Targeting multidrug resistant Staphylococcus infections with bacterial histidine kinase inhibitors

Adeline Espinasse, ${ }^{1, f}$ Manibarsha Goswami, ${ }^{1, f}$ Junshu Yang, ${ }^{2}$ Onanong Vorasin, ${ }^{1,3}$ Yinduo Ji, ${ }^{2 *}$ and Erin E. Carlson ${ }^{1,4,5,6 *}$
${ }^{1}$ Department of Chemistry, University of Minnesota, 225 Pleasant St. SE, Minneapolis, MN, 55454, United States
${ }^{2}$ Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave, Falcon Heights, MN 55108
${ }^{3}$ Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
${ }^{4}$ Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States
${ }^{5}$ Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55454, United States
${ }^{6}$ Department of Pharmacology, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55454, United States

Contents
General methods and information.. 3
Materials... 3
HK853 Protein expression and purification ... 3
AirS Protein expression and purification ... 4
Fluorescence polarization assay. Performed according to a previously published procedure. ${ }^{4}$... 4
Protein concentration determination .. 4
SDS-PAGE.. 4
Native Page gel... 4
SDS-PAGE loading buffer.. 4
Native-PAGE loading buffer.. 5
Inhibition of HK853 and AirS activity... 5
Aggregation assay. ... 5
AirS sequence and modeling.. 6
Molecular docking of PMI compounds with HK853 ... 6
AutoQSAR of PMI compounds. 6
Inhibition of GSK3 β activity using ADP-Glo assay. ${ }^{6}$ 6
Thermal shift assay 7
Mouse model of skin infection 7
Figure S1. Maleimide hits identified in the high-throughput screening using a fluorescence polarization assay 8
Synthesis 9
Table S1. IC ${ }_{50}$ values of PMI compounds for HK853 and AirS inhibition. * Indicates that complete inhibition was not achieved at highest tested concentration. 19
Figure S2: Dose-response curves of the inhibition of HK853 activity with PMI-1 to PMI-20 using B-FL-ATP γ S inhibition assay 29
Figure S3: Dose-response curves of the inhibition of AirS activity with PMI-1 to PMI-20 using B-FL-ATP γ S inhibition assay 36
Figure S4. HK853 aggregation analysis by Native PAGE and silver staining at various concentrations of the lead PMI compounds (1 to $1250 \mu \mathrm{M}$) 37
Figure S5: Docking and 2D-diagram interactions of the lead PMI compounds in the ATP-binding pocket of the catalytic domain of HK853. 38
Table S2: Docking scores, glide gscores, and glide emodels of the lead compounds and a non- binder PMI-18 (docking interactions in the ATP-binding pocket of HK853 and 2D diagram). 39
Table S3. AutoQSAR model built with all 20 PMI compounds. 40
Figure S6: Inhibition profile of GSK-3 β by PMI-3, PMI-5, PMI-11, PMI-12, PMI-15, PMI-20, and staurosporine, a known kinase inhibitor, using the ADP-Glo ${ }^{\mathrm{TM}}$ assay 43
Figure S7: Effect of PMI-3 on the transcription of walk/yycG (A), saeS (B), and agr (C) 44
Table S4. Summary of data for lead inhibitors 45
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compounds PMI-1 to PMI-20 and key intermediates 46
Metabolism Data 75

General methods and information.

Materials. Starting material 2-phenylacetamide was purchased from Fisher Scientific (cat \# 501448864), 2-(4-chlorophenyl)acetamide, diethyl oxalate and oxalyl chloride from MilliporeSigma (cat\# EN300-69217, cat\# 135364, and cat\# 310670). 4-Hydroxyphenylacetamide and potassium tert-butoxide 1 M THF were purchased from Acros Organics (cat\# 254270050 and cat\# 371221000), 2-(4-fluorophenyl)acetamide from Oakwood (cat\#475850). Indoline (cat\# I5605) and 2-methylindoline (cat\# M51601) were purchased from Millipore-Sigma, 5-chloroindoline from Santa Cruz Biotechnology (cat\# sc-284611), 6-methoxyindoline from Matrix Scientific (cat\# 074899). N-Methylaniline (cat\# M29304), 4-fluoro- N-methylaniline (cat\# 223069), 4-chloro- N methylaniline (cat\# 210358) were purchased from Sigma-Aldrich. 4-Pyridineacetamide was bought from Alfa Aesar (cat\# B24734). SYPRO ${ }^{\text {TM }}$ Orange was purchased from ThermoFisher Scientific (cat\# S6650). NH125 was purchased from Tocris (cat\# 3439). GSK3 β Kinase Enzyme System (cat\# V1991) and ADP-Glo ${ }^{\text {TM }}$ assay (cat\# V6930) were purchased from Promega. The Pierce ${ }^{\mathrm{TM}}$ Silver Stain Kit (cat\# 24612) and BODIPY-FL-ATP γ S (cat\# A22184) were bought from ThermoFisher Scientific. All other reagents were purchased from commercial sources, unless otherwise indicated, and used as directed.

HK853 Protein expression and purification. Total gene synthesis of HK853, protein production and expression were performed according to Wilke et al. and Chase et al. ${ }^{1,2}$ In summary, the gene corresponding to the cytoplasmic portion of HK853 from Thermotoga maritima was ligated into the pHis-parallel 1 vector with a His-tag at the N-terminus. The recombinant plasmids were transformed into E. coli DH5a then into E. coli BL21(DE3)Rosetta/pLysS overexpression cells and plated on LB agar containing $34 \mu \mathrm{~g} / \mathrm{mL}$ chloramphenicol and $100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin. Plates were incubated at $37{ }^{\circ} \mathrm{C}$ overnight. A single colony was transferred to 10 mL of LB media supplemented with antibiotics as noted above. The cells were grown at $37^{\circ} \mathrm{C}$ at 220 RPM overnight. To 1 L of LB media containing the antibiotics noted above, 10 mL of the previous culture were added. The cells were grown at $37^{\circ} \mathrm{C}$ and 220 RPM until the OD_{600} of the solution was about 0.6 . The culture was allowed to cool to room temperature. The cultures were induced with $220 \mu \mathrm{~L}$ of 1 M IPTG and incubated at $20^{\circ} \mathrm{C}$ and 220 RPM for 20 h . Subsequently, the cells were spun down at $8,000 \times g$ for 40 min . The supernatant was discarded. The pellets were kept in the storage buffer (10 mM Tris, 0.1 mM EDTA, $0.5 \mathrm{M} \mathrm{NaCl}, 12 \%$ glycerol, 2 mM DTT, $\mathrm{pH}=7.6$) at $-80^{\circ} \mathrm{C}$. Then, the lysis buffer (50 mL , Tris $25 \mathrm{mM}, \mathrm{NaCl} 1 \mathrm{M}$, glycerol 10%, imidazole 5 mM , DTT 2 mM , $\mathrm{pH}=8), 1$ tablet of mini EDTA free Roche and DNAse ($10 \mu \mathrm{~g} / 1 \mathrm{~L}$) were added. The suspension was homogenized with a hand glass homogenizer (10 times). The cells were lysed by sonication on ice (2 min sonication, every 5 minutes for 30 min , power 3) and spun down. The supernatant was passed through on a $0.22 \mu \mathrm{~m}$ filter. The protein was purified via nickel affinity column (NiNTA) on GE ÄKTA FPLC using buffer A (Tris $25 \mathrm{mM}, \mathrm{NaCl} 1 \mathrm{M}$, glycerol 10%, imidazole 5 $\mathrm{mM}, \beta-\mathrm{ME} 2 \mathrm{mM}, \mathrm{pH}=8$) and buffer B (Tris $25 \mathrm{mM}, \mathrm{NaCl} 1 \mathrm{M}$, glycerol 10%, imidazole $1 \mathrm{M}, \beta-$ ME $2 \mathrm{mM}, \mathrm{pH}=8$) with a gradient of 5 mM to 1 M of imidazole. Protein detection was performed at 210 nm . HK853 was further purified via size exclusion using HiLoad 16/60 Superdex 200 pg column using the storage buffer (10 mM Tris, 0.1 mM EDTA, $0.5 \mathrm{M} \mathrm{NaCl}, 12 \%$ glycerol, 2 mM DTT, $\mathrm{pH}=7.6$) as the eluent.

AirS Protein expression and purification. AirS plasmid in BL21 star (DE3) was a gift from Prof. Taeok Bae. The protein was expressed and purified according to Sun et al. procedure. ${ }^{3}$ Briefly, the BL21 cells were grown in LB supplemented with ampicillin ($100 \mu \mathrm{~g} / \mathrm{mL}$) at $37{ }^{\circ} \mathrm{C}$ and 220 RPM until the OD_{600} of the solution was about 0.6 . The culture was allowed to cool to room temperature. The cultures were induced with 1 mM of IPTG and incubated at $16^{\circ} \mathrm{C}$ and 220 RPM for 20 h . Subsequently, the cells were spun down at $8,000 \times g$ for 40 min . The supernatant was discarded. The pellets were kept in the storage buffer (10 mM Tris, 0.1 mM EDTA, $0.5 \mathrm{M} \mathrm{NaCl}, 12 \%$ glycerol, 2 mM DTT, $\mathrm{pH}=7.6$) at $-80^{\circ} \mathrm{C}$. Then, the lysis buffer (50 mL , Tris $25 \mathrm{mM}, \mathrm{NaCl} 1 \mathrm{M}$, glycerol 10%, imidazole 5 mM , DTT $2 \mathrm{mM}, \mathrm{pH}=8$), 1 tablet of mini EDTA free Roche and DNAse (10 $\mu \mathrm{g} / 1 \mathrm{~L}$) were added. The suspension was homogenized with a hand glass homogenizer (10 times). The cells were lysed by sonication on ice (2 min sonication, every 5 minutes for 30 min , power 3) and spun down. The supernatant was passed through on a $0.22 \mu \mathrm{~m}$ filter. The protein was purified via nickel affinity column (Ni-NTA) on GE ÄKTA FPLC using buffer A (Tris $25 \mathrm{mM}, \mathrm{NaCl} 1 \mathrm{M}$, glycerol 10%, imidazole $5 \mathrm{mM}, \beta-\mathrm{ME} 2 \mathrm{mM}, \mathrm{pH}=8$) and buffer B (Tris $25 \mathrm{mM}, \mathrm{NaCl} 1 \mathrm{M}$, glycerol 10%, imidazole $1 \mathrm{M}, \beta$-ME $2 \mathrm{mM}, \mathrm{pH}=8$) with a gradient of 5 mM to 1 M of imidazole.

Fluorescence polarization assay. Performed according to a previously published procedure. ${ }^{4}$
Protein concentration determination. Protein concentration was determined using an Implen's Nanophotometer spectrophotometer (Thermo Fisher Scientific) at 280 nm . HK853 $\varepsilon=27390 \mathrm{M}^{-}$ ${ }^{1} . \mathrm{cm}^{-1}, \mathrm{Mw}=32468 \mathrm{~g} . \mathrm{mol}^{-1} ;$ AirS $\varepsilon=31400 \mathrm{M}^{-1} . \mathrm{cm}^{-1}, \mathrm{Mw}=41880 \mathrm{~g} . \mathrm{mol}^{-1}$.

Reaction buffer for IC \boldsymbol{C}_{50} determination and thermal shift assays. The reaction buffer was composed of 50 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.8,200 \mathrm{mM} \mathrm{KCl}, 5 \mathrm{mM} \mathrm{MgCl} 2$.

SDS-PAGE (Sodium dodecyl sulfate-polyacrylamide gel electrophoresis). The 10\% separating gel was prepared using MilliQ water (4.2 mL), 40% acrylamide/bisacrylamide (2.1 mL) 1.5 M Tris. $\mathrm{HCl} \mathrm{pH}=8.8(2.1 \mathrm{~mL}), 10 \%$ ammonium persulfate $(28 \mu \mathrm{~L})$, TEMED $(3 \mu \mathrm{~L})$. The resolving gel was added to the cassette and $250 \mu \mathrm{~L}$ of ethanol was added to allow for polymerization (1 h). The ethanol was removed, and the gel was washed with MilliQ water. The 4.5% stacking gel was prepared with MilliQ water (1.6 mL), 0.5 M Tris. $\mathrm{HCl} \mathrm{pH}=6.8$ (0.63 mL), 40% acrylamide/bisacrylamide ($29: 1,0.28 \mathrm{~mL}$), 10% ammonium persulfate $(7.5 \mu \mathrm{~L})$, TEMED $(2.5 \mu \mathrm{~L})$. Running parameters were $180 \mathrm{~V}, 400 \mathrm{~mA}$, and 60 W for 1 h . SDS-PAGE running buffer was diluted ten-fold from a 10X Tris-Glycine SDS Running buffer and chilled during electrophoresis (for 1 L , 30 g of Tris, 144 g of glycine, 10 g of SDS).

