SUPPORTING INFORMATION

Decarboxylative Sulfoximination of Benzoic Acids Enabled by Photoinduced Ligand-to-Copper Charge Transfer

Peng Xu¹, Wanqi Su^{1,2}, Tobias Ritter^{1*}

¹Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany ²Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany *E-mail: ritter@kofo.mpg.de

TABLE OF CONTENTS

TABLE OF CONTENTS
MATERIALS AND METHODS
EXPERIMENTAL DATA8
General procedure of preparing lithium aryl carboxylate8
General procedure for aromatic decarboxylative sulfoximination8
Reaction condition optimization9
Table S1 Counterion9
Table S2 Additive optimization 9
Table S3 Cu(II) salt optimization10
Table S4 Solvent optimization10
Table S5 Control experiments 11
Photo-induced LMCT-enabled aromatic decarboxylative sulfoximination
(4-Fluorophenyl)((4-fluorophenyl)imino)(methyl)-λ ⁶ -sulfanone (3)12
(4-Fluorophenyl)(methyl)((4-(methylsulfonyl)phenyl)imino)- λ^6 -sulfanone (4)13
(4-Fluorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (5)14
4-(((4-Fluorophenyl)(methyl)(oxo)- λ^6 -sulfanylidene)amino)phenyl 4-methylbenzenesulfonate (6)15
((4-Bromophenyl)imino)(4-fluorophenyl)(methyl)-λ ⁶ -sulfanone (7)15
(4-Fluorophenyl)((3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)phenyl)imino)(methyl)- λ^6 -sulfanone (8) 16
((4-Cyanophenyl)imino)(4-fluorophenyl)(methyl)-λ ⁶ -sulfanone (9)17
((2-Fluorophenyl)imino)(4-fluorophenyl)(methyl)-λ ⁶ -sulfanone (10)18
((3-Methoxyphenyl)imino)(4-fluorophenyl)(methyl)-λ ⁶ -sulfanone (11)18
(4-Fluorophenyl)(methyl)((2-(trifluoromethyl)pyridin-4-yl)imino)-λ ⁶ -sulfanone (12)19
((4-Cyanophenyl)imino)(4-fluorophenyl)(methyl)-λ ⁶ -sulfanone (13)20
(+)-Menthol derivative 14 20
((3-Methylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (15)21
((3,5-Dimethylphenyl)imino)(4-fluorophenyl)(methyl)-λ ⁶ -sulfanone (16)22
(4-Fluorophenyl)(methyl)((4-methyl-3-(morpholinosulfonyl)phenyl)imino)- λ^6 -sulfanone (17)23
2,2'-(5-(((4-Fluorophenyl)(methyl)(oxo)- λ^6 -sulfanylidene)amino)-1,3-phenylene)bis(2-
methylpropanenitrile) (18)23
Celecoxib analogue 19 24
Triclosan derivative 20 25
(<i>R</i>)-Methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (21)
(S)-Methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (22)

Ethyl(phenyl)((4-(trifluoromethyl)phenyl)imino)-λ ⁶ -sulfanone (23)	30
(4-Chlorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)-λ ⁶ -sulfanone (24)	31
(3,5-Dichlorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (25)	32
(3-Methylphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)-λ ⁶ -sulfanone (26)	33
(4-Cyanophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)-λ ⁶ -sulfanone (27)	33
(2-Bromophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)-λ ⁶ -sulfanone (28)	34
(4-Methoxyphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (29)	35
(4-Trifluoromethoxyphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (30)	36
Dimethyl((4-(trifluoromethyl)phenyl)imino)-λ ⁶ -sulfanone (31)	36
Diphenyl((4-(trifluoromethyl)phenyl)imino)-λ ⁶ -sulfanone (32)	37
1 mmol scale decarboxylative sulfoximination of lithium 4-(trifluoromethyl)benzoate	38
Tested <i>ortho</i> -substituted substrates	38
Reactions with catalytic amounts of Cu(OTf) ₂ and oxidants	39
Mechanistic Studies	39
UV-vis Absorption Spectrum	39
Photolysis of the mixture of 1, 2, DTBP, LiOMe and Cu(OTf) ₂	40
Radical trapping experiments	42
Deuterodecarboxylation	44
Radical cyclisation experiment	45
Decarboxylative sulfoximination of 4-fluorobenzoic acid derived oxime ester	46
Example of decarboxylative amination	46
REFERENCES	47
SPECTROSCOPIC DATA	48
¹ H NMR of (4-fluorophenyl)((4-fluorophenyl)imino)(methyl)- λ^6 -sulfanone (3)	48
¹³ C NMR of (4-fluorophenyl)((4-fluorophenyl)imino)(methyl)-λ ⁶ -sulfanone (3)	49
¹⁹ F NMR of (4-fluorophenyl)((4-fluorophenyl)imino)(methyl)- λ^6 -sulfanone (3)	50
¹ H NMR of (4-fluorophenyl)(methyl)((4-(methylsulfonyl)phenyl)imino)- λ^6 -sulfanone (4)	51
¹³ C NMR of (4-fluorophenyl)(methyl)((4-(methylsulfonyl)phenyl)imino)- λ^6 -sulfanone (4)	52
¹⁹ F NMR of (4-fluorophenyl)(methyl)((4-(methylsulfonyl)phenyl)imino)- λ^6 -sulfanone (4)	53
¹ H NMR of (4-fluorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (5)	54
¹³ C NMR of (4-fluorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (5)	55
¹⁹ F NMR of (4-fluorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (5)	56
¹ H NMR of 4-(((4-fluorophenyl)(methyl)(oxo)- λ^6 -sulfanylidene)amino)phenyl 4-methylbenzenesulfon	ate (6)

	57
¹³ C NMR of 4-(((4-fluorophenyl)(methyl)(oxo)- λ^6 -sulfanylidene)amino)phenyl 4-methylbenzenesu	lfonate
(6)	
¹⁹ F NMR of 4-(((4-fluorophenyl)(methyl)(oxo)-λ ⁶ -sulfanylidene)amino)phenyl 4-methylbenzenesu	Ifonate (6) 59
¹ H NMR of ((4-bromophenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (7)	60
¹³ C NMR of ((4-bromophenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (7)	61
¹⁹ F NMR of ((4-bromophenyl)imino)(4-fluorophenyl)(methyl)-λ ⁶ -sulfanone (7)	62
¹ H NMR of (4-fluorophenyl)((3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)phenyl)imino)(methyl)-λ ⁶ - (8)	sulfanone 63
¹³ C NMR of (4-fluorophenyl)((3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)phenyl)imino)(methyl)-λ ⁶ sulfanone (8)	- 64
¹⁹ F NMR of (4-fluorophenyl)((3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)phenyl)imino)(methyl)-λ ⁶ . (8)	∙sulfanone 65
¹ H NMR of ((4-cyanophenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (9)	66
¹³ C NMR of ((4-cyanophenyl)imino)(4-fluorophenyl)(methyl)-λ ⁶ -sulfanone (9)	67
¹⁹ F NMR of ((4-cyanophenyl)imino)(4-fluorophenyl)(methyl)-λ ⁶ -sulfanone (9)	68
¹ H NMR of ((2-fluorophenyl)imino)(4-fluorophenyl)(methyl)-λ ⁶ -sulfanone (10)	69
¹³ C NMR of ((2-fluorophenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (10)	70
¹⁹ F NMR of ((2-fluorophenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (10)	71
¹ H NMR of ((3-Methoxyphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (11)	72
¹³ C NMR of ((3-Methoxyphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (11)	73
¹⁹ F NMR of ((3-Methoxyphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (11)	74
¹ H NMR of (4-fluorophenyl)(methyl)((2-(trifluoromethyl)pyridin-4-yl)imino)- λ^6 -sulfanone (12)	75
¹³ C NMR of (4-fluorophenyl)(methyl)((2-(trifluoromethyl)pyridin-4-yl)imino)- λ^6 -sulfanone (12)	76
¹⁹ F NMR of (4-fluorophenyl)(methyl)((2-(trifluoromethyl)pyridin-4-yl)imino)- λ^6 -sulfanone (12)	77
¹ H NMR of ((4-acetylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (13)	78
¹³ C NMR of ((4-acetylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (13)	79
¹⁹ F NMR of ((4-acetylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (13)	80
¹ H NMR of (+)-menthol derivative 14	81

¹³ C NMR of (+)-menthol derivative 14	82
¹⁹ F NMR of (+)-menthol derivative 14	83
¹ H NMR of ((3-methylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (15)	84
¹³ C NMR of ((3-methylphenyl)imino)(4-fluorophenyl)(methyl)-λ ⁶ -sulfanone (15)	85
¹⁹ F NMR of ((3-methylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (15)	86
¹ H NMR of ((3,5-Dimethylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (16)	87
¹³ C NMR of ((3,5-Dimethylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (16)	88
¹⁹ F NMR of ((3,5-Dimethylphenyl)imino)(4-fluorophenyl)(methyl)-λ ⁶ -sulfanone (16)	89
¹ H NMR of (4-fluorophenyl)(methyl)((4-methyl-3-(morpholinosulfonyl)phenyl)imino)- λ^6 -sulfanone (17).	90
¹³ C NMR of (4-fluorophenyl)(methyl)((4-methyl-3-(morpholinosulfonyl)phenyl)imino)- λ^6 -sulfanone (17)	91
¹⁹ F NMR of (4-fluorophenyl)(methyl)((4-methyl-3-(morpholinosulfonyl)phenyl)imino)- λ^6 -sulfanone (17).	92
¹ H NMR of 2,2'-(5-(((4-fluorophenyl)(methyl)(oxo)-λ ⁶ -sulfanylidene)amino)-1,3-phenylene)bis(2- methylpropanenitrile) (18)	93
¹³ C NMR of 2,2'-(5-(((4-fluorophenyl)(methyl)(oxo)-λ ⁶ -sulfanylidene)amino)-1,3-phenylene)bis(2- methylpropanenitrile) (18)	94
¹⁹ F NMR of 2,2'-(5-(((4-fluorophenyl)(methyl)(oxo)-λ ⁶ -sulfanylidene)amino)-1,3-phenylene)bis(2- methylpropanenitrile) (18)	95
¹ H NMR of celecoxib analogue 19	96
¹³ C NMR of celecoxib analogue 19	97
¹⁹ F NMR of celecoxib analogue 19	98
¹ H NMR of triclosan derivative 20	99
¹³ C NMR of triclosan derivative 20	.100
¹⁹ F NMR of triclosan derivative 20	.102
¹ H NMR of (<i>R</i>)-methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (21)	.103
¹³ C NMR of (<i>R</i>)-methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (21)	.104
¹⁹ F NMR of (<i>R</i>)-methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (21)	.105
¹ H NMR of (S)-methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (22)	.106
¹³ C NMR of (S)-methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (22)	.107
¹⁹ F NMR of (S)-methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)-λ ⁶ -sulfanone (22)	.108

¹ H NMR of ethyl(phenyl)((4-(trifluoromethyl)phenyl)imino)-λ ⁶ -sulfanone (23)	109
¹³ C NMR of ethyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (23)	110
¹⁹ F NMR of ethyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (23)	111
¹ H NMR of (4-chlorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (24)	112
¹³ C NMR of (4-chlorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (24)	113
¹⁹ F NMR of (4-chlorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (24)	114
¹ H NMR of (3,5-dichlorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (25)	115
¹³ C NMR of (3,5-dichlorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (25)	116
¹⁹ F NMR of (3,5-dichlorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (25)	117
¹ H NMR of (3-methylphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (26)	118
¹³ C NMR of (3-methylphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (26)	119
¹⁹ F NMR of (3-methylphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (26)	120
¹ H NMR of (4-cyanophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (27)	121
¹³ C NMR of (4-cyanophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (27)	122
¹⁹ F NMR of (4-cyanophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (27)	123
¹ H NMR of (2-bromophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (28)	124
¹³ C NMR of (2-bromophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (28)	125
¹⁹ F NMR of (2-bromophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (28)	126
¹ H NMR of (4-methoxyphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (29)	127
¹³ C NMR of (4-methoxyphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (29)	128
¹⁹ F NMR of (4-methoxyphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (29)	129
¹ H NMR of (4-trifluoromethoxyphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (30)	130
¹³ C NMR of (4-trifluoromethoxyphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (30)	131
¹⁹ F NMR of (4-trifluoromethoxyphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (30)	132
¹ H NMR of dimethyl((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (31)	133
¹³ C NMR of dimethyl((4-(trifluoromethyl)phenyl)imino)-λ ⁶ -sulfanone (31)	134
¹⁹ F NMR of dimethyl((4-(trifluoromethyl)phenyl)imino)-λ ⁶ -sulfanone (31)	135
¹ H NMR of diphenyl((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (32)	136
¹³ C NMR of diphenyl((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (32)	137

