Electronic Supplementary Information

Phosphine-Catalyzed Activation of Cyclopropenones: A Versatile C3 Synthon for (3+2) Annulations with Unsaturated Electrophiles

 a School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
${ }^{\mathrm{b}}$ Department of Chemistry and Biochemistry, University of California, Los Angeles, California 900951569, U.S.A.
${ }^{\text {c }}$ School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS UK
Email: houk@chem.ucla.edu; silongxu@mail.xjtu.edu.cn

Table of Contents

1. General Information S2
2. Synthesis of Compounds 3, 4, 6, 8, and Analytical Data S2
2.1 General Procedure for the Synthesis of Compounds 3, 4, 6, and 8 S2
2.2 Analytical Data for Compounds 3, 4, 6, and 8 S3
3. Synthesis of Compounds 10, 12 and Analytical Data S23
3.1 Optimization of Reaction Conditions S23
3.2 General Procedure for the Synthesis of Compounds 10 and 12 S24
3.2 Analytical Data for Compounds 10 and 12 S25
4. X-ray Crystallographic Data of 3v, 10e and 12a S40
5. HRMS and ${ }^{31}$ P NMR Tracking Experiments S46
6. Computational Details S47
7. References S63
8. NMR Spectra Copies S66

1. General Information

Unless otherwise noted, all reactions were performed in nitrogen atmosphere under anhydrous conditions using standard Schlenk techniques. Diphenylcyclopropenone 1a was purchased from commercial sources; other cyclopropenones were prepared according to reported methods. ${ }^{1}$ Solvents were purified prior to use according to standard procedures. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker AV600/JEOL 400 spectrometer. Chemical shifts (δ values) were reported in ppm with $\mathrm{TMS}\left({ }^{1} \mathrm{H} \mathrm{NMR}\right)$ and $\mathrm{CDCl}_{3}\left({ }^{13} \mathrm{C} \mathrm{NMR}\right.$) as internal standard, respectively. CDCl_{3} was treated with anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ before using. Peak multiplicities are reported as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, hept $=$ heptet, $\mathrm{m}=$ multiplet. High-resolution ESI mass spectra were determined on WATERS I-Class VION IMS Q Tof LC/MS. IR data were measured on a Nicolet iS10 FT-IR spectrometer. Melting points were measured on an SGW_{\circledR} X-4B apparatus and uncorrected. All reactions were monitored by thin layer chromatography (TLC) and visualized by UV irradiation under 254 nm or 365 nm , or stained with potassium permanganate. X-ray crystallographic analysis was performed at Bruker D8 Quest. Flash column chromatography was performed over silica gel or alumina, using petroleum ether $\left(60-90^{\circ} \mathrm{C}\right) /$ ethyl acetate as the eluent.

2. Synthesis of Compounds 3, 4, 6, 8, and Analytical Data

2.1 General Procedure for the Synthesis of Compounds 3, 4, 6, and 8

Under N_{2} atmosphere, $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) was added to a dispersion of cyclopropenone (0.3 mmol), $4 \AA$ molecular sieves (100 mg), and aldehyde (0.2 mmol) in anhydrous dichloromethane (DCM) $(2.0 \mathrm{~mL})$. The mixture was stirred at room temperature and the reaction was monitored by TLC. When the reaction finished, the solvent was evaporated in vacuo and the residue was purified by silica gel column chromatography with petroleum ether/ethyl acetate as eluent to afford the corresponding products 3, 4, 6, and 8. The analytical
data are provided as follows. Compounds $\mathbf{3 a - d}, \mathbf{3 g}-\mathrm{h}, \mathbf{3 I}, \mathbf{3 q}, \mathbf{3 w - y}, \mathbf{3 a b}, 4$, and $\mathbf{8 a}$ are known, and the analytical data are consistent with those reported. ${ }^{2-9}$

2.2 Analytical Data for Compounds 3, 4, 6, and 8

3,4,5-triphenylfuran-2(5H)-one (3a) ${ }^{2}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.1 $\mathrm{mg}, 0.3 \mathrm{mmol})$ and benzaldehyde 2a ($21 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1 \mathrm{M} \mathrm{in} \mathrm{THF}, 20 \mu \mathrm{~L}, 0.02$ mmol) was conducted for 40 minutes which produced $\mathbf{3 a}$ in $61.7 \mathrm{mg}, 99 \%$ yield, as white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 5 \mathrm{H})$, $7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H})$.

3,4-diphenyl-5-(p-tolyl) furan-2(5H)-one (3b) ${ }^{2}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.0 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 4-methylbenzaldehyde 2b ($24 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, 20 $\mu \mathrm{L}, 0.02 \mathrm{mmol}$) was conducted for 3 hours which produced $\mathbf{3} \mathbf{b}$ in $62.1 \mathrm{mg}, 95 \%$ yield, as paleyellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.16(\mathrm{~m}, 5 \mathrm{H})$, $7.13-7.07(\mathrm{~m}, 4 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$.

3,4-diphenyl-5-(m-tolyl) furan-2(5H)-one (3c) ${ }^{2}$

3c

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.1 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 3-methylbenzaldehyde 2c ($24 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1 \mathrm{M} \mathrm{in} \mathrm{THF} 20$, $\mu \mathrm{L}, 0.02 \mathrm{mmol}$) was conducted for 3 hours which produced $\mathbf{3 c}$ in $59.5 \mathrm{mg}, 91 \%$ yield, as paleyellow solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.53-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H})$, $7.22-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 5 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$.

3,4-diphenyl-5-(o-tolyl) furan-2(5H)-one (3d) ${ }^{2}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.8 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 2-methylbenzaldehyde 2d ($24 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, 20 $\mu \mathrm{L}, 0.02 \mathrm{mmol}$) was conducted for 3 hours which produced 3 d in $60.7 \mathrm{mg}, 93 \%$ yield, as paleyellow solid.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H})$, $7.22-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 4 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$.

5-(4-(tert-butyl) phenyl)-3,4-diphenylfuran-2(5H)-one (3e)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.8 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 4-(tert-butyl) benzaldehyde $\mathbf{2 e}(32.5 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) was conducted for 3 hours which produced 3 e in $64.8 \mathrm{mg}, 88 \%$ yield, as pale-yellow solid, m.p. $120-123^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3): $\delta=7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H})$, $7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.6,159.2,152.5,131.8,131.3,130.1,130.0,129.5,128.9,128.8,128.7,128.5,127.5$, 127.1, 126.0, 83.6, 34.7, 31.3; FTIR (neat): u 2960, 1736, 1445, 1350, 1160, 1003, 783, 692 cm^{-1}; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 391.1668, found: 391.1668.

5-(3,4-dimethylphenyl)-3,4-diphenylfuran-2(5H)-one (3f)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.0 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 3,4-dimethylbenzaldehyde $\mathbf{2 f}(26.9 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) was conducted for 1 hour which produced 3 f in $61.9 \mathrm{mg}, 91 \%$ yield, as white solid, m.p. $102-105^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H})$, $7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.20(\mathrm{~s}$, 1H), 2.20 (s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.7,159.4,138.1,137.4,132.1,131.3$, $130.2,130.1,129.9,129.6,128.9,128.83,128.75,128.7,128.5,126.9,125.3,83.8,19.9,19.7 ;$

FTIR (neat) u 2918, 1745, 1444, 1297, 1155, 998, $692 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}$ $+\mathrm{Na}^{+}: 363.1356$, found: 363.1358 .

5-(3-methoxyphenyl)-3,4-diphenylfuran-2(5H)-one (3g) ${ }^{3}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.0 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 3-methoxybenzaldehyde $2 \mathrm{~g}(25 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M} \mathrm{in} \mathrm{THF} 20$, $\mu \mathrm{L}, 0.02 \mathrm{mmol}$) was conducted for 2 hours which produced 3 g in $62.3 \mathrm{mg}, 91 \%$ yield, as white solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3): $\delta=7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H})$, $7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.79(\mathrm{~m}, 3 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$.

5-(4-methoxyphenyl)-3,4-diphenylfuran-2(5H)-one (3h) ${ }^{2}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.0 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 4-methoxybenzaldehyde $\mathbf{2 h}(25 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M} \mathrm{in} \mathrm{THF} 20$, $\mu \mathrm{L}, 0.02 \mathrm{mmol}$) was conducted for 2 hours which produced 3 h in $65.7 \mathrm{mg}, 96 \%$ yield, as white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.47(\mathrm{dd}, J=6.7,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.17$ (m, 5H), $7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$.

3,4-diphenyl-5-(4-(trifluoromethoxy) phenyl) furan-2(5H)-one (3i)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.9 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 4-(trifluoromethoxy) benzaldehyde $\mathbf{2 i}$ ($29 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) was conducted for 2 hours which produced 3 i in $55.5 \mathrm{mg}, 70 \%$ yield, as pale-yellow solid, m.p. $135-138^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.51-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H})$, 7.19 - 7.07 (m, 4H), $6.30(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.3,159.1,149.8,133.6$, $130.9,130.2,129.6,129.5,129.3,129.1,129.0,128.7,128.4,127.2,121.3,120.4$ (q, J=257.9 Hz), 82.7; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-57.8$; FTIR (neat) \cup 1749, 1443, 1257, 1159, 1004, $692 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+} 419.0866$, found: 419.0870.

2-(5-oxo-3,4-diphenyl-2,5-dihydrofuran-2-yl) phenyl acetate (3j)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.1 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 2-formylphenyl acetate $\mathbf{2 j}$ ($32.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) with PMe3 (1 M in THF, 20 $\mu \mathrm{L}, 0.02 \mathrm{mmol}$) was conducted for 40 minutes which produced 3 j in $43.7 \mathrm{mg}, 59 \%$ yield, as pale-yellow solid, m.p. $123-126^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H})$, $7.24-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.5,168.9,158.7,149.6,131.0,130.6,130.2,129.9,129.5,129.4,129.0,128.9,128.7$, 128.3, 127.3, 126.4, 126.2, 123.6, 79.4, 21.2; FTIR (neat) u 2942, 1716, 1510, 1246, 1170, 1028, $829 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 393.1097 , found: 393.1103.

5-(4-fluorophenyl)-3,4-diphenylfuran-2(5H)-one (3k)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.8 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 4-fluorobenzaldehyde $\mathbf{2 k}\left(22 \mu \mathrm{~L}, 0.2 \mathrm{mmol}\right.$) with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $20 \mu \mathrm{~L}$, 0.02 mmol) was conducted for 2 hours which produced $\mathbf{3 k}$ in $56.8 \mathrm{mg}, 86 \%$ yield, as paleyellow solid, m.p. $108-110^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.51-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 3 \mathrm{H})$, $7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.4,163.2(\mathrm{~d}, J=248.7 \mathrm{~Hz}), 159.2,131.0,130.8(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 130.1$, 129.7, 129.6 (d, $J=8.5 \mathrm{~Hz}$), 129.5, 129.0, 128.9, 128.7, 128.4, 127.0, $116.1(\mathrm{~d}, J=21.8 \mathrm{~Hz}$), 82.9; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-111.5$; FTIR (neat) u 1750, 1508, 1226, 1154, 1009, 837, 784, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 353.0948$, found: 353.0946.

5-(4-chlorophenyl)-3,4-diphenylfuran-2(5H)-one (3I) ${ }^{3}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.7 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 4-chlorobenzaldehyde $2 \mathbf{2}(28.3 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M} \mathrm{in} \mathrm{THF} 20$, $\mu \mathrm{L}, 0.02 \mathrm{mmol}$) was conducted for 2 hours which produced 31 in $46.5 \mathrm{mg}, 67 \%$ yield, as white solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3): $\delta=7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 3 \mathrm{H})$, $7.25-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H})$.