Native Page gel. The 7.5% polyacrylamide gel was prepared using MilliQ water (4.8 mL), 1.5 M Tris. $\mathrm{HCl} \mathrm{pH}=8.8(2.1 \mathrm{~mL}), 40 \%$ acrylamide/bisacrylamide $(1.58 \mathrm{~mL}), 10 \%$ ammonium persulfate $(28 \mu \mathrm{~L})$, TEMED ($3 \mu \mathrm{~L}$). Running parameters were $180 \mathrm{~V}, 400 \mathrm{~mA}$, and 60 W for 1 h 30 . The native running buffer was prepared with Tris and glycine in MilliQ water (for $1 \mathrm{~L}, 30 \mathrm{~g}$ of Tris, 144 g of glycine).

SDS-PAGE loading buffer. 4X SDS-PAGE sample loading buffer containing 200 mM Tris, pH $6.8,40 \%$ glycerol, 8% SDS (w / v), $4 \% \beta$-mercaptoethanol, and 0.8% bromophenol blue (w / v) was used.

Native-PAGE loading buffer. 4X native sample loading buffer containing 40 mM Tris, pH 7.5 , 8% glycerol, and 0.08% Bromophenol blue (w / v) was used.

In-gel fluorescence detection. After SDS-PAGE, the gels were washed three times with MilliQ water and scanned using a Typhoon FLA 9500 scanner (GE Healthcare) at 526-nm (short-pass filter) detection for BODIPY-FL ($\lambda \mathrm{ex}: 503 \mathrm{~nm}, \lambda \mathrm{em}: 512 \mathrm{~nm}$). Integrated density measurements were determined using ImageJ (NIH).

Inhibition of HK853 and AirS activity. BODIPY-FL-ATP $\gamma \mathrm{S}$ competition screening was performed at inhibitor concentrations that did not cause protein aggregation. Triton X-100 was premixed with reaction buffer to yield $0.1 \%(\mathrm{v} / \mathrm{v})$ in final $25-\mu \mathrm{L}$ reactions. In reaction buffer, HK853 or AirS $(0.48 \mu \mathrm{M})$ was preincubated with test compounds (final concentration, 0.01-1250 $\mu \mathrm{M}$ for $\mathrm{HK} 853,0.01-1000$ or $1250 \mu \mathrm{M}$ for AirS $)$ in $25 \mu \mathrm{~L}$ for 30 min . BODIPY-FL ATP $\gamma \mathrm{S}(1 \mu \mathrm{~L})$ was added to bring the final $26-\mu \mathrm{L}$ reactions to HK853 $(0.46 \mu \mathrm{M})$ and BODIPY-FL-ATP $\gamma \mathrm{S}(2 \mu \mathrm{M})$ in the presence of competitors and 5% DMSO. Samples were mixed and incubated in the dark at RT for 1 h before quenching with $4 \times$ SDS-PAGE sample loading buffer $(8.6 \mu \mathrm{~L})$ and loading 15 $\mu \mathrm{L}$ on a 10% resolving gel. After SDS-PAGE, in-gel fluorescence detection elucidated HK853 activity, and coomassie staining of the gels ensured even protein loading. Integrated density values of the fluorescent gel bands were normalized as "\% Inhibition" with respect to a control that contained no inhibitor. Data were plotted in GraphPad Prism with relation to the \log of molar inhibitor to determine IC50 values (Equation 1).

Data analysis. Integrated density measurements of in-gel fluorescence were performed in ImageJ. Data were prepared and analyzed in GraphPad Prism. For all DRCs (control FP competition and activity assays), data were fit to a four-parameter logistic equation,

$$
\begin{equation*}
y=\text { Bottom }+\frac{(\text { Top }- \text { Bottom })}{\left.1+10\left(\text { LogIC } C_{50}-x\right) * \text { HillSlope }\right)} \tag{Equation1}
\end{equation*}
$$

where y is the response, Bottom and Top are plateaus in the units of the y-axis, x is the log of the molar concentration of inhibitor, HillSlope is the slope of the curve, and IC_{50} is the concentration of compound required for 50% inhibition of the enzyme (a response half way between Bottom and Top).

Aggregation assay. The lead compounds were tested for aggregation of HK853. HK853 ($0.48 \mu \mathrm{M}$) was incubated with the compounds ($1-1250 \mu \mathrm{M}$) dissolved in DMSO for 30 min in 20 mM HEPES ($25 \mu \mathrm{~L}$ final volume containing $5 \% \mathrm{v} / \mathrm{v}$ DMSO). NH125 ($1250 \mu \mathrm{M}$), a known histidine kinase aggregator, was used as a positive control. In its presence, the dimer bands disappear. The reactions were quenched with 4 X native loading buffer ($8.6 \mu \mathrm{~L}$) and $15 \mu \mathrm{~L}$ was loaded onto a 7.5% Native gel for PAGE protein separation. Protein aggregation was evaluated using Silver staining.

Silver staining. The Pierce ${ }^{\text {TM }}$ Silver Stain Kit was used according to the manufacturer instructions with the following modifications. All the steps were performed using a nutator. The gel was washed with MilliQ water ($2 \times 5 \mathrm{~min}$), fixed in 30% ethanol, 10% acetic acid ($2 \times 15 \mathrm{~min} ; 2$ times), washed in 10% ethanol ($2 \times 5 \mathrm{~min}$) then in MilliQ water ($2 \times 5 \mathrm{~min}$). The gel was incubated with the sensitizer working solution ($50 \mu \mathrm{~L}$ of sensitizer in 25 mL MilliQ water) for exactly 1 min , then washed with water ($2 \times 1 \mathrm{~min}$). The gel was stained in the staining working solution ($500 \mu \mathrm{~L}$ of enhancer in 25 mL silver stain) for 1 h , then washed with MilliQ water (2 x 20 s). The developer
working solution ($500 \mu \mathrm{~L}$ of enhancer in 25 mL developer) and the gel was incubated for 3-5 min or until the bands appeared. When the desired band intensity was reached, the developer solution was replaced with the stop solution (5% acetic acid in MilliQ water). The gel was washed briefly. Next, the stop solution was replaced and the gel incubated for 10 min . After staining/destaining, the gels were scanned on a Typhoon Variable Mode Imager 9500(GE) using silver stain settings.

AirS sequence and modeling. The sequence of AirS from Staphylococcus aureus strain Newman was determined based on the primers used to design the protein. ${ }^{3}$ No crystal structure of AirS was available. Only the CA domain highlighted in yellow was modeled using the online protein structure homology-modelling server SWISS-MODEL. The CA domain was modeled based the structure of VraS (PDB 4gt8). Nevertheless, the homology was low [sequence identity (23.58\%) and sequence similarity (0.34)] generating a poor model.
MEQRTRLALLKEIAEFLNEETEMYSMTQGALKYLIEGSNFTTGWIFFINSVGEHELVSHV ALPQSLTADHCHYIKDGSCWCVKAFNQRRLMKASNIVNCSRINLASKAFPSQNDNITHH ATVPLKSGQEQFGILNVASPNTEIYSDEDLELLESVAFQLGSAIKRIYLTDREKEAAKINER NRLARDLHDSVNQMLFSVKLTAHAAYGMSNESIAKQAFKTIEETSQNAVNEMRALIWQ LKPVGLEQGLIHALTAYSKLMHIQLNVNVEGLIDLSNEIEENIYRALQECINNVKKHADT NKMDLTLKQMNDILYIDVIDYGQGFEIDNVQIASSHGINNIKQRVKLLRGKVTFHSQPTK GTQIQFTIPIK

Molecular docking of PMI compounds with HK853. Maestro from Schrödinger was utilized to dock the PMI compounds. HK853 (PDB 3DGE) was prepared with the protein preparation wizard by optimizing the H -bond assignment, removing all waters, and using OPLS_2005 force field for restrained minimization. Only one histidine kinase (A) and ADP were left for preparation. All the compounds were prepared with the LigPrep function using the defaults settings and OPLS_2005 force field. The receptor grid was generated by selecting ADP in the workspace and by defining the center of the enclosing box as the centroid of workspace ligand. The rotatable groups were defined as Tyr384, Tyr429, Thr442, and Ser385. The prepared ligands were docked using the generated receptor grid function with the default settings.

AutoQSAR of PMI compounds. All the compounds were prepared with the LigPrep function using the defaults settings and OPLS_2005 force field. The IC_{50} values for the compounds were added to the project table, transformed into the pIC_{50} values by the software ($\mathrm{pIC} 50=-\log \mathrm{IC} 50$), and used as the prediction property for building the QSAR model in the AutoQSAR menu. The traditional method was used with a random training set of 75% (15 compounds for training and 5 for test). The model was imported and analyzed in Canvas using the Kernel-Based PLS Regression function to determine the important features of the compounds for potency. The model was built according to Schrödinger tutorial "Machine Learning for Materials Science". ${ }^{5}$

Inhibition of GSK3ß activity using ADP-Glo assay. ${ }^{6}$ All the steps of the assays were done at room temperature and the plate was incubated on a plate shaker. The protocol was developed according to the manufacturer's instructions. The kinase buffer contains 40 mM Tris, $\mathrm{pH}=7.5,20 \mathrm{mM}$ $\mathrm{MgCl}_{2}, 0.1 \mathrm{mg} / \mathrm{mL}$ BSA and $50 \mu \mathrm{M}$ DTT. Luminescence measurements were conducted on a TECAN Spark ${ }^{\circledR}$ Multimode Microplate Reader with an integration time of 1.5 s .

A serial dilution of each test compound (stock concentrations 50 nM to 5 mM , final concentrations 10 nM to 1 mM) was done using $25 \% \mathrm{DMSO} / 75 \%$ kinase buffer supplied by the manufacturer to achieve a maximum final DMSO concentration of 5%. To a white flat-bottomed $384 \mu \mathrm{~L}$-well plate, each test compound ($1 \mu \mathrm{~L}$) was dispensed in triplicate followed by GSK 3β ($1 \mathrm{ng}, 2 \mu \mathrm{~L}$) dissolved in the kinase buffer and the solutions were incubated for 10 min at room temperature. A pre-mixed solution ($2 \mu \mathrm{~L}$) of the kinase substrate (final concentration $0.2 \mu \mathrm{~g} / \mu \mathrm{L}$) and ATP (final concentration $25 \mu \mathrm{M})$ dissolved in kinase buffer was added. The reactions were incubated for 60 min . ADP$\mathrm{Glo}^{\mathrm{TM}}$ Reagent ($5 \mu \mathrm{l}$) was added and the reactions were incubated for 40 min . The Kinase Detection Reagent ($10 \mu \mathrm{l}$) was added and the reactions were incubated for 30 min . Luminescence was recorded. A reference sample without any inhibitor was used for normalization. Background reactions without GSK3 β and any inhibitor were included as well as control reactions without ATP/substrate and any inhibitor. The IC_{50} values were determined using GraphPad Prism.

Calculations

Background luminescence of the ATP/substrate mix: [background]
GSK3 $\beta+$ ATP/substrate mix + inhibitor: [sample]
GSK3 $\beta+$ ATP/substrate mix $=$ [maximum $]$
\% Normalized luminescence signal in presence of the inhibitors = [\% Luminescence]. Value plotted on the y-axis.
$[\%$ Luminescence $]=\frac{[\text { sample }]-[\text { background }]}{[\text { maximum }]-[\text { background }]}$
Thermal shift assay. The assays were conducted as previously published with modifications. ${ }^{7}$ All the reagents were kept on ice. On ice, in a 96-PCR-well plate, HK853 ($5 \mu \mathrm{M}$) was mixed with PMI$3,5,11,12,15,18$ (negative control), 20 or ADP (positive control) ($500 \mu \mathrm{M}$ final concentration from 25 mM stock, final DMSO concentration 2\%) and Sypro Orange (12x from a 5000x stock solution) in reaction buffer to reach a $25 \mu \mathrm{~L}$ reaction size. Changes in fluorescence were recorded every $0.5^{\circ} \mathrm{C}$ from 25 to $95^{\circ} \mathrm{C}$ with a 10 s hold at each temperature. DMSO was used as a control to determine HK853 melting temperature.

Mouse model of skin infection. The 8-week-old B6 mice ($\mathrm{N}=7$) were anesthetized with isoflurane gas; the skin of mice was shaved and disinfected with chlorhexidine. Every mouse was inoculated subcutaneously with the mid logarithmic growth phase of S. aureus ($2.5 \times 10^{8} \mathrm{CFUs}$) in $50 \mu \mathrm{LPBS}$ with 1 mM PMI-5 or vehicle control. Total lesion size was measured with a millimeter ruler as a reference after infection. The infected mice were sacrificed 3 days after infection, and the lesional skin, liver and spleen were isolated from infected mice and homogenized for viable CFU. The results were statistically analyzed using a two-tailed T-Test. All experiments were performed in compliance with the University of Minnesota's policy on animal use and ethics as determined by the UMN Institutional Animal Care and Use Committee (IACUC).

