Electronic Supporting Information

Discovery of a Simple Iron Catalyst Reveals the Intimate Steps of C–H Amination to Form C–N Bonds

Wowa Stroek¹ and Martin Albrecht^{1,*}

¹Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland

Table of Contents

General consideration	S3
Fe(HMDS)₂ synthesis	S6
Substrate synthesis	S6
Catalysis	S21
General procedure	S21
Characterization of substrates	S22
Kinetics	S26
General procedure	S26
Variation of substrate concentration	S26
Variation of catalyst concentration	S28
Product inhibition studies	S30
Catalyst decomposition studies	S31
Intermolecular competition Kinetic isotope effect	S32
Intermolecular Kinetic isotope effect	S33
Stoichiometric experiments	S35
NMR spectroscopy	S35
NMR spectroscopy	S35 S39
NMR spectroscopy FTIR-spectroscopy Computational details	S35 S39 S41
NMR spectroscopy FTIR-spectroscopy Computational details Density functional theory	S35 S39 S41 S41
NMR spectroscopy FTIR-spectroscopy Computational details Density functional theory NEVPT2-CASSCF	S35 S39 S41 S41 S44
NMR spectroscopy FTIR-spectroscopy Computational details Density functional theory NEVPT2-CASSCF DFT calculated structures	S35 S39 S41 S41 S44 S47
NMR spectroscopy FTIR-spectroscopy Computational details Density functional theory NEVPT2-CASSCF DFT calculated structures DFT calculated coordinates	S35 S39 S41 S44 S47 S52
NMR spectroscopy FTIR-spectroscopy Computational details Density functional theory NEVPT2-CASSCF DFT calculated structures DFT calculated coordinates NMR spectra	S35 S39 S41 S41 S44 S47 S52 S76
NMR spectroscopy FTIR-spectroscopy Computational details Density functional theory NEVPT2-CASSCF DFT calculated structures DFT calculated coordinates NMR spectra Fe(HMDS) ₂	S35 S39 S41 S41 S44 S47 S52 S76
NMR spectroscopy FTIR-spectroscopy Computational details Density functional theory NEVPT2-CASSCF DFT calculated structures DFT calculated structures DFT calculated coordinates NMR spectra Fe(HMDS) ₂ Substrate synthesis	S35 S39 S41 S41 S44 S47 S52 S76 S76 S76
NMR spectroscopy FTIR-spectroscopy Computational details Density functional theory NEVPT2-CASSCF DFT calculated structures DFT calculated coordinates NMR spectra Fe(HMDS) ₂ Substrate synthesis Catalysis	S35 S39 S41 S41 S44 S47 S52 S76 S76 S76 S109
NMR spectroscopy FTIR-spectroscopy Computational details Density functional theory NEVPT2-CASSCF DFT calculated structures DFT calculated coordinates NMR spectra Fe(HMDS) ₂ Substrate synthesis Catalysis Crystallographic and refinement data	S35 S39 S41 S41 S44 S47 S52 S76 S76 S76 S109 S116

General considerations

Chemicals, solvents and synthesis

All manipulations involving transition metal complexes were performed inside an argon filled MBraun glovebox with <0.1 O₂ and H₂O levels using dry and degassed solvents, unless stated otherwise. Benzene, hexane and diethylether were taken from a MBraun SPS system, degassed by three freeze-pump-thaw cycles and dried over 4 Å molecular sieves prior to use. THF-d₈, C₆D₆ and toluene-d₈ were distilled over NaK, degassed by three freeze-pump-thaw cycles and dried over y hree freeze-pump-thaw cycles and dried over 10 min, in 30 s intervals. After which they were dried under vacuum at 220 °C for 7 days.

All organic synthesis was performed under aerobic conditions with commercially available solvents, unless stated otherwise. All other chemicals were used as received from commercial sources.

NMR-spectroscopy

All ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE III HD 300. The chemical shifts are reported relative to SiMe₄ using the chemical shift of residual solvent peaks as reference.^{S1}

FT-IR spectroscopy

FTIR-spectroscopy was measured in solution using the ReactIR 15 by Mettler Toledo using a fiber probe inserted into a Schlenk under argon atmosphere. The spectra were obtained with a 1 cm⁻¹ resolution.

Density functional theory

All calculations were performed using the Orca 5.0.1 software package^{52,3} on the full atomic models (no substitutions of bulky groups to reduce computational time). All geometry optimizations (!Opt keyword) and transition state searched (!OptTS keyword) were performed on the B3LYP^{S4,5} / def2-TZVP^{S6,7} level of theory together with the RIJCOSX^{S8} approximation in conjunction with the def2/J^{S9} fitting the basis set to reduce computational time. Empirical dispersion corrections were including in all calculations with Grimme's DFT-D3 method^{S10} (!D3BJ keyword). Numerical precision for the SCF convergence was set at an energy change of 1.0e⁻⁰⁸ au (!TightSCF keyword). Convergence to an energy minima for was confirmed by performing a frequency analysis (!Freq keyword) and no imaginary frequencies were found.^{S11} Convergence to an energy saddle point was confirmed by one imaginary frequency after the frequency calculation. The negative frequency was visualized using the Chemcraft software package^{S12} to confirm the frequency represents the reaction coordinate of the transition state. Prior to transition state search calculations, the geometry was estimated by performing a Relaxed Surface Scan on the BP86^{S5,13,14} / def2-SVP^{S6,7} level of theory together with the RI-J^{S15} approximation in conjunction with the def2/J^{S9} fitting the basis set to reduce computational time. The geometry of the highest energy point was used for the prior described transition state search.

NEVPT2-CASSCF

All calculations were performed using the Orca 5.0.1 software package.^{52,3} Single point calculations on the DFT optimized structures were performed to generate quasi-restricted orbitals (QRO's) as initial guess orbitals for the CASSCF calculations (!UNO keyword). The B3LYP^{S4,5} functional with the def2-TZVP^{S6,7} basis set was used together with the RIJCOSX^{S8} approximation in conjunction with the def2-TZVP/C^{S16} fitting the basis set to reduce computational cost. The obtained QRO's were inspected and selected for the active space using the Avogadro software package.^{S17} If necessary orbitals were rotated into the active space (%scf rotate{orbital 1,orbital 2,90} end end) and inspected again. Next a single root CASSCF calculation was performed using the guess orbitals (!MOREAD keyword) using the def2-TZVP^{S6,7} basis set together with the RIJCOSX^{S8} approximation in conjunction with the def2-TZVP/C^{S16} fitting the basis set to reduce computational time. After convergence the active space orbitals were inspected to be the orbitals of interest. If necessary, orbitals of interest outside the active space were rotated in the active space and the CASSCF calculation was repeated until all orbitals of interest were converged into the active space. Lastly, a NEVPT2^{S18-20} correction was performed (!SOMF(1X) RI-NEVPT2 keyword) on the correctly converged CASSCF orbitals (!MOREAD keyword). Orbital images were generated using the IboView software package.^{S21}

Single crystal X-ray diffraction

All crystals were measured on an Oxford Diffraction SuperNova area-detector diffractometer^{S22} using mirror optics monochromated Mo $K\alpha$ radiation (λ = 0.71073 Å) and Al filtered.^{S23}

Data reduction was performed using the *CrysAlisPro*⁵²² program. The intensities were corrected for Lorentz and polarization effects, and an absorption correction based on the multi-scan method using SCALE3 ABSPACK in *CrysAlisPro*⁵²² was applied.

The structures were solved by direct methods using *SHELXT*,^{S24} which revealed the positions of all non-hydrogen atoms of the title compounds. All non-hydrogen atoms were refined anisotropically. H-atoms were assigned in geometrically calculated positions and refined using a riding model where each H-atom was assigned a fixed isotropic displacement parameter with a value equal to 1.2Ueq of its parent atom (1.5 Ueq for methyl groups), except for those attached to N atoms, where the H atoms were located from the map but refined within the riding model as described above.

Refinement of the structures was carried out on F^2 using full-matrix least-squares procedures, which minimized the function $\Sigma w (F_o^2 - F_c^2)^2$. The weighting scheme was based on counting statistics and included a factor to downweight the intense reflections. All calculations were performed using the *SHELXL-2014*/7⁵²⁴ program in OLEX2.^{S25} Further crystallographic details are compiled in table S6 and Figure S118. Crystallographic data for all structures have been deposited with the Cambridge Crystallographic Data entre (CCDC) as supplementary publication number 2171951 (**4**).

Disorder model was used for parts of the structure where the occupancies of each disordered part was refined through the use of a free variable. A solvent mask was used which would include the contribution of electron densities from void areas into the calculated structure factors, however the total electron count found in the voids are zero. The void mask was kept only to suppress checkcif alerts.

Fe(HMDS)₂ synthesis

Synthesized according to a literature procedure.^{S26} An oven dried Schlenk was charged with FeBr₂ (10.78 g; 50.00 mmol; 1.00 eq) and LiHMDS (16.73 g; 100.00 mmol; 2.00 eq) under an argon atmosphere. Next Et₂O (200 mL) was added at 0 °C, the white suspension was stirred at room temperature for 2 days. The obtained brown suspension was concentrated to dryness. The solid was extracted with hexane (1x 200 mL) and filtered over Celite, the filter was washed with hexane (20 mL). The filtrate was concentrated to dryness to obtain a green slurry which was distilled under active vacuum (approximately 0.01 mbar) at 80 °C to obtain a green oil as the final product (17.00 g; 45.00 mmol; 90%). The product was stored as a solid in the freezer at -30 °C in an argon filled glovebox.

Spectral data were consistent with previously reported characterization of the product.^{S26,27} ¹H NMR (300 MHz, C₆D₆) δ 63.07 (s, 36H).

Substrate synthesis

General procedure

Synthesized according to a literature procedure.^{S28} Corresponding carboxylic acid was dissolved in MeOH and 10 drops of concentrated sulphuric acid were added. The solution was stirred for 16 h and concentrated under reduced pressure. Water was added and the emulsion was extracted with Et₂O, washed with brine, dried over Na₂SO₄, filtered and concentrated to obtain the corresponding ester as the product.

Synthesized according to a literature procedure.^{S28} In an oven dried Schlenk under an argon atmosphere corresponding ester (1.0 eq) was dissolved in anhydrous Et_2O and cooled to 0 °C. A solution of 3.0 M MeMgBr (3.0 eq) in Et_2O was added dropwise and the obtained white suspension was stirred for 16 h. The mixture was quenched with concentrated aqueous NH₄Cl solution and extracted with Et_2O , washed with brine, dried over Na₂SO₄, filtered and concentrated to obtain the corresponding alcohol as the product.

Synthesized according to a literature procedure.^{S28} In an oven dried Schlenk under an argon atmosphere corresponding alcohol (1.0 eq) and TMSN₃ (1.2 eq) was dissolved in anhydrous

 C_6H_6 . BF₃Et₂O (1.2 eq) was added dropwise and the solution was stirred for 16 h. The obtained mixture was quenched with water, extracted with Et₂O, washed with brine, dried over Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography over SiO₂ using hexane as eluent.

All azide products were transferred into a J Young Schlenk, degassed by four freeze-pumpthaw cycles and dried over 4 Å molecular sieves for at least one week before use in catalysis.

Substrate 1a

Synthesized according to a literature procedure.^{S29} 4-phenylbutanoic acid (50.0 g; 304.5 mmol; 1.0 eq) was dissolved in MeOH (500 mL) and 10 drops of concentrated sulphuric acid were added. The solution was stirred for 16 h and concentrated under reduced pressure. Water (100 mL) was added and the emulsion was extracted with Et₂O (3x 250 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (52.11 g; 292.4 mmol; 96%).

Spectral data were consistent with previously reported characterization of the product.^{S29} ¹H NMR (300 MHz, CD₂Cl₂) δ 7.32 – 7.23 (m, 2H), 7.23 – 7.05 (m, 3H), 3.64 (s, 3H), 2.64 (dd, *J* = 8.5, 6.8 Hz, 2H), 2.32 (t, *J* = 7.5 Hz, 2H), 1.93 (p, *J* = 7.5 Hz, 2H).

Synthesized according to a literature procedure.^{S29} In an oven dried Schlenk under an argon atmosphere methyl 4-phenylbutanoate (52.0 g; 291.8 mmol; 1.0 eq) was dissolved in anhydrous Et₂O (300 mL) and cooled to 0 °C. A solution of 3.0 M MeMgBr (292 mL; 875.3 mmol; 3.0 eq) in Et₂O was added dropwise and the obtained white suspension was stirred for 16 h. The mixture was quenched with concentrated aqueous NH₄Cl (200 mL) solution and extracted with Et₂O (5x 250 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (38.91 g; 218.3 mmol; 75%).

Spectral data were consistent with previously reported characterization of the product.^{S29} ¹H NMR (300 MHz, CDCl₃) δ 7.26 – 7.15 (m, 2H), 7.15 – 7.07 (m, 3H), 2.54 (t, *J* = 7.6 Hz, 2H), 1.70 – 1.54 (m, 2H), 1.49 – 1.37 (m, 2H), 1.12 (s, 6H).

Synthesized according to a literature procedure.^{S29} In an oven dried Schlenk under an argon atmosphere 2-methyl-5-phenylpentan-2-ol (30.0 g; 168.3 mmol; 1.0 eq) and TMSN₃ (26.8 mL; 201.9 mmol; 1.2 eq) was dissolved in anhydrous C₆H₆ (500 mL). BF₃Et₂O (24.9 mL; 201.9 mmol; 1.2 eq) was added dropwise and the solution was stirred for 16 h. The obtained mixture was quenched with water (200 mL), extracted with Et₂O (3x 250 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography over SiO₂ using hexane as eluent. The product was obtained as a colorless oil (13.55 g; 66.7 mmol; 40%).

Spectral data were consistent with previously reported characterization of the product.^{S29} ¹H NMR (300 MHz, CDCl₃) δ 7.42 – 7.31 (m, 2H), 7.31 – 7.20 (m, 3H), 2.70 (t, *J* = 7.5 Hz, 2H), 1.89 – 1.67 (m, 2H), 1.67 – 1.42 (m, 2H), 1.33 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 142.17, 128.50, 126.01, 61.71, 41.19, 36.18, 26.24, 26.13.

Substrate 9a

Synthesized according to a literature procedure.^{S30} 4-(p-tolyl)butanoic acid (8.00 g; 44.89 mmol; 1.0 eq) was dissolved in MeOH (100 mL) and 10 drops of concentrated sulphuric acid were added. The solution was stirred for 16 h and concentrated under reduced pressure. Water (100 mL) was added and the emulsion was extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (7.80 g; 40.6 mmol; 90%).

Spectral data were consistent with previously reported characterization of the product.^{S30} ¹H NMR (300 MHz, CDCl₃) δ 7.05 – 6.92 (m, 4H), 3.57 (s, 3H), 2.52 (t, *J* = 7.6 Hz, 2H), 2.23 (d, *J* = 2.7 Hz, 5H), 1.84 (p, *J* = 7.6 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 174.13, 138.41, 135.55, 129.19, 128.49, 51.62, 34.81, 33.53, 26.73, 21.12.

Synthesized according to a literature procedure.^{S29} In an oven dried Schlenk under an argon atmosphere methyl 4-(p-tolyl)butanoate (7.79 g; 40.52 mmol; 1.0 eq) was dissolved in anhydrous Et₂O (200 mL) and cooled to 0 °C. A solution of 3.0 M MeMgBr (40.5 mL; 121.6 mmol; 3.0 eq) in Et₂O was added dropwise and the obtained white suspension was stirred for 16 h. The mixture was quenched with concentrated aqueous NH₄Cl (25 mL) solution and extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (7.00 g; 36.4 mmol; 90%).

Spectral data were consistent with previously reported characterization of the product.^{S29 1}H NMR (300 MHz, CDCl₃) δ 7.10 (s, 4H), 2.59 (t, *J* = 7.5 Hz, 2H), 2.33 (s, 3H), 1.77 – 1.60 (m, 2H),

1.57 – 1.45 (m, 2H), 1.31 (s, 1H), 1.21 (s, 6H). 13 C NMR (75 MHz, CDCl₃) δ 139.47, 135.28, 129.12, 128.40, 71.08, 43.64, 36.01, 29.36, 26.52, 21.12.

Synthesized according to a literature procedure.^{S29} In an oven dried Schlenk under an argon atmosphere 2-methyl-5-(p-tolyl)pentan-2-ol (6.44 g; 33.5 mmol; 1.0 eq) and TMSN₃ (5.3 mL; 40.2 mmol; 1.2 eq) was dissolved in anhydrous C_6H_6 (200 mL). BF₃Et₂O (4.96 mL; 40.2 mmol; 1.2 eq) was added dropwise and the solution was stirred for 16 h. The obtained mixture was quenched with water (100 mL), extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography over SiO₂ using hexane as eluent. The product was obtained as a colorless oil (1.77 g; 8.1 mmol; 24%).

Spectral data were consistent with previously reported characterization of the product.^{S29} ¹H NMR (300 MHz, CDCl₃) δ 7.15 – 7.03 (m, 4H), 2.59 (t, *J* = 7.5 Hz, 2H), 2.33 (s, 3H), 1.76 – 1.56 (m, 2H), 1.56 – 1.41 (m, 2H), 1.25 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 139.09, 135.44, 129.19, 128.37, 61.73, 41.20, 35.73, 26.36, 26.12, 21.14.

Substrate 10a

Synthesized according to a literature procedure.⁵²⁹ 4-(4-methoxyphenyl)butanoic acid (8.00 g; 41.2 mmol; 1.0 eq) was dissolved in MeOH (100 mL) and 10 drops of concentrated sulphuric acid were added. The solution was stirred for 16 h and concentrated under reduced pressure. Water (100 mL) was added and the emulsion was extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (8.12 g; 39.0 mmol; 95%).

Spectral data were consistent with previously reported characterization of the product.^{S29} ¹H NMR (300 MHz, CDCl₃) δ 7.14 – 7.05 (m, 2H), 6.87 – 6.78 (m, 2H), 3.79 (s, 3H), 3.66 (s, 3H), 2.59 (t, *J* = 7.6 Hz, 2H), 2.32 (t, *J* = 7.5 Hz, 2H), 2.00 – 1.87 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 174.15, 158.03, 133.57, 129.51, 113.93, 55.39, 51.63, 34.34, 33.48, 26.86.

Synthesized according to a literature procedure.^{S29} In an oven dried Schlenk under an argon atmosphere methyl 4-(4-methoxyphenyl)butanoate (8.07 g; 38.8 mmol; 1.0 eq) was dissolved in anhydrous Et_2O (200 mL) and cooled to 0 °C. A solution of 3.0 M MeMgBr (38.8 mL; 116.3

mmol; 3.0 eq) in Et₂O was added dropwise and the obtained white suspension was stirred for 16 h. The mixture was quenched with concentrated aqueous NH₄Cl (50 mL) solution and extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (7.34 g; 35.2 mmol; 91%).

Spectral data were consistent with previously reported characterization of the product.^{S29} ¹H NMR (300 MHz, CDCl₃) δ 7.15 – 7.06 (m, 2H), 6.87 – 6.78 (m, 2H), 3.79 (s, 3H), 2.57 (t, *J* = 7.5 Hz, 2H), 1.75 – 1.55 (m, 2H), 1.54 – 1.44 (m, 2H), 1.38 (d, *J* = 14.1 Hz, 1H), 1.20 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 157.85, 134.67, 129.39, 113.86, 71.09, 55.39, 43.58, 35.54, 29.38, 26.63.

Synthesized according to a literature procedure.^{S29} In an oven dried Schlenk under an argon atmosphere 5-(4-methoxyphenyl)-2-methylpentan-2-ol (6.88 g; 33.0 mmol; 1.0 eq) and TMSN₃ (5.3 mL; 39.6 mmol; 1.2 eq) was dissolved in anhydrous C₆H₆ (200 mL). BF₃Et₂O (4.9 mL; 39.6 mmol; 1.2 eq) was added dropwise and the solution was stirred at 60 °C for 40 h. The obtained mixture was quenched with water (100 mL), extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography over SiO₂ using hexane as eluent. The product was obtained as a colorless oil (0.93 g; 4.0 mmol; 12%).

Spectral data were consistent with previously reported characterization of the product.^{S29} ¹H NMR (300 MHz, CDCl₃) δ 7.14 – 7.05 (m, 2H), 6.88 – 6.79 (m, 2H), 3.79 (s, 3H), 2.56 (t, *J* = 7.4 Hz, 2H), 1.72 – 1.57 (m, 2H), 1.56 – 1.46 (m, 2H), 1.24 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 157.94, 134.26, 129.37, 113.92, 61.73, 55.40, 41.13, 35.25, 26.47, 26.13.

Substrate 11a

Synthesized according to a literature procedure.^{S30} 4-(4-bromophenyl)butanoic acid (20.00 g; 82.3 mmol; 1.0 eq) was dissolved in MeOH (300 mL) and 10 drops of concentrated sulphuric acid were added. The solution was stirred for 16 h and concentrated under reduced pressure. Water (200 mL) was added and the emulsion was extracted with Et₂O (3x 200 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (19.54 g; 76.0 mmol; 92%).