5-(3-chlorophenyl)-3,4-diphenylfuran-2(5H)-one (3m)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.2 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 3-chlorobenzaldehyde $\mathbf{2 m}\left(23 \mu \mathrm{~L}, 0.2 \mathrm{mmol}\right.$) with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, 20 $\mu \mathrm{L}, 0.02 \mathrm{mmol}$) was conducted for 1 hour which produced 3 m in $57.6 \mathrm{mg}, 83 \%$ yield, as paleyellow solid, m.p. $111-114{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 3 \mathrm{H})$, $7.26-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{dt}, J=7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.3,159.0,136.9,134.9,130.8,130.3,130.2,129.7,129.6,129.5$, 129.1, 129.0, 128.7, 128.4, 127.7, 127.1, 125.9, 82.8; FTIR (neat) u 2978, 1751, 1399, 1241, 1067, 878, $692 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{ClO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 369.0653$, found: 369.0654.

5-(3,5-dichlorophenyl)-3,4-diphenylfuran-2(5H)-one (3n)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.9 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 3,5-dichlorobenzaldehyde $\mathbf{2 n}(35.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ with PMe 3 (1 M in THF, $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) was conducted for 1 hour which produced 3 n in $41.9 \mathrm{mg}, 55 \%$ yield, as pale-yellow solid, m.p. $130-133^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3): $\delta=7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 4 \mathrm{H})$, 6.20 (s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0,158.5,138.4,135.6,130.54,130.48$, 129.7, 129.5, 129.34, 129.28, 129.2, 128.8, 128.3, 127.3, 126.1, 82.0; FTIR (neat) u 2982, 1750, 1571, 1432, 1150, 1023, 963, $691 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 403.0263, found: 403.0260 .

5-(4-bromophenyl)-3,4-diphenylfuran-2(5H)-one (30)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.4 $\mathrm{mg}, 0.3 \mathrm{mmol})$ and 4-bromobenzaldehyde $2 \mathrm{o}(37.1 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M} \mathrm{in} \mathrm{THF} 20$, $\mu \mathrm{L}, 0.02 \mathrm{mmol}$) was conducted for 2 hours which produced 30 in $58.7 \mathrm{mg}, 75 \%$ yield, as white solid, m.p. $133-136{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3): $\delta=7.50-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H})$, $7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{dd}, \mathrm{J}=8.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=172.3,159.1,134.0,132.3,130.9,130.2,129.7,129.5,129.3,129.1$,
129.0, 128.7, 128.4, 127.1, 123.6, 82.9; FTIR (neat) u 1748, 1487, 1299, 1154, 1002, 961, 691 cm^{-1}; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 413.0147$, found: 413.0152.
methyl 4-(5-oxo-3,4-diphenyl-2,5-dihydrofuran-2-yl) benzoate (3p)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.8 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and methyl 4-formylbenzoate $\mathbf{2 p}(32.7 \mathrm{mg}, 0.2 \mathrm{mmol})$ with PMe3 (1 M in THF, $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) was conducted for 30 minutes which produced 3 p in $53.2 \mathrm{mg}, 72 \%$ yield, as white solid, m.p. $128-131^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.00-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 5 \mathrm{H})$, $7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=172.4,166.5,159.3,139.8,131.2,130.9,130.3,130.2,129.6$, 129.5, 129.2, 129.0, 128.7, 128.3, 127.6, 127.0, 83.0, 52.4; FTIR (neat) u 2980, 2372, 1755, 1402, 1250, 1068, $868 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 393.1097$, found: 393.1104.

3,4-diphenyl-5-(4-(trifluoromethyl) phenyl) furan-2(5H)-one (3q) ${ }^{2}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.3 $\mathrm{mg}, 0.3 \mathrm{mmol})$ and 4-(trifluoromethyl) benzaldehyde 2q ($28 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in

THF, $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) was conducted for 30 minutes which produced $\mathbf{3 q}$ in $44.2 \mathrm{mg}, 58 \%$ yield, as white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.57$ (d, $\mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.27$ (m, 1H), $7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 2 \mathrm{H})$, $6.34(\mathrm{~s}, 1 \mathrm{H})$.

5-(3-nitrophenyl)-3,4-diphenylfuran-2(5H)-one (3r)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.9 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 3-nitrobenzaldehyde $2 \mathrm{r}(30.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ with PMe3 (1 M in THF, $10 \mu \mathrm{~L}$, 0.01 mmol) was conducted for 30 minutes which produced $\mathbf{3 r}$ in $46.6 \mathrm{mg}, 65 \%$ yield, as paleyellow solid, m.p. $122-125^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.20-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{dt}, \mathrm{J}=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47$ $(\mathrm{m}, 3 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H})$, 6.40 (s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0,158.7,148.5,137.3,133.4,130.53,130.49$, 130.2, 129.5, 129.32, 129.27, 129.2, 128.8, 128.3, 127.4, 124.4, 122.8, 82.2; FTIR (neat) u 2979, 1749, 1528, 1442, 1346, 1153, 962, $690 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{NO}_{4}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 380.0893$, found: 380.0887 .

5-(naphthalen-2-yl)-3,4-diphenylfuran-2(5H)-one (3s)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.7 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 2-naphthaldehyde 2s ($31.3 \mathrm{mg}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1 \mathrm{M} \mathrm{in} \mathrm{THF} ,20 \mu \mathrm{~L}$, 0.02 mmol) was conducted for 1 hour which produced 3 s in $63.8 \mathrm{mg}, 88 \%$ yield, as white solid, m.p. $140-143^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.83-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 3 \mathrm{H})$, 7.31 (dd, $J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.10(\mathrm{~m}, 5 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.7,159.5,133.7,133.2,132.2,131.2,130.0,129.9,129.6,129.2,129.0,128.8,128.7$, 128.4, 128.22, 128.21, 127.9, 127.1, 126.9, 126.7, 123.9, 84.0; FTIR (neat) u 1759, 1444, 1270, 1149, 1009, 960, $695 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 385.1199$, found: 385.1196.

3,4-diphenyl-[2,2'-bifuran]-5(2H)-one (3t)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.0 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and furan-2-carbaldehyde $\mathbf{2 t}(17 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $10 \mu \mathrm{~L}$, 0.01 mmol) was conducted for 40 minutes which produced $\mathbf{3 t}$ in $59.3 \mathrm{mg}, 98 \%$ yield, as paleyellow solid, m.p. $112-115^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H})$, $7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{dd}, \mathrm{J}=3.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{dd}$, $J=3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0,156.0,147.3,143.9,130.9,130.2$, 129.8, 129.5, 129.0, 128.8, 128.6, 128.2, 127.7, 111.8, 110.8, 76.3; FTIR (neat) u 1748, 1443, 1287, 1153, 1063, 963, 742, $692 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 325.0835$, found: 325.0839.

3,4-diphenyl-5-(thiophen-2-yl) furan-2(5H)-one (3u)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.1 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and thiophene-2-carbaldehyde $\mathbf{2 u}(19 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with PMes ($1 \mathrm{M} \mathrm{in} \mathrm{THF}$, $10 \mu \mathrm{~L}, 0.01 \mathrm{mmol}$) was conducted for 2 hours which produced 3 u in $59.7 \mathrm{mg}, 94 \%$ yield, as pale-yellow solid, m.p. $118-121^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 3 \mathrm{H})$, $7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=5.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=171.8,158.3,137.8,131.0,130.3,129.8,129.5,129.1,128.9,128.7$, 128.52, 128.46, 127.5, 127.1(2C), 78.5; FTIR (neat) u 2981, 1739, 1401, 1283, 1152, 1055, $699 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}_{[\mathrm{M}}+\mathrm{Na}^{+}$: 341.0607 , found: 341.0607 .

5-(1-methyl-1H-indol-3-yl)-3,4-diphenylfuran-2(5H)-one (3v)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.8 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-methyl-1H-indole-3-carbaldehyde 2 v ($32.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1$ M in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 2 hours which produced 3 v in $72.8 \mathrm{mg}, 99 \%$ yield, as white solid, m.p. $152-155^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.64-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 3 \mathrm{H})$, $7.22-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=172.6,158.8,137.3,131.6,130.4,129.9,129.7,129.5,128.8,128.7$, 128.6, 128.5, 127.4, 126.4, 122.4, 120.2, 119.2, 109.8, 108.1, 78.2, 32.9; FTIR (neat) u 2981,

1736, 1399, 1243, 1068, 740, $696 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 388.1308, found: 388.1313.

3,4-diphenyl-5-propylfuran-2(5H)-one (3w) ${ }^{4}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.8 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and butyraldehyde $\mathbf{2 w}(18 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M} \mathrm{in} \mathrm{THF}, 20 \mu \mathrm{~L}, 0.02$ mmol) was conducted for 7 hours which produced 3 w in $49.6 \mathrm{mg}, 89 \%$ yield, as white solid,
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{dd}, \mathrm{J}=7.4,2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.88-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.43(\mathrm{~m}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

5-butyl-3,4-diphenylfuran-2(5H)-one (3x) ${ }^{5}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.2 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and pentanal $\mathbf{2 x}(21 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol})$ was conducted for 7 hours which produced $\mathbf{3 x}$ in $51.0 \mathrm{mg}, 87 \%$ yield, as pale-yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.41-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{dd}, \mathrm{J}=7.5,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.93-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.18(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

3,4-diphenylfuran-2(5H)-one (3y) ${ }^{6}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.3 $\mathrm{mg}, 0.3 \mathrm{mmol})$ and paraformaldehyde $2 \mathbf{y}(6.1 \mathrm{mg}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $20 \mu \mathrm{~L}$, 0.02 mmol) was conducted for 12 hours which produced 3 y in $38.7 \mathrm{mg}, 82 \%$ yield, as white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.47-7.29$ (m, 10H), $5.18(\mathrm{~s}, 2 \mathrm{H})$.

3,4-bis(4-fluorophenyl)-5-(p-tolyl) furan-2(5H)-one (3z)

Following the general procedure, the reaction of 2,3-bis(4-fluorophenyl) cycloprop-2-en-1-one 1b ($72.7 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 4-methylbenzaldehyde $\mathbf{2 b}(24 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) was conducted for 3 hours which produced $\mathbf{3 z}$ in $65.8 \mathrm{mg}, 91 \%$ yield, as pale-yellow solid, m.p. $105-108^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.02(\mathrm{~m}, 8 \mathrm{H}), 6.95-6.87(\mathrm{~m}, 2 \mathrm{H})$, 6.19 (s, 1H), 2.31 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.4,163.4(\mathrm{~d}, \mathrm{~J}=251.6 \mathrm{~Hz}$), $163.1(\mathrm{~d}, J=249.5 \mathrm{~Hz}), 158.2,139.7,131.5(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 131.4,130.5(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 129.9$, 127.7, $127.2(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 126.0,125.8(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 116.3(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 116.0(\mathrm{~d}, J=$ 22.1 Hz), 83.7, 21.4; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-109.1,-111.4$; FTIR (neat) u 2981, 2314, 1749, 1400, 1229, 1069, $868 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 363.1191$, found: 363.1193.

Following the general procedure, the reaction of 2,3-di-p-tolylcycloprop-2-en-1-one 1c (70.3 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 4-methylbenzaldehyde 2b ($24 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) with PMe3 (1 M in THF, $20 \mu \mathrm{~L}$, 0.02 mmol) was conducted for 3 hours which produced 3 aa in $65.9 \mathrm{mg}, 93 \%$ yield, as paleyellow solid, m.p. $120-123^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40-7.37$ (m, 2H), $7.19-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, 2H), $7.06-6.97(\mathrm{~m}, 4 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 2.36$ (s, 3H), 2.29 (s, 3H), $2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.0,158.7,140.2,139.3,138.8,132.2,129.7,129.5,129.4(2 \mathrm{C}), 128.5$, 128.4, 127.8, 127.3, 126.3, 83.6, 21.52, 21.50, 21.4; FTIR (neat) u 2980, 1746, 1402, 1253, 1153, 1068, $816 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 377.1512$, found: 377.1512.

