Supplementary Information for

Functional mapping of the 14-3-3 hub protein as a guide to design 14-3-3 molecular glues

Bente A. Somsen, Fenna W. B. Craenmehr, Wei-Hong W. Liu, Auke A. Koops, Marloes A.M. Pennings, Emira J. Visser, Christian Ottmann, Peter J. Cossar ${ }^{1}$ and Luc Brunsveld ${ }^{1}$

${ }^{1}$ Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
*Peter J. Cossar and Luc Brunsveld
Email: p.cossar@tue.nl and l.brunsveld@tue.nl
This PDF file includes:
Figures S1 to S15
Tables S1 to S8
Experimental procedures
a.

Construct					Seque						ALC (\%)
14-3-3.1	D-Leu	Nph	β-Ser	Nph	pSer	Nph	β-Ser	β-Ala	Nph	Lys	99
14-3-3.2	Fph	D-Val	Nph	Fph	pSer	Cpa	D-GIn	Fph	Fph	Lys	99
14-3-3.3	Fph	Fph	Hyp	Fph	pSer	Thz	β-Ser	β-Ala	Nph	Lys	97
14-3-3.4	Cha	Cpa	β-Ser	Thz	pSer	Cha	β-Ser	Nph	β-Ala	Lys	91
14-3-3.5	Cha	Cha	β-Ser	Fph	pSer	Thz	β-Ser	β-Ala	Hyp	Lys	91
14-3-3.6	Cha	Cha	β-Ser	Orn	pSer	Nph	β-Ser	β-Ser	Nph	Lys	90
14-3-3.7	Cha	Nph	Hyp	Fph	pSer	Thz	β-Thr	β-Ala	Nph	Lys	85
14-3-3.8	Cha	Fph	β-Ser	Cpa	pSer	β-Thr	Nph	β-Ala	Nph	Lys	85
14-3-3.9	Thz	Thz	Hyp	Thz	pSer	Nph	β-Ser	β-Ser	Nph	Lys	85
14-3-3.10	Cha	β-Ala	Nph	Aph	pSer	D-Val	Aad	D-GIn	Nph	Lys	85
14-3-3.11	D-GIn	Cpa	Nph	Cpa	pSer	Fph	β-Ser	β-Ala	Nph	Lys	84
14-3-3.12	D-Lys	D-Val	Nph	Thz	pSer	Nph	β-Ser	β-Ala	Nph	Lys	84
14-3-3.13	Fph	β-Ser	Hyp	Thz	pSer	Nph	β-Ser	β-Ser	Nph	Lys	83
14-3-3.14	Cha	Cpa	β-Ser	Orn	pSer	Fph	Cpa	β-Ser	Nph	Lys	82
14-3-3.15	Cha	β-Ala	β-Ser	Cpa	pSer	Fph	β-Ala	β-Ala	Nph	Lys	81
14-3-3.16	Cpa	Fph	Cha	Thz	pSer	Thz	Hyp	Aph	Hyp	Lys	81
14-3-3.17	Cha	Fph	β-Ser	Cpa	pSer	Aph	β-Ser	Aad	Fph	Lys	81

b.
$A=\beta$-alanine; $C=$ ornithine; $D=D$-aspartate; E-aminoadipic acid; F = cyclohexyl alanine; G = diaminobutyric acid; H= thiazolyl alanine; $\mathrm{K}=\mathrm{D}$-lysine (pos 1-9) or L-lysine (pos. 10). L = D-leucine; $\mathrm{M}=$ cyclo-propylalanine; $\mathrm{N}=\beta$-homothreonine; $\mathrm{P}=$ hydroxyproline; $Q=D$-glutamine; $R=4$-aminophenylalanine; $S=$ phosphoserine; $\mathrm{T}=\beta$-homoserine; $\mathrm{V}=$ norvaline; $\mathrm{W}=4$-nitrophenylalalnine; $\mathrm{Y}=4$-fluorophenylalanine

Figure S1. Non-natural peptide screening results. (a) Table of seventeen obtained hit sequences from the non-natural peptide library screen. (b) Positional frequency analysis of identified 14-3-3 γ binding hits. Each letter represents a non-natural amino acid and the size of the letter determines its abundance in the hit sequences. Figures taken from Quartararo (2020).

Table S1. Binding characteristics peptide 1. K_{D} and ΔG values obtained from fluorescence anisotropy (FA) assays and $K_{D}, \Delta G, \Delta H$ and $-T \Delta S$ data obtained from isothermal titration calorimetry (ITC) experiments. Values are given for all measured replicates ($3 x$ for FA; $2 x$ for ITC). N.A. $=$ not available.

Technique	FA	FA	ITC		ITC
	$\mathbf{K}_{\boldsymbol{D}}(\mathbf{M})$	$\Delta \mathbf{G}$	$\mathbf{K}_{\boldsymbol{D}}(\mathbf{M})$	$\boldsymbol{\Delta} \mathbf{~ I T C}$	ITC
Replicate 1	$1.64 \mathrm{E}-08$	-10.6	$4.47 \mathrm{E}-08$	-10.0	-11.0
Replicate 2	$1.81 \mathrm{E}-08$	-10.6	$4.53 \mathrm{E}-08$	-10.0	-10.5
Replicate 3	$2.33 \mathrm{E}-08$	-10.4	N.A.	N.A.	N.A.
Mean	$1.92 \mathrm{E}-08$	-10.5	$4.50 \mathrm{E}-08$	-10.0	-10.7
Std. deviation	$3.56 \mathrm{E}-09$	0.1	$4.17 \mathrm{E}-10$	0.0	0.4

Figure S2. Phosphoserine replacement study. (a) Crystal structure of 14-3-3 σ (white surface) bound to the peptide 1 (orange sticks). Enlarged view of the electrostatic interaction between the phosphoserine residue of the 1 and the 14-3-3 phospho-accepting pocket (R129, R56, and Y130). (b) Fluorescence anisotropy assay of 14-3-3 σ titration to fixed concentrations fluorescein-labelled peptide (10 nM) and schematic representation of phosphoserine containing peptide (orange) and the tested phosphoserine replacements being serine (blue), glutamic acid (yellow) and aspartic acid (green).

	-4	-3	-2	-1		+1	+2	+3	+4	+5
1	D-Lys	Nva	Nph	Thz	pSer	Nph	β Ser	β Ala	Nph	Lys
2a		Nva	Nph	Thz	pSer	Nph	β Ser	β Ala	Nph	Lys
2b			Nph	Thz	pSer	Nph	β Ser	β Ala	Nph	Lys
2c				Thz	pSer	Nph	β Ser	β Ala	Nph	Lys
2d					pSer	Nph	β Ser	β Ala	Nph	Lys

Figure S3. Sequences N-terminal truncated peptides 2a-d. Schematic representation and chemical structure of peptide $\mathbf{1}$ and the N -terminal truncations. Within these peptides we stepwise remove the N -terminal amino acids leading to peptides $\mathbf{2 a}$-d.

Figure S4. Sequences C-terminal truncated peptides 2 e -i. Schematic representation and chemical structure of peptide $\mathbf{1}$ and the C-terminal truncations. Within these peptides we stepwise remove the C-terminal amino acids leading to peptides $\mathbf{2 e - i}$.

Table S2. Overview K_{D} and $\Delta \Delta G$ analysis N-terminal truncated peptides $\mathbf{2 a} \mathbf{- 2 d}$. K_{d} values are determined from the FA-based binding studies of 14-3-3 to each of the peptides. The fold change in binding affinity is determined by dividing the K_{D} from a peptide with the K_{D} of the previous (one amino acid longer) peptide. Furthermore the K_{D} is transformed into ΔG values which in the end is transformed into a $\Delta \Delta G$ analysis by subtracting the ΔG from each peptide with the ΔG from the previous (one amino acid longer) peptide.

Affinity $\mathrm{K}_{\mathrm{D}}(\mathrm{M})$	1	2a	2b	2 c	2d	
Removal	-	-4 D-Lys	-3 Nva	-2 NPh	-1 Thz	
Replicate 1	1,64E-08	2,83E-08	1,03E-07	5,21E-08	2,12E-06	
Replicate 2	1,81E-08	4,63E-08	1,08E-07	5,68E-08	2,60E-06	
Replicate 3	2,33E-08	3,86E-08	1,01E-07	5,63E-08	2,43E-06	
Mean	1,92E-08	3,77E-08	1,04E-07	5,51E-08	2,39E-06	
Std. deviation	3,56E-09	9,07E-09	3,44E-09	2,59E-09	2,45E-07	
Fold change to previous	1	2a	2b	2c	2d	
Removal	-	-4 D-Lys	-3 Nva	-2 NPh	-1 Thz	
Replicate 1		1,72	3,64	0,51	40,69	
Replicate 2		2,56	2,32	0,53	45,81	
Replicate 3		1,66	2,61	0,56	43,18	
Mean		1,98	2,86	0,53	43,23	
Std. deviation		0,50	0,69	0,03	2,56	
$\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$	1	2a	2b	2 c	2d	
Removal	-	-4 D-Lys	-3 Nva	-2 NPh	-1 Thz	
Replicate 1	-10,61	-10,29	-9,53	-9,93	-7,74	
Replicate 2	-10,56	-10,00	-9,50	-9,88	-7,61	
Replicate 3	-10,41	-10,11	-9,54	-9,88	-7,65	
Mean	-10,53	-10,13	-9,52	-9,90	-7,67	
Std. deviation	0,11	0,15	0,02	0,03	0,06	
$\Delta \Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$ to previous	1	2a	2b	2c	2d	N -term
Removal	-	-4 D-Lys	-3 Nva	-2 NPh	-1 Thz	
Replicate 1		0,32	0,76	-0,40	2,19	2,88
Replicate 2		0,56	0,50	-0,38	2,26	2,94
Replicate 3		0,30	0,57	-0,34	2,23	2,75
Mean		0,39	0,61	-0,37	2,23	2,86
Std. deviation		0,14	0,14	0,03	0,04	0,10

Table S3. Overview K_{D} and $\Delta \Delta G$ analysis C-terminal truncated peptides $\mathbf{2 e} \mathbf{e} \mathbf{2 i} . K_{D}$ values are determined from the FA-based binding studies of 14-3-3 to each of the peptides. The fold change in binding affinity is determined by dividing the K_{D} from a peptide with the K_{D} of the previous (one amino acid longer) peptide. Furthermore the K_{D} is transformed into ΔG values which in the end is transformed into a $\Delta \Delta G$ analysis by subtracting the ΔG from each peptide with the ΔG from the previous (one amino acid longer) peptide.