Spectral data were consistent with previously reported characterization of the product.^{S30} ¹H NMR (300 MHz, CDCl₃) δ 7.44 – 7.35 (m, 2H), 7.09 – 7.00 (m, 2H), 3.66 (d, *J* = 1.2 Hz, 3H), 2.60 (t, *J* = 7.6 Hz, 2H), 2.31 (t, *J* = 7.4 Hz, 2H), 2.01 – 1.87 (m, 2H). ¹³C NMR (75 MHz, CDCl3) δ 173.86, 140.43, 131.56, 130.36, 119.87, 51.68, 34.61, 33.33, 26.41.

Synthesized according to a literature procedure.^{S31} In an oven dried Schlenk under an argon atmosphere methyl 4-(4-bromophenyl)butanoate (19.54 g; 72.06 mmol; 1.0 eq) was dissolved in anhydrous Et_2O (400 mL) and cooled to 0 °C. A solution of 3.0 M MeMgBr (72.1 mL; 216.2 mmol; 3.0 eq) in Et_2O was added dropwise and the obtained white suspension was stirred for 16 h. The mixture was quenched with concentrated aqueous NH₄Cl (100 mL) solution and extracted with Et_2O (3x 200 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (16.77 g; 61.8 mmol; 86%).

Spectral data were consistent with previously reported characterization of the product.^{S31} ¹H NMR (300 MHz, CDCl₃) δ 7.44 – 7.35 (m, 2H), 7.11 – 7.01 (m, 2H), 2.58 (td, *J* = 7.6, 2.0 Hz, 2H), 1.76 – 1.59 (m, 2H), 1.54 – 1.43 (m, 2H), 1.28 (d, *J* = 3.2 Hz, 1H), 1.20 (d, *J* = 2.0 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 141.48, 131.47, 130.31, 119.58, 70.99, 43.40, 35.82, 29.43, 26.17.

Synthesized according to a literature procedure.^{S32} In an oven dried Schlenk under an argon atmosphere 5-(4-bromophenyl)-2-methylpentan-2-ol (4.27 g; 16.6 mmol; 1.0 eq) and TMSN₃ (2.6 mL; 19.9 mmol; 1.2 eq) was dissolved in anhydrous C₆H₆ (200 mL). BF₃Et₂O (2.5 mL; 19.9 mmol; 1.2 eq) was added dropwise and the solution was stirred for 16 h. The obtained mixture was quenched with water (100 mL), extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography over SiO₂ using hexane as eluent. The product was obtained as a colorless oil (2.55 g; 9.0 mmol; 54%).

Spectral data were consistent with previously reported characterization of the product.^{S32} ¹H NMR (300 MHz, CDCl₃) δ 7.44 – 7.35 (m, 2H), 7.11 – 7.01 (m, 2H), 2.57 (t, *J* = 7.5 Hz, 2H), 1.74 – 1.59 (m, 2H), 1.53 – 1.45 (m, 2H), 1.24 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 141.08, 131.56, 130.27, 119.74, 61.60, 41.05, 35.52, 26.13, 26.02.

Substrate 12a

Synthesized according to a literature procedure.^{S33} 4-(thiophen-2-yl)butanoic acid (8.05 g; 47.3 mmol; 1.0 eq) was dissolved in MeOH (100 mL) and 10 drops of concentrated sulphuric acid were added. The solution was stirred for 16 h and concentrated under reduced pressure. Water (100 mL) was added and the emulsion was extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a brown oil (8.00 g; 43.4 mmol; 92%).

Spectral data were consistent with previously reported characterization of the product.^{S33} ¹H NMR (300 MHz, CDCl₃) δ 7.12 (dd, *J* = 5.1, 1.2 Hz, 1H), 6.92 (dd, *J* = 5.1, 3.4 Hz, 1H), 6.80 (dq, *J* = 3.3, 1.0 Hz, 1H), 3.68 (s, 3H), 2.97 – 2.82 (m, 2H), 2.38 (t, *J* = 7.4 Hz, 2H), 2.01 (p, *J* = 7.5 Hz, 2H).

Synthesized according to a literature procedure.^{S33} In an oven dried Schlenk under an argon atmosphere methyl 4-(thiophen-2-yl)butanoate (8.00 g; 43.4 mmol; 1.0 eq) was dissolved in anhydrous Et₂O (200 mL) and cooled to 0 °C. A solution of 3.0 M MeMgBr (43.4 mL; 130.3 mmol; 3.0 eq) in Et₂O was added dropwise and the obtained white suspension was stirred for 16 h. The mixture was quenched with concentrated aqueous NH₄Cl (50 mL) solution and extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a brown oil (6.78 g; 36.8 mmol; 85%).

Spectral data were consistent with previously reported characterization of the product.^{S33} ¹H NMR (300 MHz, CDCl₃) δ 7.11 (dd, *J* = 5.1, 1.2 Hz, 1H), 6.92 (dd, *J* = 5.1, 3.4 Hz, 1H), 6.79 (dq, *J* = 3.3, 1.0 Hz, 1H), 2.85 (td, *J* = 7.5, 1.0 Hz, 2H), 1.85 – 1.66 (m, 2H), 1.60 – 1.48 (m, 2H), 1.35 – 1.28 (m, 1H), 1.22 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 145.47, 126.83, 124.25, 123.04, 71.01, 43.36, 30.43, 29.41, 26.78.

Synthesized according to a literature procedure.^{S33} In an oven dried Schlenk under an argon atmosphere 2-methyl-5-(thiophen-2-yl)pentan-2-ol (6.67 g; 36.2 mmol; 1.0 eq) and TMSN₃ (5.8 mL; 43.4 mmol; 1.2 eq) was dissolved in anhydrous C_6H_6 (200 mL). BF₃Et₂O (5.4 mL; 43.4 mmol; 1.2 eq) was added dropwise and the solution was stirred for 16 h. The obtained mixture was quenched with water (100 mL), extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography over SiO₂ using hexane as eluent. The product was obtained as a colorless oil (1.40 g; 6.7 mmol; 18%).

Spectral data were consistent with previously reported characterization of the product.^{S33} ¹H NMR (300 MHz, CDCl₃) δ 7.11 (dd, *J* = 5.1, 1.2 Hz, 1H), 6.92 (dd, *J* = 5.1, 3.4 Hz, 1H), 6.79 (dq, *J* = 3.3, 1.0 Hz, 1H), 2.85 (td, *J* = 7.5, 1.0 Hz, 2H), 1.85 – 1.66 (m, 2H), 1.60 – 1.48 (m, 2H), 1.35 – 1.28 (m, 1H), 1.22 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 145.47, 126.83, 124.25, 123.04, 71.01, 43.36, 30.43, 29.41, 26.78.

Substrate 13a

Synthesized according to a literature procedure.^{S32} 2-methylbenzoic acid (8.00 g; 58.8 mmol; 1.0 eq) was dissolved in MeOH (100 mL) and 10 drops of concentrated sulphuric acid were added. The solution was stirred for 72 h at 60 °C and concentrated under reduced pressure. Water (100 mL) was added and the emulsion was extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (8.14 g; 54.2 mmol; 92%).

Spectral data were consistent with previously reported characterization of the product.^{S32} ¹H NMR (300 MHz, CDCl₃) δ 7.83 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.32 (td, *J* = 7.5, 1.5 Hz, 1H), 7.23 – 7.10 (m, 2H), 3.81 (s, 3H), 2.53 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 168.21, 140.30, 132.08, 131.80, 130.68, 129.69, 125.81, 51.92, 21.84.

Synthesized according to a literature procedure.^{S32} In an oven dried Schlenk under an argon atmosphere methyl 2-methylbenzoate (8.14 g; 54.2 mmol; 1.0 eq) was dissolved in anhydrous Et₂O (200 mL) and cooled to 0 °C. A solution of 3.0 M MeMgBr (54.2 mL; 162.6 mmol; 3.0 eq) in Et₂O was added dropwise and the obtained white suspension was stirred for 16 h. The mixture was quenched with concentrated aqueous NH₄Cl (50 mL) solution and extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (7.28 g; 48.5 mmol; 89%).

Spectral data were consistent with previously reported characterization of the product.^{S32} ¹H NMR (300 MHz, CDCl₃) δ 7.51 – 7.40 (m, 1H), 7.20 – 7.13 (m, 3H), 2.61 (s, 3H), 1.67 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 145.85, 136.03, 132.78, 127.15, 125.76, 125.34, 73.79, 30.95, 22.33.

Synthesized according to a literature procedure.^{S32} In an oven dried Schlenk under an argon atmosphere 2-(o-tolyl)propan-2-ol (7.14 g; 47.5 mmol; 1.0 eq) and TMSN₃ (7.6 mL; 57.0 mmol; 1.2 eq) was dissolved in anhydrous C₆H₆ (200 mL). BF₃Et₂O (7.0 mL; 57.0 mmol; 1.2 eq) was added dropwise and the solution was stirred for 16 h. The obtained mixture was quenched with water (100 mL), extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography over SiO₂ using hexane as eluent. The product was obtained as a colorless oil (3.60 g; 20.5 mmol; 43%).

Spectral data were consistent with previously reported characterization of the product.^{S32} ¹H NMR (300 MHz, CDCl₃) δ 7.33 – 7.21 (m, 1H), 7.17 – 7.02 (m, 3H), 2.52 (s, 3H), 1.61 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 141.22, 136.58, 133.01, 127.88, 126.04, 125.91, 64.57, 27.91, 21.68.

Substrate 14a

Synthesized according to a literature procedure.^{S34} 5-phenylpentanoic acid (8.00 g; 44.9 mmol; 1.0 eq) was dissolved in MeOH (100 mL) and 10 drops of concentrated sulphuric acid were added. The solution was stirred for 16 h and concentrated under reduced pressure. Water (100 mL) was added and the emulsion was extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (7.92 g; 41.2 mmol; 92%).

Spectral data were consistent with previously reported characterization of the product.^{S34} ¹H NMR (300 MHz, CDCl₃) δ 7.25 – 7.16 (m, 2H), 7.15 – 7.06 (m, 3H), 3.59 (s, 3H), 2.62 – 2.49 (m, 2H), 2.34 – 2.20 (m, 2H), 1.69 – 1.49 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 174.22, 142.26, 128.51, 128.45, 125.91, 51.62, 35.70, 34.08, 31.03, 24.72.

Synthesized according to a literature procedure.^{S35} In an oven dried Schlenk under an argon atmosphere methyl 5-phenylpentanoate (7.92 g; 41.2 mmol; 1.0 eq) was dissolved in anhydrous Et₂O (200 mL) and cooled to 0 °C. A solution of 3.0 M MeMgBr (41.2 mL; 123.6 mmol; 3.0 eq) in Et₂O was added dropwise and the obtained white suspension was stirred for 16 h. The mixture was quenched with concentrated aqueous NH₄Cl (50 mL) solution and extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (7.28 g; 37.9 mmol; 92%).

Spectral data were consistent with previously reported characterization of the product.^{S35} ¹H NMR (300 MHz, CDCl₃) δ 7.28 – 7.16 (m, 2H), 7.16 – 6.99 (m, 3H), 2.56 (t, *J* = 8.1 Hz, 2H), 1.67 – 1.49 (m, 2H), 1.49 – 1.39 (m, 2H), 1.39 – 1.26 (m, 2H), 1.21 (s, 1H), 1.13 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 142.77, 128.52, 128.41, 125.79, 71.14, 43.90, 36.09, 32.18, 29.39, 24.19.

Synthesized according to a literature procedure.^{S36} In an oven dried Schlenk under an argon atmosphere 2-methyl-6-phenylhexan-2-ol (7.23 g; 37.6 mmol; 1.0 eq) and TMSN₃ (6.0 mL; 45.1 mmol; 1.2 eq) was dissolved in anhydrous C_6H_6 (200 mL). BF₃Et₂O (5.6 mL; 45.1 mmol; 1.2 eq) was added dropwise and the solution was stirred for 16 h. The obtained mixture was

quenched with water (100 mL), extracted with Et_2O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography over SiO₂ using hexane as eluent. The product was obtained as a colorless oil (3.69 g; 17.0 mmol; 45%).

Spectral data were consistent with previously reported characterization of the product.^{S36} ¹H NMR (300 MHz, CDCl₃) δ 7.26 – 7.15 (m, 2H), 7.15 – 7.05 (m, 3H), 2.55 (t, 2H), 1.62 – 1.49 (m, 2H), 1.49 – 1.40 (m, 2H), 1.40 – 1.26 (m, 2H), 1.17 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 142.57, 128.50, 128.44, 125.85, 61.79, 41.44, 35.99, 31.89, 26.13, 24.10.

Substrate 15a

Synthesized according to a literature procedure.^{S28} In an oven dried Schlenk under an argon atmosphere 2,5-dimethylhexan-2-ol (5.25 g; 40.3 mmol; 1.0 eq) and TMSN₃ (6.4 mL; 48.4 mmol; 1.2 eq) was dissolved in anhydrous C_6H_6 (200 mL). BF₃Et₂O (6.0 mL; 48.4 mmol; 1.2 eq) was added dropwise and the solution was stirred for 16 h. The obtained mixture was quenched with water (100 mL), extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography over SiO₂ using hexane as eluent. The product was obtained as a colorless oil (3.14 g; 20.2 mmol; 50%).

Spectral data were consistent with previously reported characterization of the product.^{S28} ¹H NMR (300 MHz, CDCl₃) δ 1.58 – 1.42 (m, 3H), 1.30 – 1.16 (m, 8H), 0.90 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 61.88, 39.37, 33.34, 28.49, 26.14, 22.72.

Substrate 16a

Synthesized according to a literature procedure.^{S28} In an oven dried Schlenk under an argon atmosphere 2-methylhexan-2-ol (5.23 g; 45.0 mmol; 1.0 eq) and TMSN₃ (7.2 mL; 54.0 mmol; 1.2 eq) was dissolved in anhydrous C_6H_6 (200 mL). BF₃Et₂O (6.7 mL; 54.0 mmol; 1.2 eq) was added dropwise and the solution was stirred for 16 h. The obtained mixture was quenched with water (100 mL), extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography over SiO₂ using hexane as eluent. The product was obtained as a colorless oil (3.69 g; 26.1 mmol; 58%).

Spectral data were consistent with previously reported characterization of the product.^{S28} ¹H NMR (300 MHz, CDCl₃) δ 1.54 – 1.42 (m, 2H), 1.42 – 1.27 (m, 4H), 1.25 (s, 6H), 0.99 – 0.84 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 61.83, 41.32, 26.57, 26.13, 23.15, 14.16.

Substrate 17a

Synthesized according to a literature procedure.^{S28} In an oven dried Schlenk under an argon atmosphere 2-methylpentan-2-ol (5.25 g; 51.4 mmol; 1.0 eq) and TMSN₃ (8.2 mL; 61.7 mmol; 1.2 eq) was dissolved in anhydrous C_6H_6 (200 mL). BF₃Et₂O (7.6 mL; 61.7 mmol; 1.2 eq) was added dropwise and the solution was stirred for 16 h. The obtained mixture was quenched with water (100 mL), extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography over SiO₂ using hexane as eluent. The product was obtained as a colorless oil (4.99 g; 51.4 mmol; 76%).

Spectral data were consistent with previously reported characterization of the product.^{S28} ¹H NMR (300 MHz, CDCl₃) δ 1.53 – 1.30 (m, 4H), 1.25 (s, 6H), 0.93 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 61.83, 43.90, 26.13, 17.70, 14.52.

Substrate 18a

Synthesized according to a literature procedure.^{S37} In an oven dried Schlenk under an argon atmosphere cycloheptanone (5.15 g; 45.9 mmol; 1.0 eq) was dissolved in anhydrous Et₂O (200 mL) and cooled to 0 °C. A solution of 3.0 M MeMgBr (30.6 mL; 91.8 mmol; 2.0 eq) in Et₂O was added dropwise and the obtained white suspension was stirred for 16 h. The mixture was quenched with concentrated aqueous NH₄Cl (50 mL) solution and extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (4.28 g; 33.4 mmol; 73%).

Spectral data were consistent with previously reported characterization of the product.^{S37} ¹H NMR (300 MHz, CDCl₃) δ 1.76 – 1.45 (m, 12H), 1.44 – 1.29 (m, 3H), 1.22 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 74.10, 43.17, 31.29, 29.85, 22.76.

Synthesized according to a literature procedure.^{S37} In an oven dried Schlenk under an argon atmosphere 1-methylcycloheptan-1-ol (4.13 g; 32.2 mmol; 1.0 eq) and TMSN₃ (5.1 mL; 38.6 mmol; 1.2 eq) was dissolved in anhydrous C_6H_6 (200 mL). BF₃Et₂O (4.8 mL; 38.6 mmol; 1.2 eq) was added dropwise and the solution was stirred for 16 h. The obtained mixture was quenched with water (100 mL), extracted with Et₂O (3x 100 mL), washed with brine (100 mL),

dried over Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography over SiO₂ using hexane as eluent. The product was obtained as a colorless oil (2.12 g; 13.8 mmol; 43%).

Spectral data were consistent with previously reported characterization of the product.^{S37} ¹H NMR (300 MHz, CDCl₃) δ 1.86 – 1.33 (m, 12H), 1.29 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 65.36, 40.24, 29.44, 27.59, 22.68.

Substrate 19a

Synthesized according to a literature procedure.^{S38} 3-cyclohexylpropanoic acid (8.06 g; 51.6 mmol; 1.0 eq) was dissolved in MeOH (100 mL) and 10 drops of concentrated sulphuric acid were added. The solution was stirred for 72 h at 60 °C and concentrated under reduced pressure. Water (100 mL) was added and the emulsion was extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (8.22 g; 48.3 mmol; 94%).

Spectral data were consistent with previously reported characterization of the product.^{S38} ¹H NMR (300 MHz, CDCl₃) δ 3.60 (s, 3H), 2.25 (t, *J* = 7.7 Hz, 2H), 1.73 – 1.51 (m, 5H), 1.46 (q, *J* = 7.2 Hz, 2H), 1.27 – 0.97 (m, 4H), 0.92 – 0.74 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 174.52, 51.39, 37.24, 32.98, 32.36, 31.65, 26.55, 26.23.

Synthesized according to a literature procedure.^{S39} In an oven dried Schlenk under an argon atmosphere methyl 3-cyclohexylpropanoate (8.08 g; 47.5 mmol; 1.0 eq) was dissolved in anhydrous Et₂O (200 mL) and cooled to 0 °C. A solution of 3.0 M MeMgBr (47.5 mL; 122.4 mmol; 3.0 eq) in Et₂O was added dropwise and the obtained white suspension was stirred for 16 h. The mixture was quenched with concentrated aqueous NH₄Cl (50 mL) solution and extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (5.67 g; 33.3 mmol; 70%).

Spectral data were consistent with previously reported characterization of the product.^{S39} ¹H NMR (300 MHz, CDCl₃) δ 1.77 – 1.53 (m, 7H), 1.51 – 1.36 (m, 2H), 1.34 – 1.00 (m, 13H), 0.94 – 0.75 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 71.08, 41.30, 38.27, 33.51, 31.99, 29.20, 26.76, 26.46.

Synthesized according to a literature procedure.^{S32} In an oven dried Schlenk under an argon atmosphere 4-cyclohexyl-2-methylbutan-2-ol (5.67 g; 33.3 mmol; 1.0 eq) and TMSN₃ (5.3 mL; 40.0 mmol; 1.2 eq) was dissolved in anhydrous C_6H_6 (200 mL). BF₃Et₂O (4.9 mL; 40.0 mmol; 1.2 eq) was added dropwise and the solution was stirred for 16 h. The obtained mixture was quenched with water (100 mL), extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography over SiO₂ using hexane as eluent. The product was obtained as a colorless oil (2.27 g; 11.6 mmol; 35%).

Spectral data were consistent with previously reported characterization of the product.^{S32} ¹H NMR (300 MHz, CDCl₃) δ 1.79 – 1.57 (m, 5H), 1.54 – 1.40 (m, 2H), 1.36 – 1.01 (m, 12H), 0.98 – 0.79 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 61.92, 38.89, 38.15, 33.51, 31.90, 26.78, 26.49, 26.12.

Substrate 20a

Synthesized according to a literature procedure.^{S40} In an oven dried Schlenk under an argon atmosphere methyl 7-bromoheptanoate (5.00 g; 22.4 mmol; 1.0 eq) was dissolved in anhydrous Et₂O (200 mL) and cooled to 0 °C. A solution of 3.0 M MeMgBr (22.4 mL; 67.2 mmol; 3.0 eq) in Et₂O was added dropwise and the obtained white suspension was stirred for 16 h. The mixture was quenched with concentrated aqueous NH₄Cl (50 mL) solution and extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (5.00 g; 22.4 mmol; >99%).

Spectral data were consistent with previously reported characterization of the product.^{S40} ¹H NMR (300 MHz, CDCl₃) δ 3.41 (t, *J* = 6.8 Hz, 2H), 1.86 (p, *J* = 6.9 Hz, 2H), 1.52 – 1.26 (m, 7H), 1.21 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 71.12, 43.94, 34.10, 32.89, 29.43, 29.40, 28.29, 24.30.