4-methyl-3-phenyl-5-(p-tolyl) furan-2(5H)-one (3ab) ${ }^{7}$

Following the general procedure, the reaction of 2-methyl-3-phenylcycloprop-2-en-1-one 1d $(43.4 \mathrm{mg}, 0.3 \mathrm{mmol})$ and 4-methylbenzaldehyde $\mathbf{2 b}(24 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) was conducted for 3 hours which produced 3ab in $47.0 \mathrm{mg}, 89 \%$ yield, as pale-yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 1 \mathrm{H})$, 7.22 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 5.72 (s, 1H), 2.38 (s, 3H), $2.00(\mathrm{~s}, 3 \mathrm{H})$.

Following the general procedure, the reaction of 2-(4-chlorophenyl)-3-methylcycloprop-2-en-1-one $\mathbf{1 e}(53.5 \mathrm{mg}, 0.3 \mathrm{mmol})$ and 4-methylbenzaldehyde 2b ($24 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) with PMe_{3} (1 M in THF, $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) was conducted for 6 hours which produced 3ac in $54.4 \mathrm{mg}, 91 \%$ yield, as pale-yellow solid, m.p. $126-128^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.15 ($\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.71 (s, 1H), 2.37 (s, 3H), 1.99 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=172.6,161.1,139.7,134.7,131.5,130.4,129.9,128.9,128.4,127.1,125.5,85.0,21.4$, 13.6; FTIR (neat) u 2921, 1750, 1490, 1137, 1089, $970 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 321.0653$, found: 321.0652 .

Following the general procedure, the reaction of 2-(3-chlorophenyl)-3-methylcycloprop-2-en-1-one $1 \mathbf{f}(53.5 \mathrm{mg}, 0.3 \mathrm{mmol})$ and 4-methylbenzaldehyde $\mathbf{2 b}(24 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1$ M in THF, $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) was conducted for 4 hours which produced 3ad in $55.0 \mathrm{mg}, 92 \%$ yield, as yellow liquid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.54(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dt}, J=7.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.36$ (m, 2H), $7.22(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~d}, \mathrm{~J}=1.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=172.4,161.7,139.7,134.6,131.8,131.5,129.9(2 \mathrm{C})$, 129.1, 128.8, 127.3, 127.1, 125.4, 85.0, 21.4, 13.5; FTIR (neat) u 2921, 1751, 1412, 1210, 1139, 989, $731 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}: 299.0842\right.$, found: 299.0833 .

4-ethyl-3-phenyl-5-(p-tolyl)furan-2(5H)-one (3ae)

3ae and regioisomer (1.5:1)

Following the general procedure, the reaction of 2-ethyl-3-phenylcycloprop-2-en-1-one $\mathbf{1 g}$ $(47.5 \mathrm{mg}, 0.3 \mathrm{mmol})$ and 4-methylbenzaldehyde $\mathbf{2 b}(24 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) was conducted for 24 hours which produced 3ae as slightly yellow liquid, in $28.5 \mathrm{mg}, 51 \%$ yield as a pair of regioisomers (1.5:1).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major): $\delta=7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.37$ (m, 1H), 7.22 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 2.65(\mathrm{dq}, J=15.0,7.5 \mathrm{~Hz}$, 1H), 2.37 (s, 3H), 2.14 (dq, $J=15.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR (600 MHz , CDCl_{3}, selected signals for the minor): $7.08(\mathrm{~s}, 4 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 2.60-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}$, $3 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major): $\delta=173.1,165.8,139.6,131.8$, 130.1, 129.9, 129.1, 128.70, 128.67, 127.3, 126.4, 83.5, 21.4, 20.6, 12.6; ${ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}, minor): $\delta=174.2,158.6,139.2,132.1,131.7,129.9,129.7,129.6,128.9,128.0,127.5$, 83.7, 21.3, 18.0, 13.1. FTIR (neat) u 3020, 1747, 1214, $746 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 279.1380$, found: 279.1387.

2-formylphenyl (E)-2,3-diphenylacrylate (4) ${ }^{8}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.8 $\mathrm{mg}, 0.3 \mathrm{mmol})$ and salicylaldehyde $\mathbf{2 z}(22 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with PMe3 (1 M in THF, $20 \mu \mathrm{~L}, 0.02$ mmol) was conducted for 12 hours which produced 4 in 45.2 mg , 69% yield, as white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.06(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (td, $J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.12(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$.
methyl 5-oxo-2,3,4-triphenyl-2,5-dihydrofuran-2-carboxylate (6a)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.0 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and methyl 2-oxo-2-phenylacetate $\mathbf{5 a}(29 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) was conducted for 2 hours which produced $\mathbf{6 a}$ in $71.8 \mathrm{mg}, 97 \%$ yield, as pale-yellow solid, m.p. $135-138{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 3 \mathrm{H})$, $7.26-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.2$, 167.7, 159.7, 134.0, 131.2, 129.8, 129.5(2C), 129.2(2C), 128.6(3C), 128.5, 128.0, 127.1, 89.6, 53.7; FTIR (neat) u 1745, 1442, 1260, 1162, 1004, 967, $692 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 393.1097$, found: 393.1096.
methyl 3,4-bis(4-fluorophenyl)-5-oxo-2-phenyl-2,5-dihydrofuran-2-carboxylate (6b)

Following the general procedure, the reaction of 2,3-bis(4-fluorophenyl) cycloprop-2-en-1-one 1b ($72.6 \mathrm{mg}, 0.3 \mathrm{mmol}$) and methyl 2-oxo-2-phenylacetate $\mathbf{5 a}(29 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1$

M in THF, $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) was conducted for 3 hours which produced $\mathbf{6 b}$ in $73.9 \mathrm{mg}, 91 \%$ yield, as pale-yellow solid, m.p. $145-148^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3): $\delta=7.45-7.31(\mathrm{~m}, 7 \mathrm{H}), 7.04-6.90(\mathrm{~m}, 6 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCI 3): $\delta=170.9,167.6,163.4(\mathrm{~d}, J=251.7 \mathrm{~Hz}), 163.1(\mathrm{~d}, \mathrm{~J}=250.4 \mathrm{~Hz})$, 158.6, 133.8, $131.5(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 129.7,128.8,127.3,127.0(\mathrm{~d}, J=$ $3.9 \mathrm{~Hz}), 126.9,125.0(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 116.0(\mathrm{~d}, J=20.4 \mathrm{~Hz}), 115.8(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 89.7,53.8$; ${ }^{19}$ F NMR (376 MHz, CDCl 3): $\delta=-109.8,-110.7$; FTIR (neat) u 1746, 1440, 1258, 1004, 969, $695 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 429.0909, found: 429.0904.
methyl 3-methyl-5-oxo-2,4-diphenyl-2,5-dihydrofuran-2-carboxylate (6c)

Following the general procedure, the reaction of 2-methyl-3-phenylcycloprop-2-en-1-one 1d $(43.5 \mathrm{mg}, 0.3 \mathrm{mmol})$ and methyl 2-oxo-2-phenylacetate $\mathbf{5 a}(29 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) was conducted for 3 hours which produced $\mathbf{6 c}$ in $60.4 \mathrm{mg}, 98 \%$ yield, as pale-yellow solid, m.p. $105-108^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 8 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.2,167.9,159.6,134.6,129.5,129.3,129.2,129.1$, 129.0, 128.6, 127.5, 126.0, 89.7, 53.6, 13.8; FTIR (neat) u 1761, 1440, 1241, 1178, 1063, 970, $695 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 331.0941$, found: 331.0947.

3,4,5-triphenyl-1-tosyl-1,5-dihydro-2H-pyrrol-2-one (8a) ${ }^{9}$

8a

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.2 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and N -benzylidene-4-methylbenzenesulfonamide $\mathbf{7 a}(51.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) with РМез (1 M in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 20 hours which produced $8 \mathbf{~ a}$ in 81.9 $\mathrm{mg}, 88 \%$ yield, as pale-yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.43-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{dd}, \mathrm{J}=6.7,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.26$ $(\mathrm{m}, 3 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 4 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}$, 3 H).

3,4-bis(4-fluorophenyl)-5-phenyl-1-tosyl-1,5-dihydro-2H-pyrrol-2-one (8b)

Following the general procedure, the reaction of 2,3-bis(4-fluorophenyl) cycloprop-2-en-1-one 1b ($72.7 \mathrm{mg}, 0.3 \mathrm{mmol}$) and N -benzylidene-4-methylbenzenesulfonamide 7 a ($51.9 \mathrm{mg}, 0.2$ mmol) with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ was conducted for 24 hours which produced 8b in $71.3 \mathrm{mg}, 71 \%$ yield, as pale-yellow solid, m.p. $163-165^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.20(\mathrm{~m}$, $3 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-6.94(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.81(\mathrm{~m}, 2 \mathrm{H})$, 6.10 (s, 1H), 2.35 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.8,163.2(\mathrm{~d}, \mathrm{~J}=251.5 \mathrm{~Hz}$), 162.9 (d, $J=249.4 \mathrm{~Hz}), 154.6,144.8,135.7,134.4,131.6(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 130.7$ (d, $J=8.6$ $\mathrm{Hz}), 130.0,129.3,129.0,128.9,128.4,128.1,127.6(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}), 125.8(\mathrm{~d}, J=3.5 \mathrm{~Hz})$, 116.1 (d, $J=21.5 \mathrm{~Hz}), 115.7(\mathrm{~d}, \mathrm{~J}=21.4 \mathrm{~Hz}), 66.7,21.7 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl $)^{2}: \delta=-$ 109.5, -111.6; FTIR (neat) u 1703, 1504, 1352, 1227, 1166, 843, 668, $576 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 524.1102 , found: 524.1106.

4-methyl-3,5-diphenyl-1-tosyl-1,5-dihydro-2H-pyrrol-2-one (8c)

Following the general procedure, the reaction of 2-methyl-3-phenylcycloprop-2-en-1-one 1d (43.4 mg, 0.3 mmol) and N -benzylidene-4-methylbenzenesulfonamide 7 a ($51.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced 8 c in $69.4 \mathrm{mg}, 86 \%$ yield, as white solid, m.p. $150-153{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3): $\delta=7.47-7.29(\mathrm{~m}, 10 \mathrm{H}), 7.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=168.3,156.2$, $144.6,135.9,134.9,130.7,129.8,129.3,129.2,129.0(2 \mathrm{C}), 128.6,128.4,128.1,128.0,68.1$, 21.7, 14.0; FTIR (neat) u 2980, 2374, 1400, 1239, 1069, $870 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 426.1134$, found: 426.1140 .

3. Synthesis of Compounds 10, 12 and Analytical Data

3.1 Optimization of Reaction Conditions

Cyclopropenone 1a and ethyl isocyanate 9a were selected as the model substrate for the optimization of conditions (Table S1). Among various phosphine catalysts screened, only tributyl phosphine and trimethyl phosphine were effective to deliver the product maleimide 101 in 10% and 36% yield, respectively (entries $1-8$). Using PMe_{3} as the catalyst, it was found that the addition of $4 \AA \mathrm{MS}$ could upgrade the yield to 69% (entry 8). Examination of common solvents indicated that DCM remained the best (entries 9-13). Reducing the catalyst loading to $10 \mathrm{~mol} \%$ decreased the yield to 49%, while increasing the amount of 1 a to 1.5 equiv could enhance the yield to 83% (entries 14 and 15). The reaction was found to be influenced by temperature, as running the reaction at $0^{\circ} \mathrm{C}$ significantly reduced the yield (entry 16).

