and stirred overnight. The reaction mixture was cooled to room temperature and quenched with a saturated solution of NH₄Cl. Then the mixture was extracted with EtOAc and washed with water. The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel chromatography using PE/EA/DCM as the eluent to afford the desired product **1k**, **1l**, **4e**.

Characterization of structurally novel substrates 1b-1l, 4c-4e

(E)-N-(2-bromobenzyl)-5-iodopent-4-en-1-amine (1b):

Orange oil.

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 7.9 Hz, 1H), 7.36 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.31 – 7.23 (m, 1H), 7.11 (td, *J* = 7.7, 1.6 Hz, 1H), 6.49 (dt, *J* = 14.3, 7.2 Hz, 1H), 5.99 (d, *J* = 14.4 Hz, 1H), 3.83

(s, 2H), 2.61 (t, J = 7.1 Hz, 2H), 2.15 – 2.07 (m, 2H), 1.64 – 1.59 (m, 2H), 1.58 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 139.1, 132.7, 130.2, 128.5, 127.3, 123.8, 74.9, 53.6, 48.0, 33.6, 28.5. HRMS (ESI) calculated for C₁₂H₁₆BrIN [(M+H)⁺]: 379.9505, found: 379.9505.

(E)-5-iodo-N-(2-methylbenzyl)pent-4-en-1-amine (1c):

Dark orange oil.

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 1H), 7.23 – 7.15 (m, 3H), 6.54 (dt, *J* = 14.3, 7.1 Hz, 1H), 6.01 (d, *J* = 14.4 Hz, 1H), 3.77 (s, 2H), 2.69 (t, *J* = 7.1 Hz, 2H), 2.37 (s, 3H), 2.20 – 2.09 (m, 2H),

1.68 - 1.58 (m, 2H), 1.38 (s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 146.0, 138.2, 136.1, 130.2, 128.2, 126.9, 125.8, 74.7, 51.5, 48.7, 33.7, 28.6, 18.9. HRMS (ESI) calculated for C₁₃H₁₉IN [(M+H)⁺]: 316.0557, found: 316.0551.

(E)-N-(3-fluorobenzyl)-5-iodopent-4-en-1-amine (1d):

Brown oil.

¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.23 (m, 1H), 7.07 (d, *J* = 7.7 Hz, 1H), 7.05 – 7.00 (m, 1H), 6.93 (td, *J* = 8.4, 2.2 Hz, 1H), 6.50 (dt, *J* = 14.3, 7.1 Hz, 1H), 6.00 (d, *J* = 14.4 Hz, 1H), 3.76 (s, 2H),

2.61 (t, J = 7.1 Hz, 2H), 2.14 – 2.08 (m, 2H), 1.64 – 1.54 (m, 2H), 1.46 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9 (d, J = 244.2 Hz), 145.9, 143.1 (d, J = 7.0 Hz), 129.7 (d, J = 8.1 Hz), 123.5 (d, J = 2.8 Hz), 114.7 (d, J = 21.0 Hz), 113.7 (d, J = 21.1 Hz), 74.8, 53.3, 53.2, 48.3, 33.7, 28.6. ¹⁹F NMR (377 MHz, CDCl₃) δ -113.5. HRMS (ESI) calculated for C₁₂H₁₆FIN [(M+H)⁺]: 320.0306, found: 320.0300.

(*E*)-5-iodo-*N*-(3-methylbenzyl)pent-4-en-1-amine (1e):

e Orange oil.

¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.20 (m, 1H), 7.16 – 7.07 (m, 2H), 7.07 (d, *J* = 7.5 Hz, 1H), 6.52 (dt, *J* = 14.3, 7.2 Hz, 1H), 6.00 (dt, *J* = 14.3, 1.4 Hz, 1H), 3.74 (s, 2H), 2.63 (t, *J* = 7.1 Hz,

2H), 2.35 (s, 3H), 2.15 – 2.09 (m, 2H), 1.64 – 1.58 (m, 2H), 1.34 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.0, 140.2, 138.0, 128.8, 128.2, 127.6, 125.1, 74.8, 53.9, 48.4, 33.7, 28.6, 21.4. HRMS (ESI) calculated for C₁₃H₁₉IN [(M+H)⁺]: 316.0557, found: 316.0549.

(E)-N-(4-bromobenzyl)-5-iodopent-4-en-1-amine (1f):

14.4, 1.4 Hz, 1H), 3.72 (s, 2H), 2.60 (t, J = 7.1 Hz, 2H), 2.14 – 2.07 (m, 2H), 1.64 – 1.54 (m, 2H), 1.51 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 139.3, 131.4, 129.7, 120.6, 74.8, 53.2, 48.3, 33.7, 28.6. HRMS (ESI) calculated for C₁₂H₁₆BrIN [(M+H)⁺]: 379.9505, found: 379.9503.

(E)-5-iodo-N-(4-methoxybenzyl)pent-4-en-1-amine (1g):

= 14.4 Hz, 1H), 3.80 (s, 3H), 3.71 (s, 2H), 2.61 (t, J = 7.1 Hz, 2H), 2.15 – 2.07 (m, 2H), 1.63 – 1.55 (m, 2H), 1.43 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 146.0, 132.4, 129.1, 113.7, 74.7, 55.2, 53.2, 48.2, 33.7, 28.6. HRMS (ESI) calculated for C₁₃H₁₉INO [(M+H)⁺]: 332.0506, found: 332.0506.

(*E*)-*N*-(4-(*tert*-butyl)benzyl)-5-iodopent-4-en-1-amine (1h):

Brown oil.

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.36 (m, 2H), 7.30 – 7.26 (m, 2H), 6.54 (dt, *J* = 14.3, 7.2 Hz, 1H), 6.02 (dt, *J* = 14.3, 1.4

Hz, 1H), 3.77 (s, 2H), 2.67 (t, J = 7.1 Hz, 2H), 2.17 – 2.11 (m, 2H), 1.67 – 1.61 (m, 2H), 1.58 (s, 1H), 1.35 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 146.0, 137.1, 127.8, 125.3, 74.8, 53.5, 48.4, 34.4, 33.7, 31.3, 28.6. HRMS (ESI) calculated for C₁₆H₂₅IN [(M+H)⁺]: 358.1026, found: 358.1021.

(E)-N-(3,5-dimethoxybenzyl)-5-iodopent-4-en-1-amine (1i):

le Yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 6.54 – 6.47 (m, 1H), 6.46 (s, 2H),
6.34 (s, 1H), 5.98 (d, J = 14.3 Hz, 1H), 3.77 (s, 6H), 3.69 (s, 2H),
2.60 (t, J = 7.1 Hz, 2H), 2.12 – 2.05 (m, 2H), 1.71 (s, 1H), 1.61

-1.54 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 145.9, 142.7, 105.8, 98.8, 74.7, 55.2, 53.9, 48.2, 33.6, 28.5. HRMS (ESI) calculated for C₁₄H₂₁INO₂ [(M+H)⁺]: 362.0612, found: 362.0613.

(E)-5-iodo-N-(naphthalen-1-ylmethyl)pent-4-en-1-amine (1j):

Yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.3 Hz, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.78 (d, J = 7.7 Hz, 1H), 7.56 – 7.42 (m, 4H), 6.52 (dddt, J = 14.3, 8.7, 7.1, 1.5 Hz, 1H), 5.98 (dq, J = 14.4, 1.7 Hz,

1H), 4.23 (s, 2H), 2.78 – 2.72 (m, 2H), 2.17 – 2.10 (m, 2H), 1.68 – 1.61 (m, 2H), 1.42 (s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 145.9, 135.8, 133.7, 131.6, 128.6, 127.6, 125.9, 125.8, 125.5, 125.3, 123.5, 74.8, 51.5, 48.8, 33.6, 28.5. HRMS (ESI) calculated for C₁₆H₁₉IN [(M+H)⁺]: 352.0557, found: 352.0557.

(E)-N-(5-iodopent-4-en-1-yl)-4-methylbenzenesulfonamide (1k):

 \sim NHTs Gray solid (m.p. 62-63 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.37 (dt, *J* = 14.4, 7.2 Hz, 1H), 5.94 (d, *J* = 14.4 Hz, 1H), 4.76 (t, *J* = 6.1 Hz, 1H), 2.97 – 2.88 (m, 2H), 2.43 (s, 3H), 2.08 – 2.01 (m, 2H), 1.59 – 1.51 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 143.5, 136.7, 129.7, 127.0, 75.7, 42.1, 32.7, 28.1, 21.5. HRMS (ESI) calculated for C₁₂H₁₆INNaO₂S [(M+Na)⁺]: 387.9839, found: 387.9839.

(E)-N-(5-iodopent-4-en-1-yl)-4-nitrobenzenesulfonamide (11):

 \sim NHNs Yellow solid (m.p. 105-106 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.41 – 8.33 (m, 2H), 8.09 – 8.01 (m, 2H), 6.39 (dt, *J* = 14.4, 7.2 Hz, 1H), 6.01 (dt, *J* = 14.4, 1.4 Hz, 1H), 5.04 (t, *J* = 6.1 Hz, 1H), 3.04 – 2.95 (m, 2H), 2.12 – 2.02 (m, 2H), 1.67 – 1.55 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 145.7, 144.3, 128.2, 124.5, 76.1, 42.3, 32.6, 28.2. HRMS (ESI) calculated for C₁₁H₁₃IN₂NaO₄S [(M+Na)⁺]: 418.9533, found: 418.9526.

(E)-N-(6-iodohex-5-en-1-yl)-3-methylaniline (4c):

Yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.19 (m, 1H), 7.14 (s, 1H), 7.10 (d, *J* = 7.5 Hz, 1H), 7.07 (d, *J* = 7.6 Hz, 1H), 6.50 (dt, *J* = 14.3,

7.1 Hz, 1H), 5.98 (dt, J = 14.4, 1.4 Hz, 1H), 3.74 (s, 2H), 2.62 (t, J = 7.0 Hz, 2H), 2.35 (s, 3H), 2.11 – 2.02 (m, 2H), 1.56 – 1.49 (m, 2H), 1.49 – 1.41 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 140.3, 138.0, 128.8, 128.2, 127.6, 125.1, 74.6, 54.0, 49.1, 35.8,

29.3, 26.0, 21.4. HRMS (ESI) calculated for $C_{14}H_{21}IN$ [(M+H)⁺]: 330.0713, found: 330.0716.

