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Experimental section 

Materials. Butylamine (> 99 %, TCI Europe), butyl glycidyl ether (95 %, Sigma Aldrich), 1,6-hexanediol 

(99 %, Sigma Aldrich), magnesium sulfate (MgSO4, anhydrous, Boom), pyridine-dry (99.5 %, extra dry 

over molecular sieves, Fisher Chemical), trimellitic anhydride chloride (98 %, Sigma Aldrich), toluene 

(≥ 99.5 %, Fisher Chemical), trimethylolpropane (97 %, Sigma Aldrich), tert-butyl acetoacetate (TBAA, 

> 98 %, TCI Europe), tetrahydrofuran (THF, > 99.8 %, Acros Organics),  CDCl3 (Euriso-top), Pripol 2033 

and Priamine 1074 were kindly provided by Croda. All reagents were used without further purification 

unless stated otherwise.  

Instrumentation. Nuclear magnetic resonance (NMR) analyses were conducted on a Bruker Avance 

300 (300 MHz) to measure proton spectra at 25 °C. The NMR spectra were measured in CDCl3, and 

chemical shifts (δ) are presented in parts per million (ppm), relative to CDCl3 as the internal standard. 

Attenuated total reflection - Fourier-transform infrared spectroscopy (ATR-FTIR) spectra were 

measured using a Perkin–Elmer Spectrum1000 FTIR infrared spectrometer with a diamond ATR probe. 

Thermogravimetric analyses (TGA) were performed with a Mettler Toledo TGA/ SDTA851e instrument 

under nitrogen atmosphere at a heating rate of 10 K.min-1 from 25 °C to 800 °C for the dynamic mode. 

Isothermal measurements were conducted under air at 150 °C for 120 min. Differential scanning 

calorimetry (DSC) analyses were performed with a Mettler Toledo instrument 1/700 under nitrogen 

atmosphere at a heating and cooling rate of 10 K.min-1. Measurements were performed from -50 to 

150 °C. Temperature-modulated DSC (mDSC) experiments were performed on disc-shaped samples of 

20 to 30 mg by recording the required energy to raise the temperature over the range of 80 °C to 160 

°C with a heating rate of 0.5 K.min-1. Heat capacity (Cp) values were determined by performing a TOPEM 

evaluation using the STARe software. The signal was adjusted using a sapphire reference curve. To do 

this, the measured curve was corrected with the sapphire reference curve obtained from a reference 

measurement with sapphire. The sapphire method measures the Cp of a sample in comparison to the 

Cp of a sapphire standard. A SpeedMixer DAC 150.1 FVZ was used to homogenise the samples before 

curing. Rheology experiments were performed on an Anton Paar MCR 302. The experiments were 

performed in parallel plate geometry using 8 mm sample disks. Each sample was weighed before 

measurement, yielding a mass between 72 and 78 mg. Amplitude sweep experiments were performed 

using a frequency of 1 Hz, a constant force of 1 N, and a variable shear strain that was ramped up 

logarithmically from 0.01% to 10%. Stress-relaxation experiments were performed at different 

temperatures (160 to 110 °C, with intervals of -10 °C) using a constant shear strain of 0.5%, within the 

linear viscoelastic region of the samples, and a constant force of 0.2 N. Each measuring step was 

preceded by a force normalisation step of 0.2 N, while monitoring the gap between each plate. Eyring 

analysis. Ln (1/T τ*), whereby the relaxation time was obtained from each fitting model, was plotted 

as a function of 1000/T resulting in an Eyring plot for sample N-1% to N-20%. The activation enthalpy 

(ΔH‡) was calculated from the slope 
−ΔH‡

R
 with R equal to the universal gas constant. The activation 

entropy (ΔS‡) was calculated from the intercept ln (
κkB

h
) +

ΔS‡

R
  with the transmission coefficient (κ) 

assumed to be unity, kB the Boltzmann constant and h the Planck’s constant. Van ‘t Hoff analysis. -Ln 

(Kdiss) (see SI for calculations) was plotted as a function of 1000/T resulting in a Van ‘t Hoff plot for 

sample N-1% to N-20%. The enthalpy (∆H) was calculated from the slope (
∆H

R
) with R equal to the 

universal gas constant. The entropy (∆S) was calculated from the intercept (−
∆S

R
).  