¹⁹ F NMR of diphenyl((4-(trifluoromethyl)phenyl)imino)-λ ⁶ -sulfanone (32)	138
¹ H NMR of phenyl-4- <i>d</i> 4-methylbenzenesulfonate (34)	139
D NMR of phenyl-4-d 4-methylbenzenesulfonate (34)	140
¹³ C NMR of phenyl-4- <i>d</i> 4-methylbenzenesulfonate (34)	141
¹ H NMR of 2-(4-fluorophenyl)benzo[<i>d</i>]isothiazol-3(2 <i>H</i>)-one 1,1-dioxide (36)	142
¹³ C NMR of 2-(4-fluorophenyl)benzo[<i>d</i>]isothiazol-3(2 <i>H</i>)-one 1,1-dioxide (36)	143
¹⁹ F NMR of 2-(4-fluorophenyl)benzo[<i>d</i>]isothiazol-3(2 <i>H</i>)-one 1,1-dioxide (36)	144
¹ H NMR of phenyl 3-methoxybenzoate (S1)	145
¹³ C NMR of phenyl 3-methoxybenzoate (S1)	146
¹ H NMR of 3-methoxy-1,1'-biphenyl (S2)	147
¹³ C NMR of 3-methoxy-1,1'-biphenyl (S2)	148
¹ H NMR of (4-fluorophenyl)(methyl)(phenylimino)-λ ⁶ -sulfanone (S3)	149
¹³ C NMR of (4-fluorophenyl)(methyl)(phenylimino)-λ ⁶ -sulfanone (S3)	150
¹⁹ F NMR of (4-fluorophenyl)(methyl)(phenylimino)- λ^6 -sulfanone (S3)	151
¹ H NMR of 6 <i>H</i> -benzo[c]chromen-6-one (S4)	152
¹³ C NMR of 6 <i>H</i> -benzo[c]chromen-6-one (S4)	153

MATERIALS AND METHODS

All air- and moisture-insensitive reactions were carried out under an ambient atmosphere and monitored by thin-layer chromatography (TLC). All air- and moisture-sensitive manipulations were performed using standard *Schlenk* and glove-box techniques under an atmosphere of nitrogen. Concentration under reduced pressure was performed by rotary evaporation at 25–40 °C at an appropriate pressure, unless otherwise stated. Purified compounds were further dried under high vacuum (0.008–0.5 Torr). Yields refer to purified and spectroscopically pure compounds, unless otherwise stated.

Solvents

Anhydrous Acetonitrile, DCM, THF, and toluene were obtained from Phoenix Solvent Drying Systems. All deuterated solvents were purchased from Euriso-Top.

Chromatography

Thin layer chromatography (TLC) was performed using EMD TLC silica gel 60 F254 plates pre-coated with 250 μ m thickness silica gel and visualized by fluorescence quenching under UV light or phosphomolybdic acid stain. Preparative TLC was performed using pre-coated TLC plates SIL G-100 UV₂₅₄ (Layer: 1.00 mm silica gel 60 with fluorescent indicator UV₂₅₄).

Spectroscopy and Instruments

NMR spectra were recorded on a Bruker AscendTM 500 spectrometer operating at 500 MHz, 471 MHz, and 126 MHz, for ¹H, ¹⁹F, and ¹³C acquisitions, respectively; or a Bruker AV600 spectrometer operating at 600 MHz, 565 MHz, 92 MHz, and 151 MHz, for ¹H, ¹⁹F, D and ¹³C acquisitions, respectively. Chemical shifts are reported in ppm with the solvent residual peak as the internal standard. For ¹H NMR: CDCl₃, δ 7.26; CD₂Cl₂, δ 5.32. For ¹³C NMR: CDCl₃, δ 77.16; CD₂Cl₂, δ 53.84.¹ Data is reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet; coupling constants in Hz; integration.

Starting materials

All substrates and materials were used as received from commercial suppliers, unless otherwise stated. $Cu(OTf)_2$ purchased from TCI was dried in a 150 °C oven for 2 hours and stored in a glovebox. $Cu(MeCN)_4BF_4$ and 1-fluoro-2,4,6-trimethylpyridinium triflate were purchased from TCI and stored in a glovebox. *NH*-sulfoximines are purchased from the commercial suppliers or prepared according to the literature². (+)-Menthol-derived benzoic acid³, carboxycelecoxib⁴ and triclosan-derived benzoic acid⁵ were synthesized according to the literatures.

EXPERIMENTAL DATA

General procedure of preparing lithium aryl carboxylate

Under an ambient atmosphere, a 20 mL borosilicate vial equipped with a magnetic stir bar was charged with aryl carboxylic acid (1.00 mmol, 1.0 equiv.), lithium hydroxide monohydrate (42.0 mg, 1.00 mmol, 1.0 equiv), and MeCN/H₂O (10.0 mL, v/v = 1:1, c = 0.10 M). The reaction mixture was stirred at 25 °C for 1 h. The solvent was evaporated under reduced pressure to afford the lithium aryl carboxylate as a solid. The solid was further dried under high vacuum for 2 hours.

Note: For some substrates, the v/v ratio and the final volume of MeCN/H₂O were adjusted by adding additional MeCN or H₂O according to the solubility of the aryl carboxylic acid and the resulting lithium salt to generate a solution.

General procedure for aromatic decarboxylative sulfoximination

Under nitrogen atmosphere, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium benzoate (0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (0.500 mmol, 2.50 equiv.), LiOMe (0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (0.400 mmol, 2.00 equiv.) and sulfoximine (0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel. Where necessary, further purification was accomplished by preparative TLC.

NOTE: UV light is harmful to human health, and the operator should wear UV light safety glass when setting up the reaction. For the duration of the reaction, the irradiation setup was covered with aluminium foil to shield the UV light. For simplicity, all reaction components were stored and weighed in a N_2 -filled glovebox, though the reactions can be performed outside of a glovebox by using Schlenk techniques to avoid moisture.

Reaction condition optimization

Table S1 Counterion

DTBP: 2,6-di-tert-tutylpyridine. ^{a 19}F NMR yield with 2-fluorotoluene(2.0 equiv.) as an internal standard.

Table S2 Additive optimization

F CO2 ^{-Li⁺} +	O S-NH Me	2.5 equiv. Cu(OTf) ₂ 3.0 equiv. additives MeCN (25 mM) 35 °C, purple LEDs	F Me F	F C C	+ F
1	2		3	3a	3b
0.05 mmol, 1.00 equiv.	2.5 equiv.				

additive	Yield (3/3a/3b , %)ª	additive	Yield (3/3a/3b , %) ^a
2,6-di- <i>tert</i> -butylpyridine (DTBP)	58/8/8	Cs_2CO_3	0/0/0
2,6-difluoropyridine	22/36/8	LiOH	4/0/2
2,6-lutidine	22/0/4	Li ₂ CO ₃	48/20/8
2-fluoro-6-trifluoromethylpyridine	32/40/8	LiOʻBu	0/0/0
pyridine	54/12/12	LiOMe	0/0/0
quinuclidine	2/0/0	2.0 equiv. DTBP + 1.0	66/8/5

	equiv. LiOMe		
CsF	50/16/8	2.0 equiv. DTBP + 1.0 equiv. LiO ^r Bu	44/4/8
KF	38/40/10	2.0 equiv. DTBP + 1.0 equiv CsF	30/12/6

^{a 19}F NMR yield with 2-fluorotoluene(2.0 equiv.) as an internal standard.

Table S3 Cu(II) salt optimization

Cu(II) salt	Yield (3/3a/3b , %) ^a	Cu(II) salt	Yield (3/3a/3b , %) ^a
1.1 equiv. Cu(OTf) ₂	14/0/6	Cu(BF₄)₂·nH₂O	46/0/10
2.0 equiv. Cu(OTf) ₂	56/4/4	CuF_2	0/0/0
2.5 equiv. Cu(OTf)₂	66/8/5	CuSO ₄	0/0/0
Cu(OAc) ₂	0/0/0	CuO	0/0/0
Cu(ClO) ₄ ·6H ₂ O	18/1/5	CuCl ₂	6/0/0

DTBP: 2,6-di-*tert*-tutylpyridine. ^a Yield was determined by ¹⁹F NMR using 2-fluorotoluene(2.0 equiv.) as an internal standard.

Table S4 Solvent optimization

MeCN	66/8/5	DCM	0/0/12
DMSO	0/0/0	1,4-dioxane	0/0/0
acetone	0/0/0	toluene	0/0/0
EA	4/0/4	isobutyronitrile	16/8/16
acetone	0/0/0	pivalonitrile	8/4/1
DMF	0/0/0	propionitrile	42/8/20

DTBP: 2,6-di-*tert*-tutylpyridine. ^{a 19}F NMR yield with 2-fluorotoluene(2.0 equiv.) as an internal standard.

Table S5 Control experiments

derivation	Yield (3/3a/3b , %) ^a
none	66/8/5
2,2'-bipyridine instead of DTBP	26/8/6
4,4'-di-tert-butyl-2,2'-bipyridine instead of DTBP	30/0/7
2,2'-6',2"-terpyridine instead of DTBP	35/0/8
(R,R)-2,2'-(2,6-pyridinediyl)bis(4-isopropyl-2-oxazoline) instead of DTBP	45/0/9
100 °C heating instead of irradination	0/0/0
blue LEDs instead of purple LEDs	0/0/0

no Cu(OTf) ₂	0/0/0
no LiOMe and no DTBP	32/44/12
2.0 equiv. TEMPO as additive	2/0/0
air atmosphere instead of nitrogen atmosphere	52/8/6
Cu(OTf) ₂ (0.2 equiv.) and 1-fluoro-2,4,6-trimethylpyridinium triflate (2.5 equiv.) instead of Cu(OTf) ₂ (2.5 equiv.)	2/0/2
$Cu(OTf)_2$ (0.2 equiv.) and $K_2S_2O_8$ (2.5 equiv.) instead of $Cu(OTf)_2$ (2.5 equiv.)	0/0/0
benzoate generated <i>in situ</i> by stirring a mixture of 4-fluorobenzoic acid, LiOMe (2.0 equiv.), DTBP (2.0 equiv.) and Cu(OTf) ₂ for 1 h	54/4/8
benzoate generated <i>in situ</i> by stirring a mixture of 4-fluorobenzoic acid, LiOMe (1.0 equiv.), DTBP (2.0 equiv.) and Cu(OTf) ₂ for 1 h	46/20/8
benzoate generated <i>in situ</i> by stirring a mixture of 4-fluorobenzoic acid, Li ₂ CO ₃ (1.0 equiv.), DTBP (2.0 equiv.) and Cu(OTf) ₂ for 1 h	56/12/10
benzoate generated <i>in situ</i> by stirring a mixture of 4-fluorobenzoic acid, DTBP (3.0 equiv.) and Cu(OTf) ₂ for 1 h	52/16/8

DTBP: 2,6-di-tert-tutylpyridine. ^{a 19}F NMR yield with 2-fluorotoluene(2.0 equiv.) as an internal standard.

Photo-induced LMCT-enabled aromatic decarboxylative sulfoximination

(4-Fluorophenyl)((4-fluorophenyl)imino)(methyl)- λ^{6} -sulfanone (3)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-fluorobenzoate (29.2 mg, 0.200 mmol, 1.00 equiv.), $Cu(OTf)_2$ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two

purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield (4-fluorophenyl)((4-fluorophenyl)imino)(methyl)- λ^6 -sulfanone (**3**) (35.4 mg, 132 µmol, 66%) as a slightly yellow oil.