(E)-N-(6-iodohex-5-en-1-yl)naphthalen-1-amine (4d):

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.5 Hz, 1H), 7.92 – 7.85 (m, 1H), 7.79 (d, J = 7.9 Hz, 1H), 7.58 – 7.50 (m, 2H), 7.50 – 7.47 (m, 1H), 7.47 – 7.42 (m, 1H), 6.51 (dt, J = 14.3, 7.2 Hz, 1H), 5.99 (dt, J = 14.3, 1.4 Hz, 1H), 4.24 (s, 2H), 2.74 (t, J = 7.0 Hz, 2H), 2.11 – 2.02 (m, 2H), 1.61 – 1.51 (m, 2H), 1.51 – 1.43 (m, 2H), 1.41 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 135.9, 133.8, 131.7, 128.6, 127.6, 126.0, 125.9, 125.5, 125.3, 123.5, 74.6, 51.6, 49.5, 35.8, 29.3, 26.0. HRMS (ESI) calculated for C₁₇H₂₁IN [(M+H)⁺]: 366.0713, found: 366.0709. (*E*)-*N*-(6-iodohex-5-en-1-yl)-4-nitrobenzenesulfonamide (4e):

 \sim_{NHNs} Yellow solid (m.p. 73-74 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.35 – 8.30 (m, 2H), 8.07 – 8.01 (m, 2H), 6.35 (dt, *J* = 14.3, 7.1 Hz, 1H), 5.91 (dt, *J* = 14.4, 1.4 Hz, 1H), 5.39 (s, 1H), 2.96 (t, *J* = 6.9 Hz, 2H), 2.03 – 1.94 (m, 2H), 1.50 – 1.41 (m, 2H), 1.40 – 1.31 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 145.6, 145.4, 128.1, 124.3, 75.1, 42.8, 35.0, 28.5, 24.8. HRMS (ESI) calculated for C₁₂H₁₅IN₂NaO₄S [(M+Na)⁺]: 432.9689, found: 432.9694.

4. General Procedure for the Synthesis of Products 3, 5

To a 10 mL sealed tube was added *N*-tosylhydrazones **2** (0.48 mmol, 1.6 equiv), Pd₂(dba)₃·CHCl₃ (0.0075 mmol, 2.5 mol%), **GF2** (0.045 mmol, 15 mol%), *t*-BuOLi (0.66 mmol, 2.2 equiv), Ag₂CO₃ (0.045 mmol, 15 mol%), and triethylbenzylammonium chloride (TEBAC, 0.3 mmol, 1.0 equiv) was added in the glove box. The reaction tube was evacuated and back-filled with N₂ three times and a solution of the vinyl iodide **1**, **4** (0.3 mmol, 1.0 equiv, 0.1 M in 2- MeTHF) was added under nitrogen atmosphere. Then the tube was stirred at 30 °C for 6 h. Upon completion, the reaction mixture was filtered through celite, evaporated *in vacuo* and purified by silica gel column chromatography (DCM to PE/Et₃N = 50/1) to give the desired product **3**, **5**.

(S,E)-1-benzyl-2-styrylpyrrolidine (3aa):

White solid (69 mg, 87% yield), 94.5:5.5 *er*. m.p. 61-62 °C; $[\alpha]_D^{20}$ = -38.2 (*c* 0.56, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.2 Hz, 2H), 7.38 – 7.27 (m, 6H), 7.27 – 7.17 (m, 2H), 6.58 (d, *J* = 15.8 Hz, 1H), 6.21 (dd, *J* = 15.8, 8.3 Hz, 1H), 4.09 (d, *J* = 12.9 Hz, 1H), 3.16 (d, *J* = 12.9 Hz, 1H), 3.01 (t, *J* = 8.2 Hz, 2H), 2.25 – 2.13 (m, 1H), 2.10 – 1.97 (m, 1H), 1.92 – 1.71 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.5, 137.2, 132.7, 131.6, 129.0, 128.5, 128.1, 127.3, 126.7, 126.3, 67.9, 58.3, 53.4, 31.8, 22.2. HRMS (ESI) calculated for C₁₉H₂₂N [(M+H)⁺]: 264.1747, found: 264.1749. HPLC (Daicel Chiralpak OD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (minor) = 3.7 min, t_R (major) = 3.9 min.

(S,E)-1-benzyl-2-(4-bromostyryl)pyrrolidine (3ab):

Yellow solid (90.2 mg, 88% yield), 93.5:6.5 *er*. m.p. 51-52 °C; [α] $_{D}^{20}$ = +8.2 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47 - 7.40 (m, 2H), 7.35 - 7.28 (m, 4H), 7.27 - 7.26 (m, 1H), 7.26 - 7.20 (m, 2H), 6.50 (d, *J* = 15.9 Hz, 1H), 6.19 (dd, *J* = 15.8, 8.3 Hz, 1H), 4.04 (d, *J* = 13.0 Hz, 1H), 3.18 (d, *J* = 13.0 Hz, 1H), 3.06 - 2.93 (m, 2H), 2.25 - 2.14 (m, 1H), 2.06 - 2.00 (m, 1H), 1.89 - 1.70 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 136.1, 133.6, 131.6, 130.3, 128.9, 128.1, 127.8, 126.8, 121.0, 67.7, 58.4, 53.4, 31.8, 22.2. HRMS (ESI) calculated for C₁₉H₂₁BrN [(M+H)⁺]: 342.0852, found: 342.0851. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 4.0 min, t_R (minor) = 4.6 min.

NBn

6.59 (d, J = 15.8 Hz, 1H), 6.21 (dd, J = 15.8, 8.4 Hz, 1H), 4.11 (d, J = 12.9 Hz, 1H),

3.16 (d, J = 12.9 Hz, 1H), 3.07 – 2.94 (m, 2H), 2.26 – 2.15 (m, 1H), 2.09 – 2.02 (m, 1H), 1.92 – 1.69 (m, 3H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 139.4, 134.3, 131.8, 131.5, 129.0, 128.1, 126.7, 126.0, 125.4, 67.9, 58.2, 53.3, 34.5, 31.8, 31.3, 22.1. HRMS (ESI) calculated for C₂₃H₃₀N [(M+H)⁺]: 320.2373, found: 320.2366. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 97/3, flow rate 0.5 mL/min, 254 nm): t_R (major) = 7.2 min, t_R (minor) = 7.9 min.

NBnYellow solid (89.5 mg, 86% yield), 94:6 er. m.p. 31-32 °C; $[\alpha]_D^{20} = -7.7 (c \ 0.73, CHCl_3); ^1H \ NMR \ (400 \ MHz, CDCl_3)$ $\delta \ 7.44 - 7.38 \ (m, 2H), \ 7.37 - 7.28 \ (m, 4H), \ 7.26 - 7.21 \ (m, 4H)$

1H), 7.18 (d, J = 8.2 Hz, 2H), 6.55 (d, J = 15.9 Hz, 1H), 6.19 (dd, J = 15.8, 8.3 Hz, 1H), 4.06 (d, J = 13.0 Hz, 1H), 3.19 (d, J = 13.0 Hz, 1H), 3.07 – 2.94 (m, 2H), 2.26 – 2.16 (m, 1H), 2.08 – 2.01 (m, 1H), 1.92 – 1.71 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 139.4, 136.0, 133.9, 130.1, 129.0, 128.2, 127.5, 126.8, 121.1, 120.5 (d, J = 255.2Hz), 67.7, 58.4, 53.5, 31.9, 22.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -57.8. HRMS (ESI) calculated for C₂₀H₂₁F₃NO [(M+H)⁺]: 348.1570, found: 348.1568. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 3.5 min, t_R (minor) = 3.8 min.

356.2007. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 4.5 min, t_R (minor) = 5.7 min.

Yellow solid (65.1 mg, 70% yield), 94.5:5.5 *er*. m.p. 49-50 °C; $[\alpha]_D^{20} = -26.0$ (*c* 0.58, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 6H), 7.26 – 7.20 (m, 3H), 6.53 (d, J = 15.8 Hz, 1H), 6.17 (dd, J = 15.8, 8.3 Hz, 1H), 4.08 (d, J = 13.0 Hz, 1H), 3.16 (d, J = 13.0 Hz, 1H), 3.05 – 2.95 (m, 2H), 2.50 (s, 3H), 2.24 – 2.14 (m, 1H), 2.07 – 2.01 (m, 1H), 1.89 – 1.71 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.4, 137.3, 134.2, 132.1, 130.9, 128.9, 128.1, 126.8, 126.7, 126.6, 67.8, 58.3, 53.3, 31.8, 22.1, 15.9. HRMS (ESI) calculated for C₂₀H₂₄NS [(M+H)⁺]: 310.1624, found: 310.1619. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 4.6 min, t_R (minor) = 6.3 min.

Yellow solid (68.5 mg, 67% yield), 94.5:5.5 *er.* m.p. 99-100 ^oC; $[\alpha]_D^{20} = -13.0 (c \ 0.71, CHCl_3)$; ¹H NMR (400 MHz, CDCl_3) δ 7.67 – 7.61 (m, 2H), 7.59 (d, J = 8.3 Hz, 2H), 7.50 (d, J = 8.3 Hz, 2H), 7.48 – 7.43 (m, 2H), 7.39 – 7.30 (m, 5H), 7.28 – 7.22 (m, 1H), 6.63 (d, J = 15.8 Hz, 1H), 6.27 (dd, J = 15.8, 8.3 Hz, 1H), 4.11 (d, J = 13.0 Hz, 1H), 3.19 (d, J = 13.0 Hz, 1H), 3.11 – 2.97 (m, 2H), 2.28 – 2.17 (m, 1H), 2.09 – 2.04 (m, 1H), 1.90 – 1.73 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 140.1, 139.4, 136.2, 132.8, 131.2, 129.0, 128.7, 128.1, 127.2, 126.9, 126.8, 126.7, 67.9, 58.3, 53.4, 31.8, 22.2. HRMS (ESI) calculated for C₂₅H₂₆N [(M+H)⁺]: 340.2060, found: 340.2051. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 4.7 min, t_R (minor) = 6.7 min.

(S,E)-1-benzyl-2-(2-ethoxystyryl)pyrrolidine (3ah):

NBnOEtYellow oil (81.5 mg, 88% yield), 93:7 er. $[\alpha]_D^{20} = +15.3$ (c 0.66,
CHCl3); ¹H NMR (400 MHz, CDCl3) δ 7.53 (d, J = 7.6 Hz, 1H),
7.37 (d, J = 7.5 Hz, 2H), 7.35 – 7.30 (m, 2H), 7.28 – 7.19 (m, 2H),

6.96 (dd, J = 16.3, 9.3 Hz, 2H), 6.88 (d, J = 8.2 Hz, 1H), 6.25 (dd, J = 16.0, 8.3 Hz, 1H), 4.14 (d, J = 13.2 Hz, 1H), 4.09 (dd, J = 14.1, 7.1 Hz, 2H), 3.20 (d, J = 13.0 Hz, 1H), 3.10 – 2.96 (m, 2H), 2.25 – 2.17 (m, 1H), 2.11 – 2.03 (m, 1H), 1.91 – 1.73 (m, 3H), 1.49 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 139.5, 132.7, 129.1 (overlap), 128.2, 128.0, 126.6, 126.4, 126.2, 120.5, 112.0, 68.1, 63.8, 58.1, 53.2, 31.8, 22.1, 14.9. HRMS (ESI) calculated for C₂₁H₂₆NO [(M+H)⁺]: 308.2009, found: 308.2006. HPLC (Daicel Chiralpak OD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 3.9 min, t_R (minor) = 4.1 min.