Affinity Kd (M)	1	2e	2 f	2g	2h	2 i	
Removal	-	+5 Lys	+4 Nph	+3 bAla	+2 bSer	+1 Nph	
Replicate 1	1,64E-08	9,09E-08	1,15E-06	2,22E-06	6,46E-06	2,73E-05	
Replicate 2	1,81E-08	1,29E-07	1,49E-06	2,73E-06	7,29E-06	2,59E-05	
Replicate 3	2,33E-08	9,25E-08	1,20E-06	2,14E-06	6,83E-06	2,96E-05	
Mean	1,92E-08	1,04E-07	1,28E-06	2,37E-06	6,86E-06	2,76E-05	
Std. deviation	2,91E-09	1,75E-08	1,47E-07	2,63E-07	3,41E-07	1,51E-06	
Fold change to previous	1	2e	2 f	2g	2h	2 i	
Removal	-	+5 Lys	+4 Nph	+3 bAla	+2 bSer	+1 Nph	
Replicate 1		5,54	12,69	1,92	2,91	4,23	
Replicate 2		7,13	11,53	1,84	2,67	3,56	
Replicate 3		3,98	12,93	1,79	3,19	4,33	
Mean		5,55	12,39	1,85	2,92	4,04	
Std. deviation		1,57	0,75	0,07	0,26	0,42	
$\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$	1	2 e	2 f	2g	2h	2i	
Removal	-	+5 Lys	+4 Nph	+3 bAla	+2 bSer	+1 Nph	
Replicate 1	-10,61	-9,60	-8,10	-7,71	-7,08	-6,22	
Replicate 2	-10,56	-9,39	-7,95	-7,59	-7,00	-6,25	
Replicate 3	-10,41	-9,59	-8,07	-7,73	-7,04	-6,18	
Mean	-10,53	-9,53	-8,04	-7,67	-7,04	-6,22	
Std. deviation	0,11	0,12	0,08	0,08	0,04	0,04	
$\Delta \Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$	1	2 e	2 f	2g	2h	2i	C-term
Removal	-	+5 Lys	+4 Nph	+3 bAla	+2 bSer	+1 Nph	
Replicate 1		1,01	1,50	0,39	0,63	0,85	4,39
Replicate 2		1,16	1,45	0,36	0,58	0,75	4,30
Replicate 3		0,82	1,52	0,34	0,69	0,87	4,23
Mean		1,00	1,49	0,36	0,63	0,82	4,31
Std. deviation		0,17	0,04	0,02	0,05	0,06	0,08

Figure S5. Examples of 14-3-3 binders. Crystal structures of 14-3-3 σ (white surface) bound to four different phosphorylated peptides (stick representations); Estrogen Receptor alpha (ER $)$), p53, Estrogen Related Receptor gamma (ERR γ) and NF-kB p65. Crystal structures represent that most peptides bind within their N-terminal side (right from the phosphoserine) into the binding groove, whereas the C-terminal is often lacking or binding outside the binding groove.

Figure S6. Crystal structures of N-terminal truncated peptides 2c-d. (a/b) Structure of 14-3-3 (white surface) bound to either of the N -terminally truncated peptides (blue sticks). A total view and an enlarged view of the peptide binding. The final 2Fo-Fc electron density map is represented as blue mesh contoured at 1σ. PDB: 7ZMU \& 7ZMW

Figure S7a. Crystal structures of known PPI stabilizing compounds. Two different 14-3-3 PPIs, namely 14-3-3/ER α (PDB: 6TL3 \& 6HHP), 14-3-3/ERR γ (PDB: 6Y3W), in complex with a pyrrolidone compounds or disulfide tethered fragments (yellow sticks) that stabilizes the PPI complex. A total overview of 14-3-3 (white surface) bound to peptide (reg/green spheres) and the stabilizer (yellow sticks) is shown at the left. A enlarged view is given in the middle panel of compound binding at the PPI interface. The right panel envisions the proximity of these compounds to hotspot residues K122 (yellow sticks) and the hydrophobic patch formed by L218, I219 and L222 (yellow sticks and surface)

Figure S7b. Crystal structures of known PPI stabilizing compounds. Two different 14-3-3 PPIs, namely 14-3-3/p65 (PDB: 6YQ2), 14-3-3/PIN1 (PDB: 7BFW), in complex with a pyrrolidone compounds or disulfide tethered fragments (yellow sticks) that stabilizes the PPI complex. A total overview of 14-3-3 (white surface) bound to peptide (blue/pink spheres) and the stabilizer (yellow sticks) is shown at the left. A enlarged view is given in the middle panel of compound binding at the PPI interface. The right panel envisions the proximity of these compounds to hotspot residues K122 (yellow sticks) and the hydrophobic patch formed by L218, I219 and L222 (yellow sticks and surface).

		$\begin{gathered} \mathrm{Np} \\ \mathrm{~Np}^{2} \\ \mathrm{~N}^{\prime} \end{gathered}$				β S				
	-4	-3	-2	-1		+1	+2	+3	+4	+5
1	D-Lys	Nva	Nph	Thz	pSer	Nph	β Ser	ßAla	Nph	Lys
3 a	D-Lys	Nva	Nph	Ala	pSer	Nph	β Ser	β Ala	Nph	Lys
4 a	D-Lys	Nva	Nph	Thz	pSer	Tyr	β Ser	BAla	Nph	Lys
4b	D-Lys	Nva	Nph	Thz	pSer	Phe	β Ser	β Ala	Nph	Lys
4 c	D-Lys	Nva	Nph	Thz	pSer	Ala	β Ser	β Ala	Nph	Lys
5a	D-Lys	Nva	Nph	Thz	pSer	Nph	β Ser	β Ala	Tyr	Ly
5b	D-Lys	Nva	Nph	Thz	pSer	Nph	β Ser	β Ala	Phe	Lys
5c	D-Lys	Nva	Nph	Thz	pSer	Nph	β Ser	BAla	Ala	Lys

Figure S8. Sequences point mutated peptides $\mathbf{3 a}, \mathbf{4 a} \mathbf{- c}, 5 \mathrm{a}-\mathbf{c}$. Schematic representation and chemical structure of peptide 1 and the point mutations. Within these peptides point mutations are made at position -1 (Thz) leading to peptide 3a, position +1 (Nph) leading to peptides $4 \mathrm{a}-\mathrm{c}$, and position +4 (Nph) leading to peptides 5a-c. Mutations were made to alanine, tyrosine and phenylalanine residues.

Figure S9. FA assay mutant peptides. (a) Fluorescence anisotropy assay of 14-3-3 γ titration to a fixed concentration (10 nM) of FITC-labelled 1 (orange) and -1 mutated peptide (blue). (b) Fluorescence anisotropy assay of 14-3-3 γ titration to a fixed concentration (10 nM) of FITC-labelled $\mathbf{1}$ (orange) and +1 mutated peptides (green). (c) Fluorescence anisotropy assay of $14-3-3 \gamma$ titration to a fixed concentration (10 nM) of FITC-labelled $\mathbf{1}$ (orange) and +4 mutated peptides (green). (d) Bar plot representation from obtained binding affinities (K_{D}) of mutated peptides and the fold change in affinity between different constructs. All data is recorded in triplicate from three independent experiments. The K_{D} obtained from each of the independent experiments is shows as single point and the bar represents the mean K_{D} of these three datapoints.

Table S4. Overview K_{d} and $\Delta \Delta G$ analysis mutated peptides (FA-based assays). K_{d} values are determined from the FA-based binding studies of 14-3-3 to each of the peptides. The fold change in binding affinity is determined by dividing the K_{d} from a peptide with the K_{d} of 1 . Furthermore the K_{d} is transformed into ΔG values which in the end is transformed into a $\Delta \Delta G$ analysis by subtracting the ΔG from each peptide with the ΔG from 1.

