Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

Supporting Information

for

Access to Dialkylated Allylic Stereogenic Centers by Ni-Catalysed Enantioselective Hydrovinylation of Unactivated Alkenes

Jian-Xin Zhang,† Peng-Fei Yang,† and Wei Shu†,*

†Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China

*E-mail: shuw@sustech.edu.cn

Table of Contents

I. General information	S2
II. Preparation of chiral ligands	S2
III. Preparation of olefins and electrophiles	S4
IV. Evaluation of reaction parameters	S12
V. General procedures for enantioselective hydroalkenylations of alkenes	S18
VI. Characterization of products	S19
VII. Mechanistic experiments	S36
VIII. Scale-up reaction and derivatization of coupling products	S39
IX. X-Ray diffraction data of 4q	S43
X. References	S44
XI. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra	S45
XII. HPLC traces	S112

I. General information

General words: NMR spectra were recorded on 400 MHz or 600 MHz Bruker spectrometers. Chemical shifts are given in ppm. The spectra are calibrated to the residual 1H and 13C signals of the solvents. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet-doublet (dd), quintet (quint), septet (sept), multiplet (m), and broad (br). High-resolution electrospray ionization and electronic impact mass spectrometry was performed on a Thermo Scientific Q Exactive mass spectrometer (mass analyzer type: Orbitrap). A mass accuracy ≤ 2 ppm was obtained in the peak matching acquisition mode by using a solution containing 2 <1 PEG200, 2 <1 PPG450, and 1.5 mg NaOAc (all obtained from Sigma-Aldrich, CH-Buchs) dissolved in 100 mL MeOH (HPLC Supra grade, Scharlau, E-Barcelona) as internal standard.

Materials and Methods: Unless otherwise noted, commercial reagents were purchased from Energy-Chemical Limited, J&K, Adamas-beta®, Aladdin, Macklin Reagent, Bidepharm and used directly without further purification. Solvents were purchased in HPLC quality, degassed by purging with nitrogen and dried over activated molecular sieves of appropriate size. Alternatively, they were purged with argon and passed through alumina columns in a solvent purification system (Innovative Technology). Conversion was monitored by thin layer chromatography (TLC) using Merck TLC silica gel 60 F254. Compounds were visualized by UV light at 254 nm and by dipping the plates in an ethanolic vanillin/sulfuric acid solution or an aqueous potassium permanganate solution followed by heating. Flash column chromatography was performed over silica gel (300-400 mesh).

II. Preparation of chiral ligands

(4R,4'R,5R,5'R)-2,2'-(propane-2,2-diyl)bis(4,5-diphenyl-4,5-dihydrooxazole) (L1)

General procedure of preparation of chiral ligand,¹ a mixture of dimethylmalonic acid **L1-S1** (1.32 g, 10.0 mmol) in dry DCM (20.0 mL) was stirred at room temperature, oxalyl chloride (2.8 g, 22.0 mmol, 2.2 equiv) was added, then 1 drop DMF was added. The mixture was stirred at room temperature for 3 h. The solvent was removed under reduced pressure to afford the corresponding crude acid chloride, which was directly used for the next step without further purification.

L1-S2 (obtained in previous step) dissolved in dry DCM (10.0 mL) was added dropwise to a solution of chiral (1*S*,2*R*)-2-amino-1,2-diphenylethan-1-ol **L1-S3** (4.26 g, 20.0 mmol) and Et₃N (4.1 g, 40.0 mmol) in dry DCM (40.0 mL) cooled to 0 °C. Then the reaction mixture was allowed warm to room temperature and stirred for 6 h. The mixture was washed with H₂O, dried with Na₂SO₄, filtered and concentrated in vacuo, which was directly used for the next step without further purification.

The chiral amide L1-S4 (5.2 g, 10.0 mmol) was dissolved in CHCl₃ (50.0 mL), and the solution was cooled to 0 °C. A solution of SOCl₂ (4.8 g, 40.0 mmol, 4.0 equiv) was added dropwise. The reaction mixture was stirred at 70 °C for 6 h, then cooled to room temperature. The reaction mixture was quenched by H₂O, then extracted with DCM. Then solvent was removed under reduced pressure to afford the corresponding crude product, which was directly used for the next step without further purification. Then dissolved in MeOH (40.0 mL), and KOH (2.3 g, 40.0 mmol, 4.0 equiv) was added. The suspension was stirred at reflux for 6 h, When the reaction was complete, H₂O was added, and the mixture was extracted with DCM. The combined organic phase was washed with brine, dried with anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography (PE: EtOAc = 6: 1) to afford chiral ligand L1 as a white solid (3.1 g, 63% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.47 – 7.22 (m, 20H), 5.36 (d, J = 7.6 Hz, 2H), 5.16 (d, J = 7.6 Hz, 2H), 1.93 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 169.8, 142.1, 140.5, 128.9, 128.9, 128.5, 127.8, 126.8, 126.0, 89.9, 78.7, 39.5, 25.0.

HRMS (ESI-TOF) Calcd for C₃₃H₃₁N₂O₂ (M+H)⁺ 487.2380. Found 487.2374.

(4R,4'R)-2,2'-(propane-2,2-diyl)bis(5,5-dimethyl-4-phenyl-4,5-dihydrooxazole) (L2)

General procedure of preparation of chiral ligand,² a mixture of dimethylmalonic acid **L2-S1** (1.32 g, 10.0 mmol, 1.0 equiv) in dry DCM (20.0 mL) was stirred at room temperature, oxalyl chloride (2.8g, 22.0 mmol, 2.2 equiv) was added, then 1 drop DMF was added. The mixture was stirred at room temperature for 3 h. The solvent was removed under reduced pressure to afford the corresponding crude acid chloride, which was directly used for the next step without further purification.

L2-S2 (obtained in previous step) dissolved in dry DCM (10.0 mL) was added dropwise to a solution of chiral **L2-S3** (4.26 g, 20.0 mmol) and Et₃N (4.1 g, 40.0 mmol) in dry DCM (40.0 mL) cooled to 0 °C. Then the reaction mixture was allowed warm to room temperature and stirred for 6 h. The mixture was washed

with H₂O, dried with Na₂SO₄, filtered and concentrated in vacuo, which was directly used for the next step without further purification.

The chiral amide **L2-S4** (5.2 g, 10.0 mmol) was dissolved in CHCl₃ (50.0 mL), and the solution was cooled to 0 °C. A solution of SOCl₂ (4.8 g, 40.0 mmol, 4.0 equiv) was added dropwise. The reaction mixture was stirred at 70 °C for 6 h, then cooled to room temperature. The reaction mixture was quenched by H₂O, then extracted with DCM. Then solvent was removed under reduced pressure to afford the corresponding crude product, which was directly used for the next step without further purification. Then dissolved in MeOH (40.0 mL), and KOH (2.3 g, 40.0 mmol, 4.0 equiv) was added. The suspension was stirred at reflux for 6 h. When the reaction was complete, H₂O was added, and the mixture was extracted with DCM. The combined organic phase was washed with brine, dried with anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography (PE: EtOAc = 6: 1) to afford chiral ligand **L2** as a white solid (1.97 g, 49% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.30 – 7.07 (m, 10H), 4.77 (s, 2H), 1.61 (s, 6H), 1.49 (s, 6H), 0.79 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 169.4, 139.0, 128.2, 127.5, 127.4, 78.0, 39.0, 29.2, 24.1, 23.8. HRMS (ESI-TOF) Calcd for $C_{25}H_{31}N_2O_2(M+H)^+$ 391.2380. Found 391.2375.

III. Preparation of olefins and electrophiles

General procedure (A) for preparation of terminal olefins. To a solution of vinylacetic acid (5.0mmol,

1.0 equiv) in dry CH₂Cl₂ was added one drop DMF, then oxalyl chloride (1.0 equiv) in dry CH₂Cl₂ was added dropwise to the above solution at 0 °C. The resulting mixture was stirred at room temperature for 3 h. Then the resulting solution was added dropwise to a solution of amine (1.0 equiv) and Et₃N (2.5 equiv) in dry CH₂Cl₂ at 0 °C, the mixture was then stirred at room temperature for 3 h. The mixture was diluted with CH₂Cl₂ and washed with water and brine. The organic phase was dried over anhydrous Na₂SO₄, filtered, and purified by flash chromatography to afford the desired olefins.

General procedure (B) for preparation of internal olefins. Acid (S1) was prepared following the literature procedure. To a solution of aldehyde (10.0 mmol, 1.0 equiv) and malonic acid (2.08 g, 20.0 mmol, 2.0 equiv) in DMSO was added piperidine (85.0 mg, 1.0 mmol, 10 mol%) and acetic acid (60.0 mg, 1.0 mmol, 10 mol%). The resulting mixture was heated to 100 °C and stirred for overnight. Then the mixture

was cooled to room temperature, diluted with water and ethyl acetate. The organic phase was washed with brine, dried with anhydrous Na₂SO₄, filtered, and purified by flash chromatography to afford acid (S1).

To a solution of β , γ -unsaturated carboxylic acid (5.0 mmol, 1.0 equiv.) in dichloromethane (10.0 mL) were added 1-ethyl-3-(3-(dimethylamino) propyl)-carbodiimide hydrochloride (EDCI) (1.4 g, 7.5 mmol, 1.5 equiv), DMAP (61.0 mg, 0.50 mmol, 0.1 equiv) and amine (5.5 mmol, 1.1 equiv). The reaction was stirred at room temperature for 12 h. After completion of the reaction, DCM (50.0 mL) was added to the mixture and washed with 1% HCl (10.0 mL) and brine (20.0 mL). The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with EtOAc/PE mixture as eluent.

(E)-N-phenylpent-3-enamide (1a)

Following the GP-B, **1a** was purified by flash chromatography (PE/EA = 5: 1), white solid (0.77 g, 88% yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.44 – 7.43 (m, 2H), 7.32 (s, 1H), 7.25 – 7.23 (m, 2H), 7.04 – 7.02 (m, 1H), 5.69 - 5.65 (m, 1H), 5.59 - 5.54 (m, 1H), 3.03 (d, J = 7.1 Hz, 2H), 1.71 (d, J = 6.3 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 169.6, 137.9, 132.1, 129.1, 124.5, 123.6, 119.9, 41.8, 18.2.

HRMS (**ESI-TOF**) Calcd for C₁₁H₁₄NO (M+H)⁺ 176.1070. Found 176.1069.

(E)-N-(4-acetylphenyl)pent-3-enamide (1b)

Following the GP-B, **1b** was purified by flash chromatography (PE/EA = 5: 1), white solid (0.79 g, 73% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.01 (s, 1H), 7.90 (d, J = 8.8 Hz, 2H), 7.63 (d, J = 8.8 Hz, 2H), 5.81 – 5.67 (m, 1H), 5.67 – 5.57 (m, 1H), 3.12 (d, J = 6.9 Hz, 2H), 2.55 (s, 3H), 1.74 (d, J = 6.1 Hz, 3H).

¹³C **NMR** (101 MHz, Chloroform-*d*) δ 197.2, 170.1, 142.4, 132.8, 131.9, 129.7, 123.0, 118.9, 41.6, 26.5, 18.1.

HRMS (**ESI-TOF**) Calcd for $C_{13}H_{16}NO_2(M+H)^+218.1176$. Found 218.1174.

(E)-N-(4-(trifluoromethyl)phenyl)pent-3-enamide (1c)

Following the GP-B, **1c** was purified by flash chromatography (PE/EA = 5: 1), white solid (0.95 g, 78% yield).

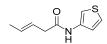
¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.79 (s, 1H), 7.54 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H), 5.65 – 5.58 (m, 1H), 5.55 – 5.47 (m, 1H), 3.02 (d, J = 6.4 Hz, 2H), 1.72 – 1.56 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 170.2, 141.0, 132.4, 128.3, 126.3 (q, *J* = 3.6 Hz), 124.2 (q, *J* = 272.7 Hz), 123.1, 119.5, 41.7, 18.2.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -62.14 (s, 3F).

HRMS (**ESI-TOF**) Calcd for C₁₂H₁₃F₃NO (M+H)⁺ 244.0944. Found 244.0941.

(E)-N-(4-methoxyphenyl)pent-3-enamide (1d)

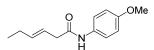

Following the GP-B, **1d** was purified by flash chromatography (PE/EA = 5: 1), white solid (0.71 g, 69% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.36 – 7.26 (m, 3H), 6.77 (d, J = 9.0 Hz, 2H), 5.73 – 5.60 (m, 1H), 5.60 – 5.50 (m, 1H), 3.71 (s, 3H), 3.00 (d, J = 6.9 Hz, 2H), 1.69 (d, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 169.5, 156.6, 131.8, 131.0, 123.7, 121.9, 114.2, 55.6, 41.5, 18.2.

HRMS (ESI-TOF) Calcd for $C_{12}H_{16}NO_2(M+H)^+$ 206.1176. Found 206.1175.

(E)-N-(thiophen-3-yl)pent-3-enamide (1e)


Following the GP-B, **1e** was purified by flash chromatography (PE/EA = 5: 1), white solid (0.62 g, 71% yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.29 (s, 1H), 7.47 – 7.46 (m, 1H), 7.11 – 7.10 (m, 1H), 6.95 – 6.94 (m, 1H), 5.64 - 5.55 (m, 1H), 5.55 - 5.43 (m, 1H), 2.99 (d, J = 6.9 Hz, 2H), 1.64 (d, J = 6.1 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-d) δ 169.5, 135.7, 131.3, 124.4, 123.4, 121.3, 110.4, 40.9, 18.1.

HRMS (ESI-TOF) Calcd for C₉H₁₂NOS (M+H)⁺ 182.0634. Found 182.0633.

(E)-N-(4-methoxyphenyl)hex-3-enamide (1f)

Following the GP-B, **1f** was purified by flash chromatography (PE/EA = 5: 1), white solid (0.75 g, 68% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.67 (s, 1H), 7.39 (d, J = 9.0 Hz, 2H), 6.82 (d, J = 9.0 Hz, 2H), 5.80 – 5.65 (m, 1H), 5.65 – 5.51 (m, 1H), 3.76 (s, 3H), 3.06 (d, J = 7.0 Hz, 2H), 2.12 – 2.05 (m, 2H), 1.01 (t, J = 7.5 Hz, 3H).

¹³C **NMR** (101 MHz, Chloroform-*d*) δ 169.8, 156.4, 138.3, 131.1, 121.9, 121.6, 114.1, 55.5, 41.3, 25.7, 13.6.

HRMS (ESI-TOF) Calcd for C₁₃H₁₈NO₂ (M+H)⁺ 220.1332. Found 220.1330.

Ethyl (E)-4-(oct-3-enamido)benzoate (1g)

Following the GP-B, **1g** was purified by flash chromatography (PE/EA = 5: 1), white solid (1.0 g, 72% yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.02 (d, J = 8.6 Hz, 2H), 7.62 – 7.60 (m, 3H), 5.79 – 5.75 (m, 1H), 5.66 – 5.61 (m, 1H), 4.40 – 4.36 (q, J = 7.1 Hz, 2H), 3.15 (d, J = 7.1 Hz, 2H), 2.14 (q, J = 7.1 Hz, 2H), 1.46 – 1.34 (m, 7H), 0.94 (t, J = 7.1 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 169.8, 166.3, 142.0, 138.1, 130.9, 126.1, 122.0, 118.7, 61.0, 41.9, 32.4, 31.4, 22.4, 14.5, 14.0.

HRMS (**ESI-TOF**) Calcd for $C_{17}H_{24}NO_3 (M+H)^+ 290.1751$. Found 290.1752.

(Z)-N-phenylhex-3-enamide (1h)

Following the GP-A, **1h** was purified by flash chromatography (PE/EA = 5: 1), white solid (0.83 g, 88% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.66 (s, 1H), 7.43 (d, J = 8.0 Hz, 2H), 7.22 (t, J = 8.0 Hz, 2H), 7.03 – 6.99 (m, 1H), 5.80 – 5.61 (m, 1H), 5.61 – 5.47 (m, 1H), 3.09 (d, J = 7.5 Hz, 2H), 2.07 – 2.00 (m, 2H), 0.94 (t, J = 7.5 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*)) δ 169.4, 137.9, 137.5, 129.0, 124.4, 120.9, 119.9, 36.1, 20.8, 14.0. HRMS (ESI-TOF) Calcd for $C_{12}H_{16}NO$ (M+H)⁺ 190.1227. Found 190.1226.

(E)-N,5-diphenylpent-3-enamide (11)

Following the GP-B, 11 was purified by flash chromatography (PE/EA = 5: 1), white solid (0.76 g, 61% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.54 (s, 1H), 7.38 – 7.36 (m, 2H), 7.23 – 7.17 (m, 4H), 7.14 – 7.09 (m, 3H), 7.01 – 6.97 (m, 1H), 5.85 – 5.70 (m, 1H), 5.64 – 5.56 (m, 1H), 3.32 (d, J = 6.8 Hz, 2H), 3.02 (d, J = 7.4 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 169.5, 140.0, 137.9, 135.6, 129.0, 128.7, 128.6, 126.4, 124.4, 123.9, 119.9, 41.4, 39.1.

HRMS (ESI-TOF) Calcd for C₁₇H₁₈NO (M+H)⁺ 252.1383. Found 252.1381.

Methyl (E)-8-oxo-8-(phenylamino)oct-5-enoate (1j)

$$MeO_2C$$

Following the GP-B, **1j** was purified by flash chromatography (PE/EA = 5: 1), white solid (0.81 g, 62% yield).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.55 – 7.51 (m, 3H), 7.32 – 7.26 (m, 2H), 7.11 – 7.09 (m, 1H), 5.70 – 5.62 (m, 2H), 3.67 (s, 3H), 3.11 (d, J = 5.4 Hz, 2H), 2.35 (t, J = 7.3 Hz, 2H), 2.15 – 2.13 (m, 2H), 1.79 – 1.74 (m, 2H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 174.1, 169.4, 138.0, 135.8, 129.1, 124.4, 123.6, 120.0, 51.7, 41.7, 33.5, 32.0, 24.3.

HRMS (**ESI-TOF**) Calcd for C₁₅H₂₀NO₃ (M+H)⁺ 262.1438. Found 262.1435.

2-Ethyl-N-phenylbut-3-enamide (11)

Following the GP-A, 11 was purified by flash chromatography (PE/EA = 5: 1), white solid (0.73 g, 77% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) 7.55 - 7.47 (m, 2H), 7.41 - 7.27 (m, 3H), 7.14 - 7.06 (m, 1H), 6.10 - 5.89 (m, 1H), 5.45 - 5.15 (m, 2H), 3.21 - 3.09 (m, 1H), 1.36 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) 172.2, 138.2, 138.0, 129.0, 124.4, 119.9, 117.6, 46.5, 16.8.

HRMS (**ESI-TOF**) Calcd for C₁₂H₁₄NO (M+H)⁺ 176.1070. Found 176.1073.

General procedure (C) for preparation of γ -substituted allylic amide.³ To a 250-mL round bottomed flask was charged with malonic acid (2.1 g, 20.0 mmol, 2.0 equiv), piperidine (85.0 mg, 1.0 mmol, 10 mol%), acetic acid (60.0 mg, 1.0 mmol, 10 mol%), and aldehyde hydrocarbon (10.0 mmol, 1.0 equiv) in DMSO (20.0 mL). After the reaction mixture was stirred at 40 °C for 2 h, the solution was heated in an oil bath at 100 °C. A rapid evolution of carbon dioxide was observed. Heating was maintained until the evolution of carbon dioxide ceased. The solution was cooled to room temperature, poured into cold water (50.0 mL), and extracted with diethyl ether (3 × 20.0 mL). The combined organic phase was washed with water (30.0 mL), brine (30.0 mL), and then dried over anhydrous MgSO₄, After removal of the solvent, the crude β,γ-unsaturated acid S1was used for the next step without further purification.

To a solution of the crude acid **S1** in toluene (30.0 mL) was slowly added diphenylphosphoryl azide (DPPA) (2.75 g, 10.0 mmol) followed by addition of Et₃N (1.12 g, 11.0 mmol). The resulting solution was stirred at 80 °C for 2 h. After cooling to room temperature, 1 M NaOH (20.0 mL) was added and the mixture was allowed to stir at rt for 2 h. The organic phase was then separated and concentrated. The residue was dissolved in CH₂Cl₂ (20.0 mL) followed by sequential addition of RCO₂H (10.0 mmol), EDCI (1.92 g, 10.0 mmol, 1.0 equiv) and DMAP (1.22 g, 1.0 mmol, 1.0 equiv) at 0 °C. The resulting mixture was allowed to warm to room temperature and stir at this temperature for additional 2 h. The reaction was then quenched by saturated aq. NaHCO₃ (50 mL) and extracted with diethyl ether twice (2 × 50.0 mL). The combined

ethereal solution was dried over anhydrous MgSO₄. After removal of the solvent, the residue was purified by column chromatography on silica using PE/EtOAc as the eluent to afford the corresponding γ-substituted allylic amide. The yield is based on RCO₂H.

(E)-N-(hept-2-en-1-yl)benzamide (1n)

Following the GP-C, **1n** was purified by flash chromatography (PE/EA = 5: 1), white solid (1.52 g, 70% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 – 7.71 (m, 2H), 7.52 – 7.45 (m, 1H), 7.47 – 7.39 (m, 2H), 6.20 (s, 1H), 5.73 – 5.65 (m, 1H), 5.59 – 5.47 (m, 1H), 4.01 (t, J = 5.8 Hz, 2H), 2.04 (q, J = 7.0 Hz, 2H), 1.39 – 1.28 (m, 4H), 0.89 (t, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.4, 134.8, 134.4, 131.5, 128.7, 127.0, 125.5, 42.1, 32.1, 31.4, 22.3, 14.0.

HRMS (**ESI-TOF**) Calcd for C₁₄H₂₀NO (M+H)⁺ 218.1540. Found 215.1538.

General procedure D for the preparation of E-alkenyl bromides

Following literature procedure,⁴ a round-bottom flask was charged with cinnamic acid (10 mmol, 1.0 equiv), catalytic amounts of Et₃N (1.0 mmol, 101.0 mg) and DCM (50.0 mL). The mixture was stirred at room temperature for 10 minutes before the addition of NBS (4.3 g, 24.0 mmol, 1.2 equiv). Then, the mixture was stirred for 5 min at room temperature and monitored by TLC analysis. After total conversion of the substrate, the solvent was evaporated and the alkenyl bromide product was purified by silica gel chromatography (petroleum ether: ethyl acetate = 100: 1).

General procedure E for the preparation of E-alkenyl bromides from aldehydes and ketones

Following literature procedure,⁴ to a flame-dried round-bottom flask was added aldehyde (10.0 mmol, 1.0 equiv), CBr₄ (15.0 mmol, 1.5 equiv), and CH₂Cl₂ (40.0 mL). The flask was cooled to 0 °C, after which a solution of PPh₃ (30.0 mmol, 3.0 equiv) in CH₂Cl₂ (30.0 mL) was added dropwise via addition funnel over 30 min. The solution was stirred at 0 °C for 1 h. About half the volume of CH₂Cl₂ was then removed under reduced pressure. Hexane (50.0 mL) was added, and phosphine oxide was precipitated out. After filtration and evaporation of the solvent, the residue was dissolved in hexane (30.0 mL) which led to further precipitation. Filtration and evaporation of the solvent afforded the crude dibromide which was directly used in the next step.

To a solution of the crude dibromide (~ 5.0 mmol, 1 equiv) and NEt₃ (15.0 mmol, 3.0 equiv) in DMF (5 mL) was added diethyl phosphite (15.0 mmol, 3.0 equiv). The solution was stirred overnight at room temperature. Water (15.0 mL) was added to the mixture, which was extracted with hexane (2 × 25.0 mL). The combined organic phases were washed with an aqueous solution of HCl (1 M, 10.0 mL), dried over Na₂SO₄, filtered and concentrated. The crude residue was purified by silica gel chromatography.

$$\begin{array}{c|c} & CBr_4 \ (2.0 \ \text{equiv}) \\ \hline O \\ R^1 \\ \hline R^2 \\ \hline PPh_3 \ (4.0 \ \text{equiv}) \\ \hline toluene, 80 \ ^{\circ}C \\ \hline \end{array} \begin{array}{c} R^2 \\ \hline R^1 \\ \hline \end{array} \begin{array}{c} Diethyl \ phosphite \ (3.0 \ \text{equiv}) \\ \hline Et_8N \ (3.0 \ \text{equiv}) \\ \hline DMF, 0 \ ^{\circ}C \ \text{to rt} \\ \hline \end{array} \begin{array}{c} R^2 \\ \hline R^1 \\ \hline \end{array}$$

Following literature procedure, ⁴ A Schlenk flask was charged with ketone (5.0 mmol), CBr₄ (10.0 mmol, 2.0 equiv) and PPh₃ (20.0 mmol, 4.0 equiv). After degassing and refilling with N₂ twice, toluene (35.0 mL) was added through syringe. The flask was sealed and heated at 80 °C overnight. After cooling to room temperature, the mixture was filtered through a pad of silica gel and washed with hexanes. The solvent was then under reduced pressure and the product was purified by silica gel chromatography.

To a solution of the crude dibromide (~ 5.0 mmol, 1 equiv) and NEt₃ (15.0 mmol, 3.0 equiv) in DMF (5 mL) was added diethyl phosphite (15.0 mmol, 3.0 equiv). The solution was stirred overnight at room temperature. Water (15.0 mL) was added to the mixture, which was extracted with hexane (2 × 25.0 mL). The combined organic phases were washed with an aqueous solution of HCl (1 M, 10.0 mL), dried over Na₂SO₄, filtered and concentrated. The crude residue was purified by silica gel chromatography.

(E)-(4-(2-bromovinyl)phenyl)(methyl)sulfane (2c)

Following the GP-E, 2c was purified by flash chromatography (PE), white solid (1.52 g, 70% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.15 – 7.07 (m, 4H), 6.96 (d, J = 14.0 Hz, 1H), 6.64 (d, J = 14.0 Hz, 1H), 2.39 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 139.0, 136.6, 132.8, 126.61, 126.56, 105.9, 15.7.

HRMS (**ESI-TOF**) Calcd for (M+H)⁺C₉H₁₀BrS 228.9681. Found 228.9673.

(E)-1-(2-bromovinyl)-2-methoxybenzene (2i)

Following the GP-E, 2i was purified by flash chromatography (PE), white solid (1.52 g, 70% yield).

¹H NMR (400 MHz, Chloroform-d) δ 7.27 – 7.01 (m, 3H), 6.81 – 6.74 (m, 3H), 3.72 (s, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 156.6, 133.1, 129.4, 128.0, 124.8, 120.8, 111.0, 108.0, 55.4.

HRMS (**ESI-TOF**) Calcd for (M+H)⁺C₉H₁₀BrO 219.9910. Found 219.9907.

(E)-1-bromo-3-(2-bromovinyl)benzene (2j)

Following the GP-D, 2j was purified by flash chromatography (PE), white solid (1.52 g, 70% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.50 – 7.37 (m, 2H), 7.23 – 7.17 (m, 2H), 7.03 (d, *J* = 14.0 Hz, 1H), 6.80 (d, *J* = 14.0 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 137.9, 135.8, 131.2, 130.3, 129.0, 124.7, 122.9, 108.2.

HRMS (**ESI-TOF**) Calcd for (M+H)⁺ C₈H₇Br⁸¹Br 262.8889. Found 262.8885.

(E)-1-(2-bromovinyl)-2-fluorobenzene (2l)

Following the GP-E, 21 was purified by flash chromatography (PE), white solid (1.52 g, 70% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.28 – 7.16 (m, 2H), 7.11 (d, J = 14.0 Hz, 1H), 7.05 – 6.94 (m, 2H), 6.85 (d, J = 14.0 Hz, 1H).

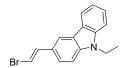
¹³C **NMR** (101 MHz, Chloroform-*d*) δ 159.9 (d, J = 250.7 Hz), 130.6 (d, J = 2.4 Hz), 129.7 (d, J = 8.5 Hz), 128.1 (d, J = 3.4 Hz), 124.5 (d, J = 3.6 Hz), 123.8 (d, J = 12.6 Hz), 116.2 (d, J = 21.9 Hz), 109.8 (d, J = 8.0 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -116.25 - -116.19 (m, 1F).

HRMS (**ESI-TOF**) Calcd for (M+H)⁺ C₈H₇BrF 200.9710. Found 200.9706.

(E)-1-(2-bromovinyl)-3,5-bis(trifluoromethyl)benzene (2m)

Following the GP-E, **2m** was purified by flash chromatography (PE), white solid (1.52 g, 70% yield).


¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.69 (s, 1H), 7.63 (s, 2H), 7.08 (d, J = 14.0 Hz, 1H), 6.93 (d, J = 14.0 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 138.0, 134.7, 132.5 (q, J = 33.4 Hz), 126.1 (d, J = 3.3 Hz), 123.2 (q, J = 272.7 Hz), 121.8 (p, J = 3.9 Hz), 111.3.

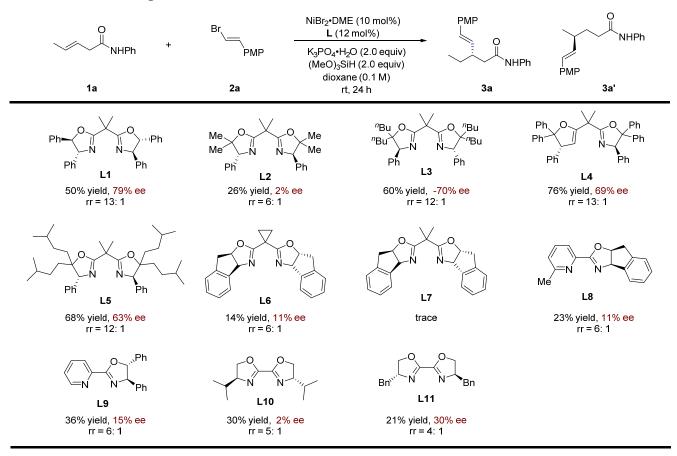
¹⁹**F NMR** (377 MHz, Chloroform-*d*) δ -63.2 (s, 6F).

HRMS (**ESI-TOF**) Calcd for (M+H)⁺C₁₀H₆BrF₆ 318.9552. Found 318.9550.

(E)-3-(2-bromovinyl)-9-ethyl-9H-carbazole (2p)

Following the GP-E, **2p** was purified by flash chromatography (PE), white solid (1.52 g, 70% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.95 (d, J = 7.9 Hz, 1H), 7.87 (s, 1H), 7.38 – 7.34 (m, 1H), 7.30 – 7.10 (m, 5H), 6.61 (d, J = 13.9, 1H), 4.19 (q, J = 7.2 Hz, 2H), 1.28 (t, J = 7.2 Hz, 3H).


¹³C NMR (101 MHz, Chloroform-*d*) δ 140.5, 139.9, 138.0, 127.2, 126.1, 123.9, 123.3, 122.9, 120.6, 119.3, 118.5, 108.82, 108.80, 103.3, 37.7, 13.9.

HRMS (**ESI-TOF**) Calcd for (M+H)⁺ C₁₆H₁₅BrN 300.0383. Found 300.0378.

IV. Evaluation of reaction parameters

General procedure: In a nitrogen-filled glovebox, [Ni] (10 mol%) and **Ligand** (12 mol%) were dissolved in solvent in Schlenk tube with screw-cap equipped with a magnetic stirrer. The mixture was stirred at room temperature for 15 min, then alkene **1a** (0.1 mmol, 1.0 equiv), alkenyl bromides **2a**, and base were sequentially added, then silane was added dropwise. The resulting mixture was stirred at room temperature for 24 h. Then the reaction mixture was diluted with saturated NH₄Cl (aqueous solution, 0.5 mL) and EtOAc (3.0 mL). Dodecane (23.0 μ L, 0.1 mmol) was added as an internal standard and a small aliquot of the organic phase was removed for GC analysis to confirm yield and regio-isomeric ratio. For the remaining mixture, the aqueous phase was extracted with EtOAc (2 × 3.0 mL). The combined organic phase was dried over Na₂SO₄, and the volatiles were removed to afford the crude product. Then, the mixture was purified by PTLC and the enantiomeric excess was determined by HPLC analysis.

Table S1. Effect of ligands^a

^aThe reaction was conducted using **1a** (0.1 mmol), **2a** (0.2 mmol), NiBr₂·DME (0.01 mmol), ligand (0.012 mmol), K₃PO₄·H₂O (0.2 mmol), (MeO)₃SiH (0.2 mmol) in dioxane (1.0 mL) under N₂ atmosphere at room temperature for 24 h. Yields were determined by GC using *n*-dodecane as the internal standard. Enantiomeric excess (ee) was determined by chiral-stationary-phase HPLC analysis. rr = ratio of regioisomers (**3a**: **3a**') was determined by GC.

Table S2. Effect of solvent

entry	solvent	yield of $3a$ (ee) ^a	rr^b
1	THF	40% yield (76% ee)	7: 1
2	2-Me-THF	60% yield (76% ee)	7: 1
3	THP	63% yield (69% ee)	7: 1
4	1,3-dioxolane	36% yield (80% ee)	8: 1
5	Et ₂ O	32% yield (60% ee)	5: 1
6	DME	45% yield (81% ee)	7: 1
7	Diglyme	47% yield (80% ee)	7: 1
3	PhCF ₃	trace	
9	DMA	trace	
10	DMSO	trace	
1	Hexane	trace	

^aThe reaction was conducted using **1a** (0.1 mmol), **2a** (0.2 mmol), NiBr₂·DME (10 mol%), **L1** (12 mol%), Cs₂CO₃ (0.2 mmol), (MeO)₃SiH (0.2 mmol) in dioxane (2.0 mL) under N₂ atmosphere at room temperature for 24 h. Yields were determined by GC using *n*-dodecane as the internal standard. Enantiomeric excess (ee) was determined by chiral-stationary-phase HPLC analysis. ^brr = ratio of regioisomers (**3a**: **3a**²) was determined by GC.

Table S3. Effect of co-solvent

entry	co-solvent	yield of 3a (ee) ^a	rr^b
1	dioxane: THF= 3: 1	45% yield (82% ee)	10: 1
2	dioxane: 2-Me-THF= 3: 1	75% yield (83% ee)	11: 1
3	dioxane: THP= 3: 1	72% yield (82% ee)	10: 1
4	dioxane: Et ₂ O= 3: 1	52% yield (82% ee)	11: 1
5	dioxane: 1,3-dioxolane= 3: 1	72% yield (82% ee)	11: 1
6	dioxane: DME= 3: 1	71% yield (85% ee)	10: 1
7	dioxane: diglyme= 3: 1	76% yield (83% ee)	10: 1
8	dioxane: triethyleneglycol dimethyl ether= 3: 1	67% yield (82% ee)	9: 1
9	dioxane: isopropyl ether= 3: 1	58% yield (84% ee)	11: 1
10	dioxane: ethylene glycol diethyl ether= 3: 1	73% yield (82% ee)	10: 1
11	dioxane: tetraethylene glycol dimethyl ether= 3: 1	43% yield (79% ee)	12: 1
12	dioxane: PhCF ₃ = 3: 1	55% yield (82% ee)	12: 1
13	dioxane: DMA= 3: 1	32% yield (74% ee)	8: 1
14	dioxane: toluene= 3: 1	40% yield (82% ee)	12: 1
15	dioxane: $ACN = 3: 1$	10% yield (33% ee)	7: 1
16	dioxane: t-BuOH= 3: 1	73% yield (79% ee)	11: 1
17	dioxane: DCE= 3: 1	31% yield (64% ee)	10: 1
18	dioxane: DCM= 3: 1	trace	
19	dioxane: hexane= 3: 1	50% yield (85% ee)	11: 1

^aThe reaction was conducted using **1a** (0.1 mmol), **2a** (0.2 mmol), NiBr₂·DME (0.01 mmol), **L1** (0.012 mmol), Cs₂CO₃ (0.2 mmol), (MeO)₃SiH (0.2 mmol) in co-solvent (3: 1, 2.0 mL) under N₂ atmosphere at room temperature for 24 h. Yields were determined by GC using n-dodecane as the internal standard. Enantiomeric excess (ee) was determined by chiral-stationary-phase HPLC analysis. ^brr = ratio of regioisomers (**3a**: **3a**') was determined by GC.

Table S4. Effect of co-solvent ratio

Entry	ratio of co-solvent	yield of $3a$ (ee) ^a	rr^b
1	dioxane: DME= 1: 1	45% yield (88% ee)	10: 1
2	dioxane: DME= 3: 1	55% yield (<mark>90% ee</mark>)	12: 1
3	dioxane: DME= 6: 1	36% yield (90% ee)	12: 1
4	dioxane: DME= 9: 1	21% yield (84% ee)	16: 1

^aThe reaction was conducted using **1a** (0.1 mmol), **2a** (0.2 mmol), NiBr₂·DME (0.01 mmol), **L1** (0.012 mmol), Cs₂CO₃ (0.2 mmol), (MeO)₃SiH (0.2 mmol) in dioxane: DME (X: 1, 2.0 mL) under N₂ atmosphere at 0 °C for 24 h. Yields were determined by GC using *n*-dodecane as the internal standard. Enantiomeric excess (ee) was determined by chiral-stationary-phase HPLC analysis. ^brr = ratio of regioisomers (**3a**: **3a**') was determined by GC.

Table S5. Effect of base

entry	base	yield of $3a$ (ee) ^a	rr^b
1	Na ₂ CO ₃	71% yield (85% ee)	10: 1
2	NaHCO ₃	22% yield (84% ee)	9: 1
3	K ₂ CO ₃	24% yield (86% ee)	12: 1
4	KHCO ₃	30% yield (86% ee)	11: 1
5	K ₃ PO ₄ ·H ₂ O	84% yield (91% ee)	10: 1

^aThe reaction was conducted using **1a** $\overline{(0.1 \text{ mmol})}$, **2a** $\overline{(0.2 \text{ mmol})}$, NiBr₂·DME $\overline{(0.01 \text{ mmol})}$, **L1** $\overline{(0.012 \text{ mmol})}$, base $\overline{(0.2 \text{ mmol})}$, (MeO)₃SiH $\overline{(0.2 \text{ mmol})}$ in dioxane: DME (3: 1, 2.0 mL) under N₂ atmosphere at 0 °C for 48 h. Yields were determined by GC using *n*-dodecane as the internal standard. Enantiomeric excess (ee) was determined by chiral-stationary-phase HPLC analysis. ^brr = ratio of regioisomers (**3a**: **3a**') was determined by GC.

Table S6. Effect of concentration

entry	concentration	yield of $3a$ (ee) ^a	rr^b
1	0.1 M	80% yield (88% ee)	9: 1
2	0.067 M	80% yield (90% ee)	11: 1
3	0.05 M	84% yield (<mark>91% ee</mark>)	10: 1
4	0.04 M	67% yield (90% ee)	12: 1
5	0.033 M	60% yield (90% ee)	13: 1

^aThe reaction was conducted using **1a** (0.1 mmol), **2a** (0.2 mmol), NiBr₂·DME (0.01 mmol), **L1** (0.012 mmol), K₃PO₄·H₂O (0.2 mmol), (MeO)₃SiH (0.2 mmol) in dioxane: DME (3: 1, X M) under N₂ atmosphere at 0 °C for 48 h. Yields were determined by GC using *n*-dodecane as the internal standard. Enantiomeric excess (ee) was determined by chiral-stationary-phase HPLC analysis. ^brr = ratio of regioisomers (**3a**: **3a**') was determined by GC.

Table S7. Effect of precatalyst

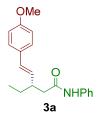
entry	precatalyst	yield of $3a$ (ee) ^a	rr^b
1	NiCl ₂ ·glyme	84% yield (91% ee)	10: 1
2	$NiBr_2$	trace	
3	NiBr ₂ ·diglyme	79% yield (90% ee)	10: 1
4	Ni(OTf)2	n.d.	
5	Ni(OAc)2	n.d.	
6	Ni(COD) ₂	84% yield (92% ee)	10: 1

^aThe reaction was conducted using **1a** (0.1 mmol), **2a** (0.25 mmol), [Ni] (0.01 mmol), **L1** (0.012 mmol), K_3PO_4 · H_2O (0.2 mmol), (MeO)₃SiH (0.3 mmol) in dioxane: DME (3: 1, 2.0 mL) under N_2 atmosphere at 0 °C for 48 h. Yields were determined by GC using *n*-dodecane as the internal standard. Enantiomeric excess (ee) was determined by chiral-stationary-phase HPLC analysis. ^brr = ratio of regioisomers (**3a**: **3a**') was determined by GC.

V. General procedures for enantioselective hydroalkenylations of alkenes

Method A: In a nitrogen-filled glovebox, Ni(COD)₂ (5.5 mg, 0.02 mmol, 10 mol%) and L1 (12.0 mg, 0.024 mmol, 12 mol%) were dissolved in co-solvent (dioxane: DME = 3:1, 4.0 mL) in a 10.0 mL Schlenk tube with screw-cap equipped with a magnetic stirrer. The mixture was stirred at room temperature for 15 min, then alkene (0.2 mmol, 1.0 equiv), alkenyl bromides (0.5 mmol, 2.5 equiv), K₃PO₄•H₂O (92.0 mg, 0.4 mmol, 2.0 equiv) were sequentially added. The mixture was cooled to 0 °C before (MeO)₃SiH (73.2 mg, 0.6 mmol, 3.0 equiv) was added dropwise and stirred at 0 °C for 48 h. The mixture was quenched with H₂O (2.0 mL) and extracted with ethyl acetate (20.0 mL), then filtered through a pad of silica gel. The organic phase was dried over Na₂SO₄, filtered, concentrated under reduced pressure, ratio of main product and other isomers was determined by GC. The crude mixture was purified by flash column chromatography on silica gel to obtain the desired product.