(*S*,*E*)-1-benzyl-2-(2-(benzyloxy)styryl)pyrrolidine (3ai):

Yellow oil (72.8 mg, 66% yield), 92.5:7.5 *er*. $[\alpha]_D^{20} = +66.3$ (*c* 0.61, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.49 (d, *J* = 7.3 Hz, 2H), 7.44 – 7.39 (m, 2H), 7.39 – 7.33

(m, 3H), 7.33 - 7.28 (m, 2H), 7.27 - 7.20 (m, 2H), 7.03 (d, J = 16.1 Hz, 1H), 7.01 - 6.93 (m, 2H), 6.25 (dd, J = 16.0, 8.4 Hz, 1H), 5.15 (s, 2H), 4.13 (d, J = 13.0 Hz, 1H), 3.20 (d, J = 13.0 Hz, 1H), 3.10 - 2.97 (m, 2H), 2.26 - 2.16 (m, 1H), 2.08 - 2.02 (m, 1H), 1.90 - 1.72 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 139.4, 137.2, 133.1, 129.1, 128.5, 128.3, 128.0, 127.8 (overlap), 127.2, 126.7, 126.6, 126.3, 121.0, 112.5, 70.3, 68.0, 58.1, 53.2, 31.8, 22.1. HRMS (ESI) calculated for C₂₆H₂₈NO [(M+H)⁺]: 370.2165, found: 370.2164. HPLC (Daicel Chiralpak OD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 5.2 min, t_R (minor) = 6.0 min.

NBnPhYellow oil (82.7 mg, 81% yield), 96:4 er. $[\alpha]_D^{20} = +118.0$ (c 0.52,
CHCl_3); ¹H NMR (400 MHz, CDCl_3) δ 7.67 (d, J = 7.3 Hz, 1H),
7.46 - 7.36 (m, 6H), 7.35 - 7.28 (m, 6H), 7.27 - 7.23 (m, 1H), 6.59

(d, J = 15.8 Hz, 1H), 6.16 (dd, J = 15.8, 8.3 Hz, 1H), 4.05 (d, J = 13.0 Hz, 1H), 3.17 (d, J = 13.0 Hz, 1H), 2.98 (t, J = 7.7 Hz, 1H), 2.94 – 2.84 (m, 1H), 2.19 – 2.12 (m, 1H), 2.05 – 1.93 (m, 1H), 1.86 – 1.69 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.0, 140.6, 139.2, 135.3, 133.5, 130.6, 130.1, 129.8, 129.0, 128.1, 128.0, 127.4, 127.2, 126.9, 126.7, 126.2, 67.6, 58.0, 53.1, 31.7, 22.1. HRMS (ESI) calculated for C₂₅H₂₆N [(M+H)⁺]: 340.2060, found: 340.2064. HPLC (Daicel Chiralpak OD-H+OD-H column, *n*-hexane/isopropanol = 99/1, flow rate 0.5 mL/min, 254 nm): t_R (minor) = 21.3 min, t_R (major) = 23.2 min.

(S,E)-1-benzyl-2-(3-bromostyryl)pyrrolidine (3ak):

Yellow oil (76.6 mg, 75% yield), 92:8 *er*. $[\alpha]_D^{20} = +50.2$ (*c* 0.55, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.51 (m, 1H), 7.38 – 7.33 (m, 1H), 7.32 – 7.30 (m, 4H), 7.30 – 7.28 (m,

1H), 7.26 – 7.20 (m, 1H), 7.21 – 7.14 (m, 1H), 6.48 (d, J = 15.8 Hz, 1H), 6.20 (dd, J = 15.8, 8.2 Hz, 1H), 4.03 (d, J = 13.0 Hz, 1H), 3.18 (d, J = 13.0 Hz, 1H), 3.05 – 2.95 (m, 2H), 2.24 – 2.13 (m, 1H), 2.08 – 1.98 (m, 1H), 1.86 – 1.72 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 139.2, 134.4, 130.1, 130.0, 129.9, 129.2, 128.9, 128.1, 126.8, 124.9, 122.7, 67.6, 58.3, 53.4, 31.8, 22.2. HRMS (ESI) calculated for C₁₉H₂₁BrN [(M+H)⁺]: 342.0852, found: 342.0844. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 3.7 min, t_R (minor) = 4.2 min.

Yellow oil (78.6 mg, 89% yield), 93.5:6.5 *er*. $[\alpha]_D^{20} = -21.3$ (*c* 0.67, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 4H), 7.26 – 7.19 (m, 2H), 7.00 (d, *J* = 7.7 Hz, 1H), 6.97 -6.94 (m, 1H), 6.80 (dd, J = 8.1, 2.3 Hz, 1H), 6.54 (d, J = 15.8 Hz, 1H), 6.21 (dd, J = 15.8, 8.3 Hz, 1H), 4.08 (d, J = 13.0 Hz, 1H), 3.82 (s, 3H), 3.16 (d, J = 13.0 Hz, 1H), 3.05 -2.95 (m, 2H), 2.23 -2.14 (m, 1H), 2.07 -2.00 (m, 1H), 1.89 -1.70 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 139.3, 138.6, 132.9, 131.5, 129.5, 129.0, 128.1, 126.7, 119.0, 113.1, 111.4, 67.8, 58.3, 55.2, 53.3, 31.8, 22.2. HRMS (ESI) calculated for C₂₀H₂₄NO [(M+H)⁺]: 294.1852, found: 294.1853. HPLC (Daicel Chiralpak OD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (minor) = 4.2 min, t_R (major) = 5.1 min.

(*S*,*E*)-1-benzyl-2-(3,5-dimethoxystyryl)pyrrolidine (3am):

Yellow oil (77.1 mg, 80% yield), 94:6 *er*. $[\alpha]_D^{20} = -41.9$ (*c* 0.93, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.28 (m, 4H), 7.26 – 7.21 (m, 1H), 6.59 (s, 2H), 6.51 (d, *J* = 15.8 Hz, 1H), 6.39 (s, 1H), 6.21 (dd, *J* = 15.7, 8.3 Hz, 1H), 4.08 (d, *J*

= 13.0 Hz, 1H), 3.82 (s, 6H), 3.18 (d, J = 13.0 Hz, 1H), 3.06 – 2.94 (m, 2H), 2.23 – 2.15 (m, 1H), 2.09 – 2.00 (m, 1H), 1.89 – 1.70 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 139.2, 139.1, 133.1, 131.6, 129.0, 128.1, 126.7, 104.3, 100.0, 67.7, 58.3, 55.6, 53.3, 31.8, 22.1. HRMS (ESI) calculated for C₂₁H₂₆NO₂ [(M+H)⁺]: 324.1958, found: 324.1950. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 6.0 min, t_R (minor) = 6.9 min.

(*S*,*E*)-1-benzyl-2-(2,5-dimethoxystyryl)pyrrolidine (3an):

Yellow oil (73.2 mg, 75% yield), 92.5:7.5 *er*. $[\alpha]_D^{20} = +20.6$ (*c* 0.51, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 4H), 7.26 – 7.20 (m, 1H), 7.08 – 7.05 (m, 1H), 6.90 (d,

J = 16.0 Hz, 1H), 6.84 - 6.75 (m, 2H), 6.20 (dd, J = 16.0, 8.4 Hz, 1H), 4.09 (d, J = 13.0 Hz, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.16 (d, J = 13.0 Hz, 1H), 3.07 - 2.95 (m, 2H), 2.24 - 2.15 (m, 1H), 2.09 - 2.00 (m, 1H), 1.87 - 1.71 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.7, 151.0, 139.5, 133.3, 129.0, 128.1, 126.9, 126.7, 126.1, 113.6, 112.3, 111.8, 68.2, 58.3, 56.2, 55.7, 53.4, 31.8, 22.1. HRMS (ESI) calculated for C₂₁H₂₆NO₂ [(M+H)⁺]: 324.1958, found: 324.1954. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 5.1 min, t_R (minor) = 6.7 min.

(*S*,*E*)-1-benzyl-2-(2,4,6-trimethylstyryl)pyrrolidine (3ao):

Yellow oil (52.6 mg, 57% yield, 7:1 *E/Z*), 93:7 *er*. $[\alpha]_D^{20} =$ +68.0 (*c* 0.49, CHCl₃); ¹H NMR (400 MHz, CDCl₃) *E* isomer: δ 7.37 – 7.27 (m, 4H), 7.26 – 7.22 (m, 1H), 6.89 (s, 2H), 6.54 (d, J = 16.2 Hz, 1H), 5.69 (dd, J = 16.2, 8.3 Hz, 1H), 4.21 (d, J = 12.8 Hz, 1H), 3.18 (d, J = 12.8 Hz, 1H), 3.05 – 2.95 (m, 2H), 2.32 (s, 6H), 2.29 (s, 3H), 2.11 – 2.04 (m, 1H), 2.00 – 1.87 (m, 1H), 1.84 – 1.72 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.4, 137.3, 136.0, 135.8, 134.0, 129.3, 129.1, 128.5, 128.2, 126.8, 68.4, 58.9, 53.2, 31.8, 22.1, 21.0, 20.9. HRMS (ESI) calculated for C₂₂H₂₈N [(M+H)⁺]: 306.2216, found: 306.2210. HPLC (Daicel Chiralpak OJ-H column, *n*-hexane/isopropanol = 99/1, flow rate 0.5 mL/min, 254 nm): t_R (minor) = 8.9 min, t_R (major) = 10.1 min.

(*S*,*E*)-1-benzyl-2-(3,4,5-trimethoxystyryl)pyrrolidine (3ap):

90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 7.2 min, t_R (minor) = 12.9 min.