$32.9 \mu \mathrm{M} / 76 \mathrm{nM}$
ID- G44 SB-409513 CHEMBL156987 86.0\%

$25.1 \mu \mathrm{M} / 94 \mathrm{nM}$
ID- G103
SB-409514 CHEMBL160333 99.7\%

$29.2 \mu \mathrm{M} / 93 \mathrm{nM}$
ID- G134
SB-390523
CHEMBL157258
94.7\%

$4.4 \mu \mathrm{M} / 1412 \mathrm{nM}$
ID- G237
SB-333612 CHEMBL156524 85\%

Figure S1. Maleimide hits identified in the high-throughput screening using a fluorescence polarization assay. The reported percentage corresponds to the percent inhibition of the compounds tested $(100 \mu \mathrm{M})$ against $\mathrm{HK} 853(25 \mu \mathrm{M})$ obtained using a fluorescence polarization assay with BODIPY-FL-ADP $\gamma \mathrm{S}(10 \mathrm{nM})$. Structure and IC_{50} values of the maleimide hits are reported for HK853 (left, this work) and for hGSK-3 α (right, previously published results ${ }^{5}$). Electron withdrawing group (EWG), Electron donating group (EDG).

Synthesis. The PMI compounds were synthesized as described in published protocols with modifications. ${ }^{8-11}$ The final compounds were above 95% pure. The purity was assessed by HPLC (Agilent HPLC1200 series, Agilent Eclipse XDB-C18, $5 \mu \mathrm{~m}, 9.4 \times 250 \mathrm{~mm}, 20 \mathrm{~min}$ gradient with 95% water to 95% acetonitrile in presence of 0.1% ammonium acetate). ESI-MS was performed on an Agilent UPLC-QTOF instrument in positive or negative ionization mode.

To a 250 mL round-bottom flask and under nitrogen atmosphere, 4-fluorophenylacetic acid (1.0 $\mathrm{g}, 6.49 \mathrm{mmol})$ and THF (30 mL) were added followed by hydroxybenzotriazole ($3.51 \mathrm{~g}, 26 \mathrm{mmol}$). The reaction mixture was stirred for 20 min until complete dissolution. 1-Ethyl-3-(3dimethylaminopropyl)carbodiimide ($2.5 \mathrm{~g}, 13 \mathrm{mmol}$) was added and the reaction mixture was stirred until dissolution of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, which resulted in the formation of a sticky solid in solution. After addition of aqueous ammonium hydroxide solution ($30 \mathrm{~mL}, 215 \mathrm{mmol}, 28 \%$), the reaction mixture was stirred for 16 h . 1-Ethyl-3-(3dimethylaminopropyl)carbodiimide ($2.5 \mathrm{~g}, 13 \mathrm{mmol}$) was added and the reaction mixture was allowed to stir for 24 h . A 1 M HCl solution (30 mL) was added and the product was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were successively washed with a saturated solution of NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude solid was recrystallized from EtOAc to afford 2-(4-fluorophenyl)acetamide as a white solid ($0.30 \mathrm{~g}, 30 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta: 7.45$ (bs, $1 \mathrm{H}, \mathrm{NH}$), 7.26-7.29 (nfom, 2H, H1, H3), 7.09-7.13 (nfom, 2H, H4, H6), 6.88 (bs, 1H, NH), $3.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta$ $172.11,160.97\left(\mathrm{~d}, J_{\mathrm{CF}}=240 \mathrm{~Hz}\right), 132.65\left(\mathrm{~d}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 130.86\left(\mathrm{~d}, J_{\mathrm{CF}}=7.5 \mathrm{~Hz}\right), 114.82\left(\mathrm{~d}, J_{\mathrm{CF}}\right.$ $=29 \mathrm{~Hz}), 42.21\left(\mathbf{C H}_{2}\right)$. ESI-MS: expected $(\mathrm{M}+\mathrm{H})=154.0663$, found $=154.0671$.

To a 100 mL oven-dried round bottom flask and under nitrogen atmosphere, 2-phenylacetamide, 2-(4-chlorophenyl)acetamide, 2-(4-hydroxyphenyl)acetamide, or 2-(4-fluorophenyl)acetamide and diethyloxalate (2 eq) were added followed by anhydrous THF (30 V). The solution was cooled to $0^{\circ} \mathrm{C}$. A solution of ${ }^{\mathrm{t}} \mathrm{BuOK}(2.5 \mathrm{eq}, 1 \mathrm{M}$ in THF) was added dropwise over 10 min . The reaction was stirred at $0^{\circ} \mathrm{C}$ for 2 h and allowed to warm up to RT. A solution of $1 \mathrm{M} \mathrm{HCl}(25 \mathrm{~V})$ was slowly added and the aqueous layer was extracted with EtOAc ($3 \times 25 \mathrm{~V}$). The organic layer was successively washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to afford PMI-OH, Cl-PMI-OH, or F-PMI-OH. Compound HO-PMI-OH was directly used in the chlorination step without purification.

PMI-OH (yellow solid, $2.71 \mathrm{~g}, 97 \%$) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{~Hz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta: 8.31$ (bs, 1H, NH), 7.91-7.94 $(\mathrm{m}, 2 \mathrm{H}), 7.41-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{tt}, 2 \mathrm{H}, J=2.0,9.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta$ 172.31, 167.86 (2C carbonyl), $153.25,129.84,128.23,127.58,127.28,106.34$ (8 C , sp²). ESI-MS: expected $(\mathrm{M}-\mathrm{H})=189.0353$, found $=188.0343$.

Cl-PMI-OH (yellow solid, $0.66 \mathrm{~g}, 61 \%)^{1} \mathrm{H}$ NMR ($500 \mathrm{~Hz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta: 8.41$ (bs, 1H, NH), 7.97 (t, $1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.88-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{t}, 1 \mathrm{H}, J=10 \mathrm{~Hz}), 7.34(\mathrm{dq}, 1 \mathrm{H}, J=2.0,10.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 172.10,167.52$ (2C carbonyl), $154.85,132.95,132.16,130.16$, $126.82,126.60,125.79,104.31\left(8 \mathrm{C}, \mathrm{sp}^{2}\right)$. ESI-MS: $\operatorname{expected}(\mathrm{M}-\mathrm{H})=221.9963$, found $=221.9961$.

F-PMI-OH (yellow solid $0.91 \mathrm{~g}, 100 \%$) ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{~Hz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta: 10.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.97-$ $8.01(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 172.29,167.81$ (2C carbonyl), $160.95\left(\mathrm{~d}, J_{\mathrm{CF}}=245 \mathrm{~Hz}\right), 153.15,129.55\left(\mathrm{~d}, J_{\mathrm{CF}}=7.5 \mathrm{~Hz}\right), 126.43\left(\mathrm{~d}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 115.24\left(\mathrm{~d}, J_{\mathrm{CF}}\right.$ $=21 \mathrm{~Hz}), 105.34\left(8 \mathrm{C}\right.$, sp$\left.^{2}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})=206.0259$, found $=206.0257$.

To a 100 mL oven-dried round bottom flask and under nitrogen atmosphere, 4pyridineacetaldehyde ($300 \mathrm{mg}, 2.2 \mathrm{mmol}$), diethyl oxalate ($449 \mu \mathrm{~L}, 3.3 \mathrm{mmol}$) were added followed by anhydrous THF (12 mL). The solution was cooled to $0^{\circ} \mathrm{C}$. Solid ${ }^{\mathrm{t}} \mathrm{BuOK}(0.62 \mathrm{~g}, 5.5$ mmol) was added over 5 min . The reaction was stirred at $0^{\circ} \mathrm{C}$ for 30 min , allowed to warm up to RT and stirred for another 30 min . A solution of $1 \mathrm{M} \mathrm{HCl}(3 \mathrm{~mL})$ was slowly added to precipitate the product, which was subsequently filtered, washed with diethyl ether, and dried under vacuum to afford N-PMI-OH as the HCl salt ($325 \mathrm{mg}, 65 \%$, yellow solid)..$^{4} \mathrm{H}$ NMR $\left(500 \mathrm{~Hz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ $\delta: 8.41-8.47(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 179.03,173.25,168.42$, $148.95,148.80,148.67,148.52,147.65,145.32$. ESI-MS: $\operatorname{expected}(\mathrm{M}-\mathrm{H})=191.0451$, found $=$ 191.0466.

Procedure for PMI-Cl, Cl-PMI-Cl and F-PMI-Cl. To a 100 mL oven-dried round bottom flask and under nitrogen atmosphere, PMI-OH, Cl-PMI-OH, or F-PMI-OH was added followed by a mixture of DCM: DMF (1: 1, 15 V). The solution was cooled down to $0^{\circ} \mathrm{C}$. Oxalyl chloride (3 equiv.) dissolved in DCM (5 V) was slowly added and the reaction proceeded for 1 h . The reaction
mixture was added to cold water (50 V). The aqueous layer was extracted with DCM ($3 \times 20 \mathrm{~V}$). The organic layer was successively washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The product dissolved in a minimal amount of DMF precipitated upon addition of water. The products were filtered and dried under vacuum to afford PMI-CI, CI-PMI$\mathbf{C l}$, or F-PMI-Cl.

PMI-Cl (flaky white solid, $0.38 \mathrm{~g}, 70 \%$) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{~Hz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta: 8.89$ (bs, 1H, NH), 7.81$7.85(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.55(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 169.25,169.04$ (2C carbonyl), $135.39,129.84,130.98,130.50,129.41,128.56,127.09\left(8 \mathrm{C}\right.$, sp $\left.^{2}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})=$ 206.0014 , found $=206.0010$.

Cl-PMI-Cl (off-white solid, $0.38 \mathrm{~g}, 93 \%$) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{~Hz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta: 9.02$ (bs, $1 \mathrm{H}, \mathrm{NH}$), 7.82 $(\mathrm{s}, 1 \mathrm{H}), 7.76-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.54(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 168.96,165.81$ (2 C carbonyl), $160.95,134.11,133.16,132.26,130.57,130.28,129.04,128.90,128.03$ ($8 \mathrm{C}, \mathrm{sp}^{2}$). ESI-MS: expected $(\mathrm{M}-\mathrm{H})=239.9625$, found $=239.9620$.

F-PMI-Cl (light yellow solid, $0.75 \mathrm{~g}, 76 \%){ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{~Hz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta: 11.54$ (bs, $1 \mathrm{H}, \mathrm{NH}$), 7.87-7.91 (m, 2H), 7.39-7.43 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 169.22,166.00(2 \mathrm{C}$ carbonyl), $163.03\left(\mathrm{~d}, J_{\mathrm{CF}}=248 \mathrm{~Hz}\right), 134.43,131.99\left(\mathrm{~d}, J_{\mathrm{CF}}=7.5 \mathrm{~Hz}\right), 130.72,123.61\left(\mathrm{~d}, J_{\mathrm{CF}}=2.5\right.$ $\mathrm{Hz}), 115.82\left(\mathrm{~d}, J_{\mathrm{CF}}=21 \mathrm{~Hz}\right)\left(8 \mathrm{C}, \mathrm{sp}^{2}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})=223.9920$, found $=239.9625$.

Procedure for PMI-9 or HO-PMI-CI. To a 100 mL oven-dried round bottom flask and under nitrogen atmosphere, HO-PMI-OH was added followed by a mixture of anhydrous DCM: DMF (1: $1,15 \mathrm{~V}$). The solution was cooled down to $0^{\circ} \mathrm{C}$. Oxalyl chloride (3 equiv.) dissolved in anhydrous DCM (5 V) was slowly added and the reaction proceeded for 2 h . The reaction mixture was added to cold water $(10 \mathrm{~V})$. The aqueous layer was extracted with DCM $(20 \mathrm{~V})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using hexanes: EtOAc gradient (90:10 to 70:30) to afford PMI-9 or HO-PMI-Cl ($33 \mathrm{mg}, 3.5 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{~Hz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta: 11.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, $10.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.78-7.81(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.93(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta$ $169.68,166.38$ (2C carbonyl), $159.79,134.85,131.42,127.00,117.99,115.60$ (8 C, sp 2). ESI-MS: expected $(\mathrm{M}-\mathrm{H})=221.9963$, found $=221.9961$

General procedure for the syntheses of PMI-1, PMI-2, PMI-3, and PMI-6

PMI-Cl or Cl-PMI-Cl was dissolved in methanol (15 V) followed by the desired indoline (2-3 eq). The reaction was stirred at $25^{\circ} \mathrm{C}$ for at least 16 h . The methanol was evaporated in vacuo, and EtOAc was added. The organic layer was successively washed with 1 M HCl , water and brine, dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using DCM: MeOH (20:1) followed by HPLC purification $\left(\mathrm{H}_{2} \mathrm{O}\right.$: ACN gradient 0.1% formic acid) to afford PMI-1 or hexanes: EtOAc (80:20) to afford PMI-2, PMI-3 or PMI-6.