Synthesized according to a literature procedure.^{S32} In an oven dried Schlenk under an argon atmosphere 8-bromo-2-methyloctan-2-ol (5.00 g; 22.4 mmol; 1.0 eq) and TMSN₃ (3.6 mL; 26.9 mmol; 1.2 eq) was dissolved in anhydrous C₆H₆ (200 mL). BF₃Et₂O (3.3 mL; 26.9 mmol; 1.2 eq) was added dropwise and the solution was stirred for 16 h. The obtained mixture was quenched with water (100 mL), extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography over SiO₂ using hexane as eluent. The product was obtained as a colorless oil (2.10 g; 8.46 mmol; 38%).

Spectral data were consistent with previously reported characterization of the product.^{S32} ¹H NMR (300 MHz, CDCl₃) δ 3.40 (t, *J* = 6.8 Hz, 2H), 1.85 (p, *J* = 6.9 Hz, 2H), 1.52 – 1.40 (m, 4H),

1.40 – 1.28 (m, 4H), 1.24 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 61.61, 41.34, 33.87, 32.70, 29.02, 28.07, 25.99, 24.07.

Substrate 1a-d2

Synthesized according to a literature procedure.^{S29} 4-phenylbutanoic acid (5.35 g; 32.6 mmol; 1.0 eq) and 10% Pd/C (0.519 g; 0.48 mmol; 0.015 eq) were suspended in D₂O (25 mL). The obtained black suspension was purged three times with H₂ and stirred for 72 h at 50 °C. The black suspension was filtered through Celite and washed with Et₂O (200 mL). The water layer was extracted with Et₂O (3x 100 mL) and the organic layers were combined, washed with brine, dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (4.32 g; 26.0 mmol; 80%). A deuteration of 96% was achieved according to ¹H NMR.

Spectral data were consistent with previously reported characterization of the product.^{S29} ¹H NMR (300 MHz, C_6D_6) δ 7.22 – 6.81 (m, 5H), 2.00 (t, *J* = 7.4 Hz, 2H), 1.69 (t, *J* = 7.3 Hz, 2H).

Synthesized according to a literature procedure.⁵²⁹ 4-phenylbutanoic-4,4- d_2 acid (4.32 g; 26.0 mmol; 1.0 eq) was dissolved in MeOH (100 mL) and 10 drops of concentrated sulphuric acid were added. The solution was stirred for 16 h and concentrated under reduced pressure. Water (100 mL) was added and the emulsion was extracted with Et₂O (3x 250 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (4.06 g; 22.5 mmol; 87%).

Spectral data were consistent with previously reported characterization of the product.^{S29} ¹H NMR (300 MHz, CDCl₃) δ 7.32 – 7.17 (m, 2H), 7.17 – 7.03 (m, 3H), 3.59 (s, 3H), 2.26 (t, *J* = 7.5 Hz, 2H), 1.87 (t, *J* = 7.4 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 174.09, 141.43, 128.60, 128.51, 126.11, 51.64, 35.49 – 33.79 (m), 33.47, 26.46.

Synthesized according to a literature procedure.^{S29} In an oven dried Schlenk under an argon atmosphere methyl 4-phenylbutanoate-4,4- d_2 (3.97 g; 22.0 mmol; 1.0 eq) was dissolved in anhydrous Et₂O (300 mL) and cooled to 0 °C. A solution of 3.0 M MeMgBr (22.03 mL; 66.1 mmol; 3.0 eq) in Et₂O was added dropwise and the obtained white suspension was stirred for

16 h. The mixture was quenched with concentrated aqueous NH₄Cl (100 mL) solution and extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The product was obtained as a colorless oil (3,66 g; 20.3 mmol; 92%).

Spectral data were consistent with previously reported characterization of the product.^{S29} ¹H NMR (300 MHz, CDCl₃) δ 7.31 – 7.16 (m, 2H), 7.16 – 7.03 (m, 3H), 1.68 – 1.56 (m, 2H), 1.50 – 1.38 (m, 2H), 1.14 (s, 6H).

Synthesized according to a literature procedure.^{S29} In an oven dried Schlenk under an argon atmosphere 2-methyl-5-phenylpentan-5,5- d_2 -2-ol (3.60 g; 20.0 mmol; 1.0 eq) and TMSN₃ (3.2 mL; 24.0 mmol; 1.2 eq) was dissolved in anhydrous C₆H₆ (300 mL). BF₃Et₂O (3.0 mL; 24.0 mmol; 1.2 eq) was added dropwise and the solution was stirred for 16 h. The obtained mixture was quenched with water (100 mL), extracted with Et₂O (3x 100 mL), washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography over SiO₂ using hexane as eluent. The product was obtained as a colorless oil (1.48 g; 7.2 mmol; 36%).

Spectral data were consistent with previously reported characterization of the product.^{S29} ¹H NMR (300 MHz, CDCl₃) δ 7.26 – 7.17 (m, 2H), 7.16 – 7.07 (m, 3H), 1.65 – 1.55 (m, 2H), 1.49 – 1.40 (m, 2H), 1.18 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 142.10, 128.50, 126.00, 61.70, 41.13, 36.24 – 34.68 (m), 26.12.

Catalysis

General procedure

Inside an argon filled glovebox, a stock solution was made by dissolving Fe(HMDS)₂ (9.3 mg; 0.025 mmol) in 2 mL of deuterated solvent. A stock solution of internal standard was made by dissolving 1,3,5-trimethoxybenzene (45.5 mg; 0.0271 mmol) in 1 mL of deuterated solvent. The corresponding azide (25 mmol) weighed into a vial, stock solution of Fe(HMDS)₂ (0.2 mL), internal standard stock solution (0.1 mL) and deuterated solvent (0.2 mL) were added. The contents of the vial was transferred into a J Young NMR tube. The NMR tube was taken outside the glovebox and heated in an oil bath (Figure S1). Yields and conversions were determined by ¹H NMR spectroscopy using the benzylic CH and CH₂ resonances, respectively. Small quantities of cyclic imine and of the acyclic amine (from formal azide reduction) were also detected in some of the product NMR spectra. Catalytic runs with lower catalyst loadings were performed by dilution of the Fe(HMDS)₂ stock solution.

Figure S1: Typical setup for running catalytic experiments.

Characterization of C–H aminated products

All products were characterized as crude mixtures after catalysis was completed, unless stated otherwise.

Product **1b**

Spectral data were consistent with previously reported characterization of the product.^{S36} ¹H NMR (300 MHz, Tol) δ 7.42 – 7.35 (m, 2H), 7.20 (t, *J* = 7.4 Hz, 2H), 7.12 – 7.08 (m, 1H), 4.10 (q, *J* = 7.4 Hz, 1H), 2.07 – 1.91 (m, 1H), 1.70 – 1.50 (m, 2H), 1.50 – 1.36 (m, 1H), 1.17 (s, 3H), 1.04 (s, 3H).

Product **5b**

Spectral data were consistent with previously reported characterization of the product.^{S36} ¹H NMR (300 MHz, Tol) δ 7.35 (d, J = 8.0 Hz, 2H), 7.06 (d, J = 7.9 Hz, 2H), 4.16 (q, J = 7.5 Hz, 1H), 2.22 (s, 3H), 2.10 – 1.97 (m, 1H), 1.77 – 1.64 (m, 1H), 1.63 – 1.56 (m, 1H), 1.55 – 1.43 (m, 1H), 1.22 (s, 3H), 1.09 (s, 3H).

Product **6b**

Spectral data were consistent with previously reported characterization of the product.^{S36} ¹H NMR (300 MHz, Tol) δ 7.30 (d, *J* = 8.1 Hz, 2H), 6.79 (d, *J* = 8.7 Hz, 2H), 4.11 (q, *J* = 7.4 Hz, 1H), 3.39 (s, 3H), 2.09 – 1.91 (m, 1H), 1.70 – 1.40 (m, 3H), 1.18 (s, 3H), 1.06 (s, 3H).

Product **7b**

Spectral data were consistent with previously reported characterization of the product.^{S36} ¹H NMR (300 MHz, Tol) δ 7.27 (d, *J* = 8.1 Hz, 2H), 7.07 (d, *J* = 8.1 Hz, 2H), 4.45 – 3.62 (m, 1H), 2.05 – 1.79 (m, 1H), 1.60 – 1.37 (m, 3H), 1.12 (s, 3H), 1.04 (s, 3H).

Product 8b

Spectral data were consistent with previously reported characterization of the product.^{S36} ¹H NMR (300 MHz, Tol) δ 6.90 – 6.85 (m, 1H), 6.79 – 6.76 (m, 2H), 4.31 (q, *J* = 7.4 Hz, 1H), 2.06 – 1.92 (m, 1H), 1.79 – 1.69 (m, 1H), 1.63 – 1.49 (m, 1H), 1.43 – 1.33 (m, 1H), 1.13 (s, 3H), 0.96 (s, 3H).

Product **9b**

Spectral data were consistent with previously reported characterization of the product.^{S36} ¹H NMR (300 MHz, Tol) δ 7.08 – 7.06 (m, 2H), 7.00 – 6.98 (m, 2H), 3.96 (s, 1H), 3.93 (s, 1H), 1.25 (s, 6H).

Product 10b

Spectral data were consistent with previously reported characterization of the product.^{S36} ¹H NMR (300 MHz, Tol) δ 7.23 – 6.95 (m, 5H), 3.33 – 3.24 (m, 1H), 2.67 – 2.47 (m, 1H), 1.78 – 1.58 (m, 1H), 1.58 – 1.25 (m, 3H), 1.09 (s, 3H), 0.95 (s, 3H).

Product 11b

Spectral data were consistent with previously reported characterization of the product.^{S36} ¹H NMR (300 MHz, Tol) δ 1.56 (s, 4H), 1.08 (s, 12H).

Product 12b

Spectral data were consistent with previously reported characterization of the product.^{S36 1}H NMR (300 MHz, Tol) δ 3.21 – 3.01 (m, 1H), 1.84 – 1.68 (m, 1H), 1.55 – 1.34 (m, 1H), 1.29 – 1.12 (m, 2H), 1.12 (s, 3H), 1.03 (d, *J* = 6.1 Hz, 3H), 1.03 (s, 3H), 0.87 – 0.78 (m, 1H).

Product 13b

Spectral data were consistent with previously reported characterization of the product.^{S36} ¹H NMR (300 MHz, Tol) δ 2.80 (q, J = 7.1 Hz, 2H), 1.65 – 1.52 (m, 2H), 1.36 – 1.28 (m, 3H), 1.03 (s, 6H).

Product 14b

Spectral data were consistent with previously reported characterization of the product.^{S36} ¹H NMR (300 MHz, Tol) δ 3.31 – 3.22 (m, 1H), 1.75 – 1.51 (m), 1.52 – 1.34 (m), 1.34 – 1.11 (m), 1.06 (s, 3H).

Product 15b

Spectral data were consistent with previously reported characterization of the product.^{S36} ¹H NMR (300 MHz, Tol) δ 1.59 – 1.45 (m, 6H), 1.34 (q, J = 7.5, 5.3 Hz, 8H), 1.09 (s, 6H).

Product 1b-d₂

Spectral data were consistent with previously reported characterization of the product.^{S36} ¹H NMR (300 MHz, Tol) δ 7.44 – 7.33 (m, 2H), 7.27 – 7.14 (m, 2H), 7.14 – 7.06 (m, 1H), 2.05 – 1.92 (m, 1H), 1.69 – 1.50 (m, 2H), 1.46 – 1.35 (m, 1H), 1.16 (s, 3H), 1.04 (s, 3H).

Kinetics

General procedure

Inside an argon filled glovebox, a stock solution of $Fe(HMDS)_2$ was made in toluene-d₈ and a stock solution of 1,3,5-trimethoxybenzene (internal standard) was made in toluene-d₈. (4-azido-4-methylpentyl)benzene was weighed inside a vial stock solution of 1,3,5-trimethoxybenzene (0.1 mL) and stock solution of $Fe(HMDS)_2$ (0.2-0.4 mL) was added. The mixture was diluted with toluene-d₈ to 5.5 mL, this mixture was transferred into a J Young NMR tube. The NMR tube was taken outside the glovebox and heated in an oil bath at 120 °C. Samples were measured by removing the NMR tube from the oil bath and directly cooling it in an ice bath. After NMR measurement, the NMR tube was put back in the oil bath. The recorded time is the cumulative time heated in the oil bath.

Variation of substrate concentration

Figure S2: Yield of the N-heterocycle by intramolecular C–H amination over time with varying substrate concentrations at t=0 ($[sub]_0 = 0.11 - 0.89$ M) with [cat] = 4.48 mM. Yields were determined by ¹H NMR spectroscopy.

Figure S3: Formation of the *N*-heterocycle by intramolecular C–H amination over time with varying substrate concentrations at t=0 ($[sub]_0 = 0.11 - 0.89$ M) with [cat] = 4.48 mM. Amount of product was determined by ¹H NMR spectroscopy.

Figure S4: Formation of the *N*-heterocycle by intramolecular C–H amination over time with varying substrate concentrations at t=0 ($[sub]_0 = 0.11 - 0.89$ M) with [cat] = 4.48 mM. Amount of product was determined by ¹H NMR spectroscopy. Straight lines represent the initial reaction rate.

Table S1: Initial reaction rate with varying substrate concentrations at t=0 ($[sub]_0 = 223.6 - 1788.8 \text{ mM}$) with [cat] = 4.48 mM.

Figure S5: Initial reaction rate with varying substrate concentrations at t=0 ([sub]₀ = 0.11 - 0.89 M) with [cat] = 4.48 mM.

Variation of catalyst concentration

[cat] = 4.5 - 17.9 mM [sub] = 0.11 M

Figure S6: Formation of the *N*-heterocycle by intramolecular C–H amination over time with varying catalyst concentrations ([cat] = 4.5 - 17.9 mM with [sub]₀ = 0.11 M). Amount of product was determined by ¹H NMR spectroscopy.

Figure S7: Formation of the N-heterocycle by intramolecular C–H amination over time with varying catalyst concentrations ([cat] = 4.5 - 17.9 mM with [sub]₀ = 0.11 M). Amount of product was determined by ¹H NMR spectroscopy. Straight lines represent the initial reaction rate.

Table 2: Maximum reaction rate with varying catalyst concentrations ([cat] = 4.5 – 17.9 mM with [sub]₀ = 0.11 M).

[Cat]	Rmax
4.5	1.10162
8.9	0.89455
13.4	0.97042
17.9	1.0269

Figure S8: Initial reaction rate with varying catalyst concentrations at t=0 ([cat] = 4.5 – 17.9 mM with [sub]₀ = 0.11 M).

Product inhibition studies

The product used for these studies is a mixture of the amine **1b** product and the minor imine and linear amine side products. These were obtained from a regular catalytic run without using internal standard. The organic products were separated quantitatively from the iron by filtering the catalytic mixture over aluminum oxide and washing with pentane. Before use in catalytic experiments the product was degassed by three freeze-pump-thaw cycles and dried over 4 Å molecular sieves.

The catalysis was performed under standard conditions described before (1 mol% catalyst, toluene-d₈, 120 °C). Two independent catalytic runs were performed (Figure S9): one where one equivalent of product was added at t = 0 (red) and the other where the same amount of product was added at t = 20 min (black). A time conversion profile was obtained for both experiments and compared to a standard run without addition of product (blue). The time conversion plot shows that upon addition of product **1b**, the rate of the reaction decreases slightly, though conversion remains on-going. The minor decrease in rate is not compatible with a product inhibition scenario and might instead be attributed to catalyst decomposition in presence of the amine product.

Figure S9: Formation of the N-heterocycle **1b** from azide **1a** by intramolecular C–H amination over time with addition of product **1b** at different reaction times (red: addition at t = 0; black: addition at t = 20 min; blue: standard run).

Catalyst decomposition studies

The catalysis was performed under standard conditions described before (1 mol% catalyst, toluene-d₈, 120 °C). Two independent catalytic runs were performed (Figure S10): one run where after 70% conversion, the reaction mixture was refilled with substrate **1a** to its initial concentration (red). In the other run, no substrate **1a** was added at the beginning and instead, 20mol% of **1b** were added to the catalyst and this mixture was heated at 120 °C for 2.5 h and only thereafter, substrate **1a** (1 equiv) was added (blue). Both time-conversion profiles were compared to the standard run (black). Both these experiments show a significant decrease in catalytic rate, indicating that in the presence of amine **1b** the activity of the catalyst is lost.

Figure S10: Time-dependent conversion plots for the formation of the N-heterocycle **1b** by intramolecular C–H amination of azide **1a**. Black: first run; red: conversion after refilling substrate **1a** to its initial substrate concentration of the first run (after the first run reached 70% conversion; blue: conversion of the azide after preheating the catalyst in the presence of product (20 mol%) for 2.5 h.

Intermolecular competition Kinetic isotope effect

A 1:1 mixture of deuterated and non-deuterated substrate was used and the reaction was followed overtime under standard conditions.

Figure S11: Yield of pyrrolidine by intramolecular C–H amination over time for the intermolecular KIE experiment ($[sub]_0 = 0.45 \text{ M}$) with [cat] = 4.5 mM.

Intermolecular Kinetic isotope effect

Two separate reactions with exclusively the deuterated and non-deuterated substrate were followed overtime under standard conditions.

Figure S12: Yield of pyrrolidine by intramolecular C–H amination over time of the deuterated and non-deuterated 1b.

Stoichiometric experiments

¹H NMR spectroscopy

Inside an argon filled glovebox $Fe(HMDS)_2$ (2.0, 1.0 or 0.5 eq.) was dissolved in C_6D_6 (1 mL) and added to (4-azido-4-methylpentyl)benzene (1a) (0.050 mg; 0.25 mmol; 1.0 eq). The obtained yellow solution was transferred into a J Young NMR tube and a ¹H NMR spectrum was measured. After leaving the solution for 24 h, a second ¹H NMR spectrum was measured.

Figure S13: ¹H NMR spectra of the reaction with $Fe(HMDS)_2$ in C_6D_6 with 0.5 equivalents of substrate 1a at t = 0.

Figure S14: ¹H NMR spectra of the reaction with $Fe(HMDS)_2$ in C_6D_6 with 1.0 equivalents of substrate 1a at t = 0.

Figure S15: ¹H NMR spectra of the reaction with $Fe(HMDS)_2$ in C_6D_6 with 2.0 equivalents of substrate 1a at t = 0.

Figure S16: ¹H NMR spectrum of substrate **1a** and 10 mol% $Fe(HMDS)_2$ at t = 0 in toluene-d₈ with 1,3,5-Trimethoxybenzene as internal standard.

Figure S17: ¹H NMR spectra of the reaction with $Fe(HMDS)_2$ in C_6D_6 with 0.5 equivalents of substrate 1a at t = 24 h.

Figure S18: ¹H NMR spectra of the reaction with $Fe(HMDS)_2$ in C_6D_6 with 1.0 equivalents of substrate 1a at t = 24 h.

FTIR-spectroscopy

Inside an argon filled glovebox $Fe(HMDS)_2$ (92.6 mg; 0.25 mmol; 1.0 eq) was dissolved in C_6H_6 (1 mL) and added to (4-azido-4-methylpentyl)benzene (**1a**) (0.050 mg; 0.25 mmol; 1.0 eq). Of the obtained yellow solution 0.5 mL was transferred into a Schlenk and taken outside the glovebox. An FTIR-spectrum was measured by inserting a fiber probe in the Schlenk through a septum. After leaving the unmeasured solution in the glovebox for 24 h, another 0.5 mL was taken outside the glovebox and an FTIR-spectrum was measured, according to the same method. Separately, an FTIR-spectrum was measured without the addition of $Fe(HMDS)_2$ using the same procedure.

Figure S19: FTIR-spectrum of (4-azido-4-methylpentyl)benzene (1a) in C₆H₆.

Figure S20: FTIR-spectrum of (4-azido-4-methylpentyl)benzene (1a) with $Fe(HMDS)_2$ in C_6H_6 at t = 0.

Figure S21: FTIR-spectrum of (4-azido-4-methylpentyl)benzene (1a) with $Fe(HMDS)_2$ in C_6H_6 at t = 24h.

Computational details

Density Functional Theory

 Table S3: DFT calculated energies for non-metal containing compounds.

Compound	Multiplicity (S)	Energy (kcal/mol)
i1a	1	-396197.924
iN ₂	1	-68734.09019
i1b	1	-327522.374
i1b-d₂	1	-327526.774
iHHMDS	1	-548231.8155

Table S4: DFT calculated energies and expectation values of the iron compounds on the catalytic cycle in various spin states.

Compound	Multiplicity (S)	<\$ ² >	Energy (kcal/mol)	Relative energy among different spin states (kcal/mol)
Fe(HMDS)₂	5	6.01	-1888700.594	0.00
Anti-i2	5	6.02	-2284897.486	0.00
Anti-i2	3	2.82	-2284870.613	26.87
Anti-TS-i2/i3	5	6.52	-2284872.517	0.00
Anti-i3	5	6.42	-2216182.146	0.00
Gauche-i3	5	6.48	-2216184.322	0.00
Gauche-i3	3	2.52	-2216180.732	3.59
Gauche-i3	BS 5 (3,1)	2.79	-2216181.258	3.06
Gauche-i3	7	12.03	-2216177.614	6.71
TS-i3/i4	5	6.69	-2216173.076	0.00
i4	5	6.02	-2216231.094	0.00
i4	3	2.75	-2216205.708	25.39

Figure S22: Spin density plot of *Gauche-i3* in the ground state (pentet) spin state, α -spin is represented in blue and β -spin in red.

