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A Sources of Experimental Data

Properties were collated from a wide range of photoswitch literature. An emphasis was

placed on collating compounds with a spectrum of functional groups attached to the core

photoswitch scaffold. In addition, this dataset is unique in that it is composed of the latest

generations of azoheteroarenes and cyclic azobenzenes which possess far superior photoswitch

properties to analogous, unmodified azobenzenes. See Figure 1 for an overview of these novel

azophotoswitches with their properties summarised. [1–22]

Figure 1: A data summary for the latest generation of azophotoswitches contained in this
dataset. PSS = photostationary state, Z-E t1/2 = Z isomer thermal half-life.

B Dataset Visualisations

The choice of molecular representation is known to be a key factor in the performance of

machine learning algorithms on molecules. [23–25] Commonly-used representations such as

fingerprint and fragment-based descriptors are high dimensional and as such, it can be challeng-

ing to interpret the inductive bias introduced by the representation. In order to visualise the

high-dimensional representation space of the Photoswitch Dataset we project the data matrix

to two dimensions using the UMAP algorithm. [26] We compare the manifolds located under

the Morgan fingerprint representation and a fragment-based representation computed using

RDKit. [27] We generate 512-bit Morgan fingerprints with a bond radius of 2, setting the nearest
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neighbours parameter in the UMAP algorithm to a value of 50. The resulting visualisation was

produced using the ASAP package (available at https://github.com/BingqingCheng/ASAP)

and is shown in Figure 2.

Figure 2: a) UMAP and k-PCA projections of the dataset, using Morgan Fingerprints,
correctly identify clusters of chemically similar molecules. The regions demarcated by dashed
black lines are composed of miscellaneous azoheteroarenes; no grouping was noted here due
to the limited (≤ 10) examples per class. b) Similar projections using RDKit Fragment
descriptors fails to identify any such clusters.

The structure of the manifold located under the Morgan fingerprint representation

identifies meaningful subgroups of azophotoswitches when compared to the fragment-based

representation. In order to demonstrate that the finding is due to the representation and

not the dimensionality reduction algorithm we include the manifolds identified by k-PCA

using a cosine kernel. Both algorithms identify the same manifold structure in the Morgan

fingerprint representation.
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C Further Experiments

C.1 Property Prediction

For representations, we use 2048-bit Morgan fingerprints with a bond radius of 3 implemented

in RDKit. [27] We use 85-dimensional fragment features computed using the RDKit descriptors

module. We use the Dscribe library [28] to compute (Smooth Overlap of Atomic Positions)

(SOAP) descriptors using an rcut parameter of 3.0, a sigma value of 0.2, an nmax parameter

of 12 and an lmax parameter of 8. We use an REMatch kernel with polynomial base kernel

of degree 3.0, gamma = 1.0, coef0 = 0, alpha = 0.5 and threshold = 1e−6.

We evaluate performance on 20 random train/test splits in a ratio of 80/20 using the root

mean square error (RMSE), mean absolute error (MAE) and coefficient of determination

(R2) as performance metrics, reporting the mean and standard error for each metric (Table

1). We evaluate the following models: Random Forest (RF), Gaussian Processes (GP),

Attentive Neural Processes (ANP) , [29] Graph Convolutional Networks (GCN), [30] Graph

Attention Networks (GAT), [31] Directed Message-Passing Neural Networks (DMPNN), [32]

and the following representations: Morgan fingerprints, [33] RDKit fragments, [27] SOAP, [34]

the simplified molecular-input line-Entry system (SMILES), [35] and self-referencing embedded

strings (SELFIES). [36] In addition, we introduce a hybrid representation, fragprints formed

by concatenating the fragment and fingerprint vectors. For the purpose of the benchmark,

hyperparameter selection for GP-based approaches is performed by optimizing the marginal

likelihood on the train set whereas for other methods cross-validation is performed using

the Hyperopt-Sklearn library [37] for Sklearn models such as RF and 1000 randomly sampled

configurations for other models.

RF is trained using scikit-learn [38] with 1000 estimators and a maximum depth of 300.

We implement a GP in GPflow [39] using a Tanimoto kernel [40,41] for fingerprint, fragment and

fragprint representations, and the subset string kernel of [42] (following the exact experimental

setup in Moss and Griffiths [41]) for the character-based SMILES and SELFIES representations.
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Additionally, we train a multioutput Gaussian process (MOGP) based on the intrinsic model

of coregionalisation [43] in order to leverage information in the multitask setting. For all

GP models, we set the mean function to be the empirical mean of the data and treat the

kernel variance and likelihood variance as hyperparameters, optimising their values under the

marginal likelihood. For the attentive neural process we use 2 hidden layers of dimension

32 for each of the decoder, latent decoder and the deterministic encoder respectively, 8-

dimensional latent variables r and z, and run 500 iterations with the Adam optimiser [44] with

a learning rate of 0.001. For the ANP we perform principal components regression by reducing

the representation dimension to 50. We implement GCNs and GATs in the DGL-LifeSci

library. [45] Node features include one-hot representations of atom-type, atom degree, the

number of implicit hydrogen atoms attached to each atom, the total number of hydrogen

atoms per atom, atom hybridization, the formal charge and number of radical electrons on

the atom. Edge features contain one-hot encodings of bond-type and Booleans indicating

the stereogenic configuration of the bond and whether the bond is conjugated or in a ring.