Method B: In a nitrogen-filled glovebox, NiBr₂•DME (6.2 mg, 0.02 mmol, 10 mol%) and **L1** (12.0 mg, 0.024 mmol, 12 mol%) were dissolved in dioxane (4.0 mL) in Schlenk tube with screw-cap equipped with a magnetic stirrer. The mixture was stirred at room temperature for 15 min, then alkene (0.2 mmol, 1.0 equiv), alkenyl bromides (0.5 mmol, 2.5 equiv), Cs₂CO₃ (130.0 mg, 0.4 mmol, 2.0 equiv), NaI (30.0 mg, 0.2 mmol, 1.0 equiv) were sequentially added, then HBpin (90.0 mg, 0.7 mmol, 3.5 equiv) was added dropwise. The resulting mixture was stirred at room temperature for 48 h. The mixture was quenched H₂O (2.0 mL) and extracted with ethyl acetate (20.0 mL), then filtered through a pad of silica gel. The organic phase was dried over Na₂SO₄, filtered, concentrated under reduced pressure, ratio of main product and other isomers was determined by GC. The crude mixture was purified by flash column chromatography on silica gel to obtain the desired product.


Method C: In a nitrogen-filled glovebox, NiBr₂•DME (6.2 mg, 0.02 mmol, 10 mol%) and **L1** (12.0 mg, 0.024 mmol, 12 mol%) were dissolved in dioxane (4.0 mL) in Schlenk tube with screw-cap equipped with a magnetic stirrer. The mixture was stirred at room temperature for 15 min, then alkene (0.2 mmol, 1.0 equiv), alkenyl bromides (0.5 mmol, 2.5 equiv), NaI (6.0 mg, 0.04 mmol, 0.2 equiv), K₃PO₄•H₂O (92.0 mg, 0.4 mmol, 2.0 equiv) were sequentially added, then (MeO)₃SiH (73.2 mg, 0.6 mmol, 3.0 equiv) was added dropwise. The resulting mixture was stirred at room temperature for 24 h. The mixture was quenched with H₂O (2.0 mL) and extracted with ethyl acetate (20.0 mL), then filtered through a pad of silica gel. The organic phase was dried over Na₂SO₄, filtered, concentrated under reduced pressure, ratio of main product and other isomers was determined by GC. The crude mixture was purified by flash column chromatography on silica gel to obtain the desired product.

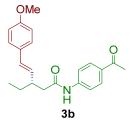
Method D: In a nitrogen-filled glovebox, NiBr₂•DME (6.2 mg, 0.02 mmol, 10 mol%) and **L1** (12.0 mg, 0.024 mmol, 12 mol%) were dissolved in dioxane (4.0 mL) in Schlenk tube with screw-cap equipped with a magnetic stirrer. The mixture was stirred at room temperature for 10 min, then alkene (0.4 mmol, 2.0 equiv), alkenyl bromides (0.2 mmol, 1.0 equiv), NaI (15.0 mg, 0.1 mmol, 0.5 equiv), KCl (7.5 mg, 0.1

mmol, 0.5 equiv), CsF (60.8 mg, 0.4 mmol, 2.0 equiv) were sequentially added, then HBpin (90.0 mg, 0.7 mmol, 3.5 equiv) was added dropwise. The resulting mixture was stirred at room temperature for 24 h. The mixture was quenched with H₂O (2.0 mL) and extracted with ethyl acetate (20.0 mL), then filtered through a pad of silica gel. The organic phase was dried over Na₂SO₄, filtered, concentrated under reduced pressure, ratio of main product and other isomers was determined by GC. The crude mixture was purified by flash column chromatography on silica gel to obtain the desired product.

VI. Characterization of products

(S,E)-3-Ethyl-5-(4-methoxyphenyl)-N-phenylpent-4-enamide (3a)

Following **method A**, **3a** was obtained as white solid after flash chromatography (PE: EtOAc = 6: 1) (48.8 mg, 79% yield, 92% ee). rr = 10: 1.


¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.35 (m, 2H), 7.35 – 7.19 (m, 5H), 7.08 – 7.04 (m, 1H), 6.89 – 6.69 (m, 2H), 6.42 (d, J = 15.8 Hz, 1H), 5.91 (dd, J = 15.8, 8.7 Hz, 1H), 3.78 (s, 3H), 2.79 – 2.57 (m, 1H), 2.48 (dd, J = 14.4, 5.7 Hz, 1H), 2.38 (dd, J = 14.4, 8.3 Hz, 1H), 1.65 – 1.55 (m, 1H), 1.49 – 1.38 (m, 1H), 0.93 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 170.3, 159.1, 137.9, 130.8, 130.7, 130.1, 129.1, 127.4, 124.4, 120.1, 114.1, 55.4, 43.9, 42.1, 28.2, 11.9.

HRMS (ESI-TOF) Calcd for C₂₀H₂₄NO₂ (M+H)⁺ 310.1802. Found 310.1799.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 14.8 min (major) and 17.7 min (minor).

(S,E)-N-(4-acetylphenyl)-3-ethyl-5-(4-methoxyphenyl)pent-4-enamide (3b)

Following **method A**, **3b** was obtained as white solid after flash chromatography (PE: EtOAc = 3: 1) (49.8 mg, 71% yield, 90% ee). rr = 12: 1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.91 (d, J = 8.7 Hz, 2H), 7.64 – 7.48 (m, 3H), 7.31– 7.29 (m, 2H), 6.86 (d, J = 8.7 Hz, 2H), 6.47 (d, J = 15.8 Hz, 1H), 5.94 (dd, J = 15.8, 8.7 Hz, 1H), 3.82 (s, 3H), 2.69 – 2.61 (m, 1H), 2.61 – 2.52 (m, 4H), 2.46 (dd, J = 14.4, 8.5 Hz, 1H), 1.68 – 1.59 (m, 1H), 1.54 – 1.44 (m, 1H), 0.97 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 197.0, 170.6, 159.2, 142.3, 133.0, 131.1, 130.4, 129.8, 128.9, 127.4, 119.0, 114.2, 55.4, 44.0, 42.0, 28.2, 26.6, 11.9.

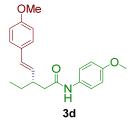
HRMS (ESI-TOF) Calcd for C₂₂H₂₆NO₃ (M+H)⁺ 352.1907. Found 352.1908.

HPLC (IA, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 17.6 min (major) and 18.5 min (minor).

(S,E)-3-Ethyl-5-(4-methoxyphenyl)-N-(4-(trifluoromethyl)phenyl)pent-4-enamide (3c)

Following **method A**, **3c** was obtained as white solid after flash chromatography (PE: EtOAc = 8: 1) (56.5 mg, 75% yield, 91% ee). rr = 10: 1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (s, 1H), 7.52 – 7.42 (m, 4H), 7.18 (d, J = 8.8 Hz, 2H), 6.75 (d, J = 8.8 Hz, 2H), 6.35 (d, J = 15.8 Hz, 1H), 5.82 (dd, J = 15.8, 8.7 Hz, 1H), 3.71 (s, 3H), 2.62 – 2.54 (m, 1H), 2.44 (dd, J = 14.4, 5.5 Hz, 1H), 2.33 (dd, J = 14.4, 8.5 Hz, 1H), 1.57 – 1.47 (m, 1H), 1.43 – 1.32 (m, 1H), 0.86 (t, J = 7.4 Hz, 3H).


¹³C NMR (101 MHz, Chloroform-*d*) δ 170.7, 159.2, 141.0, 132.5, 131.1, 130.4, 129.9, 127.4, 126.3 (q, *J* = 3.9 Hz), 124.2 (q, *J* = 272.7 Hz), 119.6, 114.1, 55.4, 43.9, 42.1, 28.2, 11.8.

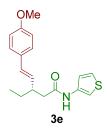
¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -62.1 (s, 3F).

HRMS (**ESI-TOF**) Calcd for $C_{21}H_{23}F_3NO_2(M+H)^+$ 378.1676. Found 378.1677.

HPLC (OD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 8.9 min (major) and 10.3 min (minor).

(S,E)-3-Ethyl-N,5-bis(4-methoxyphenyl)pent-4-enamide (3d)

Following **method A**, **3d** was obtained as white solid after flash chromatography (PE: EtOAc= 3: 1) (49.5 mg, 73% yield, 90% ee). rr = 10: 1.


¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (s, 1H), 7.26 – 7.24 (m, 2H), 7.20 – 7.18 (m, 2H), 6.80 – 6.67 (m, 4H), 6.35 (d, J = 15.8 Hz, 1H), 5.83 (dd, J = 15.8, 8.8 Hz, 1H), 3.72 (s, 3H), 3.68 (s, 3H), 2.62 – 2.53 (m, 1H), 2.39 (dd, J = 14.2, 5.8 Hz, 1H), 2.29 (dd, J = 14.2, 8.4 Hz, 1H), 1.57 – 1.47 (m, 1H), 1.40 –1.29 (m, 1H), 0.86 (t, J = 7.4 Hz, 3H).

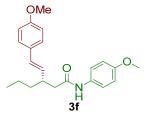
¹³C NMR (101 MHz, Chloroform-*d*) δ 170.3, 159.1, 156.5, 131.0, 130.8, 130.7, 130.2, 127.4, 122.1, 114.2, 114.1, 55.6, 55.4, 43.7, 42.1, 28.2, 11.9.

HRMS (**ESI-TOF**) Calcd for C₂₁H₂₆NO₃ (M+H)⁺ 340.1907. Found 340.1907.

HPLC (IA, 0.46*25 cm, 5 μm, hexane/isopropanol = 85/15, flow rate = 1 mL/min, detection at 254 nm) retention time = 22.2 min (major) and 25.0 min (minor).

(S,E)-3-Ethyl-5-(4-methoxyphenyl)-N-(thiophen-3-yl)pent-4-enamide (3e)

Following **method A**, **3e** was obtained as white solid after flash chromatography (PE: EtOAc = 6: 1) (44.1 mg, 70% yield, 92% ee). rr = 11: 1.


¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.84 (s, 1H), 7.44 – 7.43 (m, 1H), 7.19 – 7.17 (m, 2H), 7.09 – 7.07 (m, 1H), 6.85 – 6.83 (m, 1H), 6.76– 6.73 (m, 2H), 6.32 (d, J = 15.8 Hz, 1H), 5.81 (dd, J = 15.8, 8.7 Hz, 1H), 3.71 (s, 3H), 2.62 – 2,53 (m, 1H), 2.38 (dd, J = 14.4, 5.9 Hz, 1H), 2.30 (dd, J = 14.4, 8.2 Hz, 1H), 1.54 – 1.48 (m, 1H), 1.38 – 1.30 (m, 1H), 0.84 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 169.8, 159.1, 135.7, 130.7, 130.6, 130.1, 127.4, 124.5, 121.2, 114.1, 110.4, 55.4, 43.2, 42.0, 28.1, 11.8.

HRMS (ESI-TOF) Calcd for C₁₈H₂₂NO₂S (M+H)⁺ 316.1366. Found 316.1366.

HPLC (IA, 0.46*25 cm, 5 μm, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 13.2 min (major) and 14.4 min (minor).

(S,E)-N-(4-methoxyphenyl)-3-(4-methoxystyryl)hexanamide (3f)

Following **method A**, **3f** was obtained as white solid after flash chromatography (PE: EtOAc = 3: 1) (38.1 mg, 54% yield, 88% ee). rr = 9: 1.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.45 (s, 1H), 7.38 – 7.30 (m, 2H), 7.26 (d, J = 8.8 Hz, 2H), 6.87 – 6.76 (m, 4H), 6.40 (d, J = 15.8 Hz, 1H), 5.90 (dd, J = 15.8, 8.7 Hz, 1H), 3.79 (s, 3H), 3.75 (s, 3H), 2.78 – 2.72 (m, 1H), 2.44 (dd, J = 14.2, 5.8 Hz, 1H), 2.35 (dd, J = 14.2, 8.3 Hz, 1H), 1.56 – 1.47 (m, 1H), 1.43 – 1.37 (m, 2H), 1.34 – 1.32 (m, 1H), 0.90 (t, J = 7.1 Hz, 3H).

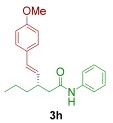
¹³C NMR (151 MHz, Chloroform-*d*) δ 170.3, 159.0, 156.5, 131.07, 131.05, 130.4, 130.2, 127.4, 122.2, 114.2, 114.1, 55.6, 55.4, 44.0, 40.3, 37.5, 20.5, 14.1.

HRMS (**ESI-TOF**) Calcd for C₂₂H₂₈NO₃ (M+H)⁺ 354.2064. Found 354.2066.

HPLC (IA, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 22.2 min (major) and 24.3 min (minor).

Ethyl (S,E)-4-(3-(4-methoxystyryl)octanamido)benzoate (3g)

Following **method A**, 3g was obtained as white solid after flash chromatography (PE: EtOAc = 3: 1) (66.0 mg, 78% yield, 88% ee). rr = 10: 1.


¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.88 – 7.86 (m, 2H), 7.80 (s, 1H), 7.47 – 7.45 (m, 2H), 7.17 – 7.15 (m, 2H), 6.75 – 6.73 (m, 2H), 6.32 (d, J = 15.8 Hz, 1H), 5.81 (dd, J = 15.8, 8.8 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.70 (s, 3H), 2.70 – 2.61 (m, 1H), 2.42 (dd, J = 14.4, 5.7 Hz, 1H), 2.33 (dd, J = 14.4, 8.3 Hz, 1H), 1.48 – 1.38 (m, 1H), 1.36 – 1.26 (m, 5H), 1.22 – 1.16 (m, 5H), 0.77 (t, J = 6.6 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 170.8, 166.3, 159.1, 142.2, 130.8, 130.6, 130.0, 127.4, 125.8, 119.0, 114.1, 61.0, 55.4, 44.2, 40.4, 35.3, 31.9, 27.0, 22.7, 14.4, 14.2.

HRMS (ESI-TOF) Calcd for C₂₆H₃₄NO₄ (M+H)⁺ 424.2483. Found 424.2485.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 18.6 min (minor) and 21.5 min (major).

(S,E)-3-(4-Methoxystyryl)-N-phenylhexanamide (3h)

Following **method A**, **3h** was obtained as white solid after flash chromatography (PE: EtOAc = 6: 1) (42.0 mg, 65% yield, 71% ee). rr = 9: 1.

Following **method B**, **3h** was obtained as white solid after flash chromatography (PE: EtOAc = 6:1) (35.5 mg, 55% yield, 88% ee). rr = 12:1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.66 (s, 1H), 7.50 – 7.48 (m, 2H), 7.34 – 7.24 (m, 4H), 7.12 – 7.08 (m, 1H), 6.87 – 6.85 (m, 2H), 6.44 (d, J = 15.8 Hz, 1H), 5.93 (dd, J = 15.8, 8.8 Hz, 1H), 3.82 (s, 3H), 2.87 – 2.73 (m, 1H), 2.50 (dd, J = 14.4, 5.9 Hz, 1H), 2.41 (dd, J = 14.4, 8.1 Hz, 1H), 1.61 – 1.50 (m, 1H), 1.50 – 1.33 (m, 3H), 0.93 (t, J = 7.0 Hz, 3H).

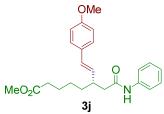
¹³C NMR (101 MHz, Chloroform-*d*) δ 170.3, 159.1, 137.9, 131.0, 130.6, 130.1, 129.1, 127.4, 124.4, 120.1, 114.1, 55.4, 44.3, 40.2, 37.5, 20.5, 14.2.

HRMS (**ESI-TOF**) Calcd for C₂₁H₂₆NO₂ (M+H)⁺ 324.1958. Found 324.1957.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 15.9 min (major) and 17.6 min (minor).

(S,E)-5-(4-Methoxyphenyl)-3-phenethyl-N-phenylpent-4-enamide (3i)

Following **method A**, **3i** was obtained as white solid after flash chromatography (PE: EtOAc = 6: 1) (60.0 mg, 78% yield, 91% ee). rr = 9: 1.


¹H NMR (400 MHz, Chloroform-d) δ 7.44 – 7.42 (m, 2H), 7.36 – 7.27 (m, 7H), 7.20 – 7.17 (m, 3H), 7.10 – 7.07 (m, 1H), 6.87 – 6.85 (m, 2H), 6.47 (d, J = 15.8 Hz, 1H), 5.97 (dd, J = 15.8, 8.8 Hz, 1H), 3.82 (s, 3H), 2.86 – 2.77 (m, 1H), 2.77 – 2.69 (m, 1H), 2.68 – 2.57 (m, 1H), 2.52 (dd, J = 14.4, 5.9 Hz, 1H), 2.44 (dd, J = 14.4, 8.1 Hz, 1H), 1.97 – 1.88 (m, 1H), 1.79 – 1.73 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 170.0, 159.2, 142.1, 137.8, 131.2, 130.4, 130.0, 129.1, 128.56, 128.51, 127.5, 126.0, 124.4, 120.1, 114.1, 55.4, 44.2, 40.2, 36.9, 33.7.

HRMS (**ESI-TOF**) Calcd for C₂₆H₂₈NO₂ (M+H)⁺ 386.2115. Found 386.2117.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 30.1 min (minor) and 35.7 min (major).

Methyl (S,E)-8-(4-methoxyphenyl)-6-(2-oxo-2-(phenylamino)ethyl)oct-7-enoate (3j)

Following **method A**, **3j** was obtained as white solid after flash chromatography (PE: EtOAc = 3: 1) (58.5 mg, 74% yield, 90% ee). rr = 9: 1.

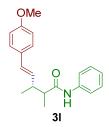
¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.54 (s, 1H), 7.43 (d, J = 7.8 Hz, 2H), 7.26 – 7.22 (m, 4H), 7.06 – 7.02 (m, 1H), 6.80 (d, J = 8.8 Hz, 2H), 6.38 (d, J = 15.8 Hz, 1H), 5.86 (dd, J = 15.8, 8.8 Hz, 1H), 3.76 (s, 3H), 3.61 (s, 3H), 2.77 – 2.68 (m, 1H), 2.43 (dd, J = 14.4, 6.0 Hz, 1H), 2.35 (dd, J = 14.4, 8.0 Hz, 1H), 2.26 (t, J = 7.4 Hz, 2H), 1.69 – 1.47 (m, 3H), 1.47 – 1.26 (m, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.3, 170.3, 159.1, 137.9, 130.64, 130.59, 130.0, 129.0, 127.4, 124.3, 120.1, 114.1, 55.4, 51.6, 44.0, 40.2, 34.7, 34.0, 26.8, 24.9.

HRMS (**ESI-TOF**) Calcd for $C_{24}H_{30}NO_4(M+H)^+$ 396.2170. Found 396.2172.

HPLC (IA, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = $1 \mu L/min$, detection at 254 nm) retention time = $21.6 \mu m$ (major) and $23.7 \mu m$ (minor).

(S,E)-5-(4-Methoxyphenyl)-3-methyl-N-phenylpent-4-enamide (3k)


Following **method A**, **3k** was obtained as white solid after flash chromatography (PE: EtOAc = 8: 1) (44.2 mg, 75% yield, 88% ee). rr = 11: 1.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.42 (s, 1H), 7.40 – 7.38 (m, 2H), 7.22 – 7.16 (m, 4H), 7.02 – 6.98 (m, 1H), 6.76 – 6.74 (m, 2H), 6.32 (d, J = 15.8 Hz, 1H), 5.97 (dd, J = 15.8, 7.5 Hz, 1H), 3.71 (s, 3H), 2.89 – 2.82 (m, 1H), 2.37 (dd, J = 14.4, 7.3 Hz, 1H), 2.29 (dd, J = 14.3, 6.9 Hz, 1H), 1.11 (d, J = 6.7 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.3, 159.1, 137.9, 132.3, 130.1, 129.1, 128.8, 127.4, 124.4, 120.1, 114.1, 55.4, 45.3, 34.5, 20.4.

HRMS (ESI-TOF) Calcd for C₁₉H₂₂NO₂ (M+H)⁺ 296.1645. Found 296.1646.

HPLC (OD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 37.8 min (major) and 45.8 min (minor).

(3S,E)-2-Ethyl-5-(4-methoxyphenyl)-3-methyl-N-phenylpent-4-enamide (3l)

Following **method B**, **31** was obtained as white solid after flash chromatography (PE: EtOAc = 6: 1) (44.4 mg, 72% yield, rr = 18:1, d.r. = 1.05 (89% ee): 1 (87% ee) was determined by GC and HPLC.

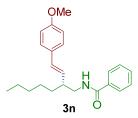
¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.44 (d, J = 7.9 Hz, 1H), 7.37 (d, J = 7.9 Hz, 1H), 7.26 – 7.12 (m, 5H), 7.04 – 6.94 (m, 1H), 6.77 (d, J = 8.7 Hz, 1H), 6.73 (d, J = 8.7 Hz, 1H), 6.32 (dd, J = 15.9, 11.9 Hz, 1H), 6.01 (dd, J = 15.9, 7.9 Hz, 1H), 3.73 (s, 3H), 2.64 – 2.47 (m, 1H), 2.29 – 2.22 (m, 1H), 1.19 – 1.13 (m, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.2, 159.0, 138.0, 131.1, 130.3, 129.5, 129.1, 127.4, 124.4, 120.4, 114.1, 55.4, 48.6, 41.2, 19.0, 16.3.

HRMS (**ESI-TOF**) Calcd for C₂₁H₂₆NO₂ (M+H)⁺ 310.1802. Found 310.1806.

HPLC (AD-H, 0.46*25 cm, 5 μm, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 10.2 min (minor) and 11.7 min (major), 10.8 min (major) and 13.0 min (minor)

(S,E)-N-(4-(4-methoxyphenyl)-2-methylbut-3-en-1-yl)benzamide (3m)


Following **method A**, **3m** was obtained as white solid after flash chromatograph (PE: EtOAc = 6: 1) (36.6 mg, 62% yield, 85% ee). rr = 5: 1.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.72 – 7.70 (m, 2H), 7.48 – 7.44 (m, 1H), 7.41 – 7.38 (m, 2H), 7.30 – 7.28 (m, 2H), 6.86 – 6.84 (m, 2H), 6.42 (d, J = 15.8 Hz, 1H), 6.29 (s, 1H), 5.96 (dd, J = 15.8, 8.1 Hz, 1H), 3.80 (s, 3H), 3.65 – 3.61 (m, 1H), 3.29 – 3.24 (m, 1H), 2.65 – 2.58 (m, 1H), 1.17 (d, J = 6.8 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.6, 159.2, 134.9, 131.4, 131.0, 130.2, 130.0, 128.7, 127.4, 126.9, 114.1, 55.4, 45.4, 37.8, 18.4.

HRMS (**ESI-TOF**) Calcd for C₁₉H₂₂NO₂ (M+H)⁺ 296.1645. Found 296.1647.

HPLC (OD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 17.6 min (minor) and 27.5 min (major).

(S,E)-N-(2-(4-methoxystyryl)hexyl)benzamide (3n)

Following **method A**, **3n** was obtained as white solid after flash chromatograph (PE: EtOAc = 6: 1) (52.6 mg, 78% yield, 92% ee). rr = 7: 1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.71 – 7.69 (m, 2H), 7.47 – 7.43 (m, 1H), 7.40 – 7.36 (m, 2H), 7.31 – 7.29 (m, 2H), 6.87 – 6.85 (m, 2H), 6.42 (d, J = 15.8 Hz, 1H), 6.26 (s, 1H), 5.86 (dd, J = 15.8, 9.1 Hz, 1H), 3.80 (s, 3H), 3.79 – 3.68 (m, 1H), 3.20 – 3.13 (m, 1H), 2.48 – 2.39 (m, 1H), 1.57 – 1.50 (m, 1H), 1.45 – 1.25 (m, 7H), 0.88 (t, J = 6.6 Hz, 3H).

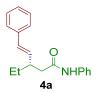
¹³C NMR (101 MHz, Chloroform-*d*) δ 167.5, 159.2, 134.9, 131.5, 131.4, 130.1, 130.0, 128.6, 127.4, 126.9, 114.1, 55.4, 44.2, 43.9, 33.1, 32.0, 26.9, 22.7, 14.2.

HRMS (**ESI-TOF**) Calcd for C₂₂H₃₀NO₂ (M+H)⁺ 352.2271. Found 352.2275.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 11.9 min (major) and 14.4 min (minor).

Benzyl (S,E)-(4-(4-methoxyphenyl)-2-methylbut-3-en-1-yl)carbamate (30)

Following **method A**, **30** was obtained as white solid after flash chromatograph (PE: EtOAc = 6:1) (39.0mg, 60% yield, 85% ee). rr = 6:1.


¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.27 – 7.17 (m, 7H), 6.76 (d, J = 8.7 Hz, 2H), 6.27 (d, J = 15.8 Hz, 1H), 5.80 (dd, J = 15.8, 8.0 Hz, 1H), 5.00 (s, 2H), 4.76 (s, 1H), 3.72 (s, 3H), 3.24 – 3.20 (m, 1H), 3.05 – 2.95 (m, 1H), 2.42 – 2.38 (m, 1H), 1.01 (d, J = 6.7 Hz, 3H).

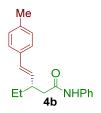
¹³C NMR (151 MHz, Chloroform-*d*) δ 159.1, 156.5, 136.7, 130.7, 130.1, 128.6, 128.22, 128.18, 127.7, 127.4, 114.1, 66.7, 55.4, 46.7, 38.0, 18.1.

HRMS (**ESI-TOF**) Calcd for C₂₀H₂₄NO₃ (M+H)⁺ 326.1751. Found 326.1752.

HPLC (IA, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = $9.5 \min \text{ (major)}$ and $11.3 \min \text{ (minor)}$.

(S,E)-3-Ethyl-N,5-diphenylpent-4-enamide (4a)

Following **method A**, **4a** was obtained as white solid after flash chromatograph (PE: EtOAc = 8:1) (36.2 mg, 65% yield, 90% ee). rr = 13:1.


¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.46 (s, 1H), 7.39 (d, J = 7.9 Hz, 2H), 7.29 – 7.18 (m, 6H), 7.16 – 7.12 (m, 1H), 7.03 – 7.00 (m, 1H), 6.41 (d, J = 15.8 Hz, 1H), 5.99 (dd, J = 15.8, 8.7 Hz, 1H), 2.67 – 2.61 (m, 1H), 2.43 (dd, J = 14.4, 6.0 Hz, 1H), 2.34 (dd, J = 14.4, 8.2 Hz, 1H), 1.58 – 1.50 (m, 1H), 1.44 – 1.31 (m, 1H), 0.87 (t, J = 7.4 Hz, 3H).

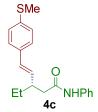
¹³C NMR (101 MHz, Chloroform-*d*) δ 170.4, 137.9, 137.3, 132.9, 131.3, 129.0, 128.6, 127.4, 126.3, 124.4, 120.2, 43.7, 42.0, 28.0, 11.8.

HRMS (**ESI-TOF**) Calcd for C₁₉H₂₂NO (M+H)⁺ 280.1696. Found 280.1697.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 10.5 min (major) and 12.9 min (minor).

(S,E)-3-Ethyl-N-phenyl-5-(p-tolyl)pent-4-enamide (4b)

Following **method A**, **4b** was obtained as white solid after flash chromatograph (PE: EtOAc = 8: 1) (43.9 mg, 75% yield, 89% ee). rr = 12: 1.


¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.37 (d, J = 7.8 Hz, 2H), 7.26 – 7.12 (m, 5H), 7.03 – 6.97 (m, 3H), 6.37 (d, J = 15.8 Hz, 1H), 5.92 (dd, J = 15.8, 8.8 Hz, 1H), 2.63 – 2.56 (m, 1H), 2.41 (dd, J = 14.4, 5.9 Hz, 1H), 2.32 (dd, J = 14.4, 8.2 Hz, 1H), 2.24 (s, 3H), 1.59 – 1.47 (m, 1H), 1.48 – 1.31 (m, 1H), 0.85 (t, J = 7.4 Hz, 3H).

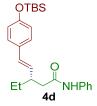
¹³C NMR (101 MHz, Chloroform-*d*) δ 170.4, 137.9, 137.2, 134.5, 131.9, 131.2, 129.3, 129.1, 126.2, 124.4, 120.1, 43.8, 42.0, 28.1, 21.3, 11.8.

HRMS (**ESI-TOF**) Calcd for C₂₀H₂₄NO (M+H)⁺ 294.1853. Found 294.1853.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 9.9 min (major) and 10.7 min (minor).

(S,E)-3-Ethyl-5-(4-(methylthio)phenyl)-N-phenylpent-4-enamide (4c)

Following **method A**, **4c** was obtained as white solid after flash chromatograph (PE: EtOAc = 8: 1) (35.7 mg, 55% yield, 89% ee). rr = 12: 1.


¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.41 (d, J = 7.6 Hz, 2H), 7.33 (s, 1H), 7.26 – 7.22 (m, 4H), 7.18 – 7.10 (m, 2H), 7.06 – 7.02 (m, 1H), 6.39 (d, J = 15.8 Hz, 1H), 5.98 (dd, J = 15.8, 8.8 Hz, 1H), 2.72 – 2.59 (m, 1H), 2.49 – 2.43 (m, 4H), 2.36 (dd, J = 14.4, 8.2 Hz, 1H), 1.63 – 1.53 (m, 1H), 1.49 – 1.36 (m, 1H), 0.90 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 170.2, 137.9, 137.4, 134.4, 132.4, 130.7, 129.1, 126.9, 126.7, 124.4, 120.1, 43.7, 42.0, 28.0, 16.1, 11.9.

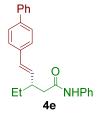
HRMS (**ESI-TOF**) Calcd for C₂₀H₂₄NOS (M+H)⁺ 326.1573. Found 326.1572.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 16.4 min (major) and 18.2 min (minor).

(S,E)-5-(4-((tert-Butyldimethylsilyl)oxy)phenyl)-3-ethyl-N-phenylpent-4-enamide (4d)

Following **method A**, **4d** was obtained as colorless oil after flash chromatograph (PE: EtOAc = 8: 1) (40.9 mg, 50% yield, 86% ee). rr = 12: 1.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.26 – 7.04 (m, 3H), 7.09 – 7.06 (m, 2H), 7.03 – 7.01 (m, 2H), 6.90 – 6.86 (m, 1H), 6.58 – 6.57 (m, 2H), 6.22 (d, J = 15.8 Hz, 1H), 5.72 (dd, J = 15.8, 8.8 Hz, 1H), 2.50 – 2.44


(m, 1H), 2.29 (dd, J = 14.4, 5.7 Hz, 1H), 2.20 (dd, J = 14.4, 8.2 Hz, 1H), 1.45 – 1.38 (m, 1H), 1.29 – 1.22 (m, 1H), 0.79 (s, 9H), 0.74 (t, J = 7.4 Hz, 3H), 0.00 (s, 6H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 170.4, 155.2, 137.9, 130.9, 130.8, 130.7, 129.0, 127.3, 124.3, 120.3, 120.1, 43.9, 42.0, 28.1, 25.8, 18.3, 11.9, -4.3.

HRMS (**ESI-TOF**) Calcd for C₂₅H₃₆NO₂Si (M+H)⁺ 410.2510. Found 410.2510.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 5.5 min (major) and 6.1 min (minor).

(S,E)-5-([1,1'-Biphenyl]-4-yl)-3-ethyl-N-phenylpent-4-enamide (4e)

Following **method A**, **4e** was obtained as white solid after flash chromatograph (PE: EtOAc = 8: 1) (42.6 mg, 60% yield, 97% ee). rr = 14: 1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.60 – 7.58 (m, 2H), 7.55 – 7.53 (m, 2H), 7.47 – 7.41 (m, 6H), 7.36 – 7.34 (m, 1H), 7.33 – 7.26 (m, 3H), 7.11 – 7.06 (m, 1H), 6.54 (d, J = 15.8 Hz, 1H), 6.12 (dd, J = 15.8, 8.8 Hz, 1H), 2.79 – 2.70 (m, 1H), 2.53 (dd, J = 14.2, 5.6 Hz, 1H), 2.43 (dd, J = 14.2, 8.2 Hz, 1H), 1.71 – 1.66 (m, 1H), 1.55 – 1.44 (m, 1H), 0.97 (t, J = 7.3 Hz, 3H).

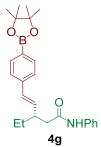
¹³C NMR (101 MHz, Chloroform-*d*) δ 170.2, 140.9, 140.2, 137.9, 136.4, 133.0, 130.9, 129.1, 128.9, 127.4, 127.12, 127.05, 126.7, 124.5, 120.1, 43.8, 42.1, 28.1, 11.9.

HRMS (**ESI-TOF**) Calcd for C₂₅H₂₆NO (M+H)⁺ 356.2009. Found 356.2008.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 15.9 min (major) and 18.9 min (minor).

(S,E)-5-(4-Chlorophenyl)-3-ethyl-N-phenylpent-4-enamide (4f)

Following **method A**, **4f** was obtained as white solid after flash chromatograph (PE: EtOAc = 6: 1) (34.4 mg, 55% yield, 87% ee). rr = 8: 1.


¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.37 (d, J = 7.8 Hz, 2H), 7.22 – 7.18 (m, 7H), 7.03 – 6.99 (m, 1H), 6.35 (d, J = 15.8 Hz, 1H), 5.96 (dd, J = 15.8, 8.7 Hz, 1H), 2.69 – 2.59 (m, 1H), 2.43 (dd, J = 14.4, 5.8 Hz, 1H), 2.32 (dd, J = 14.4, 8.2 Hz, 1H), 1.58 – 1.49 (m, 1H), 1.43 – 1.35 (m, 1H), 0.86 (t, J = 7.4 Hz, 3H).

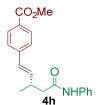
¹³C NMR (151 MHz, Chloroform-*d*) δ 170.1, 137.8, 135.8, 133.6, 133.0, 130.1, 129.1, 128.8, 127.5, 124.5, 120.1, 43.7, 42.0, 28.0, 11.9.

HRMS (ESI-TOF) Calcd for C₁₉H₂₁ClNO (M+H)⁺ 314.1306. Found 314.1303.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 21.0 min (major) and 24.7 min (minor).

(S,E)-3-Ethyl-N-phenyl-5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pent-4-enamide (4g)

Following **method B**, **4g** was obtained as colorless oil after flash chromatograph (PE: EtOAc = 6:1) (48.6 mg, 60% yield, 85% ee). rr = 9:1.


¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.67 – 7.65 (m, 2H), 7.37 – 7.35 (m, 2H), 7.28 – 7.26 (m, 2H), 7.23 – 7.18 (m, 3H), 7.03 – 7.00 (m, 1H), 6.42 (d, J = 15.8 Hz, 1H), 6.06 (dd, J = 15.8, 8.8 Hz, 1H), 2.70 – 2.58 (m, 1H), 2.42 (dd, J = 14.2, 5.8 Hz, 1H), 2.33 (dd, J = 14.2, 8.2 Hz, 1H), 1.58 – 1.52 (m, 1H), 1.43 – 1.37 (m, 1H), 1.26 (s, 12H), 0.87 (t, J = 7.3 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 170.2, 140.0, 137.8, 135.2, 134.0, 131.4, 129.1, 125.6, 124.4, 120.14, 120.12, 83.9, 43.7, 42.1, 28.0, 25.0, 11.9.

HRMS (ESI-TOF) Calcd for C₂₅H₃₃BNO₃ (M+H)⁺ 406.2548. Found 406.2542.

HPLC (AD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 90/10, flow rate = 0.7 mL/min, detection at 254 nm) retention time = 12.3 min (major) and 14.4 min (minor).

Methyl (S,E)-4-(3-methyl-5-oxo-5-(phenylamino)pent-1-en-1-yl)benzoate (4h)

Following **method B**, **4h** was obtained as white solid after flash chromatograph (PE: EtOAc = 6: 1) (35.5 mg, 55% yield, 88% ee). rr = 8: 1.

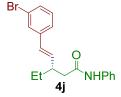
¹**H NMR** (400 MHz, Chloroform-d) δ 7.96 – 7.94 (m, 2H), 7.50 – 7.48 (m, 2H), 7.45 (s, 1H), 7.38 – 7.36 (m, 2H), 7.31 – 7.27 (m, 2H), 7.11 – 7.07 (m, 1H), 6.47 (d, J = 15.8 Hz, 1H), 6.32 (dd, J = 15.8, 7.2 Hz, 1H), 3.90 (s, 3H), 3.06 – 2.96 (m, 1H), 2.48 (dd, J = 14.2, 7.2 Hz, 1H), 2.40 (dd, J = 14.2, 7.2 Hz, 1H), 1.21 (d, J = 6.7 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 169.9, 167.1, 142.0, 137.9, 137.3, 130.0, 129.1, 128.7, 128.5, 126.1, 124.5, 120.1, 52.2, 45.0, 34.5, 20.1.

HRMS (**ESI-TOF**) Calcd for $C_{20}H_{22}NO_3 (M+H)^+$ 324.1594. Found 324.1590.

HPLC (AD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 90/10, flow rate = 0.5 mL/min, detection at 254 nm) retention time = 69.8 min (major) and 76.2 min (minor).

(S,E)-3-Ethyl-5-(3-methoxyphenyl)-N-phenylpent-4-enamide (4i)


Following **method A**, **4i** was obtained as white solid after flash chromatograph (PE: EtOAc = 6: 1) (32.1 mg, 52% yield, 90% ee). rr = 8: 1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.36 (m, 2H), 7.30 (s, 1H), 7.22 – 7.18 (m, 2H), 7.15 – 7.11 (m, 1H), 7.02 – 6.98 (m, 1H), 6.87 – 6.85 (m, 1H), 6.80 – 6.79 (m, 1H), 6.71 – 6.68 (m, 1H), 6.38 (d, J = 15.8 Hz, 1H), 5.98 (dd, J = 15.8, 8.8 Hz, 1H), 3.71 (s, 3H), 2.67 – 2.58 (m, 1H), 2.42 (dd, J = 14.2, 5.8 Hz, 1H), 2.32 (dd, J = 14.2, 8.2 Hz, 1H), 1.60 – 1.50 (m, 1H), 1.46 – 1.31 (m, 1H), 0.86 (t, J = 7.4 Hz, 3H). (101 MHz, Chloroform-*d*) δ 170.2, 159.9, 138.8, 137.9, 133.2, 131.2, 129.6, 129.1, 124.4, 120.2, 118.9, 113.0, 111.7, 55.3, 43.7, 42.0, 28.0, 11.8.

HRMS (ESI-TOF) Calcd for $C_{20}H_{24}NO_2(M+H)^+$ 310.1802. Found 310.1802.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 13.3 min (major) and 16.9 min (minor).

(S,E)-5-(4-Bromophenyl)-3-ethyl-N-phenylpent-4-enamide (4j)

Following **method A**, **4j** was obtained as white solid after flash chromatograph (PE: EtOAc = 8: 1) (47.8 mg, 67% yield, 90% ee). rr = 10: 1.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.42 (s, 1H), 7.38 – 7.37 (m, 2H), 7.25 – 7.18 (m, 4H), 7.15 – 7.14 (m, 1H), 7.08 – 7.06 (m, 1H), 7.03 – 7.01 (m, 1H), 6.32 (d, J = 15.8 Hz, 1H), 5.99 (dd, J = 15.8, 8.8 Hz, 1H), 2.67 – 2.62 (m, 1H), 2.42 (dd, J = 14.4, 5.8 Hz, 1H), 2.31 (dd, J = 14.4, 8.2 Hz, 1H), 1.57 – 1.52 (m, 1H), 1.42 – 1.35 (m, 1H), 0.86 (t, J = 7.2 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 170.0, 139.5, 137.8, 134.5, 130.23, 130.18, 129.9, 129.1, 129.0, 125.1, 124.5, 122.9, 120.2, 43.6, 42.0, 27.9, 11.9.

HRMS (ESI-TOF) Calcd for C₁₉H₂₁BrNO (M+H)⁺ 358.0801. Found 358.0799.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 12.2 min (major) and 13.7 min (minor).

(S,E)-3-Ethyl-5-(2-methoxyphenyl)-N-phenylpent-4-enamide (4k)

Following **method A**, **4k** was obtained as white solid after flash chromatograph (PE: EtOAc = 6:1) (43.2 mg, 70% yield, 89% ee). rr = 12:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (s, 1H), 7.40 – 7.38 (m, 2H), 7.33 – 7.31 (m, 1H), 7.20 – 7.16 (m, 2H), 7.14 – 7.10 (m, 1H), 7.00 – 6.96 (m, 1H), 6.84 – 6.80 (m, 1H), 6.77 – 6.75 (m, 1H), 6.75 (d, J = 16.0 Hz, 1H), 5.98 (dd, J = 16.0, 8.7 Hz, 1H), 3.70 (s, 3H), 2.65 – 2.56 (m, 1H), 2.44 – 2.32 (m, 2H), 1.59 – 1.48 (m, 1H), 1.44 – 1.33 (m, 1H), 0.86 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 170.5, 156.6, 138.0, 133.7, 129.0, 128.5, 126.7, 126.4, 126.2, 124.3, 120.7, 120.2, 111.0, 55.5, 43.7, 42.4, 28.1, 11.8.

HRMS (ESI-TOF) Calcd for $C_{20}H_{24}NO_{2}(M+H)^{+}$ 310.1802. Found 310.1802.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 13.0 min (major) and 15.9 min (minor).

(S,E)-3-Ethyl-5-(2-fluorophenyl)-N-phenylpent-4-enamide (4l)

Following **method A**, **41** was obtained as white solid after flash chromatograph (PE: EtOAc = 8: 1) (37.5 mg, 63% yield, 93% ee). rr = 9: 1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.46 (m, 2H), 7.40 – 7.36 (m, 1H), 7.35 (s, 1H), 7.28 – 7.22 (m, 2H), 7.22 – 7.14 (m, 1H), 7.12 – 7.05 (m, 2H), 7.05 – 6.96 (m, 1H), 6.62 (d, J = 16.0 Hz, 1H), 6.17 (dd, J = 16.0, 8.7 Hz, 1H), 2.78 – 2.69 (m, 1H), 2.51 (dd, J = 14.2, 6.0 Hz, 1H), 2.43 (dd, J = 14.2, 8.1 Hz, 1H), 1.69 – 1.59 (m, 1H), 1.55 – 1.41 (m, 1H), 0.95 (t, J = 7.4 Hz, 3H).