	Multiplicity (S)	<\$ ² >	Energy (kcal/mol)
Gauche-i2	5	6.02	-2284899.143
Gauche-TS-i2/i3	5	6.52	-2284872.517
i17	5	6.02	-1667989.562
i18	5	6.02	-1995516.626
i19	5	6.01	-1447274.357
i20	5	6.02	-1774802.592
i4-d ₂	5	6.02	-2216235.688

Table S5: DFT calculated energies and expectation values of the iron compounds outside the catalytic cycle.

Scheme 1: Proposed reaction mechanism of the intramolecular C–H amination catalyzed by Fe(HMDS)₂, including the proposed decomposition pathway and off-cycle intermediates. Energies calculated by DFT are giving in kcal/mol.

Scheme 2: Reaction coordinate profile of the proposed decomposition pathway. Energies calculated by DFT are giving in kcal/mol. Structures of the optimized intermediates and transition states are displayed in the SI.

We hypothesized a catalyst decomposition pathway, in which a coordinated HMDS group deprotonates the coordinated amine in the resting state **4**, leading to discoordination of H– $N(SiMe_3)_2$ and pyrrolidinyl bonding to iron (**i17**). According to DFT calculations this transformation is 9.7 kcal/mol uphill, only slightly higher than the substitution with another substrate molecule and therefore potentially competitive as a decomposition pathway (Scheme S1-2). Coordination of a second **1b** to form **i18** is exergonic by 4.7 kcal/mol. Deprotonation of this amine by the remaining HMDS and subsequent decoordination of a second equivalent H–N(SiMe_3)₂, leads to an iron complex **i19** and is 10 kcal/mol uphill. Coordination of yet another pyrrolidine **1b** stabilizes this compound by 5.9 kcal/mol and is predicted to yield iron complex **i20** with three coordinated pyrrolidine molecules, two of which deprotonated. Attempts to isolate and characterize this degradation product have not been successful so far, though the decoordinated H–N(SiMe_3)₂ was unambiguously identified by ¹H NMR spectroscopy.

NEVPT2-CASSCF

CAS-S	CF STATES	6 FOR	BLOCK	< 1 MULT⊧	= 5	NR00TS=	1
ROOT	0: E= 0.54548 0.17375 0.07736 0.07680 0.03836 0.03402 0.02529 0.00908 0.00723 0.00356	-3 [[[[[[[8521.88 307]: 292]: 269]: 277]: 234]: 212]: 186]: 151]: 130]: 721:	360454098 22211110 2211111 21211210 22011112 21111211 21011212 12211120 12111121 12011122	Eh		
	0.00000	L	, <u>_</u>				

Figure S23: Configurations for i3 on the pentet energy surface calculated by NEVPT2-CASSCF(10,8).

Figure S24: Active space orbitals from a NEVPT2-CASSCF (10,8) calculation on **i3**. Orbital filling of the main contribution (55%) is illustrated. Partial occupation due to multi-reference character described in brackets per orbital. Isosurface is set at 90. All Me-groups omitted for clarity.

NEVPT2-CASSCF (12,9) calculations on the DFT optimized **TS-i3/i4** were performed. Again, significant multi-reference character was observed with the main electronic configuration contributing 36% towards the ground state (Figure S23-24). The lowest energy doubly occupied orbital within the active space, displays a bonding combination of σ -symmetry of the benzylic carbon atom with the C–N bond of the nitrene, showing the concerted pathway of the C–N and N–H bond formation obtained from DFT calculations. The next higher MO displays a bonding combination between the p-orbitals of the nitrene and benzylic carbon with the s-orbital of the hydrogen, displaying the transition of the hydrogen atom transfer (HAT). Higher in energy, partially filled orbitals within the active space consist of anti-bonding combinations between the C–N–H interactions and non-bonding metal d-orbitals. Multi-reference character shifts significant electron density in the LUMO (occupancy 0.59), leading to spin density at both the nitrene moiety and the benzylic carbon. This orbital displays a bonding interaction between the C–H interaction and the N–H interaction of opposite sign. Occupancy of this orbital hence facilitates the HAT.

CAS-SCF STATES FOR BLOCK 1 MULT= 5 NROOTS	= 1
ROOT 0: E= -3521.8292053472 Eh	
0.36228 [713]: 222211110	
0.29180 6981: 222111111	
0.07318 6751: 221211210	
0.05072 [683]: 222011112	
0.03561 [640] 221111211	
0 03067 [7011 222111210	
0.02622 [396] 1222111210	
0.02022 [300]. 122211120 0.01/97 [361]. 122111121	
0.01407 [501]. 122111121	
0.00965 [695]: 222111012	
0.00615 [556]: 212111112	
0.00530 [340]: 122011122	
0.00467 [704]: 222112110	
0.00371 [637]: 221111112	
0.00354 [672]: 221211111	
0.00321 [319]: 121211220	
0.00300 [477]: 211111212	
0.00280 [699]: 222111120	
0.00256 [685]: 222011211	

Figure S25: Configurations for TS-i3/i4 on the pentet energy surface calculated by NEVPT2-CASSCF(12,9).

Figure S26: Active space orbitals from a NEVPT2-CASSCF (12,9) calculation on **TS-i3/i4**. Orbital filling of the main contribution (36%) is illustrated. Partial occupation due to multi-reference character described in brackets per orbital. Isosurface is set at 90. All Me-groups omitted for clarity.

DFT calculated structures

Figure S27: Geometry optimized structure of $Fe(HMDS)_2$ by DFT (B3LYP/def2-TZVP) in the pentet spin state. Orange = Fe, blue = N, mint = Si, grey = C, off-white = H.

Figure S28: Geometry optimized structure of *Anti-i2* by DFT (B3LYP/def2-TZVP) in the pentet spin state. Orange = Fe, blue = N, mint = Si, grey = C, off-white = H.

Figure S29: Geometry optimized structure of **Anti-TS-i2/i3** by DFT (B3LYP/def2-TZVP) in the pentet spin state. Orange = Fe, blue = N, mint = Si, grey = C, off-white = H.

Figure S30: Geometry optimized structure of **Anti-i3** by DFT (B3LYP/def2-TZVP) in the pentet spin state. Orange = Fe, blue = N, mint = Si, grey = C, off-white = H.

Figure S31: Geometry optimized structure of *Gauche-i3* by DFT (B3LYP/def2-TZVP) in the pentet spin state. Orange = Fe, blue = N, mint = Si, grey = C, off-white = H.

Figure S32: Geometry optimized structure of **TS-i3/i4** by DFT (B3LYP/def2-TZVP) in the pentet spin state. Orange = Fe, blue = N, mint = Si, grey = C, off-white = H.

Figure S33: Geometry optimized structure of **i4** by DFT (B3LYP/def2-TZVP) in the pentet spin state. Orange = Fe, blue = N, mint = Si, grey = C, off-white = H.

Figure S34: Geometry optimized structure of *Gauche-i2* by DFT (B3LYP/def2-TZVP) in the pentet spin state. Orange = Fe, blue = N, mint = Si, grey = C, off-white = H.

Figure 35: Geometry optimized structure of *Gauche*-TS-i2/i3 by DFT (B3LYP/def2-TZVP) in the pentet spin state. Orange = Fe, blue = N, mint = Si, grey = C, off-white = H.

Figure S36: Geometry optimized structure of **i17** by DFT (B3LYP/def2-TZVP) in the pentet spin state. Orange = Fe, blue = N, mint = Si, grey = C, off-white = H.

Figure S37: Geometry optimized structure of **i18** by DFT (B3LYP/def2-TZVP) in the pentet spin state. Orange = Fe, blue = N, mint = Si, grey = C, off-white = H.

Figure S38: Geometry optimized structure of **i19** by DFT (B3LYP/def2-TZVP) in the pentet spin state. Orange = Fe, blue = N, mint = Si, grey = C, off-white = H.

Figure S39: Geometry optimized structure of **i20** by DFT (B3LYP/def2-TZVP) in the pentet spin state. Orange = Fe, blue = N, mint = Si, grey = C, off-white = H.

Figure 40: Geometry optimized structure of **i4** with coordinated **1a** by DFT (B3LYP/def2-TZVP) in the pentet spin state. Decoordination of **1a** occurs during the optimization cycles. Orange = Fe, blue = N, mint = Si, grey = C, off-white = H.

DFT calculated coordinates

Fe(HMDS)₂

Fe	-0.42587249019967	1.00900743186828	-0.39844950110438
Ν	-0.70546999354268	2.62440226271172	0.51743412007911
Ν	-0.09881036003191	-0.62774584560694	-1.26029961194515
Si	-2.14278800285869	3.47555316100229	0.09093095347191
С	-3.47437387347352	3.26742215837428	1.40027414106141
С	-2.78303725583558	2.73907329644076	-1.52702331507815
С	-1.82088877929053	5.30795138919617	-0.17261199665504
Si	0.52332080878579	3.05634733800026	1.64758501170223
С	1.49481323895441	1.48940497088558	2.05815831830953
С	-0.20151586757439	3.75430526038770	3.23413007837850
С	1.71379893533275	4.31116418299334	0.91273446011661
Si	0.71448172182398	-0.53256789217911	-2.77695736740190
С	1.37132609799793	1.22808448294263	-2.96701391318531
С	-0.45153060996199	-0.88406506775107	-4.20797086644627
С	2.16188389565091	-1.72748781991408	-2.86962845382693
Si	-0.60532196240412	-2.02194942996221	-0.37949381010435
С	-1.87689044835615	-1.45343912593293	0.89663577038833
C	0.83225109528511	-2.81578144915132	0.53430543074564
C	-1.40167725093761	-3.31105618519436	-1.49091664213621
Н	0.57379446794572	1.97674156456496	-2.91206235376485
н	1.85375882759626	1.35632180664560	-3.93968492944560
н	2.11378692216162	1.47009426795687	-2.20183829655134
Н	2.87080945730023	-1.55078861205534	-2.05770392407317
н	2.69853129299926	-1.62093632213775	-3.81599837336737
Н	1.82549092506341	-2.76468100551097	-2.79777537688967
н	1.30812479919669	-2.09739340799922	1.20644678399669
Н	1.59407619469557	-3.17107947844366	-0.16283673885581
н	0.50223594898639	-3.66904927509670	1.13290497037328
н	-1.48433331878989	-0.67793089100657	1.56379255273402
Н	-2.18364648186214	-2.28617478851104	1.53520454963069
Н	-2.77645347040022	-1.05912193766112	0.41706770878914
Н	0.87182564856260	0.75830348439631	2.57953339371243
Н	2.34657929640277	1.71615554004206	2.70489434527297
Н	1.90299617683723	1.00421689076225	1.16427559394163
Н	-0.89002725462545	3.04434683150403	3.69762007179745
Н	-0.75283378386842	4.67881656389529	3.04656220096145
н	0.58545368749162	3.98267886639559	3.95761682931718
н	-1.47441203657710	5.78810027600187	0.74567161905367
н	-2.73062670315987	5.82443159715856	-0.48995631557272
н	-1.05893919408880	5.46555822569193	-0.93914761409040
н	-3.69798617606619	2.20911911593905	1.55629597079273
н	-4.40248757413919	3.76949098517695	1.11431262338688
н	-3.15145938590952	3.68133485180318	2.35782947498413
н	-2.94329667264353	1.65684737192544	-1.46111191429514
н	-2.09487673848667	2.92739391331915	-2.35515034213114
н	-3.74683121383892	3.17899409334496	-1.79707269405845
н	-2.25375339059986	-2.89351915206576	-2.03174670264295
н	-1.75803457127092	-4.16277372866781	-0.90566962350959
н	-0.69338962666788	-3.69435963899189	-2.22950764244869

Н	-1.28849261834332	-0.18133532800499	-4.20805681316442
Н	-0.86617067941511	-1.89184021669627	-4.13892163243997
Н	0.06031476416003	-0.79830919188740	-5.17023321565769
Н	2.16932002406847	3.91891677130200	-0.00011014596998
Н	2.51780475139410	4.55923568133192	1.61075966016623
Н	1.19839880652704	5.23804115646739	0.65208349364886
Ant	ti-i2		
Fe	-0.77670658948903	0.85531336782510	0.37368999194961
Ν	-0.82040772889697	2.67862083172624	-0.23306947683774
Ν	-0.93109020509628	-0.98068585695592	-0.16329044367715
Si	-2.31922906712646	3.17413440398177	-0.92932934543835
С	-3.53127292565615	1.73156240141670	-0.88053372815576
С	-2.15905541961325	3.67236452549467	-2.73686864810971
С	-3.09454822827386	4.59497976091707	0.03400979881999
Si	0.53941894783789	3.70591829119347	0.01084679470143
С	2.13542689868156	2.79132206922994	-0.39813530622558
С	0.62454960769057	4.28682322649392	1.80401007882959
С	0.52988187540523	5.25281040170701	-1.06332234037429
Si	0.09146300476966	-1.34646771368075	-1.51162581562678
С	1.90623941295139	-1.14533298361165	-1.03937755990164
С	-0.27446994355831	-0.16877164006627	-2.93428836633851
С	-0.07667788798968	-3.11131378015774	-2.14878398915496
Si	-2.25101917425173	-1.94695823050725	0.38289665190446
С	-3.54188995447900	-2.22670139699128	-0.96126290575859
С	-3.16553860287124	-1.12643359528709	1.81580019181340
С	-1.68273148199111	-3.63378458017690	1.00408685346214
Н	2.15644226295772	-0.11395811762051	-0.78686079180887
Н	2.55391613506549	-1.44066732435247	-1.86925447584664
Н	2.15285912461995	-1.77779075760710	-0.18277312939567
Н	0.26631409139620	-3.83890669650462	-1.41098490804734
Н	0.54895342429936	-3.22550577701557	-3.03833081426106
Н	-1.09751748717133	-3.37150528878244	-2.43032316212179
Н	-3.50012697963990	-0.11569571037438	1.57631885601057
Н	-2.56391183534663	-1.08089273509766	2.72250590315152
Н	-4.05969244488474	-1.71148978419082	2.04799689084576
Н	-4.03313780545281	-1.28930207231221	-1.22940672468211
Н	-4.31455770974276	-2.91828849477378	-0.61388213738204
Н	-3.10801261921336	-2.64630693721852	-1.87005886191703
Н	2.28594814955636	1.90865923814457	0.22348537023871
Н	3.00366610464208	3.44056761242832	-0.25589868552180
Н	2.12928641871597	2.46320728854400	-1.44011161236876
Н	0.69889560954352	3.44251555373600	2.49124117652715
Н	-0.27755897701617	4.84479327634755	2.06635969363449
н	1.48588403595247	4.93694463438532	1.97896570693607
н	-3.26290042396235	4.30611580832795	1.07474662346818
н	-4.05885707220458	4.88227571043998	-0.39380205400374
Н	-2.45720361757662	5.48161419427856	0.03638523062954
Н	-3.12963275359525	0.84777576609147	-1.38034941258670
Н	-4.45338886318788	2.00713948268266	-1.39930146661436
Н	-3.80864119764321	1.45065414463929	0.13749714595513

Н	-1.69968549639809	2.86812409143196	-3.31647621931923
Н	-1.55151303343443	4.56839375220495	-2.86609159721365
Н	-3.14415445393384	3.87406300572346	-3.16680239070238
Н	-1.30813734340087	-4.25789213515526	0.19182373530752
Н	-2.51411269659186	-4.16719845587491	1.47329705731593
Н	-0.88606204469782	-3.54215321929422	1.74596596894901
Н	-0.13645474595583	0.87113631713282	-2.62769661259792
Н	-1.30913069721457	-0.27831654784483	-3.26880661419956
Н	0.37837674180031	-0.35573626326059	-3.79101038943336
Н	0.59511848142064	5.00650607575660	-2.12450071694776
Н	1.39678007457763	5.87018101493264	-0.81184973369354
Н	-0.36178776131643	5.86359190292483	-0.91286869601812
Ν	-0.58198448709316	0.99903991185609	2.56700432166524
Ν	-1.49218890338277	1.59377407332622	3.14727596375093
С	0.48902280238823	0.34331747190020	3.43071389882633
Ν	-2.35589234775592	2.16588337223457	3.58611861932117
С	0.03128596479750	-1.07722687957432	3.74647041589187
С	0.70470621129175	1.15484700147656	4.70408147878674
С	1.72901272422814	0.36120458138769	2.52951802949217
Н	-0.91398012343825	-1.07005227428315	4.29034804946258
Н	0.77095613265735	-1.57932527494548	4.36995055205589
Н	-0.09843733825517	-1.64979789438782	2.82945443045265
Н	-0.19009992492375	1.17108595117519	5.32862483256374
Н	0.99054435899155	2.18207197513396	4.47489650981577
Н	1.50114656779371	0.70166318730671	5.29235394732835
Н	1.44419134935609	-0.05226744668333	1.55796086740523
С	2.93560097124877	-0.42055063922444	3.03909713327510
Н	2.01181741577930	1.40265999510911	2.36432102362089
Н	2.70471122470446	-1.48720043306833	3.07933535653758
Н	3.19494647990417	-0.11942040005099	4.05751406897272
С	4.16295541277890	-0.21666372784763	2.13851856158355
Н	3.89985127005250	-0.47589235356457	1.11088605990264
С	5.33468892859635	-1.04778673532203	2.58770795486235
Н	4.43465602490311	0.84254082680969	2.13705111009822
С	6.22415802377321	-0.57186819292685	3.55094930438587
С	7.27463562309912	-1.36067893781147	4.00441092769728
С	7.45222898411396	-2.64351834585960	3.49859291063396
С	5.52621583789794	-2.33496132011829	2.08562179164461
С	6.57485908605933	-3.12822788762502	2.53520688011980
Н	7.95754501093226	-0.97230966014284	4.74963241450019
Н	8.27159414549775	-3.25831766990717	3.84847329597013
Н	4.84948425697965	-2.71591544298985	1.32925825032028
Н	6.70980871399268	-4.12305690902779	2.12953959328654
Н	6.09479447002142	0.42964802222070	3.94581085760158
Δn	<i>ti-</i> TS-i2/i2		
Fe		1 14902472029502	0 61759446655280
N	-0 99125279591202	2 92068380060124	-0 01680015217112
N	-0 602710/1275050	_0 5/107312607726/	-0 252/2720257205
Ci	-7 47719576600622	3 10455872/62075	-0 8000162001080
C SI	-3 272266222010616	1 5710252/220/26	-0 62815027268012
C	J.J4JJUJZJU4U04J	1.0110000000000000000000000000000000000	0.02010321200312

С	-2.19385970726060	3.30273461065258	-2.73851464440723
С	-3.46682414434538	4.57544671690278	-0.26152948263085
Si	0.08957129541612	4.23345699750082	0.32590662256145
С	1.84807717919682	3.61744287632641	0.59127362491940
С	-0.41312984504398	5.17889108059895	1.87256500095129
С	0.16574093262512	5.45520302591494	-1.10553034856275
Si	0.24198309800512	-0.60894091116782	-1.76611616865428
С	1.37581816063786	0.88564782651385	-1.90098790417825
С	-0.93181005673505	-0.59087056085707	-3.23443648670094
С	1.32372185946702	-2.14476953847679	-1.88892078086245
Si	-1.43479737752479	-1.90793170786107	0.42673487552079
С	-2.38673428321176	-2.87621164872133	-0.87664931451404
С	-2.70017542397074	-1.33089542144801	1.69740577073483
С	-0.24963915997825	-3.11792932720387	1.25557370047264
Н	0.82225770995047	1.82583506584096	-1.88308264631055
Н	1.93441245343095	0.84602451456585	-2.83977761054309
Н	2.10565028930200	0.90488778150699	-1.08775071608268
Н	2.03536359053111	-2.18783085889225	-1.06145982710603
Н	1.89566812472760	-2.13037496274796	-2.82052000776437
Н	0.73902613291436	-3.06646831434089	-1.87725767069160
Н	-3.51867208019000	-0.79242102950095	1.21626176260274
Н	-2.27374400027676	-0.68251330163519	2.46298070809928
Н	-3.13261571409710	-2.19597325869140	2.20730809487283
Н	-3.10647283585479	-2.23982553428536	-1.39554267329378
Н	-2.94152449675681	-3.69024653327777	-0.40197698711579
Н	-1.73066298844451	-3.32152842774800	-1.62687939002904
Н	1.89571026031123	2.86349284813754	1.37686693144984
Н	2.48343886814529	4.45192078040495	0.90027974175111
Н	2.27542907017176	3.19327543726733	-0.31806835057847
Н	-0.27289858543391	4.57377039610719	2.76973645319625
Н	-1.46105060996164	5.48091495386090	1.83454652837152
н	0.19460569857154	6.08117681638765	1.98306351791361
Н	-3.69241734160968	4.46036382644317	0.80097404133074
Н	-4.41447769443594	4.65668802135743	-0.80075753644833
н	-2.93298705651727	5.51873422458291	-0.38936237245091
Н	-3.07397901090361	0.66094791907667	-1.00310681471037
Н	-4.49248386962095	1.69481201016463	-1.15738111297904
Н	-3.78386001768832	1.42549127973140	0.42839837679959
Н	-1.54828076091244	2.51163012808991	-3.12451091296656
Н	-1.72209327310787	4.25824208400987	-2.97194251223133
Н	-3.14079542125301	3.25642910682631	-3.28318802820173
Н	0.46648599320837	-3.51883675137181	0.53621769181813
Н	-0.80115622124921	-3.96047852194954	1.68163876006484
Н	0.32021759270855	-2.65483380409678	2.06157981875590
Н	-1.63390751797993	0.24235931660695	-3.17178019521115
Н	-1.51493140748807	-1.51094842573739	-3.29304148242552
Н	-0.37702072911147	-0.48848493954722	-4.17115938544014
Н	0.48487099158266	4.96226948451834	-2.02630155484643
Н	0.89149310378588	6.24136108859304	-0.87980932686171
Н	-0.79215028524025	5.94051100804775	-1.29989399832403
Ν	-0.22472041435817	1.25899359657304	2.46097965982275