Table S1. Investigation of reaction conditions. ${ }^{a}$

${ }^{a}$ Reaction condition: Under N_{2} atmosphere, the catalyst ($20 \mathrm{~mol} \%$) was added to a mixture of 1a (0.2 mmol), 9a (0.2 mmol) in specified solvent $(2.0 \mathrm{~mL})$ in a Schlenk tube, and then the mixture was stirred at room temperature for 24 hours. ${ }^{b}$ Isolated yield. ${ }^{c} 10 \mathrm{~mol} \%$ catalyst loading. ${ }^{d} 0.3 \mathrm{mmol} 1 \mathrm{a}$ was adopted. ${ }^{e}$ The reaction was carried out at $0^{\circ} \mathrm{C}$.

3.2 General Procedure for the Synthesis of Compounds 10 and 12

Under N_{2} atmosphere, $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was added to a dispersion of cyclopropenone (0.3 mmol), $4 \AA \mathrm{MS}(100 \mathrm{mg})$, and isocyanates or carbodiimides (0.2 mmol) in anhydrous DCM (2 mL). The mixture was stirred at room temperature for 24 hours, and then the solvent was removed in vacuo. The residue was purified by column chromatography (for maleimides 10 and iminomaleimides 12 , silica gel and alumina were used as the stationary
phase, respectively) with petroleum ether/ethyl acetate (20/1) as eluent to provide the corresponding products 10 and 12. Compounds 10a-c, 10f, 10h-q are known, and the analytical data are consistent with those reported. ${ }^{10-13}$

3.2 Analytical Data for Compounds 10 and 12

3,4-diphenyl-1-(p-tolyl)-1H-pyrrole-2,5-dione (10a) ${ }^{10}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.2 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-isocyanato-4-methylbenzene $9 \mathrm{a}(25 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced 10a in $40.7 \mathrm{mg}, 60 \%$ yield, as yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.52$ (dd, $J=7.9,1.5 \mathrm{~Hz}, 4 \mathrm{H}$), $7.42-7.31$ (m, 7 H), $7.29-7.22$ (m, 2H), 7.18 (d, J=7.5 Hz, 1H), $2.40(\mathrm{~s}, 3 \mathrm{H})$.

3,4-diphenyl-1-(m-tolyl)-1H-pyrrole-2,5-dione (10b) ${ }^{10}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.8 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-isocyanato-3-methylbenzene 9b ($26 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced $\mathbf{1 0 b}$ in $41.5 \mathrm{mg}, 61 \%$ yield, as yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.57-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.28(\mathrm{~m}, 9 \mathrm{H}), 7.23(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, 1H), 2.26 (s, 3H).

3,4-diphenyl-1-(o-tolyl)-1H-pyrrole-2,5-dione (10c) ${ }^{10}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.0 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-isocyanato-2-methylbenzene 9c ($25 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced 10 c in $55.1 \mathrm{mg}, 81 \%$ yield, as yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.54-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.24(\mathrm{~m}, 10 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.

1-(2,3-dimethylphenyl)-3,4-diphenyl-1H-pyrrole-2,5-dione (10d)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.0 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-isocyanato-2,3-dimethylbenzene $9 \mathrm{~d}(28 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced 10 d in $62.9 \mathrm{mg}, 89 \%$ yield, as yellow solid, m.p. $170-173^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.57-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 2 \mathrm{H})$, 7.08 ($\mathrm{d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.9$, 138.5, 136.5, 135.3, 130.9, 130.8, 130.2, 130.1, 128.7(2C), 126.43, 126.35, 20.6, 15.0; FTIR
(neat) u 2919, 1704, 1597, 1514, 1438, 1286, 1024, $699 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}: 354.1489\right.$, found: 354.1484.

1-(3,5-dimethylphenyl)-3,4-diphenyl-1H-pyrrole-2,5-dione (10e)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.9 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-isocyanato-3,5-dimethylbenzene $\mathbf{1 0 e}(28 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced $\mathbf{1 0 e}$ in $60.1 \mathrm{mg}, 85 \%$ yield, as yellow solid, m.p. $168-171^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.53-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.23(\mathrm{~m}, 6 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{~s}$, 1H), 2.29 (s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.9,139.0,136.4,131.6,130.2,130.1$, 129.9, 128.7(2C), 124.2, 21.5; FTIR (neat) u 2929, 1703, 1639, 1446, 1373, 1348, 1180, 692 cm^{-1}; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 354.1489$, found: 354.1478.

1-(4-phenoxyphenyl)-3,4-diphenyl-1H-pyrrole-2,5-dione (10f) ${ }^{11}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.9 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-isocyanato-4-phenoxybenzene $9 \mathrm{f}(36 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced $\mathbf{1 0 f}$ in $71.8 \mathrm{mg}, 86 \%$ yield, as yellow solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.52(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 10 \mathrm{H}), 7.17-$ 7.04 ($\mathrm{m}, 5 \mathrm{H}$).

3,4-diphenyl-1-(4-(trifluoromethoxy) phenyl)-1H-pyrrole-2,5-dione (10g)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.2 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-isocyanato-4-(trifluoromethoxy) benzene $\mathbf{9 g}(30 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with PMe_{3} (1 M in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced $\mathbf{1 0 g} \mathrm{g} \mathbf{~} 63.8 \mathrm{mg}$, 78% yield, as yellow solid, m.p. $140-143^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.56-7.50(\mathrm{~m}, 6 \mathrm{H}), 7.48-7.31(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=169.4,148.2,136.6,130.5,130.3,130.2,128.8,128.4,127.5,121.7,120.6$ (q, J $=257.9 \mathrm{~Hz}$); ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-57.8$; FTIR (neat) $\cup 2920,1761,1694,1374$, 1259, 1026, $694 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}: 410.0998\right.$, found: 410.0995.

1-(4-fluorophenyl)-3,4-diphenyl-1H-pyrrole-2,5-dione (10h) ${ }^{10}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.0 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-fluoro-4-isocyanatobenzene $9 \mathrm{~h}(23 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced 10 h in $46.7 \mathrm{mg}, 68 \%$ yield, as yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.52(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}$, $6 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{H})$.

1-(2-chlorophenyl)-3,4-diphenyl-1H-pyrrole-2,5-dione (10i) ${ }^{10}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.9 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-chloro-2-isocyanatobenzene $9 \mathbf{i}(25 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced 10 i in $58.4 \mathrm{mg}, 81 \%$ yield, as yellow solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.61-7.51(\mathrm{~m}, 5 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 9 \mathrm{H})$.

3,4-diphenyl-1-(4-(trifluoromethyl) phenyl)-1H-pyrrole-2,5-dione (10j) ${ }^{10}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.8 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-isocyanato-4-(trifluoromethyl) benzene 9 j ($29 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) with PMe_{3} (1 M in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced 10 j in 48.9 mg , 62% yield, as yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.50$ (m, 4H), $7.46-7.34(m, 6 H)$.

4-(2,5-dioxo-3,4-diphenyl-2,5-dihydro-1 H-pyrrol-1-yl) benzonitrile (10k) ${ }^{10}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.3 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 4-isocyanatobenzonitrile $9 \mathbf{~} \mathbf{~ (~} 28.9 \mathrm{mg}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF , $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced $\mathbf{1 0 k}$ in $30.9 \mathrm{mg}, 44 \%$ yield, as yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.49$ $(\mathrm{m}, 4 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 6 \mathrm{H})$.

1-ethyl-3,4-diphenyl-1H-pyrrole-2,5-dione (10I) ${ }^{12}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.0 $\mathrm{mg}, 0.3 \mathrm{mmol})$ and isocyanatoethane $9 \mathrm{I}(17 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M} \mathrm{in} \mathrm{THF}, 40 \mu \mathrm{~L}, 0.04$ mmol) was conducted for 24 hours which produced 101 in $45.9 \mathrm{mg}, 83 \%$ yield, as yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 6 \mathrm{H}), 3.72(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

1-cyclohexyl-3,4-diphenyl-1H-pyrrole-2,5-dione (10m) ${ }^{13}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.1 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and isocyanatocyclohexane $9 \mathrm{~m}(26 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, 40 $\mu \mathrm{L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced 10 m in $40.5 \mathrm{mg}, 61 \%$ yield, as yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.48-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 6 \mathrm{H}), 4.06(\mathrm{tt}, \mathrm{J}=12.3,3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.17(\mathrm{qd}, \mathrm{J}=12.5,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.66(\mathrm{~m}, 5 \mathrm{H}), 1.41-1.22(\mathrm{~m}, 3 \mathrm{H})$.

1-hexyl-3,4-diphenyl-1H-pyrrole-2,5-dione (10n)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.9 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-isocyanatohexane 9n (29 $\mu \mathrm{L}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1 \mathrm{M} \mathrm{in} \mathrm{THF} ,40 \mu \mathrm{~L}$, 0.04 mmol) was conducted for 24 hours which produced $\mathbf{1 0 n}$ in $40.2 \mathrm{mg}, 60 \%$ yield, as yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.56-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 6 \mathrm{H}), 3.64(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.68(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=171.0,136.2,130.0,129.9,128.8,128.6,38.6,31.5,28.7,26.6,22.6,14.1$. FTIR (neat) u 2987, 1704, 1495, 1396, 1087, 796, $688 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{2}[\mathrm{M}+$ $H]^{+}$: 334.1802, found: 334.1810.

1-isopropyl-3,4-diphenyl-1H-pyrrole-2,5-dione (100) ${ }^{12}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.8 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 2-isocyanatopropane $9 \mathrm{o}(20 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $40 \mu \mathrm{~L}$, 0.04 mmol) was conducted for 24 hours which produced $\mathbf{1 0 o}$ in $45.5 \mathrm{mg}, 78 \%$ yield, as yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3): $\delta=7.50-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 6 \mathrm{H}), 4.49$ (hept, $\mathrm{J}=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.49$ (d, J=6.9 Hz, 6H).

1-phenethyl-3,4-diphenyl-1H-pyrrole-2,5-dione (10p) ${ }^{12}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.4 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-isocyanatoethyl) benzene 9p ($28 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced $\mathbf{1 0 p}$ in $53.3 \mathrm{mg}, 75 \%$ yield, as yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.44(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.39-7.21(\mathrm{~m}, 11 \mathrm{H}), 3.89(\mathrm{t}, \mathrm{J}=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 3.00(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H})$.

1-allyl-3,4-diphenyl-1H-pyrrole-2,5-dione (10q) ${ }^{11}$

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.1 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 3-isocyanatoprop-1-ene 9q ($18 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, 40 $\mu \mathrm{L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced $\mathbf{1 0 q}$ in $39.4 \mathrm{mg}, 68 \%$ yield, as yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.52-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.31$ (m, 6H), 5.90 (ddt, $J=16.4$, $11.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$.

1-ethyl-3,4-bis(4-fluorophenyl)-1 H-pyrrole-2,5-dione (10r)

Following the general procedure, the reaction of 2,3-bis(4-fluorophenyl) cycloprop-2-en-1-one $\mathbf{1 b}(72.5 \mathrm{mg}, 0.3 \mathrm{mmol})$ and isocyanatoethane $9 \mathrm{l}(17 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M} \mathrm{in} \mathrm{THF} 40$, $\mu \mathrm{L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced 10 r in $45.1 \mathrm{mg}, 72 \%$ yield, as yellow solid, m.p. $110-113{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.48(\mathrm{~m}, 4 \mathrm{H}), 7.09-6.90(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.28(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.6,163.7(\mathrm{~d}, J=251.7 \mathrm{~Hz}), 135.1$, $132.1(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 124.7(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 116.1(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 33.5,14.1 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl $_{3}$): $\delta=-109.4$; FTIR (neat) u 2972, 1694, 1597, 1502, 1444, 1405, 1224, 1161, 845 cm^{-1}; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 314.0987$, found: 314.0981.