Affinity Kd (M)	1	3a	4a	4b	4c	5a	5b	5c
Mutant	-	Nph+4Ala	Nph+1Tyr	Nph+1Phe	Nph+1Ala	Nph +4Tyr	Nph +4Phe	Nph +4Ala
Replicate 1	5.2E-08	$1.0 \mathrm{E}-07$	$4.7 \mathrm{E}-08$	$4.6 \mathrm{E}-08$	$1.2 \mathrm{E}-06$	1.7E-06	1.3E-06	3.2E-06
Replicate 2	7.1E-08	$4.2 \mathrm{E}-08$	4.1E-08	3.3E-08	$1.2 \mathrm{E}-06$	1.2E-06	1.2E-06	2.2E-06
Replicate 3	$7.4 \mathrm{E}-08$	7.2E-08	$6.3 \mathrm{E}-08$	8.7E-08	$1.6 \mathrm{E}-06$	1.7E-06	$1.8 \mathrm{E}-06$	2.9E-06
Mean	6.6E-08	$7.1 \mathrm{E}-08$	$5.0 \mathrm{E}-08$	$5.5 \mathrm{E}-08$	$1.3 \mathrm{E}-06$	1.5E-06	1.4E-06	$2.8 \mathrm{E}-06$
Std. deviation	1.2E-08	$3.0 \mathrm{E}-08$	$1.1 \mathrm{E}-08$	$2.8 \mathrm{E}-08$	$2.0 \mathrm{E}-07$	2.7E-07	3.5E-07	5.2E-07
Fold change to 1	1	3a	4a	4b	4c	5a	5b	5 c
Mutant	-	Nph+4Ala	Nph+1Tyr	Nph+1Phe	Nph+1Ala	Nph +4Tyr	Nph +4Phe	Nph +4Ala
Replicate 1		1.9	0.9	0.9	24.0	33.2	24.3	62.1
Replicate 2		0.6	0.6	0.5	17.0	17.1	16.9	31.0
Replicate 3		1.0	0.9	1.2	21.3	22.5	24.9	39.8
Mean		1.2	0.8	0.8	20.8	24.2	22.0	44.3
Std. deviation		0.7	0.2	0.4	3.5	8.2	4.4	16.0
$\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$	1	3a	4a	4b	4c	5 a	5 b	5 C
Mutant	-	Nph+4Ala	Nph+1Tyr	Nph+1Phe	Nph+1Ala	Nph +4Tyr	Nph +4Phe	Nph +4Ala
Replicate 1	-9.9	-9.5	-10.0	-10.0	-8.1	-7.9	-8.0	-7.5
Replicate 2	-9.7	-10.1	-10.1	-10.2	-8.1	-8.1	-8.1	-7.7
Replicate 3	-9.7	-9.7	-9.8	-9.6	-7.9	-7.9	-7.8	-7.5
Mean	-9.8	-9.8	-10.0	-9.9	-8.0	-7.9	-8.0	-7.6
Std. deviation	0.1	0.3	0.1	0.3	0.1	0.1	0.1	0.1
$\Delta \Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$ to 1	1	3a	4a	4b	4c	5a	5b	5c
Mutant	-	Nph+4Ala	Nph+1Tyr	Nph+1Phe	Nph+1Ala	Nph +4Tyr	Nph +4Phe	Nph +4Ala
Replicate 1		0.4	-0.1	-0.1	1.9	2.1	1.9	2.4
Replicate 2		-0.3	-0.3	-0.5	1.7	1.7	1.7	2.0
Replicate 3		0.0	-0.1	0.1	1.8	1.8	1.9	2.2
Mean		0.0	-0.2	-0.1	1.8	1.9	1.8	2.2
Std. deviation		0.4	0.1	0.3	0.1	0.2	0.1	0.2

a.

Model	Variable	Value	Confidence Interval	Confidence Level
Blank (constant)	blank (pcal)	-0,57367	$\pm 0,00000$	95\%
Independent	Kd (M)	4,469E-8	$\pm 2,435 \mathrm{E}-8$	95\%
	n	0,617	$\pm 0,011$	95\%
	$\Delta \mathrm{H}$ (kcal/mol)	-10,96	$\pm 0,336$	95\%
	-TAS (kcal/mol)	0,933		
	$\Delta \mathrm{G}$ (kcal/mol)	-10,03		
	$\Delta \mathrm{S}$ (cal'mol-K)	-3,128		

b.

Model	Variable	Value	Confidence Interval	Confidence Level
Blank (constant)	blank (ycoll)	$-0,49702$	$\pm 0,00000$	95%
Independent	$\mathrm{Kd}(\mathrm{M})$	$4,529 \mathrm{E}-8$	$\pm 2,740 \mathrm{E}-8$	95%
	n	0,632	$\pm 0,013$	95%
	$\Delta \mathrm{H}$ (kcalmol)	$-10,45$	$\pm 0,357$	95%
	$-\mathrm{T} \Delta \mathrm{S}(\mathrm{kcal} / \mathrm{mol})$	0,426		
	$\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$	$-10,02$		
	$\Delta \mathrm{~S}$ (cal/mol K$)$	$-1,430$		

Figure S10A. Raw ITC data 1 and 3a. Measured raw thermograms, binding isotherms and derived thermodynamic values for 14-3-3 γ binding to 1 and 3 a (Thz-1Ala). Used concentrations are state in the graph. A constant blank model is used to correct for heat of injection and independent model is used to model peptide binding (blue line). From this the thermodynamic parameters are determined as noted in each table associated with the thermograms. Each peptide is measured in two independent experiments (replicate 1 and 2) which are both shown here. ${ }^{* *}$ For thermodynamic parameters refer to Table S6.

b.

Model	Variable	Value	Confidence Interval	Confidence Level
Blank (constant)	blank (ycal$)$	$-0,23025$	$\pm 0,00000$	95%
Independent	$\mathrm{Kd}(\mathrm{M})$	$1,263 \mathrm{E}-7$	$\pm 5,216 \mathrm{E}-8$	95%
	n	1,023	$\pm 0,016$	95%
	$\Delta \mathrm{H}(\mathrm{kcal} / \mathrm{mol})$	$-5,830$	$\pm 0,142$	95%
	$-T \Delta \mathrm{~S}(\mathrm{kcal} / \mathrm{mol})$	$-3,582$		
	$\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$	$-9,411$		
	$\Delta \mathrm{~S}$ (cal/mol K$)$	12,01		

Model	Variable	Value	Confidence Interval	Confidence Level
	Blank (constant)	blank ((call $)$	$-0,14833$	$\pm 0,04404$
Independent	$\mathrm{Kd}(\mathrm{M})$	$6,090 \mathrm{E}-8$	$\pm 1,408 \mathrm{E}-8$	95%
	n	1,010	$\pm 0,006$	95%
	$\Delta \mathrm{H}(\mathrm{kcal} / \mathrm{mol})$	$-7,450$	$\pm 0,145$	95%
	$-\mathrm{T} \Delta \mathrm{S}(\mathrm{kcal} / \mathrm{mol})$	$-2,393$		
	$\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$	$-9,844$		
	$\Delta \mathrm{~S}(\mathrm{cal} / \mathrm{mol} \cdot \mathrm{K})$	8,027		

Figure S10B. Raw ITC data 4a and 4b. Measured raw thermograms, binding isotherms and derived thermodynamic values for 14-3-3 γ binding to $\mathbf{4 a}$ (Nph+1Tyr) and 4b (Nph+1Phe). Used concentrations are state in the graph. A constant blank model is used to correct for heat of injection and independent model is used to model peptide binding (blue line). From this the thermodynamic parameters are determined as noted in each table associated with the thermograms. Each peptide is measured in two independent experiments (replicate 1 and 2) which are both shown here. ${ }^{* *}$ For thermodynamic parameters refer to Table S6.
a.

C.

Model	Variable	Value	Confidence Interval	Confidence Level
Blank (constant)	blank ((ccal)	$-0,30958$	$\pm 0,00000$	95%
Independent	Kd (M)	$1,553 \mathrm{E}-6$	$\pm 2,669 \mathrm{E}-7$	95%
	n	0,997	$\pm 0,021$	95%
	$\Delta \mathrm{H}$ (kcalmol)	$-6,091$	$\pm 0,171$	95%
	$\Delta \mathrm{~S}$ (callmol K$)$	6,150		

b.

Model	Variable	Value	Confidence Interval	Confidence Level
Blank (constant)	blank (ucal)	$-0,22991$	$\pm 0,00000$	95%
Independent	$\mathrm{Kd}(\mathrm{M})$	$8,558 \mathrm{E}-7$	$\pm 2,746 \mathrm{E}-7$	95%
	n	1,206	$\pm 0,033$	95%
	$\Delta \mathrm{H}(\mathrm{kcal} / \mathrm{mol})$	$-4,649$	$\pm 0,169$	95%
	$-\mathrm{T} \Delta \mathrm{S}(\mathrm{kcal} / \mathrm{mol})$	$-3,629$		
	$\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$	$-8,278$		
	$\Delta \mathrm{~S}$ (cal/mol K$)$	12,17		

d.

Model	Variable	Value	Confidence Interval	Confidence Level
Blank (constant)	blank (Hcal$)$	$-0,44484$	$\pm 0,00000$	95%
Independent	$\mathrm{Kd}(\mathrm{M})$	$2,570 \mathrm{E}-6$	$\pm 7,194 \mathrm{E}-7$	95%
	n	1,510	$\pm 0,053$	95%
	$\Delta \mathrm{H}$ (kcal/mol)	$-4,328$	$\pm 0,204$	95%
	$\Delta \mathrm{~S}$ (cal/mol- K$)$	11,06		

Figure S10C. Raw ITC data 4c and 5a. Measured raw thermograms, binding isotherms and derived thermodynamic values for 14-3-3 γ binding to $\mathbf{4 c}$ ($\mathrm{Nph}+1 \mathrm{Ala}$) and 5 a ($\mathrm{Nph}+4 \mathrm{Tyr}$). Used concentrations are state in the graph. A constant blank model is used to correct for heat of injection and independent model is used to model peptide binding (blue line). From this the thermodynamic parameters are determined as noted in each table associated with the thermograms. Each peptide is measured in two independent experiments (replicate 1 and 2) which are both shown here. ${ }^{* *}$ For thermodynamic parameters refer to Table S6.