Ν	-1.35797093199517	1.96280579216587	3.36373831922483
С	0.73285759912192	0.61106268882915	3.36315530099106
Ν	-2.23591090101591	2.63555708717030	3.20314289316330
С	0.06672557015595	-0.47320432522520	4.21656299658896
С	1.40470578048303	1.65337914094635	4.26392016689721
С	1.76236722885642	-0.00213544392538	2.37791788009205
н	-0.72940615092436	-0.03298069860926	4.81865894490997
н	0 78413981446266	-0 93144704379605	4 89732904131545
н	-0 36762011752328	-1 25349060118451	3 59512706003256
н	0.67154565861036	2 10383892052192	4 93567583256369
н	1 85349689554242	2.10505052052152	3 66638016651627
н	2 18062386130261	1 19612366604744	4 87851195107791
н	1 21957342767687	-0 58503327167572	1 63397912376257
C II	2 82442200211205	-0.30303327107372	2 00228180020005
с ц	2.03442300211393	0.03400033479033	1 929709/7221619
	2.24003432374000	1 72615075252019	2 E1001404296021
	2.37081303748100	-1.75015975252016	3.31601404260921
H C	3.42935201117656	-0.35218424348295	3./320/08/8819/2
C	3./661504/113502	-1.45060670945829	1.90618911443221
Н	3.15919156545040	-1.95355430193735	1.14851050823533
С	4./81903501/2161	-2.41248899139223	2.4603118352/110
Н	4.27113497227685	-0.62036264018204	1.40506741233259
С	6.02715473391895	-1.96684514303205	2.90242713111107
С	6.94494995633175	-2.84940567388587	3.45984800599196
С	6.62894551084807	-4.19736564726446	3.58416999302913
С	4.47743194702930	-3.76793604487900	2.58945068238244
С	5.39125223047549	-4.65472481745526	3.14546331210860
Н	7.90857330074844	-2.48512439597491	3.79342571561083
Н	7.34355044097702	-4.88723458474807	4.01444274140832
Н	3.51529613625039	-4.13080503607234	2.24588165755311
Н	5.13881110393945	-5.70410204463841	3.23274398306627
Н	6.28220729858947	-0.91771160001441	2.80385648243379
Δni	+i_i3		
Fo	-0 48413788983541	0 06408488475503	-0 10635571053331
N	-0.46336670954451	1 88088406440900	-0 6361681/227310
N	-0.40550070554451	-1 08/812/0287668	-0.03010814227310
Ci	1 0502/0/022009074	2 72515004566779	0 22225706652012
51	2 20060221107542	2.73313004300778	1 52010026222070
C C	2 20005250441507	1 04611271050695	1.33010620332676
C	-3.39993339441397	1.94011371950065	-1.214/15454/4592
C c:	-1.8/29390155012/	4.53061495799067	-0.8/6/3130//404/
21	1.09558750682398	2.6269/9168/0363	-0.78867089194082
C	2.41134488934048	1.31583091154617	-1.10640145572395
C	1.54911004237267	3.58900417276941	0.76656864469141
C	1.18634031231274	3./91/3314542458	-2.261983/20626/6
Si	-1.10131137903144	-1.26275839547560	-2./9834385805319
С	0.72822374707140	-1.71615677798086	-2.82961122749849
С	-1.34515446364102	0.32448239180396	-3.76968718725298
С	-2.01924098428761	-2.63536054065309	-3.70005867372452
Si	-2.69568036560748	-2.07459581601097	-0.24937376976292
С	-3.14409692912847	-1.21854524395629	1.36959669982962
С	-1.92671591988961	-3.74103390186934	0.16273547156797

С	-4.31443660786694	-2.34382270300051	-1.16917382455894
Н	1.35075768885778	-0.98310785347734	-2.31292093292269
Н	1.10006079154159	-1.78879811615906	-3.85526972641087
Н	0.88798340504665	-2.68147455489534	-2.34291120347247
Н	-1.96560761681238	-3.59109420452431	-3.17510000446108
Н	-1.56080073217238	-2.77417256597563	-4.68324961883411
Н	-3.07025125846362	-2.39089690759240	-3.85753207997145
Н	-1.00754476454941	-3.60337495924112	0.73716614844984
Н	-1.67086821288949	-4.29269647198479	-0.74474432247365
Н	-2.60384157992623	-4.36408432728979	0.75305100583621
Н	-2.26902006630149	-1.02814265444359	1.99299561534594
Н	-3.82722209815568	-1.85213152252471	1.94168578675633
Н	-3.65081550844393	-0.26698679017823	1.19470061387044
Н	2.35180771072709	0.45212363747729	-0.44320295403249
Н	3.40163711579464	1.75879402130371	-0.96820388743234
Н	2.35834776134236	0.95998253344140	-2.13711519521856
Н	1.51503167570320	2.95120598417660	1.65169297719704
н	0.85453721625615	4.41549319523521	0.93146019422890
н	2.55473994778978	4.01132660220255	0.69310130305066
Н	-1.08648651192405	5.09939503092078	-0.37839291820311
Н	-2.82659044149315	5.00863969405283	-0.63598602211647
н	-1.72408408742353	4.61277886831817	-1.95437474390781
Н	-2.37447344526843	1.70241187862710	1.91947233523723
Н	-3.21934211009034	3.24265829228097	1.76859440116820
Н	-1.47723938408340	3.20948566389160	2.07144117151025
Н	-3.46657428384298	0.87527056179954	-1.02914047251288
Н	-3.30700306455668	2.08380833760579	-2.29322473875639
н	-4.33507644362370	2.41246289207274	-0.89327911180936
н	-4.69919921178385	-1.40238383022638	-1.56794734122821
Н	-5.06421871072615	-2.74506950241548	-0.48180219780348
Н	-4.21544373677479	-3.04535338313805	-1.99691029075131
н	-0.88180767838021	1.17105101212759	-3.26134998040074
н	-2.40760309878210	0.54699546911801	-3.88713642072318
н	-0.90813069606112	0.23663199742076	-4.76792625862783
н	0.81790089404548	3.30144231120469	-3.16601765688903
н	2,22835147325938	4 07376852411293	-2 43855386322905
н	0.61496783506206	4.70762380436431	-2.11767842654259
N	0 30040147630222	-0 38726200562820	1 36436288795471
C	0.97894079048266	-0.47334879551110	2,60456710797824
C	0.87241175130493	-1.94871530343770	3.05304003508187
c	0 28556629922662	0 44087638149386	3 63289868646274
c	2 45915069652916	-0.06507405517859	2 38521998649390
н	-0 17334127078252	-2 24182977792338	3 14172727721208
н	1 35198753444279	-2 07873031091899	4 02358497988148
н	1 35682262974135	-2 60292881140957	2 32801745412607
н	-0.77116250372001	0.185222001140557	3,70763370603793
н	0 36130833230060	1 48439528229694	3 32583113436689
н	0.73737676949712	0.33347640767138	4.61939350034571
н	2,87741755080274	-0.73706137012891	1.63083908667129
C	3.35686425776695	-0.06020717199965	3.61845775332472
Ĥ	2.46097996712084	0.93333201522659	1.94285475719700
-			

Н	3.40772800292679	-1.05586778122648	4.06632330030513
Н	2.95202913868640	0.60522884135937	4.38427092067334
С	4.78089269303393	0.40177448902300	3.27425807226971
Н	5.20497904091297	-0.27081262598405	2.52379851319069
С	5.67924148072443	0.45114948967153	4.48118921222749
Н	4.72903630132324	1.39272163000421	2.81420446040681
С	6.48284195393246	-0.63606532660638	4.82304712047829
С	7.27919523007755	-0.60638417310800	5.96210163921270
С	7.28329708350261	0.51671985206731	6.78099894708311
С	5.69441590954896	1.57299682714202	5.31087382599772
С	6.48768754076259	1.60836919614016	6.45087558991600
Н	7.90003716969672	-1.45891266963840	6.20763795981525
Н	7.90513727924878	0.54344059596623	7.66663677827934
Н	5.08066284392650	2.42983136503356	5.05641552085675
Н	6.48896580350427	2.49020035553914	7.07934267229626
Н	6.48826415898369	-1.51345517102214	4.18630331961431

Gauche-i3

Fe	e -0.15283174117812	0.68300842640829	0.94541461585494
Ν	-0.35889329554737	2.54829011174776	0.62893808048952
Ν	-0.36546448612758	-0.49806383400573	-0.52073922983277
Si	-1.95031894954280	3.05789369408630	0.14456696831878
С	-3.16277869556056	2.66964401106167	1.53315387181235
С	-2.50469745610797	2.19026949795230	-1.42300820373003
С	-2.05666713640930	4.90478812113770	-0.20209736923652
Si	0.82856278591536	3.60488905942773	1.32489040866828
С	2.36783002762741	2.63412442703696	1.81135566581808
С	0.18036945269195	4.45006205431243	2.87734090737184
С	1.40715527210609	4.91167610956856	0.10244575090472
Si	0.75368041933898	-0.38742663563328	-1.84676620528118
С	2.08079308725772	0.88097882199530	-1.45344499917131
С	-0.06885029348402	0.13735131100697	-3.45182029563362
С	1.61038770162898	-2.03971061099890	-2.12152499648102
Si	-1.51160199989799	-1.78307703433147	-0.30066372407304
С	-2.96853456378313	-1.15807882530826	0.71403597700410
С	-0.75471538621647	-3.24186592218296	0.61154730765921
С	-2.20039050832803	-2.38695008544950	-1.94340880724880
Н	1.65428741953259	1.86995147450730	-1.28175998457915
Н	2.77072778993145	0.95327448096420	-2.29836808578772
Н	2.67712500509914	0.59657851925148	-0.58477850677853
Н	2.16467099772887	-2.34447367161698	-1.23252564518943
Н	2.32604549654003	-1.96237164374403	-2.94447012349820
Н	0.90579128566836	-2.83513619822762	-2.37128118252749
Н	-0.39123444350657	-2.93501629911197	1.59330929367371
Н	0.09057504424297	-3.66023892158523	0.06220344490646
Н	-1.49070506794377	-4.03668997335094	0.75857745676301
Н	-2.65525059212549	-0.76593876779839	1.68358636943269
Н	-3.67024218597687	-1.97407063986674	0.90713013652484
Н	-3.51363557237423	-0.37044868183439	0.19078618079514
Н	2.13986707603162	1.77604027279356	2.44375464973054
Н	3.04217333571457	3.28754383321149	2.37149377437393

н	2.90766683034968	2.27931927748250	0.93326155340692
Н	-0.07858279119976	3.71042416015872	3.63813414389914
Н	-0.71346754226641	5.04354918743172	2.67685042220826
Н	0.93335438868470	5.11813726655015	3.30391751251550
Н	-1.77801125499731	5.52221767104260	0.65281505943026
Н	-3.09169189614167	5.14749044882763	-0.45883065026002
Н	-1.43118739641873	5.19193688703656	-1.04874356419744
Н	-3.17997731225874	1.60363999433184	1.76900312390270
Н	-4.18217847748247	2.96574038598293	1.27192094825614
Н	-2.87744547862862	3.20322101863512	2.44306133469572
Н	-2.39429188039067	1.10884612599455	-1.36297597278872
н	-1.91336766050329	2.53358948900146	-2.27429439055461
Н	-3.55298055134549	2.42092848991455	-1.63119614223958
Н	-2.68425707955328	-1.57404764553294	-2.48826629657458
Н	-2.95004314042994	-3.16231880758640	-1.76364667036652
Н	-1.43262002253881	-2.81484891382553	-2.58977781228195
Н	-0.50771310576932	1.13137501611381	-3.35917476555672
н	-0.85914548488934	-0.54955658788181	-3.75693644421460
н	0.67264757644258	0.17096916540309	-4.25494218987377
н	1,70281575607345	4,45091574572482	-0.84280422119977
н	2,27945714023053	5.43358514207320	0.50583724789520
н	0.64229522857868	5.65770974163278	-0.11084451679875
N	0.04732990092175	0.02054381156809	2.53882756972558
C	0.10977110057063	-0.47602839265753	3.85922720656144
C	-1.27532610443104	-0.97715054788950	4.31183473071689
C	0.53963613417772	0.70706621978234	4.76122332014262
C	1.13512157290817	-1.64216563244961	3.98867535967986
Н	-2.00123427899693	-0.16393006269494	4.28317015111394
н	-1.22726150121640	-1.36670459640841	5.33096643630522
н	-1.62269753436201	-1.77456544496669	3.65484589443484
Н	-0.14263809045140	1.54604275567242	4.63011418735674
Н	1.54742132524172	1.04238903189758	4.52420427708893
Н	0.50995154573801	0.39057256624266	5.80516075838659
Н	1.26741588979012	-1.81108493925896	5.06020184469519
С	2.49592166847629	-1.43788748533780	3.31512601090166
Н	0.66925264511091	-2.54807466830465	3.59303021220078
н	3,26620240079024	-1.95497829596803	3 89297204532144
н	2 76639689906606	-0 38099892354833	3 33343749497480
C	2.53618196163067	-1.96263008812968	1.87620006253296
н	2,28375959645778	-3.02576345827419	1.88320060978313
C	3.85165088739316	-1,77926552664040	1,16527004209136
н	1,74696431632410	-1.47640482455342	1,29739486449969
C	4.48926653096756	-0.53780227682169	1.12143506676157
C	5.66950546165639	-0.36422798566496	0.41038775827230
c	6.24146036260193	-1.43355187211269	-0.27007278475217
C	4.44281700602953	-2.84483188257865	0.48694573881080
C.	5.62404489346603	-2.67735104188643	-0.22672653410194
Н	6.14118100737426	0.61021927552313	0.38420145473239
Н	7.16019395602355	-1.29839175006924	-0.82633097002485
Н	3.96474228683787	-3.81719925282411	0.51166124107078
н	6.06052936721811	-3.51940849538096	-0.74916877406393

TS-i3/i4

Fe	0.16023845116257	0.56806142685797	0.80838447180381
Ν	-0.42734637422677	2.37665880670638	0.61528564803468
Ν	0.09419535026875	-0.71503411380995	-0.62066447534583
Si	-2.10345580544090	2.69357630117911	0.28455555695971
С	-3.13404916753221	2.39155731694696	1.83121597351507
С	-2.76619772550828	1.57795062265768	-1.07075166723598
С	-2.42027823036413	4.46286409698288	-0.27508653991912
Si	0.71799513319474	3.59494461168577	1.06826554147554
С	2.40382294541515	2.81778895899269	1.45109022924346
С	0.14091454748305	4.54405832597143	2.59007514127965
С	1.03634708118559	4.82427368833671	-0.31890801120360
Si	1.05453945601641	-0.32063800527830	-2.00613081313160
С	2.52094756906149	0.72164759725260	-1.45954341168472
С	0.10201388340972	0.69124938619010	-3.27194539003367
С	1.72459116300622	-1.85933691719654	-2.86065884428556
Si	-0.99689224673209	-2.05125859241978	-0.54139022002833
С	-2.15863534474930	-1.85640925576442	0.92928975231176
С	-0.12672903301463	-3.70773395092886	-0.32348290209986
С	-2.03818842269490	-2.18216387599557	-2.10702902643675
Н	2.20117289695504	1.70841376603645	-1.12083535403068
Н	3.19949624731657	0.88127015106733	-2.30197506327801
Н	3.09529068082018	0.24884896532542	-0.66155917496293
н	2.32720189585867	-2.45536850640197	-2.17466711301082
Н	2.36127988888174	-1.56823272490253	-3.70045946870364
Н	0.93020031718177	-2.49526692379739	-3.25516429630940
Н	0.39515655253530	-3.75898859110600	0.63273376107867
Н	0.59971168827440	-3.89342692072266	-1.11584038407222
Н	-0.85661121517491	-4.52197092429634	-0.34309042079316
Н	-1.60418507823929	-1.88909135271332	1.86808571758439
Н	-2.88764156302583	-2.67112931298500	0.93559279948082
Н	-2.71914045081536	-0.91938384753333	0.90570929764295
Н	2.36995286988068	1.76936877084256	1.75126136741900
Н	2.87439838193181	3.36092528832196	2.27494529050745
Н	3.06898273273496	2.88747322834668	0.58989266203309
Н	-0.03915584058665	3.87358027613362	3.43294141859591
Н	-0.78946972809472	5.08167593612937	2.39627398686839
Н	0.88894187266520	5.27886715135324	2.89974882926593
Н	-2.11680834384323	5.20908830385579	0.46061959154771
Н	-3.49342470695662	4.58763622959369	-0.44449981156631
Н	-1.90954256191476	4.68401895043688	-1.21378769088024
Н	-3.08386093951420	1.34638379750793	2.14418495089839
Н	-4.18541723568922	2.63487344902140	1.65591856721158
н	-2.78166781256267	3.00380566110400	2.66440506492448
н	-2.56975650335974	0.52511594249010	-0.87910451274200
н	-2.32098788190047	1.81959214731519	-2.03635033062595
н	-3.84868314590751	1.70664697861440	-1.15656396975824
Н	-2.61045915397993	-1.27125804642955	-2.28918518291719
н	-2,74488591198302	-3.01252893571247	-2.02477630341091

Н	-1.41924920759607	-2.36517211886529	-2.98785572449030
н	-0.18176225142576	1.65553318674528	-2.84597608867224
н	-0.81011192696274	0.18383463045629	-3.59011434867412
н	0.71134629248241	0.88161473306126	-4.15969482845137
н	1.28642041795130	4.29848620443852	-1.24368324877585
н	1.88511660537563	5.46402788087712	-0.06020380240494
н	0.18151926039787	5.46931088053303	-0.51935987971557
Ν	0.49359631278486	-0.17279053801202	2.43211911627632
С	0.43867537610396	-0.01630800231905	3.86964206803599
С	-0.99498674023287	0.39581548871280	4.24495660839145
С	1.41239406742865	1.06677582848729	4.36636707860376
С	0.75793129217788	-1.37708384383547	4.54402281998393
н	-1.24614483794402	1.34664888420475	3.77808905460741
н	-1.08447426390500	0.50560225839581	5.32780888831606
Н	-1.71051821453338	-0.35359237275397	3.90703343576591
Н	1.14317549237272	2.03475737167816	3.94918103009530
Н	2.43726183073366	0.85358505658946	4.06866733558397
н	1.37786334168762	1.14201891173230	5.45555865581503
н	0.74599446705372	-1.24659121567389	5.62817751864617
С	2.09691166217128	-1.95379867798472	4.07972829433949
н	-0.04391723419127	-2.07693605421814	4.29198085784833
н	2.26787378310379	-2.91779230957072	4.56989750132304
н	2.91470034223927	-1.30368451680086	4.38945928194715
С	2.09049530966077	-2.13942962799701	2.57584793424146
Н	1.54952982500459	-3.03156506611962	2.26528955537750
С	3.27734722699894	-1.88081905194741	1.75020572963485
Н	1.26304911479308	-1.22753234468285	2.25114371897963
С	4.17078858061264	-0.83837019648359	2.03652932052905
С	5.24593312945572	-0.56968650866878	1.20375587458115
С	5.45792898653617	-1.33532532509664	0.06133122840542
С	3.49870770349496	-2.63228582077094	0.58707672920214
С	4.57757678189549	-2.36842871876331	-0.24226099841316
Н	5.91655924740704	0.24628925110120	1.44106368189469
Н	6.29490975941941	-1.12223768547892	-0.59066473984128
Н	2.80850524894031	-3.42726469310932	0.33704316149424
Н	4.72823506611809	-2.96474910208428	-1.13298404384396
Н	4.01629697096024	-0.22227211103887	2.91135598214727
i4			
Fe	0.10292487082026	0.47460691129743	0.68790468708904
Ν	-0.09995901248086	2.37471531277742	0.41164202426641
Ν	0.02059724896646	-1.08730532769125	-0.44567367140842
Si	-1.69836547230721	2.93795604006865	0.08491408282375
С	-2.47903086652410	3.70708434494250	1.61967578495953
С	-2.80400183713888	1.51758459511680	-0.46456669782637
С	-1.76151044337202	4.22789630875443	-1.28779202637000
Si	1.29262064968400	3.38472106590455	0.34888267014522
С	2.78583290000435	2.58937356999045	1.19856339889496
С	1.02043770096318	5.02381843948675	1.24278078943816
С	1.81234351708266	3.77849351146006	-1.41684769874716
Si	0.96775657081257	-0.87932452191675	-1.88125023878457