PMI-1 (orange solid, 7\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta: 7.28$ (bs, 1H, NH), [7.18-7.24 (m, 6H) 5 H phenyl ring Hs and 1 H indoline ring H], $6.85(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H} 21), 6.72(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}$, $\mathrm{H} 20), 6.01(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H} 19), 4.34\left(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{~N}^{2} \mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 3.19(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, $\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.46,167.90$ (2C carbonyl), 141.94, 137.57, $132.74,129.92,129.77,128.03,127.77,126.15,124.73,122.87,115.25,110.79\left(14 \mathrm{C}, \mathrm{sp}^{2}\right), 54.04$ $\left(1 \mathrm{C}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 29.55\left(1 \mathrm{C}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})=289.0983$, found $=$ 289.0963.

PMI-2 (bright red solid, 5\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta: ~ 7.19-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.14(\mathrm{~m}, 2 \mathrm{H})$ phenyl ring Hs], 7.01 (d, $1 \mathrm{H} J=8.0 \mathrm{~Hz}, \mathrm{H} 22$), $6.90(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H} 21), 6.78$ (t, $1 \mathrm{H}, J=8.0$ $\mathrm{Hz}, \mathrm{H} 20$), 5.98 (d, 1H, $J=8.0 \mathrm{~Hz}, \mathrm{H} 19), 4.37\left(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 3.22(\mathrm{t}, 2 \mathrm{H}, J=8.0$ $\mathrm{Hz}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 169.72,167.25$ (2C carbonyl), 141.34, 133.66, $132.90,131.45,129.59,128.67,127.75,126.02,124.81,123.36,115.44,108.27\left(14 \mathrm{C}, \mathrm{sp}^{2}\right), 54.19$ $\left(1 \mathrm{C}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 29.46\left(1 \mathrm{C}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})=323.0587$, found $=$ 323.0599 .

PMI-3 (red solid, 9\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) δ : 7.20-7.26 (m, 5 H , phenyl ring Hs, 7.13 (bs, $1 \mathrm{H}, \mathrm{NH}) 7.07(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}$, indoline ring H), $6.41(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}$, indoline ring H), 5.51 (s, 1H, H22), $4.48(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H} 15), 3.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.12(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H} 16),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.30$, 167.86 (2C carbonyl), 158.38 (C-OMe), 142.71, 137.03, $130.06,129.81,127.92,127.67,124.75,124.51,110.23,110.07,101.04$ ($14 \mathrm{C}, \mathrm{sp}^{2}$), 55.01 (1 C , $\left.\mathrm{CH}_{3}\right), 54.72\left(1 \mathrm{C}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 28.62\left(1 \mathrm{C}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})=319.1083$, found $=319.1089$.

PMI-6 (red solid, 6\%). ${ }^{1} \mathrm{H}$ NMR (500 Hz, CDCl_{3}) $\delta: ~[7.25-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.16$ phenyl ring Hs], [7.16 (bs, 1 H$), 6.68(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 5.89(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz})$ indoline ring Hs], $4.36\left(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2}\right), 3.18\left(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{~N}^{2} \mathrm{CH}_{2}-\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 170.02,167.58$ (2C, carbonyl), 140.58, 137.01, 134.34, 129.61, 128.25, 127.82, 127.71, 125.99, 124.86, 115.56, $111.40\left(14 \mathrm{C}, \mathrm{sp}^{2}\right), 53.99\left(1 \mathrm{C}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 29.20\left(1 \mathrm{C}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})=323.0587$, found $=323.0606$.

Procedure for the synthesis of PMI-4

Cl-PMI-Cl ($250 \mathrm{mg}, 1.03 \mathrm{mmol}$) was dissolved in 5 -chloroindoline ($3.75 \mathrm{~mL}, 29.5 \mathrm{mmol}$). The reaction was stirred at $95{ }^{\circ} \mathrm{C}$ for at least 6 h . The reaction mixture was diluted with EtOAc. The reaction mixture was successively washed with $3 \times 1 \mathrm{M} \mathrm{HCl}$, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using DCM: methanol (99:1) to afford PMI-4 (red solid, $226 \mathrm{mg}, 61 \%$)

PMI-4. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta:[7.15-7.26(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~m}, 1 \mathrm{H}), 5.89(\mathrm{~d}, 1 \mathrm{H}$, $J=8.5 \mathrm{~Hz}$) aromatic Hs], $4.38\left(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.20\left(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2}-\right.$ CH_{2}). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 169.57,167.13$ (2C carbonyl), 140.15, 137.58, 134.64, $133.87,131.15,129.53,128.87,128.37,128.14,127.75,126.04,125.09,115.90,109.08\left(14 \mathrm{C}, \mathrm{sp}^{2}\right)$, $54.30\left(1 \mathrm{C}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.25\left(1 \mathrm{C}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})=357.0198$, found $=$ 357.0226 .

Procedure for the synthesis of PMI-5

PMI-CI

Neat $120{ }^{\circ} \mathrm{C}$

PI

PMI-5

PMI-Cl (141 mg, 0.68 mmol) was dissolved in 2-methylindoline ($2.2 \mathrm{~mL}, 16.7 \mathrm{mmol}$). The reaction was stirred at $120^{\circ} \mathrm{C}$ for at least 12 h . The reaction mixture was diluted with EtOAc. The organic layer was successively washed with $3 \times 1 \mathrm{M} \mathrm{HCl}$, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using hexanes: EtOAc (80:20) to afford PMI-5 (orange solid, $58 \mathrm{mg}, 28 \%$).

PMI-5. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta: 7.21$ (m, 5H, phenyl ring Hs), $7.15(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H} 22$), 7.13 (bs, 1H, NH), $6.80(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H} 21), 6.68(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H} 20), 5.89(\mathrm{~d}, 1 \mathrm{H}, J=7.0$ $\mathrm{Hz}, \mathrm{H} 19), 5.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.42\left(\mathrm{dd}, 1 \mathrm{H}, J=9.0,15.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.87$ (dd, $1 \mathrm{H}, J=5.5,15.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 1.43\left(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 170.17, 167.90 (2C carbonyls), $141.91,137.08,131.21,129.73,129.32,128.19,127.75,126.15,124.71,122.22,114.43,114.39$, (14C, aromatic CH and C), $59.48(1 \mathrm{C}$, aliphatic CH$), 37.53\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 22.02\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})=303.1134$, found $=303.1149$.

Procedure for the synthesis of PMI-8

PMI-CI

$\mathrm{MeOH}(15 \mathrm{~V})$, RT

PMI-8

PMI-Cl ($200 \mathrm{mg}, 0.96 \mathrm{mmol}$) was dissolved in methanol (3 mL) followed by benzimidazole (341 $\mathrm{mg}, 2.9 \mathrm{mmol}$). The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for at least 16 h . The methanol was
evaporated in vacuo, and EtOAc was added. The organic layer was successively washed with 1 M HCl , water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using hexanes: EtOAc (50:50) to afford PMI-8 (orange solid, $9.5 \mathrm{mg}, 3.4 \%$).

PMI-8. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta: 8.33$ (s, $\mathrm{N}-\mathrm{CH}=\mathrm{N}$), 8.03 (bs, 1H, NH), $7.85(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ Hz , benzimidazole ring H), 7.26-7.43 ($\mathrm{m}, 7 \mathrm{H}$, phenyl ring Hs and benzimidazole ring H), 7.03$7.07(\mathrm{~m}, 1 \mathrm{H}$, benzimidazole ring H$), 6.59(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}$, benzimidazole ring H$) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 168.38, 166.17 (2 C carbonyls), $143.77,142.20,131.24,130.72,130.13,129.90$, 129.04, 127.96, 126.76, 124.28, 124.18, 120.99, 112.86 (15C, sp ${ }^{2}$). ESI-MS: expected $(\mathrm{M}-\mathrm{H})=$ 288.0779 , found $=288.0792$.

Procedure for the synthesis of PMI-7

PMI-9 or HO-PMI-CI

PMI-7

PMI-9 or HO-PMI-Cl ($10 \mathrm{mg}, 0.045 \mathrm{mmol}$) and 2-methoxyindoline ($8 \mathrm{mg}, 0.054 \mathrm{mmol}$) were dissolved in $\mathrm{MeOH}(500 \mu \mathrm{~L})$. N , N -diisopropylethylamine ($7.8 \mu \mathrm{~L}, 0.045 \mathrm{mmol}$) was added. The reaction mixture was stirred at RT for 16 h . The methanol was evaporated in vacuo, and EtOAc was added. The organic layer was successively washed with 1 M HCl , water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using DCM: MeOH (9.5:0.5) to afford PMI-7 (orange solid, $0.8 \mathrm{mg}, 5.3 \%$).

PMI-7. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta: 7.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.11(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H} 1, \mathrm{H} 3), 7.06(\mathrm{~d}$, $1 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{H} 22), 6.72(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H} 4, \mathrm{H} 6), 6.40(\mathrm{dd}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, \mathrm{H} 21), 5.54$ $(\mathrm{d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}, \mathrm{H} 19), 4.43\left(\mathrm{t}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.24\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{3}\right), 3.13(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}). ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 170.38, 168.02 (2 C carbonyls), 158.49, 155.51, 142.89, $136.47,131.36,124.72,124.34,122.55,114.69,110.71,109.70,101.02$ ($14 \mathrm{C}, \mathrm{sp}^{2}$), 55.07 (1 C , $\left.\mathrm{OCH}_{3}\right), 54.45,28.59\left(2 \mathrm{C}, \mathrm{CH}_{2}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})=335.1037$, found $=335.1045$.

Procedure for the synthesis of PMI-10

PMI-9 or HO-PMI-Cl ($22 \mathrm{mg}, 0.098 \mathrm{mmol}$) was dissolved in 2-methylindoline ($394 \mu \mathrm{~L}, 1.5$ $\mathrm{mmol})$. The reaction was stirred at $80^{\circ} \mathrm{C}$ for at least 12 h . The reaction mixture was diluted with

EtOAc. The organic layer was successively washed with $2 \times 1 \mathrm{M} \mathrm{HCl}$, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO} 4$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using a gradient of hexanes: EtOAc (90:10 to 80:20) followed by RP-HPLC using an Agilent 1200 series equipped with Agilent Zorbax C3, $5 \mu \mathrm{~m}, 9.4 \times 250 \mathrm{~mm}$ and a gradient of 0.1 $\%$ ammonium acetate in water (Buffer A) and 0.1% ammonium acetate in acetonitrile (Buffer B) (gradient 0-3 min 95% Buffer A; 3-10 min 95 to 5% Buffer A; 10-12 min 5\% Buffer A) to afford PMI-10 (orange solid, $4.2 \mathrm{mg}, 13 \%$).

PMI-10. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta: 7.16-7.18(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}=\mathrm{C}-\mathrm{OH}$, phenol ring), $7.14(\mathrm{~m}, 1 \mathrm{H}$, H20), 7.07 (bs, NH), 6.79 (t, 1H, $J=7.4 \mathrm{~Hz}, \mathrm{H} 22$), 6.74 ($\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H} 21$), 6.69-6.71 (m, $2 \mathrm{H},-\mathrm{CH}-\mathrm{CH}=\mathrm{C}-\mathrm{OH}$, phenol ring), $5.91(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{H} 23), 5.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.81$ (bs, 1H, OH), $3.41\left(\mathrm{dd}, \mathrm{J}=9,15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.88\left(\mathrm{dd}, \mathrm{J}=6 \mathrm{~Hz}, 15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42(\mathrm{~d}, 6 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 170.29, 167.97 (2C carbonyls), 155.51, 142.07, 133.61, $130.87,126.24,124.56,122.24,121.79,115.26,114.73,113.94,\left(14 \mathrm{C}, \mathrm{sp}^{2}\right), 59.05$ (1C, aliphatic $\mathrm{CH}), 37.40\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 21.97\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$. ESI-MS: $\operatorname{expected}(\mathrm{M}-\mathrm{H})=319.1088$, found $=319.1095$.

General procedure for the synthesis of N-methylaniline analogues (PMI-11, PMI-12, PMI14, PMI-16, PMI-17, PMI-18, and PMI-19)


```
PMI-11 R \(=\mathrm{R}_{1}=\mathrm{H}\)
PMI-12 R = H, R \(=\) OMe
PMI-14 R = H, \(\mathrm{R}_{1}=\mathrm{Cl}\)
PMI-16 \(R=F, R_{1}=O M e\)
PMI-17 \(R=R_{1}=F\)
PMI-18 \(R=H, R_{1}=F\)
PMI-19 R = F, \(\mathrm{R}_{1}=\mathrm{H}\)
```

4-phenyl-1H-pyrrole-2,5-dione (1 eq) and N -methyl aniline (2.5 eq) were dissolved in N-methyl-2-pyrrolidinone (15 V). The reaction was stirred for 2 h to 16 h at $120-150^{\circ} \mathrm{C}$. The reaction mixture was diluted with EtOAc, successively washed with 1 M HCl , water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel using either isocratic or gradient solvent system of hexanes: $\operatorname{EtOAc}(90: 10$ to $70: 30)$ to obtain the desired products.