¹³C **NMR** (101 MHz, Chloroform-*d*) δ 170.1, 160.2 (d, J = 248.7 Hz), 137.9, 135.8 (d, J = 4.9 Hz), 129.1, 128.6 (d, J = 8.4 Hz), 127.6 (d, J = 4.0 Hz), 125.1 (d, J = 12.3 Hz), 124.4, 124.2 (d, J = 3.6 Hz), 123.7 (d, J = 3.2 Hz), 120.2, 115.8 (d, J = 2.2 Hz), 43.6, 42.4, 27.9, 11.8.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -118.15 – -118.22 (m, 1F).

HRMS (ESI-TOF) Calcd for C₁₉H₂₁FNO (M+H)⁺ 298.1602. Found 298.1601.

HPLC (OD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 15.2 min (minor) and 16.9 min (major).

(S,E)-5-(3,5-Bis(trifluoromethyl)phenyl)-3-methyl-N-phenylpent-4-enamide (4m)

Following **method A**, **4m** was obtained as white solid after flash chromatograph (PE: EtOAc = 8: 1) (64.1 mg, 80% yield, 87% ee). rr = 9: 1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.68 – 7.54 (m, 4H), 7.42 – 7.40 (m, 2H), 7.21 – 7.17 (m, 2H), 7.02 – 6.99 (m, 1H), 6.37 (d, J = 15.8 Hz, 1H), 6.23 (dd, J = 15.8, 7.3 Hz, 1H), 2.97 – 2.90 (m, 1H), 2.42 – 2.30 (m, 2H), 1.12 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 169.9, 139.5, 138.6, 137.8, 131.9 (q, J = 33.2 Hz), 129.1, 126.8, 126.0 (d, J = 4.0 Hz), 124.7, 123.4 (q, J = 273.7 Hz), 120.6 (p, J = 3.4 Hz), 120.3, 44.6, 34.5, 20.0.

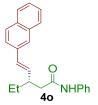
¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -63.0 (s, 6F).

HRMS (**ESI-TOF**) Calcd for C₂₀H₁₈F₆NO (M+H)⁺ 402.1287. Found 402.1284.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 10.7 min (minor) and 13.5 min (major).

(S,E)-3-Methyl-5-(naphthalen-1-yl)-N-phenylpent-4-enamide (4n)

Following **method B**, **4n** was obtained as white solid after flash chromatograph (PE: EtOAc = 6:1) (49.2 mg, 78% yield, 85% ee). rr = 7:1.


¹H NMR (400 MHz, Chloroform-d) δ 7.94 – 7.92 (m, 1H), 7.73 – 7.71 (m, 1H), 7.66 – 7.64 (m, 1H), 7.49 – 7.29 (m, 7H), 7.20 – 7.16 (m, 2H), 7.09 (d, J = 15.6 Hz, 1H), 7.01 – 6.97 (m, 1H), 6.06 (dd, J = 15.6, 7.6 Hz, 1H), 3.05 – 2.95 (m, 1H), 2.45 – 2.29 (m, 2H), 1.17 (d, J = 6.7 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 170.3, 137.9, 137.7, 135.3, 133.6, 131.2, 129.1, 128.5, 127.7, 126.9, 126.0, 125.8, 125.7, 124.5, 124.0, 123.8, 120.2, 45.3, 35.0, 20.4.

HRMS (**ESI-TOF**) Calcd for C₂₂H₂₂NO (M+H)⁺ 316.1696. Found 316.1695.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 13.3 min (major) and 14.7 min (minor).

(S,E)-3-Ethyl-5-(naphthalen-2-yl)-N-phenylpent-4-enamide (40)

Following **method B**, **40** was obtained as white solid after flash chromatograph (PE: EtOAc = 6: 1) (48.7 mg, 74% yield, 87% ee). rr = 13: 1.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.73 – 7.64 (m, 3H), 7.59 (s, 1H), 7.49 – 7.47 (m, 1H), 7.41 – 7.28 (m, 5H), 7.22 – 7.15 (m, 2H), 7.00 – 6.96 (m, 1H), 6.56 (d, J = 15.8 Hz, 1H), 6.11 (dd, J = 15.8, 8.8 Hz, 1H), 2.71 – 2.65 (m, 1H), 2.45 (dd, J = 14.4, 5.9 Hz, 1H), 2.36 (dd, J = 14.4, 8.2 Hz, 1H), 1.61 – 1.55 (m, 1H), 1.49 – 1.38 (m, 1H), 0.89 (t, J = 7.4 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 170.2, 137.8, 134.7, 133.7, 133.2, 132.9, 131.4, 129.0, 128.2, 127.9, 127.7, 126.3, 125.9, 125.7, 124.3, 123.5, 120.1, 43.7, 42.1, 28.0, 11.8.

HRMS (ESI-TOF) Calcd for C₂₃H₂₄NO (M+H)⁺ 330.1853. Found 330.1852.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 15.2 min (major) and 16.7 min (minor).

(S,E)-3-Ethyl-5-(9-ethyl-9H-carbazol-3-yl)-N-phenylpent-4-enamide (4p)

Following **method B**, **4p** was obtained as white solid after flash chromatograph (PE: EtOAc = 6: 1) (49.9 mg, 63% yield, 91% ee). rr = 9: 1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.12 – 8.10 (m, 2H), 7.58 – 7.39 (m, 6H), 7.38 – 7.19 (m, 4H), 7.11 – 7.06 (m, 1H), 6.72 (d, J = 15.8 Hz, 1H), 6.12 (dd, J = 15.8, 8.7 Hz, 1H), 4.37 (q, J = 7.2 Hz, 2H), 2.81 – 2.72 (m, 1H), 2.58 (dd, J = 14.4, 5.6 Hz, 1H), 2.49 (dd, J = 14.4, 8.4 Hz, 1H), 1.77 – 1.66 (m, 1H), 1.60 – 1.52 (m, 1H), 1.45 (t, J = 7.2 Hz, 3H), 1.02 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 170.5, 140.4, 139.6, 138.0, 132.2, 130.2, 129.1, 128.5, 125.9, 124.3, 124.2, 123.3, 123.1, 120.6, 120.1, 119.0, 118.3, 108.7, 108.6, 44.1, 42.3, 37.7, 28.3, 13.9, 11.9.

HRMS (ESI-TOF) Calcd for C₂₇H₂₉N₂O (M+H)⁺ 397.2275. Found 397.2273.

HPLC (IA, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 95/5, flow rate = 1 mL/min, detection at 254 nm) retention time = 48.7 min (major) and 52.9 min (minor).

(S,E)-3-Ethyl-N-phenyl-5-(thiophen-3-yl)pent-4-enamide (4q)

Following **method A**, **4q** was obtained as white solid after flash chromatograph (PE: EtOAc = 6: 1) (31.9 mg, 56% yield, 89% ee). rr = 11: 1.


¹H NMR (400 MHz, Chloroform-*d*) δ 7.38– 7.36 (m, 3H), 7.24 – 7.14 (m, 3H), 7.11 – 7.10 (m, 1H), 7.02 – 6.98 (m, 2H), 6.40 (d, J = 15.8 Hz, 1H), 5.83 (dd, J = 15.8, 8.7 Hz, 1H), 2.63 – 2.54 (m, 1H), 2.40 (dd, J = 14.4, 5.8 Hz, 1H), 2.31 (dd, J = 14.4, 8.2 Hz, 1H), 1.58 – 1.48 (m, 1H), 1.42 – 1.30 (m, 1H), 0.85 (t, J = 7.4 Hz, 3H).

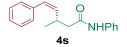
¹³C NMR (101 MHz, Chloroform-*d*) δ 170.2, 139.8, 137.8, 132.6, 129.0, 126.0, 125.4, 124.9, 124.3, 121.4, 120.1, 43.6, 41.8, 27.9, 11.7.

HRMS (ESI-TOF) Calcd for C₁₇H₂₀NOS (M+H)⁺ 286.1260. Found 286.1259.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 13.1 min (major) and 16.2 min (minor).

(S,E)-3-Ethyl-5-(2-methoxypyridin-4-yl)-N-phenylpent-4-enamide (4r)

Following **method A**, **4r** was obtained as white solid after flash chromatograph (PE: EtOAc = 6: 1) (40.3 mg, 65% yield, 89% ee). rr = 9: 1.


¹H NMR (400 MHz, Chloroform-d) δ 7.98 – 7.97 (m, 1H), 7.53 – 7.51 (m, 2H), 7.39 – 7.37 (m, 2H), 7.21 – 7.17 (m, 2H), 7.01 – 6.98 (m, 1H), 6.61 – 6.58 (m, 1H), 6.30 (d, J = 15.8 Hz, 1H), 5.85 (dd, J = 15.8, 8.8 Hz, 1H), 3.84 (s, 3H), 2.68 – 2.56 (m, 1H), 2.41 (dd, J = 14.4, 5.9 Hz, 1H), 2.31 (dd, J = 14.4, 8.3 Hz, 1H), 1.57 – 1.49 (m, 1H), 1.41 – 1.30 (m, 1H), 0.84 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 170.3, 163.4, 145.0, 137.9, 135.7, 132.4, 129.1, 127.1, 126.6, 124.4, 120.1, 110.9, 53.7, 43.6, 42.0, 28.0, 11.8.

HRMS (**ESI-TOF**) Calcd for C₁₉H₂₃N₂O₂ (M+H)⁺ 311.1754. Found 311.1752.

HPLC (IA, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 14.3 min (major) and 16.4 min (minor).

(S,Z)-3-Methyl-N,5-diphenylpent-4-enamide (4s)

Following **method B**, **4s** was obtained as colorless oil after flash chromatograph (PE: $Et_2O = 4$: 1) (26.6 mg, 51% yield, 93% ee). rr = 5: 1.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.33 – 7.31 (m, 2H), 7.27 – 7.24 (m, 2H), 7.23 – 7.20 (m, 3H), 7.20 – 7.15 (m, 2H), 7.06 (s, 1H), 7.02 – 6.99 (m, 1H), 6.40 (d, J = 11.0 Hz, 1H), 5.47 (t, J = 11.0 Hz, 1H), 3.34 – 3.26 (m, 1H), 2.35 (dd, J = 14.4, 7.5 Hz, 1H), 2.29 (dd, J = 14.4, 6.6 Hz, 1H), 1.12 (d, J = 6.6 Hz, 3H). ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 169.8, 137.9, 137.1, 136.7, 129.3, 129.1, 128.7, 128.6, 127.1, 124.4, 120.0, 45.6, 30.2, 21.3.

HRMS (ESI-TOF) Calcd for $C_{18}H_{20}NO$ (M+H)⁺ 266.1540. Found 266.1536.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 9.7 min (minor) and 10.3 min (major).

(S)-3-Methyl-N,4-diphenylpent-4-enamide (4t)

Following **method** C, **4t** was obtained as colorless oil after flash chromatography (PE: $Et_2O = 4: 1$) (21.7 mg, 41% yield, 93% ee). rr = 5: 1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.42 – 7.36 (m, 2H), 7.35 – 7.30 (m, 2H), 7.29 – 7.26 (m, 1H), 7.22 (m, 4H), 7.15 – 7.13 (m, 1H), 7.05 – 6.98 (m, 1H), 5.19 (s, 1H), 5.05 (s, 1H), 3.33 – 3.25 (m, 1H), 2.53 (dd, J = 14.4, 5.6 Hz, 1H), 2.19 (dd, J = 14.4, 8.3 Hz, 1H), 1.17 (d, J = 6.9 Hz, 3H).

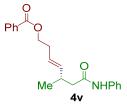
¹³C NMR (101 MHz, Chloroform-*d*) δ 170.5, 153.7, 142.1, 138.1, 129.3, 128.7, 128.0, 127.9, 127.1, 120.2, 112.2, 44.4, 35.4, 20.0.

HRMS (**ESI-TOF**) Calcd for C₁₈H₂₀NO (M+H)⁺ 266.1540. Found 266.1538.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 8.6 min (major) and 12.1 min (minor).

(S,E)-3-Methyl-N,5-diphenylhex-4-enamide (4u)

Following **method** C, **4u** was obtained as white solid after flash chromatography (PE: $Et_2O = 4: 1$) (25.6 mg, 46% yield, 94% ee). rr = 5: 1.


¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.47 – 7.45 (m, 2H), 7.37 – 7.35 (m, 2H), 7.32 – 7.29 (m, 4H), 7.25 – 7.23 (m, 1H), 7.18 (s, 1H), 7.11 – 7.07 (m, 1H), 5.62 (d, J = 9.5 Hz, 1H), 3.23 – 3.16 (m, 1H), 2.46 – 2.36 (m, 2H), 2.09 (s, 3H), 1.17 (d, J = 6.6 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 170.3, 143.6, 138.0, 135.7, 132.6, 129.1, 128.4, 127.0, 125.9, 124.4, 120.0, 45.7, 31.1, 21.4, 16.3.

HRMS (**ESI-TOF**) Calcd for C₁₉H₂₂NO (M+H)⁺ 280.1696. Found 280.1695.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 8.3 min (major) and 9.7 min (minor).

(S,E)-5-Methyl-7-oxo-7-(phenylamino)hept-3-en-1-yl benzoate (4v)

Following **method D**, 4v was obtained as white solid after flash chromatography (PE: EtOAc = 10: 1) (28.4 mg, 42% yield, 87% ee). rr = 3: 1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.95 – 7.94 (m, 2H), 7.49 – 7.46 (m, 1H), 7.41 – 7.40 (m, 2H), 7.37 – 7.34 (m, 2H), 7.23 – 7.18 (m, 4H) 5.53 – 5.47 (m, 2H), 4.27 – 4.23 (m, 2H), 2.73 – 2.67 (m, 1H), 2.41 – 2.38 (m, 2H), 2.26 (dd, J = 14.2, 7.4 Hz, 1H), 2.19 (dd, J = 14.2, 7.0 Hz, 1H), 1.01 (d, J = 6.7 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 170.1, 166.6, 137.8, 137.4, 132.9, 130.3, 129.5, 129.0, 128.4, 125.0, 124.3, 119.8, 64.3, 45.2, 34.0, 32.1, 20.3.

HRMS (ESI-TOF) Calcd for C₂₁H₂₄NO₃ (M+H)⁺ 338.1751. Found 338.1749.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 16.7 min (major) and 21.2 min (minor).

VII. Mechanistic experiments

7.1 Isotope experiments

In a nitrogen-filled glovebox, NiBr₂•DME (3.1 mg, 0.01 mmol, 10 mol%) and **L1** (5.8 mg, 0.012 mmol, 12 mol%) were dissolved in dioxane (2.0 mL, 0.05 M) in a 10 mL Schlenk tube with screw-cap equipped with a magnetic stirrer. The mixture was stirred at room temperature for 10 min, then alkene **1k** (16.0 mg, 0.1 mmol, 1.0 equiv), **2a** (55.0 mg, 0.25 mmol, 2.5 equiv), K₃PO₄•H₂O (46.0 mg, 0.2 mmol, 2.0 equiv) and Ph₂SiD₂ (56.0 mg, 0.3 mmol, 3.0 equiv) were sequentially added. The mixture was stirred at room temperature for 48 h. The mixture was quenched with H₂O (2.0 mL) and extracted with ethyl acetate (10 mL), then filtered through a pad of diatomite. The organic phase was dried over Na₂SO₄, filtered, concentrated under reduced pressure. The crude mixture was purified by flash column chromatography on silica gel using a mixture of PE: EtOAc= 8:1 as eluent to give **5** as white solid (16.1 mg, 79% yield, 80% ee). Yield was calculated based on the recovery of alkene and the deuterated ratio was confirmed by ¹H NMR (96 % D).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.40 –7.38 (m, 2H), 7.22 – 7.19 (m, 5H), 7.02 – 7.00 (m, 1H), 6.77 – 6.75 (m, 2H), 6.34 (d, J = 15.8 Hz, 1H), 5.98 (dd, J = 15.8, 7.4 Hz, 1H), 3.72 (s, 3H), 2.89 – 2.83 (m, 1H), 2.39 (dd, J = 14.4, 7.3 Hz, 1H), 2.30 (dd, J = 14.4, 6.9 Hz, 1H), 1.11 (d, J = 6.8 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 170.1, 159.0, 137.8, 132.1, 130.0, 129.0, 128.8, 127.3, 124.3, 120.0, 114.0, 55.3, 45.3, 34.3, 20.1 (t, J = 20.2 Hz).

HRMS (**ESI-TOF**) Calcd for C₁₉H₂₁DNO₂ (M+H)⁺ 297.1708. Found 297.1706.

HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 39.5 min (major) and 47.2 min (minor).

ii. internal alkenes

Me NHPh
$$\stackrel{\text{PMP}}{+}$$
 $\stackrel{\text{Br}}{+}$ $\stackrel{\text{PMP}}{+}$ $\stackrel{\text{NiBr}_2 \bullet \text{DME } (10 \text{ mol}\%)}{+}$ $\stackrel{\text{PMP}}{+}$ $\stackrel{\text{NiBr}_2 \bullet \text{DME } (10 \text{ mol}\%)}{+}$ $\stackrel{\text{PMP}}{+}$ $\stackrel{\text{NiBr}_2 \bullet \text{DME } (2.0 \text{ equiv})}{+}$ $\stackrel{\text{O}}{+}$ $\stackrel{\text{NiBr}_2 \bullet \text{DME } (10 \text{ mol}\%)}{+}$ $\stackrel{\text{O}}{+}$ $\stackrel{\text{NiBr}_2 \bullet \text{DME } (10 \text{ mol}\%)}{+}$ $\stackrel{\text{O}}{+}$ $\stackrel{\text{NiBr}_2 \bullet \text{DME } (10 \text{ mol}\%)}{+}$ $\stackrel{\text{NiBr}_2 \bullet \text{DME } (10 \text{ mo$

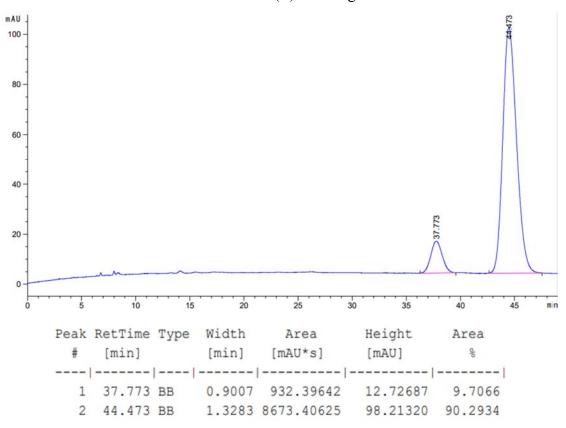
In a nitrogen-filled glovebox, NiBr2•DME (3.1 mg, 0.01 mmol, 10 mol%) and L1 (5.8 mg, 0.012 mmol, 12 mol%) were dissolved in dioxane (2.0 mL, 0.05 M) in a 10 mL Schlenk tube with screw-cap equipped with a magnetic stirrer. The mixture was stirred at room temperature for 10 min, then 1a (17.5 mg, 0.1 mmol, 1.0 equiv), 2a (55.0 mg, 0.25 mmol, 2.5 equiv), K₃PO₄•H₂O (46.0 mg, 0.2 mmol, 2.0 equiv) and Ph₂SiD₂ (55.0 mg, 0.3 mmol, 3.0 equiv) were sequentially added. The mixture was stirred at room temperature for 48 h. The mixture was quenched with H₂O (2.0 mL), extracted with ethyl acetate (10.0 mL), filtered through a pad of diatomite. The organic phase was dried over Na₂SO₄, filtered, concentrated under reduced pressure. The crude mixture was purified by flash column chromatography on silica gel using a mixture of PE: EtOAc= 8:1 as eluent to give 6 as white solid (14.0 mg, 79% yield, 90% ee). Yield was calculated based on the recovery of alkene and the deuterated ratio was confirmed by ¹H NMR (98% D).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.32 (m, 2H), 7.24 – 7.19 (m, 5H), 7.01 – 6.99 (m, 1H), 6.80 – 6.73 (m, 2H), 6.36 (d, J = 15.8 Hz, 1H), 5.85 (dd, J = 15.8, 8.8 Hz, 1H), 3.72 (s, 3H), 2.59 (m, 1H), 2.42 (dd, J = 14.4, 5.7 Hz, 1H), 2.32 (dd, J = 14.4, 8.3 Hz, 1H), 1.56 – 1.47 (m, 1H), 0.86 (d, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 170.2, 159.0, 137.8, 130.7, 130.6, 130.0, 129.0, 127.3, 124.3, 120.0, 114.0, 55.3, 43.8, 41.9, 27.7 (t, J = 19.2 Hz), 11.6.


HRMS (ESI-TOF) Calcd for C₂₀H₂₃DNO₂ (M+H)⁺ 311.1865. Found 311.1862.

HPLC (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 15.1 min (major) and 17.9 min (minor).


7.2 Control experiments

To an oven-dried 10 mL Teflon-screw cap tube containing a magnetic stir was charged with Ni(COD)₂ (5.5 mg, 0.02 mmol, 10 mol%) and ligand **L1** (12.0 mg, 0.024 mmol, 12 mol%) in a nitrogen-filled glovebox. Subsequently, anhydrous dioxane (3.0 mL) and DME (1.0 mL) were added, and the mixture was stirred for 15 min at room temperature. Then olefin **1a'** (350.0 mg, 0.20 mmol, 1.0 equiv), **2a** (110.0 mg, 0.50 mmol, 2.5 equiv), K₃PO₄•H₂O (92.0 mg, 0.4 mmol, 2.0 equiv) were sequentially added. The tube was sealed and removed from the glove box and stirred at 0 °C for 10 min, then (MeO)₃SiH (75.4 mg, 0.60 mmol, 3.0 equiv) added dropwise under N₂ atmosphere. The resulting mixture was stirred at 0 °C for 48 h. After the reaction was completed, the reaction mixture was quenched with H₂O and extracted with EtOAc (3 × 20.0 mL) and the combined organic phase was concentrated in vacuum. The crude mixture was purified by flash column chromatography on silica gel using a mixture of PE: EtOAc= 10:1 as eluent to give (*R*)-**3k** (20.7 mg, 35% yield, 80% ee, rr = 4.5: 1).

HPLC data of (S)-3k using L1

HPLC data of (R)-3k using L1

VIII. Scale-up reaction and derivatization of coupling products

8.1 Scale-up reaction

To an oven-dried 100 mL Teflon-screw cap tube containing a magnetic stir was charged with Ni(COD)₂ (55.0 mg, 0.2 mmol, 10 mol%) and ligand **L1** (120.0 mg, 0.24 mmol, 12 mol%) in a nitrogen-filled glove-box. Subsequently, anhydrous dioxane (30.0 mL) and DME (10.0 mL) were added, and the mixture was stirred for 15 min at room temperature. Then olefin **1a** (350.0 mg, 2.0 mmol, 1.0 equiv), **2a** (1.1 g, 5.0 mmol, 2.5 equiv), K₃PO₄•H₂O (920.0 mg, 4.0 mmol, 2.0 equiv) were sequentially added. The tube was sealed and removed from the glove box and stirred at 0 °C for 10 min, then (MeO)₃SiH (754.0 mg, 6.0 mmol, 3.0 equiv) added dropwise under N₂ atmosphere. The resulting mixture was stirred at 0 °C for 72 h. After the reaction was completed, the reaction mixture was quenched with H₂O and extracted with EtOAc (3 × 20.0 mL) and the combined organic phase was concentrated in vacuum. The crude mixture was purified by flash column chromatography on silica gel using a mixture of PE: EtOAc= 10:1 as eluent to give **3a** (457.0 mg, 73% yield, 90% ee).

8.2 Derivatization of coupling products

Following literature procedure, ^{5,6} to a solution of **3a** (93.0 mg, 0.3 mmol, 1.0 equiv) in dry DCM (20.0 mL) was added triethylamine (64.2 mg, 0.6 mmol, 2.0 equiv), (Boc)₂O (261.6 mg, 1.2 mmol, 6.0 equiv) and DMAP (48.8 mg,0.4 mmol, 2.0 equiv), the resulting reaction mixture was stirred at room temperature for 2 h. The resulting solution was quenched with water (30.0 mL). The aqueous layer was extracted with DCM (2 × 30.0 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, and concentrated. The crude product was purified on flash column to afford the product.

A round-bottom flask equipped with a magnetic stirring bar was charged with 0.05 M solution of the product obtained above (82.0 mg, 0.20 mmol, 1.0 equiv) in THF: H₂O = 3:1. The solution was cooled to 0 °C followed by adding 30% (by wt.) aqueous solution of H₂O₂ (113.3 mg, 1.0 mmol, 5.0 equiv) and LiOH (9.6 mg, 0.40 mmol, 2.0 equiv). The mixture was warmed slowly to room temperature and stirred for 3 h until completion as judged by TLC analysis. The reaction was cooled to 0 °C and treated with 1.5 N aqueous solution of Na₂SO₃ (1.1 equiv). The mixture was stirred for 5 min at room temperature and was diluted with

H₂O. The mixture was extracted with CH₂Cl₂ to remove HN(Boc)Ph. The remaining basic aqueous layer was acidified to pH = 4 and extracted with CH₂Cl₂. The organic layer was concentrated in vacuum and chromatographed on a silica column (PE: EtOAc = 1:1) to afford **7** as white solid (39.0 mg, 82% yield, 91% ee). (ee value was determined by corresponding arylamide). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.28 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 6.37 (d, J = 15.8 Hz, 1H), 5.87 (dd, J = 15.8, 8.6 Hz, 1H), 3.80 (s, 3H), 2.61 – 2.55 (m, 1H), 2.48 (dd, J = 15.0, 6.4 Hz, 1H), 2.41 (dd, J = 15.0, 8.0 Hz, 1H), 1.60 – 1.52 (m, 1H), 1.46 – 1.40 (m, 1H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 178.3, 159.0, 130.33, 130.27, 130.25, 127.4, 114.1, 55.4, 41.3, 40.0, 27.9, 11.7. HRMS (ESI-TOF) Calcd for C₁₄H₁₉O₃ (M+H)⁺ 235.1329. Found 235.1333. HPLC trace was obtained by the corresponding arylamide. HPLC (AD-H, 0.46*25 cm, 5 μm, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 14.9 min (major) and 17.7 min (minor).

Following literature procedure,⁷ to a flame-dried and nitrogen-flushed 10 mL round-bottom flask equipped with a stir bar and a septum was added 3a (46.5 mg, 0.15 mmol, 1.0 equiv), anhydrous DCM (3.0 mL), and 2-fluoropyridine (16.5 mg, 0.17 mmol, 1.1 equiv). The solution was then cooled to -78 °C and stirred for 2 min. Tf₂O (48.0 mg, 0.17 mmol, 1.1 equiv) was added dropwise using a syringe at -78 °C and the reaction was stirred for 15 min. The solution was warmed to 0 °C and stirred for 15 min. EtMgBr (0.3 mmol, 150.0 µL, 2.0 equiv, 2.0 M in Et₂O) was added in one portion to the reaction at 0 °C, and the reaction was stirred for 25 min at 0 °C. The reaction was quenched by the addition of 1.6 mL of an aqueous solution of HCl (0.5 M). The biphasic mixture was gently heated to 65 °C (keeping the flask ventilated for DCM evaporation) for 2 h to ensure complete hydrolysis to the ketone. The aqueous layer was extracted with EtOAc (2 × 10.0 mL) and the organic layers were combined. The organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated to dryness. The ketones were purified by column chromatography on silica gel (PE: EtOAc = 30:1) to provide the title compound 8 as a colorless oil (30.2 mg, 82% yield, 90% ee). ¹H **NMR** (400 MHz, Chloroform-d) δ 7.30 – 7.23 (m, 2H), 6.85 – 6.83 (m, 2H), 6.32 (d, J = 15.8 Hz, 1H), 5.84 (dd, J = 15.8, 8.6 Hz, 1H), 3.80 (d, J = 1.2 Hz, 3H), 2.63 (m, 1H), 2.50 (d, J = 7.1 Hz, 2H), 2.41 (q, J = 7.3 Hz, 2Hz), 2.41 (q, J = 7.3 Hz), 2.41 (q, J = 7Hz, 2H), 1.49 (m, 1H), 1.36 (m, 1H), 1.02 (t, J = 7.3 Hz, 3H), 0.90 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-d) δ 210.9, 158.9, 131.0, 130.3, 129.7, 127.2, 113.9, 55.3, 48.1, 40.7, 36.8, 28.1, 11.7, 7.7. **HRMS (ESI-TOF)** Calcd for C₁₆H₂₃O₂ (M+H)⁺ 247.1693. Found 247.1698. **HPLC** (AD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 4.6 min (major) and 5.0 min (minor).

Following literature procedure,8 lithium aluminum hydride (23.0 mg, 1.0 M in Et₂O, 3.0 equiv) was added dropwise to a solution of 3a (62.0 mg, 0.2 mmol, 1.0 equiv) in THF (2.0 mL) at 0 °C in a 10-mL Schlenk tube. Next, the reaction mixture was allowed to warm to room temperature, and then it was heated to 85 °C. After being stirred at 85 °C in the sealed Schlenk tube overnight, the reaction mixture was diluted with Et₂O (10.0 mL) and cooled to 0 °C. The reaction was then quenched in turn with H₂O (36.0 mg, 0.2 mmol, 1.0 equiv), 15% aqueous NaOH (36.0 mg, 0.2 mmol, 1.0 equiv), and H₂O (108 mg, 0.6 mmol, 3.0 equiv). Next, the suspension was filtered through a sintered funnel to remove the white solid. The combined organic layers were dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (PE/EtOAc = 10:1) to afford the pure product 9 as colorless oil (50.0 mg, 84% yield, 91% ee). ¹H NMR (400 MHz, Chloroform-d) δ 7.20 (d, J = 8.7 Hz, 2H), 7.08 – 7.04 (m, 2H), 6.76 (d, J = 8.7 Hz, 2H), 6.61 - 6.57 (m, 1H), 6.51 - 6.49 (m, 2H), 6.24 (d, J = 15.8 Hz, 1H), 5.75 (dd, J = 15.8, 9.0 Hz, 1H), 3.69 (s, 3H), 3.13 - 2.96 (m, 2H), 2.11 - 2.02 (m, 1H), 1.72 - 1.64 (m, 1H),1.58 - 1.47 (m, 1H), 1.47 - 1.37 (m, 1H), 1.34 - 1.24 (m, 1H), 0.81 (t, J = 7.4 Hz, 3H). ¹³C NMR (101) MHz, Chloroform-d) δ 158.9, 148.4, 132.3, 130.5, 129.9, 129.3, 127.2, 117.2, 114.0, 112.9, 55.4, 43.3, 42.4, 35.0, 28.6, 11.9. **HRMS (ESI-TOF)** Calcd for $C_{20}H_{26}NO$ (M+H)⁺296.2009. Found 296.2015. **HPLC** (AD-H, 0.46*25 cm, $5 \mu m$, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 7.3 min (major) and 8.0 min (minor).

Following literature procedure, ⁹ a solution of 3a (93.0 mg, 0.3 mmol, 1.0 equiv) in dry DMF (3.0 mL) was added into a suspension of NaH (60% dispersion in mineral oil, 18.0 mg, 0.6 mmol) in dry DMF (1.0 mL) at 0 °C (in an ice-water bath). After stirring the resulting solution for 15 min, benzyl bromide (150.0 mg, 0.9 mmol, 3.0 equiv) was added dropwise. The ice bath was then removed, and the reaction mixture was stirred at room temperature monitored by TLC analysis (3 h). Then DMF was removed under reduced pressure, and the resulting yellow residual was treated with water (20.0 mL) and extracted with ethyl acetate (3 × 20 mL). The combined organic layer was dried over anhydrous sodium sulfate, and the volatile components were removed under reduced pressure. The residual was treated with silica gel column chromatography (PE: EtOAc = 8: 1) to give the pure product.

Lithium aluminum hydride (23.0 mg, 1.0 M in Et₂O, 3.0 equiv) was added dropwise to a solution of the product obtained above (80.0 mg, 0.2 mmol, 1.0 equiv) in THF (2.0 mL) at 0 °C in a 10-mL Schlenk tube. Next, the reaction mixture was allowed to warm to room temperature, and then it was heated to 85 °C. After being stirred at 85 °C in the sealed Schlenk tube overnight, the reaction mixture was diluted with Et₂O (10.0 mL) and cooled to 0 °C. The reaction was then quenched in turn with H₂O (38.0 μ L), 15% aqueous NaOH (38 μ L), and H₂O (114.0 μ L). Next, the suspension was filtered through a sintered funnel to remove the white solid. The combined organic layers were dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (PE: EtOAc = 10:1) to afford the pure product 10 as colorless oil (31.0 mg, 69% yield, 87% ee). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 6.33 (d, J = 15.8 Hz, 1H), 5.82 (dd, J = 15.8, 9.1 Hz, 1H), 3.80 (s, 3H), 3.74 – 3.61 (m, 2H), 2.19 – 2.09 (m, 1H), 1.81 – 1.71 (m, 1H), 1.66 – 1.53 (m, 2H), 1.41 – 1.34 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.9, 132.5, 130.5, 129.8, 127.2, 114.1, 61.6, 55.5, 42.2, 38.2, 28.7, 11.9. HRMS (ESI-TOF) Calcd for C₁₄H₂₁O₂ (M+H)⁺ 221.1536. Found 221.1541. HPLC (AD-H, 0.46*25 cm, 5 μ m, hexane/isopropanol = 90/10, flow rate = 1 mL/min, detection at 254 nm) retention time = 6.6 min (major) and 7.2 min (minor).

Following literature procedure, ¹⁰ olefin **3a** (31.0 mg, 0.1 mmol, 1.0 equiv) and NaIO₄ (107.0 mg, 0.5 mmol) in a 1:1 mixture of CCl₄ and CH₃CN (2.0 mL). Add a solution of RuCl₃ (1.0 mg, 0.001 mol) in H₂O (1.0 mL) to the flask. Stir the reaction mixture vigorously. After completion of the reaction (2.0 hour), add EtOAc (20.0 mL) and NaHCO₃ (saturated aqueous solution, 20.0 mL) to the reaction. Extract the organic phase with NaHCO₃ (saturated aqueous solution, 4 × 10.0 mL). The combined aqueous phase was acidified with concentrated HCl aq. until pH value reached 2, which was extracted with EtOAc (4 × 10.0 mL). The combined organic phase was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (PE: EtOAc: CH₃COOH = 80: 20: 1) to afford the pure product **11** as white solid (16.0 mg, 73% yield, 90% ee). (ee value was determined by corresponding methyl ester). ¹**H NMR** (400 MHz, Acetonitrile-*d*₃) δ 9.50 (s, 1H), 8.40 (s, 1H), 7.53 (d, *J* = 7.8 Hz, 2H), 7.30 (t, *J* = 7.8 Hz, 2H), 7.09 – 7.05 (m, 1H), 2.88 – 2.73 (m, 1H), 2.66 (dd, *J* = 15.6, 9.0 Hz, 1H), 2.49 (dd, *J* = 15.6, 4.9 Hz, 1H), 1.59 – 1.52 (m, 1H), 1.46 – 1.41 (m, 1H), 0.93 (t, *J* = 7.5 Hz, 3H). ¹³**C NMR** (101 MHz, Acetonitrile-*d*₃) δ 175.5, 170.0, 138.4, 128.5, 123.4, 119.1, 42.0, 37.3, 24.3, 10.4. **HRMS** (ESI-TOF) Calcd for C₁₂H₁₆NO₃ (M+H)⁺ 222.1125. Found 222.1131. **HPLC** (AD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 85/15, flow rate = 1 mL/min, detection at 254 nm) retention time = 6.4 min (major) and 7.4 min (minor).

IX. X-Ray diffraction data of 4q

X-ray structure of 4q (CCDC 2131923)

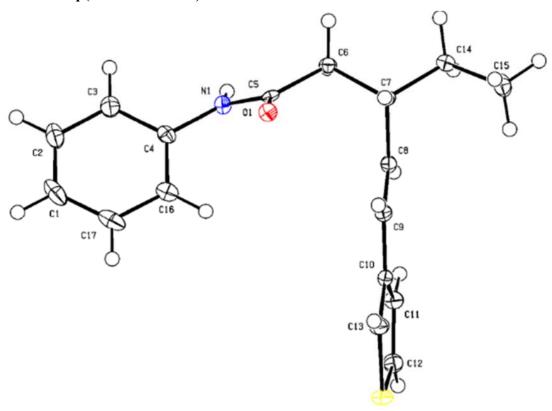


Table S8.Crystal data and structure refinement for cxy3456_0m (4q)

Identification code	cxy3456_0m
Empirical formula	C ₁₇ H ₁₉ NOS
Formula weight	285.39
Temperature/K	100.0
Crystal system	monoclinic
Space group	P2 ₁
a/Å	8.8663(14)
b/Å	8.7930(14)
c/Å	10.1594(16)
α/°	90
β/°	108.871(5)
γ/°	90
$Volume/Å^3$	749.5(2)
Z	2
$\rho_{cale}g/cm^3$	1.265

 μ/mm^{-1} 1.865

F(000) 304.0

Crystal size/mm³ $0.42 \times 0.42 \times 0.38$

Radiation $CuK\alpha (\lambda = 1.54178)$

 2Θ range for data collection/° 9.198 to 136.874

Index ranges $-10 \le h \le 10, -10 \le k \le 10, -12 \le l \le 12$

Reflections collected 11797

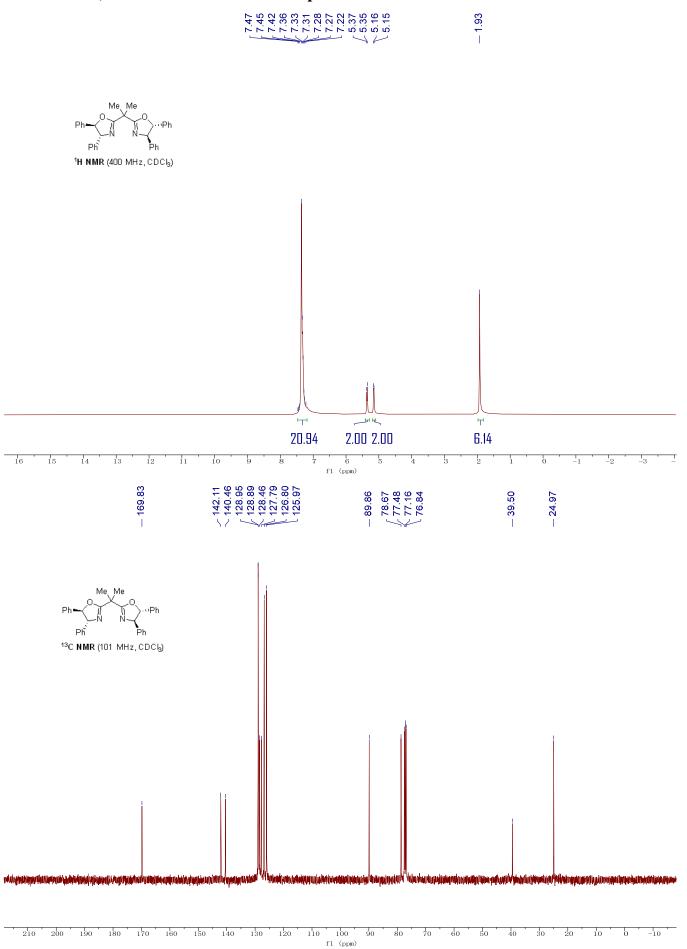
Independent reflections 2740 [R_{int}= 0.0341, R_{sigma}= 0.0297]

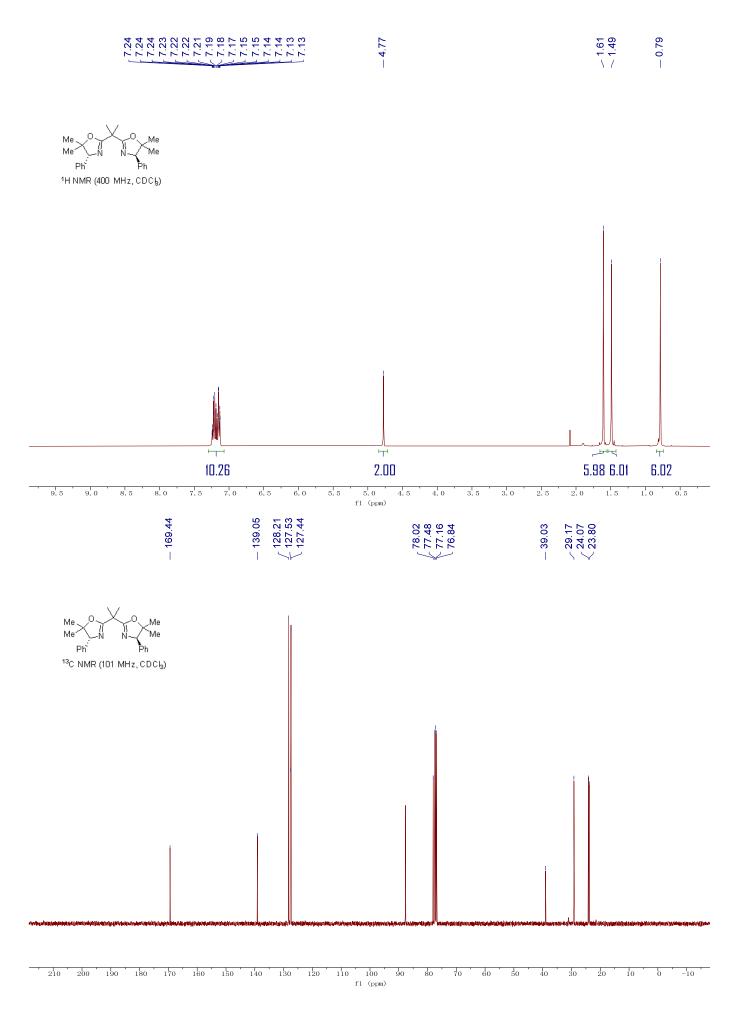
Data/restraints/parameters 2740/1/183

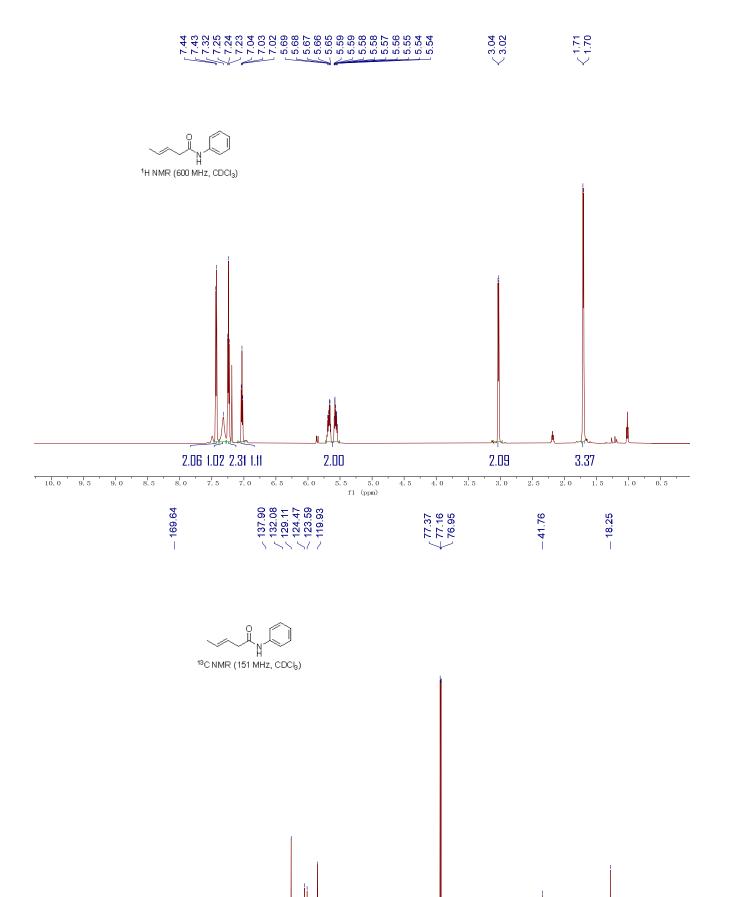
Goodness-of-fit on F^2 1.062

Final R indexes [I>= 2σ (I)] $R_1 = 0.0261$, $wR_2 = 0.0657$

Final R indexes [all data] $R_1 = 0.0262$, $wR_2 = 0.0658$


Largest diff. peak/hole / e $Å^{-3}$ 0.25/-0.18

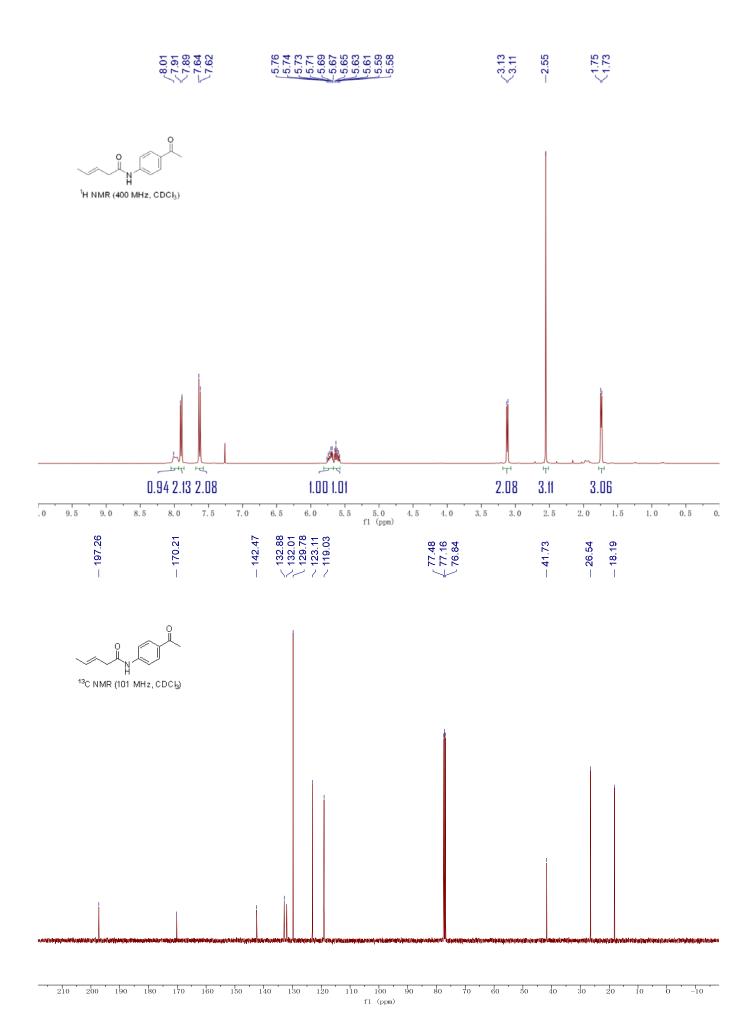

Flack parameter -0.001(7)


X. References

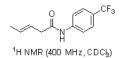
- 1. Zheng, H.; Doyle, M. P. Angew. Chem. Int. Ed. 2019, 58, 12502-12506.
- 2. Tsutsumi, K.; Itagaki, K.; Nomura, K. ACS Omega 2017, 2, 3886-3900.
- 3. Zhao, H.; Gao, Q.; Zhang, Y.; Zhang, P.; Xu, S. Org. Lett. 2020, 22, 2861-2866.
- 4. Yu, X.; Zheng, H.; Zhao, H.; Lee, B. C.; Koh, M. J. Angew. Chem. Int. Ed. 2021, 60, 2104-2109.
- 5. Sharma, P.; Liu, R. S. Org. Lett. 2016, 18, 412-415.
- 6. Evans, D. A.; Aye, Y.; Wu, J. Org. Lett. 2006, 8, 2071-2073.
- 7. Wang, J.; Yu, W. Org. Lett. 2019, 21, 9236-9240.
- 8. Norinder, J.; Bogár, K.; Kanupp, L.; Bäckvall, J. E. Org. Lett. 2007, 24, 5095-5098.
- 9. Musacchio, A. J.; Nguyen, L. Q.; Beard, G. H.; Knowles, R. R. J. Am. Chem. Soc. 2014, 35, 12217-12220.
- 10. Zhou, F.; Zhu, S.-L. ACS Catal. 2021, 11, 8766-8773.
- 11. Wang, D.-P.; Dong, J.; Fan, W.-J.; Yuan, X.-A.; Han, J., Xie, J. *Angew. Chem. Int. Ed.* **2020**, *59*, 8430-8434.