С	2.64956669543857	-0.12348725143916	-1.50560156563168
С	0.10802901518423	0.28669507390575	-3.08591941333405
С	1.31075136767773	-2.50486174654876	-2.77376540420061
Si	-1.21390173672926	-2.27787708092278	-0.30742527950521
С	-2.23361669705412	-2.07341522478283	1.26627999644525
С	-0.53924550010531	-4.03945036583105	-0.19188926605043
С	-2.42046767740787	-2.23129901897763	-1.75429985976214
Н	2.56477138584164	0.90984332042845	-1.17315651775587
Н	3.25916558359791	-0.11764691426820	-2.41400668115107
Н	3.19177826777648	-0.68181296019817	-0.74283040151783
Н	1.88860436449224	-3.18658288587543	-2.14597210129936
Н	1.89844040430294	-2.30489950254512	-3.67386427333153
Н	0.40109934388626	-3.02178959815854	-3.08371725200305
Н	0.00951161994091	-4.19771285250746	0.73981646473114
Н	0.12428755947501	-4.29180668475342	-1.01857538341079
Н	-1.36772302203253	-4.75363327249218	-0.20034620069890
Н	-1.64273244991259	-2.28449794005263	2.15944593350912
н	-3.05750577662248	-2.79223051723348	1.25134902627919
н	-2.66805129885829	-1.07984920038561	1.37554886872947
Н	2.67907079734564	2.59239234901174	2.28537392649419
Н	3.67839478919161	3.17798485730763	0.96972253284771
н	2.98935186491474	1.56970212550512	0.86864983525327
Н	0.76020335678970	4.86732984154241	2.29207525794215
Н	0.22124153614787	5.61156767611909	0.78742061542037
Н	1.93045977364549	5.62958872122940	1.21235423537025
н	-1.18400241088199	5.12277191279545	-1.04897885521697
Н	-2.79576740779874	4.54038940203133	-1.45621304610043
Н	-1.37919015794534	3.82316528086542	-2.22732940682213
н	-2.55026466272628	2.98269897293755	2.43482888524802
Н	-3.48962652679624	4.06707914327763	1.40803651288783
н	-1.89194503992462	4.55455528618924	1.97982706743902
н	-2.96988774889196	0.78433496151012	0.32676098855346
н	-2.37547764095538	0.99333235937171	-1.32006731977952
Н	-3.78399786516548	1.90123436925441	-0.76143783615278
н	-2.93378290367134	-1.26909354803004	-1.80320513314068
Н	-3.17951138760780	-3.01177684713531	-1.65328093887067
Н	-1.91488903426911	-2.38471549815793	-2.70996082831182
Н	-0.04812541077797	1.26129329072550	-2.61728941520352
Н	-0.86839298751652	-0.09702862733240	-3.38896762668040
Н	0.70449772685304	0.44176760287762	-3.98911961273170
Н	1.97133281772042	2.87011913972282	-2.00008255360697
Н	2.74238303308648	4.35348830224273	-1.43163020776745
Н	1.04855395496155	4.36653936096117	-1.92795796900140
Ν	0.91964851711029	0.11776871312391	2.67004525661302
С	0.21929580419038	0.60912922083532	3.90811683000051
С	-1.25118593174007	0.20373991794708	3.86597382001844
С	0.34123534526016	2.12240542859695	4.00731950853399
С	0.97301909302537	-0.13327359949809	5.02490386659268
н	-1.74940689074536	0.65072486387830	3.00517198581993
Н	-1.75475278189123	0.55283244070230	4.76822845591567
Н	-1.37815995281898	-0.87533072005586	3.80524189408022

Н	-0.09703430318735	2.60416652246811	3.13461563840245
Н	1.38570993420708	2.42929920708128	4.08509936160904
н	-0.17804500826902	2.47710742664806	4.89831431233115
н	0.39737087737746	-0.17840464250646	5.94960209747565
С	1.27983329287891	-1.51669235664283	4.44222271287461
Н	1.90126988010707	0.40135815460697	5.24290665239279
Н	0.49944146754721	-2.23395035370833	4.69628350411158
н	2.22052938948589	-1.92023979896760	4.81166175277414
С	1.32029383974486	-1.31115882341341	2.90052819783317
С	2.64584375457048	-1.60827708008561	2.24786895018892
С	3.79639318679422	-0.90164817512815	2.60220886147663
С	5.01246165594525	-1.17539200668803	1.99133694878887
С	5.09810849151116	-2.17306258538264	1.02562117668637
С	2.74144062616577	-2.59830618155328	1.27494138963314
С	3.96011534613995	-2.88655475013989	0.67249771711223
Н	5.89341176226998	-0.61115922466631	2.26877847937167
Н	6.04526096081924	-2.38521381410322	0.54696166681893
Н	1.85058596823717	-3.12490152762079	0.96643568150294
Н	4.01313787477164	-3.65394209997285	-0.08894512978957
Н	3.75033507720132	-0.12855956716810	3.36118784119226
Н	0.56910543176567	-1.93862021319186	2.42831742928880
Н	1.77883155039559	0.65755956222982	2.59555023775749
Gai	uche-i2		
Fe	-0.37617634603660	0.72666088398143	0.92876094110329
N	-0.72086865071775	2.61289234421402	0.81660279489353
N	-0.09005360109431	-0.73190957187574	-0.28043724252073
Si	-2.23933618383295	3.09727649014578	0.14298353295872
C	-3.42956043071488	3.70596330697888	1.47053638400912
C	-3.080/831/862433	1.653/0//6989/64	-0.72564269489056
C	-2.050691/85//952	4.46834493021352	-1.13530634266508
SI	0.528/54/6/650/2	3./2//488/316/52	1.232/4398942/92
C	1.82986964266743	2.89/28888/01/8/	2.32282764122143
C	-0.13460811241175	5.19233824949922	2.21553358/90839
C c'	1.42461599090092	4.41130846753427	-0.2/468292839/20
51	0.98041310621493	-0.34391628265855	-1.59185550092931
C	2.48104507673291	0.60833890821901	-0.98584502290679
C	0.13080166810179	0.75875347606122	-2.80002941250001
C Si	1.010/9950899803	-1.88337300330039	-2.4/1012912/9213
51	-1.24150091054004	-2.01342020300130	1 0222202010101010
	-2.51095659996557	-1.00345119905054	0.159/171600/621
	2 10620065096296	-3.70343743047374	1 00020100000700
с ц	2.19020003080380	1 50064999042060	-1.90030409090700
н	2.19400012008303	0 92552272627886	-0.44389488813407
н	3 12068201231673	0.0200272027880	-1.84040130770342
н	2 173101//301255	-2 52852750128860	-0.33732770404703
н	2.17.510144501255	-1 58754129070222	-3 272513/3167//5
н	0 81731234513227	-2 47443496096354	-2 92139914679276
н	0.06604586722976	-3.79856236611019	0.80355038661761
н	0.28827921562222	-3.91421938766745	-0.94141282067892

Н	-1.20487485204044	-4.49305149208886	-0.20165336138716
Н	-2.07746564725095	-2.09993403212088	1.99601329060597
Н	-3.30769655473629	-2.62006606794167	0.85558541449070
Н	-2.99064096775281	-0.90252604922065	1.07883005941758
Н	1.41363435751738	2.56545860370077	3.27566040953070
Н	2.62199108650813	3.61669470080991	2.54710773961246
Н	2.30224473380304	2.04004696583151	1.83916033121253
Н	-0.63349799665446	4.86312653670729	3.12962342297702
Н	-0.85328749194424	5.77737484765703	1.63783745932647
Н	0.68063251255991	5.86332277480766	2.49975535487848
Н	-1.64618102957770	5.38648320663576	-0.70501967759743
Н	-3.02524058916600	4.71076139130018	-1.56765606485900
Н	-1.39085317830122	4.16079630208686	-1.94936086503246
Н	-3.63982246795712	2.92416963576859	2.20447427092576
Н	-4.38230176368256	4.00499880576387	1.02444893535057
Н	-3.02914721784728	4.56507979167452	2.01117786277889
Н	-3.40501116117954	0.88219232019296	-0.02513900558548
Н	-2.42856435072198	1.18689667479318	-1.46373846055683
Н	-3.97317350374494	2.01146330809738	-1.24658160019294
Н	-2.76079206412231	-1.10003838258241	-2.11697433252426
Н	-2.90669202162410	-2.85628429934337	-2.00516254196173
Н	-1.53891234692674	-2.13748177702295	-2.85255187495919
Н	-0.16585895898822	1.70424583081153	-2.40012363745133
Н	-0.76453340245766	0.29490977176110	-3.27838506972270
Н	0.80549862515448	0.99194999520834	-3.68882616724132
Н	1.81693050094609	3.61251121742691	-0.90598229664850
Н	2.26501209325075	5.04138778601025	0.02974484269463
Н	0.75879423794392	5.01910430378479	-0.88879912205252
Ν	-0.54422297133553	0.44849501404542	3.12617272075963
С	-0.03162921220714	-0.60585158029055	4.10731424955857
С	-1.23714104911361	-1.26398350022777	4.77718406675452
С	0.86021321091209	0.06909235169824	5.14817014836542
С	0.73300730192336	-1.62745730183461	3.26266359909233
Н	-1.83993501498488	-0.53226823630915	5.31857554919207
Н	-0.89439988224057	-2.00815831188733	5.49721125272697
Н	-1.87242795464595	-1.75951441921686	4.04491634668092
Н	0.28563075458382	0.74009458206295	5.78909293700747
Н	1.65896482151955	0.64002289568460	4.67908537306053
Н	1.31044134851939	-0.69135477755356	5.78772199097810
Н	0.88816796538082	-2.50912720756421	3.89044650705545
С	2.07711158172460	-1.17354905811025	2.70279345149063
Н	0.08679206743238	-1.94596942958556	2.44417477943294
Н	2.78122937505110	-1.01635580679319	3.52220938734852
Н	1.97297113187434	-0.21041949026012	2.19571668854023
С	2.63211810036492	-2.19737507460480	1.72192635080470
Н	2.64402123710414	-3.18370804893692	2.20018075749596
С	4.00694520829261	-1.91421645291518	1.16396016588119
Н	1.93172650537148	-2.27714199950933	0.88736366569007
С	4.79780874819238	-0.84800250726098	1.58629842314432
С	6.04261186987158	-0.60839930752977	1.01057353867012
С	6.51905658155715	-1.43376006023075	0.00228233245702

С	4.50292479136376	-2.74045385848839	0.15209847027102
C	5.74158980118537	-2.50623432872601	-0.42514972673090
Н	6.63473271943620	0.23258726220198	1.34913634773295
н	7.48363120839067	-1,24363718206640	-0.45052480950943
н	3 89972013655058	-3.57215688861787	-0.19359390327658
н	6 09929909576812	-3 15599747267982	-1 21397069402414
н	4 44194842811897	-0 17726945877319	2 35636907043197
N	-1 12010791227948	1 39834850426463	3 67311258861023
N	-1 64610348294018	2 28778582205608	4 11117512918146
IN	1.04010540254010	2.20770302203000	4.1111/312910140
Gai	uche-TS-i2/i3		
Fe	-0.29023619292583	0.80842485131009	1.14066266186246
Ν	-0.78575327572062	2.64499452443478	0.89111885584909
Ν	-0.10872165302395	-0.55277907412025	-0.18516826541242
Si	-2.40944745507455	2.95840148083392	0.34350339365541
С	-3.66234692915737	2.32706241871701	1.59843194093991
С	-2.71470314512596	2.07570648922456	-1.28712971564011
С	-2.76610558217082	4.78306550568562	0.07084780620510
Si	0.50522870480371	3.80229522846510	0.99753412124199
С	1.91968100701560	3.02813723108069	1.98229060581717
С	0.07306837163045	5.40573603312726	1.87708792586750
С	1.11149579471343	4.26597690147098	-0.72323103103069
Si	1.06215942624051	-0.31492158258515	-1.45502835827661
С	2.56854644373667	0.60923552359751	-0.82094760722485
С	0.36121384456787	0.70334543713758	-2.86962697340226
С	1.68204703825385	-1.95136356558178	-2.15013099682448
Si	-1.33837649514548	-1.77447347556346	-0.30875778431478
С	-2.76670677317946	-1.35363372645289	0.84393141973030
С	-0.70582280724925	-3.49061394080388	0.13916454626118
С	-2.07267962738061	-1.89387523988737	-2.03897773432991
н	2.33357670534370	1.61544765249589	-0.47748732727242
н	3.27963674510245	0.71797819501847	-1.64458325072112
н	3.08780063610391	0.08364247004743	-0.02095217333701
н	2.16753218421783	-2.55442185425706	-1.38270500331197
н	2.42635796741376	-1.74958487836883	-2.92503252300644
н	0.89051121480955	-2.54951745341228	-2.60293708292082
н	-0.41190096862185	-3.56862077172953	1.18651983927444
н	0.15569963463872	-3.76988015415206	-0.46923838180636
н	-1.49126078601858	-4.23059088167031	-0.03850640282681
н	-2.44682012506231	-1.12830190111594	1.86205971533363
н	-3.45196292905368	-2.20366986080444	0.90016409961381
н	-3.33943634728903	-0.50041285426344	0.47675413217617
н	1.65283994256385	2.95311211460744	3.03773760696181
Н	2.80406475399262	3.66648249232430	1.90461552707484
Н	2.22712294281521	2.03563294906372	1.64759325126004
Н	-0.45281597890095	5.22118421318903	2.81365984349612
Н	-0.54099635512466	6.06283046684185	1.26162381813349
Н	0.99842554404175	5.94196308440653	2.10722058179738
H	-2.72455723052698	5.34963877830970	1.00135779825635
H	-3.77608846475117	4.88426104986365	-0.33625277797221
н	-2.07812438000485	5.24248849156690	-0.64142328495976

н	-3.44720798412299	1.31171235213717	1.93552686585695
Н	-4.66472811420653	2.32418302106469	1.16168481945626
Н	-3.68242495835638	2.96769355711216	2.48136718882366
Н	-2.47986619533952	1.01404075712939	-1.22116629661261
Н	-2.09334097802065	2.49395178057745	-2.08110418977071
Н	-3.76046802888558	2.17240670777063	-1.59048290611993
Н	-2.50874024130458	-0.94595513181114	-2.35776335959299
Н	-2.86890753663750	-2.64365041928678	-2.04112700105953
Н	-1.33973690762104	-2.19384652329102	-2.78887057348281
Н	0.06476284971901	1.69302561296526	-2.51825633822383
Н	-0.51479451404942	0.23560566186362	-3.32033548018063
Н	1.11256650976194	0.83787928569506	-3.65249386583559
Н	1.44961865315150	3.40284314276155	-1.29715639106906
Н	1.93864429201890	4.97898117024626	-0.66842633503402
Н	0.30566522653940	4.73959541618288	-1.28954484083618
Ν	-0.32977224054850	0.58437753474571	3.01308791059944
С	0.02221609538271	-0.47450796145167	3.97502789876271
С	-1.24034765561226	-1.09801874824768	4.58723492675668
С	0.91505052639689	0.08524929353416	5.09174640607027
С	0.76678370129945	-1.56721986345722	3.18576129947526
Н	-1.84709098966453	-0.33503866326973	5.07470686607931
Н	-0.96733516655668	-1.84775041288677	5.33242007751845
Н	-1.84613460082554	-1.58342428983851	3.82220888146204
Н	0.34816685171278	0.75433166137038	5.73920302172407
Н	1.75427702854907	0.64270759808390	4.67778932552607
Н	1.30684234523465	-0.72800141431771	5.70605170793918
Н	0.83614997321963	-2.44298981269414	3.83772062415861
С	2.16347376932749	-1.21954038032621	2.68157889572551
Н	0.14443038461495	-1.86393540076956	2.34246064969530
Н	2.83736933389272	-1.08346459209544	3.52946418016275
Н	2.14868566545184	-0.26545512885144	2.14847210501519
С	2.69403403817282	-2.30811612251322	1.75839522775610
Н	2.66611810100182	-3.26776566841101	2.28758909757325
С	4.08358583886521	-2.10252894099406	1.20203570445335
Н	1.99828206411171	-2.41608465712249	0.92271811026141
С	4.92489725128811	-1.07362295716305	1.62013491301381
С	6.18976499573104	-0.91107257939882	1.06169159752043
С	6.63741063373463	-1.77826180190930	0.07532717564628
С	4.55026616858122	-2.97014932209845	0.21108378812909
С	5.80931935038183	-2.81339762881172	-0.34858588782630
Н	6.82268833939150	-0.09999390798668	1.39952051583352
Н	7.61924516728091	-1.65026506912619	-0.36200194126371
Н	3.91147426053593	-3.77733570659802	-0.12889080429832
Н	6.14455662719258	-3.49659524363999	-1.11890380554013
Н	4.59581466691167	-0.37776566773898	2.37979816567923
Ν	-0.99238693406032	1.73368735845577	3.86410227007021
Ν	-1.24747306414005	2.80440973635908	3.60338698378375

i17

Fe -5.38812725253540 1.82817247508399 0.45382814055333

Ν	-3.59098908383105	2.01930310169700	0.95013662793376
С	-2.82930364156872	2.96480139591612	0.14142820709948
Ν	-7.22970591995452	1.58497228981918	0.08032310073422
Si	-8.24461582130343	2.92581032993934	0.44967022637322
С	-7.26994915926029	4.12198109374632	1.53824313015440
С	-9.79657547613592	2.40023648495910	1.37503526490468
С	-8.76169074905368	3.85610639286228	-1.10073725492044
Si	-7.68060689923110	0.07238543482208	-0.60111509160721
С	-6.13717071573746	-0.76730184902678	-1.29513593558059
С	-8.91408997933821	0.26496408719155	-2.00949166589612
С	-8.42331056014330	-1.07497540761339	0.69204936618674
Н	-7.87985826094199	4.19329960075842	-1.64919363982981
Н	-9.36764564563026	4.73309608418868	-0.85687547629630
Н	-9.34571726409977	3.22000798248895	-1.76867353776374
Н	-6.98978890610462	3.66956187739862	2.49294506516135
Н	-7.86519053224042	5.01225539113151	1.75928161418779
Н	-6.35540794321542	4.46677613579945	1.04494382830578
Н	-9.54464658147842	1.86761430564871	2.29488385136530
Н	-10.41519232557066	1.73660481076774	0.76579706531044
Н	-10.40825627718924	3.26609897037876	1.64214828411865
н	-5.72783938533594	-0.20726647523547	-2.13868597973279
н	-6.37517468742582	-1.77330645769942	-1.65103690098990
Н	-5.34622669588236	-0.87554343201313	-0.54587842372839
Н	-8.51599945871924	0.91572168537111	-2.79127306039495
Н	-9.85509703636203	0.69872492348600	-1.66316297098959
Н	-9.14531465941992	-0.70377832176754	-2.46043344050669
Н	-7.71468772641914	-1.24526518284919	1.50668564455901
Н	-8.68520671641459	-2.04715754929534	0.26556023146055
Н	-9.32804678511352	-0.64542191614676	1.12763033388195
С	-3.66857045868987	3.38447874741842	-1.04505088694731
С	-1.51906147746062	2.21848815365575	-0.13919552087909
н	-2.58519643939523	3.87801956249533	0.70947696461469
Н	-1.67583505202533	1.47996885229047	-0.92796725747509
С	-1.25944014782354	1.53541220992609	1.20643129250577
Н	-0.70921907752266	2.87988070953891	-0.45172171390114
С	-2.67454618539464	1.25649207153616	1.80468729707347
Н	-0.70506538449143	2.20819817661456	1.86434654940326
Н	-0.67194836095381	0.62169865599030	1.11046966618917
С	-2.75668033429857	1.74235688522935	3.25801045261860
С	-3.02800299685850	-0.23217296448984	1.73959619638821
Н	-2.57797269056089	2.81785589158444	3.30888219823388
н	-2.01638620183610	1.24068438275445	3.88749494346377
н	-3.74827380835061	1.54470163436059	3.67069955274490
н	-2.91998903070684	-0.60731193724043	0.72030442260716
Н	-4.06350253247559	-0.39285035839841	2.05340262153694
Н	-2.38648601577806	-0.82271104970633	2.39773575232265
C	-4.12457801339488	4.69667847178642	-1.17454042925600
C	-4.97987416575609	5.05667771973650	-2.20883372858411
Ć	-5.39918326177494	4.10501527767602	-3.13193314543271
С	-4.95252637774420	2.79456380682194	-3.01903877020570
С	-4.09367946835559	2.43646626492510	-1.98511678520976