PMI-11 (yellow solid, 42\%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta: 7.11-7.19(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NH}$, phenyl ring Hs), 6.94-7.00 (m, 3 H , phenyl ring Hs), $3.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) 170.06, 167.53 (2C carbonyls), $161.13,144.61,129.34,129.29,128.77,127.92,127.59,124.58,122.10,113.81$, $(14 \mathrm{C} \mathrm{sp} 2), 40.78\left(1 \mathrm{C} \mathrm{CH}_{3}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})=277.0977$, found $=277.1014$.

PMI-12 (orange solid, 63\%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) δ : 7.14-7.19 (m, 3H, phenyl Hs), 7.08-7.11 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{C}=\mathrm{CH}$ phenyl Hs), 6.86-6.89 (m, 2H, N-C-CH), 6.59-6.66 (m, 2H, HO-C-CH), 3.71 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) 170.38, 167.64 (2C carbonyls), $157.38,142.71,138.16,129.78,127.60,127.57,124.50,114.22,110.79\left(14 \mathrm{C}, \mathrm{sp}^{2}\right), 55.66(1 \mathrm{C}$, $\left.\mathrm{OCH}_{3}\right), 42.00\left(1 \mathrm{C}, \mathrm{NCH}_{3}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})=307.1088$, found $=307.1129$.

PMI-14 (orange solid, 69\%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) δ : 7.17-7.21 (m, 3 H , phenyl Hs), 7.11-7.14 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{C}=\mathrm{CH}$ phenyl Hs), 7.06-710 (m, 2H, $2 \mathrm{Cl}-\mathrm{C}-\mathrm{CH}$), 6.83-6.87 (m, 2H, $2 \mathrm{~N}-\mathrm{C}-\mathrm{CH}$), 3.46 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) 169.65, 167.41 (2C carbonyls), 164.45, 129.86, 129.34,
$128.80,128.35,127.80,122.87\left(14 \mathrm{C}, \mathrm{sp}^{2}\right), 40.55\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})=311.0593$, found $=311.0631$.

PMI-16 (orange solid, 44\%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) δ : 7.12 (bs, 1H, NH), 6.96-7.01 (nfom, $2 \mathrm{H}, \mathrm{H} 1, \mathrm{H} 3$), 6.77-6.86 (nfom, 4 H , aniline Hs and H4, H6), 6.60-6.64 (m, 2H, aniline Hs), 3.71 (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) 170.24,167.52$ (2 C carbonyls), 160.76, $157.38,142.41,137.67,131.23\left(\mathrm{~d}, J_{\mathrm{CF}}=10 \mathrm{~Hz}\right), 124.45,114.38\left(\mathrm{~d}, J_{\mathrm{CF}}=28 \mathrm{~Hz}\right), 114.06,108.92$ $\left(14 \mathrm{C}, \mathrm{sp}^{2}\right), 55.57\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 41.68\left(1 \mathrm{C}, \mathrm{NCH}_{3}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})=325.0994$, found $=$ 325.1026 .

PMI-17 (yellow solid, 31\%) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta: 7.32$ (bs, 1H, NH), 7.01-7.05 (nfom, 2H, $\mathrm{H} 1, \mathrm{H} 3$), 6.78-6.90 (nfom, $6 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 6$, aniline Hs), $3.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $170.21,167.59$ (2 C carbonyls), $162.38\left(\mathrm{~d}, J_{\mathrm{CF}}=253 \mathrm{~Hz}\right.$), $160.00\left(\mathrm{~d}, J_{\mathrm{CF}}=244 \mathrm{~Hz}\right), 142.18,140.75$ $\left(\mathrm{d}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 131.32\left(\mathrm{~d}, J_{\mathrm{CF}}=6.7 \mathrm{~Hz}\right), 125.40\left(\mathrm{~d}, J_{\mathrm{CF}}=2.5 \mathrm{~Hz}\right), 124.33\left(\mathrm{~d}, J_{\mathrm{CF}}=6.7 \mathrm{~Hz}\right)$, $115.76\left(\mathrm{~d}, J_{\mathrm{CF}}=18 \mathrm{~Hz}\right), 114.82\left(\mathrm{~d}, J_{\mathrm{CF}}=17.1 \mathrm{~Hz}\right), 111.25\left(14 \mathrm{C}\right.$ aromatic $\left.\mathrm{sp}^{2}\right), 41.34\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$. ESI-MS: $\operatorname{expected}(\mathrm{M}-\mathrm{H})=313.0794$, found $=313.0829$.

PMI-18 (yellow solid, 62\%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) δ : 7.13-7.20 (nfom, 4H, NH and phenyl Hs, H4, H5, H6), 7.05-7.10 (nfom, 2H, H1,H3), 6.87-6.92 (m, 2H, H4, H6), 6.76-6.82 (m, 2H, 2 $\mathrm{N}-\mathrm{C}-\mathrm{CH}), 3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) 170.07, 167.50 (2C carbonyls), 161.04, $158.60,142.20,140.86,129.48,129.22,127.95,127.61,124.12\left(\mathrm{~d}, J_{\mathrm{CF}}=7.9 \mathrm{~Hz}\right), 115.55\left(\mathrm{~d}, J_{\mathrm{CF}}=\right.$ $23 \mathrm{~Hz}), 112.59\left(14 \mathrm{C}, \mathrm{sp}^{2}\right), 41.32\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})=295.0888$, found $=$ 295.0923.

PMI-19 (yellow solid, 43%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) δ : 7.15 (bs, 1H, NH), 7.08-7.12 (nfom, 2H, aniline Hs), 7.02-7.07 (nfom, 2H, H1, H3), 6.95-6.99 (nfom, 1H, aniline Hs), 6.88-6.91 (nfom, 2H, aniline Hs), 6.78-6.83 (nfom, 2H, H4, H6), $3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{Hz} ,\mathrm{CDCl}{ }_{3}$) 170.91, 167.56 (2C carbonyls), $160.97,144.29,141.72,130.99\left(\mathrm{~d}, J_{\mathrm{CF}}=8.3 \mathrm{~Hz}\right), 128.78,125.30,124.83$, $122.25,114.59\left(\mathrm{~d}, J_{\mathrm{CF}}=21.8 \mathrm{~Hz}\right), 111.73\left(14 \mathrm{C}, \mathrm{sp}^{2}\right), 40.64\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})$ $=295.0888$, found $=295.0918$.

Procedure for the synthesis of PMI-13

To a dried vial and under nitrogen atmosphere, N-PMI-OH ($50 \mathrm{mg}, 0.22 \mathrm{mmol}$) was dissolved in anhydrous DMF $(100 \mu \mathrm{~L})$. The reaction mixture was cooled down to $0^{\circ} \mathrm{C}$. A solution of thionyl chloride ($321 \mu \mathrm{~L}, 4.4 \mathrm{mmol}$) dissolved in $\mathrm{DCM}(1 \mathrm{~mL})$ was added dropwise over 5 min . The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h and allowed to warm up to RT before concentration in vacuo to afford $\mathrm{N}-\mathrm{PMI}-\mathrm{Cl}$ as a HCl salt. The product was used in the next step without further purification. N-PMI-CI and 2-methylindoline ($517 \mu \mathrm{~L}, 4.0 \mathrm{mmol}$) were dissolved in N-methyl-2-
pyrrolidinone (1 mL). The reaction mixture was stirred at $95^{\circ} \mathrm{C}$ for 16 h . A solution of $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}$ (80:20) was added to the reaction mixture. The organic layer was successively washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using a gradient of hexanes: EtOAc (60: 40) with $0.1 \% 1 \mathrm{M} \mathrm{HCl}$ to obtain PMI-13 (orange solid, 25\%).

PMI-13. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta: 8.43(\mathrm{~d}, 2 \mathrm{H}, J=5.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{N}-\mathrm{CH}), 7.36(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH})$, $7.24(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{~N}-\mathrm{C}-\mathrm{CH}), 7.04(\mathrm{~d}, 2 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}-\mathrm{CH}), 6.89(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H} 20)$, 6.73 (t, 1H, J=7.6 Hz, H21), $5.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H} 22), 5.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}), 3.50(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $\left.8.8,15.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.91\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.4,15.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.50(\mathrm{~d}, \mathrm{~J}=6.4,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 Hz , CDCl_{3}) 169.32, 166.90 (2C carbonyls), 148.98, 142.51, 132.15, 126.19, 125.30, 123.75, 123.37, 115.69 , (13C, sp ${ }^{2}$), $60.80(1 \mathrm{C}$, aliphatic CH$) 37.61\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 22.06\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})=304.1092$, found $=304.1074$.

Procedure for the synthesis of PMI-15

F-PMI-CI

$90^{\circ} \mathrm{C}, 16 \mathrm{~h}$

F-PMI-Cl ($20 \mathrm{mg}, 0.087 \mathrm{mmol}$) was mixed with 2-methylindoline ($14 \mu \mathrm{~L}, 0.11 \mathrm{mmol}$). The reaction was stirred at $90^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was diluted with EtOAc. The organic layer was successively washed with $3 \times 1 \mathrm{M} \mathrm{HCl}$, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using hexanes: EtOAc (80: 20) to afford PMI-15 (yellow solid, $15.7 \mathrm{mg}, 55 \%$).

PMI-15. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta: 7.29$ (bs, $1 \mathrm{H}, \mathrm{NH}$), 7.16-7.22 (nfom, $3 \mathrm{H}, \mathrm{N}-\mathrm{C}-\mathrm{CH}, \mathrm{H} 1, \mathrm{H} 3$, H18), 6.89-6.95 (nfom, 2H, H4, H6), 6.82 (t, 1H, $J=7.6 \mathrm{~Hz}, \mathrm{H} 19), 6.71$ (t, 1H, $J=7.6 \mathrm{~Hz}, \mathrm{H} 20$), 5.47 (d, 1H, $J=8 \mathrm{~Hz}, \mathrm{H} 21$), $5.22(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{dd}, 1 \mathrm{H}, J=9.2,15.6 \mathrm{~Hz}), 2.87(\mathrm{dd}, 1 \mathrm{H}, J=5.2$, $15.6 \mathrm{~Hz}), 1.44(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) 170.16, 167.79 (2C carbonyls), $161.06,141.61,136.90,131.36,131.16\left(\mathrm{~d}, J_{\mathrm{CF}}=8.3 \mathrm{~Hz}\right), 131.12,126.24,125.82,124.87,122.48$, $114.76\left(\mathrm{app} \mathrm{t}, J_{\mathrm{CF}}=21.5 \mathrm{~Hz}\right) ., 113.07\left(14 \mathrm{C}, \mathrm{sp}^{2}\right), 59.67(1 \mathrm{C}, \mathrm{CH}), 37.56\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 22.11(1 \mathrm{C}$, $\left.\mathrm{CH}_{3}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})=321.1045$, found $=321.1080$.

Procedure for the synthesis of PMI-20

F-PMI-Cl ($30 \mathrm{mg}, 0.13 \mathrm{mmol}$) and 6-methoxyindoline ($60 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) were dissolved in methanol (1 mL). N , N-Diisopropylethylamine ($23 \mu \mathrm{~L}, 0.13 \mathrm{mmol}$) was added and the reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 16 h . The methanol was evaporated in vacuo, and EtOAc was added. The organic layer was successively washed with $3 \times 1 \mathrm{M} \mathrm{HCl}$, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel using hexanes: EtOAc (90: 10) to afford PMI-20 (orange solid, $25.4 \mathrm{mg}, 56 \%$).

PMI-20. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta: 7.29$ (bs, 1H, NH), 7.17-7.22 (nfom, 2H, H1, H3), 7.08 (d, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H} 20$), 6.92-6.98 (nfom, 2H, H4, H6), 6.43 (dd, $1 \mathrm{H}, \mathrm{J}=2.4,8.0 \mathrm{~Hz}, \mathrm{H} 19), 5.49(\mathrm{~d}$, $1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{H} 17$), 4.45 (t, $2 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2}$), $3.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.14(\mathrm{t}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{~N}-$ $\mathrm{CH}_{2}-\mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR 170.26, 167.74 (2C carbonyls), 163.39, 160.91, 158.49, 142.58, 136.88, $131.54\left(\mathrm{~d}, J_{\mathrm{CF}}=8.1 \mathrm{~Hz}\right), 126.10,124.91,124.62,114.77\left(\mathrm{~d}, J_{\mathrm{CF}}=20.9 \mathrm{~Hz}\right), 110.01,109.09,101.34$ $\left(14 \mathrm{C}, \mathrm{sp}^{2}\right), 55.05,54.72\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 28.63\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$. ESI-MS: expected $(\mathrm{M}-\mathrm{H})=337.0994$, found $=337.1019$.

Table S1. IC50 values of PMI compounds for HK853 and AirS inhibition. *Indicates that complete inhibition was not achieved at highest tested concentration. These values are presented as a lower bound, with the IC_{50} value being > the number indicated in GraphPad Prism.