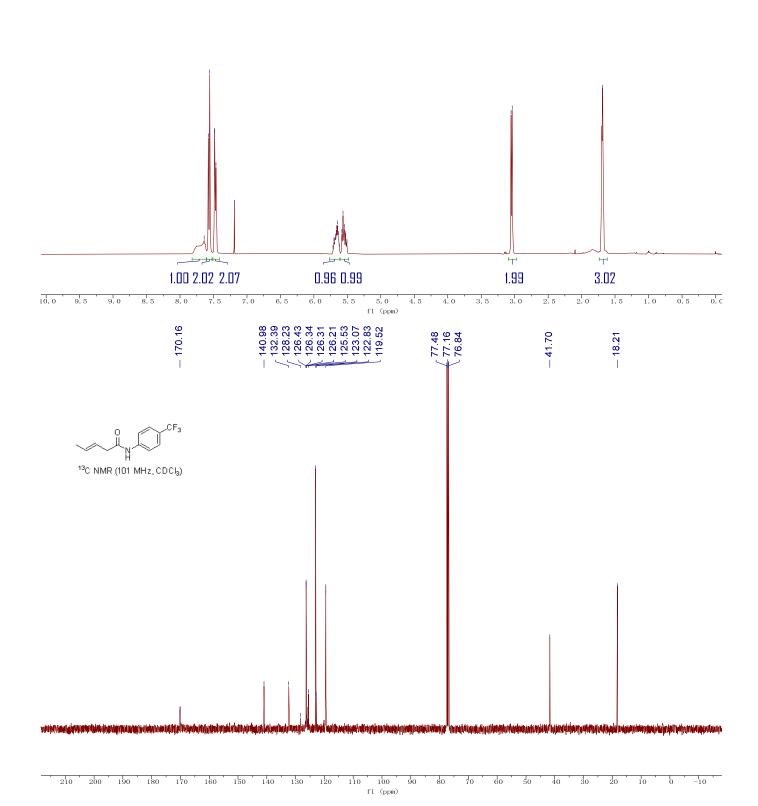
XI.¹H NMR, ¹³C NMR and ¹⁹F NMR spectra

110 100 f1 (ppm)

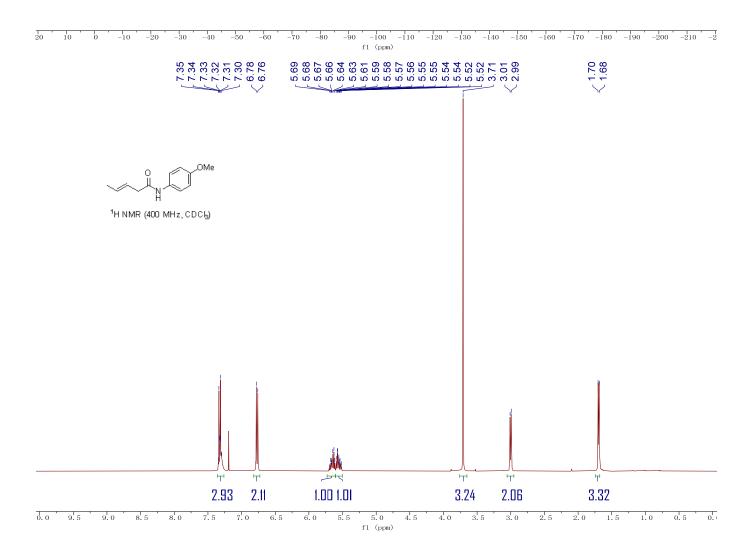

90 80 70 60 50 40

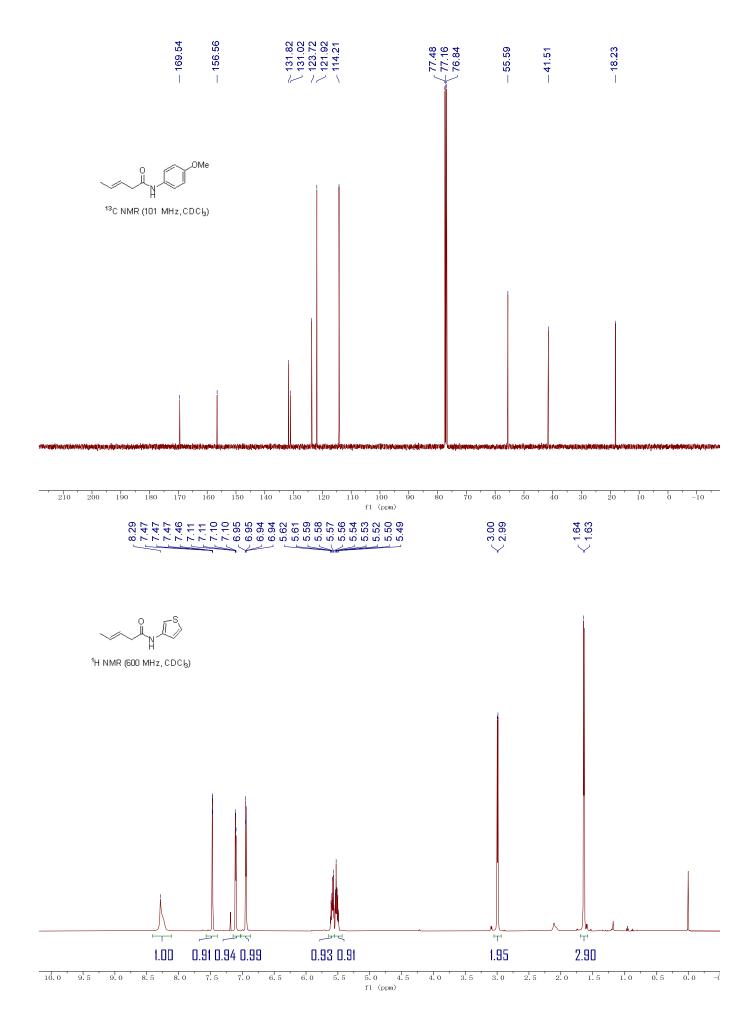
30

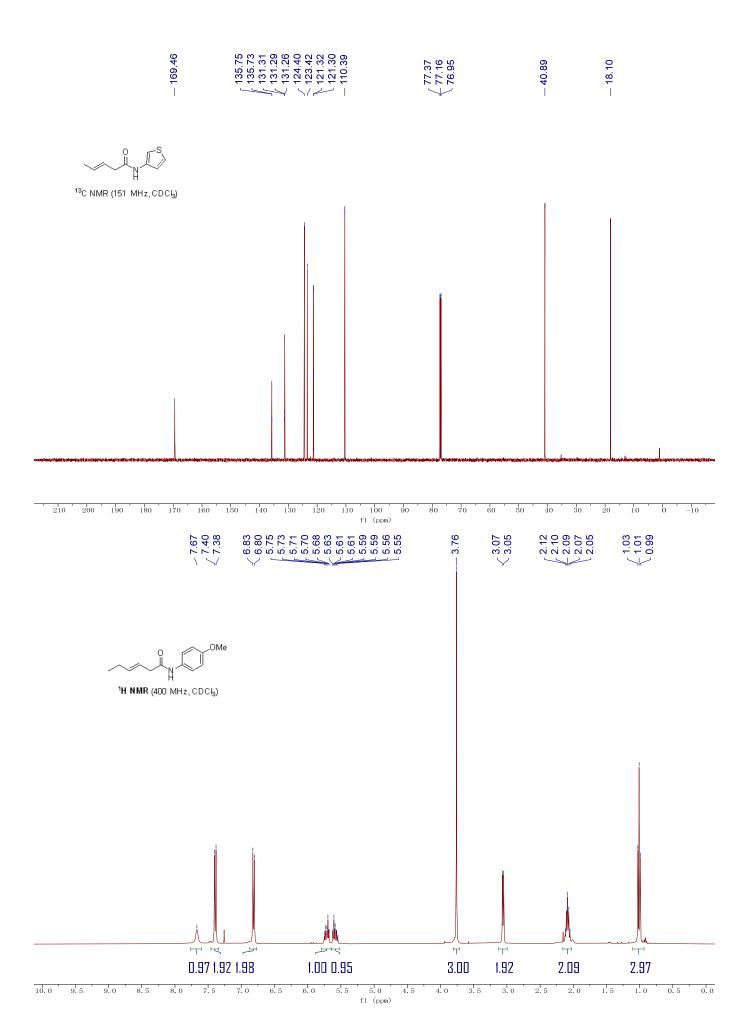

10

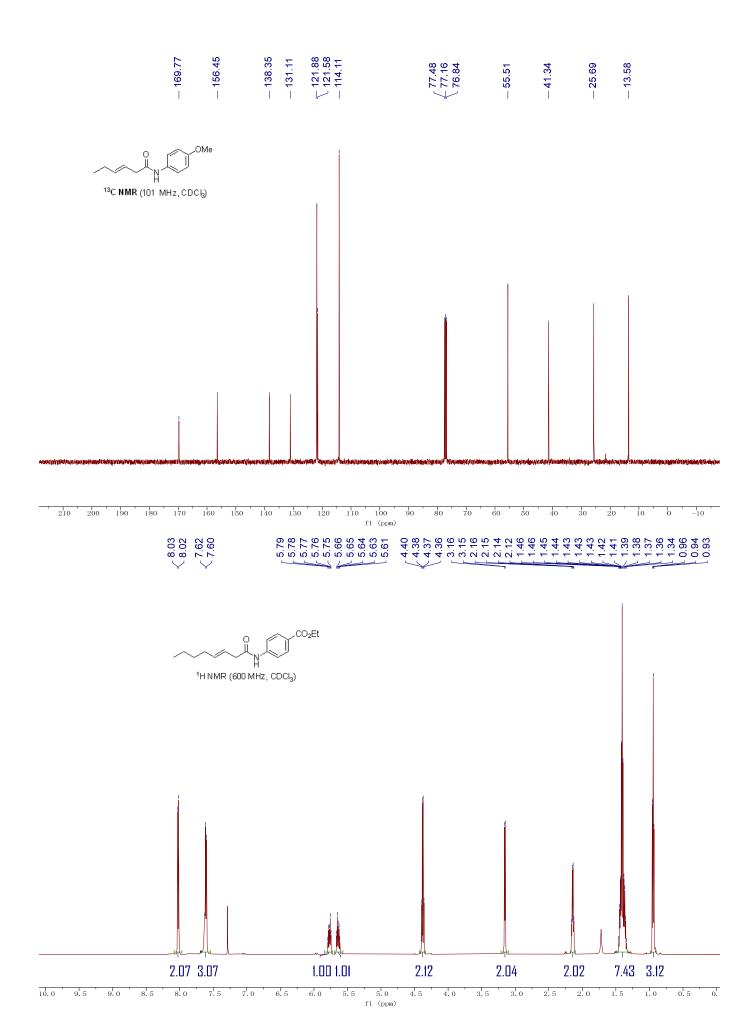

140 130 120

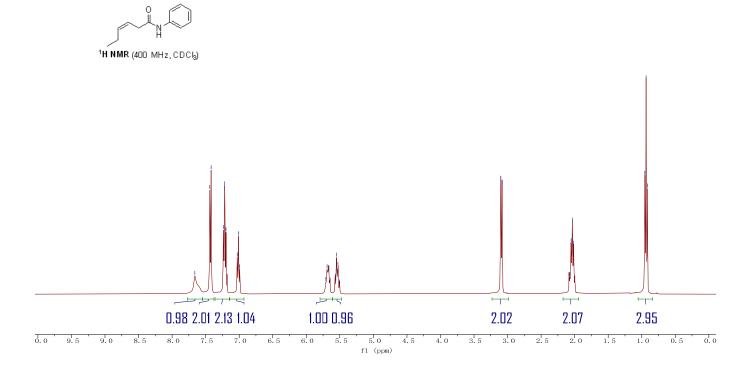
210 200 190 180 170 160 150



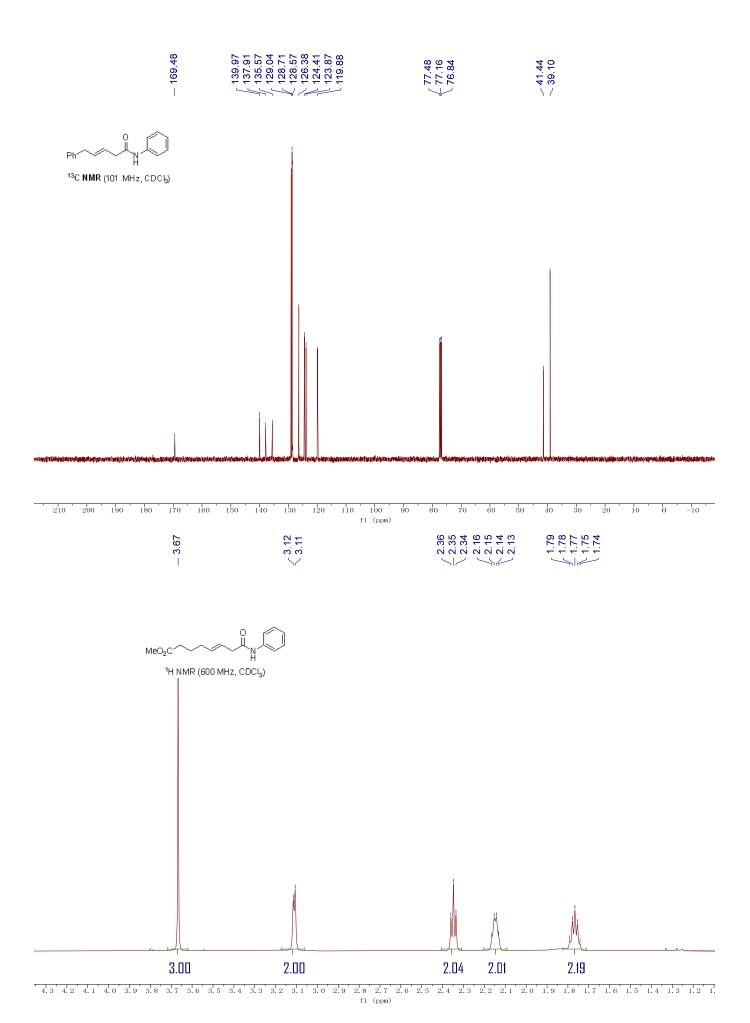


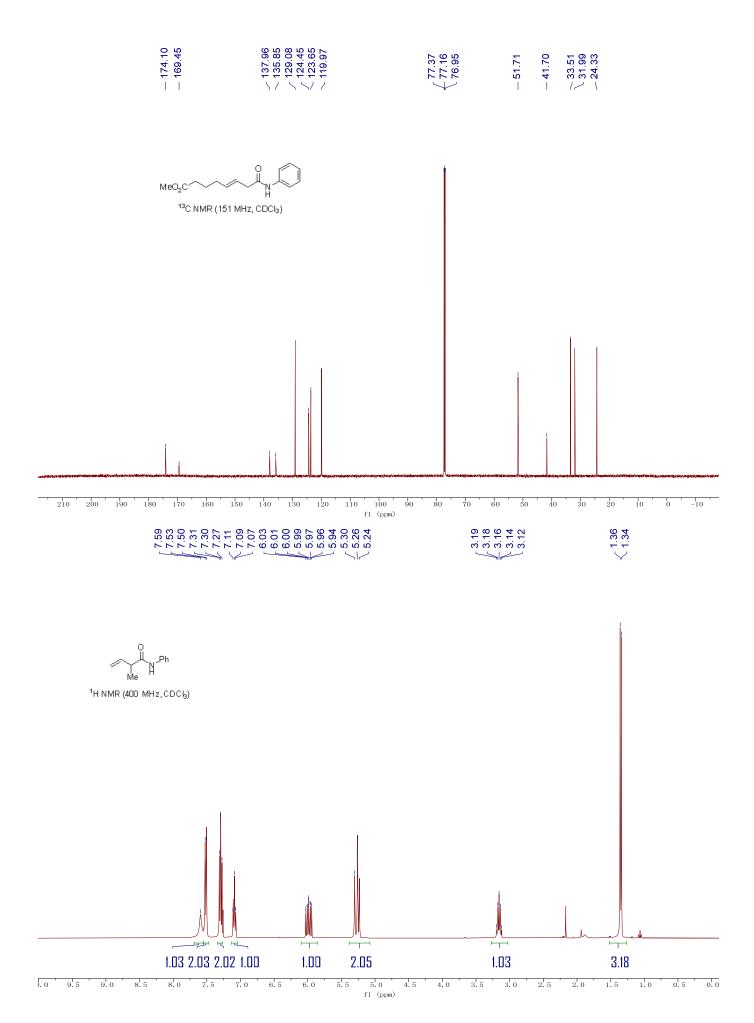


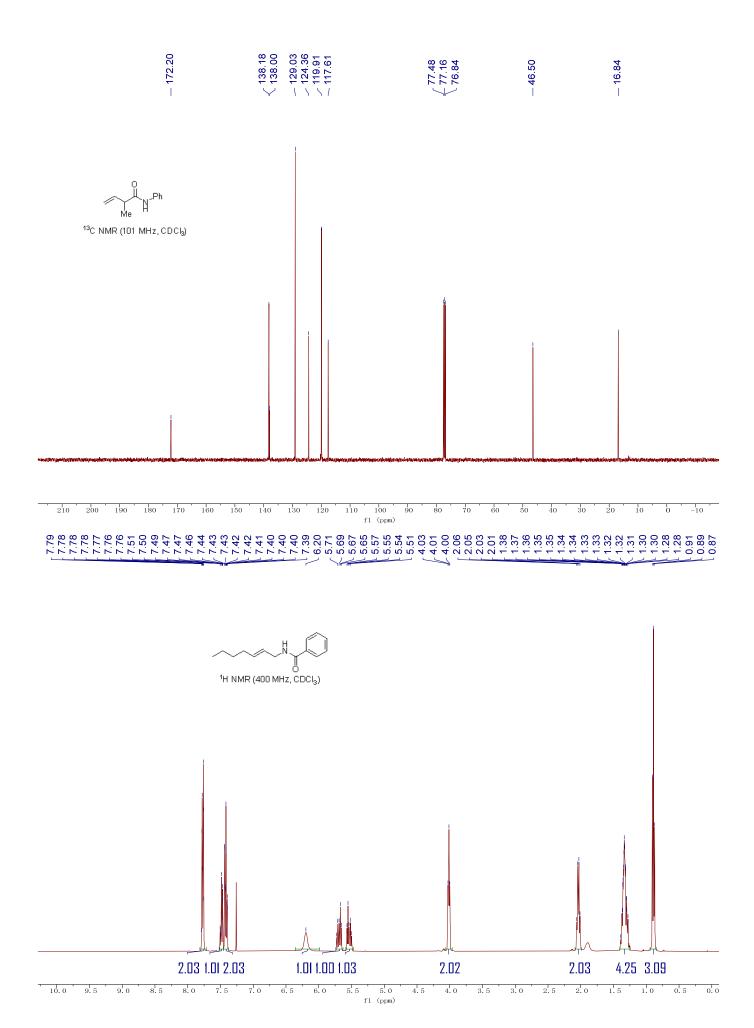


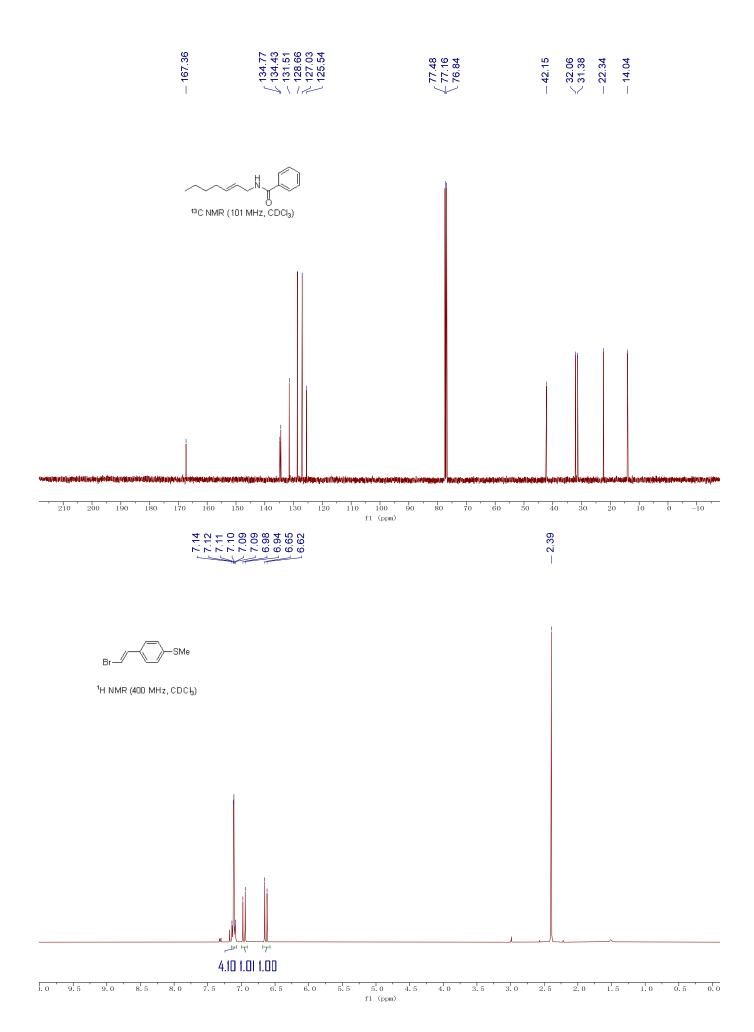


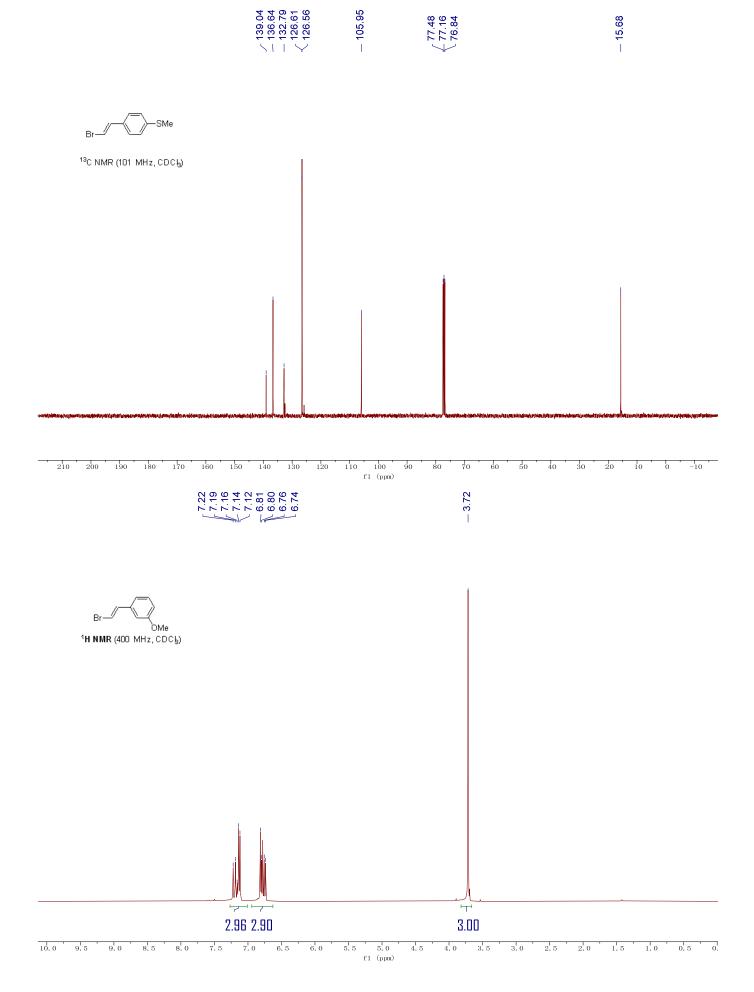


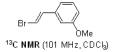


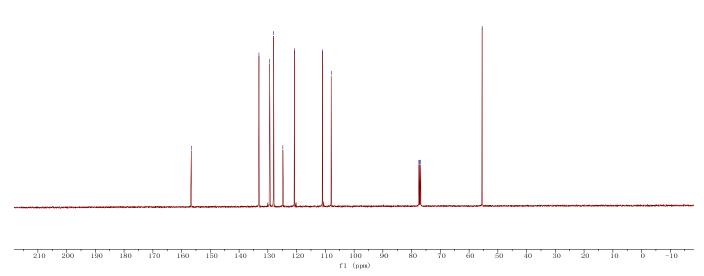


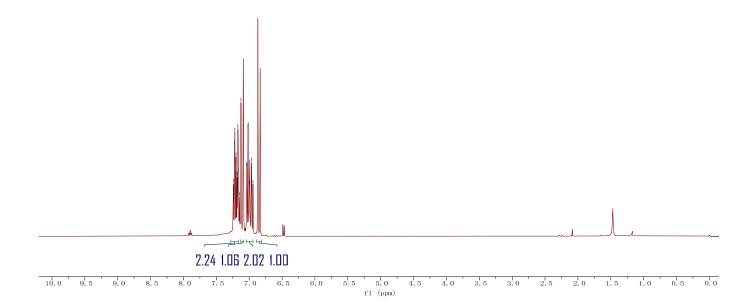


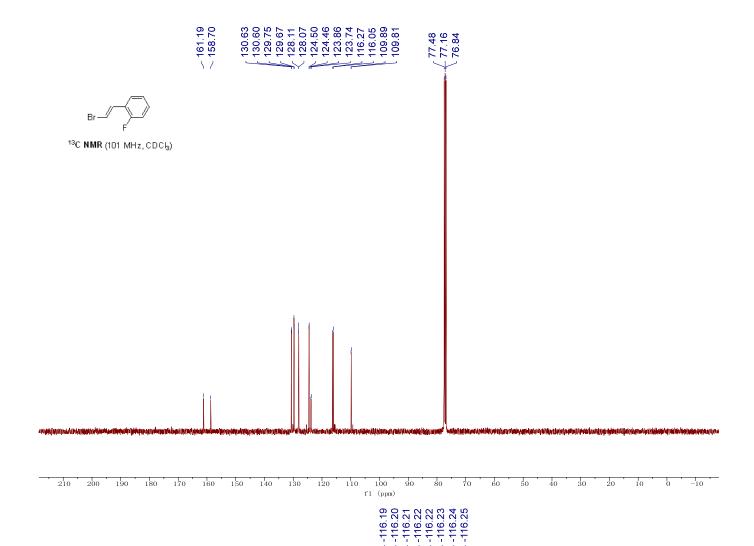


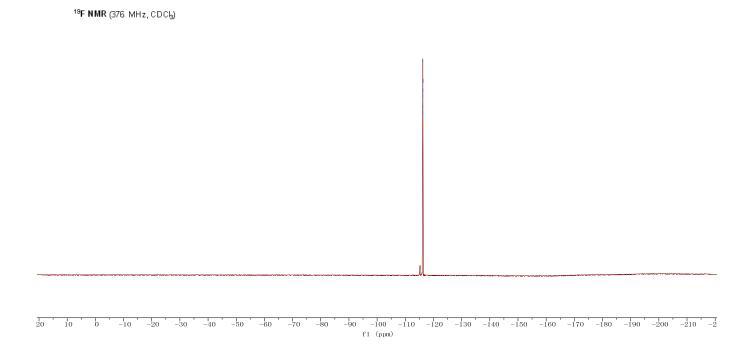


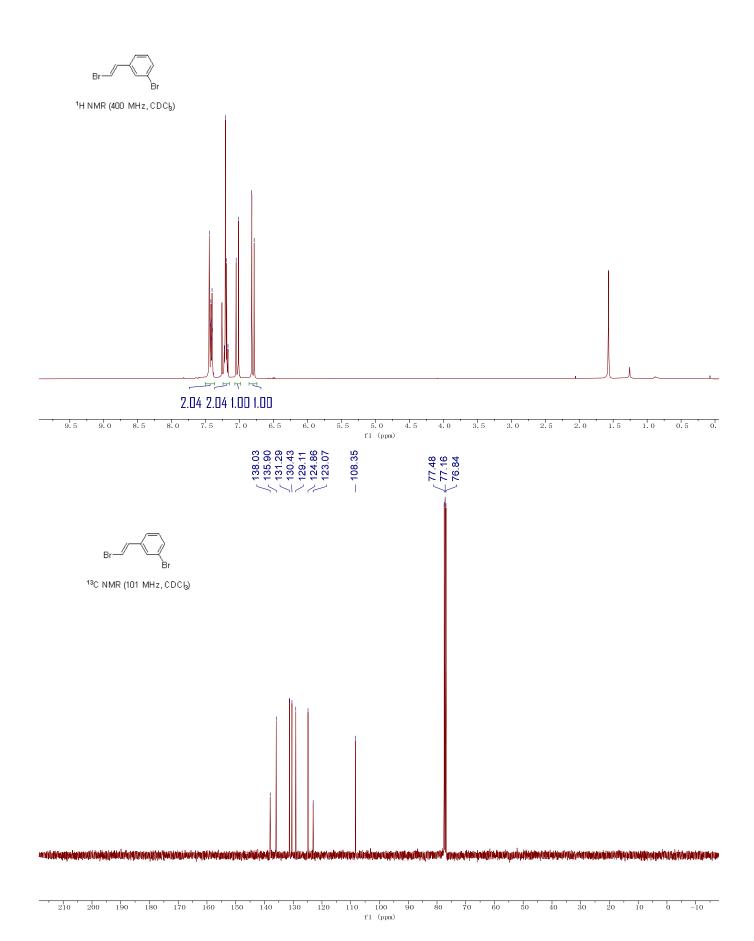


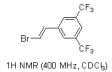


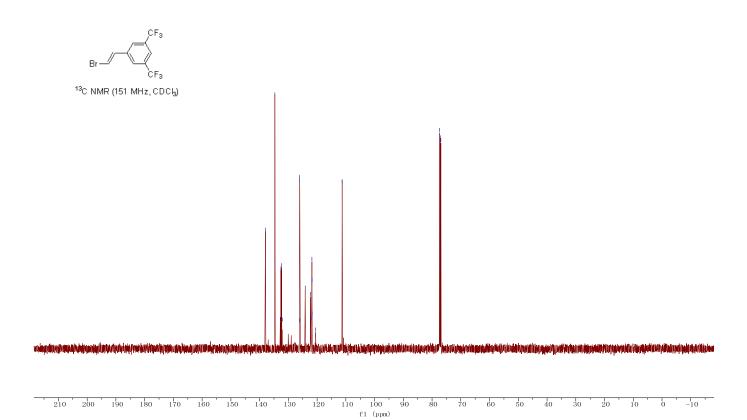


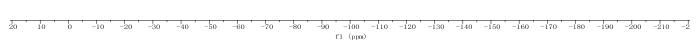


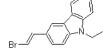



¹H NMR (400 MHz, CDC_b)

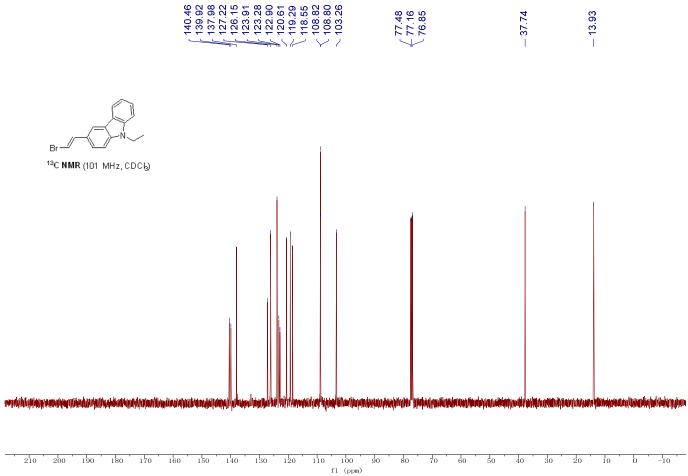


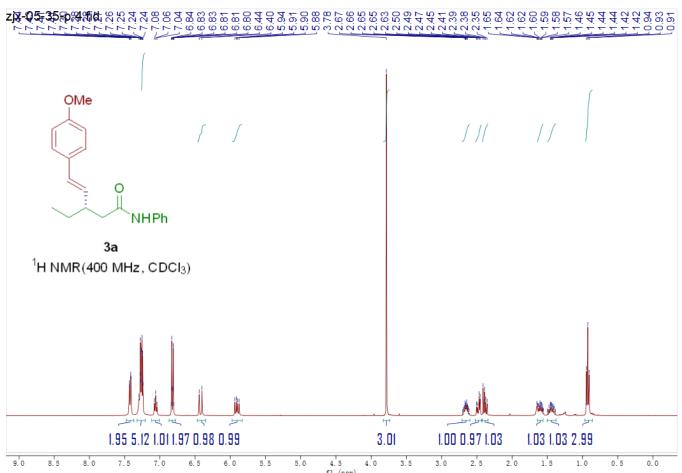


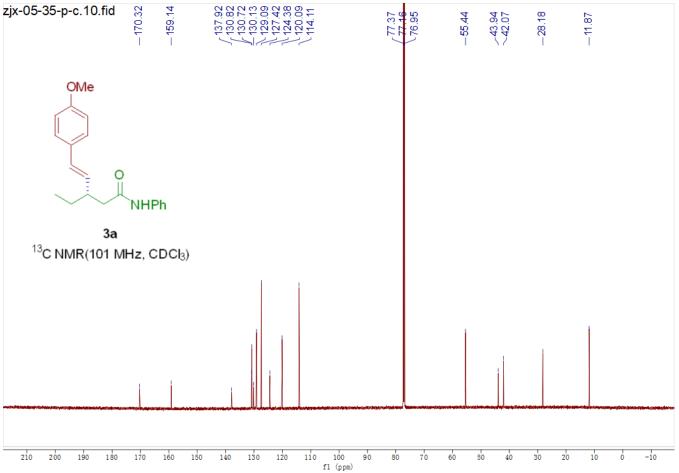


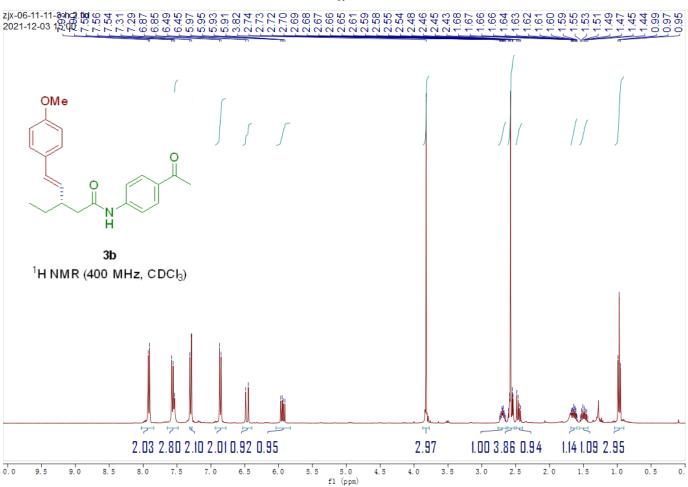


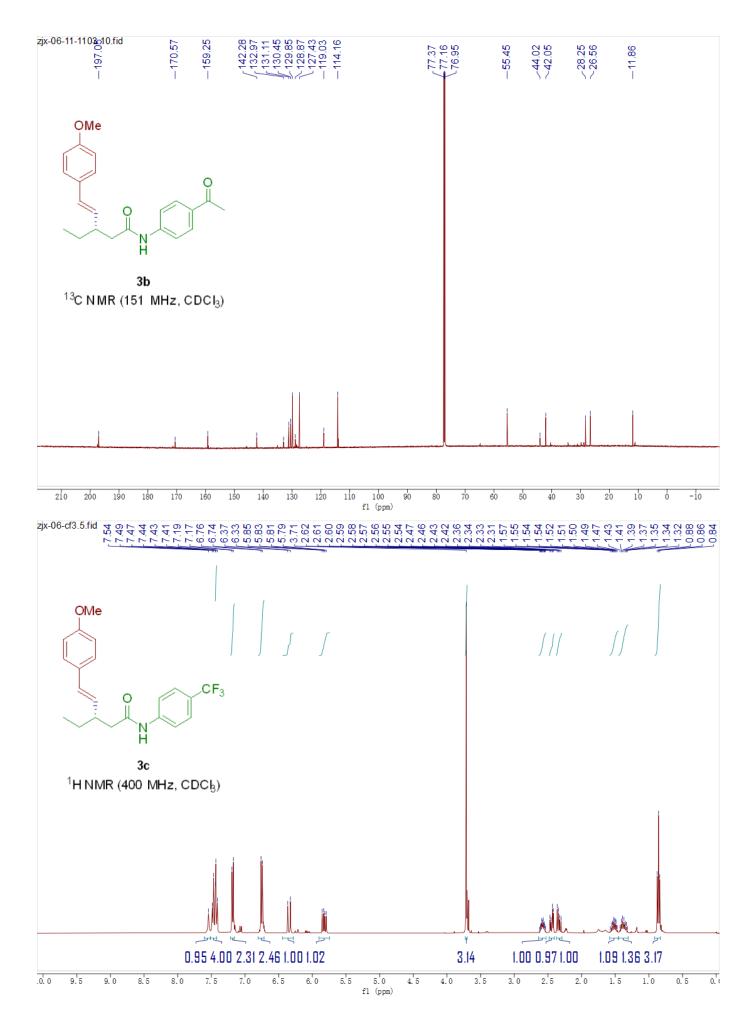

¹⁹FF NMR (376 MHz, CDCl₃)