For the GCN we use two hidden layers with 32 hidden units and ReLU activations, applying

BatchNorm [46] to both layers. For the GAT we use two hidden layers with 32 units each, 4

attention heads, an alpha value of 0.2 in both layers and ELU activations. We use a single

DMPNN model trained for 50 epochs, with additional normalised 2D RDKit features. All

remaining parameters were set to the default values in Yang et al. [32]. We do not benchmark

SchNet [47] because it is designed for the prediction of molecular energies and atomic forces.

All experiments were performed on the CPU of a MacBook Pro using a 2.3 GHz 8-Core Intel

Core i9 processor.

We apply standardisation (subtract the mean and divide by the standard deviation)

to the property values in all experiments. The results of the aforementioned models and

representations are given in Table 1. Additional results including Message-passing neural

networks (MPNN), [48] a black-box alpha divergence minimization Bayesian neural network

(BNN), [49] and an LSTM with augmented SMILES, SMILES-X [50] are presented in Table 2.
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We note that featurisations using standard molecular descriptors are more than competitive

with neural representations for this dataset. The best-performing representation/model pair

on the most data-rich E isomer π − π∗ task was the MOGP∗-Tanimoto kernel and our own

hybrid descriptor set “fragprints”. Importantly, there is weak evidence that the MOGP∗ is

able to leverage multitask learning in learning correlations between the transition wavelengths

of the isomers, a modelling feature that may be particularly useful in the low-data regimes

characteristic of experimental datasets. A Wilcoxon signed-rank test [51] is carried out in order

to determine whether the performance differential between the GP/fragprints combination

and the MOGP∗/fragprints combination is statistically significant. In this instance, the

MOGP∗ is provided with auxiliary task labels for test molecules where available (i.e. labels

for tasks that are not being predicted). The null hypothesis is that there is no significant

difference arising from multitask learning. In the case of the E isomer π − π∗ transition

the resultant p-value is 0.33 meaning that we cannot reject the null hypothesis at the 95%

confidence level. In the case of the Z isomer π − π∗ transition the resultant p-value is 0.06

meaning also that we cannot reject the null hypothesis at the 95% confidence level. In this

latter case however, rejection of the null hypothesis depends on the confidence level threshold

specified. As such, we conclude that only weak evidence is available to support the benefits

of multitask learning over single task learning.

In this section we present, in Table 2 results with additional models on the property

prediction benchmark for which extensive hyperparameter tuning was not undertaken. The

black-box alpha divergence minimization Bayesian neural network is implemented in the

Theano library [52] and is based on the implementation of. [49] the network has 2 hidden layers

of size 25 with ReLU activations. The alpha parameter is set to 0.5, the prior variance

for the variational distribution q is set to 1 and 100 samples are taken to approximate the

expectation over the variational distribution. For all tasks the network is trained using 8

iterations of the Adam optimiser [44] with a batch size of 32 and a learning rate of 0.05. The

MPNN is trained for 100 epochs in the case of the E isomer π − π∗ task and 200 epochs in
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Table 1: Test set performance in predicting the transition wavelengths of the E and Z isomers.
Best-performing models are highlighted in bold. MOGP∗ denotes a multioutput gp such that
auxiliary task labels (i.e. not the task being predicted) for test molecules are provided to the
model where available.

E isomer π − π∗ (nm) E isomer n−π∗ (nm) Z isomer π − π∗ (nm) Z isomer n−π∗ (nm)
RMSE

RF + Morgan 25.3± 0.9 10.2 ± 0.4 14.0± 0.6 11.1± 0.4

RF + Fragments 26.4± 1.1 11.4± 0.5 17.0± 0.8 14.2± 0.6

RF + Fragprints 23.4± 0.9 11.0± 0.4 14.2± 0.6 11.3± 0.6

GP + Morgan 23.4± 0.8 11.4± 0.5 13.2± 0.7 11.0 ± 0.7
GP + Fragments 26.3± 0.8 11.6± 0.5 15.5± 0.8 12.6± 0.5

GP + Fragprints 20.9± 0.7 11.1± 0.5 13.1± 0.6 11.4± 0.7

GP + SOAP 21.0± 0.6 22.7± 0.6 17.8± 0.8 15.0± 0.5

GP + SMILES 26.0± 0.8 12.3± 0.4 12.5± 0.5 11.8± 0.6

GP + SELFIES 23.5± 0.7 12.9± 0.5 14.4± 0.5 12.2± 0.5

MOGP + Morgan 23.6± 0.8 11.7± 0.5 15.5± 0.6 11.1± 0.7

MOGP + Fragments 27.0± 0.9 11.9± 0.6 16.4± 0.9 13.1± 0.6

MOGP + Fragprints 21.2± 0.7 11.3± 0.5 13.5± 0.6 11.4± 0.7

MOGP∗ + Morgan 22.6± 0.8 11.6± 0.4 12.3± 0.7 10.9± 0.7

MOGP∗ + Fragments 26.9± 0.8 12.1± 0.6 16.2± 0.8 13.8± 0.6

MOGP∗ + Fragprints 20.4 ± 0.7 11.2± 0.5 11.3 ± 0.4 11.4± 0.7

ANP + Morgan 28.1± 1.3 13.6± 0.5 13.5± 0.6 11.0 ± 0.6
ANP + Fragments 27.9± 1.1 13.8± 0.9 17.2± 0.8 14.1± 0.7