Н	-3.81325358552180	5.43596868914004	-0.44633828754773
Н	-5.33079591936473	6.07779452220229	-2.28640973601108
Н	-6.07508111272787	4.38228797103392	-3.93027095148156
Н	-5.27418366024662	2.04789661470951	-3.73360522497930
Н	-3.73764609483346	1.41679277660019	-1.91242207584598
i18			
Fe	-5.48633474758505	0.55574475438816	-0.11690188997763
Ν	-3.96190134235534	1.64475417888246	0.27523348305757
С	-3.74714253928364	2.89656615379736	-0.44918817139202
Ν	-7.27177919868074	0.68501619125958	0.64321472610827
Si	-7.91031516136649	2.28558475076732	0.65883081153699
С	-7.07370831674755	3.35733181392434	1.96361426228709
С	-9.76873806761564	2.33652874755761	0.98509241317630
С	-7.65805614790604	3.15825834250946	-0.99623183731553
Si	-7.87703418643795	-0.58705425717725	1.61987663479430
С	-6.71811179435806	-2.08078468432970	1.60397060165612
С	-9.53659630536503	-1.24000757294763	1.00364626893184
С	-8.06327317245995	-0.08195757357969	3.42747915026010
Н	-6.62665340404006	3.09257463514076	-1.34827434900381
Н	-7.90580828469487	4.21910706824222	-0.90059055210175
Н	-8.30354396022428	2.73708288627387	-1.76965746657251
Н	-7.16706032972005	2.91581598616890	2.95813960343276
Н	-7.51082947489932	4.35908664884712	1.99697618540185
Н	-6.00914940017901	3.46169351233196	1.74544722195590
Н	-10.03989201961632	1.90657899161352	1.95088399765071
Н	-10.32191299455878	1.79825780572209	0.21231592237937
Н	-10.11358053650305	3.37427671576779	0.97971329146672
Н	-6.73446945811489	-2.58549027344042	0.63534062929369
Н	-7.04538244909799	-2.81069276893780	2.34956031264142
Н	-5.68606364048025	-1.81037588310576	1.83732937491467
Н	-9.45945905990853	-1.55652849983307	-0.04028789203250
Н	-10.32071109478649	-0.48393803728271	1.06052102487954
Н	-9.86156339046744	-2.10386077245075	1.59053943043351
Н	-7.09396537657059	0.19887654011016	3.84690548561854
Н	-8.46406773124863	-0.90281863870576	4.02845396056022
Н	-8.73286651379360	0.77217982938427	3.54668509714904
С	-3.38278548806098	2.70351311044841	-1.90644886199627
С	-2.65563088350725	3.65422527171243	0.34156515195716
Н	-4.65376788471915	3.51920381805287	-0.43216242459941
Н	-1.66741215958601	3.39610846832402	-0.04358443224895
С	-2.84268955770902	3.11872767540492	1.75675858684924
Н	-2.76961537955785	4.73545004059678	0.25830260081352
С	-3.18209341496292	1.63353510401026	1.52566688693332
Н	-3.68778667701199	3.61514067757770	2.24016615407672
Н	-1.96444340626505	3.25573170107499	2.39057154557937
С	-3.99325797553758	1.04152909087360	2.67951788956188
С	-1.89174592277998	0.81077631800403	1.36126255834941
Н	-1.23365645213885	1.24988680866564	0.61082828862196
Н	-2.13506181501369	-0.20041247925599	1.04130783861551
н	-1.33636773704988	0.75035009832547	2.30170345943444

С	-3.95132538761156	3.49882826076705	-2.89904823307659
С	-3.57134800229881	3.36479792786734	-4.23192805868324
С	-2.61489500472364	2.42466942535674	-4.59338110192672
С	-2.05148943144788	1.61312458467897	-3.61201892736870
С	-2.43658811194479	1.74802889215831	-2.28513370269298
Н	-4.69973627458336	4.23274352061208	-2.62349240600571
Н	-4.02712002218009	3.99280196819360	-4.98737405109156
Н	-2.31774038760533	2.31708293188912	-5.62874330591381
Н	-1.30619079984095	0.87510114325947	-3.88464994309762
Н	-2.00721482615166	1.11154217314506	-1.52388774218646
Ν	-5.02212988581875	-0.65619624358093	-1.88318579264288
С	-4.61205121183216	-2.05794951004496	-1.52913638786540
С	-4.88976766072015	-2.87597905088217	-2.79401282012167
Н	-5.29150681881661	-2.40450209880642	-0.75222552762381
С	-3.20849293652343	-2.15984158384281	-0.99813085943751
С	-6.16565049427183	-2.23231144647108	-3.31418574150209
Н	-4.99244441849030	-3.93764510899989	-2.57002121292297
Н	-4.06894218191651	-2.76543024527270	-3.50573331934800
С	-5.96573342433799	-0.72124106797845	-3.07827969955915
Н	-7.02255189474809	-2.58478955618289	-2.73465431826040
Н	-6.36726722085896	-2.44451844281842	-4.36410104321551
С	-7.28451802102538	-0.02450449294537	-2.77945635802114
С	-5.27952866165558	-0.05477726597881	-4.26911642721795
Н	-4.36558942218469	-0.57938599567775	-4.55342468112801
Н	-5.01592568198228	0.97664767200158	-4.03454462341187
Н	-5.94777398436614	-0.04416655346352	-5.13145283382538
Н	-7.72778444363767	-0.38829486308260	-1.85330359987729
Н	-7.98604905509112	-0.20179936111772	-3.59773311734712
н	-7.14582825162844	1.05079154257903	-2.68101623259264
С	-2.97415934271461	-2.75552069348225	0.23873332482994
С	-1.67857074194675	-2.91152317967873	0.71850819843883
C	-0.60032761099450	-2.45972485664082	-0.03069675075621
C	-0.82422936762821	-1.85768594250593	-1.26460549663377
Н	-4.93499478418681	1.57375654659675	2.80514553879201
н	-3.43292761781788	1.09219886617039	3.61612836013820
н	-4.22089601245996	-0.01070734047695	2.48980583323619
С	-2.11753834343949	-1.71808587271791	-1.74675077708833
Н	-3.81370883368507	-3.09745533867019	0.83099498033095
н	-1.51480922749259	-3.37407903408679	1.68321681034824
Н	0.40841713635970	-2.56852401968825	0.34573544190649
Н	0.01125125589117	-1.49987631532326	-1.85279790166888
н	-2.27552228516949	-1.25657015876295	-2.71346734782902
н	-4.18947545345452	-0.15154211080864	-2.17770111921907
	11203 173 186 18 182	0110101212000001	2127770111021007
i19			
Fe	-4.24144194191655	-0.11282018803266	-0.72620985373077
N	-3.92617888443632	1.55818809255677	0.06316735906780
С	-3.62047731712411	2.79071087600818	-0.66736587405487
C.	-2.35709496054256	2.73156352042115	-1.49872144517932
C	-3.55691239023252	3.89230715417819	0.41317000808317
Ĥ	-4.44196300447143	3.04393378578829	-1.35484598994053

Н	-2.54227133936522	3.96120291737570	0.80943003750043
С	-4.51956844979293	3.37518641592917	1.47395209386745
Н	-3.82176901489970	4.87163953640412	0.01383373820153
С	-4.27105543208712	1.85396231232518	1.46733720520483
Н	-5.55168427459850	3.57548405750484	1.17360452972050
Н	-4.36431134480601	3.82106513517230	2.45787413225297
С	-5.51740343930177	1.07489522949947	1.89571943506336
С	-3.10654615263595	1.48784804859201	2.40408483937545
Н	-2.21518723415064	2.07075323711463	2.16943375741747
Н	-2.85333244591247	0.43187722708007	2.28821464172331
Н	-3.36577071891188	1.66653753725198	3.45117833527220
С	-2.33428937966257	3.26067116838204	-2.78699805139337
С	-1.15568523443915	3.29551393306084	-3.52661208094565
С	0.02064929038294	2.79619199406932	-2.98219171712462
С	0.00433625417643	2.24872629954440	-1.70241624247114
С	-1.17448964275149	2.21088220940387	-0.97268177001083
Н	-3.24958087478716	3.65728748467190	-3.21200482707907
Н	-1.15793229277268	3.71245318564302	-4.52620871682758
Н	0.94028152042734	2.82188283667760	-3.55312905655627
Н	0.91295026978002	1.84169033917973	-1.27664602696955
Н	-1.19095467916631	1.76514894808247	0.01300596499181
Ν	-4.97446002133478	-1.73147895060997	-1.32784957189948
С	-4.10979986403492	-2.75024467388414	-1.90924593507683
С	-4.93305615906077	-3.29770548843530	-3.08459487343277
Н	-3.93268972122004	-3.58266798137852	-1.20726324133692
С	-2.76283569662928	-2.16217400249738	-2.25789608422614
С	-6.33798081361633	-3.32195722553152	-2.48596902717300
Н	-4.58756984563225	-4.27439118881481	-3.42748271531559
Н	-4.87515917886023	-2.60402059715317	-3.92619274378486
С	-6.38623112099950	-2.08345424856912	-1.54687844346165
Н	-6.47293195489881	-4.23451380194628	-1.90014286775895
Н	-7.12882892271281	-3.29646783489072	-3.23669859675657
С	-7.08038163732125	-2.42335425922028	-0.22235563163727
С	-7.11340265189431	-0.91105050628562	-2.21885048126962
Н	-6.67722149913296	-0.70082726689016	-3.19698906178398
Н	-7.02542183178469	-0.00749809450153	-1.60777520632163
Н	-8.17785611939131	-1.12147105648215	-2.34977529872379
Н	-6.53238104481940	-3.20929409912625	0.30004107381923
Н	-8.10537504602367	-2.76754113130855	-0.38723111899493
Н	-7.11714331934442	-1.54645273175675	0.42807880472394
С	-1.58635424407773	-2.69866510866265	-1.74070068456014
С	-0.35144685401186	-2.13159627014490	-2.04036060653168
С	-0.27969255852570	-1.00847018367959	-2.85387012026059
С	-1.44600983408769	-0.45650034327671	-3.37153293686988
Н	-6.35736839233465	1.30970869483405	1.23954414988581
Н	-5.80261840684488	1.31637524616638	2.92254880988720
Н	-5.33902258405745	-0.00469750188556	1.85485088542408
С	-2.67526350823727	-1.03099769098787	-3.07917670968979
Н	-1.64242702664449	-3.56641953990660	-1.09403605062754
Н	0.55261004443557	-2.56149721757707	-1.62736249825521
Н	0.67677017943925	-0.55356183503249	-3.07437202190954

Н	-1.39771611739310	0.43169349978053	-3.98622957888267
Н	-3.58030113494875	-0.60692990422998	-3.49690604265760
i20			
Fe	-4.32238768365130	0.40303286192344	-1.22219220742845
Ν	-4.05459761754692	1.58966801407202	0.26746956748803
С	-4.92158922207986	2.74237819792197	0.49338572700107
С	-4.75065926857491	3.88644328052835	-0.48715414767969
С	-4.62852793383590	3.21351770211539	1.94025077716105
Н	-5.98258513712120	2.44968333082463	0.44581615135509
Н	-3.84344297419154	3.97198173751294	1.92908811980309
С	-4.13993148695448	1.93964354015725	2.61433061320454
Н	-5.50635092382759	3.65714840758901	2.41109575533271
С	-3.33455014095884	1.24008546108473	1.50224914514928
Н	-4.98973266680638	1.31084280861038	2.89431293322561
Н	-3.54812215537441	2.12408861785442	3.51315109270530
С	-3.28945500393688	-0.27351475810444	1.71152070222779
С	-1.88806052324690	1.77235796166928	1.46819472152365
Н	-1.86839573077143	2.85813400912993	1.36569639968914
Н	-1.35775075242254	1.34595673680786	0.61453685921730
Н	-1.33988733614261	1.50599379270211	2.37652147157058
С	-5.82947488475735	4.71768528125646	-0.78942521111850
С	-5.66957451936739	5.83402815330735	-1.60300899461413
С	-4.42487279538179	6.12733615287134	-2.14747905666255
С	-3.34608153267941	5.29464504484351	-1.87073787430884
С	-3.50853828849589	4.18725757571301	-1.04644477601034
Н	-6.80418639099923	4.48928066082770	-0.37263774129951
Н	-6.52001826612237	6.46894144734131	-1.81956444426583
н	-4.29814413103088	6.98806882998740	-2.79125257033961
Н	-2.37491090263191	5.51066515370334	-2.29882872059077
н	-2.67349476021326	3.53674804561216	-0.82171730252230
Ν	-5.17039176030596	-1.32109261960659	-1.42066966599532
С	-4.50813705886343	-2.55884744825468	-0.99560158089006
С	-5.59593590868047	-3.64473474908911	-1.05486356194054
н	-4.17826319851179	-2.49275150670754	0.05312678234498
С	-3.27236390688247	-2.87042479273770	-1.80959809787305
С	-6.84398915458763	-2.85377483342213	-0.68552232867015
Н	-5.38403345268449	-4.47616426817186	-0.38130019140111
Н	-5.67754896377003	-4.04933429174077	-2.06540661354988
С	-6.63538989140679	-1.50603584255230	-1.40763557249060
н	-6.87272356370227	-2.68924576763565	0.39522977561914
н	-7.77610732351426	-3.34322783469682	-0.97346372612215
С	-7.33937756153530	-0.36241791715797	-0.66906775201869
C	-7.19547750246972	-1.58905299499955	-2.83976723304132
Ĥ	-6.74030795889318	-2.41494737526561	-3.38772487575430
н	-6.98109082430255	-0.67072556202404	-3.38720613589088
н	-8.27951606268733	-1.73410536919253	-2.83730055309745
н	-6.94501838136838	-0.26315772380237	0.34339939909985
н	-8.41789156575373	-0.53212033507930	-0.61061232909427
н	-7.18435843393570	0.59011405539433	-1.18520821878866
C	-2.01994807867055	-2.93592118332952	-1.20382102692601

С	-0.87101652069395	-3.18841789977148	-1.94904855655123
С	-0.96195461200475	-3.38533068248019	-3.31976730205243
С	-2.21042844082073	-3.33320316472798	-3.93695319260888
Н	-4.29696785297765	-0.69161051345930	1.70118821073208
Н	-2.81455083934530	-0.52441073757595	2.66342411744866
Н	-2.71491955950423	-0.75605701260012	0.91755203042097
С	-3.34920674964463	-3.07657188766041	-3.18810162093966
Н	-1.94395255559574	-2.77758052656074	-0.13459461945848
Н	0.09307512065995	-3.22613682066967	-1.45722375901030
Н	-0.07204346435052	-3.58058581163314	-3.90460408727772
Н	-2.29273393741177	-3.49409938098480	-5.00507154308931
Н	-4.31375510029254	-3.02607722375488	-3.67571280202753
Ν	-3.85252743941715	1.49960879865103	-3.07582135716493
С	-2.49731994325790	1.20387880808035	-3.68015754499311
С	-1.82210201725331	2.49829231073686	-4.13871822396445
С	-2.82655777275026	0.27159152044948	-4.87543074237121
С	-1.62750167620730	0.50695609173048	-2.63783306264354
Н	-2.56561003763043	0.76589787967494	-5.81160927708464
С	-4.33401145393843	0.00944849861554	-4.79163162651745
Н	-2.25636265462677	-0.65404601218408	-4.81987563836188
С	-4.88733286631563	1.26199049151452	-4.12567519979018
Н	-4.52997557530373	-0.82833345053394	-4.12560808733414
Н	-4.79559025713835	-0.20972843499164	-5.75246576643038
Н	-5.82881340174792	1.05140665062281	-3.61591768682195
С	-5.11592949476167	2.46818066926203	-5.02094979519355
Н	-2.44630064633064	3.04347890167342	-4.84583764068366
Н	-0.87138403852214	2.27016773815986	-4.62444391561035
Н	-1.61594820625020	3.15008536096637	-3.28764558675103
Н	-1.49972015347180	1.13533483366306	-1.75452414062148
Н	-0.63940998597060	0.29156375393165	-3.04776917145243
Н	-2.06524732581988	-0.44479876148106	-2.33297671691590
С	-4.90420232414946	2.45289597154732	-6.39763854329458
С	-5.13222869436729	3.58969472061504	-7.16654260736500
С	-5.57808592473015	4.76102026215655	-6.56868729760558
С	-5.79869553049565	4.78586475998877	-5.19573630183346
С	-5.57221588179174	3.64945617844220	-4.43361179999935
Н	-6.14723595566290	5.68986511577314	-4.71434211694214
Н	-5.75201627905250	3.68688316041495	-3.36621093375673
н	-4.96000549252780	3.55651364272016	-8.23503058548293
Н	-5.75496483605176	5.64586662154144	-7.16664838895021
Н	-4.55673027338925	1.55307350814221	-6.88525764648839
Н	-3.87929576743508	2.46578238420381	-2.76033295649415
i4 +	· 1a		
Fe	-2.08635982157803	0.24454088504030	-1.30935080185198
Ν	-2.43242918815609	1.88698269593590	-0.34667275678858
Ν	-0.88486628582725	-1.27117742003069	-1.10571723395432
Si	-3.93347572632531	2.29421765048924	0.40843425930126
С	-5.35085436171853	1.12921005825228	-0.03523324821127
C	-4.47784802184352	4.02753989656413	-0.10408145551365
С	-3.90786294447828	2.22086547298808	2.28818156552984
Si	-1.03617051441359	2.89607720292252	-0.14416100493660
----	-------------------	-------------------	-------------------
С	0.55120295278108	1.91305593308590	-0.39523274207384
С	-0.91525596140151	3.69154242990130	1.55880037441354
С	-0.95874647639231	4.32291295787228	-1.38151193464916
Si	0.45008714236308	-1.59873739227076	-2.13848986392656
С	2.13436954319413	-1.39191993505085	-1.32039150489732
С	0.54709320785987	-0.45729358753557	-3.65499672656937
С	0.37698226377907	-3.35139818917187	-2.83436197870284
Si	-1.24900261421363	-2.25443724669725	0.27263455350188
С	-2.04282356453776	-3.89436826502345	-0.18927408592895
С	-2.44657604404058	-1.36208170781273	1.42037039916226
С	0.27987285152511	-2.68471674382064	1.29551953252725
н	2.29334896452089	-0.36519132271668	-0.98805911390298
н	2.92671272088467	-1.63541814960488	-2.03386588212422
Н	2.25672664503891	-2.04540127077415	-0.45849445884276
Н	0.57726588112026	-4.09669386459326	-2.06163138538230
н	1.11884717101471	-3,49096077343494	-3.62544379092591
н	-0.61050811430808	-3.57028115723649	-3.24745269069569
н	-2.07651192454245	-0.38903873425338	1,74623040333367
н	-2 61897319490190	-1 97011941817765	2 31305447905949
н	-3 41827383436721	-1 20917209884383	0 94660625237189
н	-2 95810013201373	-3 74178907283759	-0 75853867574655
н	-2,29841870590146	-4,45924962876463	0.71194996555939
н	-1.37640220702772	-4.51295940544690	-0.79242877706506
н	0 59503996867614	1 02827801906506	0 23793669397800
н	1 41043626709933	2 54555929216734	-0 15513936722291
н	0.67387035226007	1.58347200717111	-1 42764630508751
н	-0.94922024955195	2.95338084734593	2.35993205729206
н	-1.70953965538146	4 41948878537745	1.73606970828711
н	0.03607211164801	4.22749684297771	1.62813772114209
н	-3.67316579892104	1,20992403837628	2.62457478333131
н	-4.89931728415913	2 47654411055236	2.67282826675343
н	-3.18748079614219	2.89738739893211	2.74237851100110
н	-5.64188556012007	1.13502856063093	-1.08439404109914
н	-6.22443122455792	1 44847126944075	0.54005137143785
н	-5 13401235529586	0 10247612364886	0 26255326426904
н	-4.56651195963751	4.10990355238404	-1.19032416764002
н	-3 76408518599106	4 78625799587754	0 22432094280464
н	-5.44828907376094	4.27747795573521	0.33270931221954
н	0.94331337924322	-3.36748797937479	0.76110337376210
н	-0.02525405817530	-3.18729941192631	2.21730032805692
н	0.85719197829912	-1.80184603853730	1.57087662087921
н	0 41791326597818	0.60050859308636	-3 41455675886419
н	-0.14335491832400	-0.73047751010222	-4.45726837451220
н	1.55014749572293	-0.55796932344339	-4.07766447741813
н	-0.67823712693678	3.98710460531929	-2.38120691103743
н	-0.20371959371658	5.04611187896488	-1.06002551551198
н	-1.91083076984392	4.85144904274713	-1.45933292426699
N	-1.23944498178044	1.09964993634499	4.17946973843040
С	0.07391929421295	0.47791233109559	4.57564064210477
С	-0.14467826424842	-1.00731609650395	4.86591664402212

