Supporting information

Bismuth Nanoparticle Embedded in Carbon Skeleton as Anode for

High Power Density Potassium-Ion Batteries

Zhiqiang Hao^{a,+}, Xiaoyan Shi^{a,+}, Wenqing Zhu^a, Xiaoyue Zhang^a, Zhuo Yang^a, Lin Li^{a,*}, Zhe Hu^{b,*}, Qing Zhao^{c,*}, Shulei Chou^{a,*}

^a Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China. E-mail: <u>linli@wzu.edu.cn</u>, <u>chou@wzu.edu.cn</u>
 ^b College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China. E-mail: <u>huzhe@szu.edu.cn</u>

^c Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China. E-mail: <u>zhaoq@nankai.edu.cn</u>

⁺ These authors contributed equally to this work.

Table of Contents

Experimental Section S3
Fig. S1. Raman spectrum of Bi@C composite·····S6
Fig. S2. XPS spectra of Bi@C composite ·····S7
Fig. S3. SEM images of bismuth citrate S8
Fig. S4. Electrochemical performance of Bi@C composites in the two electrolytes
Fig. S5. Rate performance of the Bi@C composites electrode······S10
Fig. S6. The charge/discharge curves of the Bi@C composite······S11
Fig. S7. SEM image of the Bi@C composite electrode after 20 cycles
Fig. S8. Electrochemical impedance spectroscopy profiles of the Bi@C composite······S13
Fig. S9. Line relationship between the voltage (E) and $\sqrt{\tau}$ in GITT test
Fig. S10. The voltage versus time curve for a single titration of GITT······S15
Fig. S11. Rate performance of KNiHCF//Bi@C full cell······S16
Fig. S12. The selected charge/discharge curves of KNiHCF//Bi@C full cell······S17
Table S1. Summary of energy density and power density of KNiHCF//Bi@C full cell······S18
References S19

Experimental Section

Materials

Potassium citrate tribasic monohydrate ($K_3C_6H_5O_7\cdot H_2O$, analytically pure) was obtained from Sinopharm Chemical Reagent Co., Ltd. Potassium ferrocyanide trihydrate ($K_4Fe(CN)_6\cdot 3H_2O$, \geq 99.5%) was purchased from Aladdin. Nickel chloride hexahydrate (NiCl₂·6H₂O, \geq 98.0%) was obtained from Tianjin Guanfu Fine Chemical Research Institute. Bismuth citrate (\geq 98.0%) was purchased from damas-beta.

Synthesis of Bi@C composite sample

The Bi@C composite was prepared by annealing 2 g bismuth citrate at 900 °C for 2 h in an argon atmosphere with a heating rate of 3 °C min⁻¹. After cooling to room temperature (under argon atmosphere), the obtained black powder of Bi@C composite was collected.

Synthesis of KNiHCF composite sample

The KNiHCF was synthesized according to our previous literature.¹ First, $K_3C_6H_5O_7H_2O$ (4 mmol) and NiCl₂·6H₂O (0.2 g) were added to deionized water (50 mL) with stirring for a few minutes to obtain the solution A. $K_4Fe(CN)_6\cdot 3H_2O$ (1 mmol) was added in another deionized water (50 mL) with stirring for few minutes to obtain the solution B. The solution B was added dropwise into solution A under stirring for 5 min. Subsequently, the mixture was aged for 48 h to get precipitate. The precipitate was obtained by centrifugation and washed with deionized water three times. In the end, the wet KNiHCF powder was dried in a vacuum oven at 80 °C for 12 h.

Material characterization

XRD patterns were acquired on Rigaku SmartLab with Cu K_{α} radiation. Raman spectra were recorded on a Thermo Fisher Scientific DXR Raman microscope using 532 nm excitation. XPS spectra were collected on Perkin Elmer PHI 1600 ESCA. SEM and TEM were performed on JEOL JSM-7500F and Taols F200X G2 microscopes, respectively. The N_2 adsorption-desorption isotherm was investigated using a Brunauer-Emmett-Teller analyzer (BELSORP-mini II). TGA was evaluated by Netzsch STA 449 F3 Jupiter analyzer. The Bi content of the Bi@C composite was calculated by the following equation:²

$$Bi(wt\%) = 100 \times \frac{2 \times molecular \ weight \ of \ Bi}{molecular \ weight \ of \ Bi_2O_3} \times \frac{final \ weight \ of \ Bi_2O_3}{initial \ weight \ of \ Bi_2O_3}$$