ANP + Fragprints 27.0± 0.8 11.6± 0.5 14.5± 0.8 11.3± 0.7

GCN 22.0± 0.8 12.8± 0.8 16.3± 0.8 13.1± 0.8

GAT 26.4± 1.1 16.9± 1.9 19.6± 1.0 14.5± 0.8

DMPNN 27.1± 1.4 13.9± 0.6 17.5± 0.7 13.8± 0.4

MAE
RF + Morgan 15.5± 0.5 7.3 ± 0.3 10.1± 0.4 6.6 ± 0.3
RF + Fragments 16.4± 0.5 8.5± 0.3 12.2± 0.6 9.0± 0.4

RF + Fragprints 13.9± 0.4 7.7± 0.3 10.0± 0.4 6.8± 0.3

GP + Morgan 15.2± 0.4 8.4± 0.3 9.8± 0.4 6.9± 0.3

GP + Fragments 17.3± 0.4 8.6± 0.3 11.5± 0.5 8.2± 0.3

GP + Fragprints 13.3± 0.3 8.2± 0.3 9.8± 0.4 7.1± 0.3

GP + SOAP 14.3± 0.3 19.3± 0.5 12.9± 0.6 11.4± 0.4

GP + SMILES 16.6± 0.5 8.6± 0.3 9.4± 0.4 7.4± 0.3

GP + SELFIES 14.7± 0.7 8.8± 0.3 11.1± 0.3 8.1± 0.2

MOGP + Morgan 15.3± 0.4 8.6± 0.3 11.9± 0.5 7.0± 0.3

MOGP + Fragments 17.6± 0.5 8.8± 0.4 12.1± 0.6 8.3± 0.3

MOGP + Fragprints 13.5± 0.3 8.3± 0.3 10.2± 0.5 7.1± 0.3

MOGP∗ + Morgan 14.4± 0.4 8.5± 0.3 9.6± 0.4 6.9± 0.4

MOGP∗ + Fragments 17.2± 0.4 8.9± 0.3 11.9± 0.5 8.5± 0.4

MOGP∗ + Fragprints 13.1 ± 0.3 8.3± 0.3 8.8 ± 0.3 7.1± 0.4

ANP + Morgan 17.9± 0.7 10.1± 0.4 10.0± 0.4 7.2± 0.3

ANP + Fragments 17.4± 0.6 9.4± 0.4 12.3± 0.6 8.9± 0.4

ANP + Fragprints 18.1± 0.5 8.6± 0.3 10.4± 0.5 7.0± 0.3

GCN 13.9± 0.3 8.6± 0.3 11.6± 0.5 8.6± 0.5

GAT 18.1± 0.7 10.7± 0.6 14.4± 0.8 10.8± 0.7

DMPNN 17.1± 0.8 10.6± 0.4 12.8± 0.6 9.8± 0.3

R2

RF + Morgan 0.85± 0.01 0.80 ± 0.01 0.25± 0.06 0.36± 0.06

RF + Fragments 0.83± 0.01 0.75± 0.02 −0.15± 0.11 −0.05± 0.07

RF + Fragprints 0.87± 0.01 0.77± 0.02 0.23± 0.07 0.33± 0.06

GP + Morgan 0.87± 0.01 0.76± 0.01 0.34± 0.05 0.38 ± 0.05
GP + Fragments 0.84± 0.01 0.74± 0.02 0.07± 0.08 0.19± 0.05

GP + Fragprints 0.90 ± 0.01 0.77± 0.02 0.35± 0.05 0.33± 0.05

GP + SOAP 0.89± 0.01 −0.08± 0.03 −0.05± 0.02 −0.07± 0.02

GP + SMILES 0.84± 0.02 0.72± 0.02 0.39± 0.05 0.29± 0.04

GP + SELFIES 0.86± 0.01 0.68± 0.02 0.20± 0.05 0.23± 0.04

MOGP + Morgan 0.87± 0.01 0.75± 0.01 0.06± 0.08 0.37± 0.05

MOGP + Fragments 0.83± 0.01 0.73± 0.02 −0.05± 0.10 0.11± 0.06

MOGP + Fragprints 0.89± 0.01 0.76± 0.02 0.30± 0.06 0.33± 0.05

MOGP∗ + Morgan 0.88± 0.01 0.75± 0.01 0.34± 0.12 0.39± 0.05

MOGP∗ + Fragments 0.83± 0.01 0.72± 0.02 −0.06± 0.12 0.00± 0.08

MOGP∗ + Fragprints 0.90 ± 0.01 0.76± 0.01 0.49 ± 0.05 0.33± 0.06

ANP + Morgan 0.70± 0.02 0.66± 0.02 0.30± 0.06 0.38 ± 0.05
ANP + Fragments 0.81± 0.01 0.62± 0.05 −0.16± 0.11 −0.06± 0.10

ANP + Fragprints 0.83± 0.01 0.75± 0.01 0.18± 0.08 0.35± 0.05

GCN 0.87± 0.01 0.66± 0.03 −0.41± 0.22 −0.92± 0.3

GAT 0.81± 0.02 0.57± 0.04 0.39± 0.17 −1.07± 0.4

DMPNN 0.82± 0.02 0.63± 0.02 −0.05± 0.07 0.11± 0.04
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the case of the other tasks with a learning rate of 0.001 and a batch size of 32. The model

architecture was taken to be the library default with the same node and edge features used

for the GCN and GAT models in the main paper. The SMILES-X implementation remains

the same as that of the paper [50] save for the difference that the network is trained for 40

epochs without Bayesian optimization over model architectures. In the case of SMILES-X 3

random train/test splits are used instead of 20 for the Z isomer tasks whereas 2 splits are

used for the E isomer n−π∗ task. For the E isomer π− π∗ prediction task results are missing

due to insufficient RAM on the machine used to run the experiments.