3,4-bis(4-fluorophenyl)-1-(p-tolyl)-1 H-pyrrole-2,5-dione (10s)

Following the general procedure, the reaction of 2,3-bis(4-fluorophenyl) cycloprop-2-en-1-one 1b ($72.6 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-isocyanato-4-methylbenzene 9a ($25 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) with PMe_{3} (1 M in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced 10 s in 57.0 mg , 76% yield, as yellow solid, m.p. $166-168^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.58-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.00(\mathrm{~m}, 4 \mathrm{H})$, 2.40 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.6,163.8(\mathrm{~d}, \mathrm{~J}=252.1 \mathrm{~Hz}), 138.1,135.1$, 132.3 (d, $J=8.5 \mathrm{~Hz}), 129.9,129.1,126.2,124.6(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 116.2(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 21.3$; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-109.1$; FTIR (neat) $\cup 2987,1704,1598,1501,1382,1221$, 1158, 841, $698 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 376.1144$, found: 376.1132.

1-ethyl-3,4-di-p-tolyl-1H-pyrrole-2,5-dione (10t)

Following the general procedure, the reaction of 2,3-di-p-tolylcycloprop-2-en-1-one 1c (70.2 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and isocyanatoethane $9 \mathrm{I}(17 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M} \mathrm{in} \mathrm{THF}, 40 \mu \mathrm{~L}, 0.04$ mmol) was conducted for 24 hours which produced 10 t in $48.2 \mathrm{mg}, 79 \%$ yield, as yellow solid, m.p. $163-166^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.70(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.36(\mathrm{~s}, 6 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.1$, 140.1, 135.6, 129.9, 129.4, 126.1, 33.4, 21.6, 14.2. FTIR (neat) u 2979, 1698, 1400, 1348, 1049, $872 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 306.1489$, found: 306.1482.

1,3,4-tri-p-tolyl-1 H-pyrrole-2,5-dione (10u)

Following the general procedure, the reaction of 2,3-di-p-tolylcycloprop-2-en-1-one 1c (70.4 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-isocyanato-4-methylbenzene $9 \mathrm{a}(25 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced $\mathbf{1 0 u}$ in $59.5 \mathrm{mg}, 81 \%$ yield, as yellow solid, m.p. $115-118{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.43(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{q}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 4 \mathrm{H}$), 2.38 (s, 3H), 2.36 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.0,140.3,137.7$, 135.6, 130.0, 129.8, 129.4, 129.3, 126.2, 125.9, 21.6, 21.3; FTIR (neat) u 2920, 1706, 1513, 1385, 811, $776 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}: 368.1645\right.$, found: 368.1640.

1,1'-(2-methyl-1,3-phenylene) bis(3,4-diphenyl-1H-pyrrole-2,5-dione) (10v)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (103.4 $\mathrm{mg}, 0.5 \mathrm{mmol}$) and 1,3-diisocyanato-2-methylbenzene $9 \mathrm{r}\left(29 \mu \mathrm{~L}, 0.2 \mathrm{mmol}\right.$) with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced 10 v in $111.4 \mathrm{mg}, 95 \%$ yield, as yellow solid, m.p. $289-292{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.59-7.51(\mathrm{~m}, 8 \mathrm{H}), 7.49-7.34(\mathrm{~m}, 15 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl 3): $\delta=169.3,136.5,136.2,132.3,130.2(2 \mathrm{C}), 129.7,128.8,128.6,127.1$, 14.5; FTIR (neat) u 2987, 1710, 1473, 1372, 1352, 1140, $689 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 587.1965$, found: 587.1967.

1,1'-(1,3-phenylenebis(methylene))bis(3,4-diphenyl-1H-pyrrole-2,5-dione) (10w)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (103.3 $\mathrm{mg}, 0.5 \mathrm{mmol}$) and 1,3-bis(isocyanatomethyl)benzene $9 \mathrm{~s}(31 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced 10 w in $112.9 \mathrm{mg}, 94 \%$ yield, as yellow solid, m.p. $193-196{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.56(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 8 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 15 \mathrm{H}), 4.81$ (s, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.5,137.1,136.4,130.0,129.9,129.24,129.18$, 128.7, 128.6, 128.2, 41.9; FTIR (neat) u 1695, 1429, 1399, 1316, 1082, $949,691 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 623.1941$, found: 623.1944.
(E)-1-cyclohexyl-5-(cyclohexylimino)-3,4-diphenyl-1,5-dihydro-2H-pyrrol-2-one (12a)

Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (61.9 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and dicyclohexylmethanediimine 11a ($41.3 \mathrm{mg}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced 12a in $71.8 \mathrm{mg}, 87 \%$ yield, as pale-yellow solid, m.p. $112-115^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 2 \mathrm{H})$, $7.23-7.12(\mathrm{~m}, 3 \mathrm{H}), 4.29(\mathrm{tt}, J=12.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{td}, J=9.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{qd}, J=$ $12.5,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.57(\mathrm{dt}, J=13.1,3.6 \mathrm{~Hz}$, 2 H), $1.47-1.18(\mathrm{~m}, 8 \mathrm{H}), 1.11(\mathrm{dt}, J=12.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.81-0.66(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.2,148.9,138.1,134.5,134.4,130.0,129.8,128.7,128.6(2 \mathrm{C}), 128.4$, 127.8, 56.5, 51.2, 34.9, 29.7, 26.4, 25.6, 25.5, 24.2; FTIR (neat) u 2928, 1703, 1639, 1445, 1373, 1260, 1179, 1024, $692 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 413.2587$, found: 413.2582.
(E)-1-cyclohexyl-5-(cyclohexylimino)-3,4-bis(4-fluorophenyl)-1,5-dihydro-2H-pyrrol-2one (12b)

Following the general procedure, the reaction of 2,3-bis(4-fluorophenyl) cycloprop-2-en-1-one 1b ($72.4 \mathrm{mg}, 0.3 \mathrm{mmol}$) and dicyclohexylmethanediimine $11 \mathrm{a}(41.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ with PMe_{3} (1 M in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced 12b in 81.6 mg , 91% yield, as pale-yellow solid, m.p. $108-111^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.32-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.84(\mathrm{~m}, 2 \mathrm{H})$, $4.27(\mathrm{tt}, \mathrm{J}=12.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{tt}, \mathrm{J}=9.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{qd}, \mathrm{J}=12.5,3.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.91-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.12(\mathrm{~m}, 11 \mathrm{H}), 0.80(\mathrm{qt}, \mathrm{J}=12.0,3.9 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.9,162.9(\mathrm{~d}, J=249.8 \mathrm{~Hz}), 162.8(\mathrm{~d}, J=249.0 \mathrm{~Hz}), 148.6$, 137.8, 133.3, $132.0(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 130.2(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 125.7(\mathrm{~d}, J=$ $3.3 \mathrm{~Hz}), 116.2(\mathrm{~d}, \mathrm{~J}=21.6 \mathrm{~Hz}), 115.2(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}), 56.6,51.4,34.9,29.7,26.5,25.6,25.5$, 24.2; ${ }^{19}$ F NMR (376 MHz, CDCl3): $\delta=-111.6,-112.2 ;$ FTIR (neat) u 2929, 1701, 1639, 1501, 1400, 1226, 1158, 837, $671 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{M}+\mathrm{H}^{+}\right.$: 449.2399, found: 449.2395.

(E)-1-cyclohexyl-5-(cyclohexylimino)-3,4-di-p-tolyl-1,5-dihydro-2H-pyrrol-2-one (12c)

Following the general procedure, the reaction of 2,3-di-p-tolylcycloprop-2-en-1-one 1c (70.4 $\mathrm{mg}, 0.3 \mathrm{mmol})$ and dicyclohexylmethanediimine 11a ($41.3 \mathrm{mg}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced 12c in $72.2 \mathrm{mg}, 82 \%$ yield, as pale-yellow solid, m.p. $126-129^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.22$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.18-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.27(\mathrm{tt}, J=12.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{tt}, J=9.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.28$ (m, 2H), 2.25 (s, 3H), 1.82 (d, $J=13.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.74-1.64$ (m, 3H), 1.58 (dt, $J=13.0,3.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.46-1.20(\mathrm{~m}, 8 \mathrm{H}), 1.18-1.06(\mathrm{~m}, 1 \mathrm{H}), 0.83-0.70(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.4,149.2,138.6,138.1,137.9,134.1,131.5,130.0,129.4,128.6,128.5,127.1,56.3$, 51.1, 34.9, 29.7, 26.5, 25.7, 25.6, 24.2, 21.5, 21.4; FTIR (neat) u2924, 1701, 1638, 1448, 1369, 1184, $827 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{M}+\mathrm{H}^{+}\right.$: 441.2900, found: 441.2903.

(E)-1-isopropyl-5-(isopropylimino)-3,4-diphenyl-1,5-dihydro-2H-pyrrol-2-one (12d)

12d
Following the general procedure, the reaction of 2,3-diphenylcycloprop-2-en-1-one 1a (62.0 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and diisopropylmethanediimine 11b ($31 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF , $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced 12d in $60.5 \mathrm{mg}, 91 \%$ yield, as pale-yellow solid, m.p. $103-106{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 3 \mathrm{H})$, $4.72(\mathrm{p}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{p}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.95(\mathrm{~d}, J=6.1 \mathrm{~Hz}$,

6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.1,148.7,138.6,134.7,134.3,130.0,129.7,128.8$, 128.7(2C), 128.6, 127.9, 48.5, 43.2, 24.9, 20.1; FTIR (neat) u 2969, 1708, 1639, 1404, 1353, 1260, 1021, $798,690 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{M}+\mathrm{H}^{+}: 333.1961\right.$, found: 333.1957.
(E)-3,4-bis(4-fluorophenyl)-1-isopropyl-5-(isopropylimino)-1,5-dihydro-2H-pyrrol-2-one (12e)

12e
Following the general procedure, the reaction of 2,3-bis(4-fluorophenyl) cycloprop-2-en-1-one 1b ($72.7 \mathrm{mg}, 0.3 \mathrm{mmol}$) and diisopropylmethanediimine 11b ($31 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) with $\mathrm{PMe}_{3}(1$ M in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced 12 e in $65.6 \mathrm{mg}, 89 \%$ yield, as pale-yellow solid, m.p. $99-101^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.30-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{t}, \mathrm{J}=8.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 4.71 (hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (hept, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.48 (d, $J=7.0 \mathrm{~Hz}, 6 \mathrm{H}$), 0.96 (d, $J=6.1 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.8,162.94(\mathrm{~d}, J=250.0 \mathrm{~Hz}), 162.89$ (d, $J=249.0 \mathrm{~Hz}$), 148.4, 138.2, 133.4, $132.0(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 130.1(\mathrm{~d}, J$ $=3.7 \mathrm{~Hz}), 125.6(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 116.3(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 115.2(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 48.5,43.3,24.8$, 20.1; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-111.5,-112.0$; FTIR (neat) u 2964, 1701, 1444, 1398, 1260, 1018, $693 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 369.1773$, found: 369.1775.

$12 f$
Following the general procedure, the reaction of 2,3-di-p-tolylcycloprop-2-en-1-one 1c (70.3 $\mathrm{mg}, 0.3 \mathrm{mmol}$) and diisopropylmethanediimine 11b ($31 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) with PMe3 (1 M in THF, $40 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was conducted for 24 hours which produced 12 f in $63.4 \mathrm{mg}, 88 \%$ yield, as pale-yellow solid, m.p. $125-127^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.20-7.11(\mathrm{~m}, 6 \mathrm{H}), 6.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.70($ hept, $J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (hept, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37 (s, 3H), 2.25 (s, 3H), 1.48 (d, J=7.0 Hz, 6H), 0.94 ($\mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.4,148.9,138.6,138.4$, 138.3, 134.2, 131.4, 129.9, 129.6, 128.7, 128.6, 127.0, 48.3, 43.1, 24.9, 21.5, 21.4, 20.1; FTIR (neat) u 2970, 1700, 1633, 1400, 1352, 1260, 1024, $677 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}$ $+\mathrm{H}]^{+}: 361.2274$, found: 361.2272 .