Rf = 0.17 (DCM).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.03–7.90 (m, 2H), 7.19 (d, *J* = 8.9 Hz, 2H), 6.94 (dd, *J* = 9.0, 4.9 Hz, 2H), 6.80 (t, *J* = 8.8 Hz, 2H), 3.23 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 165.6 (d, *J* = 256.2 Hz), 158.5 (d, *J* = 240.3 Hz), 140.5 (d, *J* = 2.9 Hz), 134.8 (d, *J* = 3.0 Hz), 131.5 (d, *J* = 9.5 Hz), 124.4 (d, *J* = 7.7 Hz), 116.9 (d, *J* = 22.7 Hz), 115.6 (d, *J* = 22.5 Hz), 45.92 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –104.3 (m), –122.0 (m) ppm.

HRMS-EI (m/z) calculated for C₁₃H₁₁NOSF₂⁺ [M]⁺, 267.0524; found, 267.0529; deviation: -1.94 ppm.

(4-Fluorophenyl)(methyl)((4-(methylsulfonyl)phenyl)imino)-λ⁶-sulfanone (4)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(methylsulfonyl)benzoate (41.2 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure to provide a Büchner funnel. The filtrate was evaporated under reduced pressure to provide a Büchner funnel. The filtrate was evaporated under reduced pressure to provide a Büchner funnel. The filtrate was evaporated under reduced pressure to provide a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield (4-fluorophenyl)((methyl))((4-(methylsulfonyl)phenyl)imino)- λ^6 -sulfanone (4) (39.5 mg, 121 µmol, 60%) as a slightly yellow oil.

Rf = 0.20 (EA/DCM = 1/50, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 7.97–7.92 (m, 2H), 7.69–7.58 (m, 2H), 7.25–7.18 (m, 2H), 7.10–7.04 (m, 2H), 3.28 (s, 3H), 2.96 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 166.0 (d, *J* = 256.9 Hz), 150.9, 134.3 (d, *J* = 3.0 Hz), 132.7, 131.4 (d, *J* = 9.6 Hz), 128.8, 123.1, 117.3 (d, *J* = 22.6 Hz), 46.7, 44.8 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –103.1 (m) ppm.

HRMS-EI (m/z) calculated for C₁₄H₁₄NO₃S₂F⁺ [M]⁺, 327.0394; found, 327.0394; deviation: -0.19 ppm.

(4-Fluorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)-λ⁶-sulfanone (5)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(trifluoromethyl)benzoate (39.2 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure to provide a Büchner funnel. The filtrate was evaporated under reduced pressure to provide a Büchner funnel. The filtrate was evaporated under reduced pressure to provide a Büchner funnel. The filtrate was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield (4-fluorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (**5**) (47.3 mg, 149 µmol, 75%) as a slightly yellow oil.

Rf = 0.36 (DCM).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 7.97–7.92 (m, 2H), 7.69–7.58 (m, 2H), 7.25–7.18 (m, 2H), 7.10–7.04 (m, 2H), 3.28 (s, 3H), 2.96 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 165.9 (d, *J* = 256.4 Hz), 148.4, 134.7 (d, *J* = 3.1 Hz), 131.5 (d, *J* = 9.5 Hz), 126.4 (q, *J* = 3.7 Hz), 124.6 (q, *J* = 269.5 Hz), 123.7 (q, *J* = 32.6 Hz), 123.0, 117.2 (d, *J* = 22.8 Hz), 46.6 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –61.7 (s), –103.7 (m) ppm.

HRMS-ESI (m/z) calculated for C₁₄H₁₂NOSF₄⁺ [M+H]⁺, 318.0570; found, 318.0572; deviation: -0.58 ppm.

4-(((4-Fluorophenyl)(methyl)(oxo)- λ^6 -sulfanylidene)amino)phenyl 4-methylbenzenesulfonate (6)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(tosyloxy)benzoate (59.6 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield 4-(((4-fluorophenyl)(methyl)(oxo)- λ^6 -sulfanylidene)amino)phenyl 4-methylbenzenesulfonate (**6**) (43.5 mg, 104 µmol, 52%) as a colorless solid.

Rf = 0.18 (DCM).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 7.97–7.92 (m, 2H), 7.69–7.58 (m, 2H), 7.25–7.18 (m, 2H), 7.10–7.04 (m, 2H), 3.28 (s, 3H), 2.96 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 165.7 (d, *J* = 256.3 Hz), 144.8 (d, *J* = 122.7 Hz), 144.0, 134.9 (d, *J* = 3.1 Hz), 132.3, 131.5 (d, *J* = 9.5 Hz), 129.7, 128.6, 123.9, 123.0, 117.0 (d, *J* = 22.6 Hz), 46.3, 21.8 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –104.0 (m) ppm.

HRMS-ESI (m/z) calculated for C₁₄H₁₂NOSF₄⁺ [M+H]⁺, 318.0570; found, 318.0572; deviation: -0.58 ppm.

((4-Bromophenyl)imino)(4-fluorophenyl)(methyl)- λ^{6} -sulfanone (7)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-bromobenzoate (41.4 mg, 0.200 mmol, 1.00 equiv.), $Cu(OTf)_2$ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two

purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield ((4-bromophenyl))imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (7) (33.6 mg, 102 µmol, 51%) as a colorless oil.

Rf = 0.45 (EA/DCM = 1/50, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.04–7.80 (m, 2H), 7.24–7.15 (m, 4H), 6.96–6.81 (m, 2H), 3.23 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 165.8 (d, *J* = 256.3 Hz), 144.0, 134.9 (d, *J* = 3.1 Hz), 132.1, 131.5 (d, *J* = 9.6 Hz), 125.0, 117.1 (d, *J* = 22.6 Hz), 114.8, 46.3 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –104.0 (m) ppm.

HRMS-EI (m/z) calculated for C₁₃H₁₁NOBrSF⁺ [M]⁺, 326.9723; found, 326.9728; deviation: -1.44 ppm.

(4-Fluorophenyl)((3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)phenyl)imino)(methyl)-λ⁶-sulfanone (8)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium salt of ataluren (58.0 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/20, v/v) to afford a mixture. The mixture was further purified by preparative TLC (EA/DCM = 1/20, v/v) to yield (4-fluorophenyl)((3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)phenyl)imino)(methyl)- λ^6 -sulfanone (8) (49.6 mg, 121 µmol, 60%) as a colorless solid.

Rf = 0.33 (EA/DCM = 1/19, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.15–8.07 (m, 1H), 7.98–7.90 (m, 2H), 7.76 (s, 1H), 7.63 (d, *J* = 6.3 Hz, 1H), 7.51 (ddd, *J* = 13.4, 7.0, 1.8 Hz, 1H), 7.33–7.00 (m, 6H), 3.22 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 172.7 (d, *J* = 4.3 Hz), 168.8, 165.8 (d, *J* = 256.2 Hz), 160.9 (d, *J* = 260.3 Hz), 145.4, 135.0, 134.6 (d, *J* = 8.8 Hz), 131.6 (d, *J* = 9.5 Hz), 131.1, 129.7, 127.7, 126.0, 124.8 (d, *J* = 3.7 Hz), 122.7, 121.3, 117.2 (d, *J* = 20.9 Hz), 117.1 (d, *J* = 22.6 Hz), 113.0 (d, *J* = 11.4 Hz), 46.3 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –104.2 (m), -108.4 (m) ppm.

HRMS-ESI (m/z) calculated for C₂₁H₁₅N₃O₂SF₂Na⁺ [M+Na]⁺, 434.0745; found, 434.0750; deviation: -0.98 ppm.

((4-Cyanophenyl)imino)(4-fluorophenyl)(methyl)- λ^{6} -sulfanone (9)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-cyanobenzoate (30.6 mg, 0.200 mmol, 1.00 equiv.), $Cu(OTf)_2$ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield ((4-cyanophenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (**9**) (34.1 mg, 124 µmol, 62%) as a colorless oil.

Rf = 0.40 (EA/DCM = 1/50, v/v).

NMR Spectroscopy:

¹H NMR (500 MHz, CDCl₃, 298 K, δ): 7.99–7.91 (m, 2H), 7.43–7.34 (m, 2H), 7.26–7.18 (m, 2H), 7.02–6.98 (m, 2H), 3.28 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 166.0 (d, *J* = 257.3 Hz), 149.9, 134.4 (d, *J* = 3.2 Hz), 133.4, 131.4 (d, *J* = 9.7 Hz), 123.3, 119.7, 117.4 (d, *J* = 22.7 Hz), 104.5, 46.8 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –103.1 (m) ppm.

HRMS-EI (m/z) calculated for C₁₄H₁₁N₂OSF⁺ [M]⁺, 274.0571; found, 274.0574; deviation: -1.23 ppm.

((2-Fluorophenyl)imino)(4-fluorophenyl)(methyl)-λ⁶-sulfanone (10)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 2-fluorobenzoate (29.2 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield ((2-fluorophenyl))imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (**10**) (27.4 mg, 103 µmol, 51%) as a colorless oil.

Rf = 0.37 (EA/DCM = 1/50, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.05–7.98 (m, 2H), 7.24–7.17 (m, 2H), 7.14–7.08 (m, 1H), 7.02–6.94 (m, 1H), 6.90–6.81 (m, 2H), 3.27 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 165.8 (d, *J* = 256.2 Hz), 156.6 (d, *J* = 243.9 Hz), 135.3 (d, *J* = 3.0 Hz), 132.5 (d, *J* = 11.9 Hz), 131.5 (d, *J* = 9.6 Hz), 125.3 (d, *J* = 2.2 Hz), 124.3 (d, *J* = 4.0 Hz), 123.1 (d, *J* = 7.2 Hz), 117.0 (d, *J* = 22.6 Hz), 116.0 (d, *J* = 20.3 Hz), 46.3 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): -104.3 (m), -125.6 (m) ppm.

HRMS-EI (m/z) calculated for C₁₃H₁₁NOSF₂⁺ [M]⁺, 267.0524; found, 267.0529; deviation: -1.97 ppm.

((3-Methoxyphenyl)imino)(4-fluorophenyl)(methyl)- λ^{6} -sulfanone (11)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 3-methoxybenzoate (29.2 mg, 0.200 mmol, 1.00 equiv.), $Cu(MeCN)_4BF_4$ (157 mg, 0.500 mmol, 2.50 equiv.), 1-fluoro-2,4,6-trimethylpyridinium triflate (145 mg, 0.500 mmol, 2.50 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol,

2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. The residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield ((3-methoxyphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (**11**) (20.7 mg, 74 µmol, 37%) as a slightly yellow oil.

Rf = 0.15 (EA/DCM = 1/50, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.00 (dd, *J* = 8.9, 5.0 Hz, 2H), 7.22–7.17 (m, 2H), 7.02 (t, *J* = 8.4 Hz, 1H), 6.62–6.58 (m, 2H), 6.46 (ddd, *J* = 8.3, 2.4, 1.0 Hz, 1H), 3.71 (s, 3H), 3.25 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 165.8 (d, *J* = 256.2 Hz), 160.4, 145.7, 135.1 (d, *J* = 3.0 Hz), 131.6 (d, *J* = 9.5 Hz), 129.8, 117.0 (d, *J* = 22.7 Hz), 115.8, 109.2, 108.2, 55.3, 46.2 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –104.4 (m) ppm.

HRMS-EI (m/z) calculated for C₁₄H₁₄NO₂SF⁺ [M]⁺, 279.0724; found, 279.0725; deviation: -0.50 ppm.

(4-Fluorophenyl)(methyl)((2-(trifluoromethyl)pyridin-4-yl)imino)-λ⁶-sulfanone (12)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 2-(trifluoromethyl)isonicotinate (39.4 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. The residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield (4-fluorophenyl)(methyl)((2-(trifluoromethyl)pyridin-4-yl)imino)- λ^6 -sulfanone (**12**) (41.2 mg, 129 µmol, 65%) as a colorless oil.

