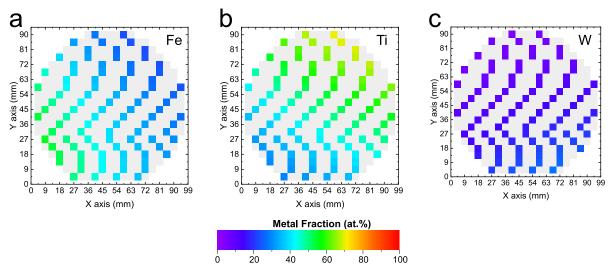
Supplementary Information

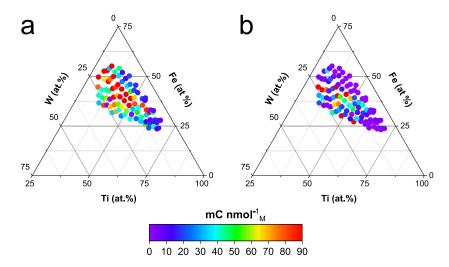
High-throughput exploration of activity and stability for identifying photoelectrochemical water splitting materials

Ken J. Jenewein,^{1,2*} Sigurd Thienhaus,^{3,4} Attila Kormányos,^{1,5} Alfred Ludwig,^{3,4} and Serhiy Cherevko^{1*}

¹ Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Cauerstrasse 1, 91058 Erlangen, Germany


² Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany

³ Materials Discovery and Interfaces, Institute for Materials, Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany


⁴ Center for Interface-Dominated High Performance Materials, Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany.

⁵Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Aradi Square 1, Szeged, H-6720, Hungary

*Corresponding author <u>k.jenewein@fz-juelich.de</u> <u>s.cherevko@fz-juelich.de</u>

Figure S1: HT EDX elemental mapping of the Fe-Ti-W-O material library. (a) Fe content. (b) Ti content. (c) W content. Gray tiles represent areas within the wafer that were not subjected to the HT activity-stability screening.

Figure S2: Deconvoluted dissolution-normalized photocharge. (a) Photocharge normalized by fraction-corrected Fe dissolution. (b) Photocharge normalized by fraction-corrected W dissolution.

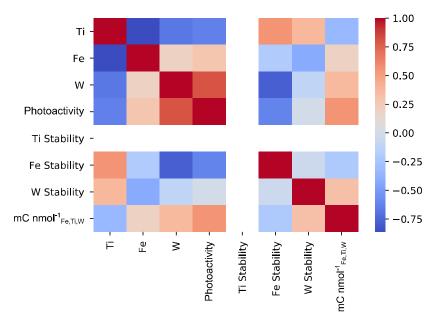


Figure S3: Heatmap showing the pairwise correlation of each variable studied in the present work

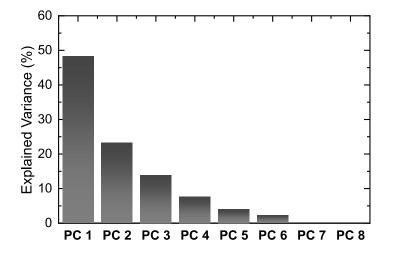


Figure S4: Scree plot for PCA