(S,E)-1-benzyl-2-(3,4,5-trifluorostyryl)pyrrolidine (3aq):

Yellow oil (81.1 mg, 85% yield), 93:7 er. $[\alpha]_D^{20} = +59.5$ (c 0.44, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.32 (s, 2H), 7.32 – 7.28 (m, 2H), 7.26 - 7.18 (m, 1H), 7.08 - 6.86 (m, 2H), 6.40 (d, J =15.8 Hz, 1H), 6.12 (dd, J = 15.8, 8.1 Hz, 1H), 3.99 (d, J = 13.0 Hz, 1H), 3.22 (d, J = 13.0 Hz, 1H), 3.08 - 2.94 (m, 2H), 2.27 - 2.15 (m, 1H), 2.07 - 2.15 (m, 2H), 2.0

2.01 (m, 1H), 1.90 - 1.67 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.3 (ddd, J = 247.5, 10.0, 4.2 Hz), 139.3, 138.8 (dt, J = 249.5, 15.1 Hz), 135.5, 133.5 (td, J = 7.5, 4.4 Hz), 128.8, 128.5 (d, J = 2.1 Hz), 128.2, 126.8, 109.9 (dd, J = 15.8, 5.7 Hz), 67.3, 58.5, 53.5, 31.8, 22.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -134.9, -162.2. HRMS (ESI) calculated for C₁₉H₁₉F₃N [(M+H)⁺]: 318.1464, found: 318.1457. HPLC (Daicel Chiralpak OD-H column, *n*-hexane/isopropanol = 95/5, flow rate 1.0 mL/min, 254 nm): t_R (minor) = 3.8 min, t_R (major) = 4.2 min.

(*S*,*E*)-1-benzyl-2-(2-(naphthalen-1-yl)vinyl)pyrrolidine (3ar):

Yellow oil (81.7 mg, 87% yield), 95:5 *er*. $[\alpha]_D^{20} = +48.9$ (*c* 0.64, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 7.7 Hz, 1H), 7.81 (d, *J* = 8.2 Hz, 1H), 7.66 (d, *J* =

7.1 Hz, 1H), 7.58 – 7.47 (m, 3H), 7.41 (d, J = 7.5 Hz, 2H), 7.39 – 7.33 (m, 3H), 7.29 (d, J = 7.0 Hz, 1H), 6.29 (dd, J = 15.5, 8.3 Hz, 1H), 4.21 (d, J = 13.0 Hz, 1H), 3.29 (d, J = 13.0 Hz, 1H), 3.23 – 3.13 (m, 1H), 3.08 (t, J = 8.1 Hz, 1H), 2.33 – 2.23 (m, 1H), 2.20 – 2.10 (m, 1H), 1.95 – 1.79 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.5, 135.9, 134.8, 133.6, 131.1, 129.0, 128.7, 128.5, 128.1, 127.7, 126.7, 125.9, 125.7, 125.6, 123.9, 123.8, 68.0, 58.4, 53.5, 31.9, 22.2. HRMS (ESI) calculated for C₂₃H₂₄N [(M+H)⁺]: 314.1903, found: 314.1898. HPLC (Daicel Chiralpak OD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (minor) = 4.6 min, t_R (major) = 5.1 min.

NBn ..., Yellow solid (70.8 mg, 75% yield), 93.5:6.5 *er*. m.p. 109-110 °C; $[\alpha]_D^{20} = +28.4$ (*c* 0.55, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.76 (m, 3H), 7.74 (s, 1H), 7.64 (dd, *J* = 8.6,

1.5 Hz, 1H), 7.50 – 7.41 (m, 2H), 7.38 – 7.28 (m, 4H), 7.26 – 7.20 (m, 1H), 6.74 (d, J = 15.8 Hz, 1H), 6.33 (dd, J = 15.8, 8.3 Hz, 1H), 4.12 (d, J = 13.0 Hz, 1H), 3.20 (d, J = 13.0 Hz, 1H), 3.11 – 2.98 (m, 2H), 2.28 – 2.16 (m, 1H), 2.11 – 2.03 (m, 1H), 1.87 – 1.77 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.4, 134.6, 133.6, 133.1, 132.9, 131.7, 129.0, 128.1, 127.9, 127.6, 126.8, 126.2, 126.0, 125.7, 123.7, 68.0, 58.4, 53.4, 31.9, 22.2. HRMS (ESI) calculated for C₂₃H₂₄N [(M+H)⁺]: 314.1903, found: 314.1896.

HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 4.6 min, t_R (minor) = 5.4 min.

(S,E)-1-benzyl-2-(2-(furan-2-yl)vinyl)pyrrolidine (3at):

Yellow solid (34.0 mg, 45% yield), 96.5:3.5 *er.* m.p. 43-44 °C; [α] $_{D}^{20}$ = -21.0 (*c* 0.63, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.34 (m, 1H), 7.34 – 7.25 (m, 4H), 7.25 – 7.20 (m, 1H), 6.41 (d, *J* = 15.8 Hz, 1H), 6.37 (dd, *J* = 3.1, 1.9 Hz, 1H), 6.23 (d, *J* = 3.2 Hz, 1H), 6.15 (dd, *J* = 15.8, 8.3 Hz, 1H), 4.08 (d, *J* = 13.0 Hz, 1H), 3.14 (d, *J* = 13.0 Hz, 1H), 3.03 – 2.91 (m, 2H), 2.22 – 2.13 (m, 1H), 2.06 – 1.98 (m, 1H), 1.85 – 1.68 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 141.7, 139.5, 131.4, 128.9, 128.1, 126.7, 120.0, 111.2, 107.1, 67.5, 58.3, 53.3, 31.9, 22.2. HRMS (ESI) calculated for C₁₇H₂₀NO [(M+H)⁺]: 254.1539, found: 254.1537. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 3.6 min, t_R (minor) = 4.5 min.

(*S*,*E*)-2-(2-(benzofuran-2-yl)vinyl)-1-benzylpyrrolidine (3au):

Yellow solid (62.9 mg, 69% yield) with 92.5:7.5 *er*. m.p. 78-79 °C; $[\alpha]_D^{20} = +89.7$ (*c* 0.27, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, *J* = 7.6, 0.6 Hz, 1H), 7.48 (d, *J* = 8.1 Hz,

1H), 7.39 – 7.32 (m, 4H), 7.30 – 7.20 (m, 3H), 6.58 (s, 1H), 6.57 (d, J = 15.7 Hz, 2H), 6.50 (dd, J = 15.8, 7.3 Hz, 1H), 4.12 (d, J = 13.0 Hz, 1H), 3.21 (d, J = 13.0 Hz, 1H), 3.12 – 2.98 (m, 2H), 2.27 – 2.18 (m, 1H), 2.13 – 2.03 (m, 1H), 1.91 – 1.74 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 154.6, 139.4, 135.1, 128.9, 128.8, 128.1, 126.7, 124.2, 122.7, 120.7, 119.8, 110.8, 103.7, 67.3, 58.4, 53.3, 31.9, 22.3. HRMS (ESI) calculated for C₂₁H₂₂NO [(M+H)⁺]: 304.1696, found: 304.1688. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 4.0 min, t_R (minor) = 4.5 min.

(S,E)-1-benzyl-2-(2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)vinyl)pyrrolidine (3av):

NBn NBn O

Yellow oil (58.1 mg, 60% yield), 93.5:6.5 *er*. $[\alpha]_D^{20} = -7.7$ (*c* 0.73, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 4H), 7.25 – 7.18 (m, 1H), 6.94 (s, 1H), 6.90 (d, *J* = 8.4 Hz,

1H), 6.82 (d, J = 8.3 Hz, 1H), 6.45 (d, J = 15.8 Hz, 1H), 6.05 (dd, J = 15.8, 8.3 Hz, 1H), 4.25 (s, 4H), 4.07 (d, J = 12.9 Hz, 1H), 3.13 (d, J = 12.9 Hz, 1H), 3.03 – 2.89 (m, 2H), 2.20 – 2.13 (m, 1H), 2.06 – 1.98 (m, 1H), 1.84 – 1.68 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 143.0, 139.3, 131.1, 131.0, 130.9, 129.0, 128.1, 126.7, 119.7, 117.2, 114.8, 67.8, 64.4, 64.3, 58.2, 53.3, 31.8, 22.1. HRMS (ESI) calculated for C₂₁H₂₄NO₂ [(M+H)⁺]: 322.1802, found: 322.1796. HPLC (Daicel Chiralpak AD-H column, *n*hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 5.2 min, t_R (minor) = 6.9 min.

(*S*,*E*)-1-benzyl-2-(2-(thiophen-2-yl)vinyl)pyrrolidine (3aw):

Yellow solid (63.7 mg, 79% yield), 93:7 *er.* m.p. 47-48 °C; $[\alpha]_D^{20}$ = -110.1 (*c* 0.98, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 4H), 7.26 – 7.19 (m, 1H), 7.15 (d, *J* = 4.3 Hz, 1H), 7.02 – 6.91 (m, 2H), 6.71 (d, *J* = 15.7 Hz, 1H), 6.06 (dd, *J* = 15.6, 8.2 Hz, 1H), 4.09 (d, *J* = 13.0 Hz, 1H), 3.16 (d, *J* = 13.0 Hz, 1H), 3.03 – 2.92 (m, 2H), 2.23 – 2.14 (m, 1H), 2.08 – 1.98 (m, 1H), 1.88 – 1.71 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 139.5, 132.5, 129.0, 128.2, 127.3, 126.8, 125.1, 124.7, 123.9, 67.6, 58.4, 53.4, 31.9, 22.2. HRMS (ESI) calculated for C₁₇H₂₀NS [(M+H)⁺]: 270.1311, found: 270.1310. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 3.9 min, t_R (minor) = 4.8 min.

(S,E)-1-(2-bromobenzyl)-2-styrylpyrrolidine (3ba):

Yellow oil (86.7 mg, 85% yield), 91:9 *er*. $[\alpha]_D^{20} = +4.7$ (*c* 0.60, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.8 Hz, 2H), 7.40 (d, *J* = 7.7 Hz, 2H), 7.35 – 7.26 (m, 3H), 7.25 – 7.19 (m, 1H), 7.11 – 7.04 (m, 1H), 6.58 (d, *J* = 15.8 Hz, 1H), 6.20 (dd, *J* = 15.8, 8.3 Hz, 1H), 4.07 (d, J = 14.1 Hz, 1H), 3.42 (d, J = 14.1 Hz, 1H), 3.15 – 3.06 (m, 2H), 2.31 – 2.22 (m, 1H), 2.10 – 1.98 (m, 1H), 1.89 – 1.74 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.0, 137.1, 132.7, 132.6, 131.5, 130.8, 128.5, 128.1, 127.3, 127.1, 126.3, 124.2, 68.2, 57.5, 53.7, 31.9, 22.4. HRMS (ESI) calculated for C₁₉H₂₁BrN [(M+H)⁺]: 342.0852, found: 342.0852. HPLC (Daicel Chiralpak OJ-H column, *n*-hexane/isopropanol = 99/1, flow rate 0.5 mL/min, 254 nm): t_R (minor) = 13.6 min, t_R (major) = 18.4 min.

