Supporting Information

InI₃-Catalyzed Polyene Cyclization of Allenes and Its Application in

the Total Synthesis of Seven Abietane-Type Diterpenoids

Chen-Yu Huo^a, Tian-Lu Zheng^a, Wei-Hao Dai^a, Zi-Hao Zhang^a, Jin-Da Wang^a, Dao-Yong Zhu^{*a,c}, Shao-Hua Wang^{*a}, Xiao-Ming Zhang^a, Xue-Tao Xu^b

a. School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University 730000 (P.R. China).

b. School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020 (P. R. China).

c. Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, (P. R. China).

Table of Contents

1. General information	S2
2. Optimization of Experimental Conditions	S2
3. Experimental details for the synthesis of compounds (2a-2t)	S3
4. Synthetic applications	S9
5. NMR data comparisons between the synthetic and natural products	S14
6. Experimental details for the synthesis of substrates (1a-1t)	S22
7. Experimental details for the synthesis of 1u and 2u	S31
8. Crystal of 2d (CCDC: 2171065), (±)-2,3-dihydroxyferruginol (CCDC: 2171067) and (±)-	shonanol
(CCDC: 2171063)	S33
9. Reference	S36
10. NMR spectra of new compounds	S36

1. General information

All reactions under standard conditions were carried out in anhydrous solvent under argon atmosphere and monitored by TLC on gel F₂₅₄ plates. All products were purified through silica gel chromatography (200~300 mesh). Solvents were dried by standard methods and distilled. All other chemical reagents were purchased from Energy Chemical and Leyan. ¹H NMR and ¹³C NMR spectra were obtained on Bruker AVANCE III HD 400, Bruker AVANCE NEO 600 and JEOL JNM-ECS 400 instruments, in CDCl₃, DMSO-*d*₆, CCl₄ and Acetone-*d*₆ solution. High-resolution mass spectral analysis (HRMS) data were measured on the Agilent 6560 Ion Mobility Quadrupole Time of Flight Mass Spectrometer with ESI/APCI resource and Thermo Scientific Q Exactive GC with EI resource. IR spectra data were recorded on a Nicolet FT-170SX spectrometer. X-ray diffraction data were collected on a XtaLAB Synergy R-DW, HyPix-6000HE diffractometer. Melting points were measured on a melting point apparatus and were uncorrected.

2. Optimization of Experimental Conditions

			Lewis acid Solvent, temp	→ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		
Entry	Lewis acid	equiv	Solvent	Temp (°C)	Time/hour	Yield (%) ^b
1	InBr ₃	0.2	DCM	r.t.	1	40
2	BF ₃ •OEt ₂	3.0	DCM	-60	18	40
3	SnCl ₄	0.9	DCM	-78	0.5	15
4	TiCl ₄	0.9	DCM	-78	20	25
5	FeCl ₃	1.5	DCM	-20	6	30
6	InCl ₃	0.2	DCM	r.t.	1	40
7	InI ₃	0.2	DCM	-20	4	63
8	AlCl ₃	0.2	DCM	-40	6	20
9	$ZnCl_2$	0.2	DCM	r.t.	120	NR ^c
10	ZnBr ₂	0.2	DCM	r.t.	120	20
11	Al (OTf) ₃	0.2	DCM	r.t.	2	NR ^c
12	In (OTf) ₃	0.2	DCM	r.t.	18	10
13	Sn (OTf)2	0.2	DCM	0	1	NR ^c

Table S1. Optimization studies with Lewis acid, solvents and temperature^a

14	Zn (OTf) ₂	0.2	DCM	r.t.	120	NR ^c
15	Mg (OTf) ₂	0.2	DCM	r.t.	120	NR ^c
16	AgOTf	0.2	DCM	r.t.	24	NR ^c
17	Cu (OTf) ₂	0.2	DCM	0	0.5	NR ^c
18	InI_3	0.2	CH ₃ OH	r.t.	120	NR ^c
19	InI ₃	0.2	DMF	r.t.	120	NR ^c
20	InI_3	0.2	DCE	-20	3	45
21	InI ₃	0.2	Toluene	-20	3	20
22	InI_3	0.2	CH ₃ CN	r.t.	120	NR ^c
23	InI ₃	0.2	THF	r.t.	120	NR ^c
24	InI ₃	0.2	DCM	r.t.	0.5	45
25	InI ₃	0.2	DCM	0	1.5	54
27	InI ₃	0.2	DCM	-40	6	71
28	InI ₃	0.2	DCM	-60	27	60

^aUnless specified, all reactions were carried out with **1a** (0.1 mmol, 1.0 equiv) and solvent (2 mL) in reaction tubes. ^bIsolated yield of product **2a**. ^cNo Reaction.

3. Experimental details for the synthesis of compounds (2a-2t)

General procedure (using 2a as an example, the syntheses of 2a-2t follows the same procedure):

A solution of InI_3 (0.02 mmol, 20 mol%) in dry DCM (1 mL) was stirred at -40 °C for 30 min. Then a solution of **1a** (24.0 mg, 0.10 mmol, 1.0 equiv) in dry DCM (1mL) was added. The reaction mixture was stirred at this temperature until the compound **1a** was consumed (monitored by TLC). The reaction mixture was quenched with NaHCO₃ (sat. aq., 2 mL) and the organic layer was separated, extracted with DCM (3 × 10 mL). The combined organic layer was washed with brine (20 mL), dried over Na₂SO₄ and concentrated under vacuum. The crude mixture was purified by column chromatography (PE/EA = 200/1)) to give the desired product **2a**.

1,1,3,4a-Tetramethyl-1,4,4a,9,10,10a-hexahydrophenanthrene (2a)

Compound **2a** (17.0 mg, 71%) was prepared from **1a** (24.0 mg) and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 8.0 Hz, 1H), 7.17 (t, *J* = 7.4 Hz, 1H), 7.06 - 7.12 (m, 2H), 5.21 (s, 1H), 2.81 -

2.97 (m, 2H), 2.37 (d, J = 16.4 Hz, 1H), 2.11 (d, J = 16.4 Hz, 1H), 1.88 (dd, J = 12.8, 6.0 Hz, 1H), 1.75 (s, 3H), 1.59 - 1.71 (m, 1H), 1.55 - 1.57 (m, 1H), 1.24 (s, 3H), 1.03 (s, 3H), 0.97 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 147.9, 135.5, 132.0, 128.9, 128.8, 126.0, 125.9, 125.2, 47.5, 44.7, 37.6, 35.0, 32.2, 31.2, 25.4, 24.4, 22.7, 19.8; HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₈H₂₅ 241.1951; Found 241.1946; **IR** (KBr, cm⁻¹): v 3058, 2959, 1576, 1489, 1448, 757, 726.

3',4a'-Dimethyl-4a',9',10',10a'-tetrahydro-4'H-spiro[cyclopentane-1,1'-phenanthrene] (2b)

Compound **2b** (12.2 mg, 45%) was prepared from **1b** (27.0 mg) and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 7.6 Hz, 1H), 7.14 - 7.18 (m, 1H), 7.04 - 7.11 (m, 2H), 5.41 (s, 1H), 2.78 - 2.93 (m, 2H), 2.33 (d, J = 16.8 Hz, 1H), 2.08 (d, J = 16.8 Hz, 1H), 1.57 - 1.81 (m, 12H), 1.42 - 1.48 (m, 1H), 1.32 - 1.38 (m, 1H), 1.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 135.6, 131.3, 128.9, 126.7, 126.3, 125.9, 125.2, 46.8, 45.8, 45.1, 41.0, 37.5, 32.9, 31.4, 27.2, 25.3, 24.4, 24.3, 19.8; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₂₀H₂₇ 267.2108; Found 267.2106; **IR** (KBr, cm⁻¹): *v* 3057, 2939, 1577, 1489, 1444, 756, 726.

3',4a'-Dimethyl-4a',9',10',10a'-tetrahydro-4'*H*-spiro[cyclohexane-1,1'-phenanthrene] (2c)

Compound **2c** (11.5 mg, 41%) was prepared from **1c** (28.0 mg) and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 8.0 Hz, 1H), 7.15 (t, *J* = 7.2 Hz, 1H), 7.04 - 7.10 (m, 2H), 5.92 (s, 1H), 2.93 (dd, *J* = 16.6, 4.6 Hz, 1H), 2.76 - 2.85 (m, 1H), 2.40 (d, *J* = 16.8 Hz, 1H), 2.09 (d, *J* = 16.4 Hz, 1H), 1.91 (dd, *J* = 12.8, 6.0 Hz, 1H), 1.78 (s, 3H), 1.50 - 1.74 (m, 9H), 1.26 - 1.40 (m, 3H), 1.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 135.6, 129.8, 128.8, 126.1, 125.9, 125.5, 125.2, 49.4, 45.2, 38.4, 37.8, 37.3, 31.7, 31.0, 26.5, 26.1, 25.1, 22.3, 21.8, 19.9; HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₁H₂₉ 281.2264; Found 281.2261; **IR** (KBr, cm⁻¹): *v* 3056, 2926, 1489, 1447, 763, 725.

3,4a-Dimethyl-1-phenyl-1,4,4a,9,10,10a-hexahydrophenanthrene (2d)

Compound **2d** (14.5 mg, 50%) was prepared from **1d** (29.0 mg) and purified by silica gel column chromatography (PE/EA = 200/1) as a white soild; mp 114.5 - 116.4 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.30 - 7.38 (m, 3H), 7.17 - 7.25 (m, 4H), 7.09 (t, J = 7.4 Hz, 1H), 7.01 - 7.03 (m, 1H), 5.38 (s, 1H), 3.05 - 3.08 (m, 1H), 2.58 - 2.76 (m, 2H), 2.48 (d, J = 16.8 Hz, 1H), 2.33 (d, J = 17.2 Hz, 1H), 1.80 (s, 3H), 1.72 - 1.78 (m, 1H), 1.51 - 1.57 (m, 2H), 1.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.6, 145.4, 135.5, 132.7, 129.0, 128.8, 128.2, 126.2, 125.8 (two signals overlap), 125.4, 124.8, 46.7, 45.7, 44.7, 36.8, 30.0, 24.1, 23.5, 21.8; HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₂H₂₅ 289.1951; Found 289.1938; **IR** (KBr, cm⁻¹): ν 3062, 2963, 2924, 2868, 1492, 1448, 758, 703.

1,1,4a-Trimethyl-3-(o-tolyl)-1,4,4a,9,10,10a-hexahydrophenanthrene (2e)

Compound **2e** (12.7 mg, 40%) was prepared from **1e** (31.8 mg) and purified by silica gel column chromatography (PE/EA = 100/1) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.07 - 7.28 (m, 8H), 5.40 (d, *J* = 2.8 Hz, 1H), 2.87 - 3.00 (m, 2H), 2.66 (d, *J* = 16.4 Hz, 1H), 2.46 (dd, *J* = 16.6, 2.2 Hz, 1H), 2.33 (s, 3H), 1.89 - 1.96 (m, 1H), 1.73 - 1.79 (m, 2H), 1.40 (s, 3H), 1.13 (s, 3H), 1.08 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 147.4, 144.2, 136.4, 135.5, 135.1, 133.6, 130.1, 129.0, 128.4, 126.5, 126.03, 125.96, 125.6, 125.4, 47.7, 44.7, 37.7, 35.3, 32.0, 31.2, 25.3, 22.6, 19.94, 19.85; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₂₄H₂₉ 317.2264; Found 317.2264; **IR** (KBr, cm⁻¹): *v* 3058, 3014, 2960, 1600, 1488, 1447, 727.

1,1,4a-Trimethyl-3-(p-tolyl)-1,4,4a,9,10,10a-hexahydrophenanthrene (2f)

Compound **2f** (16.5 mg, 50%) was prepared from **1f** (33.0 mg) and purified by silica gel column chromatography (PE/EA = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.34 - 7.40 (m, 3H), 7.08 - 7.21 (m, 5H), 5.83 (d, *J* = 2.4 Hz, 1H), 2.85 - 2.98 (m, 3H),
2.52 (d, *J* = 16.0 Hz, 1H), 2.36 (s, 3H), 1.86 - 1.94 (m, 1H), 1.70 - 1.79 (m, 2H), 1.29 (s, 3H), 1.13 (s, 3H), 1.08 (s, 3H);
¹³C NMR (100 MHz, CDCl₃) δ 147.6, 140.3, 136.3, 135.6, 134.7, 131.9, 129.0, 128.9 (two signals overlap), 126.03,
125.99, 125.4, 125.3 (two signals overlap), 47.7, 42.4, 37.7, 35.5, 32.0, 31.2, 25.1, 22.8, 21.0, 19.9; HRMS (APCI) m/z:
[M+H]⁺ Calcd for C₂₄H₂₉ 317.2264; Found 317.2256; IR (KBr, cm⁻¹): *v* 3062, 2977, 2904, 1600, 1496, 753, 691.

6-Bromo-1,1,3,4a-tetramethyl-1,4,4a,9,10,10a-hexahydrophenanthrene (2g)

Compound **2g** (10.9 mg, 34%) was prepared from **1g** (32.0 mg) and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 2.0 Hz, 1H), 7.18 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 1H), 5.20 (s, 1H), 2.87 (dd, *J* = 17.2, 4.8 Hz, 1H), 2.70 - 2.79 (m, 1H), 2.29 (d, *J* = 16.4 Hz, 1H), 2.08 (d, *J* = 16.4 Hz, 1H), 1.86 (dd, *J* = 13.0, 6.2 Hz, 1H), 1.73 (s, 3H), 1.59 - 1.70 (m, 1H), 1.50 - 1.54 (m, 1H), 1.20 (s, 3H), 1.01 (s, 3H), 0.95 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 150.3, 134.5, 132.0, 130.6, 129.0, 128.5, 128.3, 119.5, 47.3, 44.6, 37.8, 35.0, 32.1, 30.7, 25.4, 24.3, 22.7, 19.6; HRMS (EI) m/z: [M]⁺ Calcd for C₁₈H₂₃⁷⁹Br 318.0983; Found 318.0980; IR (KBr, cm⁻¹): *v* 2959, 1587, 1482, 918, 839, 625.

1,1,3,4a,8-Pentamethyl-1,4,4a,9,10,10a-hexahydrophenanthrene (2h)

Compound **2h** (20.7 mg, 82%) was prepared from **1h** (25.2 mg) and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.21 (d, *J* = 8.0 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.99 (d, *J* = 7.2 Hz, 1H), 5.21 (s, 1H), 2.86 (dd, *J* = 17.2, 5.6 Hz, 1H), 2.55 - 2.64 (m, 1H), 2.37 (d, *J* = 16.4 Hz, 1H), 2.24 (s, 3H), 2.08 (d, *J* = 16.4 Hz, 1H), 1.93 - 1.98 (m, 1H), 1.74 (s, 3H), 1.63 - 1.71 (m, 1H), 1.53 - 1.57 (m, 1H), 1.25 (s, 3H), 1.03 (s, 3H), 0.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 136.1, 134.2, 131.9, 128.9, 126.8, 125.6, 123.8, 46.9, 45.2, 37.7, 35.0, 32.1, 28.6, 25.3, 24.4, 22.8, 19.9, 19.8; HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₉H₂₇ 255.2108; Found 255.2094; **IR** (KBr, cm⁻¹): *v* 2960, 2928, 1585, 1469, 781, 724.

1,1,3,4a,6-Pentamethyl-1,4,4a,9,10,10a-hexahydrophenanthrene (2i)

Compound **2i** (19.6 mg, 78%) was prepared from **1i** (25.1 mg) and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.11 (s, 1H), 6.91 - 6.97 (m, 2H), 5.20 (s, 1H), 2.75 - 2.92 (m, 2H), 2.30 - 2.38 (m, 4H), 2.09 (d, *J* = 16.0 Hz, 1H), 1.85 (dd, *J* = 12.8, 6.0 Hz, 1H), 1.74 (s, 3H), 1.61 - 1.71 (m, 1H), 1.54 - 1.57 (m, 1H), 1.22 (s, 3H), 1.02 (s, 3H), 0.96 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 147.8, 135.1, 132.4, 132.0, 128.81, 128.78, 126.5, 126.2, 47.7, 44.7, 37.5, 35.1, 32.2, 30.8, 25.4, 24.4, 22.7, 21.2, 20.0; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₁₉H₂₇ 255.2108; Found 255.2097; **IR** (KBr, cm⁻¹): *v* 2933, 1613, 1501, 1451, 891, 839, 808.

7-Methoxy-1,1,3,4a-tetramethyl-1,4,4a,9,10,10a-hexahydrophenanthrene (2j)

Compound **2j** (15.0 mg, 56%) was prepared from **1j** (26.7 mg) and purified by silica gel column chromatography (PE/EA = 20/1) as a white soild; mp 74.9 - 76.8 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.21 (d, *J* = 8.8 Hz, 1H), 6.74 (dd, *J* = 8.8, 2.8 Hz, 1H), 6.57 (d, *J* = 2.8 Hz, 1H), 5.19 (s, 1H), 3.78 (s, 3H), 2.78 - 2.92 (m, 2H), 2.32 (d, *J* = 16.4 Hz, 1H), 2.06 (d, *J* = 16.4 Hz, 1H), 1.83 - 1.87 (m, 1H), 1.72 (s, 3H), 1.62 - 1.69 (m, 1H), 1.52 - 1.56 (m, 1H), 1.19 (s, 3H), 1.01 (s, 3H), 0.95 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 157.0, 140.4, 136.8, 132.0, 128.8, 127.0, 112.8, 112.5, 55.1, 47.8, 45.0, 37.0, 35.0, 32.2, 31.5, 25.4, 24.4, 22.7, 19.9; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₁₉H₂₇O 271.2057; Found 271.2053; **IR** (KBr, cm⁻¹): *ν* 2909, 2833, 1609, 1500, 1252, 1039, 844, 803.

6-Methoxy-1,1,3,4a-tetramethyl-1,4,4a,9,10,10a-hexahydrophenanthrene (2k)

Compound **2k** (22.5 mg, 85%) was prepared from **1k** (26.5 mg) and purified by silica gel column chromatography (PE/EA = 20/1) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 6.98 (d, *J* = 8.4 Hz, 1H), 6.84 (d, *J* = 2.8 Hz, 1H), 6.69 (dd, *J* = 8.4, 2.8 Hz, 1H), 5.20 (s, 1H), 3.80 (s, 3H), 2.84 - 2.89 (m, 1H), 2.72 - 2.80 (m, 1H), 2.30 (d, *J* = 16.4 Hz, 1H), 2.10 (d, *J* = 16.4 Hz, 1H), 1.85 (dd, *J* = 16.4 Hz, 1H), 2.10 (d, *J* = 16.4 Hz, 1H), 1.85 (dd, J = 16.4 Hz,

J = 12.8, 6.0 Hz, 1H), 1.73 (s, 3H), 1.60 - 1.67 (m, 1H), 1.52 - 1.56 (m, 1H), 1.22 (s, 3H), 1.01 (s, 3H), 0.95 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 157.8, 149.2, 132.0, 129.7, 128.7, 127.8, 111.3, 111.1, 55.3, 47.5, 44.7, 37.8, 35.1, 32.2, 30.4, 25.3, 24.4, 22.7, 20.0; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₁₉H₂₇O 271.2057; Found 271.2057; **IR** (KBr, cm⁻¹): *v* 2958, 2833, 1610, 1502, 1243, 1046, 802, 705.

6-(tert-Butyl)-1,1,3,4a-tetramethyl-1,4,4a,9,10,10a-hexahydrophenanthrene (21)

Compound **2l** (22.1 mg, 74%) was prepared from **1l** (29.8 mg) and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 (s, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.02 (d, *J* = 8.0 Hz, 1H), 5.22 (s, 1H), 2.77 - 2.93 (m, 2H), 2.38 (d, *J* = 16.4 Hz, 1H), 2.11 (d, *J* = 16.0 Hz, 1H), 1.86 (dd, *J* = 12.6, 5.8 Hz, 1H), 1.76 (s, 3H), 1.62 - 1.70 (m, 1H), 1.56 - 1.60 (m, 1H), 1.34 (s, 9H), 1.24 (s, 3H), 1.02 (s, 3H), 0.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 147.3, 132.6, 132.1, 128.8, 128.4, 122.6, 122.5, 47.7, 44.7, 37.8, 35.1, 34.5, 32.2, 31.5, 30.7, 25.5, 24.5, 22.7, 19.9; HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₂H₃₃ 297.2577; Found 297.2566; **IR** (KBr, cm⁻¹): *v* 2905, 1609, 1500, 1464, 827, 734.

1,1,3,4a-Tetramethyl-7-phenyl-1,4,4a,9,10,10a-hexahydrophenanthrene (2m)

Compound **2m** (19.8 mg, 65%) was prepared from **1m** (30.5 mg) and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 - 7.60 (m, 2H), 7.37 - 7.44 (m, 4H), 7.30 - 7.34 (m, 2H), 5.22 (s, 1H), 2.86 - 3.03 (m, 2H), 2.40 (d, *J* = 16.4 Hz, 1H), 2.14 (d, *J* = 16.4 Hz, 1H), 1.91 (dd, *J* = 12.8, 6.0 Hz, 1H), 1.75 (s, 3H), 1.66 - 1.73 (m, 1H), 1.59 - 1.62 (m, 1H), 1.26 (s, 3H), 1.04 (s, 3H), 0.98 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 147.2, 141.1, 138.1, 135.9, 132.1, 128.7, 128.6, 127.5, 127.0, 126.9, 126.5, 124.8, 47.6, 44.7, 37.5, 35.1, 32.2, 31.3, 25.4, 24.4, 22.7, 19.9; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₂₄H₂₉ 317.2264; Found 317.2272; **IR** (KBr, cm⁻¹): *v* 3029, 2958, 2935, 1600, 1484, 827, 738, 697.

1,1,3,4a-Tetramethyl-6-phenyl-1,4,4a,9,10,10a-hexahydrophenanthrene (2n)

Compound **2n** (21.8 mg, 70%) was prepared from **1n** (31.2 mg) and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.6 Hz, 2H), 7.52 (d, *J* = 1.6 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.32 - 7.35 (m, 2H), 7.14 (d, *J* = 7.6 Hz, 1H), 5.22 (s, 1H), 2.83 - 3.00 (m, 2H), 2.43 (d, *J* = 16.4 Hz, 1H), 2.16 (d, *J* = 16.4 Hz, 1H), 1.90 (dd, *J* = 12.6, 6.2 Hz, 1H), 1.75 (s, 3H), 1.66 - 1.73 (m, 1H), 1.59 - 1.62 (m, 1H), 1.28 (s, 3H), 1.04 (s, 3H), 0.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 141.7, 139.0, 134.8, 132.1, 129.3, 128.7, 128.6, 127.1, 126.9, 124.9, 124.2, 47.6, 44.7, 37.8, 35.1, 32.2, 30.9, 25.5, 24.4, 22.7, 19.9; HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₄H₂₉ 317.2264; Found

tert-Butyldimethyl((4b,6,8,8-tetramethyl-4b,5,8,8a,9,10-hexahydrophenanthren-3-yl)oxy)silane (20)

Compound **2o** (29.1 mg, 81%) was prepared from **1o** (35.9 mg) and purified by silica gel column chromatography (PE/EA = 100/1) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 6.89 (d, J = 8.0 Hz, 1H), 6.74 (d, J = 2.4 Hz, 1H), 6.58 (dd, J = 8.2, 2.6 Hz, 1H), 5.19 (s, 1H), 2.70 - 2.87 (m, 2H), 2.25 (d, J = 16.4 Hz, 1H), 2.07 (d, J = 16.4 Hz, 1H), 1.83 (dd, J = 12.6, 6.2 Hz, 1H), 1.73 (s, 3H), 1.58 - 1.69 (m, 1H), 1.51 - 1.54 (m, 1H), 1.19 (s, 3H), 1.01 (s, 3H), 0.99 (s, 9H), 0.94 (s, 3H), 0.19 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 153.6, 149.1, 132.1, 129.5, 128.7, 128.2, 117.4, 117.2, 47.5, 44.7, 37.6, 35.1, 32.2, 30.5, 25.8, 25.3, 24.4, 22.7, 20.0, 18.3, -4.4; HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₄H₃₉OSi 371.2765; Found 371.2774; **IR** (KBr, cm⁻¹): ν 2932, 2859, 1607, 1493, 1267, 1059, 839, 780, 690.

2,4,4,12b-Tetramethyl-1,4,4a,5,6,12b-hexahydrotetraphene (2p)

Compound **2p** (19.3 mg, 70%) was prepared from **1p** (27.6 mg) and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.70 - 7.78 (m, 3H), 7.55 (s, 1H), 7.33 - 7.39 (m, 2H), 5.24 (s, 1H), 3.19 (dd, *J* = 16.8, 4.8 Hz, 1H), 3.00 - 3.08 (m, 1H), 2.57 (d, *J* = 16.4 Hz, 1H), 2.26 (d, *J* = 16.4 Hz, 1H), 1.95 (dd, *J* = 12.8, 6.0 Hz, 1H), 1.79 (s, 3H), 1.66 - 1.78 (m, 2H), 1.32 (s, 3H), 1.06 (s, 3H), 1.01 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 147.5, 134.7, 132.4, 132.0, 131.6, 128.8, 127.4, 126.7, 126.6, 125.1, 124.7, 124.5, 47.8, 45.2, 38.1, 35.2, 32.2, 31.6, 26.2, 24.4, 22.9, 20.1; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₂₂H₂₇ 291.2108; Found 291.2114; **IR** (KBr, cm⁻¹): *v* 3052, 2935, 1594, 1499, 886, 869, 743.

7-Bromo-6-methoxy-1,1,3,4a-tetramethyl-1,4,4a,9,10,10a-hexahydrophenanthrene (2q)

Compound **2q** (15.4 mg, 44%) was prepared from **1q** (35.0 mg) and purified by silica gel column chromatography (PE/EA = 20/1) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.22 (s, 1H), 6.79 (s, 1H), 5.20 (s, 1H), 3.88 (s, 3H), 2.69 - 2.85 (m, 2H), 2.28 (d, *J* = 16.4 Hz, 1H), 2.09 (d, *J* = 16.4 Hz, 1H), 1.84 (dd, *J* = 12.8, 6.0 Hz, 1H), 1.74 (s, 3H), 1.58 - 1.68 (m, 1H), 1.49 - 1.53 (m, 1H), 1.21 (s, 3H), 1.01 (s, 3H), 0.94 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.0, 148.4, 133.1, 132.2, 129.6, 128.3, 109.6, 108.7, 56.4, 47.4, 44.7, 37.9, 35.1, 32.1, 30.1, 25.3, 24.4, 22.7, 19.8; HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₉H₂₆⁷⁹BrO 349.1162; Found 349.1170; **IR** (KBr, cm⁻¹): *v* 2960, 1595, 1489, 1260, 1045, 801, 750.

1,1,4a-Trimethyl-1,4,4a,9,10,10a-hexahydrophenanthrene (2r)

Compound **2r** (9.6 mg, 41%) was prepared from **1r** (23.5 mg) and purified by silica gel column chromatography (PE/EA = 200/1) as a white soild; mp 53.7 - 55.5 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 7.6 Hz, 1H), 7.16 (t, J = 7.2 Hz, 1H), 7.05 - 7.11 (m, 2H), 5.59 - 5.64 (m, 1H), 5.49 - 5.52 (m, 1H), 2.81 - 2.95 (m, 2H), 2.54 (dd, J = 16.8, 6.0 Hz, 1H), 2.12 (d, J = 16.8 Hz, 1H), 1.85 - 1.89 (m, 1H), 1.65 - 1.76 (m, 2H), 1.27 (s, 3H), 1.06 (s, 3H), 1.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 138.1, 135.4, 128.9, 126.0, 125.9, 125.3, 121.8, 48.0, 39.7, 37.0, 35.1, 31.8, 31.1, 25.3, 22.4, 19.9; HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₇H₂₃ 227.1795; Found 227.1798; **IR** (KBr, cm⁻¹): *v* 3011, 2959, 2935, 1489, 783, 729.

7-Isopropyl-6-methoxy-1,1,4a-trimethyl-1,4,4a,9,10,10a-hexahydrophenanthrene (2s)

Compound **2s** (28.6 mg, 95%) was prepared from **1s** (30.1 mg) and purified by silica gel column chromatography (PE/EA = 20/1) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 6.87 (s, 1H), 6.73 (s, 1H), 5.59 - 5.64 (m, 1H), 5.49 - 5.52 (m, 1H), 3.81 (s, 3H), 3.24 (hept., J = 6.8 Hz, 1H), 2.73 - 2.88 (m, 2H), 2.51 (dd, J = 16.8, 6.0 Hz, 1H), 2.16 (d, J = 16.8 Hz, 1H), 1.81 - 1.88 (m, 1H), 1.62 - 1.73 (m, 2H), 1.28 (s, 3H), 1.21 (t, J = 6.6 Hz, 6H), 1.05 (s, 3H), 1.00 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 155.3, 145.7, 138.2, 134.5, 127.2, 126.3, 121.8, 107.8, 55.6, 48.2, 39.9, 37.1, 35.1, 31.9, 30.5, 26.5, 25.1, 22.9, 22.7, 22.4, 20.2; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₂₁H₃₁O 299.2370; Found 299.2376; **IR** (KBr, cm⁻¹): v 3009, 2865, 1613, 1501, 1245, 1050, 725.

1,1,4a,7-Tetramethyl-1,4,4a,9,10,10a-hexahydrophenanthrene (2t)

Compound **2t** (19.9 mg, 83%) was prepared from **1t** (24.0 mg) and purified by silica gel column chromatography (PE/EA = 200/1) as a white soild; mp 31.8 - 33.6 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.17 (d, *J* = 8.4 Hz, 1H), 6.98 (d, *J* = 8.4 Hz, 1H), 6.88 (s, 1H), 5.58 - 5.62 (m, 1H), 5.47 - 5.50 (m, 1H), 2.76 - 2.90 (m, 2H), 2.51 (dd, *J* = 16.6, 6.2 Hz, 1H), 2.28 (s, 3H), 2.09 (d, *J* = 16.8 Hz, 1H), 1.83 - 1.87 (m, 1H), 1.62 - 1.74 (m, 2H), 1.24 (s, 3H), 1.04 (s, 3H), 0.98 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 145.0, 138.1, 135.3, 134.7, 129.4, 126.8, 125.9, 121.9, 48.2, 39.8, 36.7, 35.1, 31.8, 31.1, 25.3, 22.3, 20.8, 19.9; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₁₈H₂₅ 241.1951; Found 241.1959; **IR** (KBr, cm⁻¹): *ν* 3009, 2934, 2863, 1615, 1470, 814, 723.

4. Synthetic applications

Scheme S1. Synthetic Applications.

(a) NaSEt, DMF, 140 °C; (b) OsO₄, NMO, citric acid, t-BuOH/acetone/H₂O = 1:1:1; (c) SeO₂, 1,4-dioxane, 100 °C, then DMP, DCM, r.t.; (d) BBr₃, DCM, -20 °C; (e) H₂, Pd/C, CH₃OH, r.t.; (f) CrO₃, AcOH, r.t.; (g) Ac₂O, Et₃N, DMAP, DCM, r.t..

2-Isopropyl-4b,8,8-trimethyl-4b,5,8,8a,9,10-hexahydrophenanthren-3-ol (3)¹

To a suspension of sodium hydride (60% dissolved in mineral oil, 161 mg, 4.02 mmol, 30.0 equiv) in DMF (2.0 mL) at 0 °C, ethanethiol (298 μ L, 4.02 mmol, 30.0 equiv) was added dropwise. The resulting mixture was stirred for 30 min. while warming to room temperature, then a solution of **2s** (40.0 mg, 0.13 mmol, 1.0 equiv) in DMF (2.0 mL) was added and the mixture was heated to 140 °C. After stirring for 12 h, the mixture was cooled to room temperature, diluted with Et₂O (5 mL) and HCl (1M, 5 mL) was added. After stirring vigorously for another 15 min, the organic layer was separated and the aqueous layer was extracted with EtOAc (3 × 20 mL), then brine (50 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (PE/EA = 8/1) to give compound **3** as a colorless oil (32.4 mg, 0.11 mmol, 85% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 6.85 (s, 1H), 6.64 (s, 1H), 5.57 - 5.62 (m, 1H), 5.47 - 5.50 (m, 1H), 4.50 - 4.54 (m, 1H), 3.13 (hept., J = 6.8 Hz, 1H), 2.71 - 2.87 (m, 2H), 2.42 (dd, J = 16.8, 6.0 Hz, 1H), 2.11 (d, J = 16.4 Hz, 1H), 1.83 - 1.86 (m, 1H), 1.60 - 1.69 (m, 2H), 1.24 - 1.27 (m, 9H), 1.04 (s, 3H), 0.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 146.3, 138.1, 131.7, 127.6, 126.5, 121.8, 112.3, 48.0, 39.7, 36.7, 35.1, 31.8, 30.4, 26.8, 25.2, 22.7, 22.5, 22.3, 20.2; HRMS (APCI) m/z: [M-H]⁻ Calcd for C₂₀H₂₇O 283.2067; Found 283.2058; **IR** (KBr, cm⁻¹): v 3451, 2959, 2872, 1465, 1280, 1075, 744.

(±)- 2,3-Dihydroxyferruginol²

To a solution of 3 (28.9 mg, 0.10 mmol, 1.0 equiv) in acetone/t-BuOH (1:1, 1.0 mL) was added 4-Methylmorpholine N-oxide (52 µL, 0.51 mmol, 5.0 equiv), citric acid (98 mg, 0.51 mmol, 5.0 equiv), and osmium(VIII) oxide (10 mg / mL in water, 500 µL, 0.02 mmol, 0.2 equiv). Then the reaction was heated to 35 °C and stirred for 6 h. Upon cooling to room temperature, HCl (1M, 5 mL) was added and the mixture was stirred for 30 min. Na₂S₂O₃ (sat. aq., 5 mL) was added to quench, then NaHCO3 (sat. aq., 10 mL) was added to adjust pH to neutral. The reaction mixture was extracted with EtOAc (3×20 mL). Combined organic layers were washed with brine (100 mL), dried over Na₂SO₄. The residue was purified by column chromatography on silica gel (PE/EA = 2/1) to give compound (±)-2,3-dihydroxyferruginol as a 0.05 213.0 214.4 white solid (16.2)mg, mmol. 50% vield), mp °C and 7-Isopropyl-1,1,4a-trimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2,3,6-triol as a colorless oil (6.5 mg, 0.02 mmol, 20% yield).

¹**H** NMR (400 MHz, Acetone-*d*₆) δ 7.82 (brs, 1H), 6.78 (s, 1H), 6.73 (s, 1H), 4.12 (hept., J = 3.2 Hz, 1H), 3.57 - 3.69 (m, 2H), 3.15 - 3.26 (m, 2H), 2.81 - 2.82 (m, 1H), 2.67 - 2.76 (m, 1H), 2.56 (dd, J = 14.4, 3.2 Hz, 1H), 1.85 - 1.91 (m, 1H), 1.74 - 1.83 (m, 1H), 1.61 (dd, J = 14.2, 3.4 Hz, 1H), 1.40 (s, 3H), 1.34 (dd, J = 12.0, 2.4 Hz, 1H), 1.17 (t, J = 6.4 Hz, 6H), 1.07 (d, J = 10.0 Hz, 6H); ¹³C NMR (100 MHz, Acetone-*d*₆) δ 153.2, 149.3, 132.6, 127.1, 125.7, 111.7, 78.4, 71.9, 50.9, 43.7, 39.1, 37.6, 30.8, 27.4, 27.3, 23.0, 22.9, 19.6, 17.6; **IR** (KBr, cm⁻¹): v 3420, 2961, 1507, 1417, 1034, 794.

7-Isopropyl-1,1,4a-trimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2,3,6-triol (7)

¹**H** NMR (400 MHz, Acetone- d_6) δ 7.73 (s, 1H), 6.78 (s, 1H), 6.73 (s, 1H), 4.04 - 4.11 (m, 1H), 3.55 (d, J = 6.8 Hz, 1H), 3.40 - 3.41 (m, 1H), 3.35 - 3.36 (m, 1H), 3.21 (hept., J = 7.0 Hz, 1H), 2.70 - 2.82 (m, 3H), 1.66 - 1.79 (m, 4H), 1.16 - 1.19 (m, 9H), 1.06 (s, 3H), 0.94 (s, 3H); ¹³C NMR (100 MHz, Acetone- d_6) δ 153.0, 148.5, 132.6, 127.1, 126.0, 111.1, 79.1, 66.7, 43.8, 41.1, 39.1, 30.3, 30.1, 29.0, 27.4, 26.0, 23.0, 22.9, 22.1, 19.3; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₃₀NaO₃ 341.2087; Found 341.2077.

7-Isopropyl-6-methoxy-1,1,4a-trimethyl-4a,9,10,10a-tetrahydrophenanthren-4(1H)-one (4)

A mixture of **2s** (42.9 mg, 0.14 mmol, 1.0 equiv) and selenium dioxide (47.8 mg, 0.43 mmol, 3.0 equiv) was stirred in 1,4-dioxane (4 mL) under argon at 100 °C for 24 h. The mixture was filtered by sodium sulfate to remove insoluble substances in the system and concentrated in vacuo. Next, to a stirred solution of the residue in DCM (4 mL), DMP (122.0 mg, 0.29 mmol, 2.0 equiv) was added at room temperature. After the reaction mixture was stirred for 8 h, the reaction was diluted with DCM, quenched by Na₂S₂O₃ (sat. aq., 10 mL). The organic layer was separated and the aqueous layer was extracted with DCM (3 × 20 mL). The combined organic layer was washed with brine (20 mL), dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel (PE/EA = 20/1) to give compound **4** as a colorless oil (26.9 mg, 0.09 mmol, 60% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.31 (s, 1H), 6.85 (s, 1H), 6.51 (d, *J* = 10.0 Hz, 1H), 5.91 (d, *J* = 10.0 Hz, 1H), 3.87 (s, 3H), 3.25 (hept., *J* = 6.8 Hz, 1H), 2.73 - 2.86 (m, 2H), 2.07 (dd, *J* = 12.4, 1.6 Hz, 1H), 1.89 - 1.94 (m, 1H), 1.72 - 1.83 (m, 1H), 1.55 (s, 3H), 1.18 - 1.22 (m, 12H); ¹³**C** NMR (100 MHz, CDCl₃) δ 202.7, 155.8, 154.3, 137.0, 135.3, 127.9, 125.9, 125.0, 113.3, 55.6, 48.8, 47.8, 36.6, 31.2, 30.6, 26.5, 26.3, 22.8, 22.5, 21.4, 20.0; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₉O₂ 313.2162; Found 313.2156; **IR** (KBr, cm⁻¹): *v* 2959, 2916, 2848, 1683, 1501, 1464, 1252, 1065, 800.

(±)-Shonanol

A solution of 4 (25.9 mg, 0.09 mmol, 1.0 equiv) in DCM (2 mL) was cooled to -20 °C, BBr₃ (1 M in DCM, 0.9 mL, 0.9 mmol, 10.0 equiv) was slowly added. After the solution was stirred for 6 h. Then the reaction was quenched with NaHCO₃ (sat. aq., 5 mL). The aqueous layer was extracted with DCM (3×20 mL). The combined organic layer was washed with brine (20 mL), dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel (PE/EA = 6/1) to give compound (±)-shonanol as a white solid (7.7 mg, 0.02 mmol, 30% yield), mp 213.1 - 214.7 °C.

¹**H** NMR (600 MHz, CCl₄) δ 7.25 (s, 1H), 6.67 (s, 1H), 6.47 (d, *J* = 10.2 Hz, 1H), 5.99 (s, 1H), 5.92 (d, *J* = 10.2 Hz, 1H), 3.17 - 3.19 (m, 1H), 2.76 - 2.77 (m, 2H), 2.07 (d, *J* = 12.0 Hz, 1H), 1.86 - 1.87 (m, 1H), 1.75 - 1.78 (m, 1H), 1.48 (s, 3H), 1.18 - 1.25 (m, 12H).

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 (s, 1H), 6.85 (s, 1H), 6.54 (d, *J* = 10.0 Hz, 1H), 6.10 (br s, 1H), 5.97 (d, *J* = 10.0 Hz, 1H), 3.22 (hept., *J* = 6.8 Hz, 1H), 2.73 - 2.86 (m, 2H), 2.09 (d, *J* = 12.0 Hz, 1H), 1.90 - 1.92 (m, 1H), 1.73 - 1.83 (m, 1H), 1.53 (s, 3H), 1.21 - 1.26 (m, 6H), 1.18 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 203.8, 156.6, 150.7, 137.0, 133.2, 127.7, 126.3, 124.8, 117.3, 48.6, 47.6, 36.6, 31.1, 30.6, 26.8, 26.6, 22.7, 22.4, 21.4, 20.0; **IR** (KBr, cm⁻¹): *v* 3359, 2960, 1669, 1619, 1511, 1418, 1264, 1022, 882, 737.

7-Isopropyl-6-methoxy-1,1,4a-trimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene (5)

A mixture of **2s** (148 mg, 0.5 mmol, 1.0 equiv), Pd (10%)/C (5.3 mg) was stirred in CH₃OH (20 mL) under H₂ atmosphere at room temperature for 24 h and concentrated directly in vacuum. The produced residue was purified by column chromatography on silica gel (PE/EA = 200/1) to give compound **5** as a colorless oil (121 mg, 0.40 mmol, 81% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 6.86 (s, 1H), 6.74 (s, 1H), 3.81 (s, 3H), 3.23 (hept., J = 6.8 Hz, 1H), 2.75 - 2.91 (m, 2H), 2.27 (d, J = 12.8 Hz, 1H), 1.26 - 1.90 (m, 8H), 1.18 - 1.22 (m, 9H), 0.96 (s, 3H), 0.94 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 155.0, 148.1, 134.1, 126.9, 126.4, 106.5, 55.6, 50.5, 41.7, 38.9, 37.8, 33.4, 33.3, 29.8, 26.4, 24.8, 22.9, 22.7, 21.6, 19.3, 19.2; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₂₁H₃₃O 301.2526; Found 301.2523; **IR** (KBr, cm⁻¹): v 2958, 2866, 1500, 1463, 1249, 1044, 764, 750.

(±)-Sugiol methyl ether

To a stirred solution of 5 (35.3 mg, 0.12 mmol, 1.0 equiv) in AcOH (2 mL) and CrO_3 (14.1 mg, 0.14 mmol, 1.2 equiv) was added at room temperature. After the reaction mixture was stirred for 4 h, it was quenched by $Na_2S_2O_3$ (sat. aq., 5 mL). The organic layer was separated and the aqueous layer was extracted with DCM (3 × 20 mL). Then the combined

organic layer was washed with brine (20 mL), dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel (PE/EA = 20/1) to give compound (±)-sugiol methyl ether as a white soild (30.7 mg, 0.10 mmol, 83% yield), mp 123.1 - 124.6 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 6.75 (s, 1H), 3.89 (s, 3H), 3.24 (hept, J = 6.8 Hz, 1H), 2.55 - 2.71 (m, 2H), 2.30 (d, J = 12.4 Hz, 1H), 1.87 (dd, J = 13.4, 3.8 Hz, 1H), 1.78 (tt, J = 13.6, 3.2 Hz, 1H), 1.65 - 1.71 (m, 1H), 1.52 - 1.61 (m, 2H), 1.26 - 1.31 (m, 1H), 1.25 (s, 3H), 1.22 (d, J = 7.2 Hz, 3H), 1.19 (d, J = 6.8 Hz, 3H), 1.00 (s, 3H), 0.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 161.6, 156.4, 135.2, 125.6, 124.1, 104.4, 55.4, 49.6, 41.4, 38.3, 38.0, 36.0, 33.3, 32.6, 26.5, 23.2, 22.5, 22.4, 21.4, 18.9; **IR** (KBr, cm⁻¹): v 2960, 2920, 1673, 1600, 1563, 1495, 1259, 1037, 908, 850.

(±)-Sugiol

To a suspension of sodium hydride (60% in mineral oil, 111 mg, 2.77 mmol, 30.0 equiv) in DMF (2.0 mL), ethanethiol (205 μ L, 2.77 mmol, 30.0 equiv) was added dropwise at 0 °C. After the resulting mixture was stirred for 30 min and warmed to room temperature, a solution of (±)-sugiol methyl ether (29.0 mg, 0.09 mmol, 1.0 equiv) in DMF (1.5 mL) was added and the mixture was heated to 140 °C and stirred for 12 h, the mixture was cooled to room temperature, diluted with Et₂O (5 mL) and HCl (1M, 5 mL) was added. After stirring vigorously for 15 min, the organic layer was separated and the aqueous layer was extracted with EtOAc (3 × 20 mL), then brine (50 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel (PE/EA = 6/1) to give compound (±)-sugiol as a white solid (25.5 mg, 0.08 mmol, 92% yield), mp 244.6 - 245.3 °C.

¹**H** NMR (400 MHz, DMSO-*d*₆) δ 10.26 (s, 1H), 7.65 (s, 1H), 6.78 (s, 1H), 3.13 (hept., *J* = 6.8 Hz, 1H), 2.42 - 2.58 (m, 2H), 2.15 (d, *J* = 12.4 Hz, 1H), 1.68 - 1.79 (m, 2H), 1.58 - 1.62 (m, 1H), 1.38 - 1.47 (m, 2H), 1.22 (td, *J* = 13.2, 3.2 Hz, 1H), 1.12 - 1.16 (m, 9H), 0.94 (s, 3H), 0.88 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 196.5, 160.1, 155.8, 132.5, 125.0, 122.6, 109.3, 49.1, 40.8, 40.1, 37.5, 35.5, 32.9, 32.3, 26.1, 23.0, 22.4, 22.2, 21.1, 18.5; **IR** (KBr, cm⁻¹): *v* 2960, 2935, 1650, 1594, 1303, 1267, 1027, 749.

(±)-Ferruginol

A solution of **5** (17.7 mg, 0.06 mmol, 1.0 equiv) in DCM (2 mL) was cooled to -20 °C, BBr₃ (1 M in DCM, 0.6 mL, 0.6 mmol, 10.0 equiv) was slowly added. After the solution was stirred for 12 h, it was quenched with NaHCO₃ (sat. aq., 5 mL). The aqueous layer was extracted with DCM (3×20 mL). Then the combined organic layer was washed with brine (20 mL), dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel (PE/EA = 10/1) to give compound (±)-ferruginol as a yellow oil (15.2 mg, 0.05 mmol, 90% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.83 (s, 1H), 6.63 (s, 1H), 4.46 (s, 1H), 3.11 (hept., J = 6.8 Hz, 1H), 2.83 - 2.89 (m, 1H), 2.73 - 2.81 (m, 1H), 2.17 (d, J = 12.8 Hz, 1H), 1.86 (ddt, J = 13.4, 7.4, 2.4 Hz, 1H), 1.71 - 1.80 (m, 1H), 1.63 - 1.69 (m, 1H), 1.57 - 1.62 (m, 1H), 1.45 - 1.49 (m, 1H), 1.38 (td, J = 13.2, 4.0 Hz, 1H), 1.32 (dd, J = 12.4, 2.4 Hz, 1H), 1.24 (t, J = 6.6 Hz, 6H), 1.20 - 1.21 (m, 1H), 1.17 (s, 3H), 0.94 (s, 3H), 0.92 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 150.6, 148.7, 131.4, 127.3, 126.6, 111.0, 50.4, 41.7, 38.9, 37.5, 33.4, 33.3, 29.8, 26.8, 24.8, 22.7, 22.6, 21.6, 19.3, 19.2; **IR** (KBr, cm⁻¹): v 3440, 2960, 2925, 2867, 1507, 1417, 1260, 1039, 892, 750.

(±)-Acetylferruginol

To a stirred solution of (±)-ferruginol (15.2 mg, 0.05 mmol, 1.0 equiv), Et₃N (22.1 µL, 0.16 mmol, 3.0 equiv) and DMAP (1.3 mg, 0.01 mmol, 0.2 equiv) in DCM (2 mL), Ac₂O (7.5 µL, 0.08 mmol, 1.5 equiv) was added at room temperature. The reaction mixture was stirred for 3 h and then quenched by NaHCO₃ (sat. aq., 5 mL). The organic layer was separated and the aqueous layer was extracted with DCM ($3 \times 20 \text{ mL}$). The combined organic layer was washed with brine (20 mL), dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel (PE/EA = 20/1) to give compound (±)-acetylferruginol as a yellow oil (16.6 mg, 0.05 mmol, 95% yield). ¹H NMR (400 MHz, CDCl₃) δ 6.94 (s, 1H), 6.83 (s, 1H), 2.78 - 2.94 (m, 3H), 2.30 (s, 3H), 2.16 (d, *J* = 12.4 Hz, 1H), 1.85 - 1.90 (m, 1H), 1.65 - 1.78 (m, 2H), 1.54 - 1.60 (m, 2H), 1.37 - 1.48 (m, 2H), 1.33 (d, *J* = 12.4 Hz, 1H), 1.16 - 1.20 (m, 9H), 0.94 (s, 3H), 0.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 148.8, 146.1, 136.6, 133.1, 126.9, 117.9, 50.0, 41.7, 38.8, 37.6, 33.4, 33.3, 30.0, 27.2, 24.8, 23.1, 23.0, 21.6, 21.0, 19.2, 19.0; IR (KBr, cm⁻¹): *v* 2961, 2929, 1760, 1496, 1459, 1206, 1016, 914.

(±)-2,3-Dihydroxy-15,16-dinor-ent-pimar-8,11,13-triene (6)

To a solution of **2t** (12.6 mg, 0.05 mmol, 1.0 equiv) in acetone/t-BuOH (1:1, 1.0 mL) was added 4-Methylmorpholine N-oxide (27 μ L, 0.26 mmol, 5.0 equiv), citric acid (50.3 mg, 0.26 mmol, 5.0 equiv), and osmium(VIII) oxide (10 mg/mL in water, 500 μ L, 0.02 mmol, 0.4 equiv) The reaction was heated to 35 °C and stirred for 6 h. After the reaction mixture was cooled to room temperature, HCl (1M, 5 mL) was added and the mixture was stirred for 30 minutes. Na₂S₂O₃ (sat. aq., 5 mL) was added to quench, then NaHCO₃ (sat. aq., 10 mL) was added to adjust pH to neutral. Reaction mixture was extracted with EtOAc (3 × 20 mL). Combined organic layers were washed with brine (20 mL), dried over Na₂SO₄. The residue was purified by column chromatography on silica gel (PE/EA = 2/1) to give compound **7** as a white solid (7.5 mg, 0.03 mmol, 52% yield); mp 150.2 -151.6 °C and (±)-2,3-dihydroxy-15,16-dinor-ent-pimar-8,11,13-triene as a colorless oil (2.7 mg, 0.01 mmol, 19% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.16 (d, J = 8.4 Hz, 1H), 6.96 (d, J = 8.0 Hz, 1H), 6.88 (s, 1H), 4.24 (q, J = 3.2 Hz, 1H), 3.27 (s, 1H), 2.79 - 2.97 (m, 2H), 2.71 (dd, J = 14.4, 3.2 Hz, 1H), 2.27 (s, 3H), 2.20 (s, 2H), 1.80 - 1.94 (m, 2H), 1.72 (dd, J = 14.4, 3.6 Hz, 1H), 1.44 (s, 3H), 1.40 (dd, J = 11.6, 2.8 Hz, 1H), 1.11 (s, 3H), 1.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.1, 134.8, 134.3, 129.6, 126.7, 124.6, 78.2, 71.3, 49.8, 42.7, 38.3, 36.7, 30.5, 29.8, 26.9, 20.8, 18.5, 17.0; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₂₆O₂Na 297.1825; Found 297.1817; **IR** (KBr, cm⁻¹): v 3418, 2962, 2919, 1612, 1497, 1231, 1072, 748.

(±)-2,3-Dihydroxy-15,16-dinor-ent-pimar-8,11,13-triene-epimer

¹**H** NMR (400 MHz, CDCl₃) δ 7.15 (d, *J* = 8.0 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 6.87 (s, 1H), 4.18 (d, *J* = 11.6 Hz, 1H), 3.52 (d, *J* = 2.4 Hz, 1H), 2.81 - 2.94 (m, 2H), 2.27 - 2.30 (m, 1H), 2.27 (s, 3H), 1.95 - 2.05 (m, 2H), 1.72 - 1.81 (m, 4H),

1.21 (s, 3H), 1.09 (s, 3H), 0.97 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 146.1, 134.9, 134.6, 129.6, 126.6, 124.0, 78.8, 67.0, 42.9, 40.2, 38.5, 38.3, 30.0, 28.3, 25.6, 21.6, 20.8, 18.4.

5. NMR data comparisons between the natural products and synthetic ones

¹ H NMR (in Acetone- <i>d</i> ₆ , 400 MHz)						
Natural product ³	Current work	Δδ				
6. 69 (s, 1H)	6.78 (s, 1H)	-0.09				
6. 65 (s, 1H)	6.73 (s, 1H)	-0.08				
4.50 (br s, 1H)	7.82 (br s, 1H)	Active hydrogen				
not provided	4.12 (hept., <i>J</i> = 3.2 Hz, 1H)	/				
not provided	3.57 - 3.69 (m, 2H)	/				
3.20 (d, <i>J</i> = 3.5 Hz, 1H)	3.15 - 3.26 (m, 2H)	/				
3.06 (m, 1H)						
2.81 (dd, <i>J</i> = 16.5, 5.5 Hz, 1H)	2.81 - 2.82 (m, 1H)	/				
2.70 (m, 1H)	2.67 - 2.76 (m, 1H)	/				
2.56 (dd, <i>J</i> = 14.5, 3.0 Hz, 1H)	2.56 (dd, <i>J</i> = 14.4, 3.2 Hz, 1H)	0				
1.81 (dt, <i>J</i> = 12.0, 6.0 Hz, 1H)	1.85 - 1.91 (m, 1H)	/				
1.74 (m, 1H)	1.74 - 1.83 (m, 1H)	/				
1.66 (dd, <i>J</i> = 14.0, 3.0 Hz, 1H)	1.61 (dd, <i>J</i> = 14.2, 3.4 Hz, 1H)	+0.05				
1.36 (s, 3H)	1.40 (s, 3H)	-0.04				
not provided	1.34 (dd, <i>J</i> = 12.0, 2.4 Hz, 1H)	/				
1.14 (dd, <i>J</i> = 10.5, 6.5 Hz, 6H)	1.17 (t, <i>J</i> = 6.4 Hz, 6H)	-0.03				
1.01 (d, <i>J</i> = 13.5 Hz, 6H)	1.07 (d, <i>J</i> = 10.0 Hz, 6H)	-0.06				

¹³C NMR (in Acetone-*d*₆, 100 MHz)

Natural product	Current work	Δδ	Natural product	Current work	Δδ
151.0	153.2	-2.2	38.3	39.1	-0.8
148.6	149.3	-0.7	36.8	37.6	-0.8

131.9	132.6	-0.7	31.0	30.8	+0.2
124.1	127.1	-3.0	29.9	27.4	+2.5
126.6	125.7	+0.9	29.8	27.3	+2.5
111.2	111.7	-0.5	26.8		
78.2	78.4	-0.2	22.7	23.0	-0.3
71.4	71.9	-0.5	22.5	22.9	-0.4
49.7	50.9	-1.2	18.7	19.6	-0.9
42.6	43.7	-1.1	17.1	17.6	-0.5

¹ H NMR (in CCl ₄ , 600 MHz)						
Natural product ⁴	Current work	Δδ				
7.33 (s, 1H)	7.25 (s, 1H)	+0.08				
6.74 (s, 1H)	5.99 (s, 1H)	Active hydrogen				
6.67 (s, 1H)	6.67 (s, 1H)	0				
6.50 (d, <i>J</i> = 10.0 Hz, 1H)	6.47 (d, <i>J</i> = 10.2 Hz, 1H)	+0.03				
5.95 (d, <i>J</i> = 10.0 Hz, 1H)	5.92 (d, <i>J</i> = 10.2 Hz, 1H)	+0.03				
3.18 (m, 1H)	3.17 - 3.19 (m, 1H)	0				
not provided	2.76 - 2.77 (m, 2H)	/				
not provided	2.07 (d, <i>J</i> = 12.0 Hz, 1H)	/				
not provided	1.86 - 1.87 (m, 1H)	/				
not provided	1.75 - 1.78 (m, 1H)	/				
1.49 (s, 3H),	1.48 (s, 3H)	+0.01				
1.19 (s, 6H)	1.18 - 1.25 (m, 12H)	/				
1.16 and 1.18 (d, $J = 7.0$ Hz, 6H)						

¹ H NMR (in CDCl ₃ , 400 MHz)						
Natural product ⁵	Current work	Δδ				
7.89 (s, 1H)	7.89 (s, 1H)	0				
6.75 (s,1H)	6.75 (s, 1H)	0				
3.88 (s, 3H),	3.89 (s, 3H)	-0.01				
3.25 (sept, $J = 7.0$ Hz, 1H)	3.24 (hept., <i>J</i> = 6.8 Hz, 1H)	+0.01				
2.56 - 2.71 (m, 2H)	2.55 - 2.71 (m, 2H)	/				
1.29 - 2.32 (m, 7H)	2.30 (d, <i>J</i> = 12.4 Hz, 1H)	/				
	1.87 (dd, <i>J</i> = 13.4, 3.8 Hz, 1H)					
	1.78 (tt, <i>J</i> = 13.6, 3.2 Hz, 1H)					
	1.65 - 1.71 (m, 1H)					
	1.52 - 1.61 (m, 2H)					
	1.26 - 1.31 (m, 1H)					
1.28 (s, 3H)	1.25 (s, 3H)	+0.03				
1.27 (d, <i>J</i> = 7.0 Hz, 3H)	1.22 (d, <i>J</i> = 7.2 Hz, 3H)	+0.05				
1.23 (d, <i>J</i> = 7.0 Hz, 3H)	1.19 (d, <i>J</i> = 6.8 Hz, 3H)	+0.04				
1.00 (s, 3H)	1.00 (s, 3H)	0				
0.93 (s, 3H)	0.93 (s, 3H)	0				

¹³C NMR (in CDCl₃, 100 MHz)

Natural product	Current work	Δδ	Natural product	Current work	Δδ	
198.46	198.46	0	37.98	37.98	0	
161.63	161.62	+0.01	36.02	36.02	0	
156.36	156.36	0	33.29	33.29	0	
135.20	135.19	+0.01	32.57	32.56	+0.01	
125.59	125.57	+0.02	26.51	26.51	0	
124.11	124.09	+0.02	23.24	23.24	0	

104.41	104.41	0	22.52	22.51	+0.01
55.37	55.37	0	22.37	22.37	0
49.64	49.64	0	21.35	21.35	0
41.37	41.36	+0.01	18.91	18.90	+0.01
38.26	38.26	0			

¹ H NMR (in DMSO- <i>d</i> ₆ , 400 MHz)						
Natural	product ⁵		Current work		Δδ	
10.23	(s, 1H)		10.26 (s, 1H)		-0.03	
7.64	(s,1H)		7.65 (s, 1H)		-0.01	
6.78	(s, 1H)		6.78 (s, 1H)		0	
3.13 (sept., J	= 6.8 Hz, 1H)	3.1	3 (hept., $J = 6.8$ Hz, 1H)		0	
2.41 - 2.5	56 (m, 2H)		2.42 - 2.58 (m, 2H)		/	
1.20 - 2.1	5 (m, 7H)	2.	15 (d, <i>J</i> = 12.4 Hz, 1H)		/	
			1.68 - 1.79 (m, 2H)			
			1.58 - 1.62 (m, 1H)			
			1.38 - 1.47 (m, 2H)			
		1.22	(td, J = 13.2, 3.2 Hz, 1H)			
1.15 (d, J=	6.8 Hz, 3H)		1.12 - 1.16 (m, 9H)		/	
1.13	(s,3H)					
1.11 (d, <i>J</i> =	6.8 Hz, 3H)					
0.92	(s, 3H)		0.94 (s, 3H),		-0.02	
0.86	0.86 (s, 3H)		0.88 (s, 3H)			
		¹³ C NMR (in 1	DMSO-d ₆ , 125 MHz)			
Natural product	Current work	Δδ	Natural product	Current work	Δδ	
196.40	196.54	-0.14	37.41	37.47	-0.06	

160.05	160.10	-0.05	35.46	35.52	-0.06
155.75	155.85	-0.10	32.81	32.88	-0.07
132.44	132.51	-0.07	32.24	32.30	-0.06
124.94	125.00	-0.06	26.02	26.06	-0.04
122.53	122.57	-0.04	22.98	23.04	-0.06
109.26	109.33	-0.07	22.32	22.38	-0.06
49.04	49.09	-0.05	22.15	22.21	-0.06
40.80	40.84	-0.04	21.08	21.14	-0.06
39.92	40.07	-0.15	18.43	18.48	-0.05

¹H NMR (in CDCl₃, 400 MHz)

Natural product ⁶	Current work	Δδ
6.83 (s, 1H)	6.83 (s, 1H)	0
6.63 (s, 1H)	6.63 (s, 1H)	0
4.42 (s, 1H)	4.46 (s, 1H)	-0.04
3.11 (hept., <i>J</i> = 6.9 Hz, 1H)	3.11 (hept., <i>J</i> = 6.8 Hz, 1H)	0
2.91 - 2.82(m,1H)	2.83 - 2.89 (m, 1H)	/
2.81 - 2.72 (m, 1H)	2.73 - 2.81 (m, 1H)	/
2.17 (dtd, <i>J</i> = 12.6, 3.3, 1.3 Hz, 1H)	2.17 (d, <i>J</i> = 12.8 Hz, 1H),	0
1.86 (ddt, <i>J</i> = 12.7, 7.3, 1.8 Hz, 1H)	1.86 (ddt, <i>J</i> = 13.4, 7.4, 2.4 Hz, 1H)	0
1.78 - 1.70 (m, 1H)	1.71 - 1.80 (m, 1H)	/
1.69 - 1.62 (m, 1H)	1.63 - 1.69 (m, 1H)	/
1.62 - 1.55 (m, 1H)	1.57 - 1.62 (m, 1H)	/
1.47 (dtd, <i>J</i> = 13.2, 3.2, 1.6 Hz, 1H)	1.45 - 1.49 (m, 1H)	0
1.38 (td, <i>J</i> = 13.0, 3.6 Hz, 1H)	1.38 (td, <i>J</i> = 13.2, 4.0 Hz, 1H)	0
1.32 (dd, <i>J</i> = 12.4, 2.3 Hz, 1H)	1.32 (dd, <i>J</i> = 12.4, 2.4 Hz, 1H)	0

1.24 (d, <i>J</i> = 6.9 Hz, 3H)	1.24 (t, <i>J</i> = 6.6 Hz, 6H)	0
1.23 (d, <i>J</i> = 6.9 Hz, 3H)		
1.23 - 1.19 (m, 1H)	1.20 - 1.21 (m, 1H),	/
1.17 (s, 3H)	1.17 (s, 3H)	0
0.94 (s, 3H)	0.94 (s, 3H)	0
0.92 (s, 3H)	0.92 (s, 3H)	0

¹³C NMR (in CDCl₃, 100 MHz)

Natural product	Current work	Δδ	Natural product	Current work	Δδ
150.78	150.64	+0.14	33.59	33.44	+0.15
148.83	148.67	+0.16	33.47	33.30	+0.17
131.48	131.36	+0.12	29.91	29.75	+0.16
127.47	127.31	+0.16	26.97	26.82	+0.15
126.77	126.62	+0.15	24.95	24.78	+0.17
111.11	110.97	+0.14	22.89	22.73	+0.16
50.50	50.35	+0.15	22.71	22.55	+0.16
41.84	41.69	+0.15	21.78	21.62	+0.16
39.02	38.87	+0.15	19.47	19.32	+0.15
37.66	37.50	+0.16	19.38	19.23	+0.15

¹ H NMR (in CDCl ₃ , 400 MHz)		
Natural product ⁷	Current work	Δδ
6.94 (s, 1H)	6.94 (s, 1H)	0
6.82 (s, 1H)	6.83 (s, 1H)	-0.01
2.95 - 2.76 (m, 3H)	2.78 - 2.94 (m, 3H)	/
2.30 (s, 3H)	2.30 (s, 3H)	0
2.19 - 2.13 (m, 1H),	2.16 (d, <i>J</i> = 12.4 Hz, 1H)	/

1.91 - 1.83 (m, 1H)	1.85 - 1.90 (m, 1H)	/
1.78 - 1.64 (m, 2H)	1.65 - 1.78 (m, 2H)	/
1.61 - 1.54 (m, 2H)	1.54 - 1.60 (m, 2H)	/
1.49 - 1.36 (m, 2H),	1.37 - 1.48 (m, 2H)	/
1.33 (dd, <i>J</i> = 12.4, 2.3 Hz, 1H)	1.33 (d, <i>J</i> = 12.4 Hz, 1H)	0
1.18 (m, 9H)	1.16 - 1.20 (m, 9H)	/
0.93 (d, <i>J</i> = 5.3 Hz, 3H)	0.94 (s, 3H)	-0.01
0.92 (s, 3H).	0.92 (s, 3H)	0

(±)-2,3-Dihydroxy-15,16-dinor-ent-pimar-8,11,13-triene

¹ H NMR (in CDCl ₃ , 400 MHz)			
Natural product ⁸	Current work	Δδ	
7.15 (d, <i>J</i> = 8.0 Hz, 1H)	7.15 (d, <i>J</i> = 8.0 Hz, 1H),	0	
6.94 (dd, <i>J</i> = 8.0, 1.3 Hz, 1H)	6.95 (d, <i>J</i> = 8.0 Hz, 1H)	-0.01	
6.87 (s, 1H)	6.87 (s, 1H)	0	
4.18 (ddd, <i>J</i> = 12.2, 4.4, 2.9 Hz, 1H)	4.18 (d, <i>J</i> = 11.6 Hz, 1H)	0	
3.52 (d, <i>J</i> = 2.9 Hz, 1H)	3.52 (d, <i>J</i> = 2.4 Hz, 1H)	0	
2.90 (m, 1H)	2.81 - 2.94 (m, 2H)	/	
2.85 (m, 1H)			
2.28 (m, 1H)	2.27 - 2.30 (m, 1H)	/	
2.26 (s, 3H)	2.27 (s, 3H)	0	
not provided	1.95 - 2.05 (m, 2H)	/	
1.81 (m, 1H)	1.72 - 1.81 (m, 4H)	/	
1.79 (m, 1H)			
1.74 (m, 1H)			
1.73 (m, 1H)			
1.21 (s, 3H)	1.21 (s, 3H)	0	

	1.09 (s, 3H)		1.09 (s	s, 3H)	0
	0.97 (s, 3H)		0.97 (s	s, 3H)	0
		¹³ C NMR (in	CDCl ₃ , 125 MHz)		
Natural product	Current work	Δδ	Natural product	Current work	Δδ
146.4	146.1	+0.3	40.4	40.2	+0.2
135.1	134.9	+0.2	38.7	38.5	+0.2
134.8	134.6	+0.2	38.5	38.3	+0.2
129.8	129.6	+0.2	30.2	30.0	+0.2
126.8	126.6	+0.2	28.5	28.3	+0.2
124.2	124.0	+0.2	25.8	25.6	+0.2
79.0	78.8	+0.2	21.8	21.6	+0.2
67.2	67.0	+0.2	21.0	20.8	+0.2
43.1	42.9	+0.2	18.6	18.4	+0.2

6. Experimental details for the synthesis of compounds (1a-1t)

General procedure A (using 1a as an example, the syntheses of 1a-1q follows the same procedure):

Ethyl (E)-2-methyl-5-phenylpent-2-enoate (S1)9

A mixture of 3-phenylpropanal (5.0 mL, 37.6 mmol, 1.0 equiv), ethyl 2-(triphenylphosphoranylidene) propionate (15.0 g, 41.4 mmol, 1.1 equiv) in dry toluene (150 mL) was stirred under argon at room temperature for 5 h. Then the reaction mixture was quenched by H₂O (50 mL). Then the organic layer was separated and the aqueous layer was extracted with EtOAc (3×100 mL). The combined organic layer was washed with brine (200 mL), dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel (PE/EA = 15/1) to give compound **S1** as a colorless oil (8.1 g, 36.9 mmol, 98% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.27 - 7.30 (m, 2H), 7.18 - 7.21 (m, 3H), 6.81 (td, *J* = 7.2, 1.2 Hz, 1H), 4.18 (q, *J* = 7.2 Hz, 2H), 2.74 (t, *J* = 7.8 Hz, 2H), 2.45 - 2.51 (m, 2H), 1.78 (s, 3H), 1.28 (t, *J* = 7.0 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ

168.0, 141.2, 140.8, 128.4, 128.3, 128.2, 126.0, 60.4, 34.6, 30.5, 14.2, 12.3; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₄H₁₈O₂Na 241.1199; Found 281.1202; **IR** (KBr, cm⁻¹): *v* 3063, 2928, 1709, 1649, 1454, 1266, 1117, 741, 699.

С С ОН S2

(E)-2-Methyl -5-phenylpent-2-en-1-ol (S2)

To a stirred solution of **S1** (8.1 g, 36.9 mmol, 1.0 equiv) in toluene (50 mL), DIBAL-H (1.5 M in toluene, 49.2 mL, 73.8 mmol, 2.0 equiv) was added slowly at 0 °C. After the reaction mixture was stirred at 0 °C for 10 min, it was quenched with HCl (1M, 20 mL) aqueous solution. The organic layer was separated and the aqueous layer was extracted with EtOAc (3×100 mL). The combined organic layer was washed with brine (100 mL), dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel (PE/EA = 4/1) to give compound **S2** as a colorless oil (5.9 g, 33.2 mmol, 90% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.22 - 7.26 (m, 2H), 7.12 - 7.16 (m, 3H), 5.42 (t, *J* = 6.8 Hz, 1H), 3.90 (s, 2H), 2.91 (br s, 1H), 2.64 (t, *J* = 7.2 Hz, 2H), 2.30 - 2.36 (m, 2H), 1.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.8, 135.2, 128.2, 128.0, 125.6, 124.6, 68.1, 35.5, 29.3, 13.4; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₂H₁₆ONa 199.1093; Found 199.1095; **IR** (KBr, cm⁻¹): *v* 3343, 3026, 2922, 1603, 1453, 1220, 1004, 747, 699.

B **S**3

(E)-(5-Bromo-4-methylpent-3-en-1-yl) benzene (S3)

To a stirred solution of **S2** (5.9 g, 33.2 mmol, 1.0 equiv) and PPh₃ (10.4 g, 39.8 mmol, 1.2 equiv) in DCM (80 mL), CBr₄ (11.0 g, 33.2 mmol, 1.0 equiv) was added slowly at 0 °C. After the reaction mixture was stirred at 0 °C for 10 min, it was concentrated under vacuum. The residue was purified by column chromatography on silica gel (PE/EA = 50/1) to give compound **S3** as a colorless oil (7.1 g, 29.9 mmol, 90% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.24 - 7.26 (m, 2H), 7.14 - 7.16 (m, 3H), 5.60 (t, *J* = 7.0 Hz, 1H), 3.92 (s, 2H), 2.64 (t, *J* = 7.8 Hz, 2H), 2.29 - 2.34 (m, 2H), 1.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.4, 132.6, 130.2, 128.3, 128.2, 125.8, 41.5, 35.1, 30.0, 14.5; **HRMS** (ESI) m/z: [M+Na] ⁺ Calcd for C₁₂H₁₅⁷⁹BrNa 261.0249; Found 261.0740; **IR** (KBr, cm⁻¹): *v* 3026, 2922, 1743, 1496, 1453, 749, 699.

S4

(E)-2,6-Dimethyl-9-phenylnon-6-en-3-yn-2-yl acetate (S4)

A mixture of **S3** (7.1 g, 29.9 mmol, 0.6 equiv), 2-methylbut-3-yn-2-yl acetate (6.3 mL, 49.8 mmol, 1.0 equiv), sodium sulfite (3.1 g, 24.9 mmol, 0.5 equiv), copper(I) iodide (1.9 g, 10.0 mmol, 0.2 equiv), potassium carbonate (6.9 g, 49.8 mmol, 1.0 equiv), and DBU (100 μ L) was stirred in DMF (60 mL) under argon at room temperature for 2 h, then it was quenched with saturated NH₄Cl (sat. aq., 20 mL). The organic layer was separated and the aqueous layer was extracted with Et₂O (3 × 50 mL). The combined organic layer was washed with brine (6 × 50 mL), dried over Na₂SO₄ and concentrated under vacuum. The residue was purified through a silica gel column (PE/EA = 50/1) to give compound **S4** as a colorless oil (5.1 g, 17.9 mmol, 60% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.17 - 7.22 (m, 2H), 7.08 - 7.13 (m, 3H), 5.38 (t, *J* = 7.0 Hz, 1H), 2.81 (s, 2H), 2.59 (t, *J* = 7.8 Hz, 2H), 2.23 - 2.29 (m, 2H), 1.94 (s, 3H), 1.57 (s, 6H), 1.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 142.1, 130.5, 128.4, 128.2, 125.7, 124.8, 83.8, 81.9, 72.4, 35.8, 29.9, 29.2, 28.6, 22.1, 16.0; **HRMS** (ESI) m/z: [M+Na] + Calcd

for C₁₉H₂₄O₂Na 307.1669; Found 307.1671; **IR** (KBr, cm⁻¹): *v* 3063, 2925, 2861, 2245, 1745, 1454, 1243, 1134, 1016, 700.