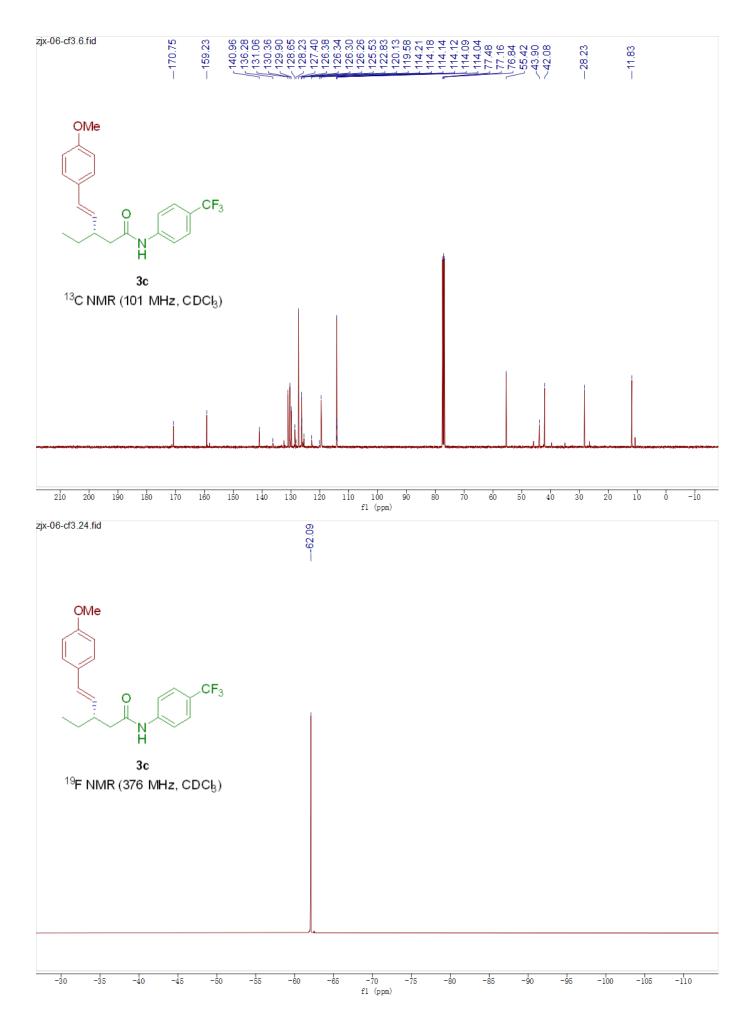


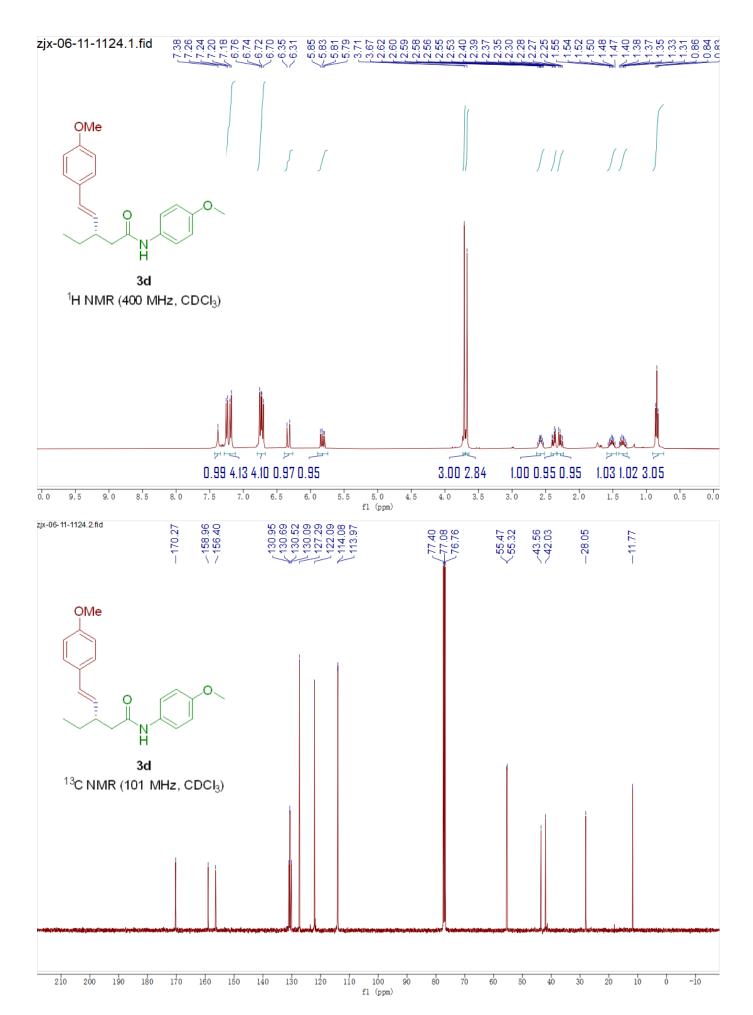


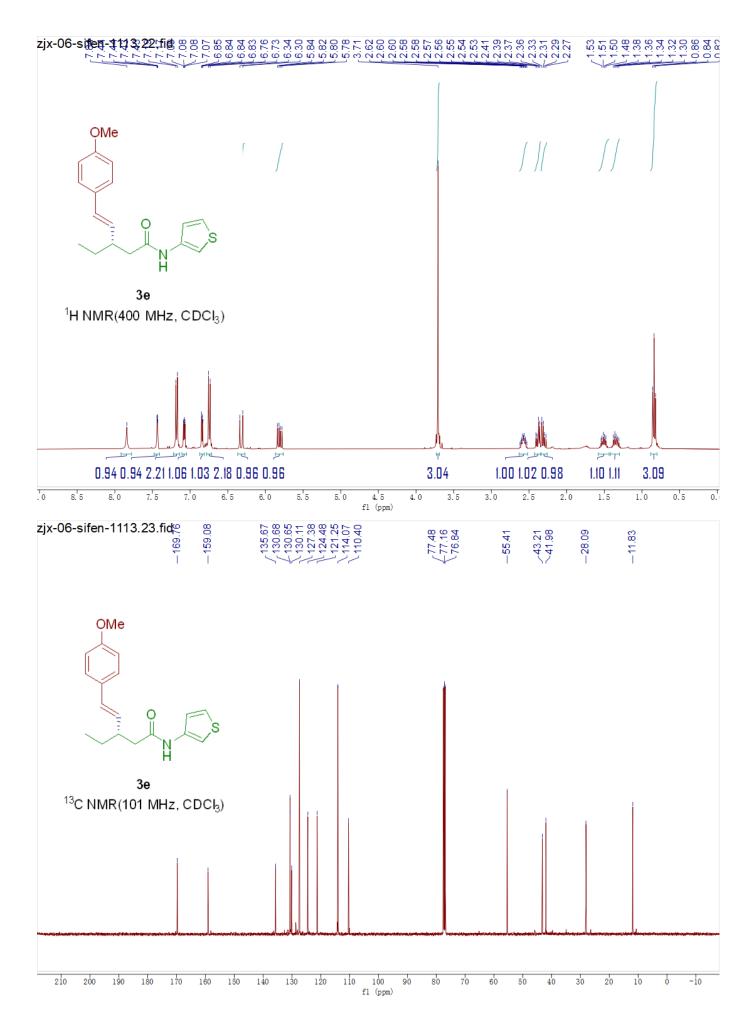


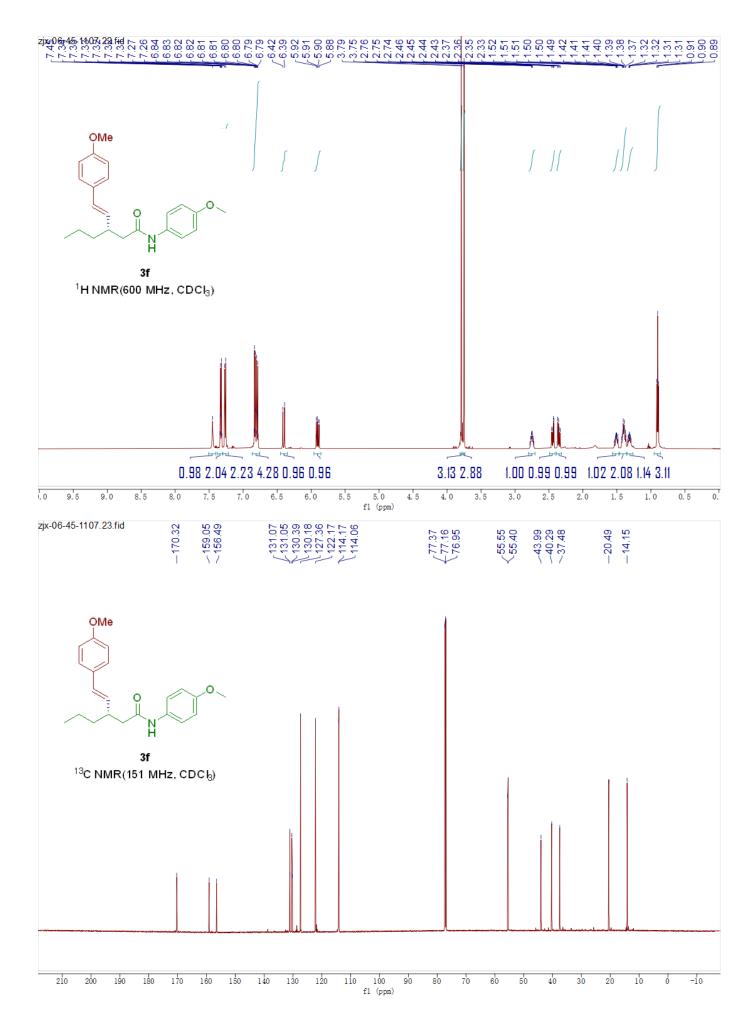


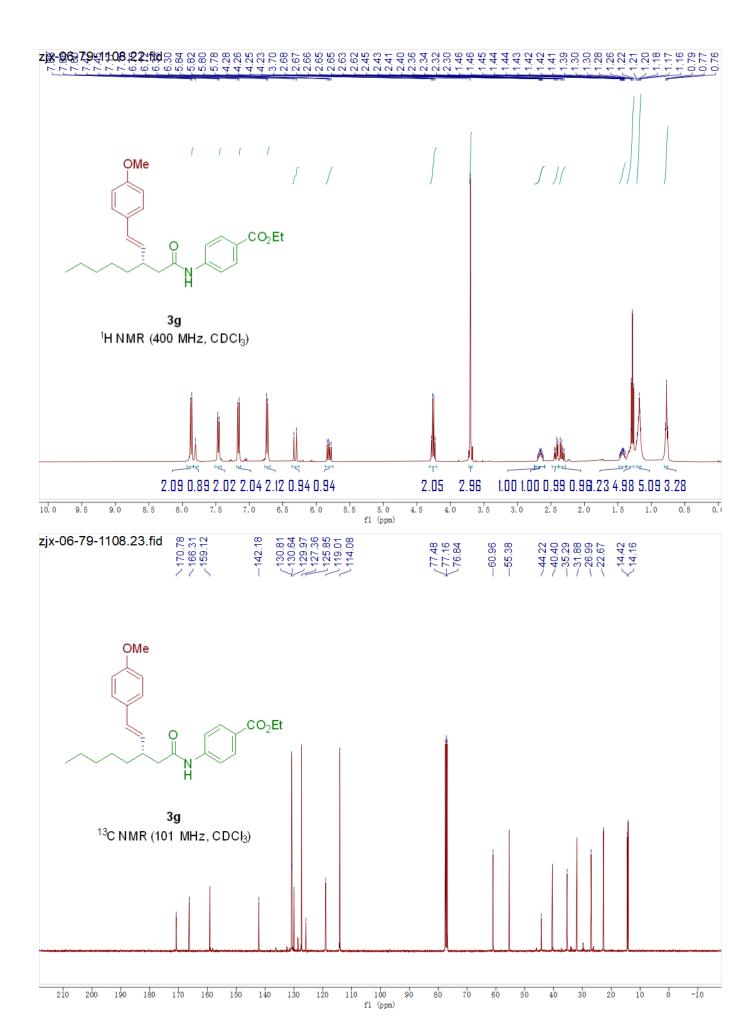


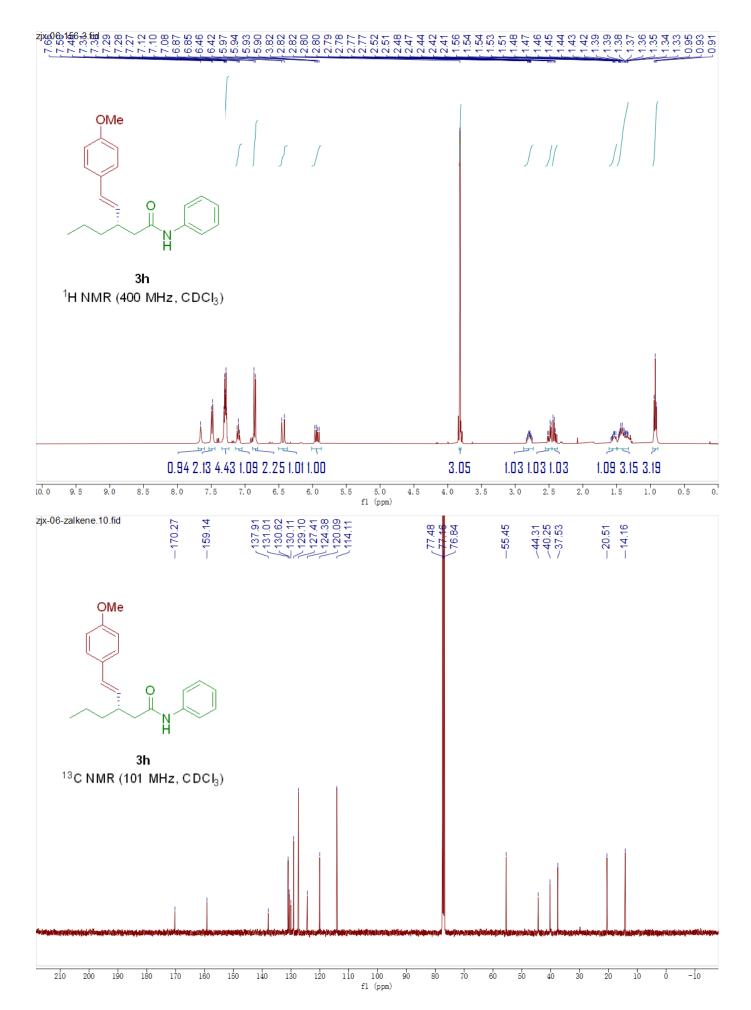


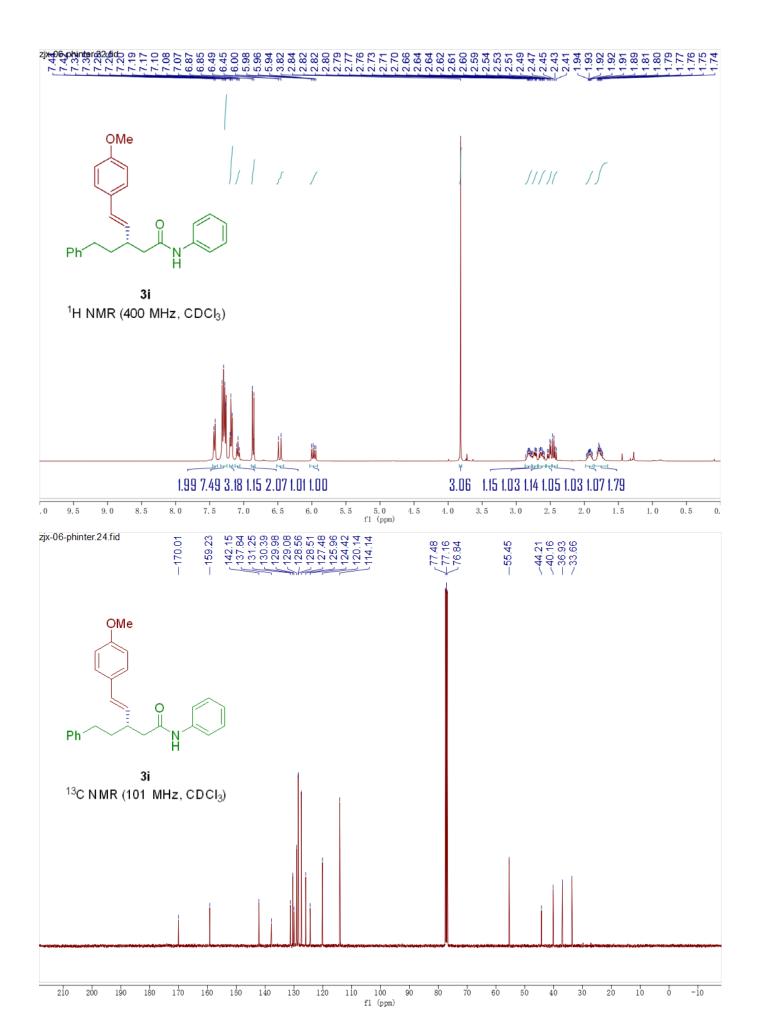


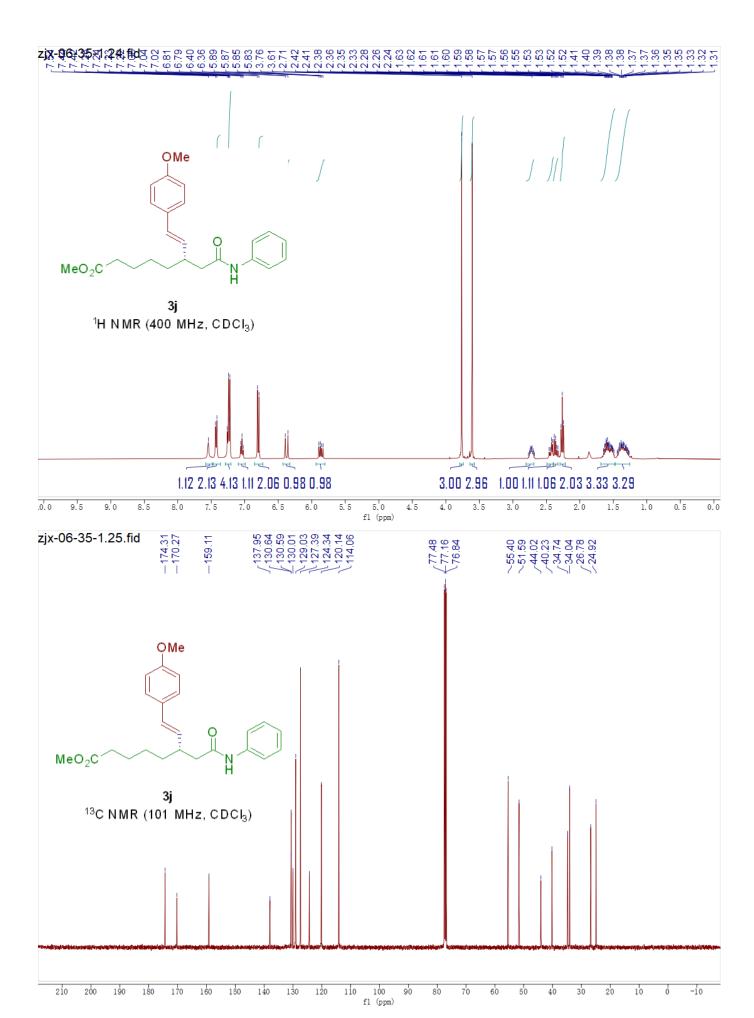


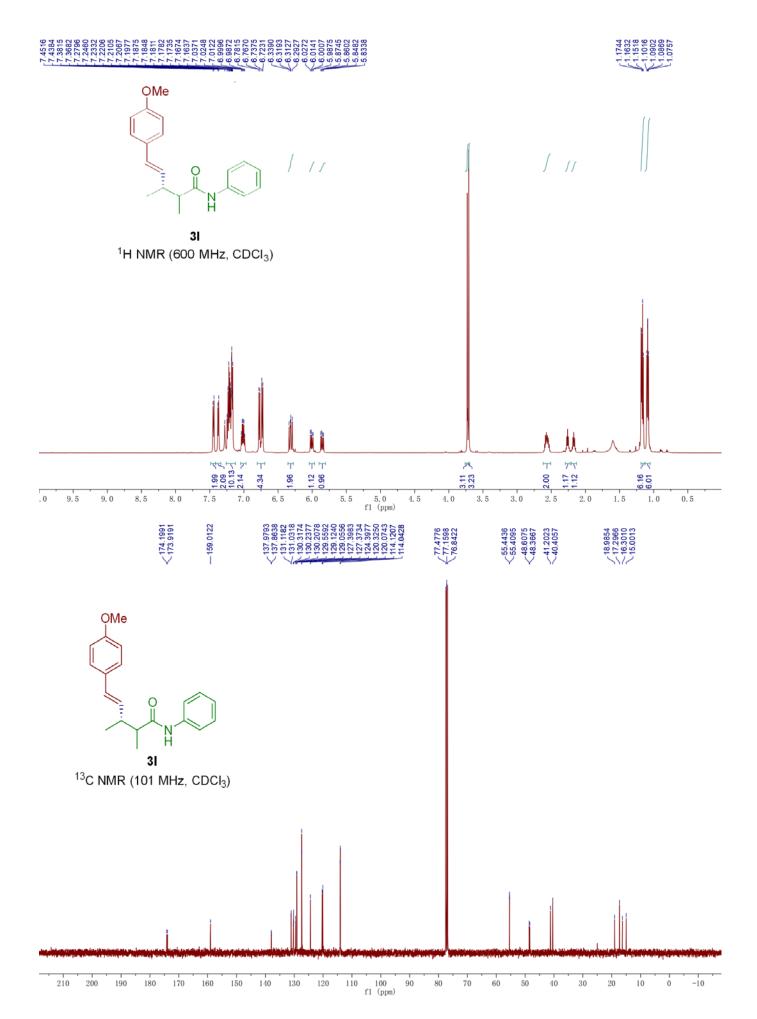


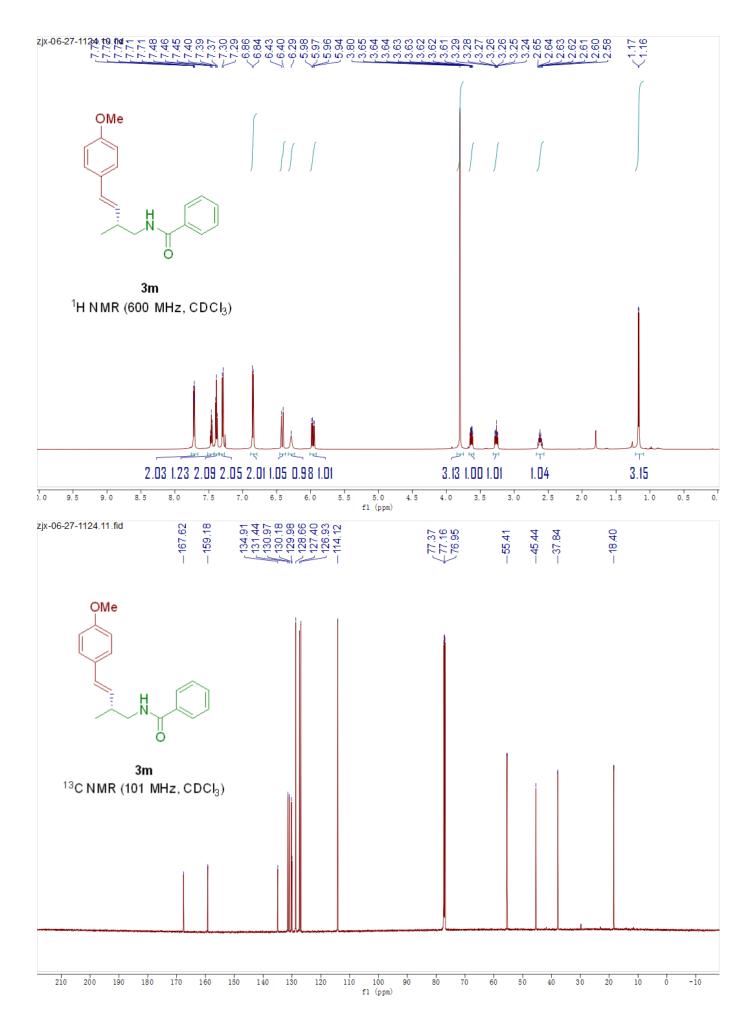


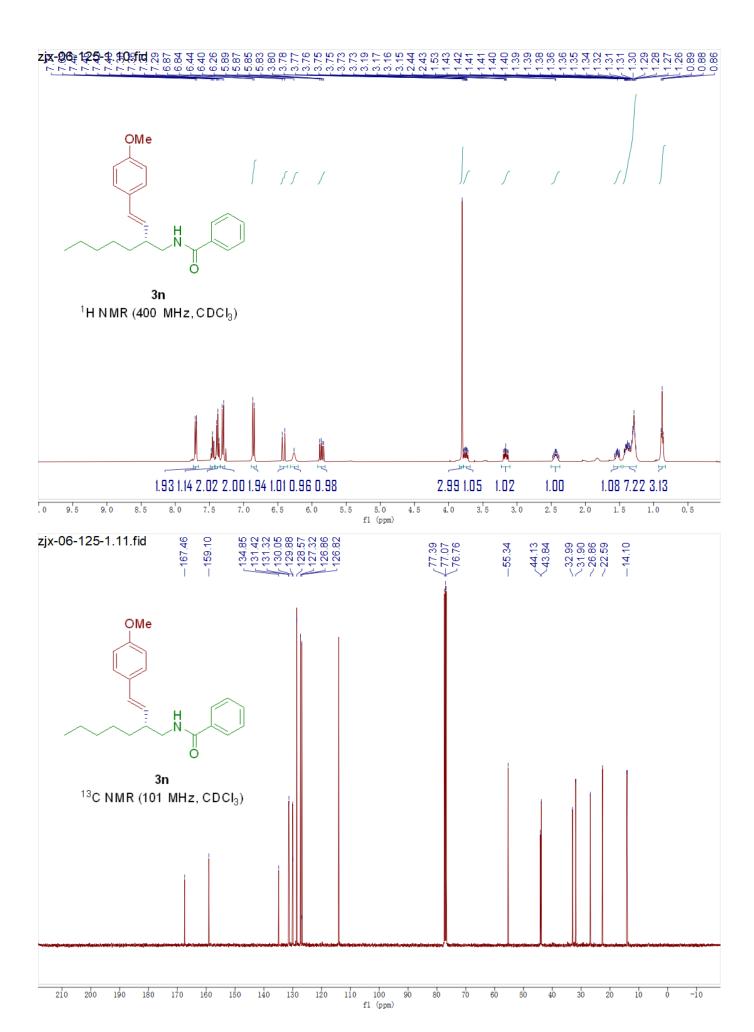


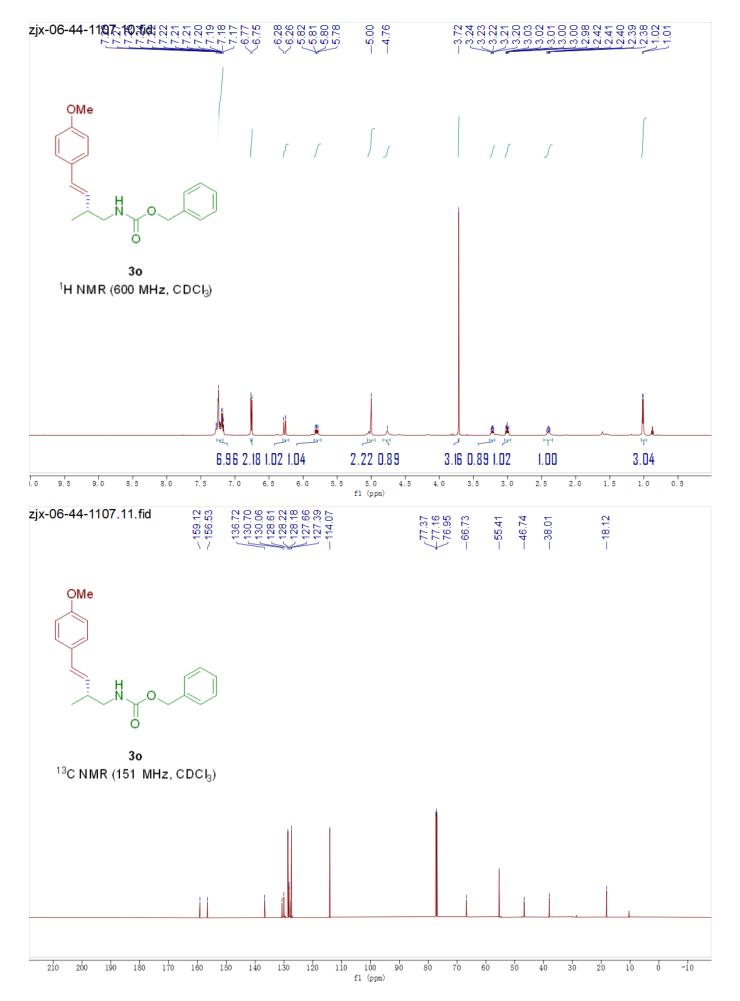


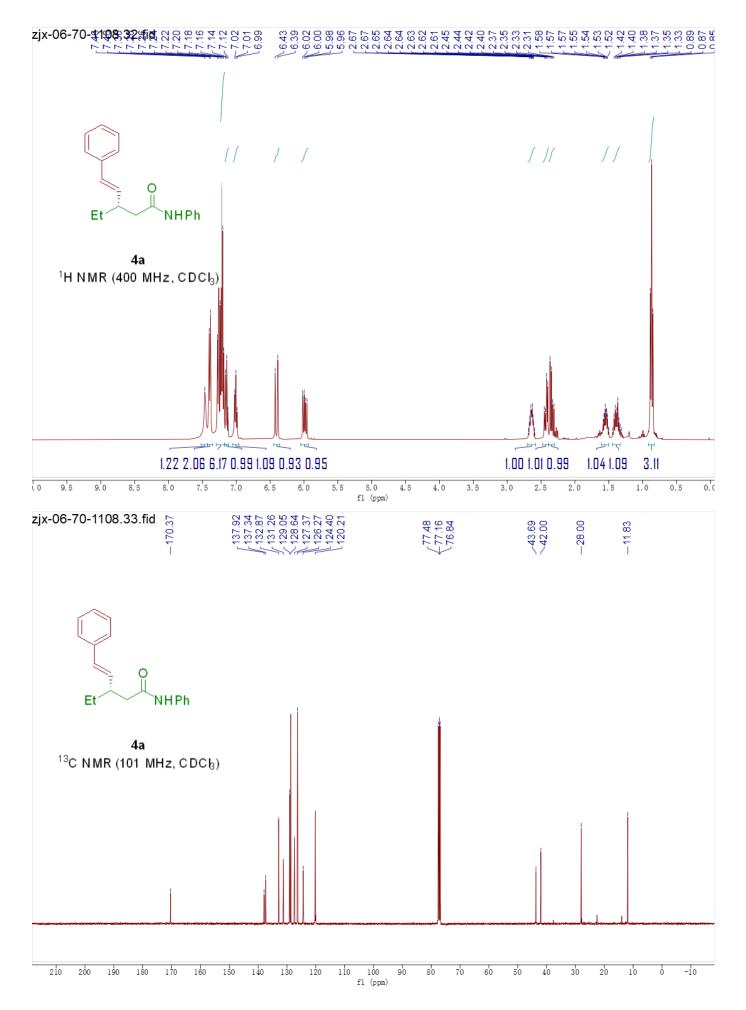


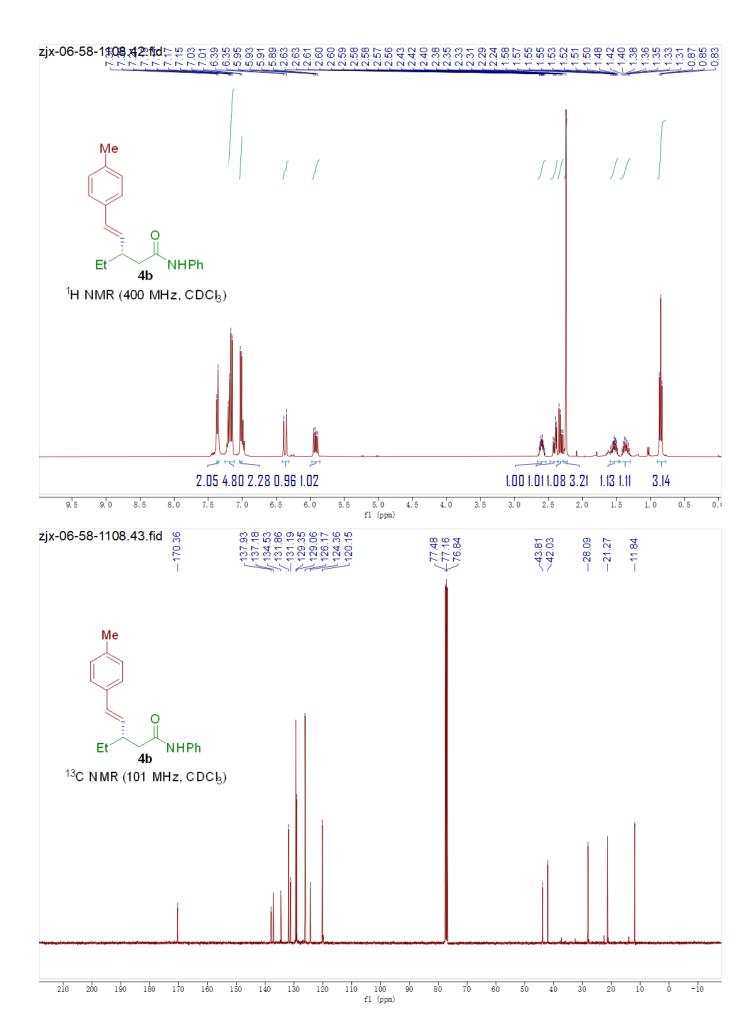


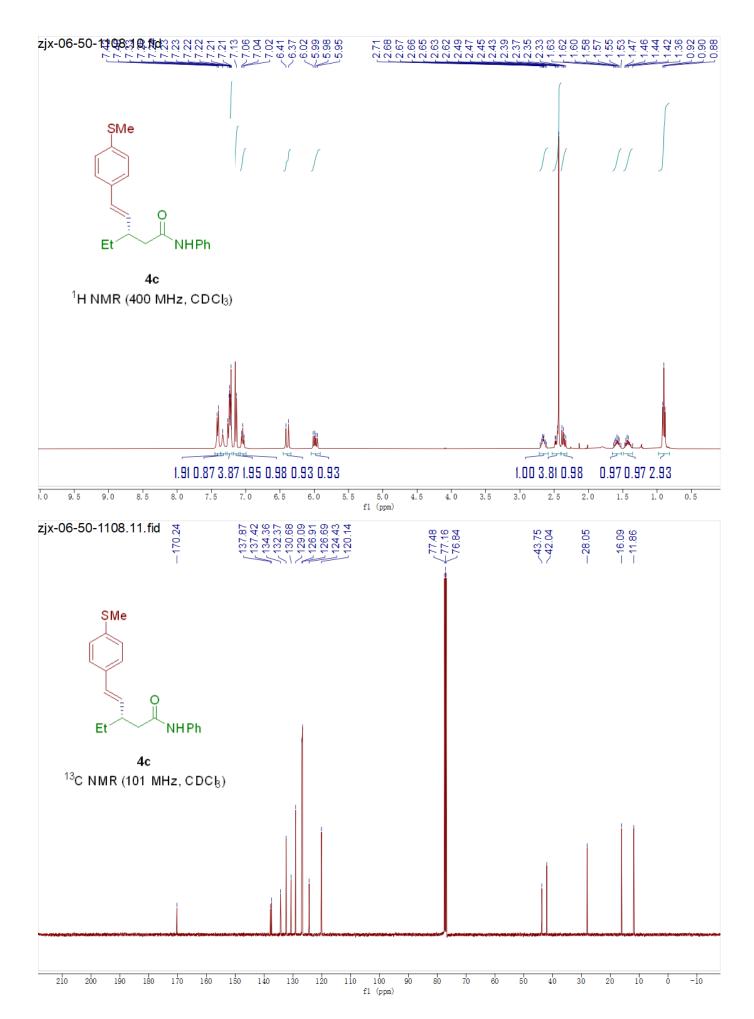