 $\begin{array}{l} \mbox{Me} & \mbox{Orange oil (70.0 mg, 84\% yield), 94:6 $er. $[a]_D^{20} = -3.3 (c 0.68, CHCl_3); 1H NMR (400 MHz, CDCl_3) & 7.45 (d, $J = 7.7 Hz, 2H$), 7.40 \\ $-7.33 (m, 3H), 7.29 (d, $J = 7.1 Hz, 1H$), 7.22 - 7.14 (m, 3H$), 6.62 \\ $(d, $J = 15.8 Hz, 1H$), 6.25 (dd, $J = 15.8, 8.4 Hz, 1H$), 4.11 (d, $J = 13.1 Hz, 1H$), 3.14 (d, $J = 13.1 Hz, 1H$), 3.10 - 2.99 (m, 2H$), 2.40 (s, 3H$), 2.27 - 2.18 \\ $(m, 1H$), 2.13 - 2.02 (m, 1H$), 1.91 - 1.75 (m, 3H$); $^{13}C NMR (100 MHz, CDCl_3) & 3137.9, 137.2, 136.8, 132.8, 131.5, 130.1, 129.4, 128.5, 127.2, 126.7, 126.3, 125.4, 68.5, 56.2, 53.8, 31.9, 22.3, 19.3. HRMS (ESI) calculated for C_{20}H_{24}N [(M+H)^+]: 278.1903, found: 278.1901. HPLC (Daicel Chiralpak OJ-H column, n-hexane/isopropanol = 99/1, flow rate 0.5 mL/min, 254 nm): t_R (minor) = 15.5 min, t_R (major) = 17.6 min. \end{array}$

(S,E)-1-(3-fluorobenzyl)-2-styrylpyrrolidine (3da):

F Yellow solid (78.1 mg, 93% yield), 93:7 *er.* m.p. 43-44 °C; $[\alpha]_D^{20} =$ -11.0 (*c* 0.63, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 7.7 Hz, 2H), 7.40 – 7.33 (m, 2H), 7.32 – 7.26 (m, 2H), 7.17 – 7.09 (m, 2H), 6.99 – 6.90 (m, 1H), 6.60 (d, *J* = 15.8 Hz, 1H), 6.22 (dd, *J* = 15.8, 8.3 Hz, 1H), 4.10 (d, *J* = 13.3 Hz, 1H), 3.19 (d, *J* = 13.3 Hz, 1H), 3.09 – 2.99 (m, 2H), 2.26 – 2.16 (m, 1H), 2.13 – 2.03 (m, 1H), 1.92 – 1.77 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9 (d, *J* = 243.6 Hz), 142.4 (d, *J* = 7.0 Hz), 137.0, 132.4, 131.8, 129.5 (d, *J* = 8.3 Hz), 128.5, 127.4, 126.3, 124.3 (d, *J* = 2.5 Hz), 115.6 (d, *J* = 21.0 Hz), 113.5 (d, *J* = 21.1 Hz), 67.9, 57.8, 53.4, 31.8, 22.2; ¹⁹F NMR (377 MHz, CDCl₃) δ -113.9. HRMS (ESI) calculated for C₁₉H₂₁FN [(M+H)⁺]: 282.1653, found: 282.1650. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 99/1, flow rate 0.5 mL/min, 254 nm): t_R (major) = 9.4 min, t_R (minor) = 10.7 min.

(*S*,*E*)-1-(3-methylbenzyl)-2-styrylpyrrolidine (3ea):

Orange oil (72.6 mg, 87% yield), 93:7 *er*. $[\alpha]_D^{20} = -39.5$ (*c* 0.83, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.7 Hz, 2H), 7.40 – 7.33 (m, 2H), 7.31 – 7.22 (m, 2H), 7.21 – 7.14 (m, 2H), 7.09 (d, J = 7.4 Hz, 1H), 6.61 (d, J = 15.8 Hz, 1H), 6.26 (dd, J = 7.4 Hz, 1H), 6.61 (d, J = 15.8 Hz, 1H), 6.26 (dd, J = 7.4 Hz, 1H), 6.61 (d, J = 15.8 Hz, 1H), 6.26 (dd, J = 7.4 Hz, 1H), 6.61 (d, J = 15.8 Hz, 1H), 6.26 (dd, J = 7.4 Hz, 1H), 6.61 (d, J = 15.8 Hz, 1H), 6.26 (dd, J = 7.4 Hz, 1H), 6.61 (d, J = 15.8 Hz, 1H), 6.26 (dd, J = 7.4 Hz, 1H), 6.61 (d, J = 15.8 Hz, 1H), 6.26 (dd, J = 7.4 Hz, 1H), 6.61 (d, J = 15.8 Hz, 1H), 6.26 (dd, J = 7.4 Hz, 1H), 6.61 (d, J = 15.8 Hz, 1H), 6.26 (dd, J = 15.8

15.8, 8.3 Hz, 1H), 4.09 (d, J = 12.9 Hz, 1H), 3.16 (d, J = 12.9 Hz, 1H), 3.09 – 2.99 (m, 2H), 2.39 (s, 3H), 2.27 – 2.18 (m, 1H), 2.13 – 2.03 (m, 1H), 1.93 – 1.77 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 137.7, 137.1, 132.6, 131.6, 129.7, 128.5, 128.0, 127.5, 127.3, 126.3, 126.1, 68.0, 58.4, 53.4, 31.8, 22.1, 21.4. HRMS (ESI) calculated for C₂₀H₂₄N [(M+H)⁺]: 278.1903, found: 278.1902. HPLC (Daicel Chiralpak OD-H column, *n*-hexane/isopropanol = 99/1, flow rate 0.5 mL/min, 254 nm): t_R (minor) = 8.9 min, t_R (major) = 11.3 min.

Orange oil (89.8 mg, 88% yield), 90.5:9.5 *er*. $[\alpha]_D^{20} = +42.9$ (*c* 0.58, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.37 (m, 4H), 7.36 – 7.30 (m, 2H), 7.27 – 7.18 (m, 3H), 6.56 (d, *J* = 15.8

Hz, 1H), 6.17 (dd, J = 15.8, 8.3 Hz, 1H), 4.01 (d, J = 13.2 Hz, 1H), 3.12 (d, J = 13.2 Hz, 1H), 3.03 – 2.94 (m, 2H), 2.21 – 2.12 (m, 1H), 2.09 – 2.00 (m, 1H), 1.88 – 1.71 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 137.0, 132.4, 131.8, 131.2, 130.6, 128.5, 127.4, 126.3, 120.5, 67.9, 57.6, 53.3, 31.8, 22.2. HRMS (ESI) calculated for C₁₉H₂₁BrN [(M+H)⁺]: 342.0852, found: 342.0846. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 4.0 min, t_R (minor) = 4.9 min.

(S,E)-1-(4-methoxybenzyl)-2-styrylpyrrolidine (3ga):

Yellow solid (72.4 mg, 82% yield), 92:8 *er.* m.p. 46-47 °C; $[\alpha]_D^{20} = +18.5 \ (c \ 0.56, CHCl_3); {}^{1}H \ NMR \ (400 \ MHz, CDCl_3)$ $\delta \ 7.42 \ (d, J = 7.7 \ Hz, 2H), \ 7.37 - 7.30 \ (m, 2H), \ 7.24 \ (d, J =$

8.2 Hz, 3H), 6.85 (d, J = 8.2 Hz, 2H), 6.56 (d, J = 15.8 Hz, 1H), 6.21 (dd, J = 15.8, 8.3 Hz, 1H), 4.01 (d, J = 12.8 Hz, 1H), 3.79 (s, 3H), 3.13 (d, J = 12.8 Hz, 1H), 3.03 – 2.92 (m, 2H), 2.23 – 2.14 (m, 1H), 2.05 – 2.00 (m, 1H), 1.88 – 1.70 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 137.1, 132.7, 131.5, 131.4, 130.1, 128.5, 127.3, 126.3, 113.5, 67.7, 57.6, 55.2, 53.2, 31.8, 22.1. HRMS (ESI) calculated for C₂₀H₂₄NO [(M+H)⁺]: 294.1852, found: 294.1851. HPLC (Daicel Chiralpak OJ-H column, *n*-hexane/isopropanol = 99/1, flow rate 0.5 mL/min, 254 nm): t_R (major) = 30.5 min, t_R (minor) = 40.2 min.

(S,E)-1-(4-(*tert*-butyl)benzyl)-2-styrylpyrrolidine (3ha):

Yellow oil (84.3 mg, 88% yield), 95:5 *er*. $[\alpha]_D^{20} = +26.4$ (*c* 0.59, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 7.7 Hz, 2H), 7.38 – 7.32 (m, 4H), 7.31 – 7.25 (m, 3H), 6.59 (d, *J* = 15.8 Hz,

1H), 6.22 (dd, J = 15.8, 8.3 Hz, 1H), 4.05 (d, J = 13.0 Hz, 1H), 3.21 (d, J = 13.0 Hz, 1H), 3.11 – 2.98 (m, 2H), 2.28 – 2.19 (m, 1H), 2.08 – 2.02 (m, 1H), 1.91 – 1.74 (m, 3H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 149.5, 137.2, 136.3, 132.8, 131.4, 128.7, 128.5, 127.3, 126.3, 125.0, 67.8, 57.9, 53.5, 34.4, 31.9, 31.4, 22.2. HRMS (ESI) calculated for C₂₃H₃₀N [(M+H)⁺]: 320.2373, found: 320.2367. HPLC (Daicel Chiralpak OJ-H+OJ-H column, *n*-hexane/isopropanol = 99/1, flow rate 0.5 mL/min, 254 nm): t_R (major) = 22.5 min, t_R (minor) = 32.1 min.

(S,E)-1-(3,5-dimethoxybenzyl)-2-styrylpyrrolidine (3ia):

Yellow oil (80.5 mg, 83% yield), 94:6 *er*. [α]_D²⁰ = +17.6 (*c* 0.62, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.7 Hz, 2H), 7.36 – 7.30 (m, 2H), 7.26 – 7.22 (m, 1H), 6.57 (d, *J* = 15.8 Hz, 1H), 6.52 (s, 2H), 6.35 (s, 1H), 6.20 (dd, *J* = 15.8, 8.3 Hz, 1H),

4.02 (d, J = 13.1 Hz, 1H), 3.79 (s, 6H), 3.12 (d, J = 13.1 Hz, 1H), 3.09 – 2.94 (m, 2H), 2.24 – 2.16 (m, 1H), 2.07 – 2.00 (m, 1H), 1.89 – 1.69 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.6, 141.9, 137.1, 132.6, 131.6, 128.5, 127.3, 126.3, 106.8, 98.8, 67.8, 58.4, 55.2, 53.4, 31.8, 22.2. HRMS (ESI) calculated for C₂₁H₂₆NO₂ [(M+H)⁺]: 324.1958, found: 324.1956. HPLC (Daicel Chiralpak OD-H column, *n*-hexane/isopropanol = 99/1, flow rate 0.5 mL/min, 254 nm): t_R (minor) = 17.7 min, t_R (major) = 24.4 min.