Rf = 0.33 (EA/DCM = 1/50, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.30 (d, *J* = 5.5 Hz, 1H), 7.99–7.92 (m, 2H), 7.28–7.23 (m, 2H), 7.21 (d, *J* = 2.1 Hz, 1H), 6.93 (dd, *J* = 5.5, 2.1 Hz, 1H), 3.31 (s, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃, 298 K, δ): 166.2 (d, *J* = 258.0 Hz), 154.3, 150.5, 149.0 (q, *J* = 33.7 Hz), 133.8

(d, *J* = 3.0 Hz), 131.3 (d, *J* = 9.7 Hz), 121.7 (q, *J* = 274.5 Hz), 119.4, 117.6 (d, *J* = 22.7 Hz), 115.1 (q, *J* = 2.9 Hz), 46.8 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –68.3 (s), –102.3 (m) ppm.

HRMS-EI (m/z) calculated for C₁₃H₁₀NOSF₄⁺ [M]⁺, 318.0444; found, 318.0449; deviation: -1.48 ppm.

((4-Cyanophenyl)imino)(4-fluorophenyl)(methyl)- λ^{6} -sulfanone (13)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-acetylbenzoate (34.0 mg, 0.200 mmol, 1.00 equiv.), $Cu(OTf)_2$ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield ((4-acetylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (**13**) (32.3 mg, 111 µmol, 55%) as a colorless oil.

Rf = 0.17 (EA/DCM = 1/50, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 7.98–7.93 (m, 2H), 7.76–7.71 (m, 2H), 7.24–7.17 (m, 2H), 7.03–6.97 (m, 2H), 3.28 (s, 3H), 2.47 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 197.1, 165.9 (d, *J* = 256.4 Hz), 150.2, 134.7 (d, *J* = 3.1 Hz), 131.5 (d, *J* = 9.6 Hz), 131.0, 130.0, 122.7, 117.2 (d, *J* = 22.6 Hz), 46.7, 26.4 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –103.6 (m) ppm.

HRMS-EI (m/z) calculated for C₁₄H₁₁N₂OSF⁺ [M]⁺, 274.0571; found, 274.0574; deviation: -1.23 ppm.

(+)-Menthol derivative 14

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium salt of (+)-menthol derived benzoic acid (62.1 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield (+)-menthol derivative **14** (a mixture of two diastereomers, dr = 1:1, 52.4 mg, 121 µmol, 61%) as a slightly yellow oil.

Rf = 0.16 (EA/DCM = 1/50, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.02–7.93 (m, 2H), 7.64 (d, *J* = 6.4 Hz, 1H), 7.59–7.51 (m, 1H), 7.23–7.12 (m, 4H), 4.86 (t, *J* = 10.8 Hz, 1H), 3.26 (t, *J* = 2.1 Hz, 3H), 2.07 (d, *J* = 12.1 Hz, 1H), 1.97–1.84 (m, 1H), 1.70 (d, *J* = 12.1 Hz, 2H), 1.57–1.47 (m, 2H), 1.14–0.98 (m, 2H), 0.93–0.83 (m, 7H), 0.77 (d, *J* = 8.5 Hz, 1.5 H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 166.1, 116.1, 165.8 (d, *J* = 256.3 Hz), 144.9, 144.8, 135.0 (d, *J* = 3.0 Hz), 134.8 (d, *J* = 3.0 Hz), 131.9, 131.9, 131.6 (d, *J* = 9.5 Hz), 131.6 (d, *J* = 9.5 Hz), 129.0, 129.0, 127.3, 127.3, 124.7, 124.3, 123.2, 123.2, 117.1 (d, *J* = 22.5), 117.1 (d, *J* = 22.5), 74.8, 74.8, 47.3, 47.3, 46.4, 46.2, 41.0, 34.4, 34.4, 31.5, 26.5, 26.5, 23.7, 23.7, 22.1, 20.9, 20.9, 16.6, 116.6 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –104.1 (m), –104.2 (m) ppm.

HRMS-EI (m/z) calculated for C₂₄H₃₀NO₃SF⁺ [M]⁺, 431.1925; found, 431.1933; deviation: -1.84 ppm.

((3-Methylphenyl)imino)(4-fluorophenyl)(methyl)-λ⁶-sulfanone (15)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 3-methylbenzoate (28.4 mg, 0.200 mmol, 1.00 equiv.), Cu(MeCN)₄BF₄ (157 mg, 0.500 mmol, 2.50 equiv.), 1-fluoro-2,4,6-trimethylpyridinium triflate (145 mg, 0.500 mmol, 2.50 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture

was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. The residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield ((3-methylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (**15**) (33.2 mg, 126 µmol, 63%) as a slightly yellow oil.

Rf = 0.25 (EA/DCM = 1/50, v/v).

NMR Spectroscopy:

¹H NMR (500 MHz, CDCl₃, 298 K, δ): 8.03–7.96 (m, 2H), 7.24–7.15 (m, 2H), 7.02 (t, J = 7.7 Hz, 1H), 6.86 (d, J = 1.8 Hz, 1H), 6.81 (dd, J = 8.0, 2.2 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 3.26 (s, 3H), 2.22 (s, 3H) ppm.
¹³C NMR (126 MHz, CDCl₃, 298 K, δ): 165.8 (d, J = 255.7 Hz), 144.2, 139.0, 135.2 (d, J = 3.2 Hz), 131.6 (d, J = 9.6 Hz), 129.0, 124.2, 123.2, 120.4, 117.0 (d, J = 22.7 Hz), 46.2, 21.5 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –104.6 (m) ppm.

HRMS-EI (m/z) calculated for C₁₄H₁₄NOSF⁺ [M]⁺, 263.0775; found, 263.0778; deviation: -1.27 ppm.

((3,5-Dimethylphenyl)imino)(4-fluorophenyl)(methyl)- λ^{6} -sulfanone (16)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 3,5-dimethylbenzoate (31.2 mg, 0.200 mmol, 1.00 equiv.), Cu(MeCN)₄BF₄ (157 mg, 0.500 mmol, 2.50 equiv.), 1-fluoro-2,4,6-trimethylpyridinium triflate (145 mg, 0.500 mmol, 2.50 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. The residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield ((3,5-dimethylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (**16**) (28.8 mg, 104 µmol, 52%) as a slightly yellow oil.

Rf = 0.23 (EA/DCM = 1/50, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.03–7.96 (m, 2H), 7.23–7.17 (m, 2H), 6.66 (dt, *J* = 1.5, 0.8 Hz, 2H), 6.56 (dp, *J* = 1.6, 0.7 Hz, 1H), 3.24 (s, 3H), 2.18 (s, 6H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 165.7 (d, *J* = 255.7 Hz), 143.9, 138.7, 135.2, 131.6 (d, *J* = 9.5 Hz),

124.3, 121.2, 117.0 (d, *J* = 22.6 Hz), 46.1, 21.4 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –104.6 (m) ppm.

HRMS-ESI (m/z) calculated for C₁₅H₁₆NOSFNa⁺ [M+Na]⁺, 300.0829; found, 300.0827; deviation: 0.58 ppm.

 $(4-Fluorophenyl)(methyl)((4-methyl-3-(morpholinosulfonyl)phenyl)imino)-\lambda^{6}-sulfanone (17)$

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-methyl-3-(morpholinosulfonyl)benzoate (58.2 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/5, v/v) to yield (4-fluorophenyl)(methyl)((4-methyl-3-(morpholinosulfonyl)phenyl)imino)- λ^6 -sulfanone (**17**) (46.5 mg, 113 µmol, 56%) as a colorless solid.

Rf = 0.30 (EA/DCM = 1/4, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 7.99–7.93 (m, 2H), 7.46 (d, J = 2.2 Hz, 1H), 7.21 (t, J = 8.5 Hz, 2H), 7.10–7.03 (m, 2H), 3.67 (t, J = 4.7 Hz, 4H), 3.27 (s, 3H), 3.03 (td, J = 4.3, 2.5 Hz, 4H), 2.47 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 165.9 (d, *J* = 256.8 Hz), 135.3, 134.6, 133.7, 131.6 (d, *J* = 9.5 Hz), 130.9, 127.5, 124.9, 117.2 (d, *J* = 22.7 Hz), 66.4, 46.3, 45.5, 20.2 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –103.6 (m) ppm.

HRMS-ESI (m/z) calculated for C₁₈H₂₁N₂O₄S₂FNa⁺ [M+Na]⁺, 435.0819; found, 435.0823; deviation: -0.90 ppm.

2,2'-(5-(((4-Fluorophenyl)(methyl)(oxo)- λ^6 -sulfanylidene)amino)-1,3-phenylene)bis(2-methylpropanenitrile) (18)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 3,5-bis(2-cyanopropan-2-yl)benzoate (52.4 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50 to 1/30, v/v) to yield 2,2'-(5-(((4-fluorophenyl))(methyl)(oxo)- λ^6 -sulfanylidene)amino)-1,3-phenylene)bis(2-methylpropanenitrile) (**18**) (47.5 mg, 124 µmol, 62%) as a colorless oil.

Rf = 0.17 (EA/DCM = 1/50, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 7.99 (dd, J = 8.9, 5.0 Hz, 2H), 7.23 (t, *J* = 8.5 Hz, 2H), 7.06 (t, *J* = 1.8 Hz, 1H), 7.01 (d, *J* = 1.8 Hz, 2H), 3.29 (s, 3H), 1.64 (s, 6H), 1.61 (s, 6H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 165.9 (d, *J* = 256.4 Hz), 146.1, 143.2, 134.7, 131.5 (d, *J* = 9.5 Hz), 124.4, 119.5, 117.2 (d, *J* = 22.7 Hz), 115.3, 46.3, 37.2, 29.2, 29.0 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –103.7 (m) ppm.

HRMS-ESI (m/z) calculated for C₂₁H₂₂N₃OSFNa⁺ [M+Na]⁺, 406.1360; found, 406.1361; deviation: –0.39 ppm.

Celecoxib analogue 19

lithium salt of carboxycelecoxib (83.5 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/2, v/v) to yield a mixture. The mixture was further purified by preparative TLC (EA/DCM = 1/2, v/v) to yield celecoxib analogue **19** (45.1 mg, 84 µmol, 42%) as a colorless oil.

Rf = 0.40 (EA/DCM = 1/2, v/v).

NMR Spectroscopy:

¹**H NMR** (600 MHz, CD₂Cl₂, 298 K, δ): 7.95 (dd, *J* = 8.9, 5.0 Hz, 2H), 7.87–7.82 (m, 2H), 7.45–7.39 (m, 2H), 7.28–7.21 (m, 2H), 7.01–6.96 (m, 2H), 6.94–6.89 (m, 2H), 6.67 (d, *J* = 0.6 Hz, 1H), 5.15 (s, 2H), 3.25 (s, 3H) ppm.

¹³C NMR (151 MHz, CD₂Cl₂, 298 K, δ): 166.1 (d, J = 255.2 Hz), 147.1, 145.8, 144.0 (q, J = 38.2 Hz), 143.0, 141.9, 135.2 (d, J = 2.9 Hz), 131.8 (d, J = 9.6 Hz), 130.1, 127.7, 125.9, 123.7, 122.7 (q, J = 269.0 Hz), 121.9, 117.3 (d, J = 22.8 Hz), 106.2 (q, J = 1.9 Hz), 46.6. ppm.

¹⁹**F NMR** (565 MHz, CD₂Cl₂, 298 K, δ):–62.8 (s), –105.0 (m) ppm.

HRMS-ESI (m/z) calculated for C₂₃H₁₈N₄O₃S₂F₄Na⁺ [M+Na]⁺, 561.0649; found, 561.0648; deviation: 0.16 ppm.

Triclosan derivative 20

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium salt of triclosan-derived benzoic acid (52.4 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h

while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield triclosan derivative **20** (55.3 mg, 100 µmol, 50%) as a colorless solid.

Rf = 0.27 (DCM).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 7.93 (dd, *J* = 8.9, 5.0 Hz, 2H), 7.41 (d, *J* = 2.6 Hz, 1H), 7.20–7.14 (m, 2H), 7.12 (dd, *J* = 8.9, 2.6 Hz, 1H), 7.06 (t, *J* = 7.7 Hz, 1H), 6.90 (d, *J* = 15.3 Hz, 5H), 6.72 (d, *J* = 7.8 Hz, 1H), 6.67 (d, *J* = 8.7 Hz, 1H), 4.95 (s, 2H), 3.23 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 165.7 (d, *J* = 255.8 Hz), 152.4, 150.6, 145.2, 143.5, 137.0, 135.1 (d, *J* = 3.3 Hz), 131.5 (d, *J* = 9.5 Hz), 130.5, 130.3, 129.4, 128.0, 127.9, 124.7, 122.9, 122.0, 122.0, 121.5, 120.6, 118.4, 117.0 (d, *J* = 22.7 Hz), 115.7, 71.0, 46.3 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –104.3 (m) ppm.