4. X-ray Crystallographic Data of $3 \mathrm{v}, 10 \mathrm{e}$ and 12a

Single crystal of compound $3 \mathbf{v}$ was obtained by recrystallization from ethyl acetate, while compounds $\mathbf{1 0 e}$ and 12a were both obtained from a mixture solvent of petroleum ether (60$90^{\circ} \mathrm{C}$) and ethyl acetate. The structures of $\mathbf{3 v}, \mathbf{1 0 e}$ and 12a are shown in Figures S1-S3, and X-ray diffraction data and refinement are shown in Tables S2-S4, respectively. CIF files can be obtained from the Cambridge Crystallographic Data Center using deposition number ($3 \mathbf{v}$, CCDC 2118493; 10e, CCDC 2118492; 12a, CCDC 2118486).

Figure S1. X-ray Single Crystal Structure of 3v
Table S2. Crystal data and structure refinement for 3v

Identification code	$\mathbf{3 v}$
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{2}$
Formula weight	303.13
Temperature/K	296.15
Crystal system	trigonal
Space group	$\mathrm{R}-3$
a / \AA	$32.848(15)$
b / \AA	$32.848(15)$
c / \AA	$10.842(9)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\mathrm{y} /{ }^{\circ}$	120
Volume $/ \AA^{3}$	$10130(19)$
Z	1

$\rho_{\text {calcg } / \mathrm{cm}^{3}}$	1.078
μ / mm^{-1}	0.068
$\mathrm{~F}(000)$	3456.0
Crystal size $/ \mathrm{mm}^{3}$	$0.24 \times 0.22 \times 0.2$
Radiation	$\mathrm{MoKa}(\lambda=0.71073)$
2Θ range for data collection ${ }^{\circ}$	4.02 to 50.87
Index ranges	$-39 \leq \mathrm{h} \leq 39,-39 \leq \mathrm{k} \leq 35,-13 \leq \mathrm{I} \leq 12$
Reflections collected	22203
Independent reflections	$4144[\mathrm{Rint}=0.0948, \mathrm{Rsigma}=0.0548]$
Data/restraints/parameters	$4144 / 0 / 254$
Goodness-of-fit on F^{2}	1.014
Final R indexes [l==2 $\sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0504, \mathrm{wR} 2=0.1233$
Final R indexes [all data]	$\mathrm{R} 1=0.0767, \mathrm{wR} 2=0.1450$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.14 /-0.22$

Figure S2. X-ray Single Crystal Structure of 10e

Table S3. Crystal data and structure refinement for 10e

Identification code	10e
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{2}$
Formula weight	353.14
Temperature/K	296.15
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a/Å	9.4143(14)
b/Å	14.690(2)
c/Å	13.927(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	106.730(2)
Y^{10}	90
Volume/A ${ }^{3}$	1844.6(5)
Z	1
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.273
μ / mm^{-1}	0.081
F(000)	744.0
Crystal size/mm ${ }^{3}$	$0.26 \times 0.24 \times 0.2$
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection $/{ }^{\circ}$	4.124 to 53.074
Index ranges	$-11 \leq h \leq 11,-18 \leq k \leq 18,-17 \leq 1 \leq 17$
Reflections collected	18618
Independent reflections	3822 [Rint $=0.0359$, Rsigma $=0.0281$]
Data/restraints/parameters	3822/0/246
Goodness-of-fit on F^{2}	1.021

Final R indexes $[l==2 \sigma(I)]$
Final R indexes [all data] Largest diff. peak/hole / e \AA^{-3}
$R 1=0.0385, w R 2=0.0906$
$R 1=0.0568, w R 2=0.1002$
0.22/-0.21

Figure S3. X-ray Single Crystal Structure of 12a
Table S4. Crystal data and structure refinement for 12a

Identification code	12 a
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}$

Formula weight	412.25
Temperature/K	296.15
Crystal system	triclinic
Space group	P-1
a/Å	6.2055(17)
b/Å	11.319(3)
c/Å	32.886(9)
$\alpha /{ }^{\circ}$	89.884(3)
$\beta /{ }^{\circ}$	85.258(4)
Y^{10}	89.848(4)
Volume/ \AA^{3}	2302.0(11)
Z	1
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.193
μ / mm^{-1}	0.072
F(000)	892.0
Crystal size $/ \mathrm{mm}^{3}$	$0.24 \times 0.22 \times 0.2$
Radiation	$\operatorname{MoKa}(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$	3.598 to 53.342
Index ranges	$-7 \leq h \leq 7,-14 \leq k \leq 14,-41 \leq 1 \leq 41$
Reflections collected	14200
Independent reflections	6186 [Rint $=0.0446$, Rsigma $=0.0751$]
Data/restraints/parameters	6186/0/559
Goodness-of-fit on F^{2}	1.066
Final R indexes $[1==2 \sigma(\mathrm{l})$]	$\mathrm{R} 1=0.0728, \mathrm{wR} 2=0.1952$
Final R indexes [all data]	$\mathrm{R} 1=0.0995, \mathrm{wR} 2=0.2062$
Largest diff. peak/hole / e \AA^{-3}	0.19/-0.29

5. HRMS and ${ }^{31}$ P NMR Tracking Experiments

To clarify the possible mechanism of the PMe3-catalyzed (3+2) annulation, ${ }^{31} \mathrm{P}$ NMR tracking and HRMS experiments were conducted to trap any possible reaction intermediates.

HRMS Detection:

Under N_{2} atmosphere, $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) was added to a dispersion of cyclopropenone 1a $(0.15 \mathrm{mmol}), 4 \AA \mathrm{MS}(50 \mathrm{mg})$, and isocyanate $9 \mathrm{a}(0.1 \mathrm{mmol})$ in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL})$. The mixture was stirred at room temperature for 30 min , a small amount of the mixture was transferred for the HRMS detection. From the HRMS spectrum, a peak with mass 283.1248 (Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}$283.1247) corresponding to the adduct of PMe_{3} and 1a was observed, which may support the formation of the α-ketenyl P-ylide intermediate.

Figure S4. HRMS detection of PMe $_{3}$-catalyzed reaction of $\mathbf{1 a}$ and $9 \mathbf{a}$

${ }^{31} \mathrm{P}$ NMR Tracking:

Under N_{2} atmosphere, $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) was added to a dispersion of cyclopropenone $\mathbf{1 a}(0.15 \mathrm{mmol}), 4 \AA \mathrm{MS}(50 \mathrm{mg})$, and isocyanate $9 \mathrm{a}(0.1 \mathrm{mmol})$ in dried CDCl_{3} $(1.0 \mathrm{~mL})$. After 3 hours, the reaction mixture was filtered through syringe filter and the filtrate was subjected to the ${ }^{31}$ P NMR test. From the ${ }^{31}$ P NMR spectrum, it was found that several new peaks with signals at $5.8,15.6,22.9$, and 38.6 ppm , respectively, appeared, while the PMe_{3} catalyst (signal at -61.8 ppm) disappeared (Figure S5). The result suggests the formation of several PMe_{3}-derived intermediates in the reaction, and implies that free phosphine is not the resting state of the catalytic cycle. One of the new signal presumably corresponds to the proposed α-ketenyl P -ylide intermediate as the chemical shift is compatible.

Figure S5. ${ }^{31} \mathrm{P}$ NMR tracking of the PMe_{3}-catalyzed reaction of $\mathbf{1 a}$ and $\mathbf{9 a}$

6. Computational Details

All calculations were carried out by using the Gaussian 16 Rev. A.03. ${ }^{14}$ Given the benchmark study done by Brinck and co-workers, ${ }^{15}$ geometry optimizations and frequency calculations were performed at the ω B97X-D/6-31+G(d) level of theory. ${ }^{16}$ Frequency calculations were conducted at the same level of theory to confirm the presence of local minima (no imaginary frequencies) and transition states (one imaginary frequency) on the PES. Subsequently, single point energies were computed at the ω B97X-D/def2TZVP level with SMD ${ }^{17}$ solvation model. Conformational searches were conducted using the CREST conformer-rotamer ensemble sampling tool version 2.10.2 with xtb version 6.3.3. to ensure all structures showed are lowest
energy conformers. ${ }^{18}$ Intrinsic reaction coordinate (IRC) calculations were performed to verify that the saddle points found were true TSs connecting the reactants and the products. ${ }^{19}$ All thermodynamic quantities ($1 \mathrm{~mol} / \mathrm{L}, 298.15 \mathrm{~K}$) were computed in the GoodVibes code ${ }^{20}$ with quasiharmonic corrections. ${ }^{21}$ 3D renderings of stationary points and Frontier Molecular Orbitals(FMOs) were generated using CYLview 1.0^{22} and PyMol 2.7. ${ }^{23}$

Cartesian Coordinates of Calculated Structure

1a

C	-0.717978	-0.781079	1.013243
C	0.642618	-0.784657	1.023888
C	-1.944221	-1.312234	0.450709
C	-3.159535	-1.012869	1.078564

C	-1.940149	-2.097263	-0.708831

C	-4.350605	-1.508745	0.563388

H	-3.154440	-0.392639	1.969735
C	-3.133911	-2.583687	-1.225497

H	-1.001676	-2.303869	-1.214018

C	-4.338683	-2.294528	-0.587016

H	-5.290104	-1.278882	1.056173

H	-3.126993	-3.187714	-2.127555

H	-5.270738	-2.678684	-0.990492

C	1.874459	-1.344527	0.502960

C	3.085027	-0.708655	0.804606

C	1.880261	-2.509177	-0.274458

C	4.281238	-1.221105	0.318375

H	3.072200	0.186470	1.419006

C	3.079117	-3.023043	-0.751192

H	0.945377	-3.020344	-0.482608

C	4.279161	-2.376663	-0.459900

H	5.217071	-0.722177	0.549926
H	3.079918	-3.929054	-1.349316
H	5.215207	-2.777956	-0.836558
C	-0.042254	0.108700	1.904160
0	-0.046772	0.967854	2.757621
2a			
C	2.590793	-0.480838	2.321275
H	1.565656	-0.887993	2.459755
C	3.602161	-1.476313	1.896241
C	4.928400	-1.085495	1.689632
C	3.226713	-2.806363	1.702538
C	5.870193	-2.023548	1.291454
H	5.195436	-0.045125	1.846933
C	4.171011	-3.746256	1.303285
H	2.192818	-3.103130	1.865413
C	5.491151	-3.352916	1.098520
H	6.901354	-1.724660	1.129936
H	3.880596	-4.781239	1.151951
H	6.230176	-4.085172	0.786752
0	2.820488	0.692108	2.513147

3a

C	-0.017145	0.172937	0.180737
C	0.259053	-1.137878	0.074958
C	-0.758114	1.063692	-0.727031
C	-1.973105	0.652371	-1.285977
C	-0.280077	2.346988	-1.010368
C	-2.688130	1.505213	-2.116775
H	-2.353499	-0.338819	-1.060724
C	-0.993828	3.197015	-1.848257
H	0.664269	2.678465	-0.587258
C	-2.199846	2.778401	-2.402030
H	-3.631741	1.175838	-2.540742
H	-0.607139	4.187615	-2.067256
H	-2.759924	3.443254	-3.052544
C	0.006433	-2.077095	-1.031548
C	0.128901	-1.660779	-2.362810
C	-0.350943	-3.403508	-0.765567
C	-0.121634	-2.545024	-3.404193
H	0.427629	-0.640079	-2.580142
C	-0.603517	-4.285232	-1.811126
H	-0.417533	-3.743691	0.261599
C	-0.493367	-3.859433	-3.131337
H	-0.020305	-2.208225	-4.431544
H	-0.882858	-5.311163	-1.590962