(S,E)-1-(naphthalen-1-ylmethyl)-2-styrylpyrrolidine (3ja):

Yellow solid (82.8 mg, 88% yield), 95:5 *er*. m.p. 59-60 °C; $[\alpha]_D^{20} =$ +36.8 (*c* 0.58, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.32 – 8.25 (m, 1H), 7.88 - 7.82 (m, 1H), 7.76 (d, J = 8.1 Hz, 1H), 7.54 - 7.44(m, 5H), 7.42 (d, J = 8.0 Hz, 1H), 7.39 – 7.34 (m, 2H), 7.28 – 7.23 (m, 1H), 6.65 (d, J = 15.8 Hz, 1H), 6.33 (dd, J = 15.8, 8.4 Hz, 1H), 4.60 (d, J = 13.0Hz, 1H), 3.49 (d, J = 13.1 Hz, 1H), 3.18 - 3.07 (m, 1H), 2.99 - 2.91 (m, 1H), 2.31 - 3.07 $2.22 \text{ (m, 1H)}, 2.14 - 2.04 \text{ (m, 1H)}, 1.85 - 1.73 \text{ (m, 3H)}; {}^{13}\text{C NMR} (100 \text{ MHz}, \text{CDCl}_3)$ δ 137.2, 135.7, 133.8, 132.8, 132.2, 131.8, 128.5, 128.4, 127.6, 127.3, 126.8, 126.3, 125.7, 125.4, 125.2, 124.6, 68.7, 56.4, 54.0, 32.0, 22.3. HRMS (ESI) calculated for C₂₃H₂₄N [(M+H)⁺]: 314.1903, found: 314.1896. HPLC (Daicel Chiralpak OJ-H+OJ-H column, *n*-hexane/isopropanol = 99/1, flow rate 0.5 mL/min, 254 nm): t_R (minor) = 11.3min, t_R (major) = 12.4 min.

(*S*,*E*)-2-styryl-1-tosylpyrrolidine (3ka):

Purified by chromatography on silica gel, eluting with PE/EA = 10/1; yellow solid (87.0 mg, 89% yield), 94.5:5.5 er. m.p. 119-120 °C; $[\alpha]_D{}^{20} = +5.3 (c \ 0.54, CHCl_3); {}^{1}H \ NMR (400 \ MHz, CDCl_3) \delta 7.72 (d, <math>J = 8.2 \ Hz, 2H), 7.34 - 7.26 (m, 5H), 7.26 - 7.19 (m, 2H), 6.55 (dd, <math>J = 15.8, 1.3 \ Hz, 1H), 6.05 (dd, <math>J = 15.8, 6.7 \ Hz, 1H), 4.42 - 4.29 (m, 1H), 3.54 - 3.44 (m, 1H), 3.41 - 3.28 (m, 1H), 2.40 (s, 3H), 1.94 - 1.81 (m, 2H), 1.78 - 1.65 (m, 2H); {}^{13}C \ NMR (100 \ MHz, CDCl_3) \delta 143.2, 136.6, 135.6, 130.6, 129.9, 129.5, 128.4, 127.6, 127.5, 126.5, 61.6, 48.6, 32.8, 23.9, 21.4. \ HRMS (ESI) \ calculated \ for \ C_{19}H_{21}\ NnaO_2\ S \ [(M+Na)^+]: 350.1158, \ found: 350.1182. \ HPLC (Daicel Chiralpak \ OD-H \ column,$ *n* $-hexane/isopropanol = 90/10, flow rate 1.0 \ mL/min, 254 \ nm): t_R (major) = 10.3 \ min, t_R (minor) = 13.1 \ min.$

(S,E)-2-(3-methoxy-4-(methoxymethoxy)styryl)-1-((4-

nitrophenyl)sulfonyl)pyrrolidine (3lx):

OMe OMOM

Purified by chromatography on silica gel, eluting with PE/EA/DCM = 10/1/1); yellow solid (698.1 mg, 87% M yield), 95.5:4.5 *er.* m.p. 119-120 °C; $[\alpha]_D^{20} = -95.7$ (*c*

0.62, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 8.4 Hz, 2H), 7.99 (d, *J* = 8.5 Hz, 2H), 7.07 (d, *J* = 8.1 Hz, 1H), 6.90 – 6.74 (m, 2H), 6.49 (d, *J* = 15.6 Hz, 1H), 5.79 (dd, *J* = 15.7, 7.4 Hz, 1H), 5.23 (s, 2H), 4.55 – 4.35 (m, 1H), 3.87 (s, 3H), 3.62 – 3.43 (m, 5H), 2.05 – 1.91 (m, 2H), 1.90 – 1.73 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.83, 149.81, 146.5, 145.1, 131.5, 130.6, 128.6, 127.2, 124.1, 119.4, 116.3, 109.6, 95.5, 62.3, 56.2, 55.9, 48.7, 33.0, 24.1. HRMS (ESI) calculated for C₂₁H₂₄N₂NaO₇S [(M+Na)⁺]: 471.1196, found: 471.1207. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (minor) = 63.8 min, t_R (major) = 79.9 min.

(S,E)-2-(3-chlorostyryl)-1-((4-nitrophenyl)sulfonyl)pyrrolidine (3ly):

Purified by chromatography on silica gel, eluting with PE/EA/DCM = 20/1/1; yellow solid (708.0 mg, 90% yield), 94:6 *er.* m.p. 130-131 °C; $[\alpha]_D^{20} = -127.2$ (*c* 1.06, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 8.4 Hz, 2H), 7.98 (d, J = 8.4 Hz, 2H), 7.27 - 7.18 (m, 3H), 7.13 (d, J = 6.6 Hz, 1H), 6.50 (d, J = 15.7 Hz, 1H), 5.95 (dd, J = 15.7, 7.2 Hz, 1H), 4.53 – 4.32 (m, 1H), 3.58 – 3.38 (m, 2H), 2.03 – 1.90 (m, 2H), 1.88 – 1.74 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 144.8, 137.9, 134.6, 130.4, 130.3, 129.8, 128.5, 127.9, 126.2, 124.7, 124.2, 61.9, 48.7, 32.9, 24.1. HRMS (ESI) calculated for C₁₈H₁₇ClN₂NaO₄S [(M+Na)⁺]: 415.0490, found: 415.0487. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 23.4 min, t_R (minor) = 29.2 min.

NBn

White solid (63.9 mg, 77% yield), 95:5 *er*. m.p. 63-64 °C; $[\alpha]_D^{20}$ = -152.9 (*c* 0.64, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 7.9 Hz, 2H), 7.38 – 7.27 (m, 6H), 7.27 – 7.19 (m, 2H), 6.58 (d, J = 16.0 Hz, 1H), 6.32 (dd, J = 15.9, 8.6 Hz, 1H), 4.13 (d, J = 13.6 Hz, 1H), 3.15 (d, J = 13.6 Hz, 1H), 2.88 (t, J = 10.5 Hz, 2H), 1.98 (td, J = 11.2, 2.0 Hz, 1H), 1.84 – 1.71 (m, 2H), 1.66 – 1.49 (m, 3H), 1.43 – 1.31 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.4, 137.2, 134.1, 130.7, 129.0, 128.5, 128.0, 127.3, 126.6, 126.2, 66.0, 60.2, 52.3, 33.8, 25.8, 24.0. HRMS (ESI) calculated for C₂₀H₂₄N [(M+H)⁺]: 278.1903, found: 278.1908. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 3.6 min, t_R (minor) = 4.2 min.

(*S*,*E*)-1-(4-methoxybenzyl)-2-styrylpiperidine (5ba):

White solid (77.6 mg, 84% yield), 94:6 *er.* m.p. 85-86 °C; $[\alpha]_D^{20}$ = -109.4 (*c* 1.08, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 7.6 Hz, 2H), 7.38 – 7.29 (m, 2H), 7.29 – 7.19 (m, 3H), 6.90 – 6.81 (m, 2H), 6.57 (d, J = 16.0 Hz, 1H), 6.32 (dd, J = 16.1, 8.8 Hz, 1H), 4.04 (d, J =13.4 Hz, 1H), 3.81 (s, 3H), 3.12 (d, J = 13.4 Hz, 1H), 2.94 – 2.80 (m, 2H), 2.02 – 1.89 (m, 1H), 1.82 – 1.68 (m, 2H), 1.66 – 1.47 (m, 3H), 1.42 – 1.30 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 137.2, 134.1, 131.1, 130.7, 130.2, 128.5, 127.2, 126.2, 113.4, 65.9, 59.5, 55.2, 52.1, 33.7, 25.8, 23.9. HRMS (ESI) calculated for C₂₁H₂₆NO [(M+H)⁺]: 308.2009, found: 308.2011. HPLC (Daicel Chiralpak OD-H column, *n*-

hexane/isopropanol = 95/5, flow rate 0.5 mL/min, 254 nm): t_R (minor) = 9.5 min, t_R (major) = 11.2 min.

Yellow solid (101.6 mg, 85% yield), 93.5:6.5 er. m.p. 73-74

(S,E)-2-(4-(benzyloxy)styryl)-1-(3-methylbenzyl)piperidine (5cz):

°C; $[\alpha]_D^{20} = -81.7$ (*c* 0.72, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H), 7.41 – 7.36 (m, 2H), 7.36 – 7.28 (m, 3H), 7.22 - 7.15 (m, 1H), 7.13 (s, 1H), 7.11 (d, J =OBn 7.8 Hz, 1H), 7.04 (d, J = 7.4 Hz, 1H), 6.96 – 6.90 (m, 2H), 6.48 (d, J = 15.9 Hz, 1H), 6.15 (dd, J = 15.9, 8.6 Hz, 1H), 5.08 (s, 2H), 4.07 (d, J = 13.5 Hz, 1H), 3.06 (d, J = 13.5 Hz, 1H) Hz, 1H), 2.92 - 2.84 (m, 1H), 2.85 - 2.74 (m, 1H), 2.34 (s, 3H), 1.98 - 1.88 (m, 1H), 1.79 – 1.69 (m, 3H), 1.63 – 1.49 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.2, 139.3, 138.1, 137.6, 137.0, 132.1, 130.4, 130.2, 129.9, 128.6, 128.0, 127.9, 127.4, 127.4, 126.3, 115.0, 70.1, 66.3, 60.3, 52.5, 33.9, 25.9, 24.1, 21.4. HRMS (ESI) calculated for C₂₈H₃₂NO [(M+H)⁺]: 398.2478, found: 398.2486. HPLC (Daicel Chiralpak OD-H column, *n*-hexane/isopropanol = 95/5, flow rate 0.5 mL/min, 254 nm): t_R (major) = 11.9min, t_R (minor) = 13.7 min.