Model	Variable	Value	Confidence Interval	Confidence Level
Blank (constant)	blank (Hcal)	$-0,32068$	$\pm 0,00000$	95%
Independent	$\mathrm{Kd}(\mathrm{M})$	$1,506 \mathrm{E}-6$	$\pm 3,292 \mathrm{E}-7$	95%
	n	1,277	$\pm 0,030$	95%
	$\Delta \mathrm{H}$ (kcalmol)	$-4,716$	$\pm 0,143$	95%
	$\Delta \mathrm{~S}$ (callmol K$)$	10,82		

Time / s

Model	Varriable	Value	Confidence Interval	Confidence Level
Blank (constant)	blank ($\mu \mathrm{cal})$	$-0,55564$	$\pm 0,00000$	95%
Independent	$\mathrm{Kd}(\mathrm{M})$	$3,482 \mathrm{E}-6$	$\pm 1,970 \mathrm{E}-6$	95%
	n	1,144	$\pm 0,092$	95%
	$\Delta \mathrm{H}(\mathrm{kcal} / \mathrm{mol})$	$-2,242$	$\pm 0,261$	95%
	$-T \Delta \mathrm{~S}(\mathrm{kcal} / \mathrm{mol})$	$-5,204$		
	$\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$	$-7,446$		
	$\Delta \mathrm{~S}$ (callmol K$)$	17,45		

Model	Variable	Value	Confidence Interval	Confidence Level
Blank (constant)	blank (pcal)	$-0,25531$	$\pm 0,07017$	95%
Independent	$\mathrm{Kd}(\mathrm{M})$	$1,849 \mathrm{E}-6$	$\pm 4,806 \mathrm{E}-7$	95%
	n	1,470	$\pm 0,037$	95%
	$\Delta \mathrm{H}(\mathrm{kcal} / \mathrm{mol})$	$-4,725$	$\pm 0,228$	95%
	$\Delta \mathrm{~S}$ (cal/mol K$)$	10,38		

Time / s

Model	Variable	Value	Confidence Interval	Confidence Level
Blank (constant)	blank ((cal)	$-0,43617$	$\pm 0,00000$	95%
Independent	$\mathrm{Kd}(\mathrm{M})$	$4,328 \mathrm{E}-6$	$\pm 1,467 \mathrm{E}-6$	95%
	n	1,107	$\pm 0,065$	95%
	$\Delta \mathrm{H}(\mathrm{kcal} / \mathrm{mol})$	$-3,539$	$\pm 0,290$	95%
	$-T \Delta \mathrm{~S}(\mathrm{kcal} / \mathrm{mol})$	$-3,779$		
	$\Delta \mathrm{G}(\mathrm{kcal} \mathrm{mol})$	$-7,317$		
	$\Delta \mathrm{~S}($ callmol K$)$	12,67		

Figure S10D. Raw ITC data 5b and 5c. Measured raw thermograms, binding isotherms and derived thermodynamic values for 14-3-3 γ binding to $\mathbf{5 b}$ (Nph+4Phe) and $\mathbf{5 c}$ (Nph+4Ala). Used concentrations are state in the graph. A constant blank model is used to correct for heat of injection and independent model is used to model peptide binding (blue line). From this the thermodynamic parameters are determined as noted in each table associated with the thermograms. Each peptide is measured in two independent experiments (replicate 1 and 2) which are both shown here. ${ }^{* *}$ For thermodynamic parameters refer to Table S6.

Table S5. Overview K_{d} and $\Delta \Delta G$ analysis mutated peptides (ITC-based assays). K_{d} values are determined from the ITC-based binding studies of 14-3-3 to each of the peptides. The fold change in binding affinity is determined by dividing the K_{d} from a peptide with the K_{d} of peptide 1. Furthermore the K_{d} is transformed into ΔG values which in the end is transformed into a $\Delta \Delta G$ analysis by subtracting the $\Delta \mathrm{G}$ from each peptide with the $\Delta \mathrm{G}$ from peptide 1.

Affinity Kd (M)	1	3 a	4a	4b	4c	5a	5b	5c
Mutant	-	Nph+4Ala	Nph+1Tyr	Nph+1Phe	Nph+1Ala	Nph +4Tyr	Nph +4Phe	Nph +4Ala
Replicate 1	4.5E-08	$8.9 \mathrm{E}-08$	1.3E-07	$2.6 \mathrm{E}-08$	$6.7 \mathrm{E}-07$	1.6E-06	1.1E-06	3.5E-06
Replicate 2	4.5E-08	$7.0 \mathrm{E}-08$	$6.1 \mathrm{E}-08$	$3.8 \mathrm{E}-08$	8.6E-07	2.6E-06	$1.8 \mathrm{E}-06$	$4.3 \mathrm{E}-06$
Mean	4.5E-08	$7.9 \mathrm{E}-08$	$9.4 \mathrm{E}-08$	3.2E-08	7.6E-07	2.1E-06	$1.5 \mathrm{E}-06$	3.9E-06
Std. deviation	$4.2 \mathrm{E}-10$	$1.3 \mathrm{E}-08$	$4.6 \mathrm{E}-08$	8.1E-09	$1.3 \mathrm{E}-07$	7.2E-07	$5.6 \mathrm{E}-07$	$6.0 \mathrm{E}-07$
Fold change to 1	1	3a	4a	4b	4c	5a	5b	5c
Mutant	-	Nph+4Ala	Nph+1Tyr	Nph+1Phe	Nph+1Ala	Nph +4Tyr	Nph +4Phe	Nph +4Ala
		2.0	2.8	0.6	15.0	15.0	34.7	23.6
		1.5	1.3	0.8	18.9	18.9	56.7	40.8
Mean		1.8	2.1	0.7	17.0	17.0	45.7	32.2
		0.3	1.0	0.2	2.7	2.7	15.6	12.2
$\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$	1	3a	4a	4b	4c	5a	5b	5 c
Mutant	-	Nph+4Ala	Nph+1Tyr	Nph+1Phe	Nph+1Ala	Nph +4Tyr	Nph +4Phe	Nph +4Ala
Replicate 1	-10.0	-9.6	-9.4	-10.3	-8.4	-7.9	-7.9	-7.4
Replicate 2	-10.0	-9.8	-9.8	-10.1	-8.3	-7.6	-7.8	-7.3
Mean	-10.0	-9.7	-9.6	-10.2	-8.3	-7.8	-7.9	-7.4
Std. deviation	0.0	0.1	0.3	0.1	0.1	0.2	0.1	0.1
$\Delta \Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$ to 1	1	3 a	4a	4b	4c	5a	5b	5c
Mutant	-	Nph+4Ala	Nph+1Tyr	Nph+1Phe	Nph+1Ala	Nph +4Tyr	Nph +4Phe	Nph +4Ala
		0.4	0.6	-0.3	1.6	2.1	2.1	2.6
		0.3	0.2	-0.1	1.7	2.4	2.2	2.7
Mean		0.3	0.4	-0.2	1.7	2.2	2.1	2.6
Std. deviation		0.1	0.3	0.1	0.1	0.2	0.1	0.1

Figure S11. K_{D} and $\Delta \Delta G$ analysis of mutant peptides. (a) Bar plot representation of K_{D} values obtained from both ITC and FP experiments for peptide 1 and the Thz-1 (3a), Nph+1 (4a-c), and Nph+4 (5a-c) mutants. (b) Bar plot representation of the DDG contributions of each Thz-1, Nph+1 and Nph+4 Thz-1 (3a), Nph+1 (4a-c), and Nph+4 (5a-c) mutation as obtained in both ITS and FP experiments.

Table S6. Thermodynamic parameters ITC mutated peptides. Obtained $K_{d}, \Delta H,-T \Delta S$, and ΔG values for 1 and point mutated peptides. Two runs were performed for each peptide and for each of the parameters the average and standard deviation has been calculated.