H	-0.688134	-4.550944	-3.945737
C	0.956402	-1.554517	1.325984
O	1.361401	-2.637935	1.651008
C	-2.709425	2.330454	3.864472
C	-1.777129	3.171812	3.267217
C	-0.727300	2.633073	2.528046
C	-0.608099	1.254561	2.376700
C	-1.546185	0.413514	2.974896
C	-2.589736	0.949519	3.719206
H	-3.526350	2.747744	4.445436
H	-1.861254	4.248440	3.379860
H	0.002805	3.292458	2.065407
H	-1.451799	-0.663066	2.866412
H	-3.312364	0.288327	4.187869
C	0.494036	0.675560	1.515854
H	1.283600	1.425125	1.376921
O	1.085488	-0.462286	2.129583

$3 a^{*}$

$\begin{array}{llll}C & -0.706781 & -0.605386 & 0.600954\end{array}$
$\begin{array}{llll}C & -0.425515 & -1.937786 & 0.001695\end{array}$
$\begin{array}{llll}C & -1.819476 & 0.160924 & -0.027168\end{array}$
$\begin{array}{llll}C & -3.022093 & -0.472890 & -0.350697\end{array}$

C	-1.664588	1.515120	-0.341854
C	-4.058383	0.236981	-0.947727
H	-3.141445	-1.530346	-0.132264
C	-2.697411	2.223463	-0.943201
H	-0.727097	2.010655	-0.108011
C	-3.899650	1.587578	-1.244281
H	-4.989451	-0.268152	-1.186911
H	-2.561582	3.274116	-1.181883
H	-4.706216	2.140970	-1.715989
C	-0.338005	-2.179709	-1.458904
C	0.087216	-1.150977	-2.305948
C	-0.671915	-3.417969	-2.018581
C	0.171660	-1.356899	-3.677809
H	0.350590	-0.185586	-1.884990
C	-0.566317	-3.627229	-3.388729
H	-1.027491	-4.221957	-1.378266
C	-0.149001	-2.596029	-4.225534
H	0.497125	-0.544737	-4.321154
H	-0.826014	-4.596362	-3.804432
H	-0.078004	-2.755822	-5.297064
C	-0.255326	-2.943806	0.849921
0	-0.128279	-3.833117	1.593262
C	-0.565450	3.228025	4.184490

C	-1.670218	2.526979	3.705739
C	-1.497830	1.423502	2.879722
C	-0.213654	1.002157	2.509517
C	0.888382	1.701716	3.016607
C	0.716289	2.809041	3.839915
H	-0.703421	4.089831	4.830656
H	-2.673400	2.837346	3.982818
H	-2.364249	0.877666	2.520932
H	1.891446	1.374777	2.753435
H	1.584588	3.342322	4.215691
C	0.022437	-0.174331	1.651913
H	0.898490	-0.764266	1.919140

IM1

C
$0.799525 \quad 0.765579 \quad 0.539914$
$\begin{array}{llll}C & 1.230785 & -0.326423 & -0.376106\end{array}$
$\begin{array}{llll}C & 1.594819 & 0.816188 & 1.600541\end{array}$
$\begin{array}{llll}O & 2.340239 & 0.826935 & 2.503273\end{array}$
$\begin{array}{llll}C & -0.360061 & 1.655975 & 0.343511\end{array}$
$\begin{array}{llll}C & -0.611380 & 2.754819 & 1.177695\end{array}$
$\begin{array}{llll}C & -1.234173 & 1.416495 & -0.723117\end{array}$
$\begin{array}{llll}C & -1.702765 & 3.583152 & 0.951185\end{array}$
$\begin{array}{llll}H & 0.057029 & 2.964658 & 2.010436\end{array}$

C	-2.324951	2.250020	-0.948715
H	-1.055568	0.554224	-1.359813
C	-2.565944	3.338330	-0.115542
H	-1.878112	4.429213	1.609777
H	-2.995126	2.041101	-1.778062
H	-3.417569	3.988273	-0.292031
C	0.638085	-1.661820	-0.298893
C	-0.499812	-1.889623	0.502414
C	1.139174	-2.774877	-1.004230
C	-1.101873	-3.137739	0.572550
H	-0.914454	-1.064427	1.073068
C	0.525925	-4.021108	-0.941534
H	2.044696	-2.683618	-1.599688
C	-0.603051	-4.217601	-0.153801
H	-1.978924	-3.266313	1.201634
H	0.949224	-4.849671	-1.503766
H	-1.078174	-5.192047	-0.098176
P	2.290275	0.130375	-1.646004
C	3.998272	-0.544018	-1.633796
H	3.981989	-1.635260	-1.687960
H	4.583445	-0.153918	-2.473193
H	4.475206	-0.257370	-0.692160
C	1.673870	-0.260177	-3.324725

H	0.803878	0.371889	-3.523067
H	2.439475	-0.081442	-4.085728
H	1.355368	-1.304286	-3.368638
C	2.536921	1.929369	-1.634342
H	1.567232	2.431182	-1.679493
H	3.044456	2.233648	-0.716563
H	3.144103	2.218291	-2.497010

TS1

C	-0.776945	-0.424249	0.397820
C	0.626516	-0.318750	0.494847
C	-1.881023	-1.345783	0.524326
C	-3.195572	-0.915393	0.293510
C	-1.657472	-2.676242	0.902912
C	-4.257215	-1.799058	0.435836
H	-3.369329	0.116148	0.001543
C	-2.723925	-3.555293	1.048994
H	-0.639464	-3.015711	1.071799
C	-4.026615	-3.120578	0.815959
H	-5.271267	-1.456089	0.251938
H	-2.538395	-4.584859	1.341598
H	-4.859201	-3.808659	0.928124
C	1.796173	-1.019623	-0.084642

C	2.242831	-2.254959	0.391463
C	2.469794	-0.414032	-1.148588
C	3.337042	-2.881484	-0.193860
H	1.733891	-2.717072	1.233999
C	3.563296	-1.043820	-1.736458
H	2.125107	0.551067	-1.508673
C	3.998817	-2.277456	-1.261486
H	3.674193	-3.843253	0.181644
H	4.078644	-0.565963	-2.564370
H	4.853752	-2.766815	-1.718426
C	-0.243601	0.812813	0.118686
0	-0.277332	2.005078	-0.159344
P	1.395050	0.297922	2.543204
C	2.448199	1.713490	2.055128
H	2.725394	2.340850	2.908512
H	3.355614	1.339207	1.571239
H	1.889067	2.306882	1.323760
C	-0.061993	1.077822	3.329214
H	-0.514517	1.772638	2.615833
H	-0.802198	0.311235	3.577588
H	0.213216	1.625047	4.236080
C	2.312056	-0.480948	3.939479
H	3.222250	-0.949026	3.552887

H	1.693907	-1.258587	4.397528
H	2.586822	0.253263	4.705389

TS2

C	-1.921746	0.139395	-0.532475
C	-2.306551	-1.284400	-0.323128
C	-2.929291	1.078580	-1.059064
C	-4.296775	0.790492	-0.887408
C	-2.617433	2.301444	-1.679966
C	-5.282227	1.683262	-1.277552
H	-4.574520	-0.149537	-0.422925

C	-3.608209	3.195394	-2.076216

H	-1.584230	2.582417	-1.866060

C	-4.950246	2.899105	-1.872745

H	-6.324312	1.425896	-1.110480

H	-3.320950	4.130355	-2.550183

H	-5.723638	3.596520	-2.179271

C	-2.569741	-2.207213	-1.472226

C	-2.876453	-1.685065	-2.740602

C	-2.477799	-3.606102	-1.360755

C	-3.075876	-2.517486	-3.837480

H	-2.978150	-0.613603	-2.868923

C	-2.685037	-4.433719	-2.457403

H	-2.237911	-4.060053	-0.404565
C	-2.982723	-3.898799	-3.707440
H	-3.317125	-2.074617	-4.800113
H	-2.603341	-5.509736	-2.330745
H	-3.141558	-4.547790	-4.563218
C	-2.372329	-1.916925	0.871017
0	-2.594659	-2.793752	1.613889
P	-0.261527	0.237967	-1.123329
C	-0.015968	0.209197	-2.936921
H	1.044539	0.307629	-3.189104
H	-0.402352	-0.737481	-3.323190
H	-0.578363	1.024174	-3.400397
C	0.678211	1.705299	-0.555975
H	0.061421	2.605408	-0.561073
H	1.027748	1.531621	0.464882
H	1.546728	1.861533	-1.202441
C	0.668533	-1.166617	-0.461307
H	0.317384	-2.094692	-0.918037
H	0.485052	-1.208154	0.617235
H	1.734929	-1.032984	-0.665670
C	-5.502597	2.385798	2.378791
C	-4.466031	3.156623	1.858358
C	-3.215949	2.585803	1.658290

C	-2.994747	1.242023	1.963572
C	-4.032544	0.476906	2.499526
C	-5.282614	1.048619	2.704144
H	-6.482452	2.828178	2.533814
H	-4.635490	4.196885	1.598434
H	-2.408536	3.179297	1.236585
H	-3.845992	-0.560822	2.757412
H	-6.088571	0.450764	3.119497
C	-1.661889	0.639185	1.716080
H	-0.881015	1.391263	1.513226
O	-1.339880	-0.495947	2.124320

TS2*

C
C
-4.824963
1.287038
0.879713
$\begin{array}{llll} & -5.188872 & -0.181672 & 0.795785\end{array}$
$\begin{array}{llll}C & -5.908987 & 2.236281 & 0.487678\end{array}$
$\begin{array}{llll}C & -7.249992 & 1.839460 & 0.628817\end{array}$
$\begin{array}{llll}C & -5.672038 & 3.575227 & 0.152531\end{array}$
$\begin{array}{llll}C & -8.293919 & 2.727456 & 0.420434\end{array}$
$\begin{array}{llll}H & -7.475807 & 0.824073 & 0.934823\end{array}$
$\begin{array}{llll}C & -6.721574 & 4.463777 & -0.067647\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.664033 & 3.961324 & 0.124159\end{array}$
$\begin{array}{llll}C & -8.039932 & 4.048107 & 0.057972\end{array}$

H	-9.315732	2.383521	0.551085
H	-6.495851	5.495691	-0.322292
H	-8.857614	4.742803	-0.108176
C	-5.810303	-0.902172	-0.357551
C	-6.177927	-0.223811	-1.526172
C	-6.029141	-2.288050	-0.310627
C	-6.736281	-0.905377	-2.602764
H	-6.044995	0.849303	-1.591429
C	-6.587203	-2.965254	-1.386578
H	-5.761592	-2.854833	0.578270
C	-6.944793	-2.278396	-2.543633
H	-7.015492	-0.348870	-3.492723
H	-6.742617	-4.037880	-1.317281
H	-7.382724	-2.806899	-3.384568
C	-4.889157	-0.927512	1.853936
0	-4.618888	-1.625848	2.748871
P	-3.161447	1.441384	0.146525
C	-3.017235	0.534919	-1.432898
H	-1.979683	0.594263	-1.777215
H	-3.296073	-0.513032	-1.308752
H	-3.668425	0.978850	-2.188976
C	-2.464788	3.069883	-0.269837
H	-2.982410	3.504961	-1.127219

H	-2.543510	3.706215	0.611715
H	-1.413097	2.916680	-0.534141
C	-1.930755	0.644277	1.220688
H	-2.246377	-0.362816	1.500951
H	-1.817397	1.274641	2.105038
H	-0.985408	0.578194	0.674427
C	-8.119416	2.851662	4.435750
C	-7.672310	1.533513	4.429966
C	-6.429426	1.222815	3.884869
C	-5.627863	2.223064	3.335696
C	-6.066663	3.546032	3.378682
C	-7.308342	3.859091	3.916472
H	-9.091700	3.095128	4.855131
H	-8.289425	0.746253	4.854193
H	-6.081779	0.192955	3.902000
H	-5.412730	4.310518	2.973932
H	-7.647583	4.891092	3.930262
C	-4.308321	1.917602	2.671235
H	-3.918203	0.934929	3.030098
0	-3.474361	2.859846	2.477840