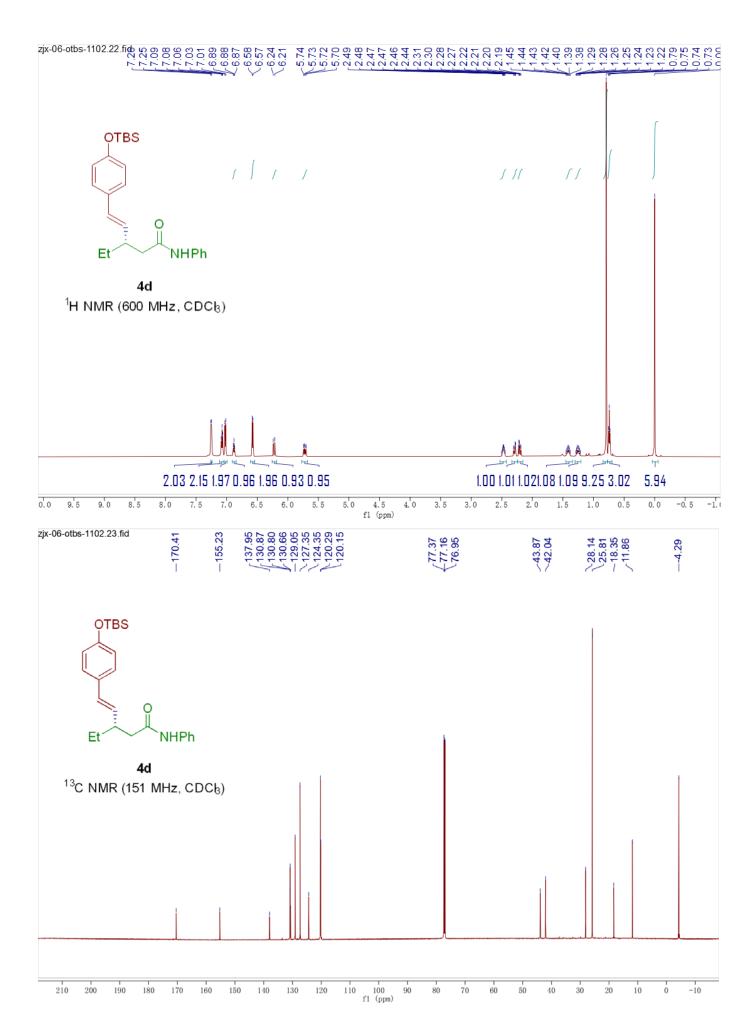


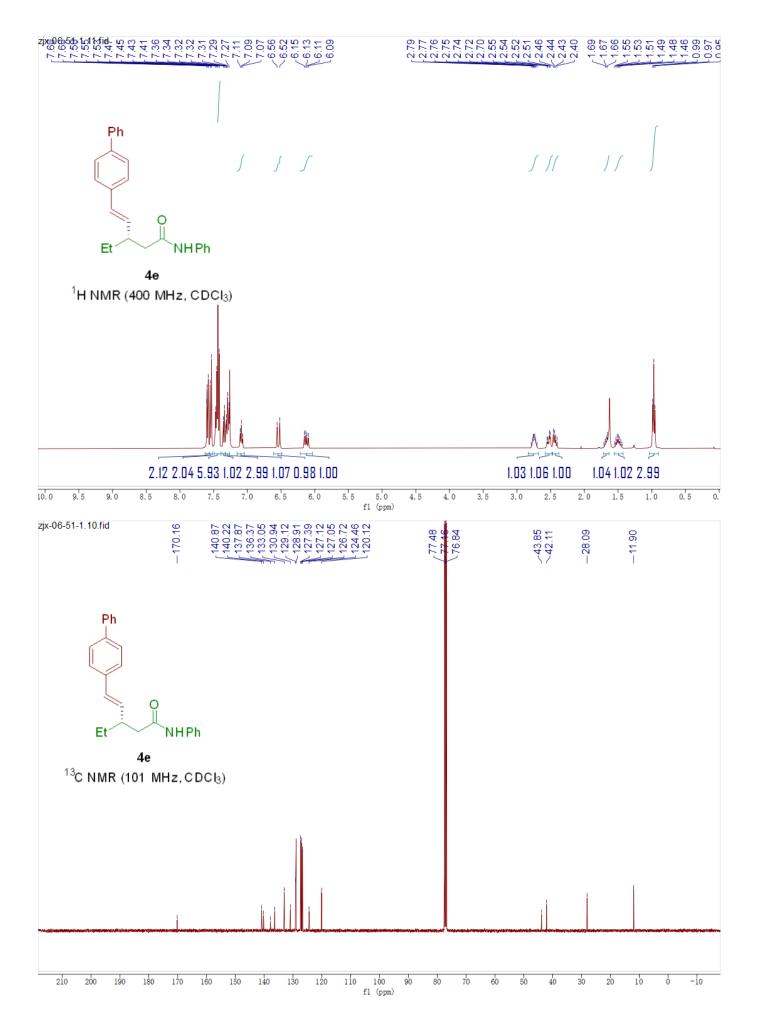


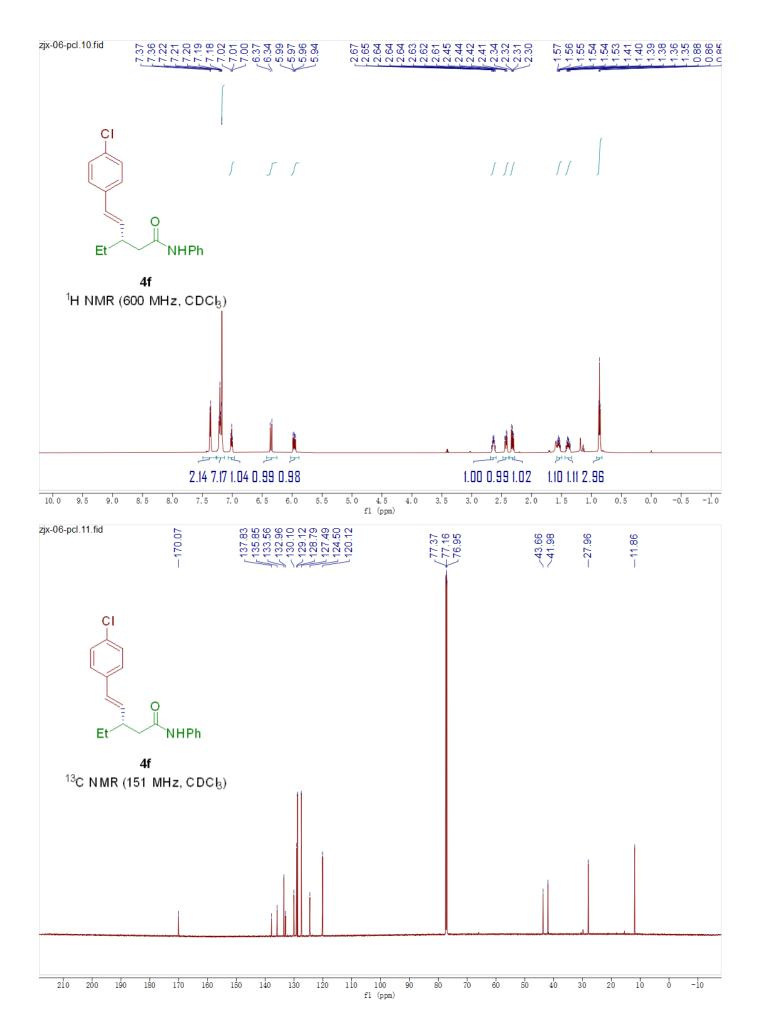


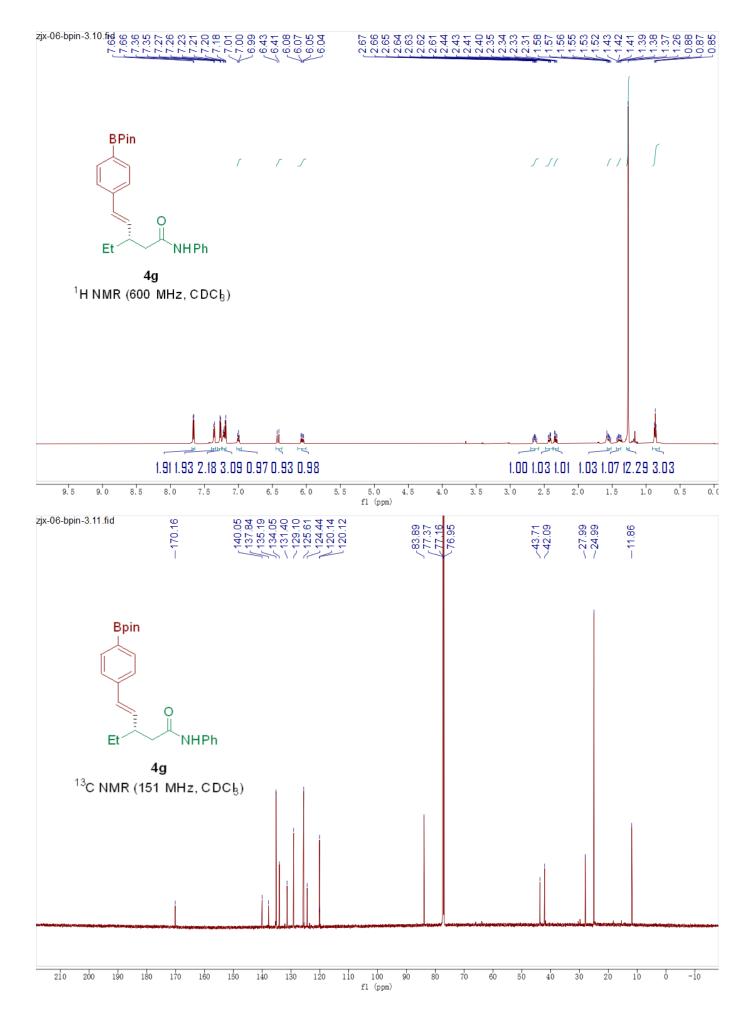


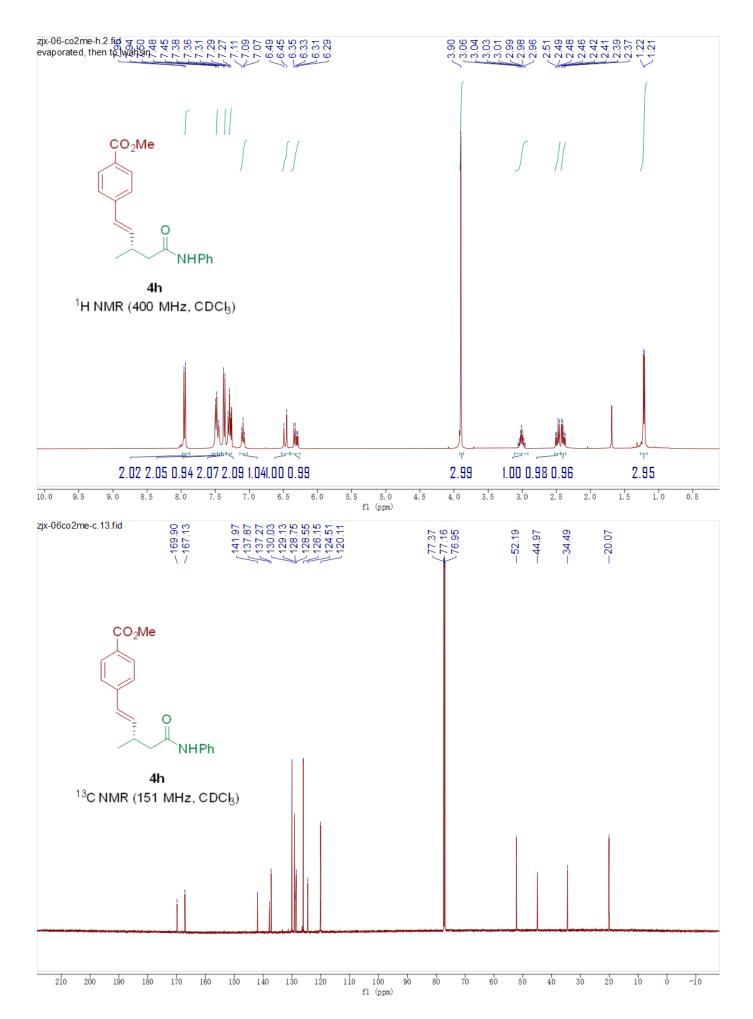


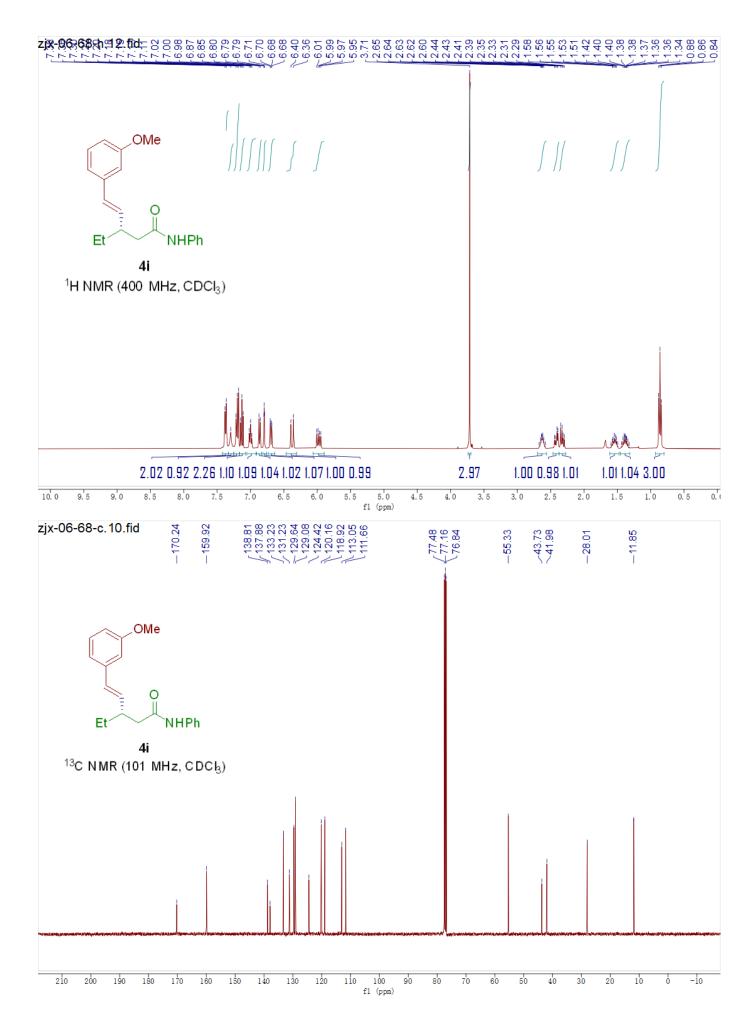


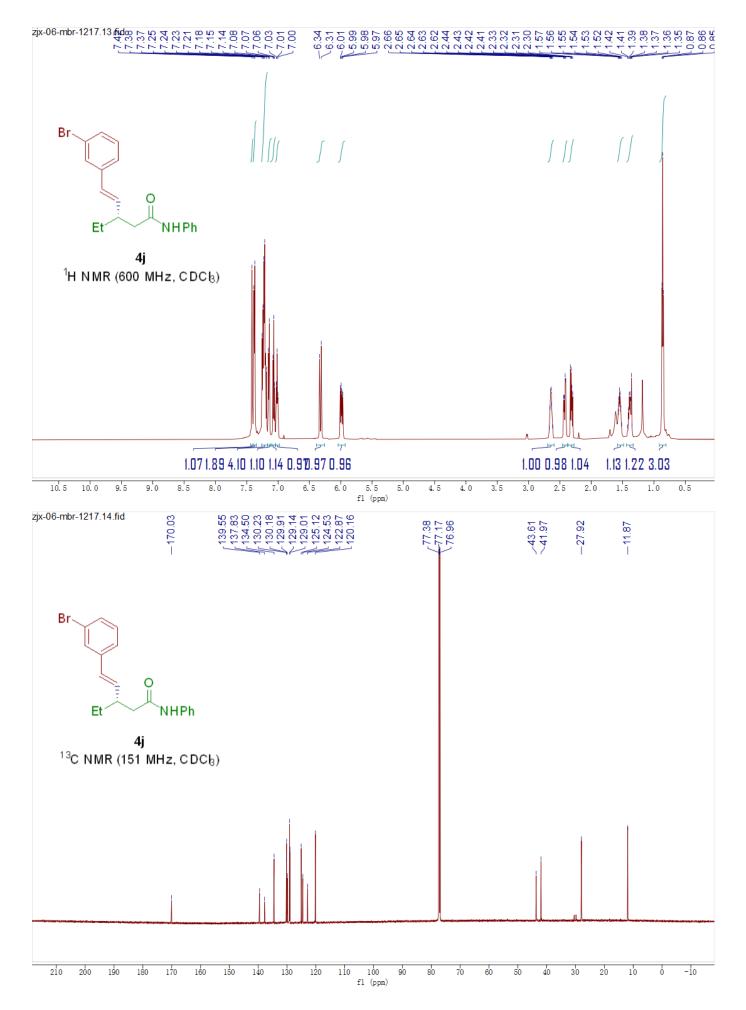


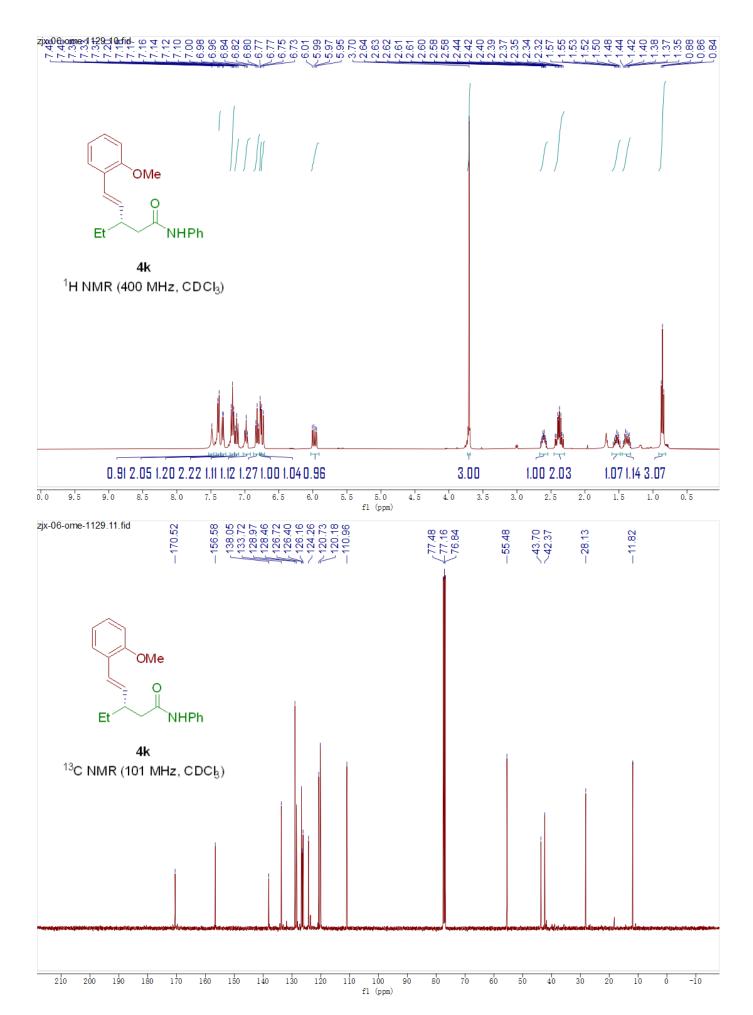


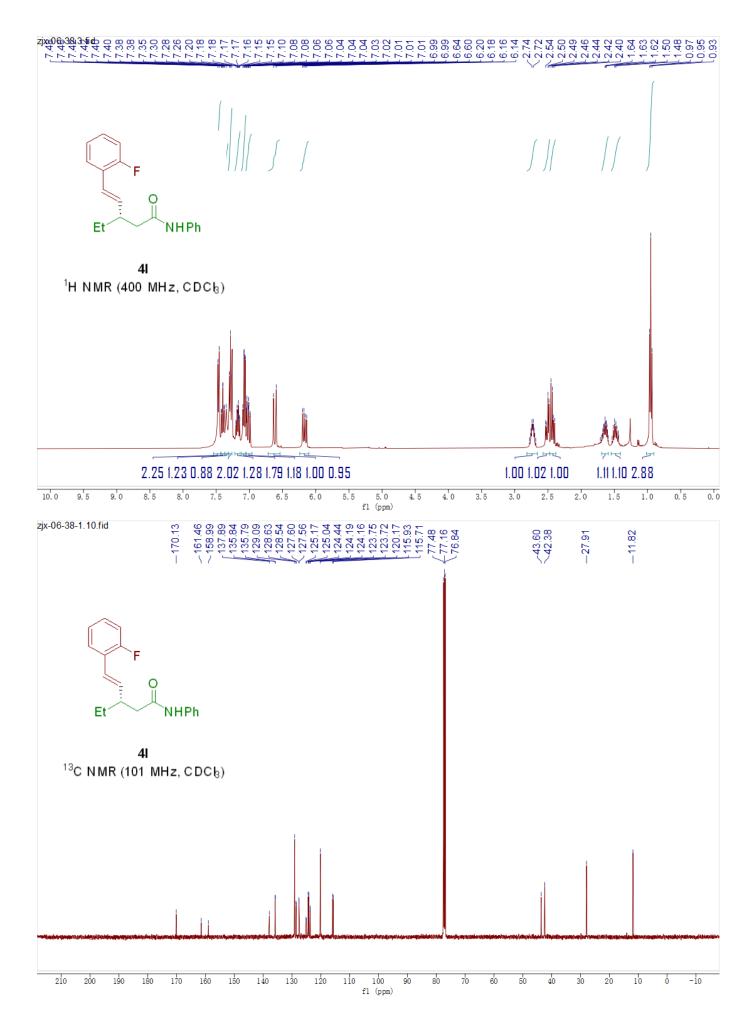


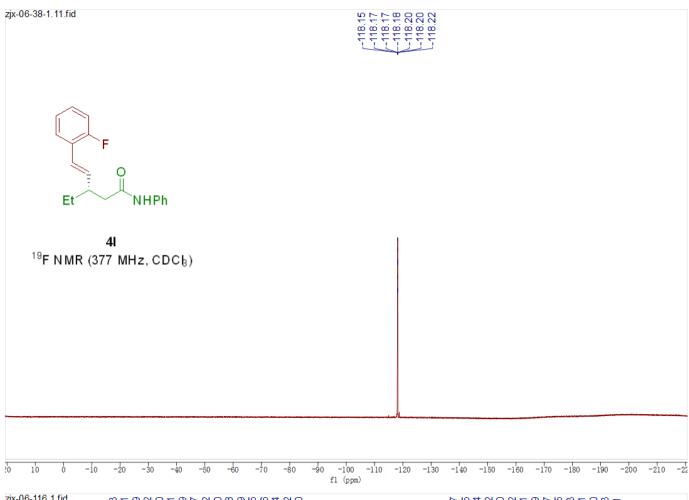


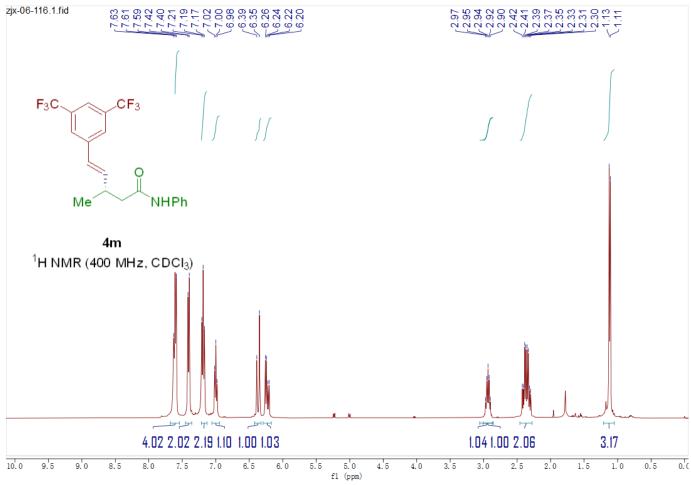


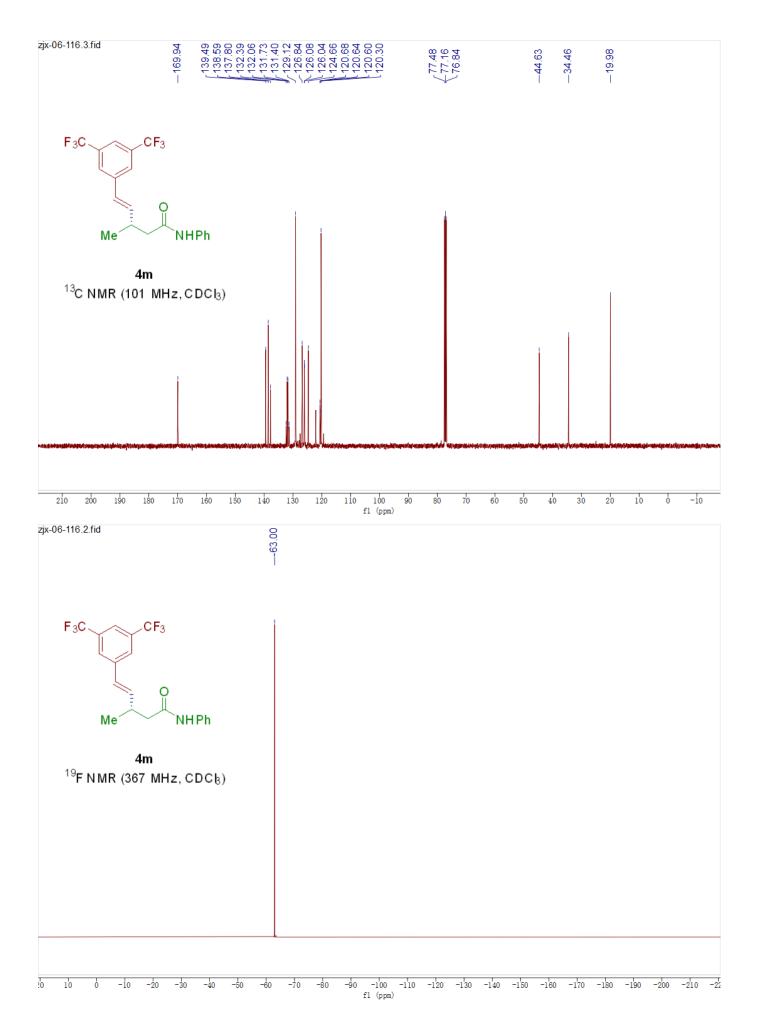


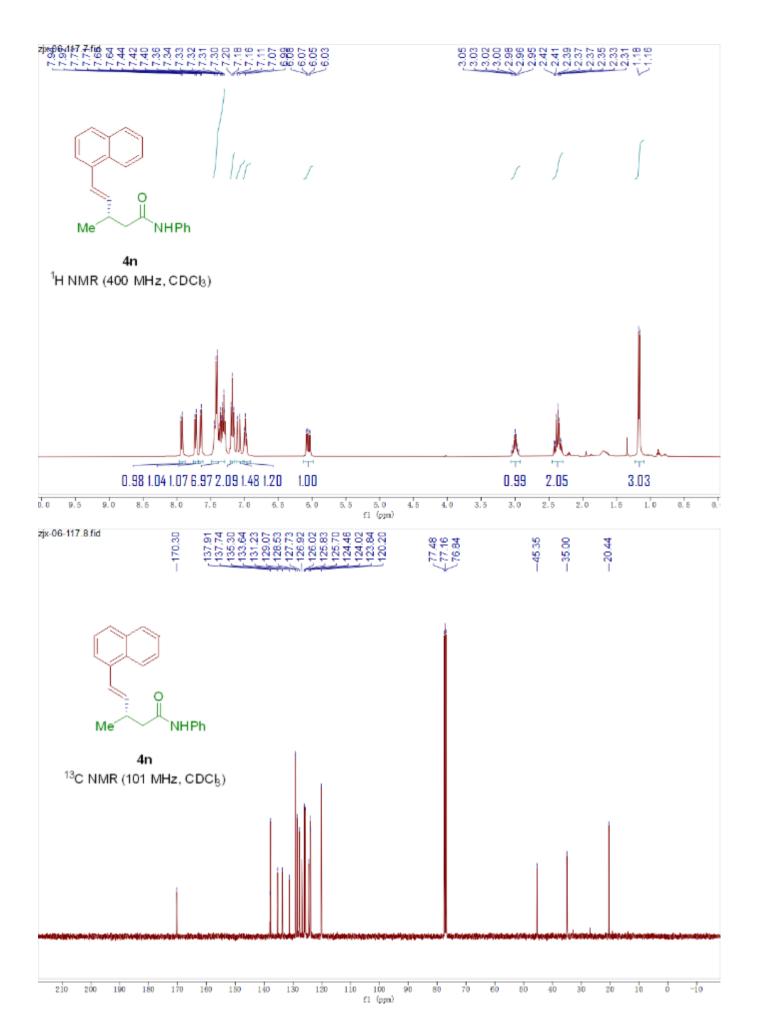


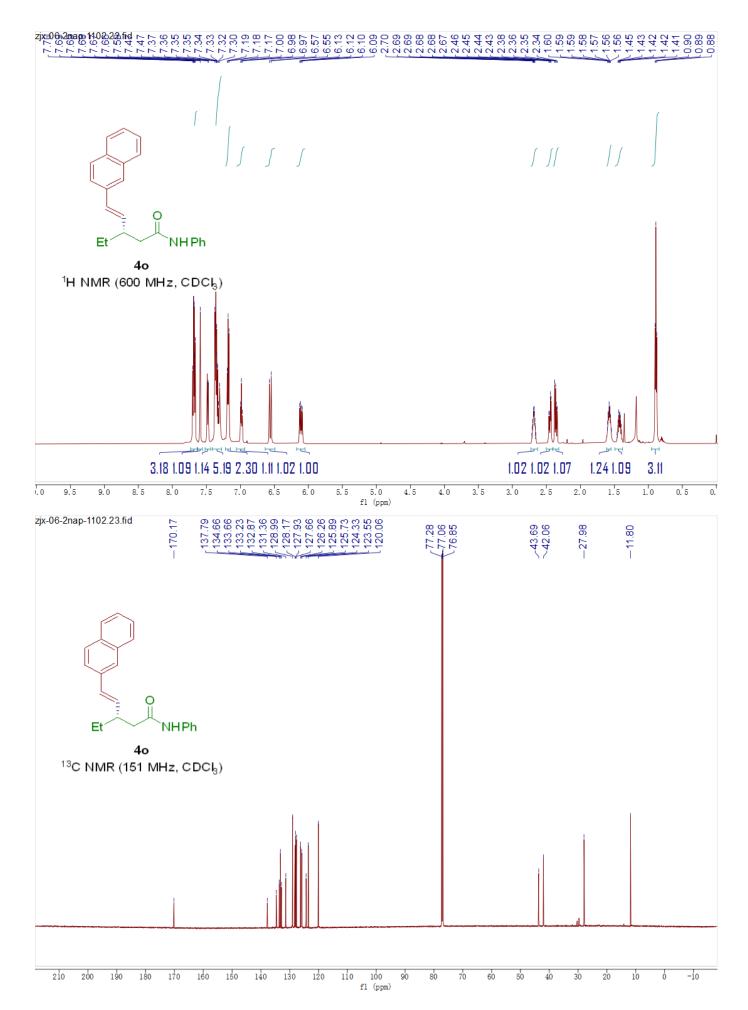












100

fl (ppm)