HRMS-ESI (m/z) calculated for C₂₆H₁₉Cl₃FNO₃SNa⁺ [M+Na]⁺, 572.0027; found, 572.0031; deviation: -0.65 ppm.

(*R*)-Methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^{6} -sulfanone (21)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(trifluoromethyl)benzoate (39.2 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (*R*)-imino(methyl)(phenyl)- λ^6 -sulfanone (77.6 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield (*R*)-methyl(phenyl)((4-(trifluoromethyl)phenyl)phenyl)imino)- λ^6 -sulfanone (**21**) (40.2 mg, 134 µmol, 67%) as a colorless oil.

Rf = 0.50 (EA/DCM = 1/50, v/v).

ee > 99% (determined by comparison with a racemic sample)

HPLC Daicel Chiralpak AD-3, n-heptane/IPA = 95/5, 1 mL/min, 25 °C, 220 nm

Racemic sample:

<Chromatogram>

mAU

Peak	# Ret. Time	Area	Height	Area%
	8.504	2949405	261359	50.379
1	2 10.057	2905042	214217	49.621
Tota	al	5854447	475576	100.000

(*R*)-Methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (21)

<Chromatogram>

<Peak Table>

PDA Ch1 192nm				
Peak#	Ret. Time	Area%	Height%	Area
1	10.068	100.000	100.000	13891000
Total		100.000	100.000	13891000

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.01–7.87 (m, 2H), 7.65–7.58 (m, 1H), 7.58–7.49 (m, 2H), 7.38–7.31 (m, 2H), 7.09–7.00 (m, 2H), 3.26 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 148.8, 138.9, 133.7, 129.9, 128.6, 126.3 (q, *J* = 4.0 Hz), 124.7 (q, *J* = 269.4 Hz), 123.3 (q, *J* = 32.2 Hz), 122.9, 46.4 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –61.7 (s) ppm.

HRMS-ESI (m/z) calculated for C₁₄H₁₂NOSF₃Na⁺ [M+Na]⁺, 322.0484; found, 322.0485; deviation: -0.31 ppm.

(S)-Methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (22)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(trifluoromethyl)benzoate (39.2 mg, 0.200 mmol, 1.00 equiv.), $Cu(OTf)_2$ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (*S*)-imino(methyl)(phenyl)- λ^6 -sulfanone (77.6 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two

purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield (*S*)-methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (**22**) (42.3 mg, 141 µmol, 71%) as a colorless oil.

Rf = 0.50 (EA/DCM = 1/50, v/v).

ee > 99% (determined by comparison with a racemic sample)

HPLC Daicel Chiralpak AD-3, n-heptane/IPA = 95/5, 1 mL/min, 25 °C, 220 nm

Racemic sample:

(S)-Methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (22)

and the second second

<Chromatogram>

<Peak Table>

PDA Ch1 192nm				
Peak#	Ret. Time	Area	Height	Area%
1	8.555	28445706	1880775	100.000
Total		28445706	1880775	100.000

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 7.98–7.92 (m, 2H), 7.63–7.58 (m, 1H), 7.56–7.51 (m, 2H), 7.37–7.31 (m, 2H), 7.07–7.02 (m, 2H), 3.26 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 148.8, 138.9, 133.7, 129.9, 128.6, 126.3 (q, *J* = 3.8 Hz), 124.7 (q, *J* = 269.5 Hz), 123.3 (q, *J* = 32.3 Hz), 122.9, 46.4 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –61.7 (s) ppm.

HRMS-ESI (m/z) calculated for C₁₄H₁₂NOSF₃Na⁺ [M+Na]⁺, 322.0484; found, 322.0483; deviation: 0.28 ppm.

Ethyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^{6} -sulfanone (23)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(trifluoromethyl)benzoate (39.2 mg, 0.200 mmol, 1.00 equiv.), $Cu(OTf)_2$ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and ethyl(imino)(phenyl)- λ^6 -sulfanone (84.6 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple

LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield ethyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (**23**) (39.4 mg, 126 µmol, 63%) as a colorless oil.

Rf = 0.42 (EA/DCM = 1/50, v/v).

NMR Spectroscopy:

¹H NMR (500 MHz, CDCl₃, 298 K, δ): 7.92–7.86 (m, 2H), 7.61 (tt, *J* = 6.8, 1.4 Hz, 1H), 7.56–7.50 (m, 2H), 7.34 (d, *J* = 8.6 Hz, 2H), 7.06 (d, *J* = 8.5 Hz, 2H), 3.43–3.29 (m, 2H), 1.32 (td, *J* = 7.4, 2.0 Hz, 3H) ppm.
¹³C NMR (126 MHz, CDCl₃, 298 K, δ): 149.0, 136.9, 133.7, 129.8, 129.4, 126.2 (q, *J* = 3.9 Hz), 124.8 (q, *J* = 270.8 Hz), 123.1 (q, *J* = 32.2 Hz), 122.9, 52.4, 7.5 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –61.6 (s) ppm.

HRMS-EI (m/z) calculated for C₁₅H₁₄NOSF₃⁺ [M]⁺, 313.0743; found, 313.0749; deviation: -1.94 ppm.

(4-Chlorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (24)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(trifluoromethyl)benzoate (39.2 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-chlorophenyl)(imino)(methyl)- λ^6 -sulfanone (94.8 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield (4-chlorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (24) (46.7 mg, 140 µmol, 70%) as a colorless oil.

Rf = 0.35 (DCM).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 7.93–7.83 (m, 2H), 7.56–7.47 (m, 2H), 7.36 (d, *J* = 8.3 Hz, 2H), 7.03

(d, J = 8.3 Hz, 2H), 3.27 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 148.3, 140.6, 137.4, 130.2, 130.1, 126.4 (q, *J* = 3.7 Hz), 123.8 (q, *J* = 32.4 Hz), 124.6 (q, *J* = 269.5 Hz), 123.0, 46.5 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –61.7 (s) ppm.

HRMS-EI (m/z) calculated for C₁₄H₁₁NOSF₃Cl⁺ [M]⁺, 333.0197; found, 333.0201; deviation: -1.20 ppm.

$(3,5-Dichlorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)-\lambda^6-sulfanone (25)$

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(trifluoromethyl)benzoate (39.2 mg, 0.200 mmol, 1.00 equiv.), Cu(MeCN)₄BF₄ (157 mg, 0.500 mmol, 2.50 equiv.), 1-fluoro-2,4,6-trimethylpyridinium triflate (145 mg, 0.500 mmol, 2.50 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (3,5-dichlorophenyl)(imino)(methyl)- λ^6 -sulfanone (112 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. The residue was purified by chromatography on silica gel (DCM) to yield (3,5-dichlorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (**25**) (33.1 mg, 90 µmol, 45%) as a colorless oil.

Rf = 0.52 (DCM).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 7.76 (d, *J* = 1.9 Hz, 2H), 7.52 (t, *J* = 1.9 Hz, 1H), 7.35–7.31 (m, 2H), 7.01–6.97 (m, 2H), 3.21 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 147.7, 142.4, 136.9, 133.9, 127.0, 126.5 (q, *J* = 3.7 Hz), 124.6 (q, *J* = 269.5 Hz),124.2 (q, *J* = 32.7 Hz), 123.1, 46.3 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –61.8 (s) ppm.

HRMS-ESI (m/z) calculated for C₁₄H₁₁NOSCl₂F₃⁺ [M+H]⁺, 367.9885; found, 367.9888; deviation: -0.92 ppm.

$(3-Methylphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)-\lambda^{6}-sulfanone (26)$

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(trifluoromethyl)benzoate (39.2 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (3-methylphenyl)(imino)(methyl)- λ^6 -sulfanone (84.6 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure to sport and placed get (EA/DCM = 1/50, v/v) to yield (3-methylphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (**26**) (36.9 mg, 118 µmol, 59%) as a colorless oil.

Rf = 0.50 (EA/DCM = 1/25, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 7.79–7.76 (m, 1H), 7.73 (ddd, *J* = 5.4, 3.6, 2.0 Hz, 1H), 7.43–7.39 (m, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.05 (d, *J* = 8.3 Hz, 2H), 3.25 (s, 3H), 2.42 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 148.9, 140.3, 138.8, 134.6, 129.7, 128.9, 126.3 (q, *J* = 3.8 Hz), 125.6, 124.7 (q, *J* = 269.3 Hz), 123.3 (q, *J* = 32.4 Hz), 122.9, 46.5, 21.5 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –61.7 (s) ppm.

HRMS-EI (m/z) calculated for C₁₅H₁₄NOSF₃⁺ [M]⁺, 313.0743; found, 313.0749; deviation: -1.94 ppm.

(4-Cyanophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)-λ⁶-sulfanone (27)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(trifluoromethyl)benzoate (39.2 mg, 0.200 mmol, 1.00 equiv.), Cu(MeCN)₄BF₄ (157 mg, 0.500 mmol, 2.50 equiv.), 1-fluoro-2,4,6-trimethylpyridinium triflate (145 mg, 0.500 mmol, 2.50 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-cyanophenyl)(imino)(methyl)- λ^6 -sulfanone (90.1 mg,

0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. The residue was purified by chromatography on silica gel (DCM) to yield (4-cyanophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (**27**) (31.2 mg, 96 µmol, 48%) as a colorless solid.

Rf = 0.33 (DCM).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.11–8.05 (m, 2H), 7.88–7.82 (m, 2H), 7.39–7.34 (m, 2H), 7.07–7.00 (m, 2H), 3.30 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 147.8, 143.6, 133.6, 129.4, 126.5 (q, *J* = 3.8 Hz), 124.5 (q, *J* = 269.5 Hz), 124.2 (q, *J* = 32.4 Hz),123.0, 117.6, 117.2, 46.1 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): -61.8 (s) ppm.

HRMS-ESI (m/z) calculated for C₁₅H₁₂N₂OSF₃⁺ [M+H]⁺, 325.0617; found, 325.0618; deviation: -0.44 ppm.

 $(2-Bromophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)-\lambda^6-sulfanone (28)$

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(trifluoromethyl)benzoate (39.2 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (2-bromophenyl)(imino)(methyl)- λ^6 -sulfanone (117 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure to premate graph on silica gel (EA/DCM = 1/50, v/v) to yield (2-bromophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (**28**) (41.1 mg, 109 µmol, 54%) as a yellow oil.

Rf = 0.56 (EA/DCM = 1/25, v/v).

NMR Spectroscopy:

¹H NMR (500 MHz, CDCl₃, 298 K, δ): 8.29 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.69 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.51

(td, *J* = 7.6, 1.3 Hz, 1H), 7.41 (td, *J* = 7.6, 1.7 Hz, 1H), 7.36–7.30 (m, 2H), 7.08–7.00 (m, 2H), 3.49 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 148.2, 137.9, 136.1, 134.7, 133.4, 128.3, 126.2 (q, *J* = 3.7 Hz), 124.7 (q, *J* = 269.4 Hz), 123.8 (d, *J* = 32.3 Hz), 122.9, 120.5, 43.6. ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –61.7 (s) ppm.

HRMS-EI (m/z) calculated for C₁₅H₁₄NOSF₃⁺ [M]⁺, 313.0743; found, 313.0749; deviation: -1.94 ppm.

(4-Methoxyphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (29)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(trifluoromethyl)benzoate (39.2 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-methoxyphenyl)(imino)(methyl)- λ^6 -sulfanone (92.6 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure to provide a Büchner funnel. The filtrate was evaporated under reduced pressure to provide a Büchner funnel. The filtrate was evaporated under reduced pressure by chromatography on silica gel (EA/DCM = 1/25, v/v) to yield (4-methoxyphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (**29**) (39.6 mg, 120 µmol, 60%) as a yellow oil.