(*S*,*E*)-2-(4-(benzyloxy)styryl)-1-(naphthalen-1-ylmethyl)piperidine (5dz):

Yellow oil (100.7 mg, 77% yield), 95:5 *er*. $[\alpha]_D^{20} = -84.7$ (*c* 1.09, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 7.8 Hz, 1H), 7.87 (d, *J* = 6.9 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.63 - 7.47 (m, 3H), 7.50 - 7.30 (m, 8H), 7.01 - 6.92 (m, 2H), 6.61 (dd, *J* = 15.9, 3.4 Hz, 1H), 6.35 (ddt, *J* = 15.8, 8.7,

2.5 Hz, 1H), 5.10 (s, 2H), 4.63 (dd, J = 13.8, 3.8 Hz, 1H), 3.47 (dd, J = 13.7, 3.2 Hz, 1H), 3.05 – 2.91 (m, 1H), 2.92 – 2.83 (m, 1H), 2.08 – 1.93 (m, 1H), 1.90 – 1.73 (m, 2H), 1.74 – 1.63 (m, 1H), 1.62 – 1.34 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 137.1, 135.6, 133.9, 132.6, 131.7, 130.5, 130.4, 128.6, 128.5, 128.0, 127.5, 127.4, 127.2, 125.6, 125.5, 125.3, 124.8, 115.1, 70.1, 67.2, 58.5, 52.6, 33.9, 26.0, 24.1. HRMS (ESI) calculated for C₃₁H₃₂NO [(M+H)⁺]: 434.2478, found: 434.2492. HPLC (Daicel Chiralpak OD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 6.8 min, t_R (minor) = 9.8 min.

(*S*,*E*)-1-((4-nitrophenyl)sulfonyl)-2-styrylpiperidine (5ea):

Purified by chromatography on silica gel, eluting with PE/EA/DCM = 20/1/1; yellow solid (90.3 mg, 81% yield), 93.5:6.5 er. m.p. 123-124 °C; $[\alpha]_D^{20} = -76.7$ (c 1.07, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.23 – 8.15 (m, 2H), 7.98 – 7.90 (m, 2H), 7.30 – 7.25 (m, 1H), 7.25 – 7.19 (m, 2H), 7.17 – 7.12 (m, 2H), 6.41 (d, J = 16.3 Hz, 1H), 5.98 (dd, J = 16.0, 6.9 Hz, 1H), 4.90 – 4.70 (m, 1H), 3.89 – 3.72 (m, 1H), 3.17 – 2.95 (m, 1H), 1.88 – 1.76 (m, 2H), 1.74 – 1.66 (m, 1H), 1.66 – 1.59 (m, 1H), 1.59 – 1.47 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.5, 146.1, 135.8, 132.9, 128.6, 128.5, 128.0, 126.1, 124.9, 124.0, 55.7, 42.2, 30.7, 25.1, 18.9. HRMS (ESI) calculated for C₁₉H₂₀N₂NaO₄S $[(M+Na)^+]$: 395.1036, found: 395.1034. HPLC (Daicel Chiralpak OD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 22.5 min, t_R (minor) = 29.5 min.

(*S*,*E*)-1-benzyl-2-(4-bromostyryl)piperidine (5ab):

Br

Yellow oil (95.2 mg, 89% yield), 92:8 *er*. $[\alpha]_D^{20} = -89.7$ (*c* 1.22, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.44 (m, 1H), 7.43 – 7.41 (m, 1H), 7.36 – 7.29 (m, 4H), 7.27 – 7.20 (m, 3H),

6.49 (d, J = 15.9 Hz, 1H), 6.28 (dd, J = 16.0, 8.5 Hz, 1H), 4.07 (d, J = 13.6 Hz, 1H), 3.13 (d, J = 13.6 Hz, 1H), 2.93 – 2.79 (m, 2H), 1.96 (td, J = 11.3, 3.2 Hz, 1H), 1.82 – 1.67 (m, 2H), 1.65 – 1.50 (m, 3H), 1.43 – 1.32 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.4, 136.2, 135.0, 131. 6, 129.5, 128.9, 128.0, 127.7, 126.6, 120.9, 66.0, 60.3, 52.4, 33.7, 25.8, 23.9. HRMS (ESI) calculated for C₂₀H₂₃BrN [(M+H)⁺]: 356.1008, found: 356.1010. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 4.2 min, t_R (minor) = 5.0 min.

(*S*,*E*)-1-benzyl-2-(4-phenoxystyryl)piperidine (5ae):

NBn

Yellow solid (99.8 mg, 90% yield), 95:5 *er*. m.p. 78-79 °C; $[\alpha]_D^{20} = -98.9 (c \ 1.20, CHCl_3);$ ¹H NMR (400 MHz, CDCl₃) δ 7.42 - 7.29 (m, 8H), 7.29 - 7.21 (m, 1H), 7.16 - 7.09 (m,

1H), 7.06 – 7.02 (m, 2H), 7.02 – 6.96 (m, 2H), 6.55 (d, J = 15.9 Hz, 1H), 6.24 (dd, J = 16.0, 8.6 Hz, 1H), 4.14 (d, J = 13.6 Hz, 1H), 3.15 (d, J = 13.6 Hz, 1H), 2.98 – 2.80 (m, 2H), 1.98 (td, J = 11.2, 3.3 Hz, 1H), 1.84 – 1.71 (m, 2H), 1.68 – 1.51 (m, 3H), 1.46 – 1.32 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 156.4, 139.4, 133.2, 132.5, 129.9, 129.7, 129.0, 128.0, 127.5, 126.6, 123.1, 119.0, 118.7, 66.1, 60.2, 52.3, 33.8, 25.8, 24.0. HRMS (ESI) calculated for C₂₆H₂₈NO [(M+H)⁺]: 370.2165, found: 370.2173. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 4.5 min, t_R (minor) = 7.0 min.

Yellow solid (76.8 mg, 79% yield), 94.5:5.5 *er*. m.p. 84-85 °C; $[\alpha]_D^{20} = -105.0$ (*c* 0.94, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 6H), 7.25 – 7.18 (m, 3H), 6.50 (d,

 $J = 16.0 \text{ Hz}, 1\text{H}, 6.25 \text{ (dd}, J = 15.9, 8.6 \text{ Hz}, 1\text{H}), 4.09 \text{ (d}, J = 13.6 \text{ Hz}, 1\text{H}), 3.12 \text{ (d}, J = 13.6 \text{ Hz}, 1\text{H}), 2.97 - 2.78 \text{ (m}, 2\text{H}), 2.48 \text{ (s}, 3\text{H}), 1.95 \text{ (td}, J = 11.3, 3.2 \text{ Hz}, 1\text{H}), 1.81 - 1.67 \text{ (m}, 2\text{H}), 1.65 - 1.45 \text{ (m}, 3\text{H}), 1.42 - 1.29 \text{ (m}, 1\text{H}); {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \\\delta 139.4, 137.3, 134.3, 133.7, 130.1, 129.0, 128.0, 126.8, 126.6 \text{ (overlap)}, 66.1, 60.2, 52.4, 33.8, 25.8, 24.0, 16.0. \text{ HRMS} (ESI) calculated for C₂₁H₂₆NS [(M+H)⁺]: 324.1780, found: 324.1780. HPLC (Daicel Chiralpak AD-H column,$ *n* $-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 4.7 min, t_R (minor) = 7.1 min.$

(*S*,*E*)-2-(2-([1,1'-biphenyl]-4-yl)vinyl)-1-benzylpiperidine (5ag):

24.0. HRMS (ESI) calculated for $C_{26}H_{28}N$ [(M+H)⁺]: 354.2216, found: 354.2216. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 5.0 min, t_R (minor) = 7.8 min.

(*S*,*E*)-1-benzyl-2-(3,4,5-trimethoxystyryl)piperidine (5ap):

Yellow solid (93.3 mg, 85% yield), 94.5:5.5 *er*. m.p. 54-55 °C; $[\alpha]_D^{20} = -92.3$ (*c* 1.18, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 4H), 7.25 – 7.19 (m, 1H), 6.61 (s, 2H), 6.48 (d, J = 15.9 Hz, 1H), 6.19 (dd, J = 15.8, 8.6 Hz, 1H), 4.10 (d, J = 13.7 Hz, 1H), 3.88 (s, 6H), 3.85 (s, 3H), 3.14 (d, J = 13.7 Hz, 1H), 2.94 – 2.77 (m, 2H), 1.95 (td, J = 11.3, 3.1 Hz, 1H), 1.83 – 1.68 (m, 2H), 1.67 – 1.49 (m, 3H), 1.41 – 1.29 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 139.3, 137.6, 133.6, 132.9, 130.5, 128.9, 127.9, 126.5, 103.2, 66.1, 60.8, 60.2, 56.0, 52.4, 33.8, 25.8, 23.9. HRMS (ESI) calculated for C₂₃H₃₀NO₃ [(M+H)⁺]: 368.2220, found: 368.2223. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 6.3 min, t_R (minor) = 11.0 min.

(*S*,*E*)-1-benzyl-2-(2-(naphthalen-1-yl)vinyl)piperidine (5ar):

NBnYellow oil (49.6 mg, 51% yield), 95:5 er. $[\alpha]_D^{20} = -58.5$ (c 1.22,
CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 7.9 Hz, 1H),
7.88 (d, J = 8.6 Hz, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.62 (d, J =

7.1 Hz, 1H), 7.58 – 7.44 (m, 3H), 7.43 – 7.38 (m, 2H), 7.38 – 7.31 (m, 3H), 7.31 – 7.26 (m, 1H), 6.38 (ddd, J = 15.8, 8.7, 1.5 Hz, 1H), 4.23 (d, J = 13.5 Hz, 1H), 3.26 (d, J = 13.6 Hz, 1H), 3.12 – 3.00 (m, 1H), 2.98 – 2.88 (m, 1H), 2.06 (td, J = 11.1, 3.3 Hz, 1H), 1.90 – 1.79 (m, 2H), 1.76 – 1.54 (m, 3H), 1.51 – 1.38 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.4, 137.3, 135.0, 133.6, 131.1, 129.1, 128.5, 128.1, 127.9, 127.6, 126.6, 125.9, 125.7, 125.6, 123.8 (overlap), 66.2, 60.3, 52.4, 33.9, 25.9, 24.0. HRMS (ESI) calculated for C₂₄H₂₆N [(M+H)⁺]: 328.2060, found: 328.2055. HPLC (Daicel Chiralpak OD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (minor) = 4.6 min, t_R (major) = 4.9 min.

