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1 Signal Derivation

1.1 TRUECARS signal

The TRUECARS signal is finally given by: [1]

S(ωs, T) = 2Im
∫

dtE∗
B(ωs)EN(t − T)eiωs(t−T)⟨Ψ(t)|α|Ψ(t)⟩ (1)

where ”Im” denotes the imaginary part, EN/B is a hybrid narrow (2 femtosecond)/broadband (500
attosecond) Gaussian pulse envelope (Figure 1a), ωs is the central probe frequency, T is the time
delay between the pump and the probe. The relevant time-dependent material quantity for this
signal is the expectation value of the polarizability operator α that can be calculated by

αKL = |ϕR
K⟩αR

KL⟨ϕR
L | (2)

the corresponding expectation value is given by:

⟨Ψ(t)|αKL|Ψ(t)⟩ = ∑
n,m

c∗mcn⟨χm|χn⟩∑
I,J
(am

J )
∗an

I ⟨ϕm
J |αKL|ϕn

I ⟩ (3)

By plugging Eqn 2 into Eqn 3, we get:

⟨Ψ(t)|αKL|Ψ(t)⟩ = ∑
n,m

c∗mcn⟨χm|χn⟩∑
I,J
(am

J )
∗an

I ⟨ϕm
J |ϕR

K⟩αR
KL⟨ϕR

L |ϕn
I ⟩ (4)

We now invoke the approximation (see Eqn 24 in Ref [2])

⟨ϕm
J |ϕR

K⟩αR
KL⟨ϕR

L |ϕn
I ⟩ ≈

1
2

[
⟨ϕm

J |ϕm
K ⟩αm

KL⟨ϕm
L |ϕn

I ⟩+ ⟨ϕm
J |ϕn

K⟩αn
KL⟨ϕn

L|ϕn
I ⟩
]

(5)

Using the orthonormality of the adiabatic basis:

⟨ϕm
J |ϕm

K ⟩ = δm
JK, ⟨ϕn

L|ϕn
I ⟩ = δn

LI (6)

we get:

⟨ϕm
J |ϕR

K⟩αR
KL⟨ϕR

L |ϕn
I ⟩ ≈

1
2

[
⟨ϕm

L |ϕn
I ⟩αm

KLδm
JK + αn

KLδn
LI⟨ϕm

J |ϕn
K⟩

]
(7)

Plugging Eqn 7 into Eqn 4, simplifying the Kronecker deltas, and substituting the index J into I
gives:

⟨Ψ(t)|αKL|Ψ(t)⟩ = 1
2 ∑

m,n
c∗mcn⟨χm|χn⟩

[
(am

K )
∗αm

KL ∑
I

an
I ⟨ϕm

L |ϕn
I ⟩+ an

Lαn
KL ∑

I
(am

I )
∗⟨ϕm

I |ϕn
K⟩

]
(8)

The transition polarizability αKL is calculated from the transition charge density, σKL, where

σKL(q, R) =
∫

dre−iqr ∑
rs

Pij
rs(R)φ∗

r (r, R)φr(r, R), (9)
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using the state charge density matrices Pij
rs, and the basis set of atomic orbitals φr(r). Populations

do not contribute to the signal, since αKK is zero along the the diagonal, and only the transition
polarizabilities (off-diagonal elements) between electronic states are finite. The effective polar-
izability value is computed from the transition charge density at 200 eV. For example, the effec-
tive transition polarizability along z-axis is calculated, αeff(q) = σ(q) at qx = 0, qy = 0, and
qz = |kz| = ωs/c, where ωs is the probe carrier frequency and c is the speed of the light, 137.036
a.u.. The TRUECARS signal is calculated for a randomly oriented ensemble by averaging over the
x, y, and z axes. We shall display the Frequency resolved optical-gating (FROG) spectrogram of
the TRUECARS signal given by Ref[3], by convolving a temporal trace S(t) at a constant ωr, with
a Gaussian gating function Egate(t) with a full width at half-maximum (fwhm) of 0.484 fs,

IFROG(T, ωcoh) =

∣∣∣∣∣
∫ ∞

−∞
dtS(t)Egate(t − T)e−iωcoht

∣∣∣∣∣
2

. (10)

S(T) oscillates with frequencies that correspond to the energy splitting between the relevant vi-
bronic coherences, and the FROG spectrogram reveals the transient energy splitting along the tra-
jectory. The FROG spectrograms are scanned and integrated over negative Raman shift (ωr < 0)
window to capture the evolution of the signal away from ωr = 0.