7. References

(1) (a) Li, X.; Han, C.; Yao, H.; Lin, A., Organocatalyzed [3 + 2] Annulation of Cyclopropenones and beta-Ketoesters: An Approach to Substituted Butenolides with a Quaternary Center. Org. Lett. 2017, 19, 778-781; (b) Row, R. D.; Shih, H.-W.; Alexander, A. T.; Mehl, R. A.; Prescher, J. A., Cyclopropenones for Metabolic Targeting and Sequential Bioorthogonal Labeling. J. Am. Chem. Soc. 2017, 139, 7370-7375.
(2) Artok, L.; Kuş, M.; Aksın-Artok, Ö.; Dege, F. N.; Özkılınç, F. Y., Rhodium Catalyzed Reaction of Internal Alkynes With Organoborons Under CO Atmosphere: A Product Tunable Reaction. Tetrahedron 2009, 65, 9125-9133.
(3) Morimoto, T.; Wang, C.; Tanimoto, H.; Artok, L.; Kakiuchi, K., Rhodium(I)-Catalyzed CO-GasFree Arylative Dual-Carbonylation of Alkynes with Arylboronic Acids via the Formyl C-H Activation of Formaldehyde. Synthesis 2021, 53, 3372-3382.
(4) Pangbu, H.; Takaya, M.; Hiroshi, Y., Rhodium Carbonyl-Catalyzed Carbonylation of Acetylenes in the Presence of Olefins and Proton Donors. Synthesis of 5-Alkyl-2(5H)-Furanones. Chem. Lett. 1981, 10, 989-992.
(5) Gao, S.; Hu, X., Nickel-Catalyzed Ring-Opening of Alpha-Hydroxycyclobutenones With a Remarkable Ligand Effect. Chem. Commun. 2017, 53, 10540-10543.
(6) Fuji, K.; Morimoto, T.; Tsutsumi, K.; Kakiuchi, K., Rh(I)-Catalyzed CO Gas-Free Cyclohydrocarbonylation of Alkynes With Formaldehyde to Alpha,Beta-Butenolides. Chem. Commun. 2005, 3295-3297.
(7) Zhao, M.-N.; Zhang, Y.; Ge, N.; Yu, L.; Wang, S.; Ren, Z.-H.; Guan, Z.-H., A Rh(III)-Catalyzed Regioselective Intermolecular Oxa-Pauson-Khand Reaction of Alkynes, Arylboronic Acids and CO to Form Butenolides. Org. Chem. Front. 2020, 7, 763-767.
(8) Kadina, A. P.; Khlebnikov, A. F.; Novikov, M. S.; Perez, P. J.; Yufit, D. S., Intramolecular Cycloaddition of Azomethine Ylides, From Imines of O-Acylsalicylic Aldehyde and Ethyl Diazoacetate, to Ester Carbonyl--Experimental and DFT Computational Study. Org. Biomol. Chem. 2012, 10, 5582-5591.
(9) Hoshimoto, Y.; Ohata, T.; Sasaoka, Y.; Ohashi, M.; Ogoshi, S., Nickel(0)-Catalyzed [2 + 2 + 1] Carbonylative Cycloaddition of Imines and Alkynes or Norbornene Leading to Gamma-Lactams. J. Am. Chem. Soc. 2014, 136, 15877-15880.
(10) Nanda, T.; Ravikumar, P. C., A Palladium-Catalyzed Cascade C-C Activation of Cyclopropenone and Carbonylative Amination: Easy Access to Highly Functionalized Maleimide Derivatives. Org. Lett. 2020, 22, 1368-1374.
(11) Kazuhiko, K.; Junji, O.; Kunihiko, K.; Hiroshi, Y.; Patrick, V.; Sonia, M.; Adalbert, B. Fluorescent Maleimides and Uses Thereof. 2001.
(12) Hachiya, S.; Kasashima, Y.; Yagishita, F.; Mino, T.; Masu, H.; Sakamoto, M., Asymmetric Transformation by Dynamic Crystallization of Achiral Succinimides. Chem. Commun. 2013, 49, 4776-4778.
(13) Driller, K. M.; Klein, H.; Jackstell, R.; Beller, M., Iron-Catalyzed Carbonylation: Selective and Efficient Synthesis of Succinimides. Angew. Chem., Int. Ed 2009, 48, 6041-6044.
(14) Frisch, M. J., et al. Gaussian 16 Revision A.03. 2016.
(15) Linder, M.; Brinck, T., On the Method-Dependence of Transition State Asynchronicity in DielsAlder Reactions. Phys. Chem. Chem. Phys. 2013, 15, 5108-5114.
(16) (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A., Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724-728; (b) Hehre, W. J.; Ditchfield, R.; Pople, J. A., Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257-2261; (c) Chai, J.-D.; Head-Gordon, M., Long-Range Corrected Hybrid Density Functionals With Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
(17) (a) Hariharan, P. C.; Pople, J. A., The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theor. Chim. Acta. 1973, 28, 213-222; (b) Tomasi, J.; Mennucci, B.; Cammi, R., Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999-3094; (c) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378-6396.
(18) (a) Grimme, S., Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations. J. Chem. Theory Comput. 2019, 15, 2847-2862; (b) Pracht, P.; Bohle, F.; Grimme, S., Automated Exploration of the Low-Energy Chemical Space With Fast Quantum Chemical Methods. Phys. Chem. Chem. Phys. 2020, 22, 7169-7192.
(19) (a) Fukui, K., Formulation of the Reaction Coordinate. J. Phys. Chem. 1970, 74, 4161-4163; (b) Fukui, K., The Path of Chemical Reactions - the IRC Approach. Acc. Chem. Res. 1981, 14, 363-368.
(20) Luchini, G.; Alegre-Requena, J.; Funes-Ardoiz, I.; Paton, R., GoodVibes: automated thermochemistry for heterogeneous computational chemistry data [version 1; peer review: 2 approved with reservations]. F1000Research 2020, 9.
(21) (a) Grimme, S., Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. Chem-Eur. J. 2012, 18, 9955-9964; (b) Li, Y.-P.; Gomes, J.; Mallikarjun

Sharada, S.; Bell, A. T.; Head-Gordon, M., Improved Force-Field Parameters for QM/MM Simulations of the Energies of Adsorption for Molecules in Zeolites and a Free Rotor Correction to the Rigid Rotor Harmonic Oscillator Model for Adsorption Enthalpies. J. Phys. Chem. C 2015, 119, 1840-1850.
(22) CYLview20; Legault, C. Y., Université de Sherbrooke, 2020 (http://www.cylview.org).
(23) Delano, W. L. The PyMOL molecular graphics system; Delano Scientific, 2002.

8. NMR Spectra Copies

$\underset{\sim}{\text { N }} \quad \stackrel{8}{1}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3c
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

 -NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGO

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{\odot}{\sim}$	\cdots	100 M-O		
N	$\stackrel{\square}{8}$	N-¢		$\stackrel{\sim}{\square}$
${ }^{\circ}$	\|		¢NNN	1

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\nabla L \mathcal{E}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$


```
N~~
```


${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$$
\stackrel{0}{i o}
$$

${ }^{19}$ F NMR, $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

 NーNNNNNNNNNNNNNNNNNNNNNNNNNNNNONO

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^0]

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

オ寸 NG
 めNN

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

N~NM•NO

[^1]

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Oでてレー

${ }^{13} \mathrm{C}$ NMR， $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

б

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

 MN $\stackrel{\rightharpoonup}{N}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Sレレー
L＇60レー

${ }^{19} \mathrm{~F}$ NMR， $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^2]

 NへべNべN $\stackrel{\Gamma}{6}$
$\stackrel{\stackrel{N}{i}}{\stackrel{\circ}{i}}$
$\stackrel{\circ}{i}$

${ }^{1} \mathrm{H}$ NMR， $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

N⿵冂卄一 ヘヘ

웅

${ }^{1} \mathrm{H}$ NMR， $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3ae and regioisomer
${ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

 NMஸ

ナ $\because 0 \sim 6$ ㄷN N \sim ~
 ${ }^{13} \mathrm{C}$ NMR, $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{\infty}{\circ} \stackrel{n}{\circ} \stackrel{\circ}{\div}$

${ }^{19} \mathrm{~F}$ NMR, $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

品

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{19} \mathrm{~F}$ NMR， $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

\cdots	N	$\omega \sigma \sigma N \infty \cdots \bigcirc \bigcirc$		
∞	6			\cdots
$\stackrel{\square}{\bullet}$	$\stackrel{1}{\sim}$	V ¢ ¢ N NNNNTNN	$\cdots N 000$	$\stackrel{\sim}{N}$
\|	\|	।		

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

NNO
$\begin{array}{ll}\infty & \odot \\ \stackrel{\circ}{\circ} & \stackrel{0}{\sim} \\ & 1\end{array}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{19} \mathrm{~F}$ NMR, $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

NNNNNNNNNNNNNNNNNNNNNNNN

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

NNFO
$\stackrel{8}{\circ}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

\mathscr{C}
ल ल

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

\bigcirc	$\cdots \bigcirc \sigma$ ¢ 0		
N	$\cdots \bigcirc \infty$	$\cdots \times 0$	$\bigcirc \bigcirc$
\sim	ャッ	$\cdots \mathrm{N}$	ल ल N ${ }^{(1)}$
1	-		1 1

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

8
-
i

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

F-OMNNO $\stackrel{\sim}{\sim} \sim \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim}$
$10 \sim \infty$
$\cdots N$
$\stackrel{0}{9}$
$\stackrel{\stackrel{\rightharpoonup}{*}}{\stackrel{\rightharpoonup}{*}}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^3]
${ }^{19} \mathrm{~F}$ NMR， $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

どレて－

${ }^{13} \mathrm{C}$ NMR， $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{19} \mathrm{~F}$ NMR, $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

~No

[^4]

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

\cdots	ゅNのNN	
-		$10 \times \infty$
\oplus	M M M M N NNN	$\cdots N 0$
F	$\underbrace{\tau} \underbrace{\sim} \underbrace{5} \underbrace{5}$	\cdots

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

N				
0	$\cdots \infty$	${ }^{10} \mathrm{~N} \times$	$10 \times$	
$\stackrel{\square}{\leftarrow}$	サ ¢ ¢ ¢ ¢ ¢ N N N N N	NNe	\bigcirc	¢ ${ }_{\text {N }}^{\sim}$
	$\xrightarrow{4}$		\|	,

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

12b

12b
${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$6 \times N$
$\stackrel{N}{F}$

${ }^{19} \mathrm{~F}$ NMR, $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

ল্রি

12c
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

∇				
8	$\sim^{\infty} \times \infty \times \sim \sim$	$10 \times \infty$	\cdots	のNロNGN0才
$\stackrel{\square}{-}$	V M M M ¢ M M M N N N N	NNツ	\bigcirc	
	1×1			$\underbrace{\text { coll }}$

${ }^{13} \mathrm{C}$ NMR， $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

τ	$\cdots \omega N m \bigcirc N \infty \sim \omega \sigma$			
$\stackrel{8}{6}$		NN00	$\stackrel{10}{10}$	\pm
\leftarrow	ヶヶヶヶ下ヶヶ下下下	\cdots	$\underset{\sim}{\square}$	N
।	$1 \times \xrightarrow{\text { । }}$			

${ }^{13} \mathrm{C}$ NMR， $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

ヘ̣Nツ

12e
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

¢

12e
${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

-111.5
-112.0

${ }^{19} \mathrm{~F}$ NMR, $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

V				
($\infty \infty \times \infty$			
$\stackrel{\square}{\bullet}$	サ ¢ ¢ M M NNNNN	$N \mathrm{~N}$	$\stackrel{\infty}{\infty}$	N \sim
\|				Nos

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^0]:

[^1]: $\begin{array}{lll}1.5 & 11.0 & 10.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0.5 & -1.0\end{array}$

[^2]:

[^3]:

[^4]:

