Total Synthesis of Antibacterial Polyketide Natural Product Thailandamide Lactone

Himangshu Sharma^{*a*}, Joyanta Mondal^{*a*}, Ananyo K. Ghosh^{*b*}, Ritesh Ranjan Pal^{*b*} and Rajib Kumar Goswami^{**a*}

> ^a School of Chemical Sciences ^b School of Biological Sciences Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India. Email: <u>ocrkg@iacs.res.in</u>

> > **Supporting Information**

Contents

1.1. General Experimental Procedure:	S3
1.2. Figure S1: Key 2D-NMR Correlations and Structure Confirmation of Protected Thailanda Lactone (37).	<i>mide</i> S4
1.3. Figure S2: Optimization Table for HWE Olefination for the Synthesis of Compound 9	S5
1.4. Table S2. ¹ H NMR (CD ₃ OD) Spectroscopic Data Comparison of Natural ¹ and Synthetic Thailandamide Lactone (2)	S6
1.5. Experimental Procedure:	S8
1.5.1. Synthesis of Intermediate 6 :	S8
1.5.2. Synthesis of Intermediates 7 & 8:	S15
1.5.3. Synthesis of Aldehyde 34 :	S19
1.5.4. Synthesis of Intermediate 9 :	S25
1.5.5. Synthesis of Coupling Partners 4 and 5 :	S27
1.5.6. Completion of the Total Synthesis of Thailandandamide Lactone (2):	S30
1.6. HPLC Analysis of Thailandamide Lactone (2):	S33
2.0. Materials and Methods for Evaluation of Antibacterial property of Thailandamide Lactone	e (2): S34
3.0. Copies of ¹ H NMR, ¹³ C NMR, 2D NMR, FT-IR, UV-Visible and HRMS Spectra	S36
4.0. Figure S3: ¹ H and ¹³ C Spectral Comparison of the Synthesized and isolated Thailandamide Lactone	? S67
4.1. X-Ray Crystallographic Data for Compound 13	S68
4.2. X-Ray Crystallographic Data for Compound 31	S69

1.1. General Experimental Procedure:

All moisture sensitive reactions were performed in oven or flame-dried glassware with Teflon coated magnetic stirring bar under argon atmosphere using dry, freshly distilled solvents, unless otherwise noted. Air- and moisture-sensitive liquids were transferred via a gastight syringe and a stainless-steel needle. Reactions were monitored by thin layer chromatography (TLC, Silica gel 60 F254) plates with UV light, ethanolic anisaldehyde (with 1% AcOH and 3.3% conc. H₂SO₄)-heat and aqueous KMnO₄ (with K₂CO₃ and 10% aqueous NaOH solution) as developing agents. All workup and purification procedures were carried out with reagent grade solvents under ambient atmosphere unless otherwise stated. Column chromatography was performed using silica gel 60-120 mesh, 100-200 mesh and 230-400 mesh. Yields mentioned as chromatographically and spectroscopically homogeneous materials unless otherwise stated. Optical rotations were measured using sodium (589, D line) lamp and are reported as follows: $[\alpha]_D^{28}$ (c = g/100 mL, solvent). Melting points of solids were measured in melting point apparatus. IR spectra were recorded as thin films (for liquids) or KBr matrix (for solids). HRMS were taken using Quadruple TOF (Q-TOF) micro MS system using electrospray ionisation (ESI) technique. ¹H NMR spectra were recorded on 300, 500 and 600 MHz spectrometers in appropriate solvents and calibrated using residual undeuterated solvent as an internal reference, and the chemical shifts are shown in δ ppm scales. Multiplicities of NMR signals are designated as s (singlet), d (doublet), t (triplet), q (quartet), br (broad), m (multiplet, for unresolved lines) etc. ¹³C and 2D NMR spectra were recorded on 75, 151 MHz spectrometers.

1.2. Figure S1: Key 2D-NMR Correlations and Structure Confirmation of Protected Thailandamide Lactone (37).

1.3. Figure S2: Optimization Table for HWE Olefination for the Synthesis of Compound 9

Table S1: Optimization Table for the Synthesis of 9

Entry	Condition	Time	dr. (9:9-iso)	Yield (%)
1	NaHMDS(2.0 equi.), THF, -78 °C	8 h	Exclusively 9-iso	89
2	NaHMDS(1.5 equi.), THF, -78 °C	8 h	1:8	81
3	NaHMDS(1.1 equi.), THF, -78 °C	8 h	1.1	80
4	NaHMDS(1.1 equi.), THF, -78 °C	6 h	3:1	70
5	NaHMDS(1.1 equi.), THF, -78 °C	4 h	Exclusively 9	60 (brs)

1.4. Table S2. ¹H NMR (CD₃OD) Spectroscopic Data Comparison of Natural¹ and Synthetic Thailandamide Lactone (2)

	24a	19a		a 4a					
32a 30 33a 31	29 28 20 23 N 2	2 19 1/	5 13						
34	27 25 OH O	20 <u>18</u> 16	14 12 10	8 6 4 3 2					
0° 22a MeO ^{VV} 1 23a 3a 2a									
Position	δ ¹ H [ppm, int,	δ ¹ H [ppm, int,	δ ¹³ C [ppm]	δ ¹³ C [ppm]					
	mult, J (Hz)]	mult, J (Hz)]	(Natural)	151 MHz					
	(Natural)	(Synthetic)	(MeOD- <i>d</i> ₄)	(Synthetic)					
	(MeOD- <i>d</i> ₄)	(500 MHz,		(151 MHz,					
		MeOD-d4)		MeOD-d4)					
1			180.1	180.94					
2	3 13, 1H, dd, 6 1, 7 3	3.13.1H.m	40.7	40.47					
- 2a	1.17. 3H. d. 7.2	1.18, 1H, d, 7.4	9.1	8.87					
3	3.78, 1H, d, 6.1	3.79. 1H. d. 6.2	87.3	86.48					
3a	3.34. 3H. s	3.39. 3H. s	60.4	61.18					
4			88.4	89.12					
4 a	1.50, 3H, s	1.50, 3H, s	23.9	23.89					
5	6.04, 1H, d. 15.6	5.99, 1H, d, 15.4	134.9	134.82					
6/8	6.48, 2H, m	6.43-6.54, 2H, m	132.1/138.8	132.54/139.18					
7	6.63, 1H, dd, 10.4,	6.60, 1H, dd, 7.8,	132.3	131.33					
	15.1	15.0							
9			145.1	147.1					
9a	2.06, 3H, s	2.04, 3H, s	13.3	13.21					
10	6.36, 1H, d, 11.8	6.37, 1H, d, 8.2	131.6	131.61					
11/17	7.66, 2H, m	7.77-7.59, 2H, m	137.6/137.7	137.25/137.55					
12/16	6.15, 2H, d, 15.6	6.16, 2H, d, 16.1	128.8/128.9	128.37/128.86					
13			184.7	184.3					
14	6.06, 1H, s	6.07, 1H, s	101.4	99.92					
15			184.2	184.08					
18	6.22, 1H, d, 11.2	6.22, 1H, d, 11.4	130.5	130.62					
19			144.7	144.65					
19a	1.95, 3H, s	1.96, 3H, s	13.3	13.45					
20	6.27, 1H, d, 15.6	6.28, 1H, d, 12.8	134.6	134.05					
21	5.90, 1H, dd, 6.1,	5.90, 1H, dd, 3.4,	135.6	135.71					
22	15./	18		47.04					
22	4.54, 1H, td, 6.6, 6.6, 13.3		47.7	47.84					
22a	1.24, 3H, d, 6.9	1.25, 3H, d, 6.9	20.9	21.1					

23			178.0	178.15
24	2.38, 1H, m	2.39, 1H, m	42.4	42.5
24a	1.10, 3H, d, 6.8	1.11, 3H, d, 6.6	18.1	18.16
25	2.29/2.09, 2H, m	2.28/2.10, 2H, m	38.5	38.62
26	5.42, 1H, m	5.40-5.47, 1H, m	131.2	131.33
27	5.52, 1H, m	5.48-5.56, 1H, m	130.1	130.21
28	2.11-2.07, 2H, m	2.08-2.14, 2H, m	41.0	41.17
29	3.68, 1H, m	3.67-3.73, 1H, m	73.7	73.89
30	2.57/2.55, 2H, dd/dd,	2.55-2.64, 2H, m	43.3	43.5
	5.8, 13.7, 7.1, 13.7			
31			131.1	131.15
32/32a	6.98, 2H, d, 8.5	6.99, 2H, d, 7.9	131.5	131.57
33/33a	6.68, 2H, d, 8.5	6.69, 2H, d, 8.0	116.0	116.2
34			156.7	156.86

1.5. Experimental Procedure:

1.5.1. Synthesis of Intermediate 6:

Scheme S1: Synthesis of Intermediate 6

(S)-1-((S)-4-Benzyl-2-thioxothiazolidin-3-yl)-4-(4-((tert-butyldimethylsilyl)oxy)phenyl)-

3-hydroxybutan-1-one (13): Freshly distilled TiCl₄ (3.85 mL, 35.14 mmol, 1.1 equivalent) was added drop wise to a stirred solution of thiazolidinethione **12** (8.85 g, 35.14 mmol, 1.1

equivalent) dissolved in anhydrous CH_2Cl_2 (120 mL) at -40 °C under argon and stirring was continued further for 5 min. DIPEA (4.56 mL, 26.22 mmol, 1.1 equivalent) was then added to the reaction mixture in drop wise fashion and stirred for another 10 min. The reaction mixture was then cooled to -78 °C and the aldehyde 11^2 (8.0 g, 31.94 mmol, dissolved in 30 mL

CH₂Cl₂: 1.0 equivalent) was cannulated into it. The reaction was continued further at -78 °C for 45 min prior to quench with saturated solution of NH₄Cl (15 mL). The resulting mixture was warmed to ambient temperature and extracted with EtOAc (2 × 100 mL), washed with water, brine, dried over Na₂SO₄, filtered and concentrated in vacuo. Purification of residue by column chromatography (SiO₂, 230–400 mesh, 15% EtOAc in hexane as eluent) resulted yellow crystal compound **13** as a major aldol product (10.25 g, 80%, *dr* = 4:1); mp: 93 - 97 °C; R_f = 0.37 (15% EtOAc in hexane); [α]_D²⁸ = -157.3 (c 0.67, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.35 – 7.25 (m, 5H), 7.18 – 7.04 (m, 2H), 6.88 – 6.73 (m, 2H), 5.38 (ddd, *J* = 10.6, 7.0, 3.9 Hz, 1H), 4.37 (dtd, *J* = 9.3, 6.6, 2.5 Hz, 1H), 3.61 (dd, *J* = 17.7, 2.5 Hz, 1H), 3.43 – 3.32 (m, 1H), 3.25 – 3.14 (m, 2H), 3.02 (dd, *J* = 13.2, 10.4 Hz, 1H), 2.90 – 2.76 (m, 3H), 1.00 (s, 9H), 0.21 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 201.30, 172.90, 154.39, 136.45, 130.48, 130.32, 129.46, 128.94, 127.28, 120.13, 77.58, 77.16, 76.74, 69.12, 68.34, 45.15, 42.14, 36.83, 32.10, 25.75, 18.23, -4.34; IR (neat) ν_{max} 3525, 2953, 2928, 2857, 1689, 1607, 1508, 1341, 1251, 1155, 1136, 1044; HRMS (ESI) m/z calculated for C₂₆H₃₅NO₃S₂SiH [M+H]⁺ 502.1906, found 502.1875.

(S)-3-((tert-Butyldimethylsilyl)oxy)-4-(4-((tert-butyldimethylsilyl)oxy)phenyl)butan-1-ol

(14): To an ice-cold solution of 13 (9.5 g, 18.93 mmol, 1.0 equivalent) in anhydrous CH_2Cl_2 (100 mL) under argon, 2,6-lutidine (4.38 mL, 37.86 mmol, 2.0 equivalent) and TBSOTf

(6.52 mL, 28.39 mmol, 1.5 equivalent) were added sequentially and the reaction mixture was stirred for 30 min before quenching with saturated solution of NaHCO₃ (12 mL). The reaction mixture was then extracted with CH₂Cl₂ (2 × 30), washed with aqueous solution of CuSO₄, water and brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification by column chromatography (SiO₂, 100–200 mesh, 2–5% EtOAc in hexane) furnished the corresponding TBS protected product as a yellow liquid (11.19 g, 96%): $R_f = 0.15$ (5% EtOAc in hexane);

[α]_{D²⁸} = -138.07 (c 0.52, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.35 – 7.25 (m, 5H), 7.06 (d, J = 8.4 Hz, 2H), 6.76 (d, J = 8.4 Hz, 2H), 5.25 (ddd, J = 10.6, 7.0, 3.7 Hz, 1H), 4.48 (qd, J =6.5, 4.1 Hz, 1H), 3.49 (dd, J = 17.0, 7.7 Hz, 1H), 3.33 (ddd, J = 11.5, 7.1, 1.0 Hz, 1H), 3.22 (dt, J = 17.0, 3.8 Hz, 2H), 3.01 (dd, J = 13.2, 10.6 Hz, 1H), 2.91 – 2.72 (m, 3H), 0.98 (s, 9H), 0.84 (s, 9H), 0.18 (s, 6H), 0.02 (s, 3H), -0.05 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 201.14, 172.35, 154.34, 136.76, 131.13, 130.74, 129.58, 129.05, 127.33, 120.11, 77.58, 77.16, 76.74, 71.04, 68.74, 45.87, 43.90, 36.70, 32.27, 26.00, 25.86, 18.35, 18.16, -4.29, -4.43, -4.67; IR (neat) v_{max} 3028, 2953, 2928, 2886, 2856, 1697, 1607, 1508, 1462, 1340, 1251, 1136 cm⁻¹; HRMS (ESI) *m/z* calculated for C₃₂H₅₀NO₃S₂Si₂H [M+H]⁺ 616.2771, found 616.2734.

To a solution of above TBS protected alcohol (11.1 g, 18.01 mmol, 1.0 equivalent) in anhydrous EtOH (70 mL), NaBH₄ (3.40 g, 90.00 mmol, 5.0 equivalent) was added at 0 °C and the stirring was continued for 30 min at the same temperature. The reaction was then quenched with saturated aqueous NH₄Cl (30 mL). EtOH was removed under reduced pressure and extracted with EtOAc (3 ×50 mL), washed with brine, dried over Na₂SO₄ and concentrated in vacuo. Purification of the residue obtained by column chromatography (SiO₂, 100-200 mesh, 30% EtOAc in hexane eluent) afforded the corresponding alcohol 14 (6.86 g, 93%) as a thick colourless oil: $R_f = 0.42$ (20% EtOAc in hexane); $[\alpha]_D^{28} = -157.36$ (c 0.51, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.00 (d, J = 8.4 Hz, 2H), 6.74 (d, J = 8.4 Hz, 2H), 4.06 (qd, J = 6.5, 4.2 Hz, 1H), 3.92 - 3.82 (m, 1H), 3.76 - 3.67 (m, 1H), 2.81 (dd, J = 13.5, 6.4 Hz)1H), 2.69 (dd, J = 13.5, 7.0 Hz, 1H), 2.43 (s, 1H), 1.86 – 1.74 (m, 1H), 1.69 – 1.55 (m, 2H), 0.98 (s, 9H), 0.88 (s, 9H), 0.17 (s, 6H), 0.04 (s, 3H), -0.11 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 154.23, 131.52, 130.60, 120.08, 77.58, 77.16, 76.74, 73.55, 60.31, 42.95, 37.74, 26.01, 25.85, 18.35, 18.12, -4.30, -4.63, -4.72; IR (neat) v_{max} 2954, 2929, 2857, 2886, 1609, 1509, 1472, 1251, 1088, 912, 833, 694 cm⁻¹; HRMS (ESI) *m/z* calculated for C₂₂H₄₂O₃Si₂Na [M+Na]⁺ 433.2570, found 433.2570.

(S)-5-((3-((tert-Butyldimethylsilyl)oxy)-4-(4-((tert-

butyldimethylsilyl)oxy)phenyl)butyl)sulfonyl)-1-phenyl-

1H-tetrazole (16) : To a mixture of alcohol 14 (6.8 g, 16.55 mmol, 1.0 equivalent), PPh₃ (6.5 g, 24.83 mmol, 1.5 equivalent), and 1-phenyl-1H-tetrazol-5thiol 15 (4.42 g, 24.83 mmol, 1.5 equivalent) in anhydrous THF (85 mL) at 0 °C, DIAD (4.88

mL, 24.83 mmol, 1.5 equivalent) was added in drop wise manner and stirred further for 2 h at the ambient temperature. The reaction mixture was then quenched with saturated aqueous NaHCO₃ (15 mL), extracted with EtOAc (2×50 mL), washed with brine, dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography (SiO₂, 100-200 mesh, 8% EtOAc in hexane as eluent) to afford the corresponding sulfide (9.27 g, 98%) as a thick oil: $R_f = 0.6$ (10% EtOAc in hexane); $[\alpha]_D^{28} = -87.6$ (c 0.22, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.59 – 7.50 (m, 5H), 7.03 – 6.96 (m, 2H), 6.77 – 6.71 (m, 2H), 3.95 (qd, J = 6.2, 4.7 Hz, 1H), 3.57 - 3.34 (m, 2H), 2.80 - 2.62 (m, 2H), 0.97 (s, 9H), 0.86 (s, 9H), 0.17(s, 6H), -0.01 (s, 3H), -0.15 (s, 3H); 13 C NMR (75 MHz, CDCl₃) δ 154.28, 133.89, 131.22, 130.66, 130.18, 129.89, 123.98, 120.09, 77.59, 77.16, 76.74, 72.58, 43.06, 36.09, 29.54, 26.03, 25.86, 18.35, 18.18, -4.30, -4.56; IR(neat): v_{max} 2954, 2929, 2886, 2857, 1608, 1509, 1500, 1471, 1252, 912, 835, 751, 693 cm⁻¹; HRMS (ESI) m/z calculated for C₂₉H₄₆N₄O₂SSi₂ [M+H]⁺ 571.2969, found 571.2958.

To an ice cold ethanolic solution (64 mL) of the above sulfide (9.2 g, 16.14 mmol, 1.1 equivalent), (NH₄)₆Mo₇O₂₄.4H₂O (997 mg, 0.80 mmol, 0.05 equivalent) and 30% (w/w) aqueous H₂O₂ solution (16.14 mL, 1mL/mmol) were added sequentially. The reaction was stirred for 12 h at the room temperature. The reaction mixture was then diluted with saturated solution of NaHCO₃ (20 mL) and extracted with EtOAc (2 × 100 mL), washed with brine, dried over Na₂SO₄, filtered, and concentrated. The crude material was purified by column chromatography (SiO₂, 100-200 mesh, 10% EtOAc in hexane as eluent) to get sulfone 16 (8.17 g, 84%) as a colourless oil: $R_f = 0.57$ (10% EtOAc in hexane); $[\alpha]_D^{28} = -112$ (c 0.67, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.71 – 7.64 (m, 2H), 7.64 – 7.55 (m, 3H), 7.01 (d, J = 8.4 Hz, 2H), 6.76 (d, J = 8.4 Hz, 2H), 4.10 – 3.96 (m, 1H), 3.93 – 3.72 (m, 2H), 2.80 – 2.57 (m, 2H), 2.15 – 1.94 (m, 2H), 0.98 (s, 9H), 0.88 (s, 9H), 0.18 (s, 6H), 0.02 (s, 3H), -0.14 (s, 3H¹³C NMR (75 MHz, CDCl₃) δ 154.50, 153.58, 133.18, 131.55, 130.57, 130.53, 129.82, 125.20, 120.26, 77.58, 77.16, 76.74, 71.54, 52.49, 42.91, 28.64, 25.97, 25.84, 18.34, 18.14, -4.31, -4.65, -4.70 ; IR(neat): v_{max} 2964, 2929, 2876, 2853, 1605, 1510, 1498, 1461, 1252, 912, 835, 751, 693 cm⁻¹ ; HRMS (ESI) *m/z* calculated for C₂₉H₄₆N₄O₄SSi₂Na [M+Na]⁺ 625.2676, found 625.2673.

(2R,7R,E)-7-((tert-Butyldimethylsilyl)oxy)-8-(4-((tert-butyldimethylsilyl)oxy)phenyl)-2-

methyloct-4-en-1-ol (18): To a stirred solution of sulfone 16 (1 g, 1.66 mmol, 1.0 equivalent) in anhydrous THF (10 mL) at -78 °C under argon,

KHMDS (3.9 mL, 1.99 mmol, 0.5 M in toluene, 1.2 equivalent) was added and the reaction mixture was stirred for 30 min at the same temperature. A solution of the above aldehyde³ **17** (742 mg, 2.1 mmol, 1.3 equivalent) dissolved in anhydrous THF (5 mL) was cannulated into the reaction mixture and stirred for another 2 h at the same temperature before quenching it with saturated solution NH₄Cl (3 mL). The resultant mixture was extracted with EtOAc (2 × 15 mL), washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. Purification by column chromatography (SiO₂, 100-200 mesh, 3% EtOAc in hexane as eluent) furnished the corresponding pure E-olefin (736 mg, 77%, *E*:*Z* ~ 4:1), as a colourless liquid: $R_f = 0.7$ (5% EtOAc in hexane); $[\alpha]_D^{28} = -153$ (c 0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.48 (dt, *J* = 6.4, 1.4 Hz, 6H), 7.37 – 7.20 (m, 10H), 7.01 (d, *J* = 8.4 Hz, 2H), 6.76 (d, *J* = 8.4 Hz, 2H), 5.38 (tq, *J* = 15.1, 7.6, 6.3 Hz, 2H), 3.80 – 3.69 (m, 1H), 3.02 – 2.89 (m, 2H), 2.67 (dd, *J* = 13.5, 4.8 Hz, 1H), 2.52 (dd, *J* = 13.5, 7.5 Hz, 1H), 2.28 – 2.08 (m, 3H), 1.88 (ddd, *J* = 23.5, 13.5, 6.7

Hz, 2H), 1.01 (d, J = 1.9 Hz, 9H), 0.97 (d, J = 6.6 Hz, 3H), 0.85 (d, J = 2.1 Hz, 9H), 0.20 (s, 6H), -0.07 (s, 3H), -0.23 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 153.97, 144.64, 132.54, 131.18, 130.80, 128.91, 128.01, 127.78, 126.92, 119.90, 119.86, 86.23, 77.58, 77.16, 76.74, 74.25, 68.01, 42.81, 40.87, 37.14, 34.43, 26.05, 25.90, 18.38, 18.25, 17.32, -4.29, -4.60, -4.82; IR(neat): v_{max} 2955, 2928, 2857, 1509, 1253, 1068, 971, 835, 744, 705, 632 cm⁻¹; HRMS (ESI) m/z calculated for C46H64O3Si2Na [M+Na]⁺ 743.4291, found 743.4291.

To an ice-cold solution of the above olefin (922 mg, 1.27 mmol, 1.0 equivalent) in anhydrous CH₂Cl₂/MeOH (10:1, 5 mL) under argon, CSA (15 mg, 0.06 mmol, 0.05 equivalent) was added. The reaction was continued for 4 h at 0 °C before quenching it with Et₃N (2 mL). The resultant mixture was concentrated and purified by column chromatography (SiO₂, 100-200 mesh, 15% EtOAc in hexane as eluent) to provide the required trityl deprotected alcohol **18** (486 mg, 80%) as a colourless oil: $R_f = 0.4$ (15% EtOAc in hexane); $[\alpha]_p^{28} = -162.3$ (c 0.69, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.10 – 6.92 (m, 2H), 6.80 – 6.56 (m, 2H), 5.62 – 5.27 (m, 2H), 3.92 – 3.69 (m, 1H), 3.60 – 3.33 (m, 2H), 2.78 – 2.49 (m, 2H), 2.29 – 1.99 (m, 3H), 1.93 (dt, *J* = 13.1, 6.8 Hz, 1H), 1.70 (dt, *J* = 13.1, 6.5 Hz, 2H), 1.60 – 1.41 (m, 1H), 0.98 (s, 9H), 0.93 (d, *J* = 7.0 Hz, 3H), 0.84 (d, *J* = 0.9 Hz, 9H), 0.17 (s, 6H), -0.08 (d, *J* = 4.1 Hz, 3H), -0.24 (d, *J* = 2.9 Hz, 3H).; ¹³C NMR (75 MHz, CDCl₃) δ 154.00, 132.40, 131.06, 130.76, 129.58, 128.34, 127.38, 119.90, 100.11, 77.58, 77.16, 76.74, 74.15, 68.15, 42.84, 40.68, 36.95, 36.13, 26.04, 25.88, 18.36, 18.25, 16.70, -4.31, -4.62, -4.82; IR(neat): ν_{max} 3402, 2954, 2928, 2855, 1507, 1455, 1326, 1254, 9103, 833, 810, 775 cm⁻¹; HRMS (ESI) *m/z* calculated for C₂₇H₅₀O₃Si₂Na [M+Na]⁺ 501.3196, found 501.2674.

(2*R*,7*R*,*E*)-7-((*tert*-Butyldimethylsilyl)oxy)-8-(4-((tert-butyldimethylsilyl)oxy)phenyl)-2methyloct-4-enoic acid (6) : To a stirred solution of (COCl)₂ (0.13 mL, 1.5 mmol, 1.5 equiv.)

in anhydrous CH₂Cl₂ (10 mL) under argon at -78 °C, DMSO (0.21 mL, 3.00 mmol, 3.0 equivalent) was added drop wise. After 15 min, a solution of compound **18** (480 mg, 1.00 mmol, dissolved in 5 mL anhydrous CH₂Cl₂, 1.0 equivalent) was cannulated into the reaction mixture and stirred further for 30 min at the same temperature. Et₃N (0.69 mL, 5.00 mmol, 5.0 equivalent) was then added and stirred further for 15 min at the same temperature. The reaction mixture was then warmed to 0 °C and quenched with saturated solution of NH₄Cl (2 mL). The resultant mixture was extracted with CH₂Cl₂ (2 × 20 mL), washed with water, brine, dried over Na₂SO₄ and concentrated in vacuo. Flash chromatography of the crude residue using a short pad of silica gave the corresponding aldehyde (quantitative) as a colourless liquid which was taken for the next step without further characterizations.

To a stirred solution of the above aldehyde in ^tBuOH/2-methyl-2-butene (3:1, 8 mL) at the room temperature, a freshly prepared mixture of aqueous solution of NaClO₂ (361 mg, 4.00 mmol, 4.0 equivalent) and NaH₂PO₄.2H₂O (625 mg, 4.00 mmol, 4.0 equivalent) was added. The reaction was continued for 3 h at room temperature prior to extract with EtOAc (3×20 mL). The organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification of the crude residue by column chromatography (SiO₂, 60-120 mesh, 25% EtOAc in hexane as eluent) provided carboxylic acid 6 (394 mg, 80% over two steps) as a colourless oil: $R_f = 0.3$ (20% EtOAc in hexane); $[\alpha]_D^{28} = -1.3$ (c 0.65, CHCl₃) ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.08 - 6.94 \text{ (m, 2H)}, 6.80 - 6.69 \text{ (m, 2H)}, 5.67 - 5.48 \text{ (m, 1H)}, 5.43 \text{ (t, } J$ = 6.7 Hz, 1H), 3.78 (dq, J = 7.3, 5.3 Hz, 1H), 2.67 (dd, J = 13.5, 5.0 Hz, 1H), 2.62 - 2.47 (m, 2H), 2.41 (dt, *J* = 13.3, 6.6 Hz, 1H), 2.26 – 2.10 (m, 3H), 1.18 (d, *J* = 6.9 Hz, 3H), 0.98 (s, 9H), 0.84 (s, 9H), 0.18 (s, 6H), -0.08 (d, J = 2.7 Hz, 3H), -0.24 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 182.75, 154.01, 132.35, 130.78, 129.58, 129.23, 119.93, 119.89, 77.58, 77.16, 76.74, 74.02, 42.81, 40.65, 39.65, 36.63, 26.03, 25.89, 18.36, 18.23, 16.48, -4.30, -4.61, -4.82; IR(neat): v_{max} 2954, 2929, 2857, 1706, 1609, 1509, 1471, 1362, 1251, 1168, 1099, 912, 833, 810, 694, cm⁻¹; HRMS (ESI) m/z calculated for C₂₇H₄₈O₄Si₂Na [M+Na]⁺ 515.2989, found 515.2977.

1.5.2. Synthesis of Intermediates 7 & 8:

Scheme S2: Synthesis of Intermediates 7 & 8

(*E*)-3-Iodo-2-methylprop-2-en-1-ol (19) : Under argon atmosphere $[Cp_2ZrCl_2]$ (1.03 g, 4.45 HO (19) mmol, 0.5 equivalent) was dissolved in 50 mL of anhydrous dichloroethane and Me₃Al solution (13.3 mL, 26.7 mmol, 3.0 equivalent, 2.0 M in hexanes)

was added. The stirred solution was then cooled to 0 °C and a solution of propargyl alcohol (0.5 mL, 8.9 mol, 1.0 equivalent) in 10 mL of anhydrous dichloroethane were added dropwise. The reaction mixture was allowed to warm to the room temperature and stirred further for 24 h. Next, the reaction mixture was cooled to -30 °C and a solution of iodine (3.38 g, 13.3 mmol, 1.5 equivalent) in 15 mL of anhydrous THF was added slowly and the mixture was stirred for another 1 h and quenched by careful addition of saturated solution NaHCO₃ (10 mL). The mixture was then diluted with NaHCO₃ solution. The resulting suspension was filtrated, the layers were separated and the aqueous layer was extracted Et₂O (3 × 50 mL). The combined organic layers were washed with saturated solution of Na₂S₂O₃, dried over Na₂SO₄ and the solvent was removed under reduced pressure. The resultant mixture was concentrated and purified by column chromatography (SiO₂, 100-200 mesh, 25% EtOAc in hexane as eluent) to provide the required iodo alcohol **19** (1.3 g, 75%) as a yellow oil: R_f = 0.3 (15% EtOAc in hexane); ¹H NMR (300 MHz, CDCl₃) δ 6.19 (s, 1H), 4.02 (s, 2H), 1.77 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 147.1, 77.3, 66.8, 21.4; IR(neat): v_{max} 3304, 2913, 2852, 1621, 1433, 1376,

1275, 1252, 1067, 1010, 773 cm⁻¹. HRMS (ESI) *m*/*z* calcd for C₄H₇IONa [M+Na]⁺ 220.9439, found 220.9437.

(E)-5-((3-Iodo-2-methylallyl)sulfonyl)-1-phenyl-1H-tetrazole (20): To a solution of

compound **15** (1.08 g, 5.4 mmol, 1.5 equivalent) in anhydrous THF at 0 $^{\circ}$ C , PPh₃ (2.15 g, 8.2 mmol, 1.5 equivalent), and 1-phenyl-1H-tetrazol-5-thiol **15** (1.46 g, 8.2 mmol, 1.5 equivalent), DIAD (1.62 mL,

8.2 mmol, 1.5 equivalent) was added subsequently and the reaction mixture was stirred for 2 h at the ambient temperature. The reaction mixture was then quenched with saturated solution of NaHCO₃ (10 mL), extracted with EtOAc (2 × 30 mL), washed with brine, dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography (SiO₂, 100-200 mesh, 6% EtOAc in hexane as eluent) to afford the corresponding sulphide (1.89 g, 98%) as a white amorphous solid: $R_f = 0.6$ (25% EtOAc in hexane); ¹H NMR (300 MHz, CDCl₃) δ 7.65 – 7.47 (m, 5H), 6.52 (q, *J* = 1.0 Hz, 1H), 4.19 (d, *J* = 1.0 Hz, 2H), 1.93 (d, *J* = 1.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 153.50, 141.00, 133.63, 130.40, 129.97, 124.05, 82.52, 77.58, 77.16, 76.74, 40.67, 23.08; IR(neat): ν_{max} 3060, 2913, 1614, 1595, 1497, 1408, 1381, 1277, 1236, 1088, 1073, 1013, 684, 651, 553 cm⁻¹; HRMS (ESI) *m/z* calculated for C₁₁H₁₁IN₄SNa [M+Na]⁺ 380.9647, found 380.9638.

A solution of (NH₄)₆Mo₇O₂₄.4H₂O (3.10 g, 2.51 mmol, 0.5 equivalent) in 30% w/w H₂O₂ (15.06 mL, 3 mL/mmol) was added to a stirring solution of above sulphide (1.8 g, 5.02 mmol, 1.0 equivalent) in dioxan (30 mL) at 0 °C and stirred further for 3 h at the same temperature prior to quench with saturated NH₄Cl solution (20 mL) and CH₂Cl₂ (30 mL). The aqueous layer was extracted with CH₂Cl₂ (2 × 50 mL), and the combined organic fractions were dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography (SiO₂, 100-200 mesh, 10% EtOAc in hexane as eluent) to afford the corresponding sulfone **20** (1.89 g, 84%) as a white amorphous solid: $R_f = 0.53$ (25% EtOAc

in hexane); ¹H NMR (300 MHz, CDCl₃) δ 7.71 – 7.48 (m, 5H), 6.67 (d, J = 1.1 Hz, 1H), 4.58 (d, J = 0.8 Hz, 2H), 2.01 (d, J = 1.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 153.13, 132.99, 132.50, 131.73, 129.80, 125.40, 89.75, 77.58, 77.16, 76.74, 63.84, 24.95; IR(neat): v_{max} 3065, 2925, 1595, 1497, 1461, 1343, 1284, 1157, 1136, 1014, 761, 687, 636, 521, 478 cm⁻¹; HRMS (ESI) m/z calculated for C₁₁H₁₁IN₄O₂SNa [M+Na]⁺ 412.9545, found 412.9533.

Path A

tert-Butyl ((R, 3E, 5E)-6-iodo-5-methylhexa-3, 5-dien-2-yl)carbamate (7) : To a stirred solution of sulfone 20 (50 mg, 0.12 mmol, 1.0 equivalent) in anhydrous DME (3 mL) at -60 °C

under argon, KHMDS (0.30 mL, 0.15 mmol, 0.5 M in toluene, 1.25 equivalent) was added and the reaction mixture was stirred for 30 min at the same temperature. A solution of the above

aldehyde⁴ **21** (21 mg, 0.12 mmol, 1.0 equivalent) dissolved in anhydrous DME (2 mL) was cannulated into the reaction mixture and stirred for another 2 h at the same temperature before quenching it with saturated aqueous NH₄Cl solution (2 mL). The resultant mixture was extracted with EtOAc (2 × 20 mL), washed with brine, dried over Na₂SO₄, filtered and concentrated in *vacuo*. The crude product was purified by column chromatography (SiO₂, 100-200 mesh, 10% EtOAc in hexane as eluent) to yield iodo compound **7** along with its inseparable mixture of *Z*-isomer (21 mg, 68% yield, $3E:3Z \sim 3:1$) as a yellow liquid.

Path B

tert-Butyl ((R,3E,5E)-6-iodo-5-methylhexa-3,5-dien-2-yl)carbamate (7) : To a solution of

alkene⁵ **22** (18 mg, 0.10 mmol, 1.0 equivalent) and diene⁶ **23** (20 mg, 0.10 mmol, 1.0 equivalent) in degassed CH₂Cl₂ (2 mL) under argon, G-II catalyst (4 mg, 0.005 mmol, 0.05 equivalent) was added at the

room temperature. The reaction mixture was then refluxed for 12 h. The solvent was removed under reduced pressure, and the crude residue was purified by flash column chromatography (SiO₂, 240-400 mesh, 3-5% EtOAc in hexane as the eluent) to obtain the cross coupled product **7** (10.3 mg, 32% yield, $3E:3Z \sim 10:1$) as a colourless liquid. $R_f = 0.4$ (5% EtOAc in hexane); $[\alpha]_D^{28} = +88.2$ (c 0.36, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 6.35 – 6.30 (m, 1H), 6.30 – 6.19 (m, 1H), 5.69 (dd, J = 15.6, 5.7 Hz, 1H), 4.45 (s, 1H), 4.25 (s, 1H), 1.94 (d, J = 1.0 Hz, 3H), 1.44 (s, 11H), 1.24 (d, J = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 155.19, 144.65, 132.29, 130.44, 83.56, 77.58, 77.36, 77.16, 76.74, 29.85, 28.57, 21.21, 20.30; IR (neat) v_{max} 3346, 2976, 2929, 1693, 1500, 1365, 1246, 1157, 1047, 1026, 960, 756 cm⁻¹; HRMS (ESI) *m/z* calculated for C₁₂H₂₀INO₂Na [M+Na]⁺ 360.0436, found 360.0435.

5-((Triethylsilyl)oxy)hepta-1,6-dien-3-one (8): To a solution of known TES protected aldol

product⁷ **25** (500 mg, 1.61 mmol, 1.0 equivalent) in anhydrous THF (10 mL) at -20 °C under argon, 1 (M) vinylmagnesium chloride in THF solution of (2.10 mL, 2.10 mmol, 1.5 equivalent) was added slowly. The

reaction was stirred for 1 h and quenched by slow addition of saturated solution of NH₄Cl (3 mL). The mixture was then diluted with Et₂O and the aqueous phase was extracted with EtOAc (2 × 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification by column chromatography (SiO₂, 100-200 mesh, 3% EtOAc in hexane as eluent) furnished vinyl ketone **8** (309 mg, 80%) as a colourless liquid: $R_f = 0.7$ (5% EtOAc in hexane); ¹H NMR (300 MHz, CDCl₃) δ 6.45 – 6.13 (m, 2H), 5.94 – 5.71 (m, 2H), 5.22 (dt, J = 17.2, 1.5 Hz, 1H), 5.04 (dt, J = 10.4, 1.4 Hz, 1H), 4.67 (dddd, J = 7.4, 6.2, 5.1, 1.2 Hz, 1H), 2.89 (ddd, J = 15.1, 7.5, 0.9 Hz, 1H), 2.60 (ddd, J = 15.1, 5.3, 1.0 Hz, 1H), 0.90 (t, J = 8.0 Hz, 9H), 0.56 (q, J = 7.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 198.94, 140.71, 137.52, 128.71, 114.37, 77.58, 77.16, 76.74, 70.44, 47.93, 6.87, 4.92; IR(neat): v_{max} 2944, 2907, 1660, 1415,

1375, 1244 cm⁻¹; HRMS (ESI) m/z calculated for C₁₃H₂₄O₂SiNa [M+Na]⁺ 263.1443, found 263.1442.

1.5.3. Synthesis of Aldehyde 34:

(*4R*,5*R*,*E*)-6-((*S*)-4-Benzyl-2-thioxothiazolidin-3-yl)-4methoxy-5-methyl-6-oxohex-2-en-1-yl pivalate (29) : To an ice-cold solution of the known aldehyde⁸ 27 (4 g, 21.4 mmol,

1.0 equivalent) in trimethylorthoformate (12 mL, 107 mmol, 5.0 equivalent), CSA (249 mg, 1.07 mmol, 0.05 equivalent) was added. The reaction mixture was stirred for 14 h at the room temperature and then quenched with saturated solution of NaHCO₃ (10 mL). The resultant mixture was extracted with EtOAc (2 × 40 mL), washed with water, brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product was then filtered through a short pad of Celite to provide the corresponding dimethyl acetal (4.53 g, 92%) as a colourless liquid ($R_f = 0.5$ in 5% EtOAc in hexane) which was used for next step without further characterizations.

Freshly distilled TiCl₄ (2.37 mL, 21.65 mmol, 1.1 equivalent) was added drop wise to a stirred solution of auxiliary **28** (5.7 g, 21.65 mmol, 1.1 equivalent) dissolved in anhydrous CH₂Cl₂ (100 mL) under argon at 0 °C. The resultant yellow slurry was stirred for 10 min at 0 °C and then cooled to -78 °C. After 10 min, a solution of DIPEA (3.77 mL, 21.65 mmol, 1.1 equivalent) in anhydrous CH₂Cl₂ (10 mL) was added. A dark red solution was obtained which was stirred further for 1.5 h at the same temperature. Next, freshly distilled SnCl₄ (2.29 mL, 19.68 mmol, 1.1 equivalent) followed by dimethyl acetal (4.52 g, 19.68 mmol, 1.0 equivalent) dissolved in anhydrous CH₂Cl₂ (20 mL) were added drop wise into the reaction mixture. The reaction mixture was stirred for another 6.5 h at the same temperature and then quenched with saturated aqueous NH₄Cl (7 mL) solution. The resultant mixture was warmed to room temperature and extracted with CH₂Cl₂ (3 x 40 mL). The combined organic extracts were washed with water, brine, dried over Na₂SO₄, filtered and concentrated in vacuo. Purification of the crude residue by flash column chromatography (SiO₂, 230-400, 4% EtOAc in hexane as eluent) provided pure major aldol adduct **29** (7.71 g, 89%, dr = 20.1) as a yellow oil. $R_f = 0.45$ (10% EtOAc in hexane); $[\alpha]_D^{28} = -81.2$ (c 0.48, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 5.67 - 5.58 (m, 1H), 5.47 (dddd, J = 10.5, 7.6, 3.6, 2.0 Hz, 1H), 5.06 (dq, J =10.0, 6.9 Hz, 1H), 4.65 (dd, *J* = 6.6, 0.9 Hz, 2H), 3.84 (d, *J* = 10.0 Hz, 1H), 3.31 (ddd, *J* = 11.4, 7.6, 0.9 Hz, 1H), 3.22 (dd, J = 13.4, 3.5 Hz, 1H), 3.13 (s, 3H), 3.02 (dd, J = 13.4, 10.5 Hz, 1H), 2.87 (dd, J = 11.5, 2.0 Hz, 1H), 1.66 (dd, J = 1.5, 0.8 Hz, 3H), 1.19 (s, 9H), 0.98 (d, J = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 201.55, 178.47, 177.78, 137.81, 136.91, 129.52, 129.04, 127.30, 126.16, 90.56, 77.58, 77.36, 77.16, 76.74, 68.99, 60.53, 56.30, 41.36, 38.90, 37.55, 31.58, 27.32, 14.40, 10.98; IR (neat) v_{max} 2974, 2933, 2821, 1722, 1698, 1479, 1454, 1342, 1252, 1150, 1135, 1093, 1030, 946, 701, 749 cm⁻¹; HRMS (ESI) m/z calcd for C₂₄H₃₃O₄NS₂Na [M+Na]⁺ 486.1749, found 486.1749.

Benzyl (2R,3S,E)-6-hydroxy-3-methoxy-2,4-dimethylhex-4-enoate (32) : To a solution of

compound **29** (8.0 g, 17.2 mmol, and 1.0 equivalent) in THF (90 mL) at 0 $^{\circ}$ C, lithium hydroxide solution (826 mg dissolved in 10 ml of water, 34.5 mmol, 2.0 equivalent) and 30% aqueous H₂O₂

solution (w/w 6.9 ml, 68.8 mmol, 4.0 equivalent) were added sequentially. The reaction mixture was warmed slowly to the room temperature in 30 min and extracted with EtOAc (3 × 50 mL). The organic extracts were washed with water, brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude residue by flash column chromatography (SiO₂, 100-200 mesh, 15-25% EtOAc in hexane as the eluent) provided the corresponding acid (4.02 g, 86%) as a colourless liquid; R_f = 0.2 (20% EtOAc in hexane); [α]p²⁸ = -189.7 (c 0.67, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 5.59 (td, J = 6.8, 1.5 Hz, 1H), 4.73 – 4.53 (m, 2H), 3.62 (d, J = 10.1 Hz, 1H), 3.17 (s, 3H), 2.61 (dq, J = 10.2, 7.1 Hz, 1H), 1.61 (d, J = 1.3 Hz, 3H), 1.17 (s, 9H), 0.98 (d, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 175.7, 178.2, 94.5, 61.3, 57.2, 137.7, 120.5, 43.8, 38.9, , 27.9 12.8, , 12.3; IR (neat) ν_{max} 2922, 2913, 2822, 1727, 1588, 1412, 1399, 1320, 1202, 1188, 1098, 1093, 1031, 747 cm⁻¹; HRMS (ESI) m/z calcd for C₁₄H₂₄O₅Na [M+Na]⁺ 295.1521, found 295.1521.

To an ice-cold solution of the above acid (3.9 g, 14.3 mmol, 1.0 equivalent) in anhydrous methanol (50 ml), NaOMe (46.8 ml, 200.46 mmol, 14.0 equivalent) was added. The reaction mixture was stirred for 4 h at the room temperature prior to removing methanol under reduced pressure. The resultant mixture was then quenched by 1(N) HCl and extracted with EtOAc (3 × 100), washed with water, brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product was then filtered through a short pad of Celite to provide acid-alcohol **30** as colourless liquid. $R_f = 0.3$ (EtOAc) which was used in the next reaction without further characterizations. To an ice-cold solution of compound **30** (1.5 g, 7.9 mmol, 1.0 equivalent) in anhydrous DMF (20 mL) under argon, K₂CO₃ (2.20 g, 15.9 mmol, 2.0 equivalent) followed by BnBr (1.13 mL, 9.5 mmol, 1.2 equivalent) were added. The reaction was gradually warmed to the room temperature and the stirring was continued for 2 h at the same temperature. The resultant mixture was concentrated in vacuo. Purification of the crude residue by flash column chromatography (SiO₂, 100–200 mesh, 30% EtOAc in hexane as eluent) gave benzyl protected ester **32** (1.97 g, 90%) as a colourless oil; $R_f = 0.4$ (20% EtOAc in hexane as eluent); $[\alpha]_D^{28} = +110$ (c 0.25, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 5.70 – 5.58 (m, 1H), 5.28 – 5.06 (m, 2H), 4.33 – 4.15 (m, 2H), 3.64 (d, *J* = 10.1 Hz, 1H), 3.12 (s, 3H), 2.67 (dq, *J* = 10.2, 7.1 Hz, 1H), 1.83 (s, 1H), 1.58 – 1.50 (m, 3H), 0.98 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 175.33, 136.27, 134.33, 131.04, 128.55, 128.14, 128.10, 89.08, 77.58, 77.16, 76.74, 66.28, 59.01, 56.29, 43.09, 14.21, 10.41; IR (neat) ν_{max} 3447, 2979, 2936, 2879, 2822, 1732, 1498, 1454. 1383, 1159, 1090, 1006, 822, 736, 599, 560 cm⁻¹; HRMS (ESI) *m/z* calculated for C₁₆H₂₂O₄Na [M+Na]⁺ 301.1416, found 301.1416.

(2R,3S,E)-3-Methoxy-2,4-dimethyl-6-(trityloxy)hex-4-enoic

acid (31) : Et₃N (0.22 mL, 1.59 mmol, 3.0 equivalent) and trityl chloride (296 mg, 1.06 mmol, 2.0 equivalent) were added

sequentially to a solution of compound **30** (100 mg, 0.53 mmol, 1.0 equivalent) in anhydrous acetonitrile (5 mL) under argon at 0 °C. After being stirred for 15 min at the same temperature, DMAP (3.24 mg, 0.26 mmol, 0.5 equivalent) was added and the reaction was continued for 8 h at the room temperature. The reaction mixture was quenched with saturated aqueous NH₄Cl (2 mL) and extracted with EtOAc (3×15 mL), washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. Purification of the residue by column chromatography (SiO₂, 100-200 mesh, 20% EtOAc in hexane eluent) provided compound **31** (202 mg, 89%) as a white

crystalline solid; mp: 93 - 97 °C; $R_f = 0.45$ (20% EtOAc in hexane); $[\alpha]_D^{28} = +20.3$ (c 0.53, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.55 – 7.38 (m, 6H), 7.38 – 7.19 (m, 9H), 5.74 (td, J = 6.1, 1.5 Hz, 1H), 3.71 (t, J = 5.8 Hz, 2H), 3.65 (d, J = 10.2 Hz, 1H), 3.20 (s, 3H), 2.60 (dq, J = 10.1, 7.1 Hz, 1H), 1.38 (d, J = 1.2 Hz, 3H), 1.02 (d, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 180.32, 144.29, 133.59, 129.66, 128.75, 127.95, 127.12, 88.96, 87.04, 77.58, 77.16, 76.74, 60.89, 56.35, 42.72, 14.09, 10.45; IR (neat) v_{max} 3308, 2927, 2856, 2801, 1727, 1457, 1206, 1176, 1039, 753, 665, 614 cm⁻¹; HRMS (ESI) *m/z* calculated for C₂₈H₃₀O₄Na [M+Na]⁺ 453.2042, found 453.2042.

(3R,4S,5S)-5-((R)-1,2-Dihydroxyethyl)-4-methoxy-3,5-

dimethyldihydrofuran-2(3H)-one (33) : To a suspension of powdered 4 Å MS (30 mg) in anhydrous CH₂Cl₂ (5 mL) at -20 °C under argon,

(+)-DIPT (56 µL, 0.26 mmol, 0.25 equivalent) and Ti(O*i*-Pr)₄ (0.08 mL, 0.26 mmol, 0.25 equivalent) were added sequentially. After 15 min stirring at the same temperature, allylic alcohol **32** (300 mg, 1.07 mmol, dissolved in 5 mL anhydrous CH₂Cl₂, 1.0 equivalent) was cannulated into the reaction mixture. The reaction was continued for 15 min. TBHP (5.5 M solution in toluene, 0.43 mL, 2.37 mmol, 2.2 equivalent) was then added. The reaction mixture was stirred further at the same temperature for another 3 h and subsequently quenched with a saturated solution of tartaric acid (8 mL). The resultant mixture was stirred at the room temperature for 30 min. The mixture was extracted with CH₂Cl₂ (3 × 15 mL), washed with H₂O and brine, and dried over Na₂SO₄. The solvent was evaporated and the crude residue was purified by column chromatography (SiO₂, 100–200 mesh, 20-40% EtOAc in hexane as the eluent) to obtain the corresponding epoxide (284 mg, 90%) as a colourless oil; R_f= 0.5 in 40% EtOAc in hexane); [α] $_{0}^{28}$ = +190.5 (c 0.85, CHCl₃; ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.28 (m, 5H), 5.15 (q, *J* = 12.4 Hz, 2H), 3.83 – 3.65 (m, 2H), 3.32 (s, 3H), 3.12 – 2.93 (m, 2H), 2.84

(dq, J = 8.9, 7.1 Hz, 1H), 2.10 (s, 1H), 1.26 (s, 3H), 1.22 (d, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 174.51, 136.09, 128.61, 128.27, 128.20, 86.31, 77.58, 77.16, 76.74, 66.43, 61.21, 60.97, 58.99, 58.59, 43.41, 13.70, 12.00; IR (neat): v_{max} 3442, 2890, 1705, 1478, 1455, 1253, 778, 586 cm–1; HRMS (ESI) m/z calculated for C₁₆H₂₂O₅Na [M+Na]⁺ 317.1365, found 317.1365.

A solution of the above epoxy ester (270 mg, 0.94 mmol, 1.0 equivalent) and 10% Pd/C (27 mg, 10 mol%) in distilled EtOAc (10 mL) was stirred under H₂ atmosphere (hydrogen balloon) at the room temperature for 4 h. The reaction mixture was filtered using a short Celite bed using CH₂Cl₂-MeOH (7:3) (2 × 50 mL), concentrated and this crude acid was directly used in next required step without further characterizations.

To an ice-cold solution of the above epoxide in anhydrous CH₂Cl₂ under argon, CSA (11 mg, 0.04 mmol, 0.05) was added. The reaction was continued for 4 h at 0 °C before quenching it with Et₃N (1 mL). The resultant mixture was concentrated and purified by column chromatography (SiO₂, 100-200 mesh, 60-100% EtOAc in hexane as eluent) to provide the required diol **33** (180 mg, 93%, 2 steps) as a white amorphous solid: $R_f = 0.3$ (60% EtOAc in hexane); $[\alpha]_D^{28} = +90.3$ (c 0.57, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 4.06 (dd, J = 8.6, 2.9Hz, 1H), 3.82 (dd, J = 11.2, 2.9 Hz, 1H), 3.75 (s, 1H), 3.70 – 3.58 (m, 2H), 3.47 (s, 3H), 2.90 (qd, J = 7.2, 5.6 Hz, 1H), 1.26 (s, 3H), 1.22 (d, J = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 177.90, 86.83, 84.98, 77.58, 77.16, 76.74, 71.37, 63.12, 60.86, 39.21, 18.38, 8.56; IR(neat): v_{max} 3427, 2943, 1759, 1454, 1380, 1332, 1199, 1077, 1015, 754, 713, cm⁻¹; HRMS (ESI) m/zcalculated for C₉H₁₆O₅Na [M+Na]⁺ 227.0895, found 227.0895.

To a vigorously stirred solution of diol **33** (88 mg, 0.43 mmol, 1.5 equivalent) in CH_2Cl_2 (8 mL) was added silica gel-supported NaIO₄ {872 mg, 2000 mg/ 1 mmol, prepared using 2.57 g NaIO₄ blended with 10g silica gel (240-400 mesh) } and the reaction was continued for 30 min. The mixture was then filtered through a sintered glass funnel, and the silica gel was

washed thoroughly with eluent ($CH_2Cl_2/MeOH = 30:1$). Organic solvents were removed under reduced pressure to afford the corresponding aldehyde which was taken for the next step without further characterizations.

1.5.4. Synthesis of Intermediate 9:

Diethyl ((2E,4E)-5-iodo-4-methylpenta-2,4-dien-1-yl)phosphonate (36) : To a stirred

solution of (COCl)₂ (0.324 mL, 3.78 mmol, 1.5 equivalent) in anhydrous CH₂Cl₂ (20 mL)

under argon at -78 °C, DMSO (0.53 mL, 7.57 mmol, 3.0 equivalent) was added drop wise. After 15 min, a solution of compound **19** (500

mg, 2.52 mmol, dissolved in 5 mL anhydrous CH_2Cl_2 , 1.0 equivalent) was cannulated into the reaction mixture and stirred further for 30 min at the same temperature. Et₃N (1.75 mL, 12.62 mmol, 5.0 equivalent) was then added and stirred further for 15 min at the same temperature. The reaction mixture was then warmed to 0 °C and quenched with saturated aqueous solution of NH₄Cl (5 mL). The resultant mixture was extracted with CH_2Cl_2 (2 × 20 mL), washed with water, brine, dried over Na₂SO₄ and concentrated in vacuo. Flash chromatography of the crude residue using a short pad of silica gave the corresponding aldehyde (493 mg, quantitative) as a yellow liquid which was taken for the next step without further characterizations.

Sulfonylphosphonate **35** (847 mg, 2.26 mmol, 1 equivalent) was dissolved in anhydrous THF (12 mL) under argon and cooled to -78 °C. KHMDS (5.83 mL, 2.71 mmol, 1.2 equivalent, 0.5 M in THF) was added slowly. After 5 min, the above aldehyde (493 mg, 2.51 mmol, 1.0 equivalent) was added to the solution and stirred further for 20 min. The

reaction mixture was warmed to 0 °C and stirring was continued for 1 h prior to quench by addition of saturated solution of NH₄Cl (5 mL). The resultant mixture was extracted with EtOAc (2 × 20 mL), washed with brine, dried over Na₂SO₄, and then concentrated in vacuo. The reaction mixture was purified by column chromatography (SiO₂, 100-200 mesh, 8% acetone in hexane as eluent) to afford the required phosphonate **36** (521 mg, 72%, *dr*.5:1) as a colorless oil, $R_f = 0.4$ (20% acetone in hexane); ¹H NMR (300 MHz, CDCl₃) δ 6.37 – 6.20 (m, 2H), 5.83 – 5.60 (m, 1H), 4.09 (dqd, *J* = 7.9, 7.0, 0.9 Hz, 4H), 2.59 (ddd, *J* = 22.4, 7.6, 1.3 Hz, 2H), 1.95 (t, *J* = 1.0 Hz, 3H), 1.30 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 144.74, 144.69, 135.94, 135.74, 119.56, 119.41, 83.77, 83.70, 77.58, 77.16, 76.74, 62.23, 62.14, 31.84, 29.98, 20.18, 16.63, 16.55; IR(neat): v_{max} 2981, 2907, 1735, 1503, 1391, 1296, 1245, 1161, 1020, 959, 758, 676 cm⁻¹. HRMS (ES) *m*/*z* calculated for C₁₀H₁₈IO₃P [M+H]⁺ 345.0117, found 345.0078.

(*3R*,*4S*,*5S*)-5-((*1E*,*3E*,*5E*)-6-Iodo-5-methylhexa-1,3,5-trien-1-yl)-4-methoxy-3,5-dimethyldihydrofuran-2(3H)-one (9) : Phosphonate (100 mg, 0.29 mmol, 1.0 equivalent)

was dissolved in anhydrous THF (3 mL) and cooled to -78 °C. NaHMDS (0.29 mL, 1.1 equivalent, 1 M in hexanes) was added slowly. After 5 min, the above aldehyde (1.5 equivalent) was added into the reaction mixture and stirred for 15 minutes. The reaction mixture was warmed to the room temperature and stirred further for 4 h before quenching it with saturated solution NH₄Cl (2 mL). The resultant mixture was extracted with EtOAc (3 × 15 mL), washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. Purification of the crude residue by column chromatography (SiO₂, 100-200 mesh, 10% EtOAc in hexane as eluent) furnished triene **9** (63 mg, 60%) as a colourless liquid: $R_f = 0.4$ (10% EtOAc in hexane); $[\alpha]_D^{28} = -125.9$ (c 0.32, CHCl₃; ¹H NMR (300 MHz, CDCl₃) δ 6.47 – 6.28 (m, 4H), 6.03 – 5.88 (m,

1H), 3.65 (d, J = 6.5 Hz, 1H), 3.38 (s, 3H), 2.97 – 2.84 (m, 1H), 1.98 (d, J = 1.0 Hz, 3H), 1.49 (s, 3H), 1.22 (d, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 176.40, 144.13, 133.65, 131.79, 129.54, 127.35, 85.26, 85.22, 83.87, 76.59, 76.16, 75.74, 59.05, 38.39, 23.71, 19.08, 8.35; IR(neat): v_{max} 2981, 2924, 2853, 1767, 1571, 1449, 1378, 1334, 1145, 1100, 1077, 1028, 932, 760, 688, 621 cm⁻¹; HRMS (ESI) *m/z* calculated for C₁₄H₁₉IO₃Na [M+Na]⁺ 385.0276, found 385.0276.

1.5.5. Synthesis of Coupling Partners 4 and 5:

Scheme S5: Synthesis of Coupling Partners 4 and 5

(2R,7R,E)-7-((tert-Butyldimethylsilyl)oxy)-8-(4-((tert-butyldimethylsilyl)oxy)phenyl)-N-

((*R*,*3E*,*5E*)-6-iodo-5-methylhexa-3,5-dien-2yl)-2-methyloct-4-enamide (4) : To a solution of compound **7** (62 mg, 0.183 mmol, 1.0

equivalent) in anhydrous CH_2Cl_2 (2.7 mL) under argon, 10% TFA (0.3 mL) was added. After being stirred at the room temperature for 30 min, the reaction mixture was concentrated in vacuo. The residue was azeotroped with anhydrous toluene (3 × 1 mL), dissolved in anhydrous CH_2Cl_2 (3 mL) and transferred via cannula under argon atmosphere into a stirred mixture of acid **6** (90 mg, 0.183 mmol, 1.0 equivalent), DIPEA (0.16 mL, 0.919 mmol, 5.0 equivalent), HOAt (30 mg, 0.22 mmol, 1.2 equivalent) and HATU (83.9 mg, 0.22 mmol, 1.2 equivalent) in anhydrous CH_2Cl_2 (3 mL) at the room temperature. After being stirred for 12 h at the same temperature, the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography (SiO₂, 100-200 mesh, 8 to 15% EtOAc in hexane as eluent) to give iodide **4** (104 mg, 80% in 2 steps) as a colourless liquid; $R_f = 0.4$ (20% EtOAc in hexane); $[\alpha]_D^{28} = +111.3$ (c 0.66, CHCl₃; ¹H NMR (300 MHz, CDCl₃) δ 7.06 – 6.95 (m, 2H), 6.77 – 6.67 (m, 2H), 6.31 (s, 1H), 6.21 (ddd, J = 15.6, 1.6, 0.6 Hz, 1H), 5.68 (ddd, J = 15.6, 5.7, 0.6 Hz, 1H), 5.52 (dt, J = 14.4, 6.8 Hz, 1H), 5.43 – 5.27 (m, 2H), 4.59 (dq, J = 13.8, 6.6 Hz, 1H), 3.76 (dq, J = 7.4, 5.6 Hz, 1H), 2.72 – 2.46 (m, 2H), 2.34 (dd, J = 12.9, 6.7 Hz, 1H), 2.26 – 2.06 (m, 4H), 1.91 (d, J = 1.0 Hz, 3H), 1.24 (d, J = 6.8 Hz, 3H), 1.15 (d, J = 6.6 Hz, 3H), 0.97 (s, 9H), 0.83 (s, 9H), 0.16 (d, J = 0.8 Hz, 6H), -0.09 (s, 3H), -0.25 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 175.03, 154.04, 144.50, 132.26, 131.58, 130.87, 130.77, 129.86, 129.43, 119.91, 83.96, 77.58, 77.16, 76.74, 73.97, 46.01, 42.98, 41.89, 40.78, 37.55, 26.05, 25.88, 20.77, 20.26, 18.37, 18.24, 17.54, -4.29, -4.55, -4.79; IR (neat): v_{max} 3287, 2955, 2927, 2855, 1645, 1509, 1462, 1252, 1167, 1099, 965, 775 cm–1; HRMS (ESI) *m/z* calculated for C₃₄H₅₈INO₃Si₂Na [M+Na]⁺ 734.2898, found 734.2898.

(*3R*,*4S*,*5S*)-5-((*1E*,*3E*,*5E*,*7E*,*9Z*)-9-Hydroxy-5-methyl-11-oxotrideca-1,3,5,7,9,12-hexaen-1-yl)-4-methoxy-3,5-dimethyldihydrofuran-

2(3H)-one (5) : To a solution of compounds **8** (39 mg, 0.16 mmol, 2.0 equivalent) and **9** (30 mg, 0.08 mmol, 1.0 equivalent) in anhydrous and degassed DMF (2 mL), Pd(OAc)₂ (0.18 mg, 0.0008 mmol, 0.01 equivalent), Bu₄NCl (45 mg, 0.16 mmol, 2.0 equivalent) and Et₃N (0.04 mL, 0.33 mmol, 4.0 equivalent) were added. The reaction mixture was stirred for 1 h at the room temperature. The mixture was filtered through a celite pad. The filtrate was quenched by saturated solution of NH₄Cl (1 mL) and extracted by Et₂O (2 × 15 mL). The solvent was evaporated under reduced pressure and the crude residue was purified by column chromatography (SiO₂, 230-400 mesh, 20% EtOAc in hexane as eluent) to give the

corresponding keto compound (34 mg, 90%) as a yellow oil: $R_f = 0.43$ (20% EtOAc in hexane); ¹H NMR (300 MHz, CDCl₃) δ 7.64 – 7.44 (m, 1H), 6.57 – 6.30 (m, 3H), 6.31 – 5.78 (m, 4H), 5.23 (dt, J = 17.2, 1.6 Hz, 1H), 5.05 (dt, J = 10.4, 1.5 Hz, 1H), 4.73 – 4.57 (m, 1H), 3.67 (d, J = 6.5 Hz, 1H), 3.39 (s, 3H), 3.00 – 2.78 (m, 2H), 2.70 – 2.55 (m, 1H), 2.01 (d, J = 2.6 Hz, 3H), 1.50 (s, 3H), 1.22 (d, J = 7.4 Hz, 3H), 0.91 (t, J = 7.9 Hz, 9H), 0.57 (q, J = 8.2 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 198.55, 177.30, 144.75, 143.47, 140.86, 138.52, 137.73, 137.36, 134.29, 133.66, 131.82, 131.09, 130.95, 130.75, 130.55, 130.17, 130.00, 129.83, 128.63, 114.26, 86.44, 86.30, 86.15, 86.10, 77.58, 77.36, 77.16, 76.74, 70.81, 60.08, 60.05, 49.50, 39.42, 39.37, 29.81, 24.85, 24.50, 21.02, 13.27, 9.37, 9.33, 6.91, 4.93; IR (neat): v_{max} 2924, 2854, 1773, 1670, 1577, 1457, 1378, 1195, 1079, 1029, 990, 743 cm–1; HRMS (ESI) m/zcalculated for C₂₇H₄₂O₅SiNa [M+Na]⁺ 497.2699, found 497.2698.