1.2 Time-resolved X-ray Diffraction

The gas phase (single-molecule) TRXD signal of a sample with N non-interacting molecules reads[4],
[5]

S1(q, t) = N
∫

dt|Ep(t − T)|2⟨σ(−q, t)σ(q, t)⟩ (11)

where,

⟨σ(−q, t)σ(q, t)⟩ = ⟨Ψ(t)|σ(−q, t)σ(q, t)|Ψ(t)⟩ (12)

It can be expanded into

⟨σ(−q, t)σ(q, t)⟩ = ∑
m,n

c∗mcn⟨χm|χn⟩∑
I,J
(am

I )
∗an

J ⟨ϕm
I |σ(−q, t)σ(q, t)|ϕn

J ⟩ (13)

If we use the identity relation (Eqn 5):

⟨σ(−q, t)σ(q, t)⟩ = ∑
m,n

c∗mcn⟨χm|χn⟩∑
I,J
(am

I )
∗an

J × ⟨ϕm
I |σ(−q, t)|ϕR

K⟩⟨ϕR
K |σ(q, t)|ϕn

J ⟩ (14)

A reasonable approximation would be

⟨ϕm
I |σ(−q, t)|ϕR

K⟩⟨ϕR
K |σ(q, t)|ϕn

J ⟩ ≈ (15)

1
2

[
⟨ϕm

I |σ(−q, t)|ϕm
K ⟩⟨ϕm

K |σ(q, t)|ϕn
J ⟩+ ⟨ϕm

I |σ(−q, t)|ϕn
K⟩⟨ϕn

K|σ(q, t)|ϕn
J ⟩
]

(16)
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however, we do not have access for the moment to the mixed matrix elements, ⟨ϕm
K |σ(q, t)|ϕn

J ⟩ or
⟨ϕm

I |σ(−q, t)|ϕn
K⟩. A cruder approximation is

⟨ϕm
I |σ(−q, t)|σ(q, t)|ϕn

J ⟩ ≈
4

∑
K,L=1

⟨ϕm
I |σ(−q, t)|ϕm

L ⟩⟨ϕm
L |ϕn

K⟩⟨ϕn
K|σ(q, t)|ϕn

J ⟩ (17)

which gives

⟨σ(−q, t)σ(q, t)⟩ = ∑
m,n

c∗mcn⟨χm|χn⟩ ∑
I,J,K,L

(am
I )

∗an
J (σ

m
IK)

†Smn
LK σn

KJ (18)

where, ⟨ϕm
I |σ(−q, t)|ϕm

K ⟩ = (σm
IK)

†, ⟨ϕn
K|σ(q, t)|ϕn

J ⟩ = σn
KJ , and ⟨ϕm

L |ϕn
K⟩ = Smn

LK . Neglecting elec-
tronic wavefunction overlap may be inaccurate when the nuclear configuration m and n are far
from each other. However, the nuclear overlap ⟨χm|χn⟩ should go to zero too, hence, the corre-
sponding error should vanish.

2 Loop Diagram Rules

The loop diagram of the optical pump off-resonant X-ray probe signal is shown in Fig. 1 in main
text and Fig. S1. The Diagram rules are as follows:

• Time runs along the loop clockwise from bottom left to bottom right.

• Each field interaction is represented by an arrow, which either points to the right (photon
annihilation and excitation of the molecule) or to the left (photon creation and de-excitation
of the molecule).

• Free evolution periods on the left branch indicate forward propagation in real time, and on
the right branch to backward propagation, respectively.

• The last field interaction is the detected photon mode. In addition, the grey bar represents
the period of free evolution.

3 Supplementary Figures
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Figure S 1: Loop diagrams for single-molecule X-ray scattering process. The shaded area rep-
resents an excitation that prepares the system in S3 state and a field-free nonadiabatic dynamics
during time delay T. We denote modes of the X-ray probe pulse with p and p’, whereas s and s’
represent relevant scattering modes. Elastic scattering process are denoted by black field arrows.
Inelastic processes are denoted by purple arrows. The indices n and m runs over excited states, S1
to S4.
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Figure S 2: The averaged (ensemble) TRUECARS signal calculated with a constant (geometry
independent) transition polarizability operator, which equals to the vibronic coherence magnitude
(Fig. 2f). The panel b and c separately shows TRUECARS signal for S1/S2 and S2/S3 coherence,
respectively.
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Figure S 3: The TRUECARS signal for trajectory 3. The yellow lines indicate the cloning events.
The TRUECARS signal (a) calculated with the expectation value of the transition polarizability op-
erator (c). The TRUECARS signal (b) calculated with a constant (geometry independent) transition
polarizability operator, which equals to the vibronic coherence magnitude (d).
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Figure S 4: Transient frequency-resolved optical-gating spectrogram (eq 10 in ESI) with signal trace
taken at ωr = (a) 0.03, (b) 1.04, and (c) 2.05 eV.
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Figure S 5: Real-space charge densities of COT at S1 minimum geometry. isovalue 0.1/0.005 for
state/transition densities, respectively
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Figure S 6: The optimized geometries (from Ref [6]) of (a) S0 minimum, (b) S1 minimum, (c) CIb,
(d) CIst, (e) SBV, and their two-dimensional TRXD elastic scattering pattern, projected on the xy
plane. Calculated with CASSCF(8e/8o), involving all π and π∗ orbitals at 6-31G* basis set
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Figure S 7: The two-dimensional XRD elastic scattering pattern, projected on the xy (left), xz
(middle), and yz (right) plane for elastic (top), inelastic (middle), and mixed elastic/inelastic (co-
herence, bottom) scattering at (a) S0 minimum and (b) S1 minimum geometry. Calculated with
CASSCF(8e/8o), involving all π and π∗ orbitals at 6-31G* basis set
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