Run 1	1	3a	4a	4b	4c	5a	5b	5c
	-	Nph+4Ala	Nph+1Tyr	Nph+1Phe	Nph+1Ala	Nph +4Tyr	Nph +4Phe	Nph +4Ala
Kd	4,47E-08	8,86E-08	1,26E-07	2,62E-08	6,72E-07	1,55E-06	1,06E-06	3,48E-06
$\Delta \mathrm{H}$	-10,96	-7,998	-5,83	-8,024	-4,976	-6,091	-4,716	-2,242
-T Δ S	0,933	-1,624	-3,582	-2,391	-3,445	-1,834	-3,227	-5,204
$\Delta \mathrm{G}$	-10,03	-9,622	-9,411	-10,34	-8,421	-7,925	-7,943	-7,446
Run 2	1	3a	4a	4b	4c	5a	5b	5c
	-	Nph+4Ala	Nph+1Tyr	Nph+1Phe	Nph+1Ala	Nph +4Tyr	Nph +4Phe	Nph +4Ala
Kd	4,53E-08	6,97E-08	6,09E-08	3,76E-08	8,56E-07	2,57E-06	1,85E-06	4,33E-06
ΔH	-10,45	-6,809	-7,45	-6,783	-4,649	-4,328	-4,725	-3,539
-T Δ S	0,426	-2,955	-2,393	-3,345	-3,629	-3,299	-3,096	-3,779
$\Delta \mathrm{G}$	-10,02	-9,764	-9,844	-10,13	-8,278	-7,626	-7,821	-7,317
Average	1	3a	4a	4b	4c	5a	5b	5c
	-	Nph+4Ala	Nph+1Tyr	Nph+1Phe	Nph+1Ala	Nph +4Tyr	Nph +4Phe	Nph +4Ala
Kd	4,50E-08	7,91E-08	9,36E-08	3,19E-08	7,64E-07	2,06E-06	1,45E-06	3,91E-06
$\Delta \mathrm{H}$	-10,71	-7,40	-6,64	-7,40	-4,81	-5,21	-4,72	-2,89
-T Δ S	0,68	-2,29	-2,99	-2,87	-3,54	-2,57	-3,16	-4,49
$\Delta \mathrm{G}$	-10,03	-9,69	-9,63	-10,24	-8,35	-7,78	-7,88	-7,38
Std. deviation	1	3 a	4a	4b	4c	5 a	5 b	5 c
	-	Nph+4Ala	Nph+1Tyr	Nph+1Phe	Nph+1Ala	Nph +4Tyr	Nph +4Phe	Nph +4Ala
Kd	4,17E-10	1,34E-08	4,62E-08	8,08E-09	1,30E-07	7,19E-07	5,61E-07	5,98E-07
$\Delta \mathrm{H}$	0,36	0,84	1,15	0,88	0,23	1,25	0,01	0,92
-T Δ S	0,36	0,94	0,84	0,67	0,13	1,04	0,09	1,01
$\Delta \mathrm{G}$	0,01	0,10	0,31	0,15	0,10	0,21	0,09	0,09

Figure S12. ITC thermodynamic parameters. Bar plot representation of thermodynamic parameters as obtained from ITC. For each peptide the thermodynamic binding characteristics $\Delta \mathrm{H},-\mathrm{T} \Delta \mathrm{S}$ and $\Delta \mathrm{G}$, are shown for its binding to $14-3-3 \mathrm{~g}$. (a) $\mathbf{1}$ and $\mathbf{3 a}$ (Thz-1Ala). (b) $\mathbf{1}$ and $\mathbf{4 a - c}$ (Nph+1 mutants). (c) $\mathbf{1}$ and 5a-c (Nph+4 mutants).

Figure S13. Overlay 14-3-3 binding to AMP/ChREBP and to peptide 2d. (a) Crystal structure of 14-3-3 (white surface) bound to ChREBP (salmon surface) and AMP (yellow sticks) binding as a stabilizer at the interface between 14-3-3 and ChREBP. PDB: 5F74 (b) Hydrogen bonding and electrostatic interactions (black dashes) between AMP and both 14-3-3 and ChREBP highlighting the binding of AMP on the PPI interface. (c) Structural overlay of 14-3-3/ChREBP and the 14-3-3/2d (blue sticks) binary complexes showing complementarity of 2d anc ChREBP binding to 14-3-3. (d) Enlarged view of phosphate group of peptide 2d interacting with the phosphoaccepting group of 14-3-3 (black dashes) and its potential interactions with ChREBP (salmon dashes). Showing the potential of $\mathbf{2 d}$ to act as a cooperative ligand between 14-3-3 and ChREBP. (e-f) Structural overlay of AMP and 2d binding to 14-3-3 (and ChREBP) showing similarity in binding of both AMP and 2d in the phosphate binding pocket.

Figure S14. Overlay ChREBP and peptide 2c. (a) Crystal structure of 14-3-3 (white surface) bound to 2c (blue sticks), PDB: 7ZMW. (b) Crystal structure of 14-3-3 (white surface) bound to ChREBP peptide (salmon sticks and cartoon), PDB: 5F74. (c) Structural overlay of 2c with thiazolylalanine (Thz) at -1 position (blue sticks) and ChREBP (salmon sticks/cartoon) bound to 14-3-3 (white surface) showing a clear steric clash (red arrow) in peptide binding.
a.

Equilibrium equations:

$$
\begin{aligned}
& \text { R_tot }=[R]+\left(\alpha^{*}[P]^{*}[R]^{*}[C]\right) /\left(K_{D}{ }^{\prime}{ }^{*} K_{D}{ }^{\prime \prime}\right)+([R] *[C]) / K_{D}{ }^{\prime \prime} \\
& +\left([P]^{*}[R]\right) / K_{0}^{\prime} \\
& C_{-} \text {tot }=[C]+\left(\alpha^{*}[P]^{*}[R]^{*}[C] /\left(K_{D}{ }^{*} K_{0}{ }^{\prime \prime}\right)+\left([R]^{*}[C]\right) / K_{D}{ }^{\prime \prime}\right. \\
& P_{-} \text {tot }=[P]+\left(\alpha^{*}[P]^{*}[R]^{*}[C]\right) /\left(\mathrm{K}_{\mathrm{D}}{ }^{\prime}{ }^{*} \mathrm{~K}_{\mathrm{D}}{ }^{\prime \prime}\right)+\left([\mathrm{P}]^{*}[R]\right) / \mathrm{K}_{\mathrm{D}}^{\prime}
\end{aligned}
$$

C.

Figure S15. Cooperativity analysis. (a) Cooperativity square representation of the 14-3-3/ChREBP/2d complex formation including binding affinities. The interaction is stabilized by factor alpha (α), reducing the apparent affinity of 14-3-3 to either of the components when pre-bound to the other component. (b) System description given to model to determine our ternary complex formation system and the determined equilibrium equations as generated by the model. (c) Experimental fluorescence anisotropy data of 14-3-3 titration to FITC-labelled 2d in presence of several concentrations ChREBP peptide. All the given $K_{D}{ }^{\prime}$ and calculated $K_{D}{ }^{\prime \prime}$ and a factor are given with a 95\% confidence interval. (d) Error-landscape plot centered on the determined $\mathrm{K}_{\mathrm{D}}{ }^{\prime \prime}$ and α factors. The contours show that there is a valley of parameter combinations that result in a relatively low mean squared error (MSE).

Table S7. Overview peptides used in selectivity studies including the phosphorylation site, peptide sequence, PDB reference for crystal structure and reference.

Protein	Phosphosite	Sequence	PDB	Ref.
ChREBP	-	Ac-DKIRLNNAIWRAWYIQYVKRRKSPV-CONH 2	$5 F 74$	1
ERa	pT594	Ac-AEGFPA pT V-COOH	$4 J C 3$	2,3
SOS1	pS1161	Ac-PRRRPE pS APAES-CONH 2	$6 F 08$	4
BRAF	pS365	Ac-RDRSS pS APNVH-CONH 2	-	5
ERRg	pS79	Ac-KRRRK pS CQA-CONH 2	$6 Y 1 D$	6
USP8	$p S 718$	Ac-KLKRSY pS SPDITQ-CONH 2	$6 F 09$	7
PIN1	$p S 72$	Ac- LVKHSQSRRPS pS WRQEK-CONH 2	$7 A O G$	8
P65	pS45	Ac- EGRSAG pS IPGRRS-CONH 2	$6 Y O W ~$	9

Table S8. Data collection and refinement statistics (molecular replacement) for 14-3-3 $\sigma \Delta \mathrm{c}$ in complex with non-natural N-terminally truncated peptides 2c and 2d

14-3-3бAc in complex with N -terminal truncated peptides $2 \mathrm{c}-\mathrm{d}$		
PDB	7ZMU	7ZMW
Peptide	2d	2c
Beam	DESY p11	Homesource
Data collection		
Space group	C 2221	C 2221
$\begin{aligned} & \text { Cell dimensions } \\ & a, b, c(A) \\ & a, \beta, \gamma\left({ }^{(}\right) \end{aligned}$	$\begin{aligned} & 82.3112 .062 .7 \\ & 90,90,90 \\ & \hline \end{aligned}$	$\begin{aligned} & 82.0111 .662 .5 \\ & 90,90,90 \\ & \hline \end{aligned}$
Resolution ((${ }^{\text {a }}$	45.55-1.60 (1.63-1.60)	$33.02-1.80$ (1.84-1.80)
$1 / \sigma(1)$	8.2 (3.5)	11.2 (3.0)
Completeness (\%)	100.0 (99.9)	97.4 (90.1)
Redundancy	13.4 (12.3)	6.0 (5.0)
$\mathrm{CC}_{1 / 2}$	0.988 (0.917)	0.996 (0.893)
Refinement		
No. reflections	38533	26185
$\mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}$	0.253/0.294	0.179/0.221
No. atoms		
Protein	1975	1871
Ligand/ion	112	127
Water	253	267
B-factors		
Protein	16.22	12.48
Ligand/ion	17.61	26.05
Water	25.98	22.17
R.m.s. deviations		
Bond lengths (\AA)	0.012	0.011
Bond angles (${ }^{\circ}$)	1.24	1.26
Ramachandran favored (\%) outliers (\%)	$\begin{aligned} & 98.29 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 97.86 \\ & 0.00 \end{aligned}$