(*E*)-(4,6,8-Trimethylnona-3,6,7-trien-1-yl) benzene (1a)¹⁰

To a stirred solution of lithium bromide (851 mg, 9.8 mmol, 2.0 equiv) and copper(I) iodide (1.9 g, 9.8 mmol, 2.0 equiv) was stirred in THF (60 mL), methylmagnesium chloride (3.0 M in THF, 3.3 mL, 9.8 mmol, 2.0 equiv) was added slowly at 0 °C under argon. The mixture was stirred for 0.5 h, then **S4** (1.4 g, 4.9 mmol, 1.0 equiv) was added and stirred 1 h at 40 °C. The reaction mixture was quenched by saturated NH₄Cl (sat. aq., 20 mL) at 0 °C. The organic layer was separated and the aqueous layer was extracted with Et₂O (3 \times 20 mL). The combined organic layer was washed with brine (100 mL), dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel (PE) to give compound **1a** as a colorless oil (942 mg, 3.9 mmol, 80% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.30 - 7.33 (m, 2H), 7.20 - 7.24 (m, 3H), 5.27 (t, *J* = 7.0 Hz, 1H), 2.69 (t, *J* = 8.0 Hz, 2H), 2.62 (s, 2H), 2.34 - 2.40 (m, 2H), 1.69 (s, 6H), 1.59 (s, 3H), 1.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 142.3, 133.8, 128.4, 128.2, 125.7, 125.2, 94.8, 92.7, 45.9, 36.1, 30.0, 20.9, 18.3, 15.4. **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₁₈H₂₅ 241.1951; Found 241.1955; **IR** (KBr, cm⁻¹): *v* 3027, 2977, 1940, 1604, 1453, 746, 698.

(E)-(7-Cyclopentylidene-4,6-dimethylhepta-3,6-dien-1-yl) benzene (1b)

1b was prepared according to general procedure A and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil (340 mg, 61% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.26 - 7.30 (m, 2H), 7.16 - 7.21 (m, 3H), 5.24 (t, *J* = 7.0 Hz, 1H), 2.65 (t, *J* = 7.8 Hz, 2H), 2.59 (s, 2H), 2.24 - 2.36 (m, 6H), 1.63 - 1.66 (m, 4H), 1.52 - 1.56 (m, 6H) ; ¹³C NMR (100 MHz, CDCl₃) δ 195.5, 142.4, 133.8, 128.4, 128.2, 125.7, 125.2, 101.7, 97.6, 46.0, 36.1, 31.0, 30.1, 27.0, 18.6, 15.5; HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₀H₂₇ 267.2108; Found 267.2113; **IR** (KBr, cm⁻¹): *v* 3026, 2953, 2864, 1604, 1453, 749, 698.

(E)-(7-Cyclohexylidene-4,6-dimethylhepta-3,6-dien-1-yl) benzene (1c)

1c was prepared according to general procedure A and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil (493 mg, 60% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.26 - 7.30 (m, 2H), 7.17 - 7.21 (m, 3H), 5.24 (t, *J* = 7.2 Hz, 1H), 2.66 (t, *J* = 7.8 Hz, 2H), 2.59 (s, 2H), 2.31 - 2.36 (m, 2H), 2.01 - 2.10 (m, 4H), 1.47 - 1.63 (m, 12H); ¹³**C NMR** (100 MHz, CDCl₃) δ 196.5, 142.4,

133.9, 128.4, 128.2, 125.6, 125.1, 100.6, 94.7, 46.1, 36.1, 32.0, 30.1, 27.8, 26.3, 18.8, 15.5; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₂₁H₂₉ 281.2264; Found 281.2272; **IR** (KBr, cm⁻¹): *v* 3026, 2924, 1958, 1445, 749, 698.

(E)-(7-Cyclohexylidene-4,6-dimethylhepta-3,6-dien-1-yl)benzene (1d)

1d was prepared according to general procedure A and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil (355 mg, 60% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.24 - 7.30 (m, 6H), 7.14 - 7.19 (m, 4H), 6.02 (sextet., J = 2.8 Hz, 1H), 5.30 (t, J = 7.2 Hz, 1H), 2.75 (s, 2H), 2.64 (t, J = 7.8 Hz, 2H), 2.31 - 2.37 (m, 2H), 1.69 (d, J = 3.2 Hz, 3H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.5, 142.2, 135.8, 132.8, 128.5, 128.4, 128.2, 126.6, 126.4, 126.2, 125.7, 101.5, 92.9, 45.2, 36.0, 30.0, 17.8, 15.7; HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₂H₂₅ 289.1951; Found 289.1958; **IR** (KBr, cm⁻¹): v 3027, 2918, 1951, 1599, 1453, 749, 694.

(E)-1-(2,6-Dimethyl-9-phenylnona-2,3,6-trien-4-yl)-2-methylbenzene (1e)

1e was prepared according to general procedure A and purified by silica gel column chromatography (PE/EA = 100/1) as a colorless oil (109 mg, 98% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.25 - 7.29 (m, 2H), 7.11 - 7.21 (m, 7H), 5.21 (t, *J* = 7.0 Hz, 1H), 2.98 (s, 2H), 2.58 (t, *J* = 7.8 Hz, 2H), 2.35 (d, *J* = 1.6 Hz, 3H), 2.27 - 2.33 (m, 2H), 1.73 (d, *J* = 2.0 Hz, 6H), 1.65 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 202.1, 142.3, 138.6, 135.8, 133.4, 130.3, 128.4, 128.2, 128.1, 126.3, 125.8, 125.6, 125.5, 100.1, 94.6, 45.1, 36.0, 30.0, 20.7, 20.4, 15.9; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₂₄H₂₉ 317.2264; Found 317.2271; **IR** (KBr, cm⁻¹): *v* 3025, 2976, 2927, 1959, 1602, 1453, 755, 727, 699.

(E)-1-(2,6-Dimethyl-9-phenylnona-2,3,6-trien-4-yl)-4-methylbenzene (1f)

1f was prepared according to general procedure A and purified by silica gel column chromatography (PE/EA = 100/1) as a colorless oil (109 mg, 98% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.29 - 7.33 (m, 4H), 7.20 - 7.24 (m, 3H), 7.14 - 7.16 (m, 2H), 5.14 (t, *J* = 7.2 Hz, 1H), 3.13 (s, 2H), 2.68 (t, *J* = 7.6 Hz, 2H), 2.35 - 2.41 (m, 5H), 1.84 (s, 3H), 1.83 (s, 3H), 1.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.7, 142.3, 135.6, 135.3, 133.7, 128.8, 128.4, 128.2, 126.1, 125.6, 125.4, 101.1, 97.1, 41.4, 36.0, 30.1, 21.0, 20.3, 16.0; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₂₄H₂₉ 317.2264; Found 317.2274; **IR** (KBr, cm⁻¹): *v* 3026, 2974,

(E)-1-Bromo-4-(4,6,8-trimethylnona-3,6,7-trien-1-yl)benzene (1g)

1g was prepared according to general procedure A and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil (600 mg, 40% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 8.4 Hz, 2H), 5.19 (t, *J* = 7.0 Hz, 1H), 2.61 (t, *J* = 7.6 Hz, 2H), 2.57 (s, 2H), 2.27 - 2.33 (m, 2H), 1.65 (s, 6H), 1.53 (s, 3H), 1.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 141.2, 134.2, 131.2, 130.2, 124.7, 119.4, 94.7, 92.8, 45.8, 35.4, 29.8, 20.9, 18.4, 15.5; HRMS (EI) m/z: [M-CH₃]⁻ Calcd for C₁₇H₂₀⁷⁹Br 303.0754; Found 303.0742; **IR** (KBr, cm⁻¹): *v* 2925, 2856, 1959, 1433, 814, 750.

(E)-1-Methyl-2-(4,6,8-trimethylnona-3,6,7-trien-1-yl)benzene (1h)

1h was prepared according to general procedure A and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil (985 mg, 41% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.10 - 7.19 (m, 4H), 5.30 (t, *J* = 7.0 Hz, 1H), 2.66 (t, *J* = 8.0 Hz, 2H), 2.61 (s, 2H), 2.35 (s, 3H), 2.28 - 2.32 (m, 2H), 1.68 - 1.68 (m, 6H), 1.58 - 1.59 (m, 6H); ¹³**C** NMR (100 MHz, CDCl₃) δ 200.1, 140.5, 135.8, 133.7, 130.1, 128.8, 125.9, 125.8, 125.4, 94.8, 92.8, 45.8, 33.4, 28.8, 20.9, 19.3, 18.4, 15.4; HRMS (APCI) m/z: [M+H]+ Calcd for C₁₉H₂₇ 255.2108; Found 255.2108; **IR** (KBr, cm⁻¹): *v* 3016, 2976, 2864, 1605, 1443, 741.

(E)-1-Methyl-4-(4,6,8-trimethylnona-3,6,7-trien-1-yl)benzene (1i)

1i was prepared according to general procedure A and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil (845 mg, 41% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.10 (s, 4H), 5.25 (t, *J* = 7.2 Hz, 1H), 2.63 (t, *J* = 7.8 Hz, 2H), 2.59 (s, 2H), 2.29 - 2.35 (m, 5H), 1.67 (s, 3H), 1.67 (s, 3H), 1.57 (s, 3H), 1.55 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 200.0, 139.3, 135.0, 133.6, 128.9, 128.3, 125.3, 94.8, 92.7, 45.9, 35.7, 30.2, 21.0, 20.9, 18.4, 15.4; HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₉H₂₇ 255.2108; Found 255.2106; **IR** (KBr, cm⁻¹): *v* 3047, 2977, 2857, 1515, 1443, 807.

(E)-1-Methoxy-3-(4,6,8-trimethylnona-3,6,7-trien-1-yl)benzene (1j)

1j was prepared according to general procedure A and purified by silica gel column chromatography (PE/EA = 20/1) as a colorless oil (1.1 g, 45% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.20 (t, *J* = 7.8 Hz, 1H), 6.81 (d, *J* = 7.6 Hz, 1H), 6.73 - 6.76 (m, 2H), 5.24 (t, *J* = 6.8 Hz, 1H), 3.81 (s, 3H), 2.64 (t, *J* = 7.8 Hz, 2H), 2.59 (s, 2H), 2.31 - 2.37 (m, 2H), 1.66 (s, 6H), 1.57 (s, 3H), 1.54 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 200.1, 159.6, 144.0, 133.8, 129.2, 125.2, 120.9, 114.2, 111.0, 94.8, 92.8, 55.1, 45.8, 36.1, 29.9, 20.9, 18.3, 15.4; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₁₉H₂₇O 271.2057; Found 271.2061; **IR** (KBr, cm⁻¹): ν 2976, 2930, 2857, 1970, 1601, 1453, 1261, 1053, 779, 695.

1k was prepared according to general procedure A and purified by silica gel column chromatography (PE/EA = 20/1) as a colorless oil (725 mg, 44% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.10 - 7.13 (m, 2H), 6.81 - 6.85 (m, 2H), 5.22 (t, *J* = 7.0 Hz, 1H), 3.79 (s, 3H), 2.57 - 2.62 (m, 4H), 2.27 - 2.33 (m, 2H), 1.65 (s, 6H), 1.55 (s, 3H), 1.53 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 200.0, 157.7, 134.5, 133.7, 129.3, 125.3, 113.6, 94.8, 92.7, 55.2, 45.9, 35.2, 30.3, 20.9, 18.4, 15.4; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₁₉H₂₇O 271.2057; Found 271.2061; **IR** (KBr, cm⁻¹): *v* 2976, 2930, 2857, 1612, 1442, 1246, 1040, 824.

(E)-1-(tert-Butyl)-4-(4,6,8-trimethylnona-3,6,7-trien-1-yl)benzene (11)

11 was prepared according to general procedure A and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil (630 mg, 43% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 8.4 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 5.26 (t, *J* = 7.0 Hz, 1H), 2.64 (t, *J* = 8.0 Hz, 2H), 2.59 (s, 2H), 2.31 - 2.37 (m, 2H), 1.66 (s, 6H), 1.57 (s, 3H), 1.54 (s, 3H), 1.33 (s, 9H); ¹³**C** NMR (100 MHz, CDCl₃) δ 200.0, 148.4, 139.3, 133.6, 128.0, 125.4, 125.1, 94.8, 92.8, 45.8, 35.5, 34.3, 31.4, 30.0, 20.9, 18.4, 15.4; HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₂H₃₃ 297.2577; Found 297.2560; **IR** (KBr, cm⁻¹): *v* 2906, 2868, 1608, 1513, 1445, 825, 750.

(E)-3-(4,6,8-Trimethylnona-3,6,7-trien-1-yl)-1,1'-biphenyl (1m)

1m was prepared according to general procedure A and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil (715 mg, 48% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.60 - 7.63 (m, 2H), 7.42 - 7.47 (m, 4H), 7.34 - 7.39 (m, 2H), 7.20 - 7.22 (m, 1H), 5.28 (t, *J* = 7.0 Hz, 1H), 2.74 (t, *J* = 7.8 Hz, 2H), 2.60 (s, 2H), 2.38 - 2.43 (m, 2H), 1.67 (s, 6H), 1.58 (s, 3H), 1.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 142.8, 141.4, 141.2, 133.9, 128.7 (three signals overlap), 127.4 (two signals overlap), 127.2, 127.1, 125.1, 124.6, 94.7, 92.7, 45.9, 36.2, 30.1, 20.9, 18.3, 15.5; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₂₄H₂₉ 317.2264; Found 317.2275; **IR** (KBr, cm⁻¹): *v* 3031, 2976, 2927, 1959, 1599, 1442, 797, 700.

(E)-4-(4,6,8-Trimethylnona-3,6,7-trien-1-yl)-1,1'-biphenyl (1n)

1n was prepared according to general procedure A and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil (636 mg, 48% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.60 - 7.62 (m, 2H), 7.52 - 7.54 (m, 2H), 7.43 - 7.46 (m, 2H), 7.28 - 7.36 (m, 3H), 5.28 (t, *J* = 7.0 Hz, 1H), 2.72 (t, *J* = 7.8 Hz, 2H), 2.61 (s, 2H), 2.36 - 2.42 (m, 2H), 1.67 (s, 6H), 1.59 (s, 3H), 1.56 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 200.0, 141.5, 141.2, 138.6, 133.9, 128.8, 128.7, 127.0 (five signals overlap), 125.1, 94.7, 92.8, 45.9, 35.7, 30.0, 20.9, 18.4, 15.5; HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₄H₂₉ 317.2264; Found 371.2270; **IR** (KBr, cm⁻¹): *v* 3027, 2975, 2926, 1601, 1486, 1442, 761, 697.