Table 2: Test set performance in predicting the transition wavelengths of the E and Z isomers.

E isomer π − π∗ (nm) E isomer n−π∗ (nm) Z isomer π − π∗ (nm) Z isomer n−π∗ (nm)
RMSE

BNN + Morgan 27.0± 0.9 12.9± 0.6 13.9± 0.6 12.7± 0.4

BNN + Fragments 31.2± 1.1 14.8± 0.8 16.9± 0.8 12.7± 0.4

BNN + Fragprints 26.7± 0.8 13.1± 0.5 14.9± 0.5 13.0± 0.6

MPNN 24.8± 0.8 12.5± 0.6 16.7± 0.8 12.8± 0.7

SMILES-X 25.1± 4.2 17.8± 0.6 14.8± 0.9

MAE
BNN + Morgan 19.0± 0.6 9.9± 0.4 10.2± 0.5 8.6± 0.3

BNN + Fragments 22.4± 0.8 10.6± 0.4 12.9± 0.6 8.6± 0.3

BNN + Fragprints 19.1± 0.6 10.1± 0.5 10.8± 0.4 9.3± 0.5

MPNN 15.4± 0.8 8.6± 0.3 11.6± 0.6 8.4± 0.4

SMILES-X 20.6± 3.1 11.6± 1.0 11.2± 1.0

R2

BNN + Morgan 0.83± 0.01 0.69± 0.02 0.23± 0.08 0.18± 0.05

BNN + Fragments 0.77± 0.01 0.58± 0.04 −0.15± 0.14 0.18± 0.05

BNN + Fragprints 0.83± 0.01 0.68± 0.02 0.14± 0.06 0.11± 0.08

MPNN 0.83± 0.01 0.63± 0.06 −0.70± 0.34 −0.68± 0.27

SMILES-X −0.44± 0.30 −0.08± 0.06 −0.09± 0.04

C.2 Prediction Error as a Guide to Representation Selection

On the E isomer π − π∗ transition wavelength prediction task, we note occasionally marked

discrepancies in the predictions made under the Morgan fingerprint and fragment represen-

tations. We show one such discrepancy in Figure 3. The resultant analysis motivated the

expansion of the molecular feature set to include both representations as “fragprints”
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Figure 3: An analysis of the prediction errors under the Morgan fingerprint and fragment
representations. The molecule on which the prediction is being made is located at the
apex of the triangle with the proximal training molecule at the base. Fragment descriptors
identify another di-substituted nitro-azobenzene as the most similar molecule contained in
the train set. By contrast, Morgan fingerprints identify a molecule in possession of a similar
substitution pattern to the test case, but with different functionalization. On this particular
test instance it is the identity of the functional groups rather than the substitution pattern
which dictates the wavelength properties and hence fragment descriptors achieve a much
lower error. As such, although fingerprints offer better overall performance, fragments are
clearly informative features for certain test cases.
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C.3 Impact of Dataset Choice

In this section we evaluate the generalisation performance of a model trained on the E isomer

π − π∗ values of a large dataset of 6142 out-of-domain molecules (including non-azoarene

photoswitches) from Beard et al. [53] with experimentally-determined labels. We train a

Random Forest regressor (due to scalability issues with the MOGP on 6000+ data points)

implemented in the scikit-learn library with 1000 estimators and a max depth of 300 on the

fragprint representation of the molecules. In Table 3 we present results for the case when

the train set consists of the large dataset of 6142 molecules and the test set consists of the

entire photoswitch dataset. We also present the results on the original E isomer π − π∗

transition wavelength prediction task where the train set of each random 80/20 train/test

split is augmented with the molecules from the large dataset. The results indicate that

the data for out-of-domain molecules provides no benefit for the prediction task and even

degrades performance, when amalgamated, relative to training on in-domain data only.

Table 3: Performance comparison of curated dataset against large non-curated dataset.

Dataset Size RMSE MAE R2

Large Non-Curated 6142 85.2 72.5 −0.66

Large Non-Curated + Curated 6469 36.9± 1.2 22.7± 0.7 0.67± 0.02

Curated 314 23.4 ± 0.9 13.9 ± 0.4 0.87 ± 0.01

Based on these results we highlight the importance of designing synthetic molecular

machine learning benchmarks with a real-world application in mind and involving synthetic

chemists in the curation process. By targeted data collation on a narrow and well-defined

region of chemical space where the molecules are in-domain relative to the task, it becomes

possible to mitigate generalisation error.

C.4 Human Performance Benchmark

Below in Table 4 we include the full results breakdown of the human performance comparison

study.
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Table 4: Results breakdown for the human expert performance comparison predicting the
transition wavelength (nm) of the E isomer π − π∗ transition for 5 molecules. Closest
prediction for each molecule is underlined and highlighted in bold. MOGP achieves the lowest
MAE relative to all individual human participants.