Experimental procedures

14-3-3 γ protein expression (FP/ITC experiments)

A pPROEX HTb expression vector encoding the human 14-3-3 protein gamma (14-3-3 γ) with an N terminal his 6 -tag was transformed by heat shock into NiCo21 (DE3) competent cells. Single colonies were cultured in 50 mL LB medium ($100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin). After overnight incubation at $37^{\circ} \mathrm{C}$, cultures were transferred to 2 L TB media ($100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin, $1 \mathrm{mM} \mathrm{MgCl}{ }_{2}$) and incubated at $37^{\circ} \mathrm{C}$ until an OD600 nm of 0.8-1.2 was reached. Protein expression was then induced with 0.4 mM isopropyl- $\beta-\mathrm{d}-$ thiogalactoside (IPTG), and cultures were incubated overnight at $18^{\circ} \mathrm{C}$. Cells were harvested by centrifugation ($8600 \mathrm{rpm}, 20$ minutes, $4^{\circ} \mathrm{C}$) and resuspended in lysis buffer (50 mM Hepes, $\mathrm{pH} 8.0,300$ $\mathrm{mM} \mathrm{NaCl}, 12.5 \mathrm{mM}$ imidazole, $5 \mathrm{mM} \mathrm{MgCl} 2,2 \mathrm{mM} \beta \mathrm{ME}$) containing cOmplete ${ }^{\text {TM }}$ EDTA-free Protease Inhibitor Cocktail tablets (1 tablet/100 ml lysate) and benzonase ($1 \mu / / 100 \mathrm{ml}$). After lysis using a C3 Emulsiflex-C3 homogenizer (Avestin), the cell lysate was cleared by centrifugation (20000 rpm, 30 minutes, $4^{\circ} \mathrm{C}$) and purified using Ni^{2+}-affinity chromatography (Ni-NTA superflow cartridges, Qiagen). Typically two 5 mL columns (flow $5 \mathrm{~mL} / \mathrm{min}$) were used for a 2 L culture in which the lysate was loaded on the column washed with 10 CV wash buffer (50 mM Hepes, $\mathrm{pH} 8.0,300 \mathrm{mM} \mathrm{NaCl}, 25 \mathrm{mM}$ imidazole, $2 \mathrm{mM} \beta \mathrm{ME}$) and eluted in several fractions (2-4 CV) of elution buffer (50 mM Hepes, $\mathrm{pH} 8.0,300 \mathrm{mM}$ $\mathrm{NaCl}, 250 \mathrm{mM}$ imidazole, $2 \mathrm{mM} \beta \mathrm{ME}$). Fractions containing the 14-3-3 protein were combined and dialyzed into 25 mM HEPES $\mathrm{pH} 8.0,100 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{MgCl}, 500 \mu \mathrm{M}$ TCEP. Finally, the protein was concentrated to $\sim 60 \mathrm{mg} / \mathrm{mL}$, analyzed Q-Tof LC/MS, and aliquots were flash-frozen for storage at $-80^{\circ} \mathrm{C}$.

14-3-3 $\sigma \Delta \mathrm{c}$ protein expression (Crystallography)

A pPROEX HTb expression vector encoding the human 14-3-3 protein sigma truncated after T231 (14-$3-3 \sigma \Delta c$) and with an N-terminal his6-tag was transformed by heat shock into NiCo21 (DE3) competent cells. Single colonies were cultured in 50 mL LB medium ($100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin). After overnight incubation at $37^{\circ} \mathrm{C}$, cultures were transferred to 2 L TB media ($100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin, 1 mM MgCl) and incubated at $37^{\circ} \mathrm{C}$ until an OD600 nm of 0.8-1.2 was reached. Protein expression was then induced with 0.4 mM isopropyl- β-d-thiogalactoside (IPTG), and cultures were incubated overnight at $18^{\circ} \mathrm{C}$. Cells were harvested by centrifugation ($8600 \mathrm{rpm}, 20$ minutes, $4{ }^{\circ} \mathrm{C}$) and resuspended in lysis buffer (50 mM Hepes, pH 8.0, $300 \mathrm{mM} \mathrm{NaCl}, 12.5 \mathrm{mM}$ imidazole, $5 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 2 \mathrm{mM} \beta \mathrm{ME}$) containing cOmplete ${ }^{\mathrm{TM}}$ EDTA-free Protease Inhibitor Cocktail tablets (1 tablet/ 100 ml lysate) and benzonase ($1 \mu \mathrm{l} / 100 \mathrm{ml}$). After lysis using a C3 Emulsiflex-C3 homogenizer (Avestin), the cell lysate was cleared by centrifugation (20000 rpm, 30 minutes, $4{ }^{\circ} \mathrm{C}$) and purified using Ni2+-affinity chromatography (Ni-NTA superflow cartridges, Qiagen). Typically two 5 mL columns were used for a 2 L culture in which the lysate was loaded on the column washed with 10 CV wash buffer (50 mM Hepes, $\mathrm{pH} 8.0,300 \mathrm{mM} \mathrm{NaCl}, 25 \mathrm{mM}$ imidazole, $2 \mathrm{mM} \beta \mathrm{ME}$) and eluted with several fractions (2-4 CV) of elution buffer (50 mM Hepes, pH $8.0,300 \mathrm{mM} \mathrm{NaCl}, 250 \mathrm{mM}$ imidazole, $2 \mathrm{mM} \beta \mathrm{ME}$). Fractions containing the $14-3-3$ protein were combined and dialyzed into 25 mM HEPES pH 8.0, $200 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{MgCl} 2,2 \mathrm{mM} \beta \mathrm{ME}$. In addition, 1 mg TEV was added for each 100 mg purified protein to remove the purification tag. The cleaved sample was then again loaded on a 10 mL Ni-NTA column to separate the cleaved product from the expression tag and residual uncleaved protein. The flowthrough was loaded on a Superdex 75 pg 16/60 size exclusion column (GE Life Sciences) using 25 mM HEPES, $100 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{MgCl} 2,500 \mu \mathrm{M}$ TCEP (adjusted to $\mathrm{pH}=8.0$) as running buffer. Fractions containing the 14-3-3 protein were pooled and concentrated to $\sim 60 \mathrm{mg} / \mathrm{mL}$, analyzed Q-Tof LC/MS, and aliquots were flash-frozen for storage at -80 ${ }^{\circ} \mathrm{C}$.

Peptide synthesis

The peptides 1 and 2a-d were synthesized on $50 \mu \mathrm{~mol}$ scale on a Rink amide MBHA resin (Novabiochem, $0.52 \mathrm{mmol} / \mathrm{g}$ loading) using an automated Intavis MultiPep RSi peptide synthesizer. Deprotection was performed twice per cycle with $20 \% \mathrm{v} / \mathrm{v}$ piperidine in DMF for 8 minutes. Fmocprotected amino acids were mixed in 5 equivalents of HBTU and 9 equivalents of DIPEA in DMF, and coupled to the resin. With the exception of phosphoserine, which was coupled once for 60 minutes, all amino acids were coupled to the resin twice for 30 minutes. Capping of unreacted amino acids was performed with a mixture of acetic anhydride/pyridine/DMF (1:1:3) for 5 minutes. β Ala was incorporated as a spacer between the sequence and Lys(Alloc), to which a FITC fluorophore will be coupled for fluorescence anisotropy studies.
The peptides 1 and $\mathbf{2 e}$-i were synthesized manually on a $50 \mu \mathrm{~mol}$ scale using Rink amide MBHA resin (Novabiochem, $0.52 \mathrm{mmol} / \mathrm{g}$ loading) via Fmoc based solid phase peptide synthesis. Deprotection was
performed twice per cycle with $20 \% \mathrm{v} / \mathrm{v}$ piperidine in N, N-dimethylformamide (DMF) for five minutes. Fmoc-protected amino acids were mixed with 9 equivalents HBTU (0.38 M in DMF) and 15 equivalents of DIPEA, and coupled to the resin for 30 minutes (except pS, which is coupled for 60 minutes).
Peptides 1 and $2 \mathrm{e}-\mathrm{i}$ were labeled with fluorescein via a 5 -(-fluorenylmehyloxycarbonyl-amino)-3oxapentanoic acid (O1-Pen) linker using 5 equivalents of FITC and 7.5 equivalents of DIPEA reacting overnight with continuous agitation. Removal of protecting groups and cleavage of the resin was performed by incubation in a mixture of trifluoroacetic acid (TFA), $\mathrm{H}_{2} \mathrm{O}$, and triisopropylsilane (TIS) (96.5:2.5:1) for 2 hours with continuous agitation, followed by precipitation in an excess of ice-cold diethyl ether ($\mathrm{E}_{2} \mathrm{O}$).
Peptides $\mathbf{1}$ and $\mathbf{2 a}$-d were FITC labeled via a three-step approach. The free amine on the N -terminus was protected as follows: to a solution of di-tert-butyl decarbonate ($10 \mathrm{eq}, 400 \mathrm{mM}$) in DCM was added DIEA (10 eq), and solution was added to the resin. Coupling was allowed to proceed for 1 h . At this time, resin was washed $3 x$ with DCM and coupling was repeated as described. Resin was washed $5 x$ with DCM. Alloc removal was achieved as follows: resin was treated with a solution of tetrakis(triphenylphosphine)palladium $(0)(0.5 \mathrm{eq}, 20 \mathrm{mM})$ and phenylsilane (20 eq) in DCM, $2 \times 45 \mathrm{~min}$. Resins were then washed $3 x$ with DCM, then $3 x$ with DMF. FITC was installed on the free amine on each C-terminal lysine by treating resin with fluorescein isothiocyanate isomer I (10 eq, 400 mM in 4:1 DMF:DCM) and DIEA (15 eq) for at least 1.5 h . Reactions were kept under aluminum foil for the duration of the coupling. Reaction mixtures were then drained and resins were washed 3 x with DMF, 3 x with DCM, and dried under reduced pressure. Removal of protecting groups and cleavage of the resin was performed by incubation in a mixture of trifluoroacetic acid (TFA), $\mathrm{H}_{2} \mathrm{O}$, and triisopropylsilane (TIS) (96.5:2.5:1) for 2 hours with continuous agitation, followed by precipitation in excess of ice-cold diethyl ether ($\left.\mathrm{Et}_{2} \mathrm{O}\right)$.