(E)-tert-Butyldimethyl(4-(4,6,8-trimethylnona-3,6,7-trien-1-yl)phenoxy)silane (10)

10 was prepared according to general procedure A and purified by silica gel column chromatography (PE/EA = 100/1) as a colorless oil (897 mg, 40% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.04 (d, *J* = 8.4 Hz, 2H), 6.75 (d, *J* = 8.8 Hz, 2H), 5.22 (t, *J* = 7.2 Hz, 1H), 2.57 - 2.60 (m, 4H), 2.26 - 2.32 (m, 2H), 1.65 (s, 6H), 1.53 (s, 6H), 0.99 (s, 9H), 0.19 (s, 6H); ¹³**C** NMR (100 MHz, CDCl₃) δ 200.1, 153.5, 135.1, 133.6, 129.2, 125.3, 119.7, 94.8, 92.7, 45.9, 35.2, 30.2, 25.7, 20.9, 18.3, 18.2, 15.4, -4.4; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₂₄H₃₉OSi 371.2765; Found 371.2776; **IR** (KBr, cm⁻¹): *v* 3028, 2957, 2929, 1609, 1443, 1254, 1101, 917, 839, 780.

(E)-2-(4,6,8-Trimethylnona-3,6,7-trien-1-yl)naphthalene (1p)

1p was prepared according to general procedure A and purified by silica gel column chromatography (PE/EA = 200/1) as a colorless oil (391 mg, 40% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.78 - 7.83 (m, 3H), 7.65 (s, 1H), 7.37 - 7.48 (m, 3H), 5.30 (t, *J* = 6.6 Hz, 1H), 2.84 (t, *J* = 7.6 Hz, 2H), 2.61 (s, 2H), 2.42 - 2.48 (m, 2H), 1.67 (s, 6H), 1.59 (s, 3H), 1.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 139.9, 133.9, 133.6, 132.0, 127.7, 127.6, 127.4 (two signals overlap), 126.4, 125.8, 125.2, 125.0, 94.8, 92.8, 45.9, 36.3, 29.9, 20.9, 18.4, 15.5; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₂₂H₂₇ 291.2108; Found 291.2113; **IR** (KBr, cm⁻¹): *v* 3052, 2976, 2855, 1601, 1442, 852, 815, 743.

1q was prepared according to general procedure A and purified by silica gel column chromatography (PE/EA = 20/1) as a colorless oil (448 mg, 40% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 2.0 Hz, 1H), 7.08 (dd, J = 8.4, 2.0 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 5.19 (t, J = 7.2 Hz, 1H), 3.87 (s, 3H), 2.55 - 2.59 (m, 4H), 2.26 - 2.32 (m, 2H), 1.65 (s, 6H), 1.54 (s, 3H), 1.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 153.9, 136.1, 134.1, 133.2, 128.3, 124.7, 111.8, 111.3, 94.7, 92.8, 56.3, 45.8, 34.8, 30.0, 20.9, 18.3, 15.5; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₁₉H₂₆⁷⁹BrO 349.1162; Found 349.1174; **IR** (KBr, cm⁻¹): ν 2974, 2929, 2856, 1603, 1441, 1256, 1057, 808, 673.

General procedure B (using 1r as an example, the syntheses of 1s-1t follows the same procedure):

A mixture of **S3** (2.0 g, 8.4 mmol, 0.6 equiv), 3-Methyl butynol (1.4 mL, 13.9 mmol, 1.0 equiv), sodium sulfite (882 mg, 7.0 mmol, 0.5 equiv), copper(I) iodide (530 mg, 2.8 mmol, 0.2 equiv), potassium carbonate (1.9 g, 13.9 mmol, 1.0 equiv), and DBU (50 μ L) was stirred in DMF (30 mL) under argon at room temperature for 2 h, and then quenched by NH₄Cl (sat. aq., 20 mL). The organic layer was separated and the aqueous layer was extracted with Et₂O (3 × 50 mL). The combined organic layer was washed with brine (6 × 50 mL), dried over Na₂SO₄ and concentrated under vacuum. The

residue was purified through a silica gel column (PE/EA = 5/1) to give compound **S5** as a colorless oil (1.2 g, 5.0mmol, 60% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.27 - 7.31 (m, 2H), 7.17 - 7.21 (m, 3H), 5.45 (t, *J* = 7.0 Hz, 1H), 2.87 (s, 2H), 2.67 (t, *J* = 7.8 Hz, 2H), 2.32 - 2.38 (m, 2H), 1.94 (br s, 1H), 1.62 (s, 3H), 1.51 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 130.6, 128.5, 128.2, 125.7, 124.8, 87.3, 79.9, 65.3, 35.8, 31.6, 29.8, 28.5, 16.0; HRMS (APCI) m/z: [M-H]⁻ Calcd for C₁₇H₂₁O 241.1598; Found 241.1580; **IR** (KBr, cm⁻¹): *v* 3348, 3027, 2931, 2235, 1603, 1454, 1242, 1030, 948, 750, 700.

(E)-(4,8-Dimethylnona-3,6,7-trien-1-yl)benzene (1r)¹¹

A mixture of zinc chloride (1.0 M in THF, 4.1 mL, 4.1 mmol, 2.0 equiv), diethylzinc (1.0 M in toluene, 4.1 mg, 4.1 mmol, 2.0 equiv) was stirred under argon at room temperature for 0.5 h, and then 2 mL toluene was added. A solution of **S5** (500 mg, 2.1 mmol, 1.0 equiv) in 20 mL toluene was added into the alkyl zinc solution at 0 °C. The mixture was stirred for 20 min before the addition of Schwartz reagent (2.1 g, 8.3 mmol, 4.0 equiv) in one portion under nitrogen atmosphere. The reaction was stirred vigorously for 12 to 24 h and quenched by NaHCO₃ (sat. aq., 20 mL). The aqueous phase was extracted by ether (3×50 mL). The combined organic layer was washed with brine (100 mL), dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel (PE) to give compound **1r** as a colorless oil (327 mg, 1.4 mmol, 70% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.27 - 7.30 (m, 2H), 7.17 - 7.21 (m, 3H), 5.26 (t, *J* = 7.2 Hz, 1H), 4.84 - 4.91 (m, 1H), 2.60 - 2.67 (m, 4H), 2.29 - 2.35 (m, 2H), 1.69 (s, 3H), 1.69 (s, 3H), 1.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.4, 142.3, 134.8, 128.5, 128.2, 125.7, 124.2, 94.6, 87.2, 40.1, 36.1, 30.0, 29.7, 20.7, 15.8; **HRMS** (APCI) m/z: [M+H]⁺ Calcd for C₁₇H₂₃ 227.1795; Found 227.1790; **IR** (KBr, cm⁻¹): *v* 3027, 2978, 2933, 1968, 1604, 1454, 750.

1s was prepared according to general procedure B and purified by silica gel column chromatography (PE/EA = 20/1) as a colorless oil (1.8 g, 33% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.02 (d, J = 2.4 Hz, 1H), 6.97 (dd, J = 8.2, 2.2 Hz, 1H), 6.76 (d, J = 8.4 Hz, 1H), 5.25 (t, J = 7.2 Hz, 1H), 4.84 - 4.90 (m, 1H), 3.80 (s, 3H), 3.29 (hept, J = 7.2 Hz, 1H), 2.56 - 2.61 (m, 4H), 2.26 - 2.31 (m, 2H), 1.68 (s, 3H), 1.68 (s, 3H), 1.57 (s, 3H), 1.20 (d, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 202.4, 154.9, 136.7, 134.6, 134.3, 126.2, 126.1, 124.5, 110.3, 94.5, 87.3, 55.5, 40.1, 35.4, 30.3, 26.7, 22.8, 20.7, 15.9; HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₁H₃₁O 299.2370; Found 299.2378; **IR** (KBr, cm⁻¹): v 2960, 2932, 2868, 1608, 1498, 1362, 1247, 1035, 810.

(E)-1-(4,8-Dimethylnona-3,6,7-trien-1-yl)-3-methylbenzene (1t)

It was prepared according to general procedure B and purified by silica gel column chromatography (PE/EA = 200/1) as

a colorless oil (1.1 g, 35% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.17 (t, J = 7.4 Hz, 1H), 7.00 - 7.02 (m, 3H), 5.27 (t, J = 7.2 Hz, 1H), 4.85 - 4.92 (m, 1H), 2.60 - 2.63 (m, 4H), 2.28 - 2.34 (m, 6H), 1.69 - 1.74 (m, 7H), 1.57 - 1.59 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.4, 142.3, 137.7, 134.8, 129.3, 128.1, 126.4, 125.4, 124.3, 94.5, 87.3, 40.1, 36.0, 30.1, 21.4, 20.7, 15.8; HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₈H₂₅ 241.1951; Found 241.1955; **IR** (KBr, cm⁻¹): ν 2961, 2924, 2855, 1609, 1447, 800.

7. Experimental details for the synthesis of 1u and 2u

Ethyl (Z)-2-methyl-5-phenylpent-2-enoate (S6)

A solution of $(CF_3CH_2O)_2POCHMeCO_2Et^{12}$ (3.0 g, 8.67 mmol, 1.05 equiv) and 18-crown-6 (2.5 g, 9.49 mmol, 1.15 equiv) in dry THF (40 mL) was cooled to -78 °C, and KHMDS (1.0 M solution in THF, 8.7 mL, 8.67 mmol, 1.05 equiv) was added, followed by 3-phenylpropanal (1.1 g, 8.26 mmol, 1.0 equiv). After stirring at -78 °C for 30 min, the reaction mixture was poured into a rapidly stirring NH₄Cl (sat. aq., 20 mL), After stirring vigorously for 15 min, the organic layer was separated and the aqueous layer was extracted with EtOAc (3 × 50 mL), then brine (100 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel (PE/EA = 20/1) to give compound **S6** as a yellow oil (1.3 g, 5.78 mmol, 70% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.27 - 7.30 (m, 2H), 7.17 - 7.21 (m, 3H), 5.96 (td, *J* = 7.2, 1.2 Hz, 1H), 4.19 (q, *J* = 7.2 Hz, 2H), 2.70 - 2.82 (m, 4H), 1.89 (d, *J* = 1.6 Hz, 3H), 1.30 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 141.5, 128.4, 128.3, 127.8, 125.9, 60.1, 35.5, 31.1, 20.6, 14.3; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₄H₁₈NaO₂ 241.1199; Found 241.1200.

(Z)-(5-Bromo-4-methylpent-3-en-1-yl)benzene (S7)

To a stirred solution of **S6** (1.3 g, 5.78 mmol, 1.0 equiv) in dry DCM (20 mL), DIBAL-H (1.5 M in toluene, 7.7 mL, 11.56 mmol, 2.0 equiv) was added slowly at 0 °C. After the reaction mixture was stirred at 0 °C for 10 min, it was quenched with HCl (1M, 5 mL) aqueous solution. The organic layer was separated and the aqueous layer was extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine (100 mL), dried over Na₂SO₄ and concentrated under vacuum. To a stirred solution of the residue and PPh₃ (1.8 g, 6.94 mmol, 1.2 equiv) in DCM (40 mL), CBr₄ (2.3 g, 6.94 mmol, 1.2 equiv) was added slowly at 0 °C. After the reaction mixture was stirred at 0 °C for 10 min, it was concentrated under vacuum. The residue was purified by column chromatography on silica gel (PE/EA = 50/1) to give compound **S7** as a colorless oil (1.2 g, 5.20 mmol, 90% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.28 - 7.32 (m, 2H), 7.19 - 7.22 (m, 3H), 5.44 (td, *J* = 7.4, 1.2 Hz, 1H), 3.90 (s, 2H), 2.71 (t, *J* = 7.8 Hz, 2H), 2.37 - 2.43 (m, 2H), 1.84 (d, *J* = 1.2 Hz, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 141.5, 132.3, 130.5,

128.4, 128.3, 125.9, 35.4, 32.1, 29.9, 21.9; HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{12}H_{15}BrNa$ 261.0249; Found 261.0238.

(Z)-2,6-Dimethyl-9-phenylnon-6-en-3-yn-2-ol (S8)

To a solution of the appropriate alcohol (28 mg, 0.33 mmol, 1.0 equiv) in THF (1.0 mL) and HMPA (0.5 mL, 2.0 mmol, 6.0 equiv) at -78 °C, under argon atmosphere and magnetic stirring, was added n-butyl lithium (0.27 mL, 2.5 M in hexane, 0.67 mmol, 2.0 equiv). The temperature was progressively raised to -30 °C and maintained for 45 min. The appropriate bromide **S7** (80 mg, 0.33 mmol, 1.0 equiv) was added dropwise at -30 °C. After this the solution was stirred at room temperature for 2 h. The solution was diluted by NH₄Cl (sat. aq., 2 mL) and extracted with EtOAc (3×20 mL), then brine (50 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel (PE/EA = 6/1) to give compound **S8** as a yellow oil (4.0 mg, 0.02 mmol, 5% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.16 - 7.30 (m, 5H), 5.25 (td, *J* = 7.2, 1.2 Hz, 1H), 2.85 (s, 2H), 2.66 (t, *J* = 7.8 Hz, 2H), 2.30 - 2.35 (m, 2H), 1.82 (s, 1H), 1.78 (d, *J* = 1.2 Hz, 3H), 1.49 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 142.0, 131.1, 128.4, 128.3, 125.8, 125.5, 85.1, 80.1, 65.3, 35.9, 31.7, 29.8, 23.0, 21.2; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₂₂NaO 265.1563; Found 265.1549.

(Z)-2,6-Dimethyl-9-phenylnon-6-en-3-yn-2-yl acetate (S9)

To a stirred solution of **S8** (60.0 mg, 0.25 mmol, 1.0 equiv), Et₃N (103 μ L, 0.74 mmol, 3.0 equiv) and DMAP (6.1 mg, 0.05 mmol, 0.2 equiv) in DCM (4 mL), Ac₂O (74.2 μ L, 0.74 mmol, 3.0 equiv) was added at room temperature. The reaction mixture was stirred for 3 h and then quenched by NaHCO₃ (sat. aq., 5 mL). The organic layer was separated and the aqueous layer was extracted with DCM (3 × 20 mL). The combined organic layer was washed with brine (20 mL), dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel (PE/EA = 20/1) to give compound **S9** as a colorless oil (70.9 mg, 0.24 mmol, 95% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.26 - 7.29 (m, 2H), 7.16 - 7.19 (m, 3H), 5.24 (td, *J* = 7.2, 1.2 Hz, 1H), 2.88 (s, 2H), 2.65 (t, *J* = 7.8 Hz, 2H), 2.28 - 2.34 (m, 2H), 2.00 (s, 3H), 1.79 (d, *J* = 1.2 Hz, 3H), 1.63 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 142.0, 131.1, 128.4, 128.2, 125.8, 125.4, 82.2, 81.6, 72.5, 35.9, 29.8, 29.2, 23.0, 22.0, 21.4; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₂₄NaO₂ 307.1669; Found 307.1667.