	Compound	IC_{50} values ($\mu \mathrm{M}$) (95% confidence interval) for HK853 and AirS		Compound	IC_{50} values ($\mu \mathrm{M}$) (95\% confidence interval) for HK853 and AirS
$\begin{aligned} & \text { PMI- } \\ & 1 \end{aligned}$		$\begin{gathered} 1.4 \text { (1.1-1.7) } \\ >7.6 \text { (1.3- } \\ \text { ambiguous)* } \end{gathered}$	$\begin{gathered} \text { PMI- } \\ 11 \end{gathered}$		$\begin{gathered} >87(29-334)^{*} \\ >477 \text { (90- } \\ \text { ambiguous)* } \end{gathered}$
$\begin{gathered} \text { PMI- } \\ 2 \end{gathered}$		$\begin{gathered} 1.7 \text { (0.88-3.1) } \\ >1000^{*} \end{gathered}$	$\begin{aligned} & \text { PMI- } \\ & 12 \end{aligned}$		$\begin{gathered} 44(3.2-60) \\ >41(3.7- \\ 8699)^{*} \end{gathered}$
$\begin{gathered} \text { PMI- } \\ 3 \end{gathered}$		$\begin{gathered} 23(14-38) \\ >1000^{*} \end{gathered}$	$\begin{aligned} & \text { PMI- } \\ & 13 \end{aligned}$		$\begin{gathered} >291(117- \\ 1073)^{*} \\ >1250 \end{gathered}$
$\begin{gathered} \text { PMI- } \\ 4 \end{gathered}$		$\begin{gathered} 33 \text { (28-39) } \\ >1000^{*} \end{gathered}$	$\begin{aligned} & \text { PMI- } \\ & 14 \end{aligned}$		$\begin{gathered} >419(213- \\ 949)^{*} \\ >605(34- \\ \text { ambiguous)* } \end{gathered}$
$\begin{gathered} \text { PMI- } \\ 5 \end{gathered}$		$\begin{gathered} >98(34-280)^{*} \\ 153(27- \\ \text { ambiguous)* } \end{gathered}$	$\begin{aligned} & \text { PMI- } \\ & 15 \end{aligned}$		$\begin{gathered} >138(110- \\ 1242)^{*} \\ >130(58- \\ 3927)^{*} \\ \hline \end{gathered}$
$\begin{gathered} \text { PMI- } \\ 6 \end{gathered}$		$\begin{gathered} 4.1 \text { (13-44) } \\ >929 \\ \text { (ambiguous)* } \end{gathered}$	$\begin{aligned} & \text { PMI- } \\ & 16 \end{aligned}$		$\begin{gathered} >208(107- \\ 454)^{*} \\ >1250^{*} \end{gathered}$
$\begin{aligned} & \text { PMI- } \\ & 7 \end{aligned}$		$\begin{gathered} 5.4(3.2-9.1) \\ >1250^{*} \end{gathered}$	$\begin{aligned} & \text { PMI- } \\ & 17 \end{aligned}$		$\begin{gathered} >236(168- \\ 345)^{*} \\ >1250^{*} \end{gathered}$
$\begin{gathered} \text { PMI- } \\ 8 \end{gathered}$		$\begin{aligned} & 7.9 \text { (3.1-20) } \\ & >781 \text { (77-- } \\ & \text { ambiguous)* } \end{aligned}$	$\begin{gathered} \text { PMI- } \\ 18 \end{gathered}$		$\begin{aligned} & >1250^{*} \\ & >1250^{*} \end{aligned}$
$\begin{gathered} \text { PMI- } \\ 9 \end{gathered}$		$\begin{gathered} >477(198- \\ 1587)^{*} \\ 39(17-96) \end{gathered}$	$\begin{gathered} \text { PMI- } \\ 19 \end{gathered}$		$\begin{gathered} 145(85-270) \\ >1250^{*} \end{gathered}$


```
Concentration (\muM)
```


Concentration ($\mu \mathrm{M}$)	0	0.01	0.1	1	5	10	25	50	100	500	750	10001250

BODIPY-FL

Coomassie

Concentration $(\mu \mathrm{M}) 0 \begin{array}{lllllllllllll} & 0.01 & 0.1 & 1 & 5 & 10 & 25 & 50 & 100 & 500 & 750 & 1000 & 1250\end{array}$

Coomassie

$$
\text { Concentration }(\mu \mathrm{M}) 000.01 \quad 0.1 \quad 1 \quad \begin{array}{lllllllll}
& 5 & 10 & 25 & 50 & 100 & 500 & 750 & 1000 \\
1250
\end{array}
$$

BODIPY-Fl

Concentration ($\mu \mathrm{M}$) $0 \quad 0.01 \quad 0.1 \quad 1 \quad \begin{array}{llllllllll}5 & 10 & 25 & 50 & 100 & 500 & 750 & 1000 & 1250\end{array}$
BODIPY-Fl
Sypro orange

Concentration $(\mu \mathrm{M}) 0.01$

BODIPY Fl

Coomassie

$$
\text { Concentration }(\mu \mathrm{M}) \quad 0 \quad 0.01 \quad 0.1 \quad 1 \quad 5 \quad 10 \quad 25 \quad 50
$$

BODIPY Fl

Coomassie

$$
\begin{aligned}
& \text { Concentration }(\mu \mathrm{M}) 0.01 \quad 0.1 \quad 1 \quad 5 \quad 10 \quad 25 \quad 50 \quad 100 \quad 50075010001250
\end{aligned}
$$

Concentration $(\mu \mathrm{M}) 0.01 \quad 0.1 \quad 1 \quad 5 \quad 10 \quad 25 \quad 50 \quad 100 \quad 50075010001250$
BODIPY Fl \square
Coomassie

Concentration $(\mu \mathrm{M}) 0.01 \quad 0.1 \quad 1 \quad 5 \quad 10 \quad 25 \quad 50 \quad 100 \quad 50075010001250 \quad 0$
BODIPY Fl $\quad-$

$$
\text { Concentration }(\mu \mathrm{M}) 0.01 \quad 0.1 \quad 1 \quad 5 \quad 10 \quad 25 \quad 50 \quad 100
$$

BODIPY Fl

$$
\square----\infty-\infty-\infty
$$

Coomassie \square

Concentration $(\mu \mathrm{M}) 0.01 \quad 0.1 \quad 1 \quad 5 \quad 10 \quad 25 \quad 50 \quad 100 \quad 50075010001250 \quad 0$
BODIPY Fl - -
Coomassie

Concentration $(\mu \mathrm{M}) 0.01 \quad 0.1 \quad 1 \quad 5 \quad 10 \quad 25 \quad 50 \quad 100 \quad 500 \quad 75010001250 \quad 0$
BODIPY Fl

Coomassie

Concentration $(\mu \mathrm{M}) 0.01 \quad 0.1 \quad 1 \quad \begin{array}{lllllllllll} & 5 & 10 & 25 & 50 & 100 & 500 & 750 & 1000 & 1250 & 0\end{array}$
BODIPY Fl

Coomassie

Concentration $(\mu \mathrm{M}) 0.01 \quad 0.1 \quad 1 \quad 5 \quad 10 \quad 25 \quad 50$

Coomassie $\square+\infty$

[^0]\square
Coomassie \square

Coomassie

Figure S2: Dose-response curves of the inhibition of HK853 activity with PMI-1 to PMI-20 using B-FL-ATP γ S inhibition assay.

Concentration $(\mu \mathrm{M}) 0 \begin{array}{lllllllllll} & 0.01 & 0.1 & 1 & 5 & 10 & 25 & 50 & 100 & 500 & 750 \\ 1000\end{array}$

$$
\begin{array}{lllllllllll}
\text { Concentration }(\mu \mathrm{M}) 0 & 0.01 & 0.1 & 1 & 5 & 10 & 25 & 50 & 100 & 500 & 750 \\
1000
\end{array}
$$

BODIPY Fl $-\infty-\infty-\infty-\infty-\infty$

Concentration ($\mu \mathrm{M}$) 0.01
BODIPY Fl

 Concentration $(\mu \mathrm{M}) 0 \quad 0.01$

Coomassie

Concentration $(\mu \mathrm{M}) 0 \begin{array}{llllllllllll}0.01 & 0.1 & 1 & 5 & 10 & 25 & 50 & 100 & 500 & 750 & 1000 & 1250\end{array}$
BODIPY Fl

Coomassie

$$
\text { Concentration }(\mu \mathrm{M}) 0 \quad 0.01 \quad 0.1 \quad 1 \quad 5 \quad 10 \quad 25 \quad 501005007501000
$$

Concentration $(\mu \mathrm{M}) 0 \quad 0.01 \quad 0.1 \quad 1 \quad 5 \quad 10 \quad 25 \quad 50100 \quad 500 \quad 75010001250$
BODIPY Fl

Coomassie \square

Concentration $(\mu \mathrm{M}) 0.01 \quad 0.1 \quad 1 \quad 5 \quad 10 \quad 25 \quad 50$
BODIPY
Fl
$--\square---\square-\square-\square$
Coomassie

Concentration $(\mu \mathrm{M}) 0.01 \quad 0.1 \quad 1 \quad 5 \quad 10 \quad 25 \quad 50100 \quad 50075010001250 \quad 0$
BODIPY Fl - -
Coomassie $\square-\square-\square$

Concentration $(\mu \mathrm{M}) 0.01$

Coomassie

Concentration $(\mu \mathrm{M}) 0.01 \quad 0.1 \quad 1 \quad 5 \quad 10 \quad 25 \quad 50100 \quad 50075010001250 \quad 0$
\square
Coomassie \square

Concentration $(\mu \mathrm{M}) 0.01$
BODIPY Fl

Coomassie

Concentration $(\mu \mathrm{M}) 0.01$

BODIPY Fl

Coomassie

Figure S3: Dose-response curves of the inhibition of AirS activity with PMI-1 to PMI-20 using B-FL-ATP γ S inhibition assay.

Figure S4. HK853 aggregation analysis by Native PAGE and silver staining at various concentrations of the lead PMI compounds (1 to $1250 \mu \mathrm{M}$). NH125 $(1250 \mu \mathrm{M})$ was used as a positive control. Only analogs that were carried forward into advanced testing were evaluated in this assay.

Figure S5: Docking and 2D-diagram interactions of the lead PMI compounds in the ATP-binding pocket of the catalytic domain of HK853. A. PMI-11, B. PMI-12, C. PMI-15, and D. PMI-20. In the docking figures, the critical residues known to interact with ATP are shown as sticks in green/red/blue (D411, N380, Y384, K383, and R430) and the maleimide structures are in magenta/blue/red. Magenta corresponds to carbon, blue to nitrogen, and red to oxygen. Figures generated with Schrödinger Maestro.

Table S2: Docking scores, glide gscores, and glide emodels of the lead compounds and a nonbinder PMI-18 (docking interactions in the ATP-binding pocket of HK853 and 2D diagram).

| Compound | Docking score | Glide gscore | Glide emodel |
| :--- | :--- | :--- | :--- | :--- |
| PMI-3 | -9.030 | -9.034 | -69.945 |
| PMI-5 | -7.924 | -7.928 | -50.600 |
| PMI-11 | -8.129 | -8.134 | -57.673 |
| PMI-12 | -8.322 | -8.325 | -66.450 |
| PMI-15 | -8.100 | -8.104 | -44.792 |
| PMI-20 | -8.902 | -8.906 | -68.093 |
| PMI-18 | -7.905 | -7.909 | -64.990 |
| PMI-18 | | | |

Table S3. AutoQSAR model built with all 20 PMI compounds. Compounds PMI-4, PMI-6, PMI-14, PMI-15, and PMI-19 were used as test compounds and the other molecules as the training set. Red indicates that the atom positively participates in the activity of the molecule whereas blue means that the atom negatively affects its activity. The color saturation represents the magnitude of the contribution.

Report for Numeric Model kpls_radial_8
Ranking score $=0.788991$

Training Set		Test Set	
S.D.	$\mathrm{R}^{\wedge} 2$	RMSE	$\mathrm{Q}^{\wedge} 2$
0.4361	0.7784	0.3217	0.7854

PMI	Structure	Predicte d	Observed	PMI	Structure	Predicted	Observed
1		-0.353	-0.146	11		-1.996	-1.940
2							

3		-0.725	-1.362	13		-2.000	-2.464
4		-1.129	-1.519	14		-2.530	-2.622
5		-1.767	-1.991	15		-2.360	-2.140
6		-1.008	-0.613	16		-2.702	-2.318
7		-0.964	-0.732	17		-2.885	-2.375
8		-1.506	-0.898	18		-2.530	-3.097
9		-2.150	-2.679	19		-2.351	-2.161

10		-2.071	-2.297	20		-1.388	-1.447

Figure S6: Inhibition profile of GSK-3 β by PMI-3, PMI-5, PMI-11, PMI-12, PMI-15, PMI-20, and staurosporine, a known kinase inhibitor, using the ADP-Glo ${ }^{\mathrm{TM}}$ assay. Each reaction contains GSK3 $\beta(1 \mathrm{ng})$, ATP $(25 \mu \mathrm{M})$, the kinase substrate $(0.2 \mu \mathrm{~g} / \mu \mathrm{L})$, and the test compounds (10 nM to

1 mM) or the inhibitor dilution solution (DMSO $25 \% /$ kinase buffer 75%). A positive control without any inhibitor and a sample containing only the pre-mixed ATP/substrate was used to determine respectively the maximum luminescence signal and the background luminescence signal. ${ }^{3}$

Figure S7: Effect of PMI-3 on the transcription of walk/yycG (A), saeS (B), and agr (C).