200

190

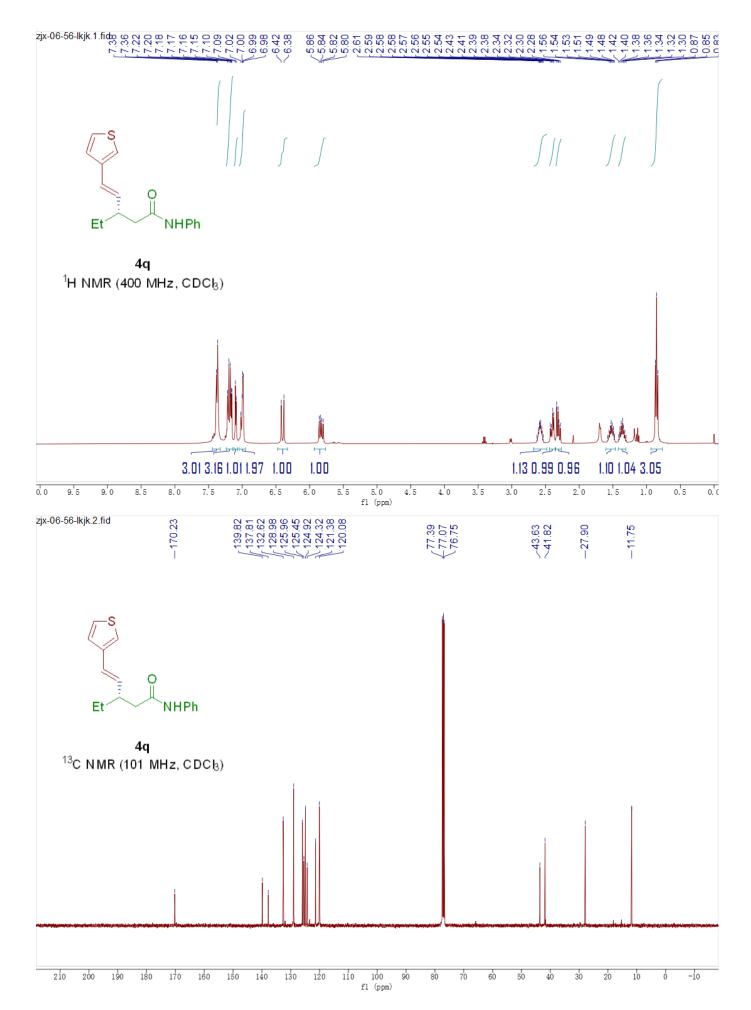
180

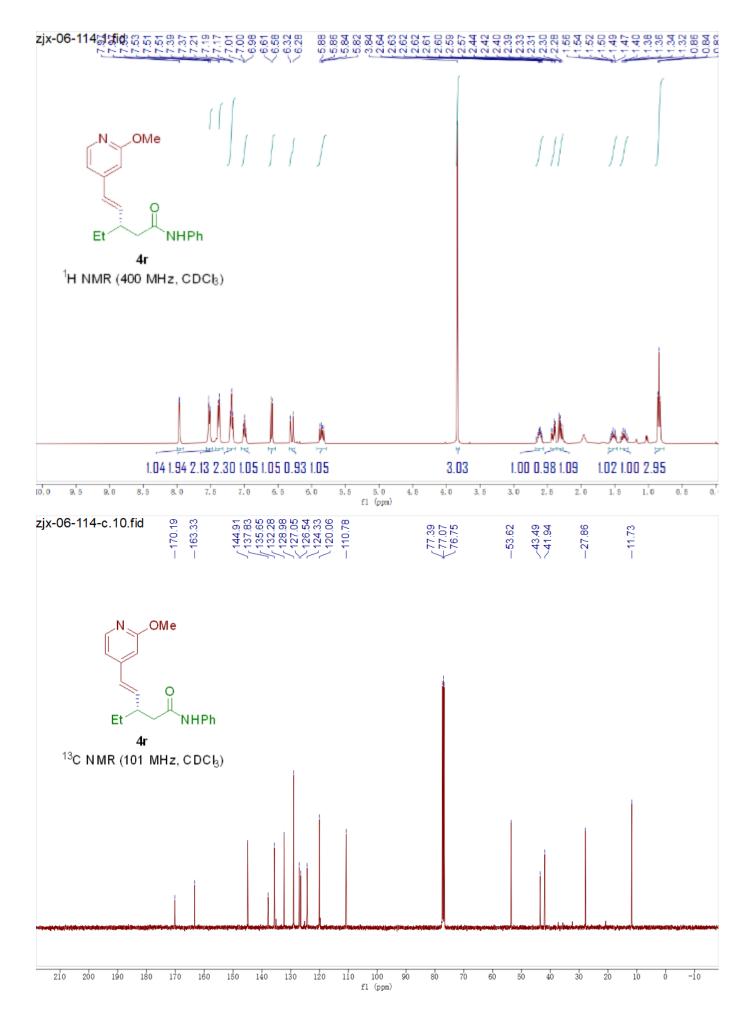
170

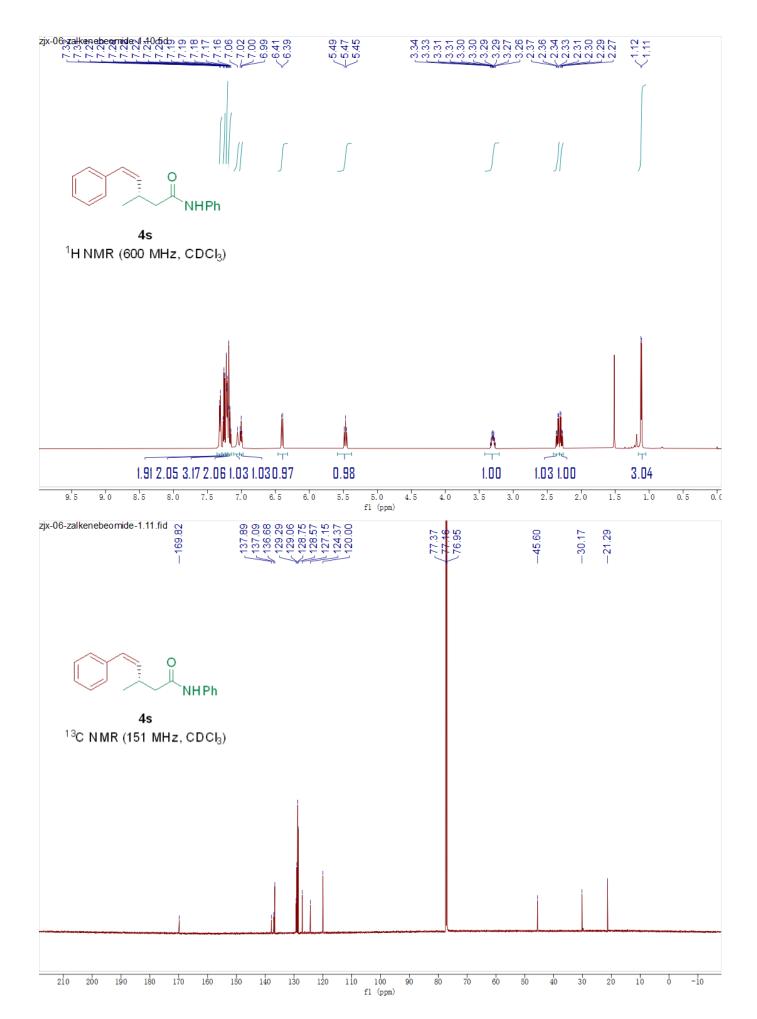
160

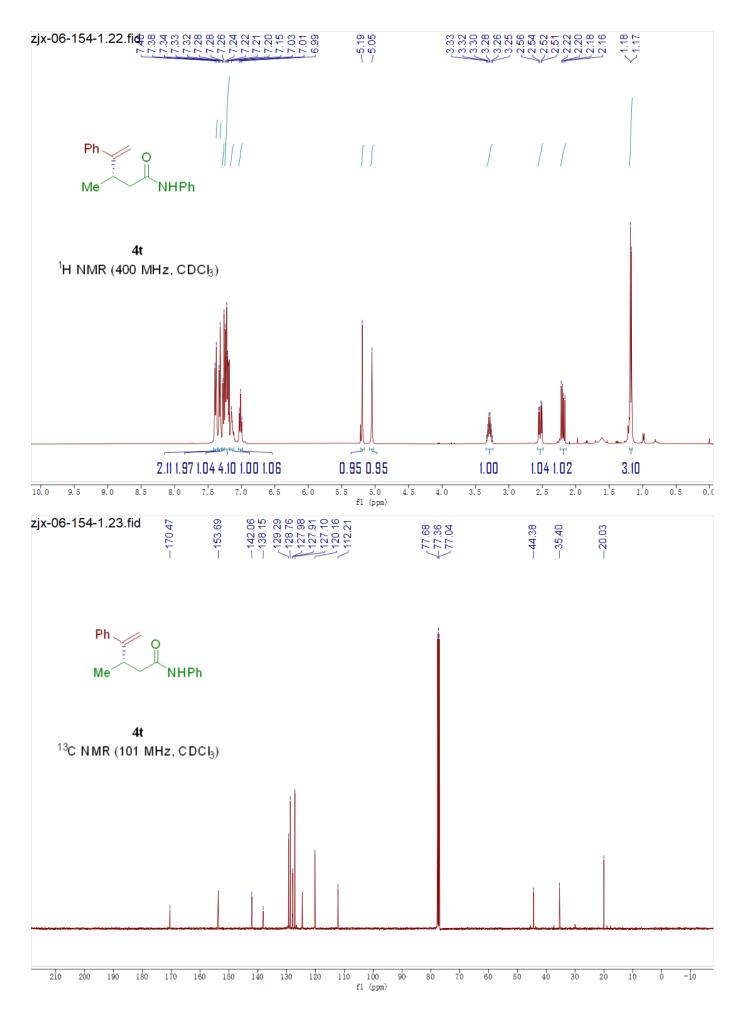
150

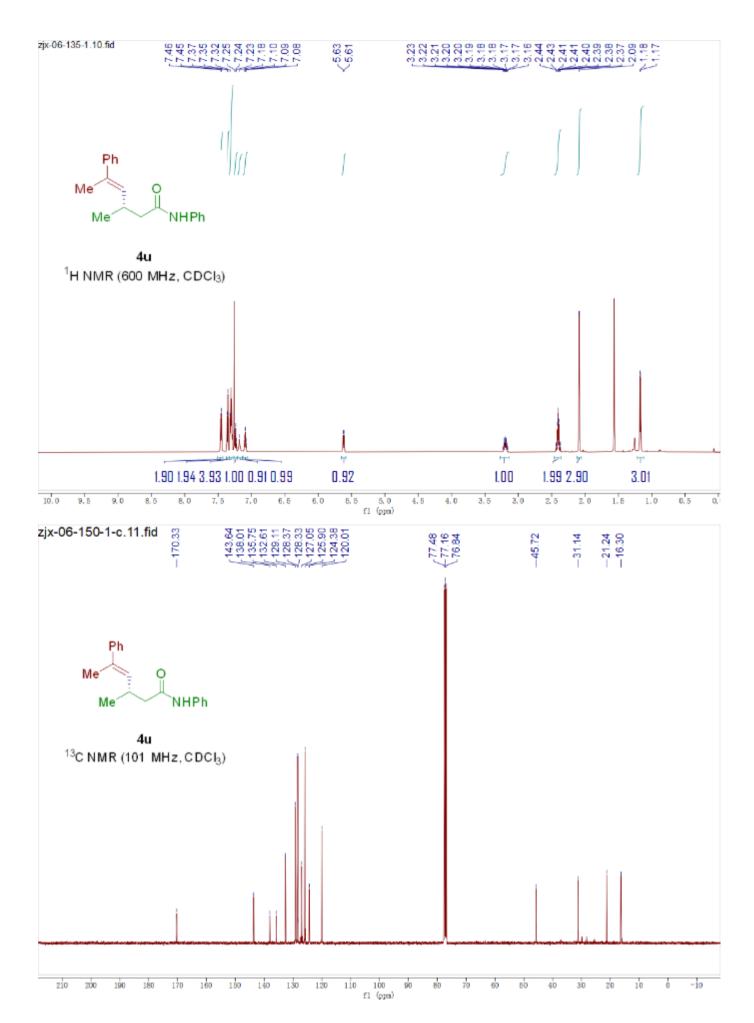
140

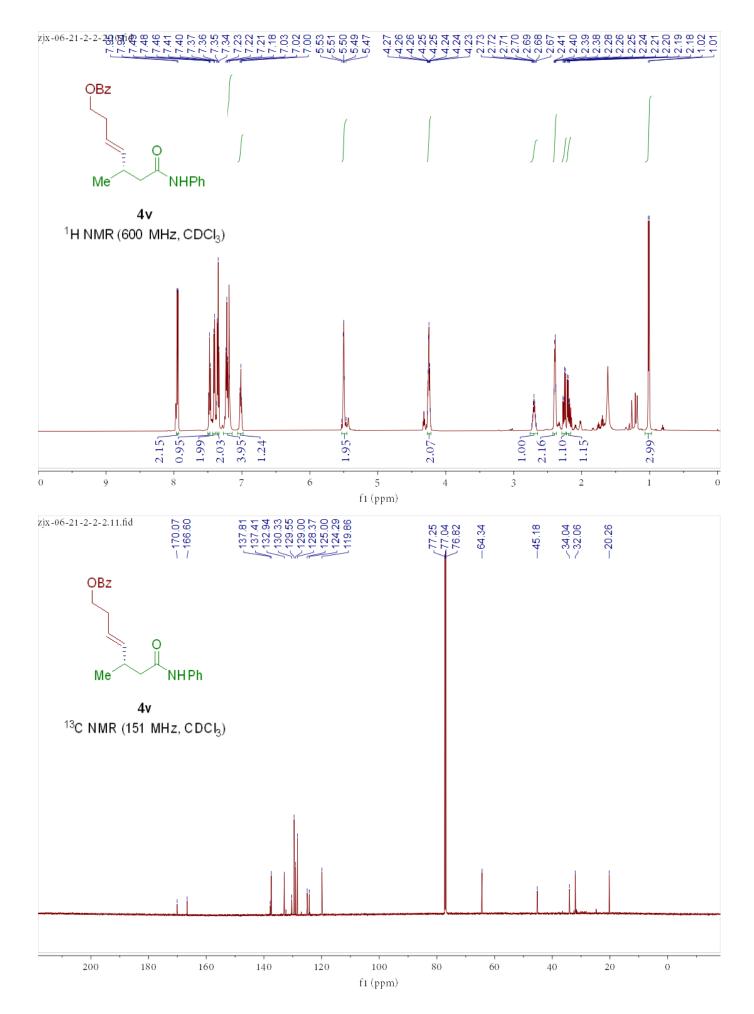

130

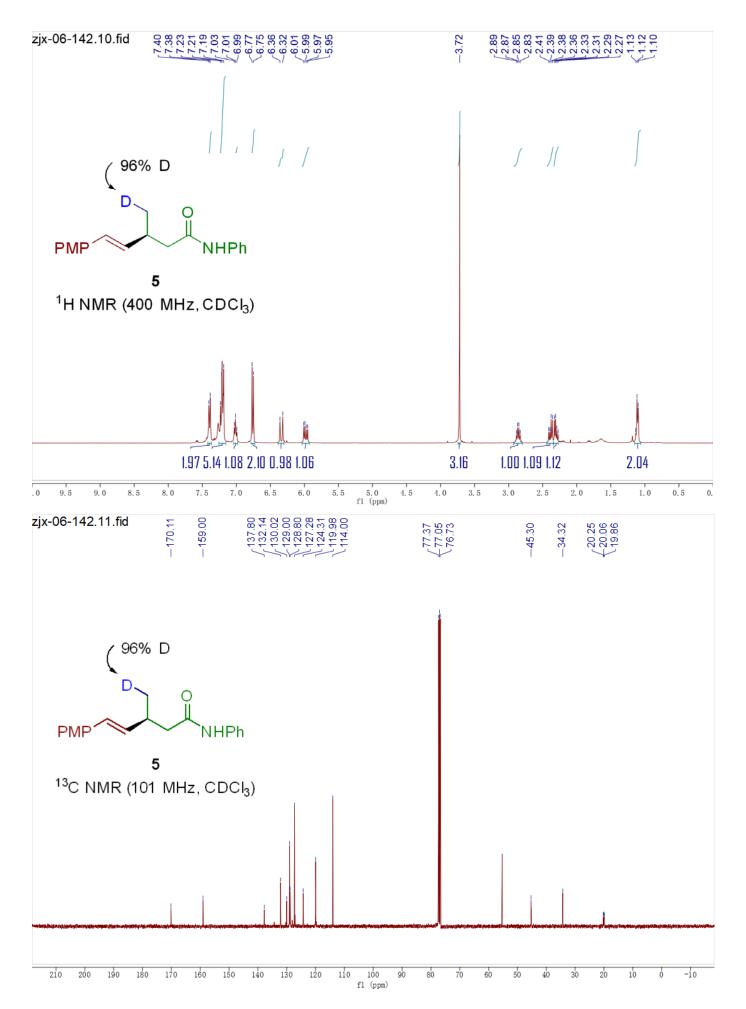

120

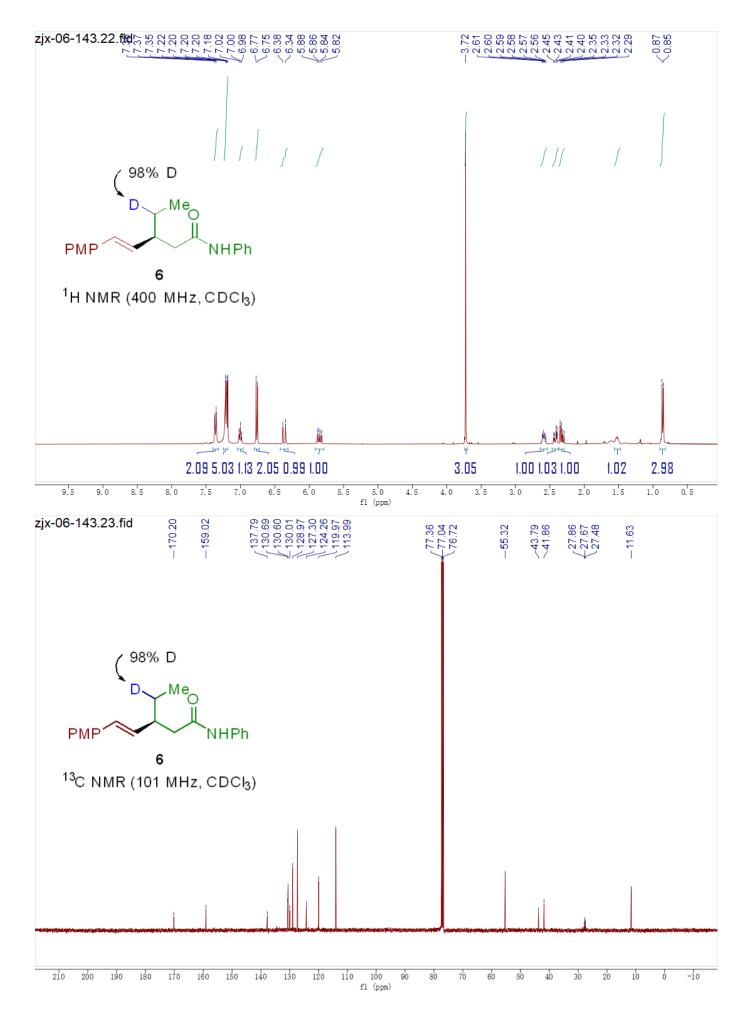

110

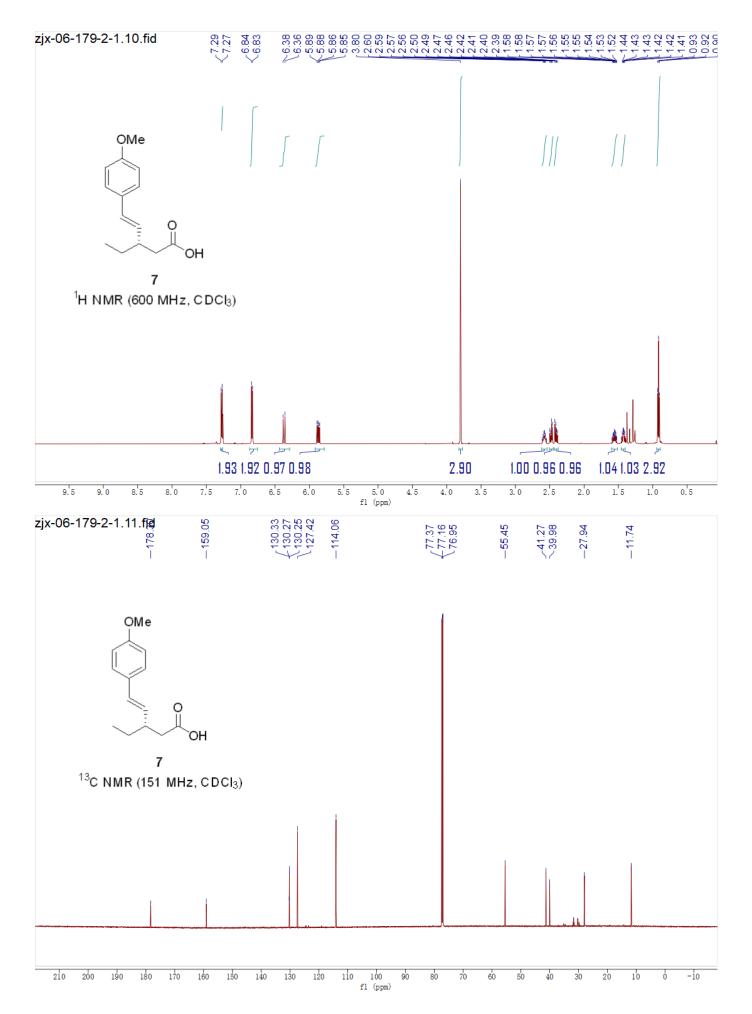

-10

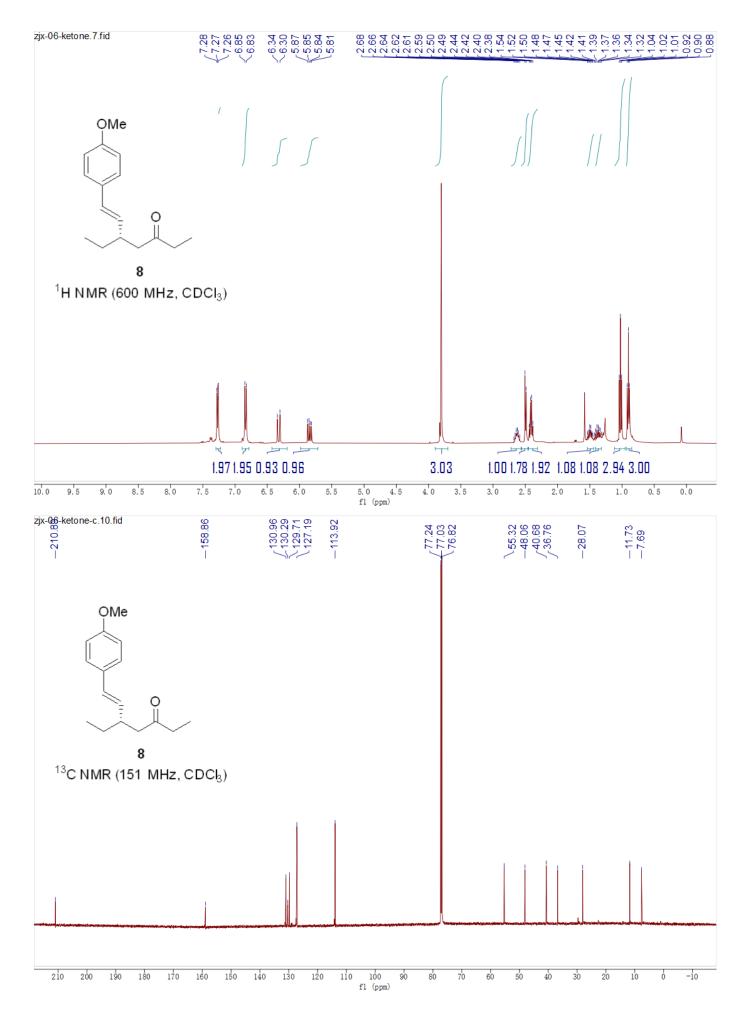

10

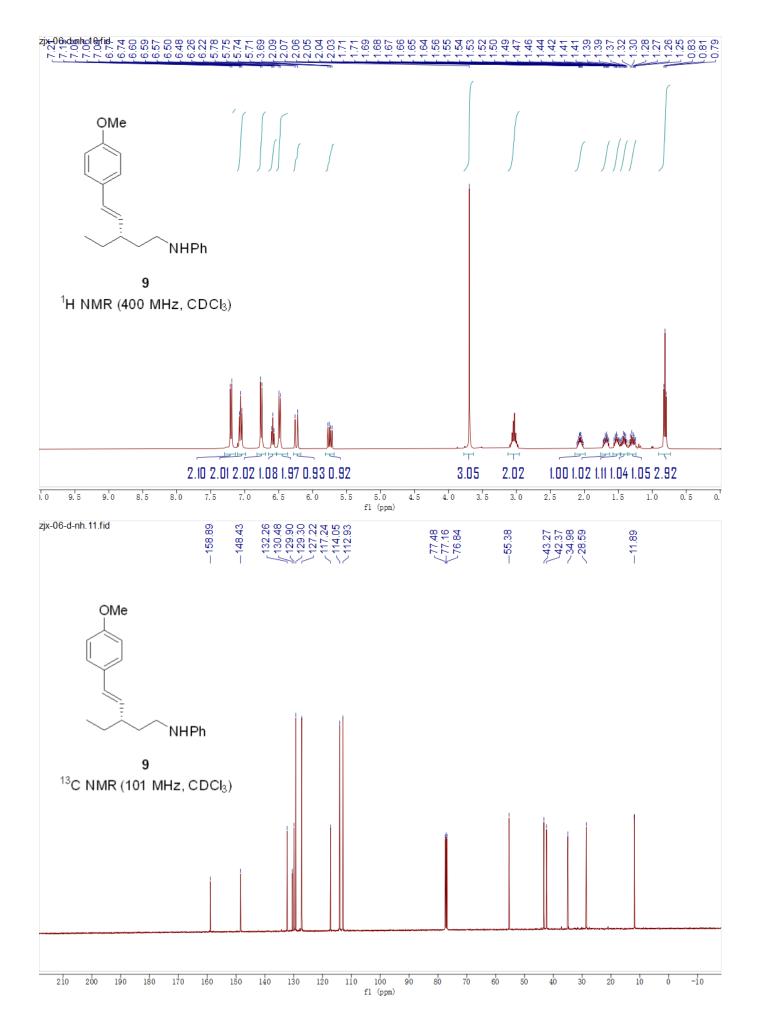


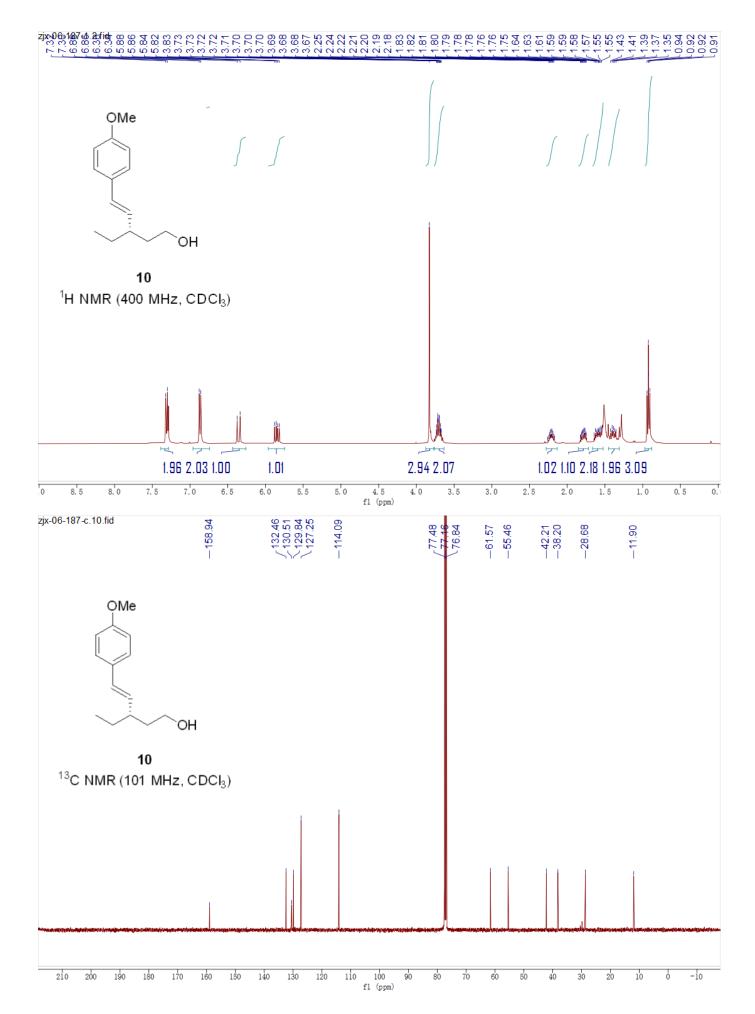


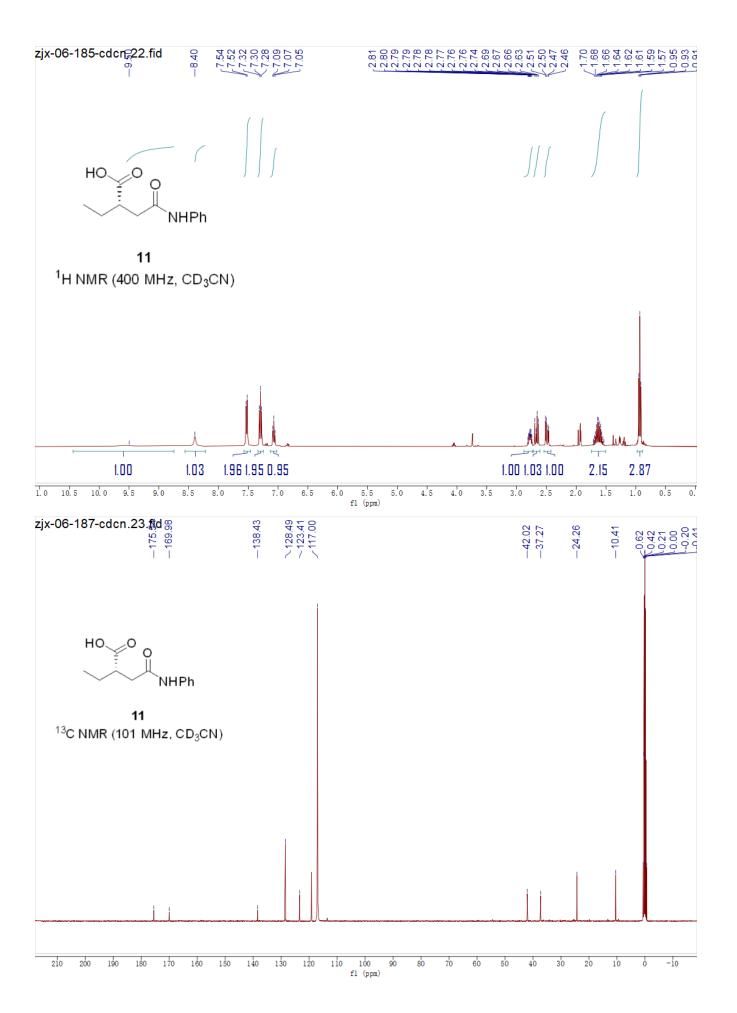


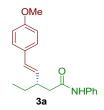


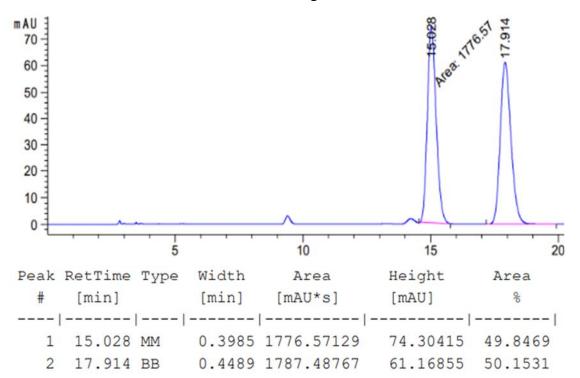


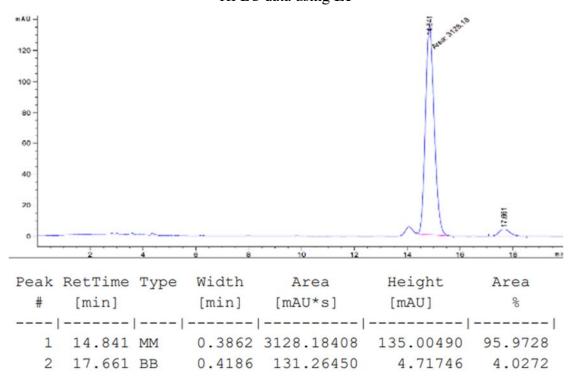


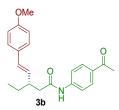


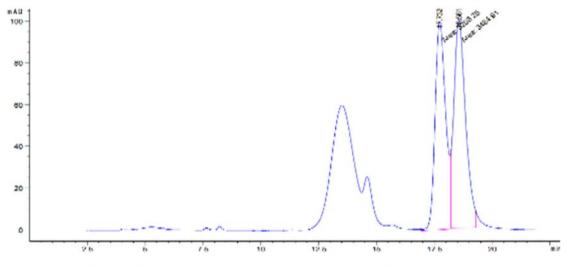


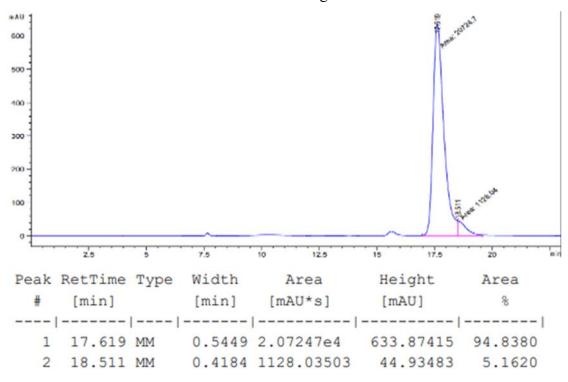


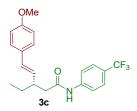




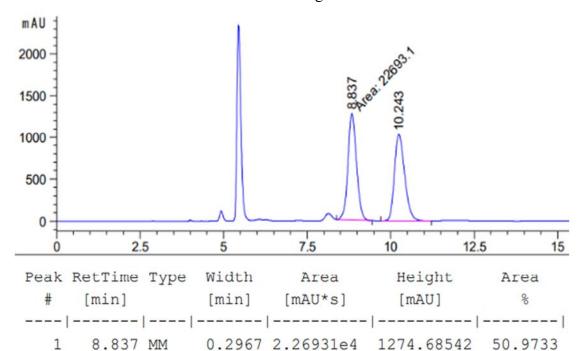

XII.HPLC traces


HPLC data using rac-L1

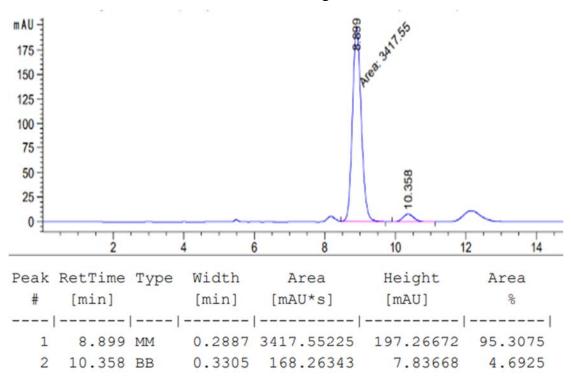


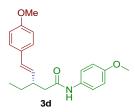


HPLC data using rac-L1

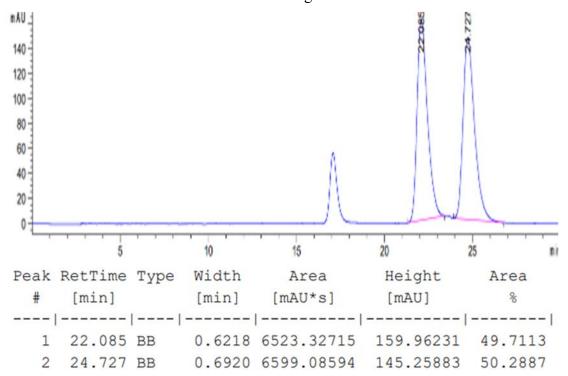


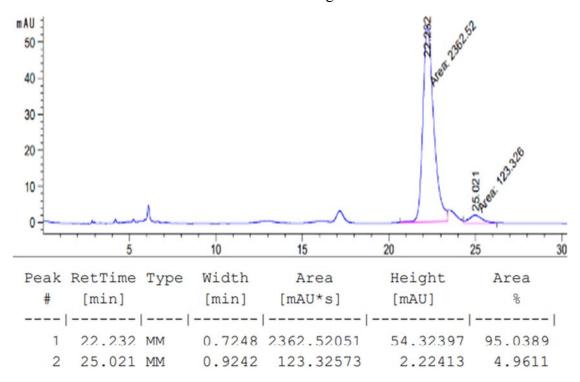
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	17.732	MM	0.5357	3208.25342	99.82164	47.9333
2	18 561	MM	0 5801	3484 91431	100 12344	52 0667

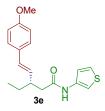

HPLC data using rac-L1

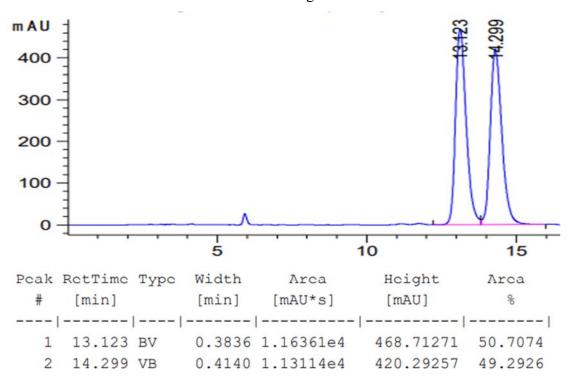


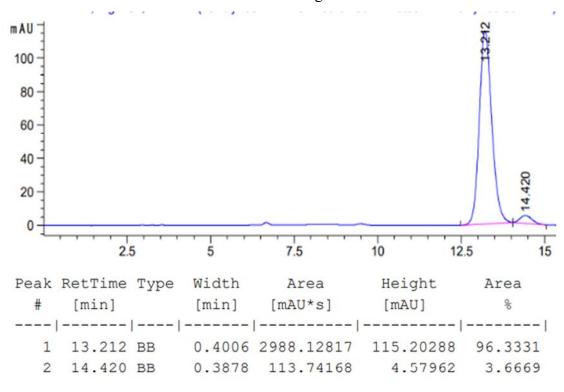
0.2967 2.26931e4 1274.68542 50.9733 0.3274 2.18265c4 1029.26038 49.0267

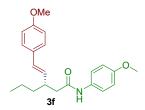

HPLC data using L1

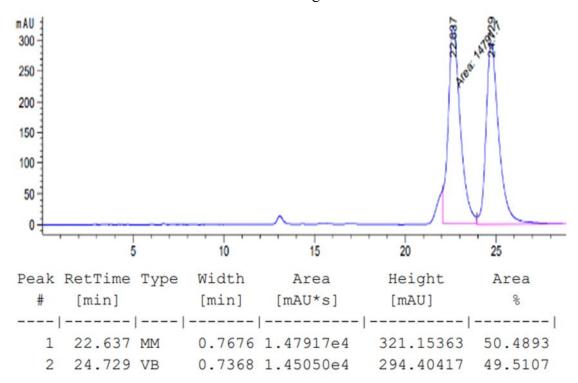

10.243 BB

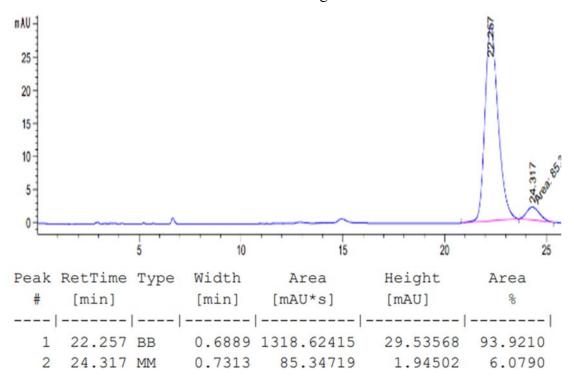


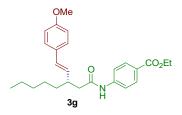

HPLC data using rac-L1

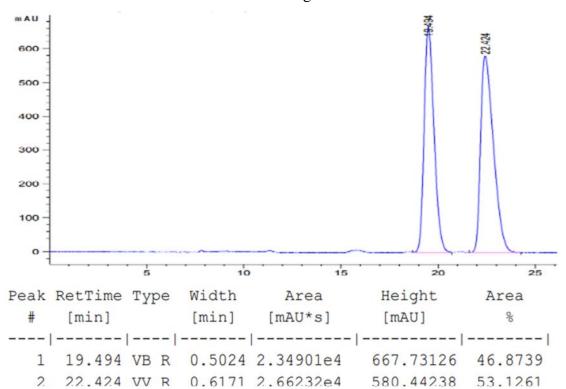


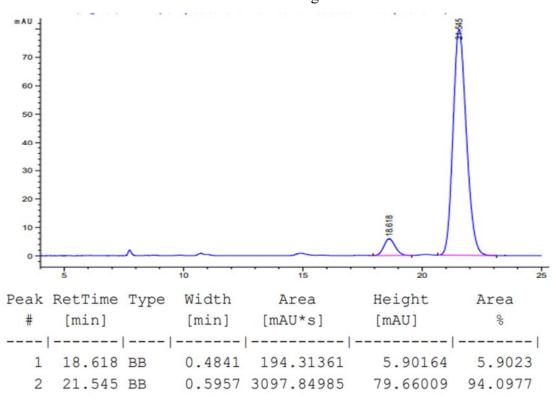


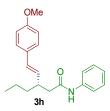

HPLC data using rac-L1

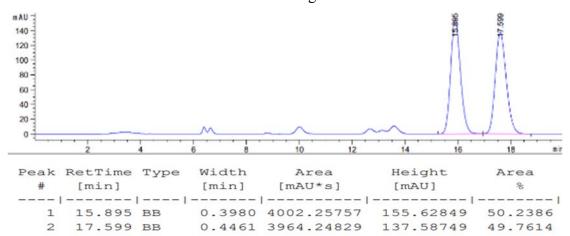




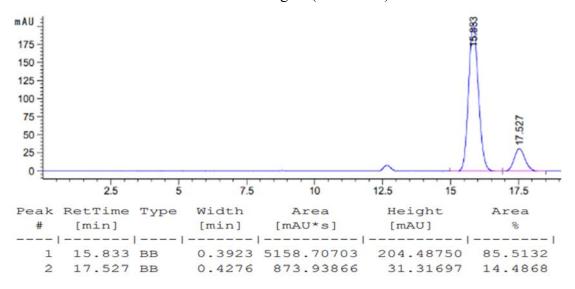

HPLC data using rac-L1

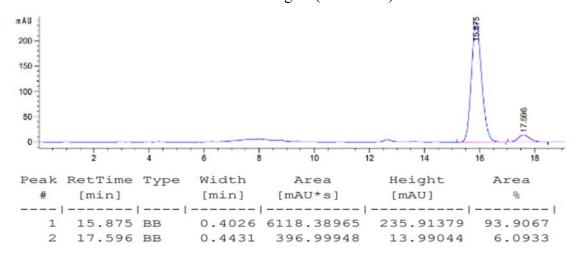


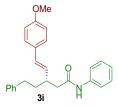




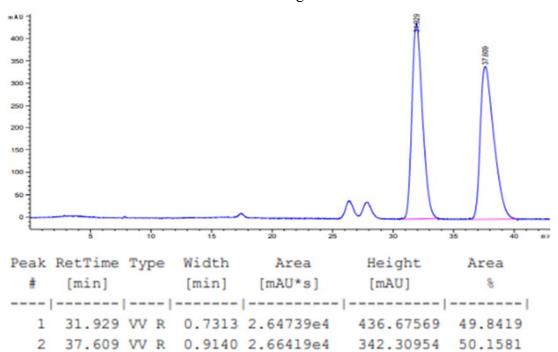
HPLC data using rac-L1



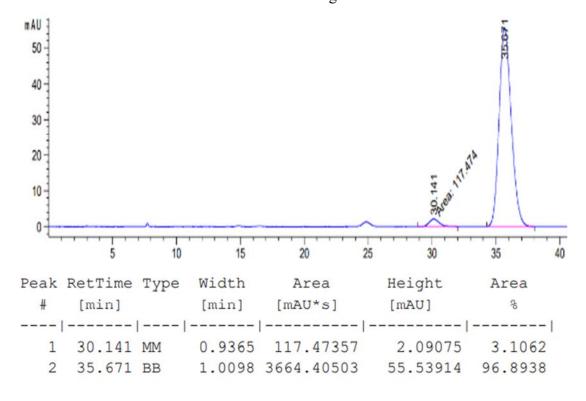


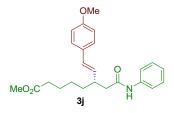


HPLC data using L1(Method A)

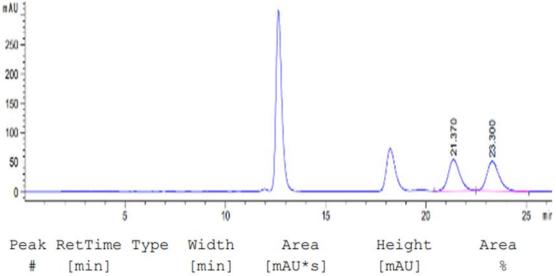


HPLC data using L1(Method B)

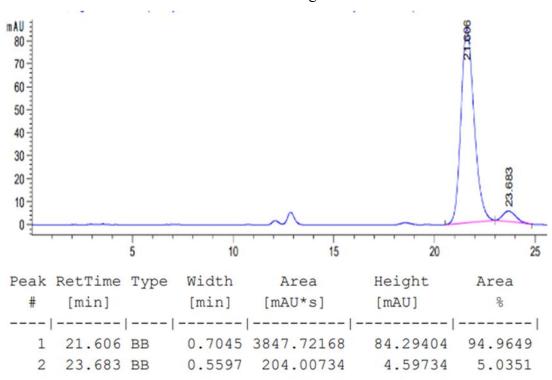


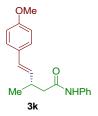


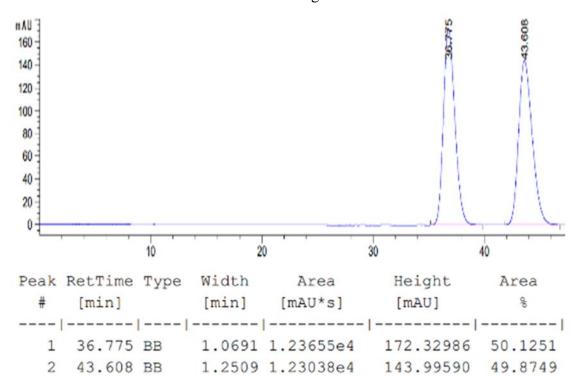
HPLC data using rac-L1

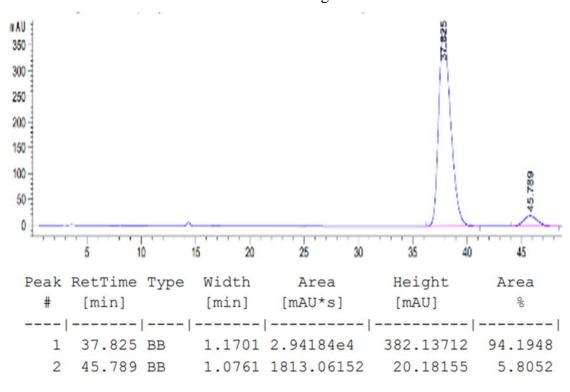


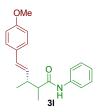
HPLC data using L1

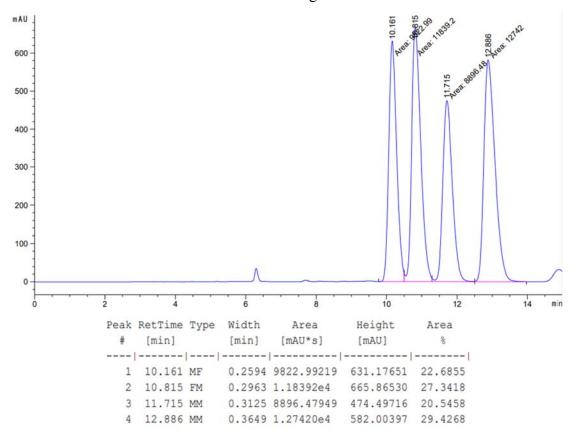


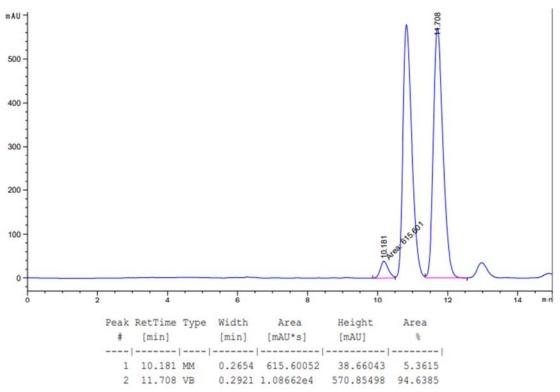

HPLC data using rac-L1

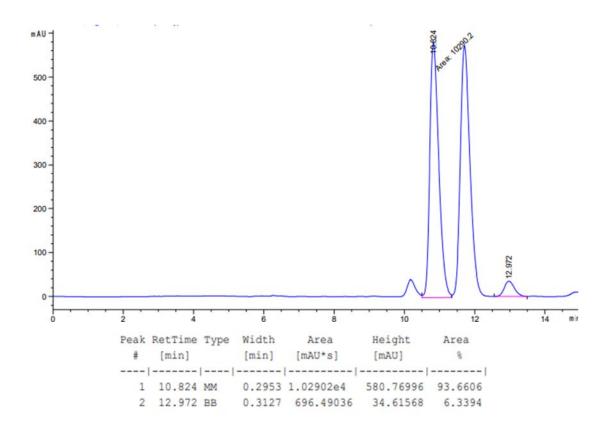

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	21.370	BB	0.6081	2106.78540	52.50605	49.8947	
2	23.300	BB	0.6548	2115.68042	49.68749	50.1053	

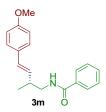

HPLC data using L1

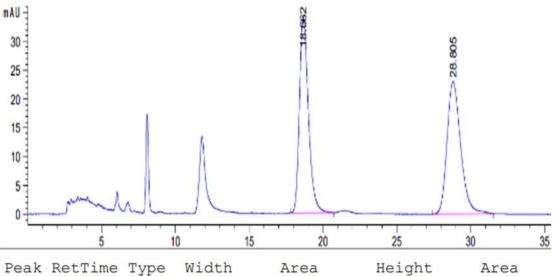


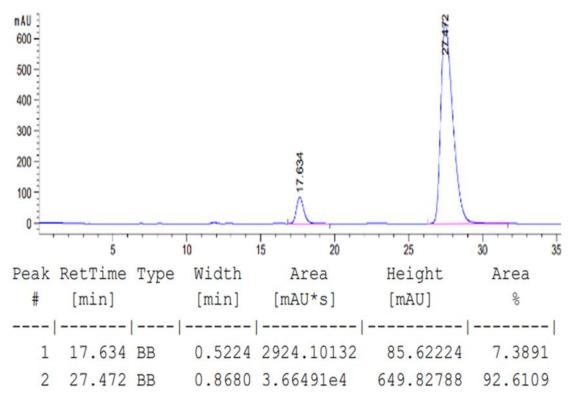


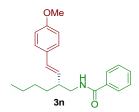

HPLC data using rac-L1

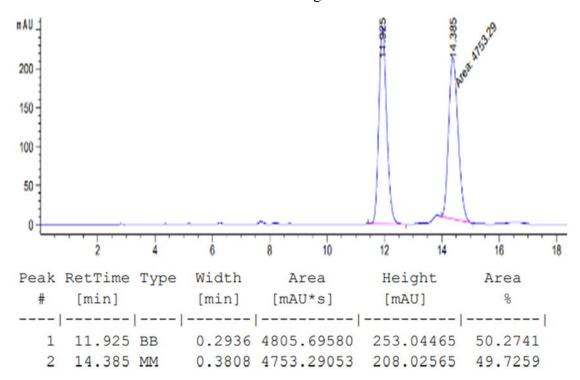


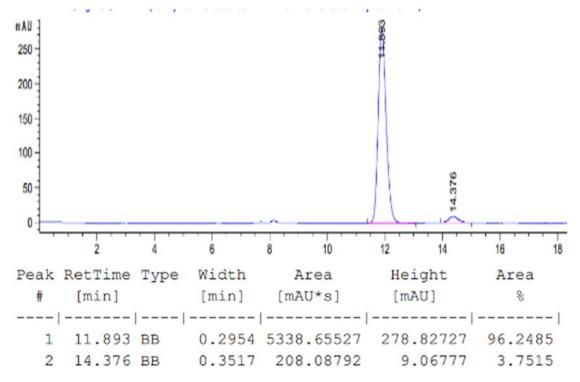


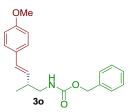


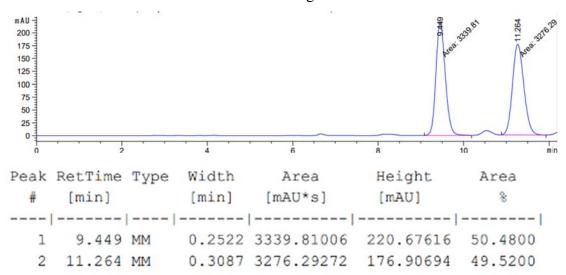


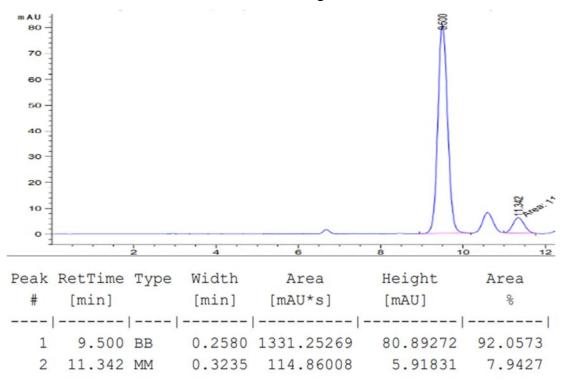


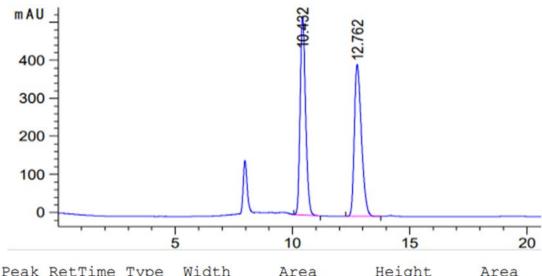



reak	Retrime	Type	wiath	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	18.662	BB	0.6380	1440.01636	34.14860	49.3292	
2	28.805	BB	0.8858	1479.18225	23.01514	50.6708	