С	0.62188933908282	1.20606580884349	5.80398807112430
С	0.95405059948322	0.70059172770261	3.33971162141610
Н	-0.85501696904995	-1.14203070621258	5.68409306876783
Н	0.79062409085352	-1.48350817458261	5.15997834639534
Н	-0.53045170593101	-1.51762015095119	3.98418113502894
Н	-0.06277264512584	1.11494126993050	6.64959286536658
Н	0.76474266514419	2.26570593893427	5.58803849067816
н	1.57849457681905	0.78085735621547	6.10789935062500
Н	0.42668126997608	0.28315644105571	2.47936877738006
С	2.35719188421558	0.10983803470658	3.41234869790036
H	1.01782886512873	1.77713871514951	3.16332877435771
н	2.30903082482042	-0.97602549890896	3.52278212364548
н	2.89129429319332	0.48746451345453	4,28820523359905
c	3 17997541834307	0 43683194680825	2 15864564709316
н	2 64595242229427	0.07859811431474	1 27699913453308
c	4 55265262063493	-0 17826777177517	2 20253586045677
н	3 26095317338704	1 52231575455146	2.2023336082069
C	5 63063800936258	0 50949076558194	2.05540550502005
c c	6 88652576223116	-0 0796008365961/	2.75551205200404
c c	7 08/11/027786726	-0.07900083039014	2.84797575771041
C C	/.0041403//00/30	-1.3/2902/11424/3	2.37800017311330
C C	4.70322029492330 6.01020421170020	-1.4/430332410327	1.75201010527090
с ц	7 7110122211/0920	-2.00041942734700	2 20027110445250
	2 0617640F600602	0.4/2401009/9041	3.26027110445250
	0.001/0403009002	-1.0555500550/920	2.44545045075507
	5.94030118301272	-2.01840064434746	1.28840523272005
	0.10401423152901 F 48260F40760682	-3.0/3//04/230834	1.4425/9404/1332
	2.48300249700082	1.519/204536540/	3.124/1/39340430
	-2.01854995955858	0.14/1005/29/250	-3.40950892949950
C C	-3.20/051501/0//1	1.24/72081371274	-4.20959800802004
C	-3.36292279196278	0.01981801599656	-5.00943245011884
C	-2.3800860/11/528	2.48109269900671	-4.22334559251412
C	-4.64413996095212	1.58/78043417823	-3./09684444252/0
C	-3./381/69/964/39	-0.83320219099019	-5.39426115753020
н	-2.38525030296148	0.6/8/488831/68/	-6.15601452353542
Н	-4.08293733794201	1.13381139431389	-6.30666663212910
C	-3.0180/948015098	-1.1/450834165002	-4.06036120752581
н	-3.43/38/8/951/4/	-1.51266//2445932	-6.19051555151881
н	-4.81536134182670	-0.94041638130533	-5.26813139921313
н	-1.631/086203/310	0.23185/5130/229	-3.69236348558049
Н	-2.093/5309824326	-1./111//94529132	-4.2/4532/98031/0
C	-3.85589915663984	-2.063/6254969439	-3.1/82/658894/80
н	-1.3/228958006634	2.2592/568905044	-4.58298599728356
Н	-2.31253910595479	2.86433887021431	-3.20753184144843
Н	-2.79495612470237	3.26694518839320	-4.85575412145400
Н	-5.31020190656461	0.72597486994113	-3.68822144433372
Н	-5.10981785459824	2.35900373438842	-4.32484353629907
Н	-4.54801709722652	1.97522917984159	-2.69782227273736
С	-3.93413821733139	-3.42150833175081	-3.48916353712581
С	-4.76336662857873	-4.26833001793627	-2.76719598544314
С	-5.52143589826034	-3.77186572986129	-1.71138593707725
С	-5.43631906635132	-2.42540348547886	-1.38458430255069

С	-4.61126299260586	-1.58028469114308	-2.11804802552735
Н	-4.57418218021654	-0.53386328354539	-1.86090884521449
Н	-6.15954460966177	-4.43317096738813	-1.14015492092851
Н	-6.01010217648054	-2.02464917310138	-0.55913170809886
Н	-3.33646624797917	-3.81973633499985	-4.30098443491652
Н	-4.80530531447882	-5.32062324149485	-3.01715377038760
Ν	-2.13610530448887	1.05422164713920	5.00805843609771
Ν	-3.03076789576579	1.06051999998142	5.70044740336928

Figure S42: ¹H NMR spectrum of methyl 4-phenylbutanoate in CD₂Cl₂.

Figure S43: ¹H NMR spectrum of 2-methyl-5-phenylpentan-2-ol in CDCl₃.

Figure S44: ¹H NMR spectrum of substrate 1a in CDCl₃.

Figure S45: ¹³C NMR spectrum of substrate 1a in CDCl₃.

Figure S46: ¹H NMR spectrum of 4-(p-tolyl)butanoate in CDCl₃.

Figure S47: ¹³C NMR spectrum of 4-(p-tolyl)butanoate in CDCl₃.

Figure S48: ¹H NMR spectrum of 2-methyl-5-(p-tolyl)pentan-2-ol in CDCl₃.

Figure S49: ¹³C NMR spectrum of 2-methyl-5-(p-tolyl)pentan-2-ol in CDCl₃.

Figure S50: ¹H NMR spectrum of substrate 5a in CDCl₃.

Figure S51: ¹³C NMR spectrum of substrate 5a in CDCl₃.

Figure S52: ¹H NMR spectrum of methyl 4-(4-methoxyphenyl)butanoate in CDCl₃.

Figure S53: ¹³C NMR spectrum of methyl 4-(4-methoxyphenyl)butanoate in CDCl₃.

Figure S54: ¹H NMR spectrum of 5-(4-methoxyphenyl)-2-methylpentan-2-ol in CDCl₃.

Figure S55: ¹³C NMR spectrum of 5-(4-methoxyphenyl)-2-methylpentan-2-ol in CDCl₃.

Figure S56: ¹H NMR spectrum of substrate 6a in CDCl₃.

Figure S57: ¹³C NMR spectrum of substrate 6a in CDCl₃.

Figure S58: ¹H NMR spectrum of methyl 4-(4-bromophenyl)butanoate in CDCl₃.

Figure S59: ¹³C NMR spectrum of methyl 4-(4-bromophenyl)butanoate in CDCl₃.

Figure S60: ¹H NMR spectrum of 5-(4-bromophenyl)-2-methylpentan-2-ol in CDCl₃.

Figure S61: ¹³C NMR spectrum of 5-(4-bromophenyl)-2-methylpentan-2-ol in CDCl₃.

Figure S62: ¹H NMR spectrum of substrate 7a in CDCl₃.

Figure S63: ¹³C NMR spectrum of substrate 7a in CDCl₃.

Figure S64: ¹H NMR spectrum of methyl 4-(thiophen-2-yl)butanoate in CDCl₃.

Figure S65: ¹H NMR spectrum of 2-methyl-5-(thiophen-2-yl)pentan-2-ol in CDCl₃.

Figure S66: ¹³C NMR spectrum of 2-methyl-5-(thiophen-2-yl)pentan-2-ol in CDCl₃.

8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8

Figure S69: ¹H NMR spectrum of methyl 2-methylbenzoate in CDCl₃.

Figure S70: ¹³C NMR spectrum of methyl 2-methylbenzoate in CDCl₃.

Figure S71: ¹H NMR spectrum of 2-(o-tolyl)propan-2-ol in CDCl₃.

Figure S72: ¹³C NMR spectrum of 2-(o-tolyl)propan-2-ol in CDCl₃.

Figure S74: ¹³C NMR spectrum of substrate 9a in CDCl₃.

Figure S75: ¹H NMR spectrum of methyl 5-phenylpentanoate in CDCl₃.

Figure S76: ¹³C NMR spectrum of methyl 5-phenylpentanoate in CDCl₃.

Figure S77: ¹H NMR spectrum of 2-methyl-6-phenylhexan-2-ol in CDCl₃.

Figure S78: ¹³C NMR spectrum of 2-methyl-6-phenylhexan-2-ol in CDCl₃.

Figure S79: ¹H NMR spectrum of substrate 10a in CDCl₃.

Figure S81: ¹H NMR spectrum of substrate 11a in CDCl₃.

Figure S82: ¹³C NMR spectrum of substrate **11a** in CDCl₃.

Figure S83: ¹H NMR spectrum of substrate 12a in CDCl₃.

Figure S84: ¹³C NMR spectrum of substrate 12a in CDCl₃.

Figure S85: ¹H NMR spectrum of substrate 13a in CDCl₃.

Figure S86: ¹³C NMR spectrum of substrate 13a in CDCl₃.

Figure S87: ¹H NMR spectrum of 1-methylcycloheptan-1-ol in CDCl₃.

Figure S88: ¹³C NMR spectrum of 1-methylcycloheptan-1-ol in CDCl₃.

Figure S89: ¹H NMR spectrum of substrate 14a in CDCl₃.

Figure S90: ¹³C NMR spectrum of substrate 14a in CDCl₃.

Figure S91: ¹H NMR spectrum of methyl 3-cyclohexylpropanoate in CDCl₃.

Figure S92: ¹³C NMR spectrum of methyl 3-cyclohexylpropanoate in CDCl₃.

3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3

Figure S93: ¹H NMR spectrum of 4-cyclohexyl-2-methylbutan-2-ol in CDCl₃.

Figure S94: ¹³C NMR spectrum of 4-cyclohexyl-2-methylbutan-2-ol in CDCl₃.

Figure S95: ¹H NMR spectrum of substrate 15a in CDCl₃.

Figure S96: ¹³C NMR spectrum of substrate 15a in CDCl₃.

Figure S97: ¹H NMR spectrum of 8-bromo-2-methyloctan-2-ol in CDCl₃.

Figure S98: ¹³C NMR spectrum of 8-bromo-2-methyloctan-2-ol in CDCl₃.

Figure S100: ¹³C NMR spectrum of substrate 16a in CDCl₃.

Figure S101: ¹H NMR spectrum of 4-phenylbutanoic-4,4-d₂ acid in C_6D_6 .

Figure S102: ¹H NMR spectrum of methyl 4-phenylbutanoate-4,4-d₂ in CDCl₃.

Figure S103: 13 C NMR spectrum of methyl 4-phenylbutanoate-4,4-d₂ in CDCl₃.

Figure S104: ¹H NMR spectrum of 2-methyl-5-phenylpentan-5,5-d₂-2-ol in CDCl₃.

Figure S105: ¹H NMR spectrum of substrate 1a-d₂ in CDCl₃.

Figure S106: ¹³C NMR spectrum of substrate 1a-d₂ in CDCl₃.

Figure 108: ¹H NMR spectrum of crude 5b (t = 24 h) in toluene-d₈ with 1,3,5-Trimethoxybenzene as internal standard.

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 Figure S109: ¹H NMR spectrum of crude **6b** (t = 24 h) in toluene-d₈ with 1,3,5-Trimethoxybenzene as internal standard.

Figure S110: ¹H NMR spectrum of crude **7b** (t = 24 h) in toluene-d₈ with 1,3,5-Trimethoxybenzene as internal standard.

Figure S111: ¹H NMR spectrum of crude **8b** (t = 24 h) in toluene-d₈ with 1,3,5-Trimethoxybenzene as internal standard.

Figure S112: ¹H NMR spectrum of crude **9b** (t = 24 h) in toluene-d₈ with 1,3,5-Trimethoxybenzene as internal standard.

Figure S113: ¹H NMR spectrum of crude **10b** (t = 24 h) in toluene-d₈ with 1,3,5-Trimethoxybenzene as internal standard.

Figure S114: ¹H NMR spectrum of crude **11b** (t = 24 h) in toluene-d₈ with 1,3,5-Trimethoxybenzene as internal standard.

Figure S115: ¹H NMR spectrum of crude **12b** (t = 24 h) in toluene-d₈ with 1,3,5-Trimethoxybenzene as internal standard.

Figure S116: ¹H NMR spectrum of crude **13b** (t = 24 h) in toluene- d_8 with 1,3,5-Trimethoxybenzene as internal standard.

Figure S117: ¹H NMR spectrum of crude **14b** (t = 24 h) in toluene-d₈ with 1,3,5-Trimethoxybenzene as internal standard.

Figure S118: ¹H NMR spectrum of crude 15b (t = 24 h) in toluene-d₈ with 1,3,5-Trimethoxybenzene as internal standard.

Figure S119: ¹H NMR spectrum of crude **1b-d**₂ (t = 5 days) in toluene-d₈ with 1,3,5-Trimethoxybenzene as internal standard.

Crystallographic and refinement data

Figure S120: ORTEP representation of Fe(HMDS)₂ with a coordinated amine product (50% probability ellipsoids, H atoms omitted for clarity).

 Table S6: Crystal data and structure refinement for WS381.

Identification code	21MA168_WS381
CCDC deposit number	2171951
Empirical formula	C ₂₄ H ₅₃ FeN ₃ Si ₄
Formula weight	551.90
Temperature/K	173.01(10)
Crystal system	monoclinic
Space group	P21/n
a/Å	18.67067(17)
b/Å	18.94109(18)
c/Å	18.90816(17)
α/°	90
β/°	94.3084(8)
γ/°	90
Volume/ų	6667.84(11)
Z	8
ρ _{calc} g/cm ³	1.100
µ/mm⁻¹	5.110
F(000)	2400.0
Crystal size/mm ³	0.258 × 0.226 × 0.083
Radiation	Cu Kα (λ = 1.54184)
20 range for data collection/°	6.416 to 153.478
Index ranges	-23 ≤ h ≤ 23, -23 ≤ k ≤ 22, -23 ≤ l ≤ 23
Reflections collected	132519
Independent reflections	14043 [R _{int} = 0.0583, R _{sigma} = 0.0238]
Data/restraints/parameters	14043/90/742
Goodness-of-fit on F ²	1.076
Final R indexes [I>=2σ (I)]	$R_1 = 0.0509$, $wR_2 = 0.1462$
Final R indexes [all data]	$R_1 = 0.0572$, $wR_2 = 0.1523$
Largest diff. peak/hole / e Å ⁻³	0.97/-0.58

References

- [S1] Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176–2179.
- [S2] Neese, F. The ORCA Program System. *Wiley Interdiscip. Rev. Comput. Mol. Sci* **2012**, *2*, 73–78.
- [S3] Neese, F. Software Update: The ORCA Program System, Version 4.0. *Wiley Interdiscip. Rev. Comput. Mol. Sci* **2018**, *8*, 1–6.
- [S4] Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B Condens. Matter Mater. Phys.* 1988, 37, 785–789.
- [S5] Becke, A. D. Density-Functional Thermochemistry . III . The Role of Exact Exchange. *J. Chem. Phys.* **1993**, *98*, 5648–5652.
- [S6] Weigend, F.; Häser, M.; Patzelt, H.; Ahlrichs, R. RI-MP2 : Optimized Auxiliary Basis Sets and Demonstration of Efficiency. *Chem. Phys. Lett.* **1998**, *294*, 143–152.
- [S7] Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* 2005, 7, 3297–3305.
- [S8] Neese, F.; Izsák, R. An Overlap Fitted Chain of Spheres Exchange Method. J. Chem. Phys. 2011, 135, 144105–144111.
- [S9] Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.
- [S10] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132.
- [S11] Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. *Chem. Eur. J.* **2012**, *18*, 9955–9964.
- [S12] Chemcraft Graphical Software for Visualization of Quantum Chemistry Computations. Https://Www.Chemcraftprog.Com.
- [S13] Perdew, J. P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. *Phys. Rev. B* **1986**, *33*, 8822–8824.
- [S14] Perdew, J. P. Erratum: Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas [Phys. Rev. B 33, 8822 (1986)]. *Phys. Rev. B* **1986**, *34*, 7406.
- [S15] Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Auxiliary Basis Sets to Approximate Coulomb Potentials. *Chem. Phys. Lett.* **1995**, *240*, 283–290.
- [S16] Hellweg, A.; Hättig, C.; Höfener, S.; Klopper, W. Optimized Accurate Auxiliary Basis Sets for RI-MP2 and RI-CC2 Calculations for the Atoms Rb to Rn. *Theor. Chem. Acc.* 2007, 117, 587–597.
- [S17] Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 1–17.
- [S18] Angeli, C.; Cimiraglia, R.; Evangelisti, S.; Leininger, T.; Malrieu, J. Introduction of n -Electron

Valence States for Multireference Perturbation Theory. J. Chem. Phys. 2001, 114, 10252–10264.

- [S19] Angeli, C.; Cimiraglia, R.; Malrieu, J.-P. N-Electron Valence State Perturbation Theory: A Fast Implementation of the Strongly Contracted Variant. *Chem. Phys. Lett.* **2001**, *350*, 297–305.
- [S20] Angeli, C.; Cimiraglia, R.; Malrieu, J. N-Electron Valence State Perturbation Theory: A Spinless Formulation and an Efficient Implementation of the Strongly Contracted and of the Partially Contracted Variants. J. Chem. Phys. 2002, 117.
- [S21] Knizia, G. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. *J. Chem. Theory Comput.* **2013**, *9*, 4834–4843.
- [S22] Oxford Diffraction (2018). CrysAlisPro (Version 1.171.40.37a). Oxford Diffraction Ltd., Yarnton, Oxfordshire, UK.
- [S23] Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- [S24] Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- [S25] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341.
- [S26] Maddock, L. C. H.; Cadenbach, T.; Kennedy, A. R.; Borilovic, I.; Aromí, G.; Hevia, E. Accessing Sodium Ferrate Complexes Containing Neutral and Anionic N-Heterocyclic Carbene Ligands: Structural, Synthetic, and Magnetic Insights. *Inorg. Chem.* 2015, 54, 9201–9210.
- [S27] Andersen, R. A.; Faegri, K.; Green, J. C.; Haaland, A.; Lappert, M. F.; Leung, W.; Rypdal, K. Synthesis of Bis [Bis(Trimethylsilyl) Amido] Iron(II). Structure and Bonding in M[N(SiMe3)2]2 (M = Mn, Fe, Co): Two-Coordinate Transition-Metal Amides. *Inorg. Chem.* 1988, 27, 1782– 1786.
- [S28] Hennessy, E. T.; Betley, T. A. Complex N-Heterocycle Synthesis via Iron-Catalyzed, Direct C-H Bond Amination. Science 2013, 340, 591–595.
- [S29] Baek, Y.; Betley, T. A. Catalytic C-H Amination Mediated by Dipyrrin Cobalt Imidos. J. Am. Chem. Soc. **2019**, 141, 7797–7806.
- [S30] Shimogaki, M.; Fujita, M.; Sugimura, T. Metal-Free Enantioselective Oxidative Arylation of Alkenes: Hypervalent-Iodine-Promoted Oxidative C–C Bond Formation. Angew. Chem., Int. Ed. 2016, 55, 15797–15801.
- [S31] Álvarez, S.; Álvarez, R.; Khanwalkar, H.; Germain, P.; Lemaire, G.; Rodríguez-Barrios, F.; Gronemeyer, H.; de Lera, Á. R. Retinoid Receptor Subtype-Selective Modulators through Synthetic Modifications of RARγ Agonists. *Bioorganic Med. Chem.* **2009**, *17*, 4345–4359.
- [S32] Dong, Y.; Clarke, R. M.; Porter, G. J.; Betley, T. A. Efficient C-H Amination Catalysis Using Nickel-Dipyrrin Complexes. J. Am. Chem. Soc. 2020, 142, 10996–11005.
- [S33] Li, N. N.; Zhang, Y. L.; Mao, S.; Gao, Y. R.; Guo, D. D.; Wang, Y. Q. Palladium-Catalyzed C-H Homocoupling of Furans and Thiophenes Using Oxygen as the Oxidant. Org. Lett. 2014, 16, 2732–2735.
- [S34] Estévez, M. C.; Galve, R.; Sánchez-Baeza, F.; Marco, M. P. Disulfide Symmetric Dimers as Stable Pre-Hapten Forms for Bioconjugation: A Strategy to Prepare Immunoreagents for the Detection of Sulfophenyl Carboxylate Residues in Environmental Samples. *Chem. Eur. J.* 2008, 14, 1906–1917.

- [S35] Khalaf, A. A.; Roberts, R. M. Friedel-Crafts Cyclialkylations of Certain Mono- and Diphenylsubstituted Alcohols and Alkyl Chlorides. *J. Org. Chem.* **1972**, *37*, 4227–4235.
- [S36] Stroek, W.; Keilwerth, M.; Pividori, D. M.; Meyer, K.; Albrecht, M. An Iron–Mesoionic Carbene Complex for Catalytic Intramolecular C–H Amination Utilizing Organic Azides. J. Am. Chem. Soc. 2021, 143, 20157–20165.
- [S37] Zhao, J.; Zhao, X. J.; Cao, P.; Liu, J. K.; Wu, B. Polycyclic Azetidines and Pyrrolidines via Palladium-Catalyzed Intramolecular Amination of Unactivated C(Sp3)-H Bonds. Org. Lett. 2017, 19, 4880–4883.
- [S38] Łażewska, D.; Mogilski, S.; Hagenow, S.; Kuder, K.; Głuch-Lutwin, M.; Siwek, A.; Więcek, M.; Kaleta, M.; Seibel, U.; Buschauer, A.; Filipek, B.; Stark, H.; Kieć-Kononowicz, K. Alkyl Derivatives of 1,3,5-Triazine as Histamine H 4 Receptor Ligands. *Bioorganic Med. Chem.* 2019, 27, 1254–1262.
- [S39] Okazawa, N. E.; Sorensen, T. S. Solution Carbocation Stabilities Measured by Internal Competition for a Hydride Ion. *Can. J. Chem.* **1982**, *60*, 2180–2193.
- [S40] Jeon, J. Y.; Park, S.; Han, J.; Maurya, S.; Mohanty, A. D.; Tian, D.; Saikia, N.; Hickner, M. A.; Ryu, C. Y.; Tuckerman, M. E.; Paddison, S. J.; Kim, Y. S.; Bae, C. Synthesis of Aromatic Anion Exchange Membranes by Friedel-Crafts Bromoalkylation and Cross-Linking of Polystyrene Block Copolymers. *Macromolecules* 2019, *52*, 2139–2147.