(S,E)-1-benzyl-2-(2-(furan-2-yl)vinyl)piperidine (5at):

Yellow oil (60.1 mg, 75% yield), 94:6 *er*. $[\alpha]_D^{20} = -112.6$ (*c* 1.17, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 7.26 – 7.20 (m, 1H), 6.43 – 6.35 (m, 2H), 6.26 (dd, J = 16.0, 8.5 Hz, 1H), 6.21 (d, J = 3.3 Hz, 1H), 4.10 (d, J = 13.5 Hz, 1H), 3.11 (d, J = 13.6 Hz, 1H), 2.93 – 2.77 (m, 2H), 1.95 (td, J = 11.1, 3.4 Hz, 1H), 1.81 – 1.68 (m, 2H), 1.66 – 1.49 (m, 3H), 1.43 – 1.31 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 141.6, 139.4, 132.8, 129.0, 128.0, 126.6, 119.4, 111.1, 107.0, 65.7, 60.2, 52.1, 33.7, 25.8, 23.9. HRMS (ESI) calculated for C₁₈H₂₂NO [(M+H)⁺]: 268.1696, found: 268.1701. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (major) = 3.9 min, t_R (minor) = 5.0 min.

(S,E)-1-benzyl-2-(2-(thiophen-2-yl)vinyl)piperidine (5aw):

Yellow oil (55.8 mg, 66% yield), 95.5:4.5 *er*. $[\alpha]_D^{20} = -122.7$ (*c* 0.64, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.29 (m, 4H), 7.26 – 7.21 (m, 1H), 7.16 – 7.12 (m, 1H), 7.00 – 6.87 (m, 2H), 6.69

(d, J = 15.8 Hz, 1H), 6.15 (dd, J = 15.8, 8.6 Hz, 1H), 4.11 (d, J = 13.6 Hz, 1H), 3.12 (d,

J = 13.6 Hz, 1H), 2.93 – 2.71 (m, 2H), 1.95 (td, J = 11.3, 3.3 Hz, 1H), 1.81 – 1.68 (m, 2H), 1.65 – 1.49 (m, 3H), 1.42 – 1.31 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 139.4, 133.8, 129.0, 128.0, 127.2, 126.6, 124.9, 124.0, 123.8, 65.8, 60.2, 52.2, 33.7, 25.8, 23.9. HRMS (ESI) calculated for C₁₈H₂₂NS [(M+H)⁺]: 284.1467, found: 284.1473. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 95/5, flow rate 0.5 mL/min, 254 nm): t_R (major) = 8.2 min, t_R (minor) = 11.4 min.

5. Gram-scale Reaction and Synthetic Applications

To a 100 mL flame-dried flask was added *N*-tosylhydrazones **2j** (9.6 mmol, 3.36 g), $Pd_2(dba)_3 \cdot CHCl_3$ (0.15 mmol, 155.3 mg), **GF2** (0.9 mmol, 681.3 mg), *t*-BuOLi (13.2 mmol, 1.06 g), Ag_2CO_3 (0.9 mmol, 248.2 mg), and triethylbenzylammonium chloride (TEBAC, 6 mmol, 1.37 g) was added in the glove box. The reaction was evacuated and back-filled with N₂ three times and a solution of the vinyl iodide **1a** (6 mmol, 1.81 g) in 60 mL 2- MeTHF was added under nitrogen atmosphere. Then the reaction was stirred at 30 °C for 6 h. Upon completion, the reaction mixture was filtered through celite, evaporated *in vacuo* and purified by silica gel column chromatography (DCM to PE/Et₃N = 50:1) to give the product **3aj** (1.74 g, 85% yield, 95.5:4.5 *er*).

According to published literature,^[5, 6] to a round-bottom flask was added **3lx** (0.2 mmol, 89.6 mg), *p*-toluenethiol (0.3 mmol, 37.3 mg) and K₂CO₃ (0.6 mmol, 82.9 mg) in DMF (2 mL). The reaction mixture was stirred at 50 °C overnight, then cooled to room temperature, diluted with water and extracted with EtOAc. The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was used in the next step without any further purification.

To a solution of the residue in MeOH (2 mL) at room temperature was added 1 M aqueous HCl (4 mL). The reaction mixture was stirred for 8 h, then added the saturated aqueous NaHCO₃ to basify the mixture to pH \geq 7 and extracted with EtOAc. The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. Purification by thin-layer chromatography (DCM/MeOH = 3/1) gave (-)-norruspoline (22.2 mg, 51% yield) as an orange solid. m.p. 69-70 °C; [α]_D²⁰ = -29.1 (*c* 0.76, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.87 (s, 1H), 6.82 (s, 2H), 6.41 (d, *J* = 15.7 Hz, 1H), 6.03 (dd, *J* = 15.7, 7.3

Hz, 1H), 3.86 (s, 3H), 3.68 (q, J = 7.4 Hz, 1H), 3.16 – 3.05 (m, 1H), 2.99 – 2.89 (m, 1H), 2.09 – 1.93 (m, 1H), 1.92 – 1.76 (m, 2H), 1.64 – 1.50 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.0, 145.7, 130.2, 129.4, 129.3, 120.0, 114.8, 108.3, 61.0, 55.8, 46.2, 32.3, 25.2. HRMS (ESI) calculated for C₁₃H₁₈NO₂ [(M+H)⁺]: 220.1332, found: 220.1336.

According to published literature,^[5, 7] to a round-bottom flask was added **3ly** (0.15 mmol, 58.8 mg), *p*-toluenethiol (0.23 mmol, 27.9 mg) and K_2CO_3 (0.45 mmol, 62.2 mg) in DMF (2 mL). The following steps are the same as above to obtain the deprotected crude product.

To a solution of the crude product, 4-(dimethylamino) pyridine (0.015 mmol, 1.8 mg) in DCM (2 mL) at room temperature was added Boc₂O (0.17 mmol, 38 µL). The reaction mixture was stirred for 2 h. Upon completion, the mixture was concentrated *in vacuo* and purified by flash chromatography (PE/EA = 10/1) gave **6** (31.1 mg, 67% yield, 93.5:6.5 *er*) as colorless oil. $[\alpha]_D^{20} = -88.1$ (*c* 1.03, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.33 (s, 1H), 7.25 – 7.12 (m, 3H), 6.33 (d, *J* = 15.4 Hz, 1H), 6.20 – 6.02 (m, 1H), 4.73 – 4.26 (m, 2H), 3.45 (s, 2H), 2.09 (s, 1H), 1.99 – 1.68 (m, 3H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.4, 138.8, 134.3, 132.2, 129.6, 128.0, 127.0, 126.0, 124.4, 79.1, 58.7, 46.2, 32.4, 28.4, 22.9. All spectroscopic data is in agreement with those previously reported.^[8] HRMS (ESI) calculated for C₁₇H₂₂ClNNaO₂ [(M+Na)⁺]: 330.1231, found: 330.1231. HPLC (Daicel Chiralpak AD-H column, *n*-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, 254 nm): t_R (minor) = 4.6 min, t_R (major) = 5.6 min.

min

6. Nonlinear Effect Study

In general, nonlinear effect study began with standard conditions (0.1 mmol), but the ratio of chiral ligands **GF2** and *ent*-**GF2** is various. They were weighed accurately on the analytical balance and the reaction was carried out according to general procedure. The results are listed below.

7. References

1. C.-L. Ma, X.-L. Yu, X.-L. Zhu, Y.-Z. Hu, X.-W. Dong, B. Tan, X.-Y. Liu, *Adv. Synth. Catal.* **2015**, *357*, 569-575.

2. H. Lu, C. Li, H. Jiang, C. L. Lizardi, X. P. Zhang, Angew. Chem. Int. Ed. 2014, 53, 7028-7032.

3. A. Khanna, C. Maung, K. R. Johnson, T. T. Luong, Van Vranken, D. L. Org. Lett. 2012, 14, 3233-3235.

4. A.-J. Xia, T.-R. Kang, L. He, L.-M. Chen, W.-T. Li, J.-L. Yang, Q.-Z. Liu, *Angew. Chem. Int. Ed.* **2016**, *55*, 1441-1444.

5. A. Becker, C. P. Grugel, B. Breit, Org. Lett. 2021, 23, 3788-3792.

C. E. Sear, P. Pieper, M. Amaral, M. M. Romanelli, T. A. Costa-Silva, M. M. Haugland, J. A. Tate, J. H. G. Lago, A. G. Tempone, E. A. Anderson, *ACS Infect. Dis.* 2020, 6, 2872-2878.

7. N. J. Taylor, E. Emer, S. Preshlock, M. Schedler, M. Tredwell, S. Verhoog, J. Mercier, C. Genicot, V. Gouverneur, J. Am. Chem. Soc. 2017, 139, 8267-8276.

8. H. Zhang, C. Huang, X.-A. Yuan, S. Yu, J. Am. Chem. Soc. 2022, 144, 10958-10967.

8. X-ray Single Crystal Data for Compound 3ac

(S)**-3ac**

CCDC 2129469

Identification code	exp_2405
Empirical formula	C ₂₃ H ₂₉ N
Formula weight	319.47
Temperature/K	173.00(10)
Crystal system	monoclinic
Space group	P21
a/Å	10.9102(3)
b/Å	6.1038(2)
c/Å	14.7452(4)
$\alpha/^{\circ}$	90
β/°	99.500(3)
γ/°	90
Volume/Å ³	968.47(5)
Z	2
$\rho_{calc}g/cm^3$	1.096
μ/mm^{-1}	0.467
F(000)	348.0
Crystal size/mm ³	$0.38 \times 0.24 \times 0.12$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/° 8.216 to 134.116	
Index ranges	$-13 \le h \le 13, -7 \le k \le 7, -17 \le l \le 17$
Reflections collected	19273
Independent reflections	3408 [$R_{int} = 0.0629, R_{sigma} = 0.0387$]
Data/restraints/parameters	3408/1/220
Goodness-of-fit on F ²	1.039
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0465, wR_2 = 0.1281$
Final R indexes [all data]	$R_1 = 0.0491, wR_2 = 0.1301$
Largest diff. peak/hole / e Å ⁻³ 0.37/-0.17	
Flack parameter	-0.1(4)

9. ¹H, ¹³C, ¹⁹F NMR Spectra

$\begin{array}{c} 7.443\\ 7.172\\ 7.172\\ 6.530\\ 6.512\\ 6.512\\ 6.494\\ 6.476\\ 6.476\\ 6.476\\ 6.071\\ 6.071\\ 6.007\\ 6.075\\ 6.075\\ 6.075\\ 6.075\\ 6.075\\ 1.12\\ 2.596\\ 2.112\\ 2.596\\ 2.112\\ 2.596\\ 1.12\\ 1.507\\ 1.564\\ 1.564\\ 1.564\end{array}$

S73

S78

	 162.19	
Saq F (CDCl ₃ , 377 MHz)		

_2	0 _40	-60	-80	_100	-120	_140	-160	-180	-200
-2	-+0	-00	-00	-100	-120	-140	-100	-100	-200
f1 (ppm)									
·· (ppii)									

†1	(p

S99