Electrochemical characterization

Electrochemical tests of the Bi@C composite electrodes and KNiHCF//Bi@C full cell were performed with CR2032 coin-type cells, which were assembled in an Ar-filled glove box. The Bi@C composite electrodes for the electrochemical test were prepared by mixing 70 wt% Bi@C composite powder, 20 wt% Ketjen Black, 10 wt% polyvinylidene fluoride, and the mass loading of the Bi@C composite is about 0.6-0.7 mg cm⁻². The mixture was coated on Cu current collector and dried at 80 °C for 12 h in a vacuum oven. The Bi@C composite electrodes for in situ XRD test was fabricated by rolling a mixture of 70 wt% Bi@C composite powder, 20 wt% Ketjen Black, and 10 wt% polytetrafluoroethylene into a thin film. The film was pressed onto a stainless-steel mesh and dried in a vacuum oven overnight at 80 °C for 12h. The fabricated method of KNiHCF electrodes was similar to the Bi@C composite electrodes for *in situ* XRD test. The mass ratios of the KNiHCF, super P, and polytetrafluoroethylene are 6:3:1. Glass fiber was applied as separators. 1 M KPF₆ in DEGDME or 0.8 M KPF₆ in EC/DEC (1:1, v/v) were used as electrolytes. For the half cell, potassium metal was used as the anode. For the full cell, the mass ratio between KNiHCF and Bi@C composite is ~3.6-3.8. CVs were conducted on the CHI660E electrochemical workstation. Galvanostatic charge/discharge data were tested by LAND-CT2001A battery-testing instrument. EIS test was performed on a CHI660E electrochemical workstation with an AC voltage of 5 mV amplitude in the frequency ranging

from 100 kHz to 100 mHz. The GITT data were collected at a current density of 200 mA g^{-1} for 5min and then followed by a rest of 25 min.

First-principles calculations

The first principle calculations were performed using the Vienna ab-initio Simulation Package (VASP) based on the density functional theory (DFT).³ The projector-augmented wave (PAW) was used for the electron-ion interactions.⁴ The generalized gradient approximation (GGA) functional of Perdew, Burke, and Enzerhof (PBE) was applied to evaluate the exchange-correlation energy.⁵ For all calculations, cut-off energy of 500 eV was set. A Gamma centered 1 x 1 x 1 k-point grid was applied for molecular dynamics. The energy convergence tolerance was set to below 1×10^{-5} eV/atom. The canonical (NVT) ensemble is used for Ab initio molecular dynamics (AIMD) simulations at 700K.

Fig. S1. Raman spectrum of Bi@C composite.

Fig. S2. (A) Full survey. (B) High-resolution Bi 4f. (C) High-resolution C 1s. (D) High-resolution O 1s.

Fig. S3. SEM images of bismuth citrate.

Fig. S4. (A) Cycling performance of Bi@C composites electrodes in the two electrolytes. Selected charge/discharge curves of Bi@C composites in (B) 1 M KPF₆ DEGDME and (C) 0.8 M KPF₆ EC/DEC.

Fig. S5. The charge/discharge curves of the Bi@C composites electrode at different current densities.

Fig. S6. Selected charge/discharge curves of the Bi@C composite electrode at a current density of 5.0 A g⁻¹.

Fig. S7. SEM image of the Bi@C composite electrode after 20 cycles.

Fig. S8. Electrochemical impedance spectroscopy profiles of the Bi@C composite electrode.

Fig. S9. Line relationship between the voltage (*E*) and $\sqrt{\tau}$ in GITT test.

Fig. S10. The voltage versus time curve for a single titration of GITT.

Fig. S11. The charge/discharge curves of KNiHCF//Bi@C full cell at various current densities.

Fig. S12. The selected charge/discharge curves of KNiHCF//Bi@C full cell at a current density of 1000 mA g^{-1} .

 Table S1. Summary of energy density and power density of KNiHCF//Bi@C full cell at different current densities.

Current density (mA g ⁻¹)	100	200	500	1000	2000	5000
The energy density (Wh kg ⁻¹)	135.73	121.25	111.60	103.38	92.94	68.64
Power density (W kg ⁻¹)	235.93	461.91	1134.95	2228.49	4402.26	10296.64

Reference

- L. Li, Z. Hu, Y. Lu, C. Wang, Q. Zhang, S. Zhao, J. Peng, K. Zhang, S. L. Chou, J. Chen, *Angew. Chem. Int. Ed.*, 2021, 60, 13050.
- P. Xiong, P. Bai, A. Li, B. Li, M. Cheng, Y. Chen, S. Huang, Q. Jiang, X. H. Bu, Y. Xu, Adv.
 Mater., 2019, 31, 1904771.
- 3 G. Kresse, Furthmüller J., Comp. Mater. Sci., 1996, 6, 15.
- 4 P. E. Blochl, *Phys. Rev. B*, 1994, **50**, 17953.
- 5 J. P. Perdew, Yue, W., Phys. Rev. B, 1986, 33, 8800.