To an ice-cold solution of the above compound (30 mg, 0.063 mmol, 1.0 equivalent) in anhydrous CH₂Cl₂/MeOH (1:1, 3 mL) under argon, CSA (1 mg, 0.0006 mmol, 0.01) was added. The reaction was continued for 30 min at 0 °C and then concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, 100-200 mesh, 15% EtOAc in hexane as eluent) to provide the corresponding secondary alcohol (19 mg, 85%) as a yellow oil: $R_f = 0.3(30\%$ EtOAc in hexane), ¹H NMR (300 MHz, CDCl₃) δ 7.60 (dd, J = 15.1, 11.8 Hz, 1H), 6.62 – 6.31 (m, 3H), 6.31 – 6.12 (m, 2H), 6.12 – 5.81 (m, 2H), 5.31 (dt, J = 17.2, 1.5 Hz, 1H), 5.14 (dt, J = 10.5, 1.4 Hz, 1H), 4.63 (s, 1H), 3.68 (dd, J = 6.6, 2.2 Hz, 1H), 3.39 (s, 3H), 3.34 – 3.20 (m, 1H), 2.99 – 2.84 (m, 1H), 2.84 – 2.70 (m, 2H), 2.04 (d, J = 0.9 Hz, 4H), 1.50 (s, 3H), 1.23 (d, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 200.13, 177.29, 145.67, 139.34, 139.12, 137.54, 134.61, 134.05, 132.25, 131.47, 130.90, 130.65, 129.79, 129.59, 129.29, 128.27, 115.16, 115.10, 86.38, 86.30, 86.13, 86.10, 77.58, 77.36, 77.16, 76.74, 69.13, 60.06, 47.02, 46.99, 39.36, 29.83, 24.91, 21.08, 14.33, 13.34, 9.40; IR(neat): ν_{max} 3433,

2924, 2853, 1772, 1665, 1453, 1382, 1079, 1025, 996, 941 cm⁻¹; HRMS (ESI) *m/z* calculated for C₂₁H₂₉O₅ [M+H]⁺ 361.2015, found 361.2015.

To an ice-cold solution of above secondary alcohol (19 mg, 0.052 mmol, 1.0 equivalent) in anhydrous CH₂Cl₂ under argon, DMP (33 mg, 0.079 mmol, 1.5 equivalent) was added. The reaction was continued for 1 h at 0 °C. The resultant mixture was immediately concentrated and purified by column chromatography (SiO₂, 100-200 mesh, 25% EtOAc in hexane as eluent) to provide the required 1,3-dicarbonyl compound **5** (13.6 mg, 73%) as a bright yellow oil: $R_f = 0.5(30\%$ EtOAc in hexane); $[\alpha]_D^{28} = +156.3$ (c 0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 15.61 (s, 1H), 7.67 (dd, J = 14.9, 11.9 Hz, 1H), 6.56 – 6.43 (m, 2H), 6.43 – 6.34 (m, 1H), 6.31 – 6.22 (m, 2H), 6.14 – 6.03 (m, 1H), 3.67 (dd, J = 6.6, 1.7 Hz, 1H), 3.40 (s, 3H), 2.99 – 2.85 (m, 1H), 2.04 (s, 3H), 1.50 (s, 3H), 1.23 (d, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 183.86, 183.04, 177.33, 143.88, 137.90, 136.85, 134.12, 133.50, 130.85, 130.82, 130.52, 127.62, 125.98, 101.13, 86.32, 86.19, 77.58, 77.36, 77.16, 76.74, 60.10, 60.07, 39.45, 39.38, 29.84, 24.95, 13.28, 9.41; IR(neat): v_{max} 3477, 2925, 2854, 1771, 1577, 1612, 1453, 1271, 1246, 1197, 1132, 1100, 1029, 1077, 988, 937 cm⁻¹; HRMS (ESI) *m/z* calculated for C₂₁H₂₇O₅ [M+H]⁺ 359.1858, found 359.1858.

1.5.6. Completion of the Total Synthesis of Thailandandamide Lactone (2): Scheme S6: Completion of the Synthesis of Thailandandamide Lactone 2

(*2R*,*7R*,*E*)-7-((*tert*-Butyldimethylsilyl)oxy)-8-(4-((tert-butyldimethylsilyl)oxy)phenyl)-N-((*R*,*3E*,*5E*,*7E*,*10Z*,*12E*,*14E*,*16E*,*18E*)-11-hydroxy-19-((*2S*,*3S*,*4R*)-3-methoxy-2,4dimethyl-5-oxotetrahydrofuran-2-yl)-5,15-dimethyl-9-oxononadeca-3,5,7,10,12,14,16,18octaen-2-yl)-2-methyloct-4-enamide (37) : To a solution of compound 5 (2.5 mg, 0.0065

mmol) and compound **4** (4.96 mg, 0.0065 mmol) in

anhydrous and degassed DMF (1.0 mL), Pd(OAc)₂ (0.01 mg, 0.000065 mmol), Pd(PPh₃)₄ (0.08 mg, 0.000065 mmol) and K₃PO₄ (1.65 mg, 0.007 mmol) were added. The reaction mixture was stirred for 18 h at room temperature. The mixture was filtered through a celite pad. The filtrate was quenched by NH₄Cl then extracted by diethyl ether. Purified by column chromatography (SiO₂, 230-400 mesh, 30% EtOAc in hexane as eluant) to give corresponding TBS protected thailandamide lactone **37** (4.5 mg, 77%) as a yellow oil: $R_f = 0.25$ (30% EtOAc in hexane); $[\alpha]_D^{28} = -26.3$ (c 0.26, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 15.91 (s, 1H), 7.84 -7.56 (m, 2H), 7.03 - 6.93 (m, 2H), 6.76 - 6.66 (m, 2H), 6.54 - 6.32 (m, 3H), 6.32 - 6.14 (m, 3H), 6.14 – 6.03 (m, 2H), 5.97 (dd, J = 14.8, 5.9 Hz, 1H), 5.89 – 5.73 (m, 1H), 5.72 – 5.60 (m, 1H), 5.53 (dt, J = 14.6, 7.1 Hz, 1H), 5.38 (dt, J = 20.0, 6.3 Hz, 2H), 4.78 – 4.58 (m, 1H), 3.76 (t, J = 6.3 Hz, 1H), 3.67 (t, J = 5.4 Hz, 1H), 3.40 (s, 3H), 2.93 (td, J = 6.9, 3.1 Hz, 1H), 2.71 -2.46 (m, 2H), 2.35 (dd, J = 10.6, 6.2 Hz, 2H), 2.21 (dt, J = 7.0, 3.0 Hz, 1H), 2.13 (dq, J = 13.5, 6.0 Hz, 3H), 2.04 (d, J = 2.7 Hz, 3H), 1.96 (s, 3H), 1.51 (s, 3H), 1.29 (s, 3H), 1.22 (s, 3H), 1.16 (d, J = 6.7 Hz, 3H), 0.97 (s, 9H), 0.82 (s, 9H), 0.11 (d, J = 37.2 Hz, 6H), -0.10 (s, 3H), -0.26 (s, 9H), -0.3H); ¹³C NMR (151 MHz, CDCl₃) δ 183.09, 182.87, 177.42, 175.11, 154.07, 143.57, 138.02, 136.39, 134.00, 133.34, 132.28, 130.88, 130.78, 129.89, 129.83, 129.42, 127.95, 119.93, 114.21, 102.49, 77.37, 77.16, 76.95, 73.98, 60.08, 46.32, 42.93, 41.89, 40.81, 39.39, 37.55, 33.98, 32.35, 32.08, 31.77, 31.74, 29.85, 29.81, 29.77, 29.66, 29.51, 29.31, 29.10, 27.36, 26.04, 25.88, 24.94, 23.58, 22.84, 22.80, 20.87, 18.37, 18.25, 17.51, 14.27, 13.44, 13.27, 9.43, 1.17,

0.14, -4.31, -4.59, -4.81.; IR (neat): *v*_{max} 3299, 2970, 2926, 2855, 1773, 1729, 1605, 1509, 1462, 1254, 1129, 1123, 971, 914, 837, 777 cm-1; HRMS (ESI) *m*/*z* calculated for C₅₅H₈₃NO₈Si₂Na [M+H]⁺ 942.5735, found 942.5703.

(2R,7R,E)-7-Hydroxy-N-((R,3E,5E,7E,10Z,12E,14E,16E,18E)-11-hydroxy-19-

((2*S*,3*S*,4*R*)-3-methoxy-2,4-dimethyl-5-oxotetrahydrofuran-2-yl)-5,15-dimethyl-9oxononadeca-3,5,7,10,12,14,16,18-octaen-2-yl)-8-(4-hydroxyphenyl)-2-methyloct-4-

enamide (2): A solution of compound 37 (4.0 mg, 4.24 µmmol) in THF (2 mL) was placed

in a plastic vial and cooled to 0 °C. HF-pyridine (70% in pyridine 100 μ L) was

added and the mixture stirred for 12 h at the room temperature. The reaction mixture was diluted with cold water. The resultant mixture was extracted with diethyl ether (3 × 15 mL), washed repeatedly with plenty of water (15 × 5 mL), brine, dried (Na₂SO₄), filtered, and concentrated in vacuum. The crude mixture was then purified using HPLC (Xbridge RP18, 10 mm I.D x 250 mm) to furnish the title compound **2** (2.6 mg, 89%) as a yellow liquid. $R_f = 0.4$ (40% EtOAc in hexane); $[\alpha]_D^{28} = -43.2$ (c 0.37, MeOH); ¹H NMR (500 MHz, CD₃OD) δ 7.77 – 7.59 (m, 2H), 6.99 (d, J = 7.9 Hz, 2H), 6.69 (d, J = 8.0 Hz, 2H), 6.60 (dd, J = 15.0, 7.8 Hz, 1H), 6.54 – 6.43 (m, 2H), 6.37 (d, J = 8.2 Hz, 1H), 6.28 (d, J = 12.8 Hz, 1H), 6.22 (d, J = 11.4 Hz, 1H), 6.16 (d, J = 16.1 Hz, 2H), 6.07 (s, 1H), 5.99 (d, J = 15.4 Hz, 1H), 5.90 (dd, J = 18.0, 3.4 Hz, 1H), 5.56 – 5.48 (m, 1H), 5.47 – 5.40 (m, 1H), 3.79 (d, J = 6.2 Hz, 1H), 3.73 – 3.67 (m, 1H), 3.39 (s, 3H), 3.13 (s, 1H), 2.64 – 2.55 (m, 2H), 2.39 – 2.28 (m, 2H), 2.14 – 2.08 (m, 2H), 2.04 (s, 3H), 1.96 (s, 3H), 1.50 (s, 3H), 1.25 (d, J = 6.9 Hz, 3H), 1.18 (d, J = 7.4 Hz, 3H), 1.11 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, MeOD) δ 184.30, 184.08, 180.94, 178.15, 156.86, 147.10, 144.65, 135.71, 134.82, 134.05, 132.33, 131.61, 131.57, 131.33, 131.15, 130.62, 130.21, 116.20, 99.92, 89.12, 86.48, 73.89, 61.18, 47.84, 43.50, 42.50, 41.17, 40.47,

38.62, 23.86, 21.10, 18.16, 13.45, 13.21, 8.87; IR (neat): *v*_{max} 3450, 3299, 2950, 2982, 2867, 1772, 1725, 1604, 1502, 1452, 1274, 1139, 1013, 981 cm-1; HRMS (ESI) *m/z* calculated for C₄₃H₅₅NO₈ [M+H]⁺ 714.4006, found 714.4008.