All peptides were purified using preparative HP-LC. This was performed using a Gemini S4 110A 150 x 21.20 mm column using ultrapure water with 0.1% formic acid (FA) and acetonitrile with 0.1% FA with various gradients. Correct mass and purity of peptides was identified using analytical liquidchromatography coupled with mass-spectrometry (LC-MS) was performed on a C4 Jupiter SuC4300A $150 \times 2.0 \mathrm{~mm}$ column using ultrapure water with 0.1% formic acid (FA) and acetonitrile with $0.1 \% \mathrm{FA}$, in general with a gradient of 5% to 100% acetonitrile over 10 minutes, connected to a Thermo Fisher LCQ Fleet Ion Trap Mass Spectrometer. The purity of the samples was assessed using a UV detector at 254 nm .

Fluorescence anisotropy (FA) - binary binding studies: 14-3-3y was titrated in a 2 -fold dilution series (starting at 100 or $400 \mu \mathrm{M} 14-3-3 \gamma$) to 10 nM of fluorescein-labeled peptide in FA buffer (10 mM HEPES $\mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}, 0.1 \%(\mathrm{v} / \mathrm{v})$ Tween20, $0.1 \%(\mathrm{w} / \mathrm{v}) \mathrm{BSA})$. Dilution series were made in a polystyrene (non-binding) low-volume Corning Black Round Bottom 384 -well plates (Corning 4514 or 4511). Measurements were performed directly after plate preparation, using a Tecan Infinite F500 plate reader at room temperature (lex: $485 \pm 20 \mathrm{~nm}$; lem: $535 \pm 25 \mathrm{~nm}$; mirror: Dichroic 510 ; flashes: 20 ; integration time: 50 ms ; settle time: 0 ms ; gain: optimal; and Z-position: calculated from well). Wells containing only FITC-peptide were used to set as G -factor at 35 mP . All data were analyzed using GraphPad Prism (7.00) for Windows and fitted using a four-parameter logistic model (4PL). Each measurement was performed in three independent experiments, average and standard deviations were calculated in Excel (see SI tables S1-S4).
$\Delta \Delta G$ analysis: Based on the obtained binding affinities from the FA binding studies the fold change in binding affinity is determined by dividing the K_{D} of one peptide with the K_{D} from another peptide (fold change $=K_{D}{ }^{\text {pepidide }} / K_{D}$ pepitide2). Furthermore the K_{D} can be change into a ΔG (in $\mathrm{kcal} / \mathrm{mol}$) value using ΔG $=\left(\ln (\mathrm{KD})^{*}-8,314^{*} 298\right) / 4184$. Final $\Delta \Delta \mathrm{G}$ value is obtained by subtracting $\Delta \mathrm{G}$ values from one peptide with the $\Delta \mathrm{G}$ value of another peptide (see SI tables S2-S4).

Fluorescence anisotropy (FA) - ChREBP titrations: ChREBP peptide was titrated in a 2 -fold dilution series (starting at $100 \mu \mathrm{M}$) to 10 nM of fluorescein-labeled peptide $\mathbf{2 c}$ and 2 d in presence and absence of, respectively, $2 \mu \mathrm{M}$ and $40 \mathrm{nM} 14-3-3 \gamma$ in FA buffer (10 mM HEPES $\mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}, 0.1 \%(\mathrm{v} / \mathrm{v})$ Tween20, $0.1 \%(\mathrm{w} / \mathrm{v}) \mathrm{BSA}$). Dilution series were made in a polystyrene (non-binding) low-volume Corning Black Round Bottom 384 -well plates (Corning 4514 or 4511). Measurements were performed directly after plate preparation, using a Tecan Infinite F500 plate reader at room temperature (lex: $485 \pm$ 20 nm ; lem: $535 \pm 25 \mathrm{~nm}$; mirror: Dichroic 510; flashes: 20; integration time: 50 ms ; settle time: 0 ms ; gain: optimal; and Z-position: calculated from well). Wells containing only FITC-peptide were used to set as G-factor at 35 mP . All data were analyzed using GraphPad Prism (7.00) for Windows and fitted using
a four-parameter logistic model (4PL). Each measurement was performed in two independent experiments.

Fluorescence anisotropy (FA) - 2D-14-3-3/ChREBP titrations: 14-3-3 γ was titrated in a 2-fold dilution series (starting at $300 \mu \mathrm{M} 14-3-3 \gamma$) to 20 nM of fluorescein-labeled peptide 2d in FA buffer (10 mM HEPES $\mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}, 0.1 \%(\mathrm{v} / \mathrm{v})$ Tween20, $0.1 \%(\mathrm{w} / \mathrm{v}) \mathrm{BSA}$) in presence of 2-fold dilution series of unlabeled ChREBP peptide ($0.01-10 \mu \mathrm{M}$). Dilution series were made in a polystyrene (non-binding) low-volume Corning Black Round Bottom 384-well plates (Corning 4514 or 4511). Measurements were performed directly after plate preparation, using a Tecan Infinite F500 plate reader at room temperature (lex: $485 \pm 20 \mathrm{~nm}$; lem: $535 \pm 25 \mathrm{~nm}$; mirror: Dichroic 510; flashes: 20; integration time: 50 ms ; settle time: 0 ms ; gain: optimal; and Z-position: calculated from well). Wells containing only FITC-peptide were used to set as G-factor at 35 mP . All data were analyzed using GraphPad Prism (7.00) for Windows and fitted using a four-parameter logistic model (4PL). Data was obtained and averaged based on two independent experiments.

Cooperativity analysis:

To determine the cooperativity parameters from the 2D-titration of 14-3-3/ChREBP/2d (as described above) we have used the general framework for straightforward model construction of multi-component thermodynamic equilibrium systems as described by Geertjens et al. (2021). ${ }^{10}$ This general platform generates a model to describe multi-component equilibrium systems when given a system description. In our case we gave the following system description:

$$
\begin{aligned}
& R+P=R P ; K_{D}{ }^{\prime} \\
& R P+C=R P C ; K_{D}^{\prime \prime} / \alpha \\
& R+C=R C ; K_{D}{ }^{\prime \prime} \\
& R C+P=R P C ; K_{D} / / \alpha
\end{aligned}
$$

with $R=14-3-3, P=$ non-natural peptide (labelled), and $C=C h R E B P$. The framework determined based on this system description the equilibrium equations needed to determine $\mathrm{K}_{\mathrm{D}}{ }^{\prime \prime}$ and α. The data from 2Dtitrations was provided to the model including the $\mathrm{K}_{D}{ }^{\prime}$ at $1.96 \mathrm{mM}, \mathrm{P}_{-}$tot $=10 \mathrm{nM}$, and the variable concentrations of 14-3-3 and ChREBP at each datapoint. From this the model determined the $\mathrm{K}_{\mathrm{D}}{ }^{\prime \prime}$ and α (with 95% confidence interval) and the error-landscape of the determine parameters.

Fluorescence anisotropy (FA) - Selectivity study: Peptides representing 14-3-3 binding partners (including ChREBP) were titrated in a 2-fold dilution series (starting at $100 \mu \mathrm{M}$) to 20 nM of fluoresceinlabeled peptide 2d in presence and absence of, respectively, $2 \mu \mathrm{M}$ 14-3-3 γ in FA buffer (10 mM HEPES $\mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}, 0.1 \%(\mathrm{v} / \mathrm{v})$ Tween20, $0.1 \%(\mathrm{w} / \mathrm{v}) \mathrm{BSA})$. Dilution series were made in a polystyrene (non-binding) low-volume Corning Black Round Bottom 384-well plates (Corning 4514 or 4511). Measurements were performed directly after plate preparation, using a Tecan Infinite F500 plate reader at room temperature (lex: $485 \pm 20 \mathrm{~nm}$; lem: $535 \pm 25 \mathrm{~nm}$; mirror: Dichroic 510; flashes: 20; integration time: 50 ms ; settle time: 0 ms ; gain: optimal; and Z-position: calculated from well). Wells containing only FITC-peptide were used to set as G-factor at 35 mP . All data were analyzed using GraphPad Prism (7.00) for Windows and fitted using a four-parameter logistic model (4PL). Data was obtained and averaged based on two independent experiments.