Table S4. Summary of data for lead inhibitors. *Indicates that complete inhibition was not achieved at highest tested concentration. These values are presented as a lower bound, with the IC_{50} value being $>$ than the number indicated in GraphPad Prism. Hemolytic activity of the PMI compounds evaluated at $500 \mu \mathrm{M}$ in sheep red blood cells. Cell viability evaluated with A549 cells exposed to compounds $(250 \mu \mathrm{M})$. Hemolysis activity of S. aureus evaluated in WCUH29 and CAMRSA 923 pre-exposed to inhibitors $(50 \mu \mathrm{M})$ and the supernatants used for cytotoxicity assays in sheep red blood cells. DMSO-treated WCUH29 was positive control, PBS-only was negative control. $\%$ Hemolysis $=[($ A450 test sample - A450 negative control $) /(\mathrm{A} 450$ positive control A450 negative control) $\times 100$. Values of lysed cells obtained from three independent experiments. Bacterial burden in infected skin compares WCUH29-infected group with vehicle control treatment to WCUH29-infected group with PMI-5 treatment. ND: Not determined.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compounds PMI-1 to PMI-20 and key intermediates

4-fluorophenylacetamide

PMI-OH

PMI-Cl

F-PMI-OH

F-PMI-Cl

PMI-9 or HO-PMI-Cl

N-PMI-OH

PMI-1

PMI-2

PMI-3

PMI-4

PMI-5

PMI-6

PMI-7

PMI-8

PMI-10

PMI-11

PMI-12

PMI-13

PMI-14

PMI-15

PMI-16

PMI-17

PMI-18

PMI-19

PMI-20

References

1. Wilke, K. E.; Francis, S.; Carlson, E. E., Activity-Based Probe for Histidine Kinase Signaling. J. Am. Chem. Soc. 2012, 134 (22), 9150-9153.
2. Chase, O. M.; Espinasse, A.; Wilke, K. E.; Carlson, E. E., Exploration of the Effects of γ-Phosphate-Modified ATP Analogues on Histidine Kinase Autophosphorylation. Biochem. 2018, 57 (29), 4368-4373.
3. Sun, F.; Ji, Q.; Jones, M. B.; Deng, X.; Liang, H.; Frank, B.; Telser, J.; Peterson, S. N.; Bae, T.; He, C., AirSR, a [2Fe-2S] Cluster-Containing Two-Component System, Mediates Global Oxygen Sensing and Redox Signaling in Staphylococcus aureus. J. Am. Chem. Soc. 2012, 134 (1), 305-314.
4. Wilke, K. E.; Francis, S.; Carlson, E. E., Inactivation of Multiple Bacterial Histidine Kinases by Targeting the ATP-Binding Domain. ACS Chem. Biol. 2015, 10 (1), 328-335.
5. Academy, S. Machine Learning for Materials Science 2020. https://www.schrodinger.com/system/files/ml_materialsscience_2020-3.pdf (accessed August, 10th 2020).
6. Vidugiriene, J. Z., H.; Vidugiris, G.; Goueli, S. A. ADP-Glo ${ }^{\text {TM }}$ Kinase Assay Application. Notes Ser-Thr Kinase Series: GSK3 β. GSK3 β Kinase Assay. . https://www.promega.com/-/media/files/resources/protocols/kinase-enzyme-appnotes/gsk3b-kinase-assay-protocol.pdf?la=en.
7. Goswami, M.; Wilke, K. E.; Carlson, E. E., Rational Design of Selective Adenine-Based Scaffolds for Inactivation of Bacterial Histidine Kinases. J. Med. Chem. 2017, 60 (19), 81708182.
8. Xu, G. Q.; Zhang, C.; Zhang, L.; Zhou, X. L.; Yang, B.; He, Q. J.; Hu, Y. Z., Synthesis, cytotoxicity and protein kinase C inhibition of arylpyrrolylmaleimides. Arch Pharm (Weinheim) 2008, 341 (5), 273-80.
9. Smith, D. G.; Buffet, M.; Fenwick, A. E.; Haigh, D.; Ife, R. J.; Saunders, M.; Slingsby, B. P.; Stacey, R.; Ward, R. W., 3-Anilino-4-arylmaleimides: potent and selective inhibitors of glycogen synthase kinase-3 (GSK-3). Bioorg. Med. Chem. Lett. 2001, 11 (5), 635-9. 10. Cherney, E. C. L., J. M.; Green, J. C.; Baran, P. S. , A Unified Approach to ent-Atisane Diterpenes and Related Alkaloids: Synthesis of (-)-Methyl Atisenoate, (- -Isoatisine, and the Hetidine Skeleton. . J. Am. Chem. Soc. 2014, 136, 12592-12595.
10. Arnould, J.-C. C., S.; Boyle, F. T.; Gibson, K. H. WO 2005/102997 A1. 2005.

Metabolism Protocols and Data

Metabolism Methods and Data

Data obtained from Pharmaron.

Data Summary

Table 1. Metabolic Stability of Test Compounds in Pooled Human and Male Mouse Liver Microsomes (a)

Compound ID	Species	$\mathbf{T}_{1 / 2}(\mathbf{m i n})$	$\mathbf{C L}_{\text {int }}(\boldsymbol{\mu L} / \mathbf{m i n} / \mathbf{m g}$ protein)	Scaled-up CL $_{\text {int }}(\mathbf{m L} / \mathbf{m i n} / \mathbf{K g})$
	Human	6.54	211.98	265.85
	Mouse	22.99	60.28	263.74
ERPM4 (PMI-4)	Human	51.10	27.12	34.02
	Mouse	11.21	123.65	540.97
ERPM5 (PMI-5)	Human	18.23	76.04	95.36
	Mouse	$<2.26^{*}$	>614.02	>2686.34

* If \% remaining at 15 minutes was lower than 1%, then $\mathrm{CL}_{\text {int }}$ and $\mathrm{t}_{1 / 2}$ will be reported as " >614.02 " and " <2.26 ", respectively.

Table 2. Metabolic Stability of Test Compounds in Pooled Human and Male Mouse Liver Microsomes (b)

Compound ID	Species	Assay Format	Remaining Percentage (\%)				
			0 min	15 min	30 min	45 min	60 min
Diclofenac	Human	With NADPH	100.00	9.95	4.16	2.59	1.66
		Without NADPH	100.00	94.81	92.08	93.17	94.54
	Mouse	With NADPH	100.00	49.55	40.48	33.87	32.79
		Without NADPH	100.00	90.58	93.48	95.89	95.17
ERPM4 (PMI-4)	Human	With NADPH	100.00	79.42	62.95	52.86	44.33
		Without NADPH	100.00	90.27	85.79	93.77	90.27
	Mouse	With NADPH	100.00	30.74	10.29	4.55	2.52
		Without NADPH	100.00	88.19	85.78	85.06	81.20
ERPM5 (PMI-5)	Human	With NADPH	100.00	52.67	28.28	15.80	10.55
		Without NADPH	100.00	94.06	97.24	92.78	103.61
	Mouse	With NADPH	100.00	0.95	0.00	0.00	0.00
		Without NADPH	100.00	96.02	93.81	95.35	93.14

Materials

1. Test compounds were provided by the sponsor. The compound information is listed in Table 3.

Table 3. Compound Information

Compound ID	PH ID	MW	FW	PH Lot \#
ERPM4	-	359.21	-	-
ERPM5	-	304.35	-	-

2. The liver microsomes were stored at $-80^{\circ} \mathrm{C}$ prior to use. The liver microsomes information is listed in Table 4.

Table 4. Liver Microsomes Information

Species	Cat. No.	Lot. No.	Sponsor
Human	452117	38292	Corning
Mouse	M1000	1710069	Xenotech

Study Design				
1. The master solution was prepared according to Table 5.				
Table 5. Preparation of Master Solution				
Reagent	Stock Concentration	Volume	Final Concentration	
Phosphate buffer	200 mM	$200 \mu \mathrm{~L}$	100 mM	
Ultra-pure $\mathrm{H}_{2} \mathrm{O}$	-	$66 \mu \mathrm{~L}$	-	
MgCl_{2} solution	50 mM	$40 \mu \mathrm{~L}$	5 mM	
Alamethacin	$5 \mathrm{mg} / \mathrm{mL}$	$2 \mu \mathrm{~L}$	$25 \mu \mathrm{~g} / \mathrm{mL}$	
Microsomes	$20 \mathrm{mg} / \mathrm{mL}$	$10 \mu \mathrm{~L}$	$0.5 \mathrm{mg} / \mathrm{mL}$	
2. $40 \mu \mathrm{~L}$ of 10 mM NADPH solution and $40 \mu \mathrm{~L}$ of 20 mM UDPGA solution were added to each well. The final concentrations of NADPH and UDPGA were 1 mM and 2 mM . The mixture was pre-warmed at $37^{\circ} \mathrm{C}$ for 5 minutes. The negative control samples were prepared by replacing cofactors (NADPH and UDPGA) solution with $80 \mu \mathrm{~L}$ of ultra-pure $\mathrm{H}_{2} \mathrm{O}$. The negative control was used to exclude the misleading factor that resulted from instability of chemical itself. Samples with cofactors were prepared in duplicate. Negative controls were prepared in singlet.				
3.The reaction was started with the addition of $2 \mu \mathrm{~L}$ of $400 \mu \mathrm{M}$ control compound or test compound solutions. Diclofenac was used as positive control in this study. The final concentration of test compound or control compound was $2 \mu \mathrm{M}$.				
4. Aliquots of $50 \mu \mathrm{~L}$ were taken from the reaction solution at $0,15,30,45$ and 60 minutes. The reaction was stopped by the addition of 4 volumes of cold acetonitrile with IS (100 nM alprazolam, 200 nM imipramine, 200 nM labetalol and $2 \mu \mathrm{M}$ ketoprofen). Samples were centrifuged at $3,220 \mathrm{~g}$ for 40 minutes. Aliquot of $90 \mu \mathrm{~L}$ of the supernatant was mixed with $90 \mu \mathrm{~L}$ of ultra-pure $\mathrm{H}_{2} \mathrm{O}$ and then used for LC-MS/MS analysis.				
5. Data Analysis				
All calculations were carried out using Microsoft Excel.				
Peak areas were determined from extracted ion chromatograms. The slope value, k, was determined by linear regression of the natural logarithm of the remaining percentage of the parent drug vs. incubation time curve.				
The in vitro half-life (in vitro $\mathrm{t}_{1 / 2}$) was determined from the slope value:				
in vitro $\mathrm{t}_{1 / 2}=-(0.693 / \mathrm{k})$				
Conversion of the in vitro $\mathrm{t}_{1 / 2}(\mathrm{~min})$ into the in vitro intrinsic clearance (in vitro $\mathrm{CL}_{\text {int }}$ in $\mu \mathrm{L} / \mathrm{min} / \mathrm{mg}$ protein) was done using the following equation (mean of duplicate determinations):				
$\text { in vitro } \mathrm{CL}_{\text {int }}=\left(\frac{0.693}{\left(\mathrm{t}_{12}\right)}\right) *\left(\frac{\text { volume of incubation }(\mu \mathrm{L})}{\text { amount of proteins }(\mathrm{mg})}\right.$				
Conversion of the in vitro $t_{1 / 2}(\mathrm{~min})$ into the scale-up unbound intrinsic clearance (Scale-up $\mathrm{CL}_{\text {int }}$ in $\mathrm{mL} / \mathrm{min} / \mathrm{kg}$) was done using the following equation (mean of duplicate determinations):$\text { Scale-up } C_{\text {int }}=\left(\frac{0.693}{\left(t_{1 / 2}\right)}\right) *\left(\frac{\text { volume of incubation }(\mathrm{mL})}{\text { amount of proteins }(\mathrm{mg})}\right) * \text { Scaling Factor }$$\square$				
Table 6. Scaling Factors for Intrinsic Clearance Prediction in Liver Microsomes				
Species	Liver Weight (g liver/kg body weight) ${ }^{2}$	Microsomal Concentration (mg / g liver) ${ }^{\text {b }}$	Scaling Factor	Liver blood flow ($\mathrm{Q}, \mathrm{mL} / \mathrm{min} / \mathrm{kg})^{\mathrm{a}}$
Human	25.7	48.8	1254.2	20.7
Mouse	87.5	50.0	4375.0	90.0
a. Iwatsubo et al, Davies and Morris, 1993, 10 (7) pp 1093-1095.				