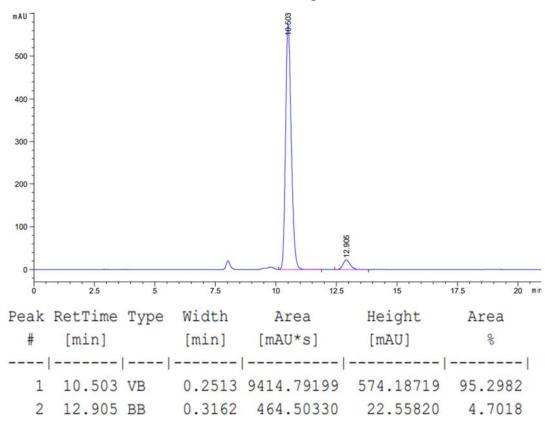


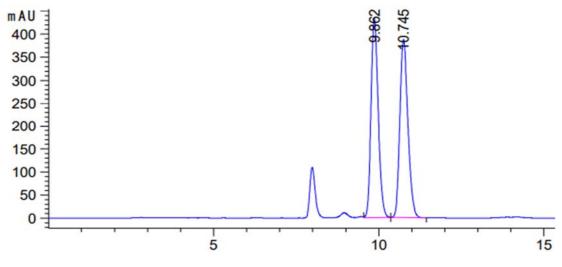

HPLC data using rac-L1

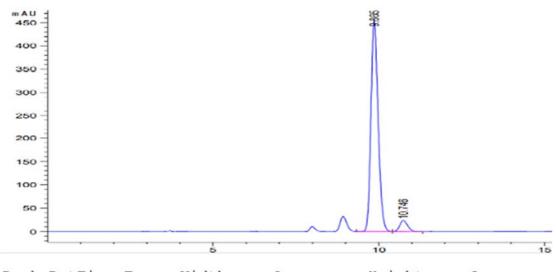


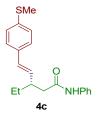


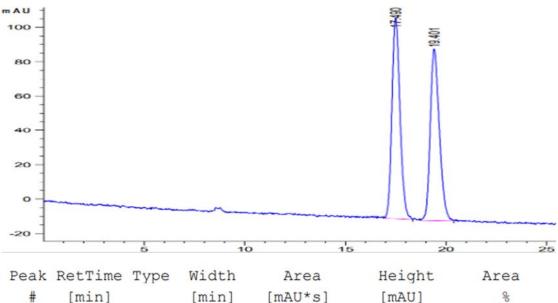
HPLC data using rac-L1



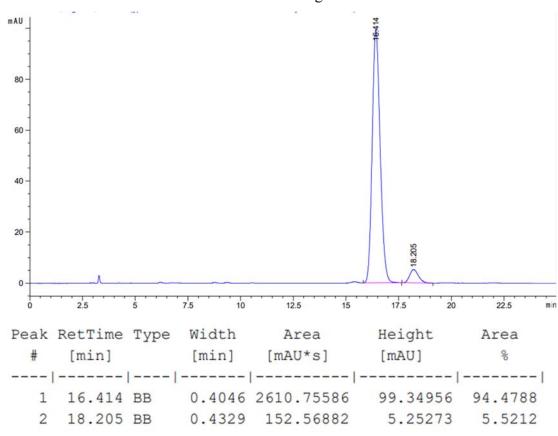


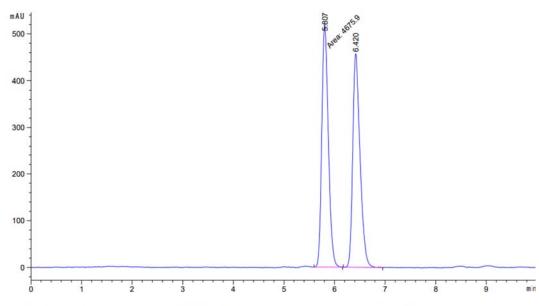

LCan	TICCTIME	TAPC	WIGGII	nica	nergne	ALCa
#	[min]		[min]	[mAU*s]	[mAU]	8
1	10.432	BB	0.2476	8351.00293	519.43225	49.8438
2	12.762	BB	0.3245	8403.34375	397.64615	50.1562



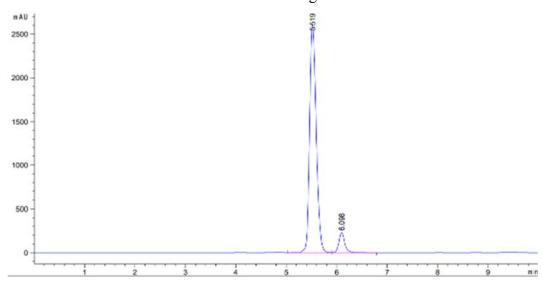


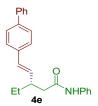
Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	9.862	VB	0.2339	6517.29736	432.35846	49.8786	
2	10.745	BB	0.2613	6549.02148	387.20273	50.1214	

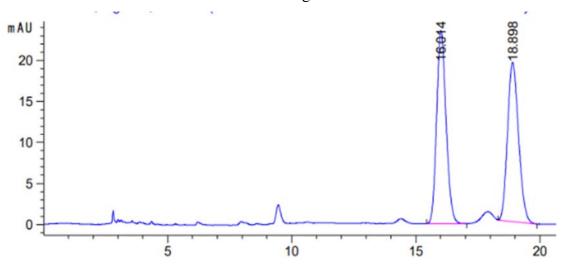

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	9.865	BV	0.2321	6853.49268	453.97610	94.4885	
2	10.746	VB	0.2575	399.76559	23.85170	5.5115	



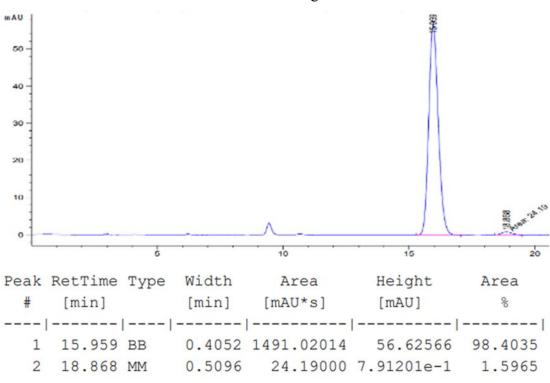
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17,490	VV R	0.3893	3239.34619	116,90580	50.6718

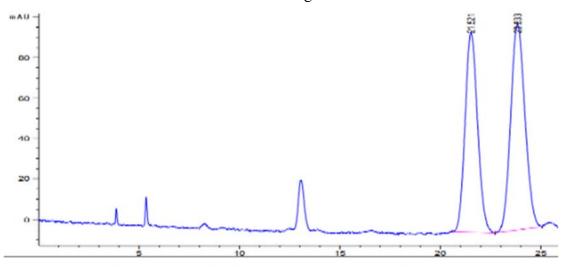

2 19.401 VV R 0.4224 3153.45752 99.85294 49.3282

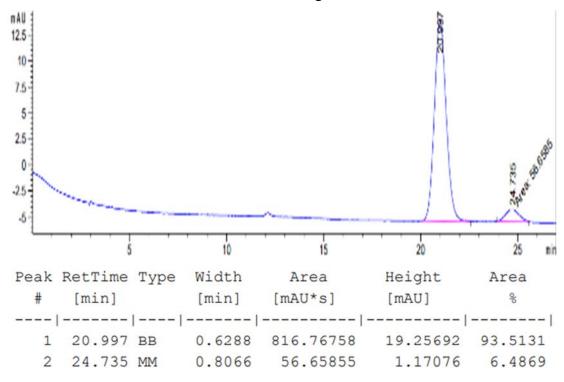


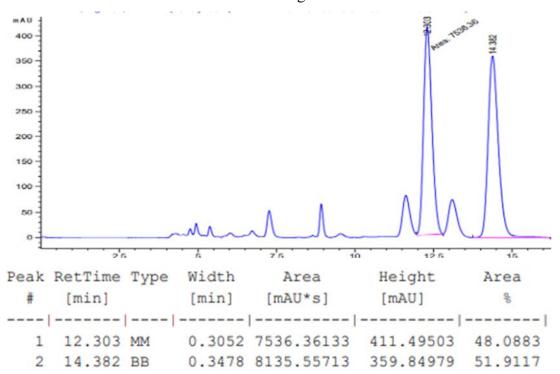

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.807	MM	0.1499	4675.90234	519.73724	50.5750
2	6.420	VV R	0.1507	4569.57324	456.97687	49.4250

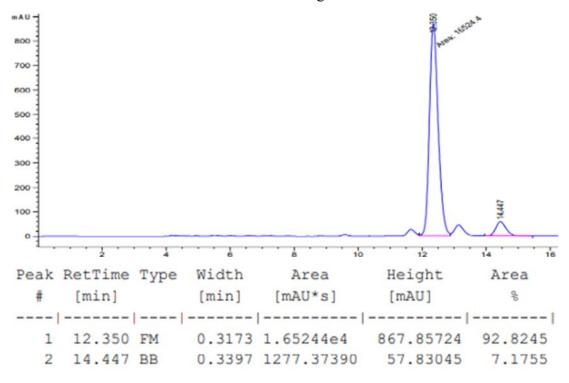
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.519	BV	0.1429	2.38781e4	2605.44238	92.8442
2	6.098	VB	0.1215	1840.35376	229.63184	7.1558

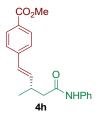



HPLC data using rac-L1

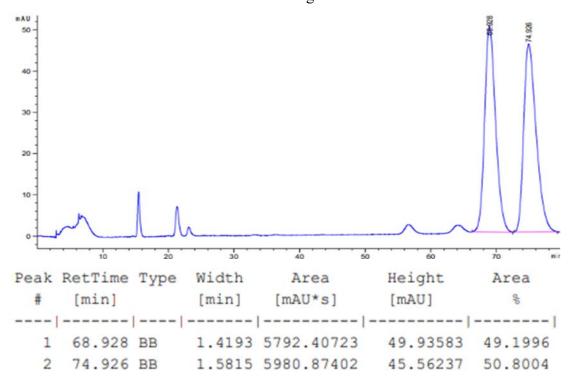

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	સ્	
1	16.014	BB	0.4054	619.01019	23.49388	50.8779	
2	18.898	BB	0.4717	597.64850	19.38445	49.1221	

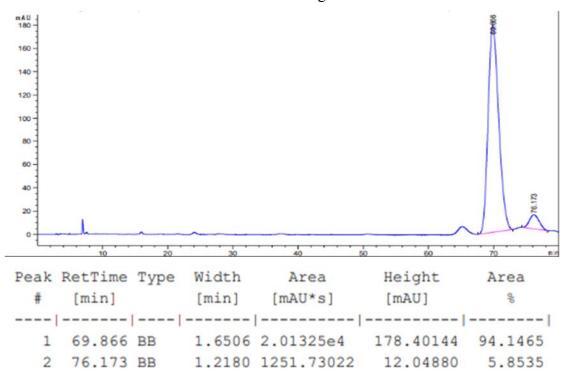

HPLC data using L1

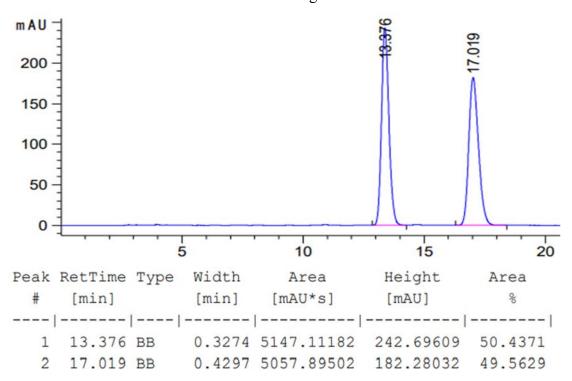


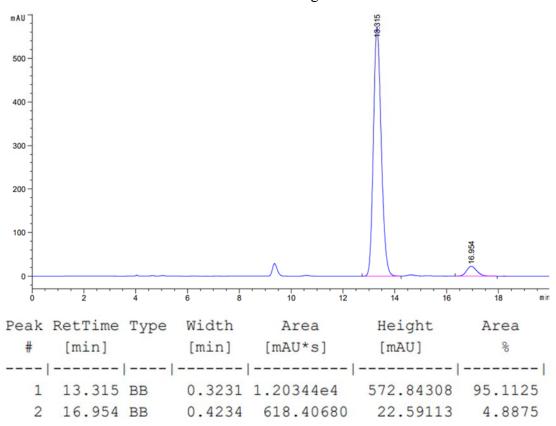


Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	21.521	VB R	0.5517	4264.06592	98.76539	45.9304	
2	23.833	BV R	0.5899	5019.69141	101.69619	54.0696	

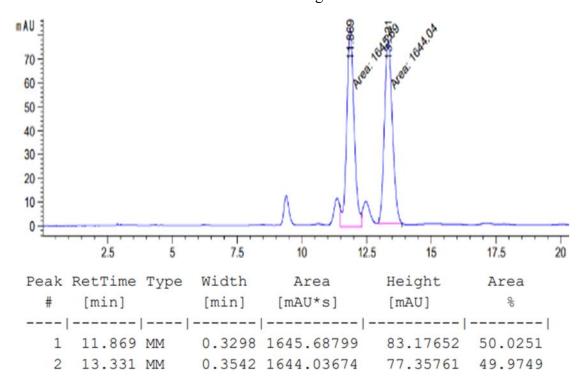


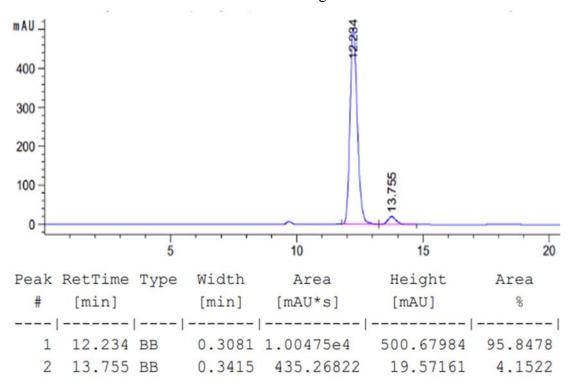


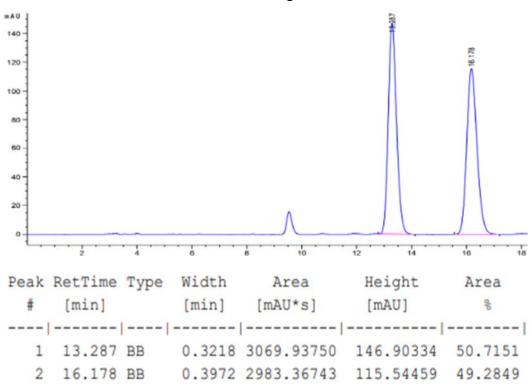


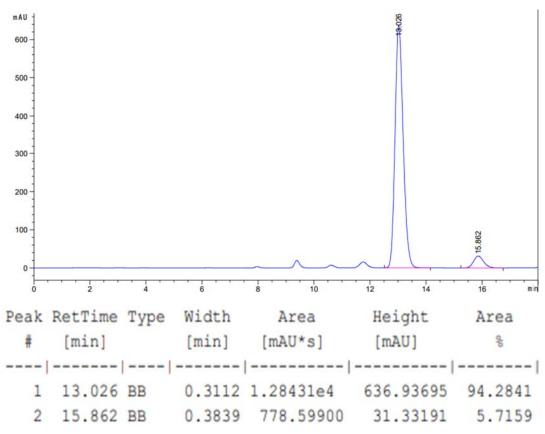


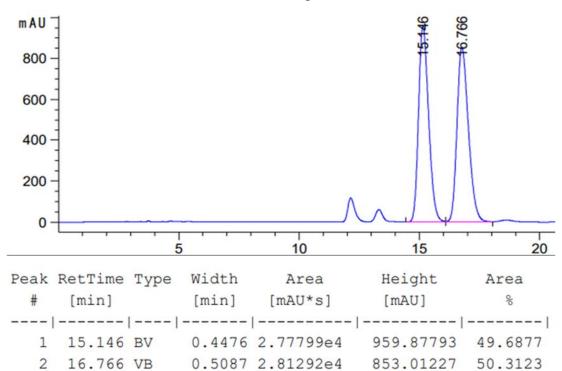
HPLC data using rac-L1

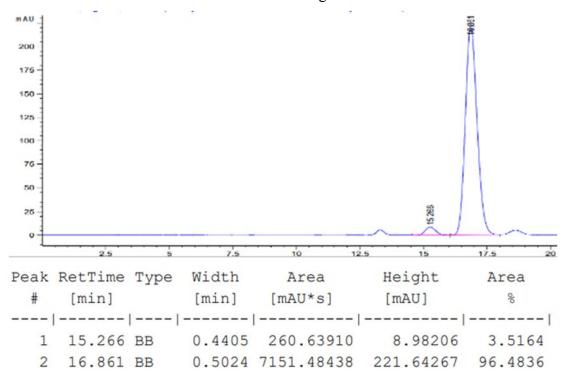


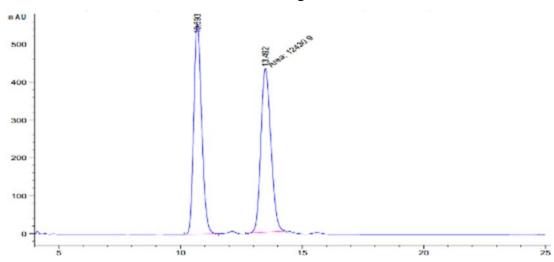



HPLC data using rac-L1

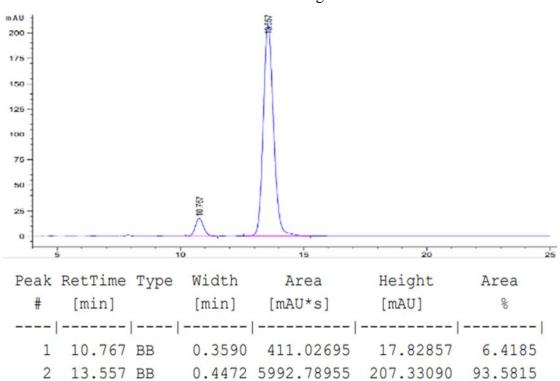


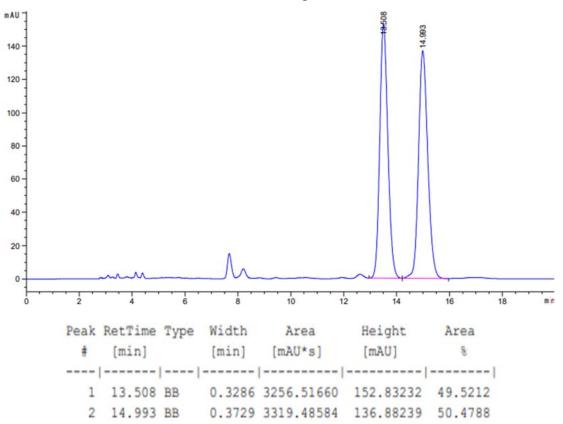


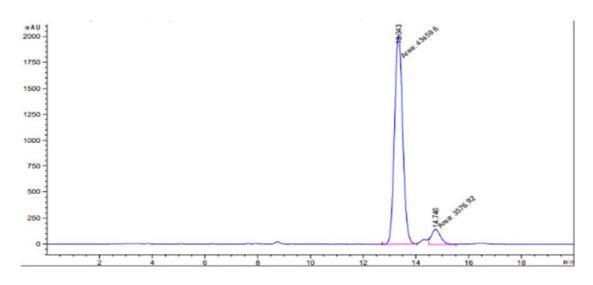

HPLC data using rac-L1

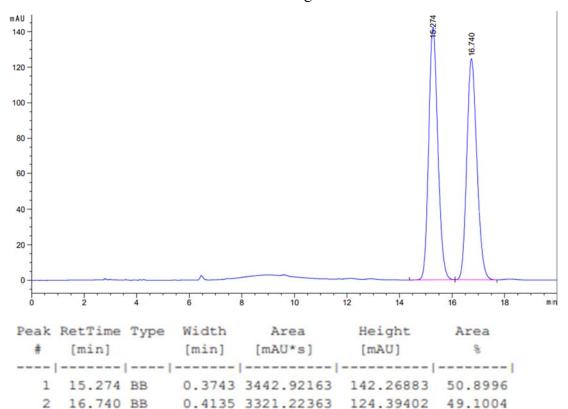


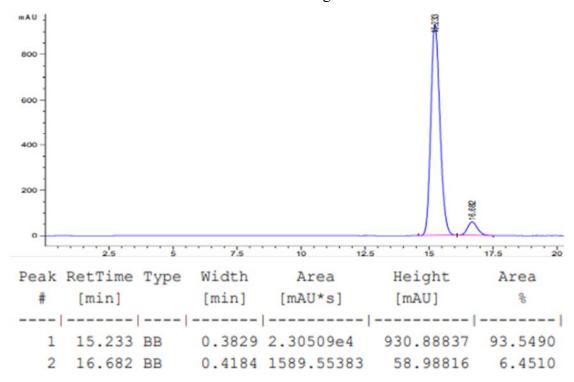
HPLC data using rac-L1

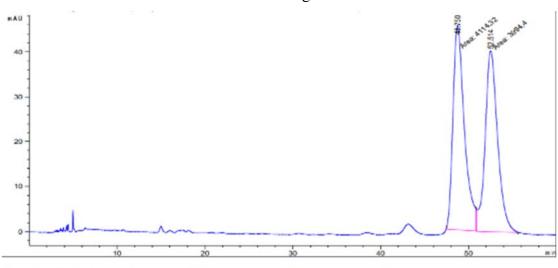


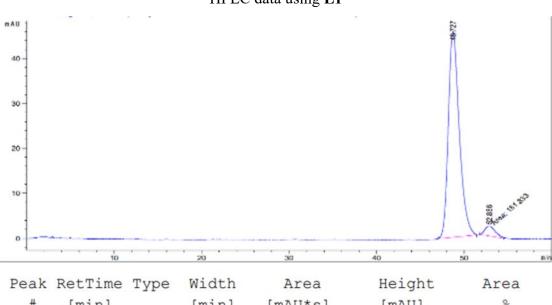


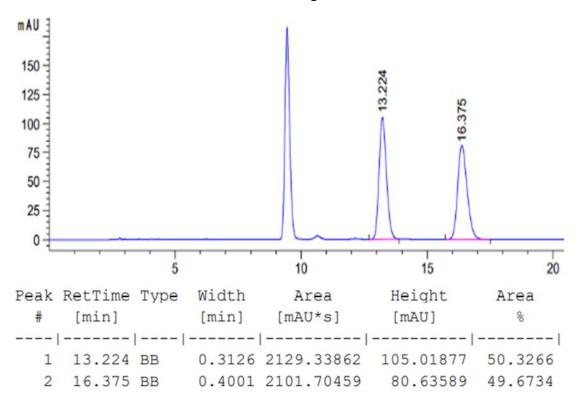

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.693	BB	0.3502	1.25611e4	554.75110	50.2605
2	13.492	MM	0.4782	1.24309e4	433.27512	49.7395

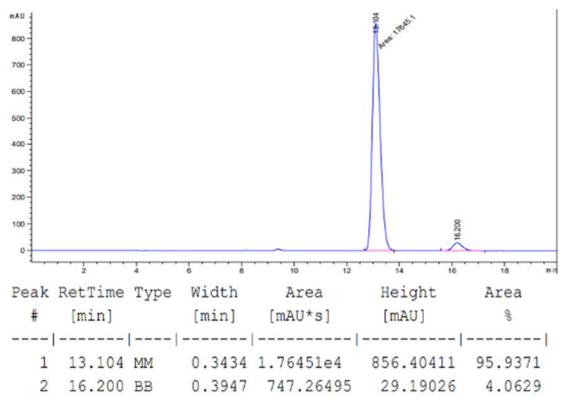



HPLC data using rac-L1

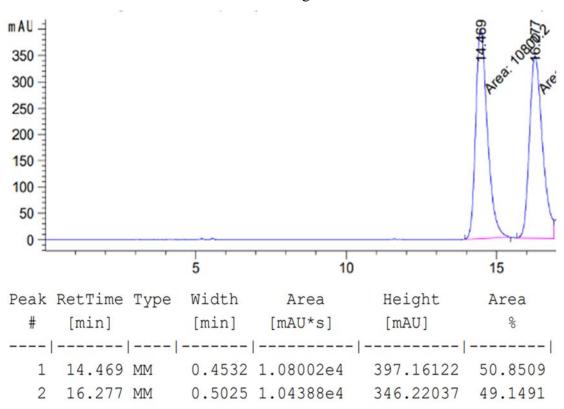


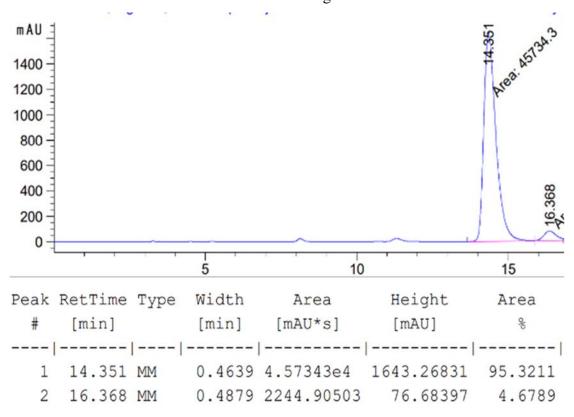

]	Peak	RetTime	Type	Width	Area	Height	Area	
	#	[min]		[min]	[mAU*s]	[mAU]	8	
	1	13.343	MM	0.3590	4.34596e4	2017.49365	92.3954	
	2	14.746	MM	0.4066	3576.92285	146.62115	7.6046	

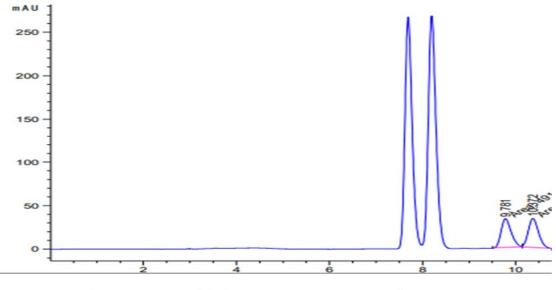

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	48.750	MM	1.5086	4114.31787	45.45294	50.7394
2	52.514	MM	1.6542	3994.40015	40.24456	49.2606



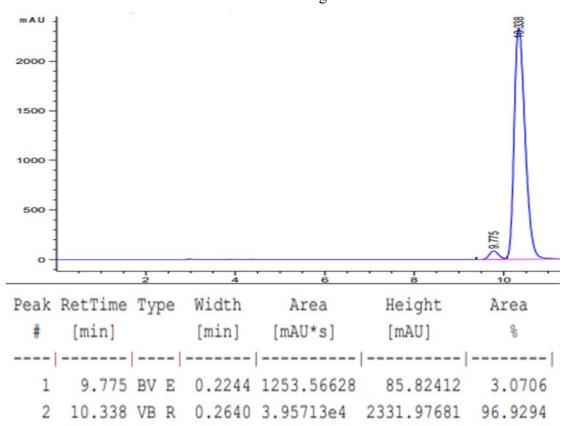
Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	48.727	BB	1.2415	3965.62695	45.83137	95.6158	
2	52.886	MM	1.3884	181.83350	2.18285	4.3842	


HPLC data using rac-L1

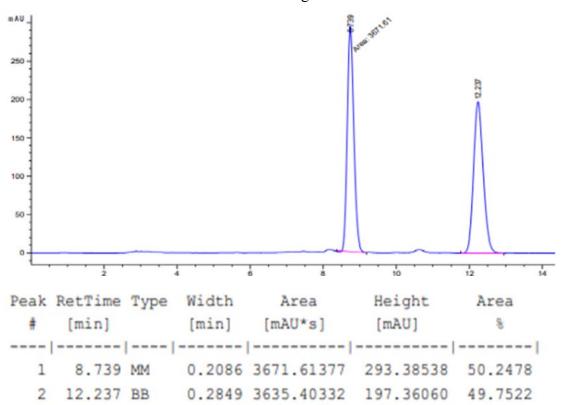


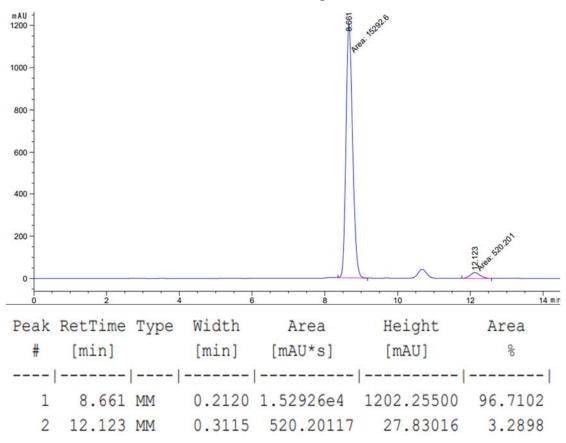


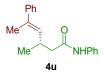
HPLC data using rac-L1

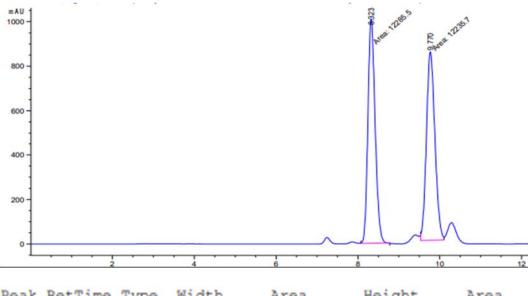


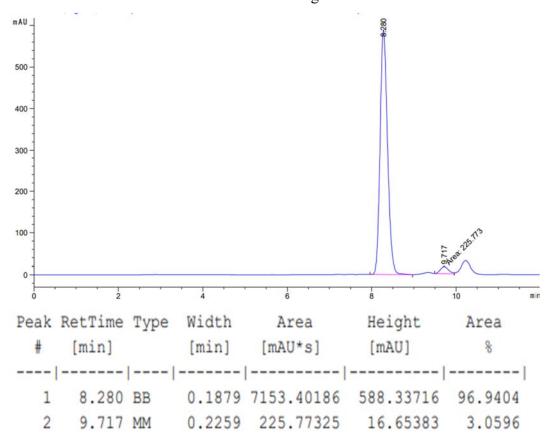
HPLC data using rac-L1


Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	96
1	9.781	MM	0.2488	491.83655	32.94780	49.6161
2	10.372	MM	0.2502	499.44687	33.26496	50.3839

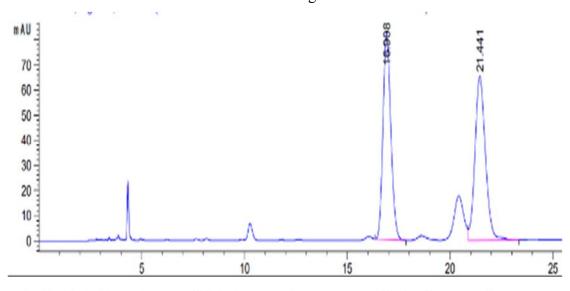

HPLC data using L1



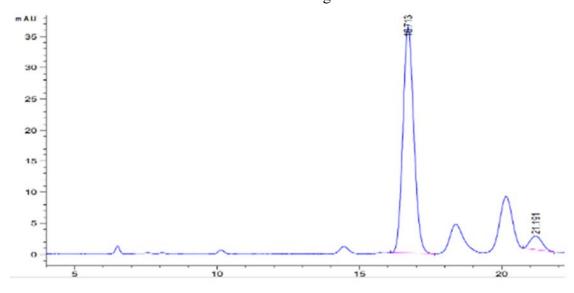

HPLC data using rac-L1



HPLC data using rac-L1

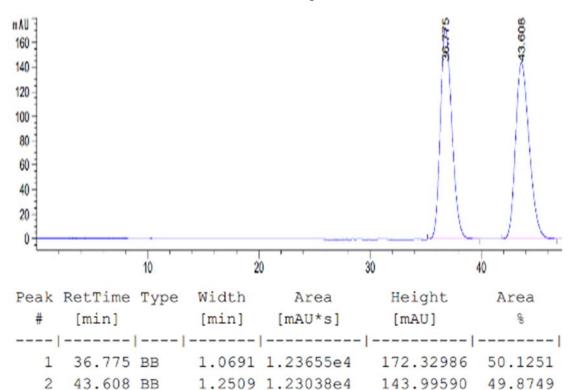

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	8.323	MM	0.2030	1.22855e4	1008.77563	50.1014	
2	9.770	MM	0.2406	1.22357e4	847.73724	49.8986	

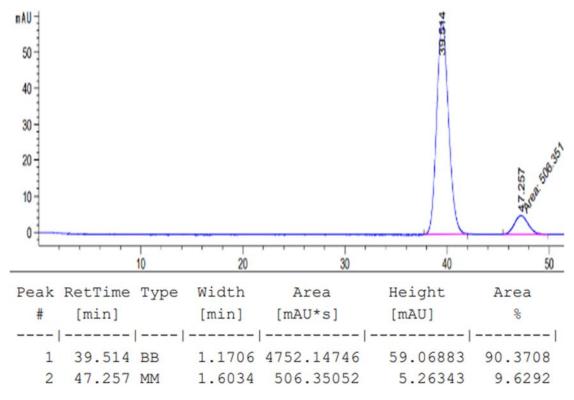
HPLC data using L1

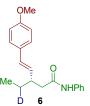


HPLC data using rac-L1

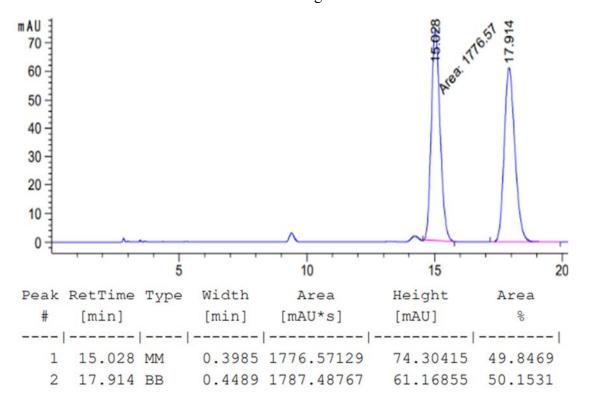
Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	16.908	BB	0.4107	2190.93066	82.27848	48.7534	
2	21.441	VB	0.5401	2302.97021	65.19888	51.2466	

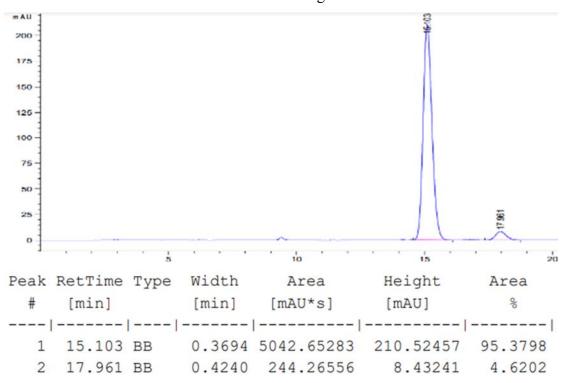

HPLC data using L1

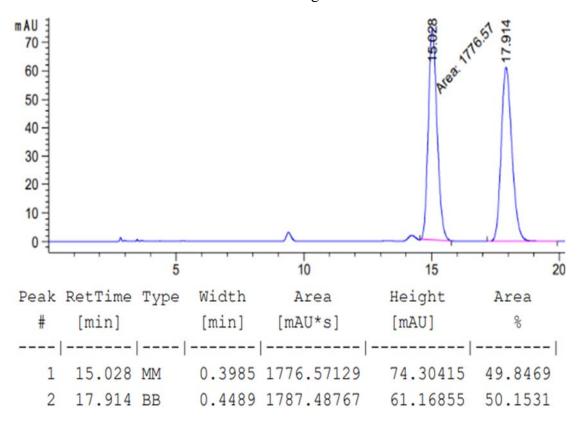

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	16.713	BB	0.4145	967.07593	36.33714	93.7120	
2	21.191	BB	0.3785	64.89010	2.21005	6.2880	

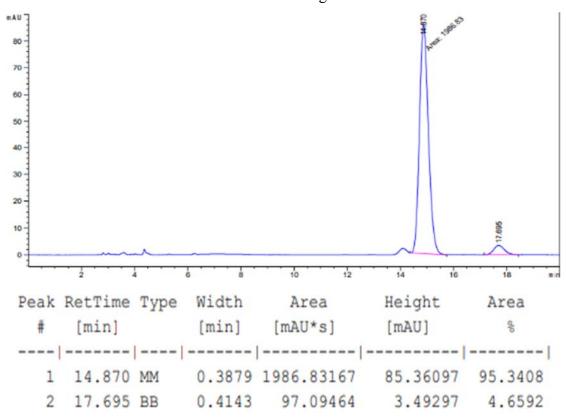


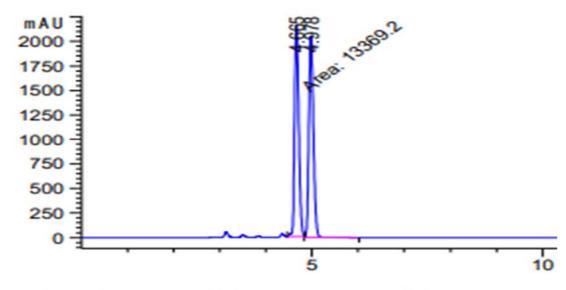
HPLC data using rac-L1

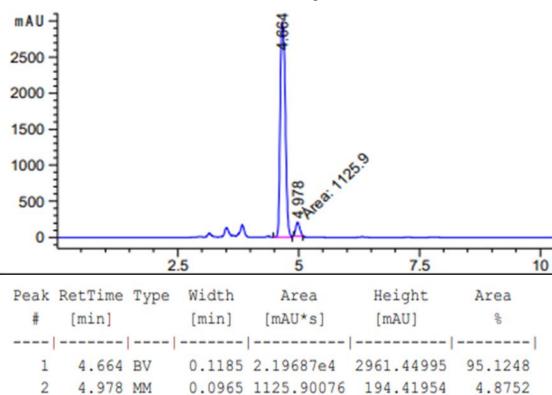



HPLC data using L1

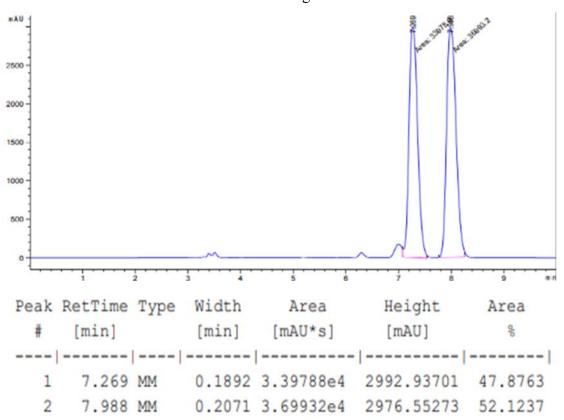



HPLC data using rac-L1

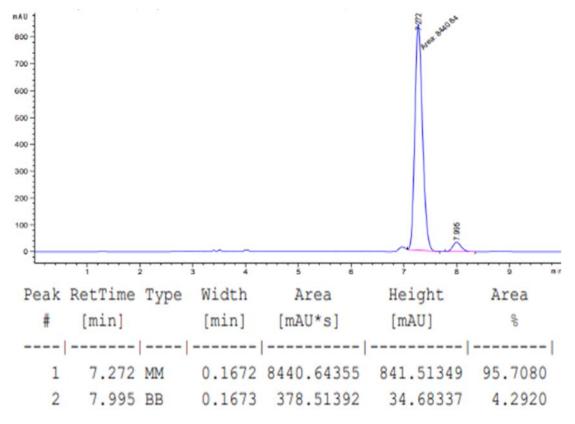

HPLC data using rac-L1

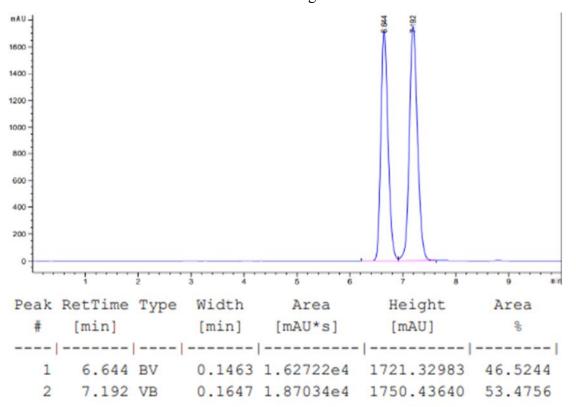


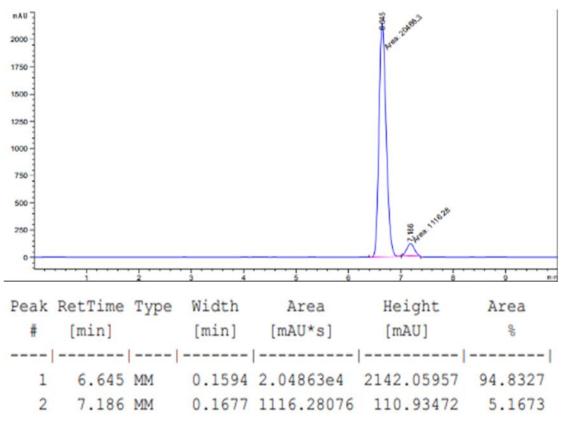
HPLC data using rac-L1



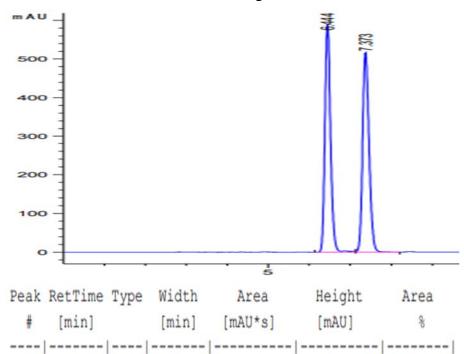
Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	4.665	MM	0.1037	1.33692e4	2149.03027	49.4716	
2	4.978	VB	0.1034	1.36548e4	2057.75488	50.5284	


HPLC data using L1


HPLC data using rac-L1



HPLC data using L1

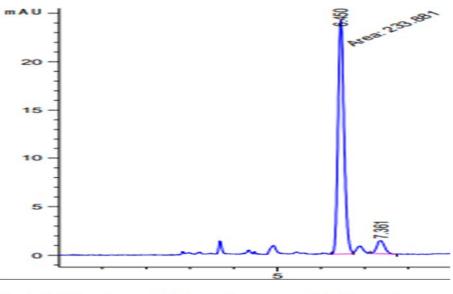


HPLC data using rac-L1

HPLC data using rac-L1

0.1671 5620.00537 515.67517 49.7420

590.26971


50.2580

HPLC data using L1

6.444 BV R 0.1471 5678.30566

2

7.373 VB

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	6.450	MF	0.1610	233.88072	24.20433	93.4002
2	7.361	BB	0.1832	16.52632	1.34620	6.5998