Molecule 1 Molecule 2 Molecule 3 Molecule 4 Molecule 5 MAE
True Value 329 407 333 540 565

Postdoc 1 325 360 410 490 490 54.7
PhD 1 350 400 530 410 425 93.3
PhD 2 380 280 530 600 250 177.5
Postdoc 2 330 350 500 475 500 66.7
PhD 3 325 350 350 540 550 16.3
Postdoc 3 350 370 520 600 500 97.5
PhD 4 330 380 390 520 580 34.2
Undergraduate 1 340 420 400 540 570 41.8
Postdoc 4 321 345 340 500 520 28.7
PhD 5 330 360 340 500 520 24.2
PhD 6 303 367 435 411 450 78.7
PhD 7 280 350 450 430 460 85.5
PhD 8 270 390 420 420 440 73.8
PhD 9 330 310 462 512 512 55.3

MOGP 321 413 354 518 569 11.9
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C.5 Confidence-Error Curves

An advantage of Bayesian models for the real-world prediction task is the ability to produce

calibrated uncertainty estimates. If correlated with prediction error, a model’s uncertainty

may act as an additional decision-making criterion for the selection of candidates for lab

synthesis. In order to investigate the benefits afforded by uncertainty estimates, we produce

confidence-error curves using the GP-Tanimoto model in conjunction with the fingerprints

representation. The confidence-error curves for the RMSE and MAE metrics are shown

in Figure 4 and Figure 5 respectively. The x-axis, confidence percentile, may be obtained

simply by ranking each model prediction of the test set in terms of the predictive variance

at the location of that test input. As an example, molecules that lie in the 80th confidence

percentile will be the 20% of test set molecules with the lowest model uncertainty. We then

measure the prediction error at each confidence percentile across 200 random train/test splits

to see whether the model’s confidence is correlated with the prediction error. We observe

that across all tasks the GP-Tanimoto model’s uncertainty estimates are positively correlated

with prediction error, offering a proof of concept that model uncertainty can be incorporated

into the decision process for candidate selection.

C.6 TD-DFT Benchmark

Below, in Figure 6 and Figure 7 we include further plots analysing the performance of the

methods on the TD-DFT performance comparison benchmark. These plots motivated the

use of the Lasso-correction to the TD-DFT predictions.
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(a) E Isomer π − π∗ (b) E Isomer n−π∗

(c) Z Isomer π − π∗ (d) Z Isomer n−π∗

Figure 4: RMSE Confidence-Error Curves for Property Prediction using GP Regression.
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(a) E Isomer π − π∗ (b) E Isomer n−π∗

(c) Z Isomer π − π∗ (d) Z Isomer n−π∗

Figure 5: MAE Confidence-Error Curves for Property Prediction using GP Regression.
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Figure 6: Regression plots for each method on the TD-DFT performance comparison bench-
mark with the Spearman rank-order correlation coefficient given as ρ. One may observe that
the correlation between predictions and ground truth experimental values increases with the
linear Lasso correction to the TD-DFT methods.
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Figure 7: Signed error distributions for each method on the TD-DFT performance comparison
benchmark. Signed error is recorded for each heldout molecule in leave-one-out-validation.
Gaussian kernel density estimates overlaid on the histograms. One may observe that the linear
Lasso correction for the TD-DFT methods has a centering effect on the error distribution.
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D Background on Time-Dependent Density Functional

Theory

D.1 Density Functional Theory

Density Functional Theory (DFT) is a modelling method used to elucidate the electronic

structure (typically the ground state) of many-body systems. [54] The theory has been used with

great success across physics, chemistry, biology and materials science. [55] DFT is considered

to be an ab initio, or first principles method because it relies directly upon the postulates

of quantum mechanics and the only inputs to the calculations are physical constants. [56] A

concrete example of an application of DFT towards an electronic structure investigation is

in simulating a relaxation of atoms in a crystalline solid to calculate the change in lattice

parameters and the forces on each atom, with the introduction of defects or vacancies into

the system. [57]

Since its inception in 1964/5, Kohn-Sham DFT (KS-DFT) has been one of the most

popular electronic structure methods to date. [55] KS-DFT relies on the Hohenberg-Kohn

theorems [58] and the use of a trial electron density (an initial guess) with a self-consistency

scheme. In practice, a computational loop takes a trial density, solves the Kohn-Sham

equations, and obtains the single electron wavefunctions corresponding to the trial density;

next, by taking these single electron wavefunctions and using a result of quantum mechanics,

a calculated electron density can be computed. If this calculated density is consistent (within

a set tolerance) of the trial density, then the theoretical ground state density has been found.

If the two densities are not consistent, the calculated density is taken as the new trial density,

and the loop is repeated until the tolerance is met. With exchange and correlation functionals,

the accuracy of DFT calculations can be very high, but may also fluctuate significantly

with the choice of functional, pseudopotential, basis sets and cutoff energy [59] which are not

always straightforward to optimise. A machine learning corollary would be the performance

of a specific model, on a given dataset, greatly depending on its hyperparameters, with
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out-of-the-box implementations rarely giving satisfactory results without a significant amount

of tuning.

D.2 Time-Dependent Density Functional Theory

Time-dependent Density Functional Theory (TD-DFT) is based on a time-dependent cognate

of the Hohenberg-Kohn theorems; the Runge-Gross (RG) theorem. [60] This theorem shows

that a unique delineation exists between the time-dependent electron density and the time-

dependent external potential. This allows for a simplification, permitting a computational

time-dependent Kohn-Sham system to be substantiated [61] analogous to the computational

system used in KS-DFT.