Rf = 0.26 (EA/DCM = 1/25, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 7.89–7.82 (m, 2H), 7.35 (d, *J* = 8.5 Hz, 2H), 7.03 (d, *J* = 8.2 Hz, 2H), 7.01–6.96 (m, 2H), 3.85 (s, 3H), 3.25 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 163.8, 149.0, 130.8, 129.9, 126.2 (q, *J* = 3.8 Hz), 124.7 (q, *J* = 271.1 Hz), 123.3 (q, *J* = 32.1 Hz), 122.9, 115.1, 55.8, 46.9 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –61.6 (s) ppm.

HRMS-EI (m/z) calculated for C₁₅H₁₄NO₂SF₃⁺ [M]⁺, 329.0692; found, 329.0697; deviation: -1.65 ppm.
$(4-Trifluoromethoxyphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)-\lambda^{6}-sulfanone (30)$

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(trifluoromethyl)benzoate (39.2 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and imino(methyl)(4-(trifluoromethoxy)phenyl)- λ^6 -sulfanone (120 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure to romatography on silica gel (EA/DCM = 1/50, v/v) to yield methyl(4-(trifluoromethoxy)phenyl)((4-(trifluoromethyl)phenyl)phenyl))mino)- λ^6 -sulfanone (**30**) (54.1 mg, 141 µmol, 71%) as a yellow oil.

Rf = 0.56 (EA/DCM = 1/25, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.03–7.98 (m, 2H), 7.39–7.34 (m, 4H), 7.08–7.03 (m, 2H), 3.28 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 153.1, 148.3, 137.2, 130.9, 126.4 (q, *J* = 3.8 Hz), 124.6 (q, *J* = 269.6 Hz), 123.8 (q, *J* = 32.7 Hz), 123.0, 121.5, 120.3 (q, *J* = 259.9 Hz), 46.5 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –57.7 (s), –61.8 (s) ppm.

HRMS-EI (m/z) calculated for C₁₅H₁₁NO₂SF₆⁺ [M]⁺, 383.0409; found, 383.0417; deviation: –1.95 ppm.

Dimethyl((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (31)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(trifluoromethyl)benzoate (39.2 mg, 0.200 mmol, 1.00 equiv.), $Cu(OTf)_2$ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and iminodimethyl- λ^6 -sulfanone (46.6 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple

LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield dimethyl((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (**31**) (31.4 mg, 132 µmol, 66%) as a colorless solid.

Rf = 0.25 (EA/DCM = 1/50, v/v).

NMR Spectroscopy:

¹H NMR (500 MHz, CDCl₃, 298 K, δ): 7.46 (d, J = 8.3 Hz, 2H), 7.13 (d, J = 8.3 Hz, 2H), 3.17 (s, 6H) ppm.
¹³C NMR (126 MHz, CDCl₃, 298 K, δ): 149.0, 126.5 (q, J = 3.9 Hz), 124.7 (q, J = 269.4 Hz), 123.9 (d, J = 32.2 Hz), 122.9, 42.4 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –61.7 (s) ppm.

HRMS-EI (m/z) calculated for C₉H₁₀NOSF₃⁺ [M]⁺, 237.0430; found, 237.0431; deviation: -0.37 ppm.

Diphenyl((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (32)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(trifluoromethyl)benzoate (39.2 mg, 0.200 mmol, 1.00 equiv.), Cu(MeCN)₄BF₄ (157 mg, 0.500 mmol, 2.50 equiv.), 1-fluoro-2,4,6-trimethylpyridinium triflate (145 mg, 0.500 mmol, 2.50 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and iminodiphenyl- λ^6 -sulfanone (109 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. The residue was purified by chromatography on silica gel (DCM) to yield diphenyl((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (**32**) (36.3 mg, 100 µmol, 50%) as a colorless solid.

Rf = 0.63 (DCM).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.10–8.00 (m, 4H), 7.57–7.46 (m, 6H), 7.41–7.36 (m, 2H), 7.20 (d, *J* = 8.4 Hz, 2H) ppm.

¹³C NMR (126 MHz, CDCl₃, 298 K, δ): 148.5, 140.5, 133.1, 129.6, 128.5, 126.3 (q, J = 3.8 Hz), 124.8 (q,

J = 269.4 Hz), 123.5, 123.2 (q, *J* = 32.3 Hz) ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –61.6 (s) ppm.

HRMS-ESI (m/z) calculated for C₁₉H₁₄F₃NOSNa⁺ [M+Na]⁺, 384.0640; found, 384.0642; deviation: -0.28 ppm.

1 mmol scale decarboxylative sulfoximination of lithium 4-(trifluoromethyl)benzoate

In a nitrogen-filled glovebox, a 100 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(trifluoromethyl)benzoate (196 mg, 1.00 mmol, 1.00 equiv.), Cu(OTf)₂ (904 mg, 2.50 mmol, 2.50 equiv.), LiOMe (38.0 mg, 1.00 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (383 mg, 2.00 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (433 mg, 2.50 mmol, 2.50 equiv.). Anhydrous MeCN (40.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (30 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield (4-fluorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (**5**) (225 mg, 0.709 mmol, 71%) as a slightly yellow oil.

Tested ortho-substituted substrates

Reactions with catalytic amounts of Cu(OTf)₂ and oxidants

oxidant	Yield (3/3a/3b , %) ^a
$K_2S_2O_8$	0/0/10
N-Fluorobenzenesulfonimide	0/0/68
1-Fluoro-2,4,6-trimethylpyridinium tetrafluoroborate	0/0/0
Di- <i>tert</i> -butyl peroxide	0/0/0

^{a 19}F NMR yield with 2-fluorotoluene(2.0 equiv.) as an internal standard.

Mechanistic Studies

UV-vis Absorption Spectrum

All UV-vis measurements were recorded on a Shimadzu UV-vis Spectrophotometer UV-2600 with temperature controller using a screw-top guartz cuvette (Hellma fluorescence guartz cuvette, 10 × 10 mm, 3.5 mL). Samples were prepared in a glovebox and then taken out of the glovebox. UV-vis spectra of lithium 4-fluorobenzoate (1, $(4-fluorophenyl)(imino)(methyl)-\lambda^6-sulfanone$ 2.5 1 mM). (2. mM). (4-fluorophenvl)((4fluorophenyl)imino)(methyl)- λ^6 -sulfanone (3, 1 mM), Cu(OTf)₂ (2.5 mM), LiOMe (1.0 mM), 2,6-di-*tert*butylpyridine (DTBP, 2.0 mM), the mixture of 1 (1 mM) + Cu(OTf)₂ (2.5 mM), the mixture of 2 (2.5 mM) + Cu(OTf)₂ (2.5 mM), the mixture of 3 (1 mM) + Cu(OTf)₂ (2.5 mM), the mixture of DTBP (2.0 mM) + Cu(OTf)₂ (2.5 mM), the mixture of 2 (2.5 mM) + DTBP (2 mM) + LiOMe (1mM) + Cu(OTf)₂ (2.5 mM), the mixture of 1 (1 mM) + 2 (2.5 mM) + DTBP (2 mM) + LiOMe (1mM) + Cu(OTf)₂ (2.5 mM) were recorded respectively, using MeCN as the solvent.

Note: Lithium 4-fluorobenzoate (1) and LiOMe are poorly dissolved in MeCN. All lithium 4-fluorobenzoatecontaining or LiOMe-containing samples were filtered through a 0.22 μ m syringe filter before measurement, so the actual concentration of lithium 4-fluorobenzoate (1) or LiOMe in these samples is less than 1.0 mM.

Figure S1. UV-vis spectra analysis of the reaction components.

Photolysis of the mixture of 1, 2, DTBP, LiOMe and Cu(OTf)₂

In a nitrogen-filled glovebox, a mixture of **1** (1 mM) + **2** (2.5 mM) + DTBP (2 mM) + LiOMe (1mM) + Cu(OTf)₂ (2.5 mM) in 3.0 mL MeCN was transferred to a screw-top quartz cuvette (Hellma fluorescence quartz cuvette, 10 × 10 mm, 3.5 mL). The quartz cuvette was sealed and taken out of the glovebox. The absorption spectra were recorded on a Shimadzu UV-vis Spectrophotometer UV-2600 after the cuvette was irradiated by two Kessil PR160L-390 nm LEDs (5 cm away from two Kessil PR160L-390 nm LEDs, and the temperature was maintained at approximately 35 °C through cooling with a fan) for various time (0.0 min, 1 min, 2 min, 4 min, 8 min, 16 min, 32 min and 64 min).

After photolysis, 0.5 mL reaction mixture was taken out and diluted with CD₃CN, and the formation of (4-fluorophenyl)((4-fluorophenyl)imino)(methyl)- λ^6 -sulfanone (**3**) was confirmed by ¹⁹F NMR. Upon addition of 2,2'-biquinoline (3.8 mg) to the rest of the reaction mixture, the colourless solution turned to dark purple colour, which originates from the formation of a purple [Cu^I(biq)₂]⁺ complex. 0.25 mL of the above purple reaction mixture was taken out and further diluted to 3.0 mL with MeCN. The absorption spectrum was recorded on a UV-vis spectrophotometer, and a significant absorbance ($\lambda_{max} = 546$ nm) was observed.

Figure S3. UV-vis spectra of [Cu^I(biq)₂]⁺ complex.

Radical trapping experiments

Reaction with lithium 3-methoxybenzoate (33)

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 3-methoxybenzoate (29.2 mg, 0.200 mmol, 1.00 equiv.), $Cu(OTf)_2$ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (4.0 mL) and benzene (4.0 mL) were then added into the vial. The vial was sealed with a Teflon cap, taken out of the glovebox and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. The residue was purified by chromatography on silica gel (EA/hexanes = 1/50, v/v to EA/DCM = 1/50, v/v) to yield 3-methoxy-1,1'-biphenyl (**S2**) (2.4 mg, 13 µmol, 7%) as a colorless oil, phenyl 3-methoxybenzoate (**S1**) (2.8 mg, 12 µmol, 6%) as a colorless solid, ((3-methoxyphenyl)jimino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (**11**) (13.0

mg, 47 μ mol, 23%) as a colorless oil and (4-fluorophenyl)(methyl)(phenylimino)- λ^6 -sulfanone (**S3**) (5.7 mg, 23 μ mol, 5%) as a colorless oil.

Phenyl 3-methoxybenzoate (S1):

Rf = 0.24 (EA/hexanes, 1/50, v/v).

NMR Spectroscopy:

¹**H NMR** (600 MHz, CDCl₃, 298 K, δ): 7.81 (dd, *J* = 7.6, 2.6 Hz, 1H), 7.72–7.70 (m, 1H), 7.45–7.41 (m, 3H), 7.30–7.26 (m, 1H), 7.23–7.20 (m, 2H), 7.20–7.17 (m, 1H), 3.89 (s, 3H) ppm.

¹³**C NMR** (150 MHz, CDCl₃, 298 K, δ): 165.2, 160.0, 151.1, 131.0, 129.8, 129.7, 126.1, 122.8, 121.9, 120.3, 114.6, 55.7 ppm.

HRMS-ESI (m/z) calculated for C₁₄H₁₂O₃Na⁺ [M+Na]⁺, 251.0679; found, 251.0680; deviation: -0.62 ppm.

3-Methoxy-1,1'-biphenyl (S2):

Rf = 0.37 (EA/hexanes, 1/50, v/v).

NMR Spectroscopy:

¹**H NMR** (600 MHz, CDCl₃, 298 K, δ): 7.60–7.58 (m, 2H), 7.45–7.42 (m, 2H), 7.37–7.34 (m, 2H), 7.20–7.17 (m, 1H), 7.13 (t, *J* = 2.3 Hz, 1H), 6.90 (ddd, *J* = 8.2, 2.6, 0.9 Hz, 1H), 3.87 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃, 298 K, δ): 13C NMR (151 MHz, CDCl3) δ 160.1, 142.9, 141.3, 129.9, 128.9, 127.6, 127.4, 119.8, 113.1, 112.8, 55.5 ppm.

HRMS-EI (m/z) calculated for C₁₃H₁₂O⁺ [M]⁺, 184.0883; found, 184.0882; deviation: 0.41 ppm.