Note: The global deprotection was tricky. HF-Py was found only the condition to function efficiently and water can only be used for washing during work up. No NH₄Cl or NaHCO₃ solution could be used during work up as the final product decomposed rapidly. Moreover, trace amount of HF in presence of silica gel or even in glass wares decomposed completely the title compound **2**. Thus, plastic container was used for the handling of this synthesized compound.

1.6. HPLC Analysis of Thailandamide Lactone (2):

HPLC analysis of compound **2** (coupling time 30 minutes): Reverse phase C18 column (Xbridge RP18, 10 mm I.D x 250 mm); MeCN/H₂O 70/33 for 5 min, to MeCN/H₂O 99/1 in 20 min] and a flow rate of 2 mL min⁻¹, $R_t = 9.73$ min.

2.0. Materials and Methods for Evaluation of Antibacterial property of Thailandamide Lactone (2):

Media and Growth Conditions of Bacteria

Bacillus subtilis (PY79), Bacillus megaterium (2G), Staphylococcus aureus, Vibrio cholerae (N16961), Escherichia coli (MC1061) and Enteropathogenic Escherichia coli (EPEC e2348/69) were grown in LB medium aerobically at 37 °C/ 250 rpm.^{9a,b} Bacteria were harvested at the logarithmic growth phase with optical densities from 0.6 to 1 at 600 nm. Bacterial strains were maintained at -80 °C in LB containing 10% DMSO. All the bacterial strains were minimally sub-cultured, and before every experiment they were directly inoculated from -80 °C stock.

Minimum Inhibitory Concentration (MIC) Determination

The MIC of Thailandamide was determined by broth dilution assay.¹⁰ A stock solution of Thailandamide (1.0 mg/mL) was prepared by dissolving it in ethanol. Different dilutions from the stock solution were done for screening different concentrations of the compound in LB broth. The final volume was 1ml and 10 μ L bacterial solutions (1:100) were added to each test tubes. The test tubes were incubated at 37 °C overnight under shaking conditions at 250 rpm. The MIC was taken as the lowest concentration of the compounds for which there were no visible growth of bacteria. Broth containing only cells and ethanol were used as negative control. All experiments were performed in triplicate.

<u>Table S3: Antibacterial Activities of Thailandamide Lactone Against Selected Strains</u> Gram Negative Bacteria

Grain Regative Dacteria										
Strain	Concentration (μM)									
	25	50	60	70	75	80	85	90	100	125
V. cholerae (N16961)	+	+	+	+	+	+	+	+	-	-
<i>EPEC</i> (e2348/69)	+	+	+	+	+	+	+	+	-	-
Non-pathogenic E. coli (MC1061)	+	+	+	+	-	-	-	-	-	-

Gram Positive Bacteria										
Strain		Concentration (μM)								
	5	10	25	50	75	80	85	100	125	150
B. subtilis (PY79)	+	+	+	+	+	-	-	-	-	-
B. megaterium (2G)	+	+	+	+	-	-	-	-	-	-
S. aureus	+	+	+	+	+	+	+	+	-	-

(+) refers to bacterial growth in the LB containing indicated concentration of the Thailandamide lactone i.e., MIC not reached.

(-) refers to no bacterial growth i.e., MIC reached.

Refference

- K. Ishida, T. Lincke, S. Behnken and C. Hertweck, J. Am. Chem. Soc., 2010, 132, 13966– 13968.
- 2 A. Ruiz-Olalla, M. A. Wurdemann, M. J. Wanner, S. Ingemann, J. H. van Maarseveen and H. Hiemstra, *J. Org. Chem.*, 2015, **80**, 5125-5132.
- 3 A.-F. Salit, C. Meyer and J. Cossy, *Synlett*, **6**, 2007, 934-938.
- 4 H. Yao and K. Yamamoto, Chem.-Asian J., 2012, 7, 1542-1545.
- 5 J. Ryan, M. Saiuciulis, A. Gomm, B. Maciá, E. O'Reilly and V. Caprio, *J. Am. Chem. Soc.*, 2016, **138**, 15798–15800.
- 6 S. Ma and E.-i. Negishi, J. Org. Chem., 1997, 62, 784–785.
- 7 J. L. Tyler, A. Noble and V. K. Aggarwal, *Angew. Chem. Int. Ed.*, 2021, **60**, 11824–11829.
- 8 J. A. González-Delgado, J. F. Arteaga, M. M. Herrador and A. F. Barrero, *Org. Biomol. Chem.*, 2013, **11**, 5404–5408.
- 9 (a) R. Vilar, D. M. P. Mingos and C. J. Cardin, J. Chem. Soc., Dalton Trans., 1996, 23, 4313-4314; (b) F. Schoenebeck, T. Sperger and C. Stirner, Synthesis, 2016, 49, 115–120. A. K. Baidya, I. Rosenshine, S. Ben-Yehuda, Nat. Commun. 2020, 11, 1938.
- 10 S. Bhattacharya, A. K. Baidya, R. R. Pal, G. Mamou, G. E. Gatt, H. Margalit, I. Rosenshine, S. Ben-Yehuda, *Cell Rep.*, 2019, 27, 334-342.
- 11 Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clinical Microbiology and Infection, 9: ix-xv. 2003.

3.0. Copies of ¹H NMR, ¹³C NMR, 2D NMR, FT-IR, UV-Visible and HRMS Spectra

¹H NMR spectrum of compound 13 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 13 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 14 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 14 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 16 (300 MHz, CDCl₃):

¹H NMR spectrum of compound 17a (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 17a (75 MHz, CDCl₃):

¹H NMR spectrum of compound 18 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 18 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 6 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 6 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 20 (300 MHz, CDCl₃):

¹H NMR spectrum of compound 7 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 7 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 4 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 4 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 8 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 8 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 29 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 29 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 32 (300 MHz, CDCl₃) :

¹³C NMR spectrum of compound 32 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 31 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 31 (75 MHz, CDCl₃:

¹H NMR spectrum of epoxide corresponding product of 32 (300 MHz, CDCl₃):

¹³C NMR spectrum of epoxide corresponding product of 32 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 33 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 33 (75 MHz, CDCl₃):

NOSEY spectrum of compound 33 (300 MHz, CDCl₃):

¹H NMR spectrum of compound 36 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 36 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 9 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 9 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 9-iso (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 9-iso (75 MHz, CDCl₃):

NOSEY spectrum of 9-iso (600 MHz, CDCl₃):

¹H NMR spectrum of Heck couple product of 8 and 9 (300 MHz, CDCl₃):

¹³C NMR spectrum of Heck couple product of 8 and 9 (75 MHz, CDCl₃):

¹H NMR spectrum of TES deprotected couple product of 8 & 9 (300 MHz, CDCl₃):

¹³C NMR spectrum of TES deprotected couple product of 8 & 9 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 5 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 5 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 37 (400 MHz, CDCl₃):

¹³C NMR spectrum of compound 37 (151 MHz, CDCl₃):

DEPT 135 spectrum of compound 37 (75 MHz, CDCl₃):

HSQC NMR spectrum of compound 37 (75 MHz, CDCl₃):

HMBC NMR spectrum of compound 37 (151 MHz, CDCl₃):

COSY NMR spectrum of compound 37 (600 MHz, CDCl₃):

NOESY NMR spectrum of compound 37 (400 MHz, CDCl₃):

ROESY NMR spectrum of compound 37 (400 MHz, CDCl₃):

¹³C NMR spectrum of compound 2 (151 MHz, CD₃OD):

FT-IR spectrum of compound 2:

UV-VIS spectrum of compound 2 in methanol:

HRMS (ESI) *m*/*z* calculated for C₄₃H₅₅NO₈ [M+H]⁺ 714.4006, found 714.4008.

4.0. Figure S3: ¹H and ¹³C Spectral Comparison of the Synthesized and isolated Thailandamide Lactone

Table S3 Crystal Data and Structure Refinement for Compound 13:				
Identification code	HS-TM-6			
Empirical formula	$C_{26}H_{35}NO_3S_2Si$			
Formula weight	501.76			
Temperature/K	298			
Crystal system	trigonal			
Space group	P3 ₁			
a/Å	18.235(3)			
b/Å	18.235(3)			
c/Å	7.1321(9)			
α/\circ	90			
β/°	90			
γ/°	120			
Volume/Å ³	2053.9(6)			
Ζ	3			
ρ _{calc} g/cm ³	1.217			
μ/mm ⁻¹	0.265			
F(000)	804.0			
Crystal size/mm ³	0.45 imes 0.1 imes 0.1			
Radiation	$MoK\alpha \ (\lambda = 0.71073)$			
2 Θ range for data collection/°	4.468 to 53.422			
Index ranges	$-23 \le h \le 19, -23 \le k \le 23, -9 \le l \le 8$			
Reflections collected	22774			
Independent reflections	5650 [$R_{int} = 0.0691$, $R_{sigma} = 0.0610$]			
Data/restraints/parameters	5650/1/356			
Goodness-of-fit on F ²	1.071			
Final R indexes [I>=2σ (I)]	$R_1 = 0.0439, wR_2 = 0.0923$			
Final R indexes [all data]	$R_1 = 0.0624, wR_2 = 0.1057$			
Largest diff. peak/hole / e Å ⁻³	0.34/-0.38			
Flack parameter	-0.03(4)			

4.1. X-Ray Crystallographic Data for Compound 13

Table S4 Crystal Data and Structure Refinement for Compound 31 :				
Identification code	HS-TM-233			
Empirical formula	$C_{28}H_{29}O_4$			
Formula weight	430.52			
Temperature/K	105.33			
Crystal system	tetragonal			
Space group	P4 ₁ 2 ₁ 2			
a/Å	9.6794(11)			
b/Å	9.6794(11)			
c/Å	49.548(8)			
α/°	90			
β/°	90			
γ/°	90			
Volume/Å ³	4642.2(13)			
Ζ	8			
ρ _{calc} g/cm ³	1.232			
μ/mm ⁻¹	0.081			
F(000)	1840.0			
Crystal size/mm ³	0.32 imes 0.32 imes 0.09			
Radiation	MoKα (λ = 0.71073)			
20 range for data collection/°	4.518 to 50.172			
Index ranges	$-11 \le h \le 11, -11 \le k \le 11, -59 \le l \le 59$			
Reflections collected	44343			
Independent reflections	4139 [$R_{int} = 0.1132$, $R_{sigma} = 0.0519$]			
Data/restraints/parameters	4139/0/292			
Goodness-of-fit on F ²	1.155			
Final R indexes [I>=2σ (I)]	$R_1 = 0.0512, wR_2 = 0.1149$			
Final R indexes [all data]	$R_1 = 0.0731, wR_2 = 0.1280$			
Largest diff. peak/hole / e Å ⁻³	0.34/-0.26			
Flack parameter	0.5(10)			

4.2. X-Ray Crystallographic Data for Compound 31