In conjunction with a linear response theory, [62] TD-DFT has excelled with investigations

into calculating electromagnetic spectra, i.e. absorption spectra, of medium and large

molecules. [63,64] It has become popular in these fields, due to its ease of use relative to other

methods as well as its high accuracy. A relevant application of this methodology is to compute

the π − π∗/n − π∗ electronic transitions wavelengths for conjugated molecular systems, such

as the photoswitch molecules in the Photoswitch Dataset.

E Further Screening Details

The SMILES for all experimentally-measured molecules are given in Table 5. Reagents and

solvents were obtained from commercial sources (MolPort) and used as supplied.

E.1 UV-Vis Absorption Spectroscopy

UV-Vis absorption spectra were obtained on an Agilent 8453 UV-Visible Spectrophotometer

G1103A. A sampler holder with four open faces was used to enable in-situ irradiation (90°

to the measurement beam). Samples were prepared in a UV Quartz cuvette with a path

length of 10 mm. Solutions of the compounds were prepared in HPLC grade DMSO at a
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concentration of 25 µM.

E.2 Photoswitching

Samples were irradiated with a custom-built irradiation set up using 365 nm (3 × 800 mW

Nichia NCSU276A LEDs, FWHM 9 nm), 405 nm (3 × 770 mW Nichia NCSU119C LEDs,

FWHM 11 nm), 450 nm (3 × 900 mW Nichia NCSC219B-V1 LEDs, FWHM 18 nm), 495

nm (3 × 750 mW Nichia NCSE219B-V1 LEDs, FWHM 32 nm), 525 nm (3 × 450 mW

NCSG219B-V1 LEDs, FWHM 38 nm) and 630 nm (3 × 780 mW Nichia NCSR219B-V1

LEDs, FWHM 16 nm) light sources. Samples were irradiated until no further change in the

UV-vis absorption spectra was observed, indicating that the Photostationary State (PSS)

was reached.

The PSS, and the “predicted pure Z” spectra was determined using UV-vis following the

procedure reported by Fischer [65].

Table 5: ID and SMILES strings for the 11 lead candidates identified for lab measurement.

ID SMILES

1 CCOC1=CC=C(/N=N/C2=C3N=CC(C#N)=C(N)N3N=C2N)C=C1
2 NC1=NN2C(N)=C(C#N)C=NC2=C1/N=N/C3=CC4=C(OCO4)C=C3
3 COC1=CC=C(C2=NC3=C(C(N)=NN3C(N)=C2C#N)/N=N/C4=CC5=C(OCO5)C=C4)C=C1
4 O=S(C1=CC=C(/N=N/C2=C3N=C(C4=CC=CS4)C(C#N)=C(N)N3N=C2N)C=C1)(N)=O
5 CSC1=C(C(N)=NC2=C(C(N)=NN12)/N=N/C3=CC=C(S(N)(=O)=O)C=C3)C#N
6 COC1=CC=C(/N=N/C2=C3N=C(C4=CC=CC=C4)C(C#N)=C(N)N3N=C2N)C=C1
7 [O-]Cl(=O)(=O)=O.CCN(C1=CC=C(/N=N/C2=C([N+]([O-])=O)C(C)=[N+](N2C)C)C=C1)CC
8 CN(C1=CC=C(/N=N/C2=NC(C#N)=C(C#N)N2)C=C1)C
9 CN1C(/N=N/C2=CC=C(NC3=CC=CC=C3)C=C2)=NC4=CC=CC=C14
10 CCN(S(=O)(C1=CC=C(/N=N/C2=C(C3=CC=CC=C3)N=C(N)S2)C=C1)=O)CC
11 O=C1N(C2=CC=CC=C2)N(C)C(C)=C1/N=N/C3=CC=C(N)C(OC)=C3
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F Novelty of Screened Candidates relative to The Photo-

switch Dataset

In Figure 8, for each of the 6 candidates satisfying both performance criteria, we give some

indication as to the novelty of the discovered photoswitch candidates by providing the 3

closest molecules by Tanimoto similarity from the photoswitch dataset.

G Datasheets for Datasets

Following the protocol outlined in [66] we provide a datasheet for our dataset of key transition

wavelengths for azophotoswitches that we release as part of this submission:

G.1 Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there a

specific gap that needed to be filled? Please provide a description.

The primary objective of this dataset is to assimilate a list of experimentally

determined electronic transition wavelengths describing the key π − π∗ and n− π∗

electronic transitions of photoswitchable molecules. At present, there is no

dataset that addresses the needs of synthetic chemists who would ideally like

to know the aforementioned properties of a photoswitch prior to synthesising

it so as to minimise the amount of synthetic effort required. In an imaginary,

and grossly simplified work-flow, a synthetic chemist may be tasked with red-

shifting the π − π∗ transition wavelength of an initial hit molecule for a given

biological application. Faced with countless possible modifications that could be

made to the initial hit, it is likely that a significant effort could be expended

synthesising molecules that do not achieve the desired objective. In an ideal
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Figure 8: All 6 experimentally-tested candidates satisfying both performance criteria together
with the 3 closest molecules by Tanimoto similarity in the photoswitch dataset.
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world, said chemist would utilise TD-DFT to predict the spectral properties of

each and every molecule prior to synthesis, however, as described in the attached

manuscript, this is a slow process. Thus, the central aim of this dataset is to act

as a catalyst for developing machine learning models that accurately predict the

spectral properties of azophotoswitches in an efficient manner and with accuracy

comparable to the state-of-the-art TD-DFT methods. The main manuscript

describes how this aim has been achieved to a certain degree.