(4-Fluorophenyl)(methyl)(phenylimino)- λ^6 -sulfanone (**S3**):

Rf = 0.40 (DCM).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.02–7.95 (m, 2H), 7.23–7.17 (m, 2H), 7.16–7.11 (m, 2H), 7.02–6.97 (m, 2H), 6.89 (tt, *J* = 7.2, 1.2 Hz, 1H), 3.24 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 165.7 (d, *J* = 255.7 Hz), 144.7, 135.4, 131.6 (d, *J* = 9.6 Hz), 129.2, 123.5, 122.1, 117.0 (d, *J* = 22.5 Hz), 46.3 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –104.6 (m) ppm.

HRMS-ESI (m/z) calculated for C₁₃H₁₂NOSF⁺ [M+H]⁺, 249.0618; found, 249.0619; deviation: -0.18 ppm.

Reaction without lithium 3-methoxybenzoate

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (4.0 mL) and benzene (4.0 mL) were then added into the vial. The vial was sealed with a Teflon cap, taken out of the glovebox and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield (4-fluorophenyl)(methyl)(phenylimino)- λ^6 -sulfanone (**S3**) (27.7 mg, 111 µmol, 22%) as a colorless oil.

Deuterodecarboxylation

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(tosyloxy)benzoate (**33**) (59.6 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous d₃-MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/hexane = 1:50, v/v to EA/DCM = 1/50, v/v) to yield 4-(((4-fluorophenyl)(methyl)(oxo)- λ^6 -sulfanylidene)amino)phenyl 4-methylbenzenesulfonate (**6**) (47.2 mg, 113 µmol, 56%) as a colorless solid and a mixture containing phenyl-4-*d* 4-methylbenzenesulfonate (**34**). The mixture was further purified by preparative TLC (DCM) to generate **34** (1.3 mg, 5 µmol, 3%) as a colorless solid. The deuterium ratio (82%) was determined by GC-MS.

Phenyl-4-d 4-methylbenzenesulfonate (34, 82%-D)

Rf =0.73 (DCM).

NMR Spectroscopy:

¹**H NMR** (600 MHz, CD_2CI_2 , 298 K, δ): 7.71–7.67 (m, 2H), 7.37–7.33 (m, 2H), 7.32 (dd, *J* = 7.7, 4.9 Hz, 2H), 7.29 – 7.24 (m, 0.28H), 7.01–6.96 (m, 2H), 2.46 (s, 3H) ppm. Note:Since the deuterium ratio is 82%, the data reported here contains peaks belong to undeutered phenyl 4-methylbenzenesulfonate.

D NMR (92 MHz, CH₂Cl₂, 298 K, δ): 7.20 (s) ppm.

¹³**C NMR** (151 MHz, CDCl₃, 298 K, δ): 149.8, 145.8, 132.4, 129.9, 129.7, 129.6, 128.5, 127.2, 122.5, 21.6. ppm. Note: The data contains peaks belong to undeutered phenyl 4-methylbenzenesulfonate.

HRMS-EI (m/z) calculated for C₁₃H₁₁O₃SD⁺ [M]⁺, 249.0564; found, 249.0568; deviation: -1.59 ppm.

Radical cyclisation experiment

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium [1,1'-biphenyl]-2-carboxylate (40.8 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (4.0 mL) and benzene (4.0 mL) were then added into the vial. The vial was sealed with a Teflon cap, taken out of the glovebox and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/pentane = 1/9, v/v) to afford 6*H*-benzo[*c*]chromen-6-one (**S4**) (35.3 mg, 180 µmol, 90%) as a colorless solid.

Rf = 0.31 (EA/pentane, 1/9, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.36 (dd, *J* = 7.9, 1.4 Hz, 1H), 8.07 (dd, *J* = 8.1, 1.1 Hz, 1H), 8.01 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.79 (ddd, *J* = 8.4, 7.2, 1.4 Hz, 1H), 7.55 (ddd, *J* = 8.1, 7.2, 1.1 Hz, 1H), 7.45 (ddd, *J* = 8.4, 7.1, 1.5 Hz, 1H), 7.36–7.27 (m, 2H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 161.2, 151.3, 134.9, 134.8, 130.6, 130.5, 128.9, 124.6, 122.8, 121.8, 121.29, 118.1, 117.8 ppm.

HRMS-EI (m/z) calculated for C₁₃H₈O₂⁺ [M]⁺, 196.0519; found, 196.0518; deviation: 0.20 ppm.

Decarboxylative sulfoximination of 4-fluorobenzoic acid derived oxime ester

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with 4-fluorobenzoic acid derived oxime ester (71.1 mg, 0.200 mmol, 1.00 equiv.), Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), LiOMe (7.6 mg, 0.200 mmol, 1.00 equiv.), 2,6-di-*tert*-butylpyridine (76.5 mg, 0.400 mmol, 2.00 equiv.) and (4-fluorophenyl)(imino)(methyl)- λ^6 -sulfanone (86.5 mg, 0.500 mmol, 2.50 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. DCM (15 mL) was added to the residue, and the precipitation was removed by filtered through a Büchner funnel. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on silica gel (EA/DCM = 1/50, v/v) to yield (4-fluorophenyl)((4-fluorophenyl)imino)(methyl)- λ^6 -sulfanone (**3**) (17.0 mg, 64 µmol, 32%) as a slightly yellow oil.

Example of decarboxylative amination

In a nitrogen-filled glovebox, a 16 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-fluorobenzoate (29.2 mg, 0.200 mmol, 1.00 equiv.), $Cu(OTf)_2$ (181 mg, 0.500 mmol, 2.50 equiv.), and sodium saccharin (**35**) (82.1 mg, 0.400 mmol, 2.00 equiv.). Anhydrous MeCN (8.0 mL, c = 25 mM) was then added into the vial. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160L-390 nm LEDs). The reaction mixture was irradiated for 18 h while maintaining the temperature at approximately 35 °C through cooling with a fan. After irradiation, the reaction mixture was evaporated under reduced pressure to remove all volatiles. The residue was purified by chromatography on silica gel (EA/hexanes = 1/5, v/v) to afford a mixture, then the mixture was further purified by preparative TLC (DCM) to yield 2-(4-fluorophenyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (**36**) (27.9 mg, 101 µmol, 50%) as a white solid.

Rf = 0.7 (DCM).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.21–8.10 (m, 1H), 8.00 (dt, *J* = 7.8, 0.9 Hz, 1H), 7.93 (td, *J* = 7.6, 1.3 Hz, 1H), 7.89 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.59–7.46 (m, 2H), 7.27–7.21 (m, 2H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 164.6, 162.6, 158.5, 137.6, 135.3, 134.7, 131.1, 131.1, 127.2, 125.8, 124.5, 124.5, 121.5, 117.3, 117.2 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –109.8 (m) ppm.

HRMS-EI (m/z) calculated for C₁₃H₈NOSF⁺ [M]⁺, 277.0203; found, 277.0209; deviation: -1.86 ppm.

REFERENCES

- Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* 2010, 29, 2176– 2179.
- Wang, B.; Han, X.; Li, J.; Li, C.; Liu, H. Sulfoximines-Assisted Rh(III)-Catalyzed C–H Activation and Intramolecular Annulation for the Synthesis of Fused Isochromeno-1,2-Benzothiazines Scaffolds under Room Temperature *Molecules* 2020, 25, 2515.
- 3. Xu, P.; López-Rojas, P.; Ritter, T. Radical Decarboxylative Carbometalation of Benzoic Acids: A Solution to Aromatic Decarboxylative Fluorination, *J. Am. Chem. Soc.* **2021**, *143*, 5349-5354.
- Lill, A.; Scholich, K.; Stark, H. Synthesis of Novel Dansyl-Labeled Celecoxib Derivatives. *Tetrahedron Lett.* 2013, *54*, 6682–6686.
- 5. Su, W.; Xu, P.; Ritter, T. Decarboxylative Hydroxylation of Benzoic acids, *Angew. Chem. Int. Ed.* under revision.

SPECTROSCOPIC DATA

¹H NMR of (4-fluorophenyl)((4-fluorophenyl)imino)(methyl)- λ^6 -sulfanone (3)

7.95	7.93 7.93 7.18 7.18 7.18 7.18 7.18 7.18 7.18	46.09.09.0	6.82 6.81 6.78 6.78 6.78
		1	

¹³C NMR of (4-fluorophenyl)((4-fluorophenyl)imino)(methyl)- λ^6 -sulfanone (3)

CDCl₃, 298 K

-45.9

¹⁹F NMR of (4-fluorophenyl)((4-fluorophenyl)imino)(methyl)- λ^6 -sulfanone (3)

CDCl₃, 298 K

ō -20 -30 -40 -50 -60 -70 -80 -90 -140 -10 -110 -120 -150 -130 -170 -100 -180 -160 -190 -200 ppm

¹H NMR of (4-fluorophenyl)(methyl)((4-(methylsulfonyl)phenyl)imino)- λ^6 -sulfanone (4)

Me MeO₂S

¹³C NMR of (4-fluorophenyl)(methyl)((4-(methylsulfonyl)phenyl)imino)- λ^6 -sulfanone (4)

¹⁹F NMR of (4-fluorophenyl)(methyl)((4-(methylsulfonyl)phenyl)imino)- λ^6 -sulfanone (4)

1	' 1	10 S. I.S.	· · · ·	di sila	1.0			· · ·	· · · ·			1 (d. c. c)	· 1		· · ·	1	1				- 1	· · · · ·	· · · · · ·	
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												ppm												

¹H NMR of (4-fluorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (5)

¹³C NMR of (4-fluorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (5)

CDCl₃, 298 K

-46.6

¹⁹F NMR of (4-fluorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (5)

CDCl₃, 298 K

20

10

Ó

¹H NMR of 4-(((4-fluorophenyl)(methyl)(oxo)- λ^6 -sulfanylidene)amino)phenyl 4-methylbenzenesulfonate (6)

CDCl₃, 298 K

-2.40

¹³C NMR of 4-(((4-fluorophenyl)(methyl)(oxo)- λ^6 -sulfanylidene)amino)phenyl 4-methylbenzenesulfonate (6)

CDCl₃, 298 K

-21.7

¹⁹F NMR of 4-(((4-fluorophenyl)(methyl)(oxo)-λ⁶-sulfanylidene)amino)phenyl 4-methylbenzenesulfonate (6)

¹H NMR of ((4-bromophenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (7)

CDCl₃, 298 K

-3.23

¹³C NMR of ((4-bromophenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (7)

	01	0 0 000	01	N 00 00
00 1	8	6000	ö	105
04	4	4022	LO	N 0 4
116	4			===
11	1	SSK		Y2

¹⁹F NMR of ((4-bromophenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (7)

	- C - C - C - C - C - C - C - C - C - C	1. 1.	1			- 1 C	- 1 o	- 1.S	- 1 a a a a a a a a a a a a a a a a a a	1 I I I	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1 1	1 d a	<u>v</u> 1	1 I.S.	·	· · · ·			
0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200
										ppm										

¹H NMR of (4-fluorophenyl)((3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)phenyl)imino)(methyl)-λ⁶-sulfanone (8)

¹³C NMR of (4-fluorophenyl)((3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)phenyl)imino)(methyl)- λ^6 -sulfanone (8)

¹⁹F NMR of (4-fluorophenyl)((3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)phenyl)imino)(methyl)-λ⁶-sulfanone (8)

N=S Мe

¹H NMR of ((4-cyanophenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (9)

¹³C NMR of ((4-cyanophenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (9)

CDCl₃, 298 K

-46.8

¹⁹F NMR of ((4-cyanophenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (9)

¹H NMR of ((2-fluorophenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (10)

¹³C NMR of ((2-fluorophenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (10)

¹⁹F NMR of ((2-fluorophenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (10)

CDCl₃, 298 K

Ő -20 -70 -80 -30 -40 -50 -60 -90 -10 -100 -110 -120 -140 -160 -130 -150 -170 -180 -190 -200 ppm
¹H NMR of ((3-Methoxyphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (11)

¹³C NMR of ((3-Methoxyphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (11)

¹⁹F NMR of ((3-Methoxyphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (11)