Isothermal titration calorimetry (ITC)

Final dialysis fluid from protein expression was frozen as 2 mL aliquots to serve as ITC buffer. Protein and peptide were dissolved and diluted in this buffer to reported concentration. DMSO was added if reported and matched in cell and syringe. Samples were degassed for 10 min prior to measurement at 450 mmHg . The reference cell was filled with $300 \mu \mathrm{~L}$ degassed MilliQ water and sample cell with 300 $\mu \mathrm{L}$ of peptide or protein mixture. Syringe was loaded with at least $200 \mu \mathrm{~L}$ protein or peptide sample. Measurements were performed on an Affinity ITC LV (TA instruments), with injection size set to $2 \mu \mathrm{~L}$, stirring speed of 150 rpm and temperature at $25^{\circ} \mathrm{C}$. The data was processed and analyzed in NanoAnalyze v3.11. The baseline was manually inspected and corrected, after which a blank constant model was fitted to correct for the heat of injection. Subsequently an independent model was fitted, which the Nanoanalyse uses to report the thermodynamic binding properties reported in this paper.

Crystallography

14-3-3 $\sigma \Delta C / 2$ c: Peptide 2c was soaked in preformed crystals of 14-3-3 $0 \Delta c$ (truncated after T231 to reduce flexibility) with cJun peptide ${ }^{11}$, which grew in 28% (v/v) PEG400, 5% glycerol, $0.2 \mathrm{M} \mathrm{CaCl}_{2}, 0.1$ M HEPES pH 7.5 within two weeks. The soaked crystal was fished after 14 days of incubation and flashfrozen in liquid nitrogen. Diffraction data was in-house collected at 100 K . X-ray diffraction data were
collected on an in-house Rigaku Micromax-003 (Rigaku, Europe, Kemsing Sevenoaks, UK) equiped with an Dectris Pilatus 200K detector, with the following settings: 360 image, 0.5% image, 20 s exposure time.
14-3-3 $\sigma \Delta \mathrm{C} / \mathbf{2 d}$: Peptide 2d and 14-3-3 $\sigma \Delta \mathrm{C}$ protein were mixed in complexation buffer (25 mM HEPES $\mathrm{pH} 7.5,100 \mathrm{mM} \mathrm{MgCl} 2$, and $2 \mathrm{mM} \beta \mathrm{ME}$) using a final 14-3-3 concentration of $12 \mathrm{mg} / \mathrm{mL}$ and a $1: 4$ protein-peptide molar ratio. After 1h complexation at room temperature, sitting drop crystallization wells were set-up using 250 nL complex mixture and 250 nL precipitation buffer (95 mM HEPES pH 7.1, 0.19 $\mathrm{M} \mathrm{CaCl}_{2}, 5 \%$ glycerol and 27% PEG400). Crystals grew within 14 days at $4^{\circ} \mathrm{C}$. Suitable crystals were fished and flash-cooled in liquid nitrogen. X-ray diffraction data were collected at the p11 beamline of PETRA III facility at DESY (Hamburg, Germany) with the following settings: 1440 image, $0.25^{\circ} / \mathrm{image}$, 100% transmission and 0.1 s exposure time. Initial data processing was performed at DESY using XDS after which pre-processed data was taken towards further scaling steps, molecular replacement and refinement.

Data was processed using the CCP4i2 suite (version 7.1.18). ${ }^{12}$ DIALS ${ }^{13}$ was used to index and integrate the data after which scaling was done using AIMLESS. ${ }^{14,15}$ The data was phased with MoIRep ${ }^{16}$, using protein data bank (PDB) entry 4 JC 3 as a template. A three dimensional structure of peptide was generated using AceDRG ${ }^{17}$, which was thereafter build in based on visual inspection Fo-Fc and 2Fo-Fc electron density map. Sequential model building (based on visual inspection Fo-Fc and 2Fo-Fc electron density map) and refinement were performed with COOT ${ }^{18}$ and REFMAC ${ }^{19-20}$, respectively. Finally, alternating cycles of model improvement (based on isotropic b-factors and standard set of stereochemical restraints: covalent bonds, angels, dihedrals, planarities, chiralities, non-bonded) and refinements were performed using coot and phenix.refine from the Phenix software suite (version 1.20.1-4487). ${ }^{21-22}$ Pymol (version 2.2.3) ${ }^{23}$ was used to make the figures and the structures were deposited in the protein data bank (PDB) with IDs: 7ZMU and 7ZMW.
See SI table S8 for crystal statistics.

References:

1. Sijbesma, E.; Visser, E.; Plitzko, K.; Thiel, P.; Milroy, L.; Kaiser, M.; Brunsveld, L.; Ottmann, C. Structure-Based Evolution of a Promiscuous Inhibitor to a Selective Stabilizer of Protein-Protein Interactions. Nat. Commun. 2020, 11(1), 3954.
2. De Vries-van Leeuwen, I.J.; da Costa Pereira, D.; Flach, K.D.; Piersma, S.R.; Haase, C.; Bier, D.; Yalcin, Z.; Michalides, R.; Feenstra, K.A.; Jiménez, C.R.; de Greef, T.F.; Brunsveld, L.; Ottmann, C.; Zwart, W.; de Boer, A.H. Interaction of 14-3-3 proteins with the estrogen receptor alpha F domain provides a drug target interface. PNAS 2013, 110 (22), 8894-8899.
3. Sijbesma, E.; Hallenbeck, K.K.; Leysen, S.; de Vink, P.J.; Skóra, L.; Jahnke, W.; Brunsveld, L.; Arkin, M.R.; Ottmann, C. Site-Directed Fragment-Based Screening for the Discovery of ProteinProtein Interaction Stabilizers. J Am Chem Soc. 2019, 141 (8), 3524-3531.
4. Ballone, A.; Centorrino, F.; Wolter, M.; Ottmann, C. Structural characterization of $14-3-3 \zeta$ in complex with the human Son of sevenless homolog 1 (SOS1). J Struct Biol. 2018, 202 (3), 210215.
5. Kondo, Y.; Ognjenović, J.; Banerjee, S.; Karandur, D.; Merk, A.; Kulhanek, K.; Wong, K.; Roose, J.P.; Subramaniam, S.; Kuriyan, J. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science. 2019, 366 (6461), 109-115.
6. Sijbesma, E.; Somsen, B.A.; Miley, G.P, Leijten-van de Gevel, I.A.; Brunsveld, L.; Arkin, MR.; Ottmann, C. Fluorescence Anisotropy-Based Tethering for Discovery of Protein-Protein Interaction Stabilizers. ACS Chem Biol. 2020,15 (12), 3143-3148.
7. Centorrino, F.; Ballone, A.; Wolter, M.; Ottmann, C. Biophysical and structural insight into the USP8/14-3-3 interaction. FEBS Lett. 2018, 592 (7),1211-1220.
8. Cossar, P.J.; Wolter, M.; van Dijck, L.; Valenti, D.; Levy, L.M.; Ottmann, C.; Brunsveld, L. Reversible Covalent Imine-Tethering for Selective Stabilization of 14-3-3 Hub Protein Interactions. J Am Chem Soc. 2021, 143 (22), 8454-8464.
9. Wolter, M.; Valenti, D.; Cossar, P.J.; Levy, L.M.; Hristeva, S.; Genski, T.; Hoffmann, T.; Brunsveld, L.; Tzalis, D.; Ottmann, C. Fragment-Based Stabilizers of Protein-Protein Interactions through Imine-Based Tethering. Angew Chem Int Ed Engl. 2020, 59 (48), 2152021524.
10. Geertjens, N. H. J.; de Vink, P. J.; Wezeman, T.; Markvoort, A. J.; Brunsveld, L. A General Framework for Straightforward Model Construction of Multi-Component Thermodynamic Equilibrium Systems. bioRxiv 2021, 2021.11.18.469126.
11. Ballone, A.; Lau, R.A.; Zweipfenning, F.P.A.; Ottman, C. A new soaking procedure for X-ray crystallographic structural determination of protein-peptide complexes. Acta Cryst 2020, F76, 501.507
12. Potterton, L. et al. CCP4i2: the new graphical user interface to the CCP4 program suite. Acta Crystallogr. Sect. D Struct. Biol. 2018, 74, 68-84.
13. Clabbers, M. T. B. et al. Electron diffraction data processing with DIALS. Acta Crystallogr. Sect. D Struct. Biol. 2018, 74, 506-518.
14. Evans, P.R.; Murshudov, G.N. How good are my data and what is the resolution? Acta Crystallogr. D. Biol. Crystallogr. 2013, 69, 1204-14.
15. Evans, P.R. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr. D. Biol. Crystallogr. 2011, 67, 282-292.
16. Vagin, A.; Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D. Biol. Crystallogr. 2010, 66, 22-25.
17. Long, F. et al. AceDRG : a stereochemical description generator for ligands. Acta Crystallogr. Sect. D Struct. Biol. 2017 73, 112-122.
18. Emsley, P.; Lohkamp, B.; Scott, W.G. \& Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 486-50.
19. Murshudov, G.N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D. Biol. Crystallogr. 2011, 67, 355-67.
20. Kovalevskiy, O. et al. Overview of refinement procedures within REFMAC5: utilizing data from different source. Acta Crystallogr. Sect. D Biol. Crystallogr. 74, 215-227 (2018).
21. Afonine, P.V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. Sect. D Biol. Crystallogr. 68, 352-367 (2012).
22. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213-221 (2010).
23. Schrodinger LLC. The PyMOL Molecular Graphics System, Version 2.2.3. (Schrödinger LLC, 2015)