Who created this dataset (e.g., which team, research group) and on behalf of which entity

(e.g., company, institution, organization)?

The dataset was manually curated in 2020 by Dr. Aditya Raymond Thawani

whilst pursuing a PhD at the Department of Chemistry, Imperial College London.

Who funded the creation of the dataset? If there is an associated grant, please provide the

name of the grantor and the grant name and number.

No financial support was necessary or received in pursuit of the current work.

G.2 Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people,

countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people

and interactions between them; nodes and edges)? Please provide a description. How many

instances are there in total (of each type, if appropriate)?

Throughout this discussion the reader is reminded that each azophotoswitch
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molecule has two isomeric forms i.e. E and Z. The dataset assimilates experi-

mentally determined characteristics of a series of azophotoswitches. The dataset

includes molecular properties for 405 photoswitch molecules. All molecular struc-

tures are denoted according to the simplified molecular input line entry system

(SMILES). We collate the following properties for the molecules:

Rate of Thermal Isomerization (units of s−1): This is a measure of the thermal

stability of the least stable isomer (Z isomer for non-cyclic azophotoswitches and

E isomer for cyclic azophotoswitches). Measurements are carried out in solution

with the compounds dissolved in the stated solvents.

Photostationary State (units = % of stated isomer): Upon continuous irradia-

tion of an azophotoswitch a steady state distribution of the E and Z isomers is

achieved. Measurements are carried out in solution with the compounds dissolved

in the ‘irradiation solvents’.

pi-pi*/n-pi* wavelength (units = nanometers): The wavelength at which the

pi-pi*/n-pi* electronic transition has a maxima for the stated isomer. Measure-

ments are carried out in solution with the compounds dissolved in the ‘irradiation

solvents’.

DFT-computed pi-pi*/n-pi* wavelengths (units = nanometers): DFT-computed

wavelengths at which the pi-pi*/n-pi* electronic transition has a maxima for the

stated isomer.

Extinction coefficient: The molar extinction coefficient.
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Wiberg Index: A measure of the bond order of the N=N bond in an azophoto-

switch. Bond order is a measure of the ‘strength’ of said bond. This value is

computed theoretically through the analysis of the SCF density calculated at the

PBE0/6-31G** level of theory

Irradiation wavelength: The specific wavelength of light used to irradiate samples

from E -Z or Z -E such that a photo stationary state is obtained. Measurements

are carried out in solution with the compounds dissolved in the ‘irradiation

solvents’.

Does the dataset contain all possible instances or is it a sample (not necessarily random)

of instances from a larger set? If the dataset is a sample, then what is the larger set? Is

the sample representative of the larger set (e.g., geographic coverage)? If so, please describe

how this representativeness was validated/verified. If it is not representative of the larger set,

please describe why not (e.g., to cover a more diverse range of instances, because instances

were withheld or unavailable).

This dataset is intended to act as a reasonable sample of relevant azopho-

toswitches from the literature with a focus on ensuring diversity i.e. inclusion

of more modern azoheteroarenes, cyclic azobenzenes and azobenzenes with a

wide ranging diversity of functional groups (electron withdrawing and donating)

appended on to either or both phenyl rings . Experimental data was collated from

21 literature references. No bias was shown in selecting molecules for inclusion in

the dataset, however, compounds with experimental data of inadequate quality

(e.g. improper experimental setups or missing values) were excluded. No tests

were run to determine representativeness.
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Is any information missing from individual instances? If so, please provide a description,

explaining why this information is missing (e.g., because it was unavailable). This does not

include intentionally removed information, but might include, e.g., redacted text.

No data has been intentionally excluded. The absence of any data is indica-

tive of the fact that said data was not experimentally determined for the given

molecule.

Are there recommended data splits (e.g., training, development/validation, testing)? If so,

please provide a description of these splits, explaining the rationale behind them.

Scaffold splits and chronological splits are not as important in the case of

experimental synthetic chemistry. We are not attempting to produce a model

that achieves predictive accuracy for useful experimental properties across a large

region of chemical space nor would we entertain this notion as being chemically

realistic.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide

a description.

The irradiation solvent in which an experimental measurement was taken may

act as a source of noise in our model formulation. Given that the transition

wavelengths of the molecules in the dataset were measured under different ir-

radiation solvents, we may either treat the choice of irradiation solvent as an

additional categorical input feature to the model or we can absorb the choice of

irradiation solvent into the measurement noise. We elected to take the latter

modelling approach due its practicality in light of missing data on irradiation
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solvents for some molecules in the dataset. Explicitly modelling the irradiation

solvent choice as an input feature would either require excluding many data

points, limiting the size of the training set, or it would require imputation of

the unobserved solvent variable. Imputation methods include substituting the

most frequent solvent in the dataset as the “true” irradiation solvent which would

not be formally correct and may bias the model, or training a separate model

to predict the missing solvent categories which would be highly challenging if

not impossible due to the lack of training data. As such, we adopted the most

consistent formulation of treating the choice of irradiation solvent as a latent

(unobserved) variable that contributes to the transition wavelength value but as

a source of measurement noise rather than as a component of the representation

of the photoswitch molecules.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,

websites, tweets, other datasets)? If it links to or relies on external resources, a) are there

guarantees that they will exist, and remain constant, over time; b) are there official archival

versions of the complete dataset (i.e., including the external resources as they existed at the

time the dataset was created); c) are there any restrictions (e.g., licenses, fees) associated with

any of the external resources that might apply to a future user? Please provide descriptions

of all external resources and any restrictions associated with them, as well as links or other

access points, as appropriate.