(Z)-(4,6,8-Trimethylnona-3,6,7-trien-1-yl)benzene (1u)

To a stirred solution of lithium bromide (175 mg, 2.01 mmol, 10.0 equiv) and copper(I) iodide (384 mg, 2.01 mmol, 10.0 equiv) was stirred in THF (20 mL), methylmagnesium chloride (3.0 M in THF, 0.67 mL, 2.01 mmol, 10.0 equiv) was added slowly at 0 °C under argon. The mixture was stirred for 0.5 h, then **S9** (60.1 mg, 0.20 mmol, 1.0 equiv) was added and stirred 1 h at 40 °C. The reaction mixture was quenched by saturated NH₄Cl (sat. aq., 20 mL) at 0 °C. The organic layer was separated and the aqueous layer was extracted with Et₂O (3×20 mL). The combined organic layer was washed with brine (100 mL), dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel (PE) to give compound 1a as a colorless oil (38.5 mg, 0.16 mmol, 80% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.26 - 7.30 (m, 2H), 7.20 - 7.24 (m, 3H), 5.27 (t, *J* = 7.2 Hz, 1H), 2.62 - 2.66 (m, 4H), 2.29 - 2.35 (m, 2H), 1.68 (s, 3H), 1.65 (s, 6H), 1.57 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 199.8, 142.4, 133.9, 128.4,

128.2, 125.7, 125.4, 94.7, 93.4, 37.4, 36.4, 30.0, 23.3, 20.8, 18.9; **HRMS** (ESI) m/z: $[M+Na]^+$ Calcd for C₁₈H₂₄Na 263.1770; Found 263.1759.

Compound **2u** (6.0 mg, 25%) was prepared according to general procedure from **1u** (24.0 mg) and purified by silica gel column chromatography (PE) as a colorless oil.

7-Isopropyl-1,1,4a-trimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2,3,6-triol (2u) and 1,1,3,4a-Tetramethyl-1,4,4a,9,10,10a-hexahydrophenanthrene (2a)

¹**H** NMR (400 MHz, CDCl₃) δ 7.01 - 7.31 (m, 8H), 5.20 (s, 1H), 5.01 (s, 1H), 2.79 - 2.95 (m, 4H), 2.34 - 2.41 (m, 2H), 2.07 - 2.17 (m, 2H), 1.82 - 1.97 (m, 4H), 1.67 - 1.81 (m, 8H), 1.31 (s, 3H), 1.22 (s, 3H), 1.06 (s, 3H), 1.02 (s, 3H), 0.96 (s, 3H), 0.59 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 148.0, 144.8, 137.2, 135.5, 132.1, 132.0, 131.8, 131.7, 128.9, 128.8, 128.6, 128.3, 126.0, 125.9, 125.3, 125.2, 47.9, 47.6, 44.8, 41.4, 37.9, 37.6, 35.7, 35.1, 32.4, 32.2, 31.2, 30.1, 28.7, 27.3, 25.4, 24.4, 23.8, 22.7, 20.8, 19.9; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C1₈H₂₄Na 263.1770; Found 263.1764.

8. Crystal of 2d (CCDC: 2171065), (±)-2,3-dihydroxyferruginol (CCDC: 2171067) and

(±)-shonanol (CCDC: 2171063)

Crystal of 2d was obtained by slow evaporation of a solution containing 2d in the mixture of petroleum ether and diethyl ether at room temperature. CCDC number 2171065. The crystal mounted on a XtaLAB Synergy R-DW, HyPix-6000HE diffractometer. The crystal was kept at 149.99(10) K during data collection.

Table S2. Crystal data and structure refinement for 2d.		
Identification code	2171065	
Empirical formula	C22H24	
Formula weight	288.41	
Temperature/K	149.99(10)	
Crystal system	hexagonal	
Space group	P61	
a/Å	17.4778(4)	
b/Å	17.4778(4)	
c/Å	9.9640(2)	
α/°	90	
β/°	90	
γ/°	120	
Volume/Å ³	2635.95(13)	
Ζ	6	
$ ho_{cale}g/cm^3$	1.090	
μ/mm^{-1}	0.454	

F(000)	936.0
Crystal size/mm ³	$0.11\times0.03\times0.02$
Radiation	Cu Kα (λ = 1.54184)
2Θ range for data collection/°	5.838 to 154.22
Index ranges	$-21 \le h \le 21, -21 \le k \le 21, -8 \le l \le 12$
Reflections collected	14286
Independent reflections	$2980 \; [R_{int} {=} 0.0594, R_{sigma} {=} 0.0449]$
Data/restraints/parameters	2980/1/201
Goodness-of-fit on F ²	1.083
Final R indexes [I>=2 σ (I)]	$R_1=0.0408,wR_2=0.1093$
Final R indexes [all data]	$R_1 = 0.0446, wR_2 = 0.1125$
Largest diff. peak/hole / e Å-3	0.13/-0.14
Flack parameter	-0.3(10)

Crystal of (\pm) -2,3-dihydroxyferruginol was obtained by slow evaporation of a solution containing (\pm) -2,3-dihydroxyferruginol in the mixture of petroleum ether and ethyl acetate at room temperature. CCDC number 2171067. The crystal mounted on a XtaLAB Synergy R-DW, HyPix-6000HE diffractometer. The crystal was kept at 150.00(10) K during data collection.

Table S3. Crystal data and structure refinement for (\pm) -2,3-dihydroxyferruginol.		
Identification code	2171067	
Empirical formula	$C_{20}H_{30}O_{3}$	
Formula weight	318.44	
Temperature/K	150.00(10)	
Crystal system	monoclinic	
Space group	C2/c	
a/Å	24.7444(7)	
b/Å	6.0960(2)	
c/Å	22.9960(6)	
α/°	90	
β/°	95.293(2)	
γ/°	90	
Volume/Å ³	3453.97(18)	
Ζ	8	
$\rho_{cale}g/cm^3$	1.225	
μ/mm^{-1}	0.632	
F(000)	1392.0	
Crystal size/mm ³	$0.23 \times 0.21 \times 0.17$	
Radiation	Cu Ka ($\lambda = 1.54184$)	
2Θ range for data collection/°	7.176 to 133.192	

Index ranges	$-29 \le h \le 29, -7 \le k \le 6, -27 \le l \le 27$
Reflections collected	10868
Independent reflections	$3023 [R_{int} = 0.0447, R_{sigma} = 0.0419]$
Data/restraints/parameters	3023/1/216
Goodness-of-fit on F ²	1.231
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0943, wR_2 = 0.2859$
Final R indexes [all data]	$R_1 = 0.1083, wR_2 = 0.3056$
Largest diff. peak/hole / e Å-3	0.97/-0.38

Crystal of (±)-shonanol was obtained by slow evaporation of a solution containing (±)-shonanol in the mixture of petroleum ether and acetone at room temperature. CCDC number 2171063. The crystal mounted on a XtaLAB Synergy R-DW, HyPix - 6000HE diffractometer. The crystal was kept at 301.82(11) K during data collection.

_

Table S4. Crystal data and structure refinement for (\pm) -shonanol.		
Identification code	2171063	
Empirical formula	$C_{20}H_{26}O_2$	
Formula weight	298.41	
Temperature/K	301.82(11)	
Crystal system	monoclinic	
Space group	C2/c	
a/Å	20.2191(2)	
b/Å	11.57240(10)	
c/Å	14.8457(2)	
a/°	90	
β/°	92.8010(10)	
γ/°	90	
Volume/Å ³	3469.50(7)	
Z	8	
$\rho_{calc}g/cm^3$	1.143	
μ/mm^{-1}	0.559	
F(000)	1296.0	
Crystal size/mm ³	$0.09\times0.07\times0.05$	
Radiation	Cu Kα (λ = 1.54184)	
2Θ range for data collection/°	8.758 to 152.458	
Index ranges	$-25 \le h \le 25, -14 \le k \le 14, -18 \le l \le 17$	
Reflections collected	53861	
Independent reflections	$3559 \; [R_{int} = 0.0362, R_{sigma} = 0.0136]$	
Data/restraints/parameters	3559/24/225	
Goodness-of-fit on F ²	1.083	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0448, wR_2 = 0.1272$	

9. Reference

1. D. Vrubliauskas and C. D. Vanderwal, Angew. Chem. Int. Ed., 2020, 59, 6115-6121.

2. C. He, H. Chu, T. P. Stratton, D. Kossler, K. J. Eberle, D. T. Flood and P. S. Baran, J. Am. Chem. Soc., 2020, 142, 13683-13688.

3. H. Zhao, H. Li, G. Huang and Y. Chen, Nat. Prod. Rep., 2017, 31, 844-848.

4. T. Matsumoto, S. Imai, H. Kawashima and M. Mitsuki, Bull. Chem. Soc. Jpn., 1981, 54, 2099-2102.

5. A. Li, X. She, J. Zhang, T. Wu and X. Pan, Tetrahedron, 2003, 59, 5737-5741.

6. Z. Tao, K. A. Robb, K. Zhao and S. E. Denmark, J. Am. Chem. Soc., 2018, 140, 3569-3573.

7. C. Thommen, C. K. Jana, M. Neuburger and K. Gademann, Org. Lett., 2013, 15, 1390-1393.

8. H. Li, J. J. Zhao, J. L. Chen, L. P. Zhu, D. M. Wang, L. Jiang, D. P. Yang and Z. M. Zhao, *Phytochemistry*, 2015, 117, 400-409.

9. T.-L. Zheng, S.-Z. Liu, C.-Y. Huo, J. Li, B.-W. Wang, D.-P. Jin, F. Cheng, X.-M. Chen, X.-M. Zhang, X.-T. Xu and S.-H. Wang, *CCS Chem.*, 2020, **2**, 2795-2802.

10. T. L. Zheng, Y. Zhang, A. L. Gou, F. Cheng, S. Z. Liu, L. Yu, M. Y. Cui, X. T. Xu, K. Zhang and S. H. Wang, *Org. Lett.*, 2020, **22**, 7073-7077.

11. J. R. Corbin, D. R. Ketelboeter, I. Fernandez and J. M. Schomaker, J. Am. Chem. Soc., 2020, 142, 5568-5573.

12. W. C. Still and C. Gennari, Tetrahedron Lett., 1983, 24, 4405-4408.

10. NMR spectra of new compounds

0

0

0

fl (ppm)

S77

8.5

0

51 51 51	
\vec{o} $\vec{-}$ $\vec{-}$ $\vec{-}$	
4444	

2 2 3 8 2 5 0 2 1 2 3 3 3 3 3 3 4 5 2 5 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	62	33 30 35 30
		(a) (a) (a)
~~~~~~~~	<del>.</del> .	- $ -$
	ł	$\langle   \rangle$
או ווד		זור

Ο O' S1

¹H NMR (CDCl₃, 400 MHz)



—168.04	<pre>141.15 140.83 140.83 128.35 128.32 125.99</pre>	<u>77</u> .32 <u>77</u> .00 <u>76.68</u> <u>60.35</u>	
S1 ¹³ C NMR (CDCl ₃ , 100 MHz)			

		·	1		'	'	·	·			'	'		·	·	'		'	'	'	· 1	'	
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-]
											f1 (	(ppm)											



	- 141.76 - 135.16 - 128.05 - 124.60	77.32 77.00 76.68 68.10	35.50 29.32 13.36	
С NMR (CDCI ₃ , 100 MHz)	ł			

[		· 1	· 1	· 1	· I	· · · ·	1			· I	'	- I	· · · ·	· 1	' I	·	1	· 1	· 1	' I	'	· 1	
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-]
											f1	(ppm)											



3.916

2.656 2.641 2.623 2.344 2.328 2.328 2.232  $\frac{5.620}{5.604}$ 

7.261 7.259 7.243 7.163 7.145


				1 1			·	'	'	·	·	·	· 1		1		· 1	1		1	1		
20	210	200	190	180	170	160	150	140	130	120	110 f1 (	100 ppm)	90	80	70	60	50	40	30	20	10	0	-]







56 46 72 81
25.830.

-87.33 79.85 77.32 77.00 76.68 --65.28

→35.76 →31.64 →29.81 →28.53 —16.02





304 300 285 285 285 285 267 267 212 212 193 171	977 962 959 944
	255. -5

219 201 183 166	799 793 777 777 777 777 777 777 777 777
4 4 4.	



¹H NMR (CDCl₃, 400 MHz)









-3.903





¹H NMR (CDCl₃, 400 MHz)







$\infty$	$\sim$	З	ဖ
<u>с</u> ,	ς.	o.	ထ္
2	N.	ດ່	<u>_</u>
ŝ	က	$\sim$	$\sim$
		1	
1	1	ſ	1



**S7** ¹³C NMR (CDCI₃, 100 MHz)















.76 .74	00 00 68
94. 92.	77 . 76.
57	

110 100 f1 (ppm)

5.85	6.10	0.05	0.89 8.34 5.40
4	e	e	7 7 10
	1		517

¹³C NMR (CDCI₃, 100 MHz)

la

-]

















¹H NMR (CDCl₃, 400 MHz)



















S135

-1



-1



~94.83 ~92.82 77.32
 77.00
 76.68

—33.40 —28.83	20.89 19.29 15.39
------------------	-------------------------

--45.85

Į Į	J.
$\checkmark$	lh

¹³C NMR (CDCI₃, 100 MHz)







-1



	—159.56	—144.01	<ul> <li>133.78</li> <li>129.15</li> <li>125.18</li> <li>120.87</li> <li>114.20</li> <li>110.95</li> </ul>	~94.75 ~92.75 ~77.32 ~77.00 ~76.68	55.09 45.85	—36.13 —29.92	~ 20.89 
¹³ C NMR (CDCl ₃ , 100 MHz)							
210 200 190 180 170	160	150 140	130 120 110 f1 (r	100 90 80 70 pm)	60 50	40 30	20 10 0
















S149









S153





 $\begin{array}{c} 2.589\\ 2.551\\ 2.551\\ 2.2313\\ 2.256\\ 1.549\\ 1.526\\ 1.526\end{array}$ 



























¹H NMR (CDCl₃, 400 MHz)

1.08⊣ 3.07⊣

7.0

6.5

6.0

7.5

8.5

0

8.0

0.95-]

5.5

0.88-]

4.5

5.0

4.0 f1 (ppm)

3.5

lt

-0.5

-1

S160

0.0

7.00⊣ 1.04 -≖

1.5

1.0

0.5

2.0

4.00⊣

2.5

3.0

5.94-