1	1				1 A A A A A A A A A A A A A A A A A A A	1 1 2									1.				· · · ·	· · · ·	
0	-10	-2	20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200
											ppm										

¹H NMR of (4-fluorophenyl)(methyl)((2-(trifluoromethyl)pyridin-4-yl)imino)- λ^6 -sulfanone (12)

CDCI₃, 298 K

-3.31

¹³C NMR of (4-fluorophenyl)(methyl)((2-(trifluoromethyl)pyridin-4-yl)imino)- λ^6 -sulfanone (12)

¹⁹F NMR of (4-fluorophenyl)(methyl)((2-(trifluoromethyl)pyridin-4-yl)imino)- λ^6 -sulfanone (12)

¹H NMR of ((4-acetylphenyl)imino)(4-fluorophenyl)(methyl)-λ⁶-sulfanone (13)

¹³C NMR of ((4-acetylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (13)

¹⁹F NMR of ((4-acetylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (13)

¹H NMR of (+)-menthol derivative 14

¹³C NMR of (+)-menthol derivative 14

CDCl₃, 298 K

-Me

Mé

¹⁹F NMR of (+)-menthol derivative 14

CDCI₃, 298 K

ò

¹H NMR of ((3-methylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (15)

¹³C NMR of ((3-methylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (15)

¹⁹F NMR of ((3-methylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (15)

-10 -20 -30 -40	· · · · · · · · · · · · · · · · · · ·	· <u>.</u> · <u>.</u> · <u>.</u> · <u>.</u>

¹H NMR of ((3,5-Dimethylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (16)

¹³C NMR of ((3,5-Dimethylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (16)

¹⁹F NMR of ((3,5-Dimethylphenyl)imino)(4-fluorophenyl)(methyl)- λ^6 -sulfanone (16)

	- Six			222	1777 - 17		1997 - 19		57						10 10 10 A	20 - 202 - 202		- A-G	
			· ·	1 (c) (c)	S - 20 S		2	· · · · ·		10.000		1	 Instance 		3 10 100 1	1 1 2 1 2 2	di nakao i	i salar i	· · · · · · · · · · · · · · · · · · ·
-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200
10	20	50	10	- 30	00	/0	00	- 20	100	110	120	150	1 10	100	100	170	100	100	200
									nnm										
									PPIII										

¹H NMR of (4-fluorophenyl)(methyl)((4-methyl-3-(morpholinosulfonyl)phenyl)imino)-λ⁶-sulfanone (17)

CDCI3, 298 K

 $\begin{array}{c} 3.56\\ 3.67\\ 2.326\\ 3.05\\ 2.320\\ 3.05\\ 2.320\\ 3.05\\ 2.320\\ 3.05\\ 2.320\\ 3.05\\ 2.320\\ 3.05\\ 2.320\\ 3.05$

¹³C NMR of (4-fluorophenyl)(methyl)((4-methyl-3-(morpholinosulfonyl)phenyl)imino)- λ^6 -sulfanone (17)

¹⁹F NMR of (4-fluorophenyl)(methyl)((4-methyl-3-(morpholinosulfonyl)phenyl)imino)- λ^6 -sulfanone (17)

¹H NMR of 2,2'-(5-(((4-fluorophenyl)(methyl)(oxo)- λ^6 -sulfanylidene)amino)-1,3-phenylene)bis(2-methylpropanenitrile) (18)

CDCI3, 298 K

7.99 7.25 7.25 7.25 7.26 7.26 7.26 7.20 7.06

¹³C NMR of 2,2'-(5-(((4-fluorophenyl)(methyl)(oxo)- λ^6 -sulfanylidene)amino)-1,3-phenylene)bis(2-methylpropanenitrile) (18)

CDCl₃, 298 K

 $-37.2 \\ < 29.2 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ < 29.0 \\ <$

-46.3

¹⁹F NMR of 2,2'-(5-(((4-fluorophenyl)(methyl)(oxo)- λ^6 -sulfanylidene)amino)-1,3-phenylene)bis(2-methylpropanenitrile) (18)

524		1945	121 122		55.6 10997-0	100 Contraction (1997)	0.05	35	32	53 BZ 3	90 A.		S. 199	525 - 52 <i>5</i>		S	G	0 N/ /	22	100 10
	- I - I	· · · ·	1 (J.)	1 1					1	· · · · · · · · · · · · · · · · · · ·	· · ·		· · · ·	· · ·		· · · · ·	· · ·	· · · · ·	· · · ·	
0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-20
										ppm										

¹H NMR of celecoxib analogue 19

CD₂Cl₂, 298 K

¹³C NMR of celecoxib analogue 19

CD₂Cl₂, 298 K

¹⁹F NMR of celecoxib analogue 19

CD₂Cl₂, 298 K

----62.8

¹H NMR of triclosan derivative 20

¹³C NMR of triclosan derivative 20

¹⁹F NMR of triclosan derivative 20

<u> </u>	 	 	

¹H NMR of (*R*)-methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (21)

¹³C NMR of (*R*)-methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (21)

---61.7

¹⁹F NMR of (*R*)-methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (21)

CDCl3, 298 K

🥖 Mé F₃C

_	- 1	·	· · · ·	<u>t</u> 1.5	· 1.	- I -	· · ·	· · ·		· · · ·			· · ·	· · ·	· · ·	· · ·				· · ·
0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200
										nnm										

¹H NMR of (S)-methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^{6} -sulfanone (22)

¹³C NMR of (S)-methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (22)

CDCl₃, 298 K

-46.4

¹⁹F NMR of (S)-methyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (22)

---61.7

1						1		I			1	· · ·	0	· · ·	· · ·		1	· · · ·		1				·					Æ
0	-10	-20	-30)	-40	-50	-6	50	-70	- 13 .	80	-90	0	-100	-110	-	120	-130	-1	40	-150	-16	50	-170	-18	80	-190	-20)
¹H NMR of ethyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (23)

¹³C NMR of ethyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (23)

¹⁹F NMR of ethyl(phenyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (23)

----61.6

CDCI₃, 298 K

F₃C

0	-10	-20	,	-30	-40	-50	-60	-70	•	-80	-90	- - F	100 pm	-1	10	-120	-130	-140	,	-150	-1	50	-170	• .	180	-190	-200

¹H NMR of (4-chlorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (24)

CDCl₃, 298 K

7.155 7.1557 7.1557 7.1557 7.1557 7.1557 7.1557 7.1557 7.1557 7.1557 7.1

-3.27

¹³C NMR of (4-chlorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (24)

---61.7

¹⁹F NMR of (4-chlorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (24)

	1.0	· · ·		· .	· · ·	· · · ·		· · · ·		·		' '	·		'	· · · ·		· · ·	· · ·	
0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200
										ppm										

¹H NMR of (3,5-dichlorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (25)

CDCI₃, 298 K

77.75 77.75 77.75 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.75

.CI F₃C

-3.21

ppm

¹³C NMR of (3,5-dichlorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (25)

---61.8

¹⁹F NMR of (3,5-dichlorophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (25)

CDCI₃, 298 K

F₃C Me Cl

				·		'				· · ·	'		·	· · · · ·	1	·		· · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·
0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-20

¹H NMR of (3-methylphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)-λ⁶-sulfanone (26)

CDCI₃, 298 K

-3.25

-2.42

¹³C NMR of (3-methylphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (26)

¹⁹F NMR of (3-methylphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (26)

CDCI₃, 298 K

----61.7

ppm

¹H NMR of (4-cyanophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (27)

CDCI₃, 298 K

-3.30

¹³C NMR of (4-cyanophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (27)

CDCI₃, 298 K

F₃C

-46.1

---61.8

¹⁹F NMR of (4-cyanophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (27)

CDCl₃, 298 K

Me Mé F₃C

0 -200 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 ppm -140 -150 -110 -120 -130 -160 -170 -180 -190

¹H NMR of (2-bromophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (28)

CDCl₃, 298 K

F₃C

¹³C NMR of (2-bromophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (28)

---61.7

¹⁹F NMR of (2-bromophenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (28)

CDCI₃, 298 K

F₃C N, S Hr

						10 U.S.		· · · · ·					· · · · · · · · · · · · · · · · · · ·					1 1 1 1 1		
0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-20
										ppm										

¹H NMR of (4-methoxyphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (29)

CDCl₃, 298 K

7387 86.98 66.98 66.99

--3.25

-3.85

¹³C NMR of (4-methoxyphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (29)

CDCl₃, 298 K

200

¹⁹F NMR of (4-methoxyphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (29)

CDCI₃, 298 K

// Me F₃C ОМе

0 -10 -20	-30 -40	 -70 -80	-90 -100	-110 -120	-130 -140 -1	150 - 160 - 170	-180 -190 -200

¹H NMR of (4-trifluoromethoxyphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (30)

CDCl₃, 298 K

,0 Mé F₂C OCF₃

-3.28

¹³C NMR of (4-trifluoromethoxyphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (30)

CDCl₃, 298 K

OCF₃

¹⁹F NMR of (4-trifluoromethoxyphenyl)(methyl)((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (30)

CDCl₃, 298 K

-10	- 70	,	-30	, ,	 -50	 -60	 -70	 1	 1	- 10	, 10	-110	-120	- 13	-140	-150	- 16	-170	,	-180	-190	· .

¹H NMR of dimethyl((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (31)

¹³C NMR of dimethyl((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (31)

CDCl₃, 298 K

-42.4

---61.7

¹⁹F NMR of dimethyl((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (31)

¹H NMR of diphenyl((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (32)

¹³C NMR of diphenyl((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (32)

---61.6

ł

¹⁹F NMR of diphenyl((4-(trifluoromethyl)phenyl)imino)- λ^6 -sulfanone (32)

¹H NMR of phenyl-4-*d* 4-methylbenzenesulfonate (34)

CD₂Cl₂, 298 K

D NMR of phenyl-4-*d* 4-methylbenzenesulfonate (34)

CH₂Cl₂, 298 K

·····₽›	hand a second and the		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16 15 14 13 12 11 10	9 8 7 6	5 4 3 2	0 -1 -2 -3

-7.20

¹³C NMR of phenyl-4-*d* 4-methylbenzenesulfonate (34)

CD₂Cl₂, 298 K

0

¹H NMR of 2-(4-fluorophenyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (36)

¹³C NMR of 2-(4-fluorophenyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (36)

¹⁹F NMR of 2-(4-fluorophenyl)benzo[*d*]isothiazol-3(2*H*)-one 1,1-dioxide (36)

CDCl₃, 298 K

ò -10 -20 -30 -40 -50 -60 -70 -80 -20 -130 -140 -150 -160 -170 -180 -90 -100 -110 -120 -190
¹H NMR of phenyl 3-methoxybenzoate (S1)

¹³C NMR of phenyl 3-methoxybenzoate (S1)

SUPPORTING INFORMATION

S146

¹H NMR of 3-methoxy-1,1'-biphenyl (S2)

CDCI₃, 298 K

9	99	5	5	20 20	8 88	4	4	4	42	44	4	4	4	4	4	42	4	3	3	36	36	36	8	R I	ŝ	50	5 9	-	1 9	1 00	<u>e</u>	1	1	1	16	16	16	5	6	6	68	68	
P 1	2	~	P 1	> r	- 1-	5	7	5	5	7	5	5	7	5	2	2	2	2	5	~	~	5		2			1	5 P	- 1		5	- 1-	2	5	9	9	9	9	9	9	9	9	

24

-3.87

¹³C NMR of 3-methoxy-1,1'-biphenyl (S2)

CDCI₃, 298 K

---55.5

¹H NMR of (4-fluorophenyl)(methyl)(phenylimino)- λ^6 -sulfanone (S3)

¹³C NMR of (4-fluorophenyl)(methyl)(phenylimino)- λ^6 -sulfanone (S3)

¹⁹F NMR of (4-fluorophenyl)(methyl)(phenylimino)-λ⁶-sulfanone (S3)

-			1	· · · ·		·			1			1.0			1		1.10	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1
0	-10	-	20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-1	30	-140	-1	50	-160	-170	-180	-190	-20	00
											nnm													

¹H NMR of 6*H*-benzo[c]chromen-6-one (S4)

¹³C NMR of 6*H*-benzo[c]chromen-6-one (S4)