All data has been extracted from internationally recognised and renowned

chemical journals. The dataset itself does not rely on access to or link to these

journals or associated papers. References for the papers from which said data

has been extracted are provided.
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G.3 Collection

How was the data associated with each instance acquired? Was the data directly observable

(e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly

inferred/derived from other data (e.g., part-of-speech tags, model-based guesses for age or

language)? If data was reported by subjects or indirectly inferred/derived from other data,

was the data validated/verified? If so, please describe how.

The data was observed as raw text in the aforementioned journal articles and

manually transcribed from said journal articles to the stated dataset.

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a

data protection impact analysis)been conducted? If so, please provide a description of this

analysis, including the outcomes, as well as a link or other access point to any supporting

documentation.

Not applicable.

G.4 Preprocessing/cleaning/labelling

Not applicable.

G.5 Uses

Has the dataset been used for any tasks already? If so, please provide a description.

The dataset was used to predict electronic transitions of a range of syntheti-
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cally accessible azophotoswitches to gauge their properties and decide on which

compounds to synthesise. A candidate molecule was identified with promising

spectral properties, synthesised and experimentally characterised. The experi-

mental characterisation validated the initial prediction. Further work is ongoing

to deploy this compound in a photopharmacological application.

Is there a repository that links to any or all papers or systems that use the dataset? If so,

please provide a link or other access point.

The repository is hosted at https://github.com/Ryan-Rhys/The-Photoswitch-Dataset

What (other) tasks could the dataset be used for?

The dataset may be used to predict the thermal isomerisation properties of

azophotoswitches given that thermal half-life data is tabulated within said dataset.

Is there anything about the composition of the dataset or the way it was collected and

preprocessed/cleaned/labeled that might impact future uses? For example, is there anything

that a future user might need to know to avoid uses that could result in unfair treatment of

individuals or groups (e.g., stereotyping, quality of service issues) or other undesirable harms

(e.g., financial harms, legal risks) If so, please provide a description. Is there anything a

future user could do to mitigate these undesirable harms?

No risks involved or possibility of any harm: the data is contained within

publicly available journal articles.

Are there tasks for which the dataset should not be used? If so, please provide a description.
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There are no associated issues with using this dataset for other tasks. However,

clearly when dealing with the chemical synthesis of any molecules indicated in

this dataset due care should be shown along with a full safety and risk assessment.

G.6 Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,

organization) on behalf of which the dataset was created? If so, please provide a description.

The dataset is publicly available on the internet.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the

dataset have a digital object identifier (DOI)?

The dataset is hosted on GitHub. The DOI is https://zenodo.org/badge/

latestdoi/232307189

When will the dataset be distributed?

The dataset was first released in June 2020.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,

and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU,

and provide a link or other access point to, or otherwise reproduce, any relevant licensing

terms or ToU, as well as any fees associated with these restrictions.

29

https://zenodo.org/badge/latestdoi/232307189
https://zenodo.org/badge/latestdoi/232307189


The crawled data copyright belongs to the authors of the reviews unless other-

wise stated. There is no license, but there is a request to cite the corresponding

paper if the dataset is used:

@articleThawani2020,

author = "Aditya Raymond Thawani, Ryan-Rhys Griffiths, Arian R. Jamasb et al.",

title = "The Photoswitch Dataset: A Molecular Machine Learning Benchmark for the

Advancement of Synthetic Chemistry",

year = "2020",

month = "7",

doi = "10.26434/chemrxiv.12609899.v1"

G.7 Maintenance

Who is supporting/hosting/maintaining the dataset?

Aditya Raymond Thawani and Ryan-Rhys Griffiths.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

art12@ic.ac.uk and rrg27@cam.ac.uk

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete

instances)? If so, please describe how often, by whom, and how updates will be communicated

to users (e.g., mailing list, GitHub)?

All relevant updates to the dataset will be publicised via GitHub and major

revision via Twitter.

30



If others want to extend/augment/build on/contribute to the dataset, is there a mech-

anism for them to do so? If so, please provide a description. Will these contributions be

validated/verified? If so, please describe how. If not, why not? Is there a process for commu-

nicating/distributing these contributions to other users? If so, please provide a description.

Interested parties should contact the original authors about incorporating

updates.

G.8 Repository URL

The dataset repository is hosted at https://github.com/Ryan-Rhys/The-Photoswitch-Dataset.

G.9 Author Statement

We state, as authors that we bear all responsibility in case of violation of rights, etc., and

confirmation of the data license.

G.10 Hosting, Licensing and Maintenance Plan

The dataset is hosted on GitHub under an MIT licence and will be maintained by Aditya

Raymond Thawani and Ryan-Rhys Griffiths.

G.11 Repository DOI

The repository DOI is https://zenodo.org/badge/latestdoi/232307189
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