Metabolite Identification of ERPM5 in Mouse Liver Microsomes

Pharmaron Study Number: ADME-ITD-190726
Pharmaron Report Number: ADME-ITD-MetID-20190808
Date of Release: August 08, 2019

In vitro ADME Laboratory
Pharmaron

Signature

Quality Control: $\quad \frac{\text { Chumyan Jm }}{\text { Chunyan Jin }}$ Date: $08 / 08 / 2019$
Study Director : $\quad \frac{\text { Dan Wang }}{\text { Dan Wang }}$ Date: $08108 / 2019$

Report Approval :

Content

- Experimental procedure
- Instrumentation \& analytical conditions
- Flow chart of metabolite identification
- Results
\checkmark Metabolite identification for ERPM5
- Conclusions

PHARMARON

Experimental Procedure

Incubation and Sample Preparation Protocol

－Final concentrations in in vitro incubations：

Test compounds	ERPM5
Test concentration	$10 \mu \mathrm{M}$
Biological Matrices	Mouse liver microsomes $(2 \mathrm{mg} / \mathrm{mL})$
Cofactor	NADPH $(2 \mathrm{mM})$, UDPGA $(5 \mathrm{mM})$ ，Alamethicin $(0.1 \mathrm{mg} / \mathrm{mL})$
Incubation time	$0,5,15 \mathrm{~min} @ 37^{\circ} \mathrm{C}$
Total volume	$200 \mu \mathrm{~L}$

－Liver microsomes information

Species	Strain \＆Gender	Cat．No．	Lot．No．	Source
Mouse	Male，CD－1	M00501	CBS	BIOIVT

－Incubations were quenched with 3 volumes of acetonitrile followed by centrifugation for 15 min at 16，000 g；
－Supernatant was then analyzed by LC－MS／MS．

PHARMARON

Instrumentation \＆Analytical Conditions

Instrumentation

－Dionex UltiMate 3000 UHPLC system（Thermo Fisher Scientific，USA）
－Thermo Scientific Q Exactive（Thermo Fisher Scientific，USA）

LC conditions

－Column：Waters XSelect HSS T3， $100 \times 2.1 \mathrm{~mm}, 2.5 \mu \mathrm{~m}$
－Solvents：A，water（ 0.1% formic acid）；D，acetonitrile（ 0.1% formic acid）
－Flow rate： $500 \mu \mathrm{~L} / \mathrm{min}$
－Program：0－1．5 min，10\％D，1．5－9 min，10\％－75\％D，9－12 min，75\％－100\％D，12－14min，100\％D， 14－14．3 min， $100 \%-10 \% \mathrm{D}, 14.3-15 \mathrm{~min}, 10 \% \mathrm{D}$ ；

MS conditions

－Ionisation mode：Positive mode
－Spray Voltage： 3.5 kV
－Aux gas flow rate： 15
－Scan type：Full MS／ddMS ${ }^{2}$
－Aux gas heater temp $\left({ }^{\circ} \mathrm{C}\right): 350^{\circ} \mathrm{C}$
－Resolution：70，000
－AGC Target： $3 \times \mathrm{e}^{6}$
－NCE／stepped NCE： $25,35,45$

Flow Chart of Metabolite Identification

PHARMARON

Results－ERPM5

> Oxidation
> Hydrogenation De-hydrogenation

Glucuronidation

Peak No．	$\begin{aligned} & \text { R.T. } \\ & \text { (min) } \end{aligned}$	Meas． m / z	Mass error （ppm）	Mass shift	Biotransformation	Metabolites peak area＠ 15 min
1	4.47	495.13907	－1．5	190.01136	Oxidation＋De－hydrogenation＋Glucuronidation	＋＋
2	4.75	513.14960	－1．5	208.02192	Oxidation＋Glucuronidation	＋
3	4.95	515.16528	－1．4	210.03757	Oxidation＋Hydrogenation＋Glucuronidation	＋
4	5.15	497.15454	－1．9	192.02701	Oxidation＋Glucuronidation	＋＋＋
5	5.51	497.15460	－1．7	192.02701	Oxidation＋Glucuronidation	＋
6	5.55	335.10199	－1．9	29.97418	Oxidation＋De－hydrogenation	＋＋
7	5.56	495.13840	－2．8	190.01136	Oxidation＋De－hydrogenation＋Glucuronidation	＋＋
8	5.62	337.11752	－2．3	31.98983	Oxidation	＋＋
9	5.71	337.11752	－2．3	31.98983	Oxidation	＋
10	5.71	303.11212	－2．2	－2．01565	De－hydrogenation	＋＋

［1］：molecular ion with losing $\mathrm{H}_{2} \mathrm{O}$ ；
＂－＂：not observed；＂＋＂：trace（＜ 1% relative peak area）；＂＋＋＂：minor（1－10\％relative peak area）；＂＋＋＋＂：major（＞10\％relative peak area）；
Relative peak area determined from extracted ion chromatograms of liver microsomal samples at 15 min ．

PHARMARON

Results－ERPM5

Oxidation
 Hydrogenation De－hydrogenation

Glucuronidation

Peak No．	$\begin{aligned} & \text { R.T. } \\ & \text { (min) } \end{aligned}$	Meas． m / z	Mass error （ppm）	Mass shift	Biotransformation	Metabolites peak area＠ 15 min
11	5.72	335.10196	－2．0	29.97418	Oxidation＋De－hydrogenation	＋
12	5.89	339.13312	－2．4	34.00548	Oxidation＋Hydrogenation	＋
13	6.71	$337.11783^{[1]}$	－1．3	31.98983	Oxidation	＋＋
14	6.72	321.12262	－2．3	15.99492	Oxidation	＋＋
15	6.80	303.11206	－2．4	－2．01565	De－hydrogenation	＋＋
16	6.86	321.12280	－1．8	15.99492	Oxidation	＋
17	7.14	321.12262	－2．3	15.99492	Oxidation	＋
18	8.56	303.11209	－2．3	－2．01565	De－hydrogenation	＋
19	8.59	305.12775	－2．3	0.00000	Parent drug	＋＋

XIC of Full MS／ddMS² scan

－Mouse Liver Microsomes
－ 18 metabolites were detected in mouse liver microsomal samples．

MS² ${ }^{\text {fragmentation of ERPM5 }}$

RT： $8.59 \mathrm{~min} ;$
MS²：277．13303，260．10657，232．11174，130．06520；
$\prod^{\mathrm{H}^{+}}{ }_{m / z} 305.12775$（Calculated $m / z 305.12845$ ）

MS² fragmentation of M1

RT： $4.47 \mathrm{~min} ;$ MS ${ }^{2}$ ：319．10715； $7_{\text {－GluA } m / z ~}^{719.10715 \text {（Calculated } m / z ~ 319.10772 \text { ）}} \mathrm{H}^{+}$ 100 11

MS² fragmentation of M2

RT： $4.75 \mathrm{~min} ;$
MS²：337．11746；
$\prod_{\text {－GluA } m / z} \mathrm{H}^{+}{ }_{m / z} 513.14709$（Calculated $m / z 513.15037$（Calculated $m / z 337.11828$ ）
337.11746

MS² fragmentation of M3

RT： $4.95 \mathrm{~min} ;$
MS²：339．13318；
$\prod_{\text {－GluA } m / z ~}^{n 39.13318 \text {（Calculated } m / z 339.13393 \text { ）}}{ }^{\mathrm{H}^{+}}{ }_{m / z} 515.16772$（Calculated $m / 5.16602$ ）
339.13318

MS² fragmentation of M4

RT： $5.15 \mathrm{~min} ;$
M^{2} ：321．12247，276．10101；
$\prod_{\text {－GluA } m / z ~ 321.12247 ~(C a l c u l a t e d ~} \quad \mathrm{H}^{+} \mathrm{H}_{\mathrm{t}} 321.12337$ ）

PHARMARON

MS² ${ }^{\text {fragmentation of M5 }}$

RT： 5.51 min；
MS ${ }^{2}$ ：321．12268；
$7_{\text {－GluA } m / z ~ 321.12268 ~(C a l c u l a t e d ~} \quad \mathrm{m} / \mathrm{z} 321.12337$ ）

15

MS² fragmentation of M6

RT： $5.55 \mathrm{~min} ;$
MS²：317．09109，292．09662，289．09714，246．09712， $\prod_{-\mathrm{H}_{2} \mathrm{O} m / z 317.09109 \text {（Calculated } m / z 335.10263 \text { ）} \mathrm{H}^{+}{ }_{m / z} 335.10199 \text {（Calculan）}}$ 147．04401；

PHARMARON

MS² fragmentation of M7

RT： $5.56 \mathrm{~min} ;$
MS²：319．10712；
$\prod_{\text {－GluA } m / z ~ 319.10712 ~(C a l c u l a t e d ~} \quad \mathrm{m} / \mathrm{z} 319.10772$ ）

MS² ${ }^{\text {fragmentation of M8 }}$

RT： $5.62 \mathrm{~min} ;$
MS²：2 319．10727，291．11194，276．10175，248．10660；
$\prod_{-\mathrm{H}_{2} \mathrm{O} m / z 319.10727 \text {（Calculated } m / z 319.10772 \text { ）} \mathrm{H}^{+}{ }_{m / z} 337.11639 \text {（Calculated } m / \mathrm{m} \text {（1828）}}$
319.10727

PHARMARON

MS² fragmentation of M9

RT： $5.71 \mathrm{~min} ;$
MS²：309．12265，292．09616，264．10138，160．03922，
$𠃌^{\mathrm{H}^{+}} \mathrm{m} / \mathrm{z} 337.11755$（Calculated $m / z 337.11828$ ）

PHARMARON

MS² ${ }^{\mathbf{f}}$ fragmentation of M10

RT： $5.71 \mathrm{~min} ;$
MS²：287．08096，275．11682，258．09094，230．09583；
$\prod^{\mathrm{H}^{+}}{ }_{m / z} 303.11255$（Calculated $m / z 303.11280$ ）

MS² ${ }^{\mathbf{f}}$ fragmentation of M11

RT： $5.72 \mathrm{~min} ;$
MS^{2} ：307．10556，262．08493，160．03989；
$\prod^{\mathrm{H}^{+}}{ }_{m / z} 335.10178$（Calculated $m / z 335.10263$ ）

MS² ${ }^{\text {fragmentation of }} \mathbf{M 1 2}$

RT： $5.89 \mathrm{~min} ;$
MS²：2 215．08130，189．06558，151．07530，123．04428；
$\prod^{\mathrm{H}^{+}}{ }_{m / z} 339.13367$（Calculated $m / z 339.13393$ ）

MS² ${ }^{\mathbf{f}}$ fragmentation of M13

RT： $6.71 \mathrm{~min} ;$
MS²：291．11230，248．10674；
$-\mathrm{H}_{2} \mathrm{O} \mathrm{H}^{+} m / z 319.10712$（Calculated $m / z 319.10772$ ）

PHARMARON

MS² ${ }^{\text {fragmentation of M14 }}$

RT： $6.72 \mathrm{~min} ;$
MS²：293．12784，276．10153，248．10674，146．06004；
$7 \mathrm{H}^{+} \mathrm{m} / \mathrm{z} 321.12262$（Calculated $m / z 321.12337$ ）

MS² ${ }^{\mathbf{f}}$ fragmentation of M15

RT： $6.80 \mathrm{~min} ;$
MS²：2 287．08081，258．09088，230．09595；
$7 \mathrm{H}^{+} m / z 303.11209$（Calculated $m / z 303.11280$ ）

MS² ${ }^{\text {fragmentation of M16 }}$

RT： $6.86 \mathrm{~min} ;$
MS²：303．11237，275．11755，258．09109，230．09601；
303.11237

MS² ${ }^{\mathbf{f}}$ fragmentation of M17

RT： $7.14 \mathrm{~min} ;$
MS²：293．12741，276．10159，248．10674，130．06519；
$\prod^{\mathrm{H}^{+}}{ }_{m / z} 321.12271$（Calculated $m / z 321.12337$ ）

PHARMARON

MS² ${ }^{\text {fragmentation of }}$ M18

RT： $8.56 \mathrm{~min} ;$
MS²：287．08102，275．11771，258．09116，230．09613；
$\prod^{\mathrm{H}^{+}} \mathrm{m} / \mathrm{z} 303.11234$（Calculated $m / z 303.11280$ ）

PHARMARON

Conclusions－ERPM5

－Under the experimental conditions， 18 metabolites were detected in mouse liver microsomal samples．
－Proposed metabolic pathways

M6
M11

M10，M15 \＆M18

M14

M16

M17

[^0]: Concentration $(\mu \mathrm{M}) 0.01 \quad 0.1 \quad 1 \quad 5 \quad 10 \quad 25 \quad 50 \quad 100 \quad 50075010001250 \quad 0$