Reprocessing. To reprocess the network, the material was broken into pieces of 1 mm in size and 

placed into a rectangular mould (A: 70 mm x 40 mm x 2 mm; B: 30 mm x 15 mm x 2 mm) for 

compression moulding. This assembly was placed in a 150 °C preheated compression press for 1 min 



under 0.5 metric tons of pressure. Then the pressure was increased to 2 tons and kept constant for an 

additional 4 to 19 min. After 5 to 20 min of pressing in total, the sample was carefully removed from 

the mould while still heated and in its elastic state. The temperature and pressing time were adjusted 

according to the amount of aminodiol present in the sample. 

Solubility and hydrolysis tests. were carried out with samples of 4 mm diameter and 2 mm of thickness 

with a weight of around 20 mg and 20 mL of THF. Those tests were performed for 24 h at 25 °C in THF. 

The solvent was then removed, and the samples were dried under vacuum overnight at 40 °C. The 

soluble fraction was calculated using eq. 4, while the swelling ratio was calculated using eq. 5. 

soluble fraction (%) =  
mi − md

mi
 (4) 

swelling ratio (%) =  
ms − mi

mi
 (5)  

with mi, ms, and md stand for initial, swollen, and dry mass, respectively. 

Synthetic procedures. 

Pripol dianhydride (1). Pripol dianhydride was synthesised according to a previously described 

procedure. In a two-neck round bottom flask, trimellitic anhydride chloride (39.214 g, 186.2 mmol, 1 

eq) was dissolved in 300 mL of a mixture of toluene containing a small amount of MgSO4. The mixture 

was cooled to 0 °C and placed under nitrogen. Pripol 2033, a C36 dimer fatty acid-derived alcohol, (50 

g, 96.1 mmol, 0.5 eq) was dissolved in 100 mL of toluene together with dry pyridine (15.0 mL, 186.2 

mmol, 1 eq). This alcohol solution was added dropwise to the cooled acid chloride. The mixture was 

slowly heated to room temperature and stirred for another 16 hours. The mixture was filtered to 

remove the formed pyridine salts and concentrated in vacuo to obtain the product as a yellowish 

viscous oil. The anhydride was used without further purification Yield: 96 % 1H NMR (400 MHz, CDCl3, 

see Figure S22): δ (ppm) = 8.64 (s, 2H, 2xAr-H), 8.57 (dd, J = 7.9 Hz; 1.4 Hz, 2H, 2xAr-H), 8.10 (m, 2H, 

2xAr-H), 4.41 (t, J = 6.7 Hz ,4H, 2xCH2-O,) 1.77-1.86 (m, 4H, 4xCH), 1.02- 1.59 (m, 62H, 31xCH2), 0.74-

0.97 (m, 6H, 2xCH3). 

Aminodiol (2). Equimolar amounts of butylamine (4.21 g, 57.61 mmol, 1 eq) and butyl glycidyl ether 

(15 g, 115.22 mmol, 2 eq) were added to a glass vial with screw cap. Next, the mixture was heated for 

16 h at 70 °C until full conversion of the epoxide. The obtained aminodiol was used without further 

purification. Yield: 98 % 1H NMR (400 MHz, CDCl3, see Figure S23): δ (ppm) = 3.76-3.82 (m, 2H, 2xCH-

OH), 3.46 – 3.32 (m, 8H, 4xCH2-O), 3.12-3.18 (m, CH-OH, 1H), 2.44 – 2.59 (m, 3xCH2-N, 6H), 1.50 – 1.57 

(m, 4H, 2xCH2CH2-O), 1.21 – 1.44 (m, 8H, 2x(O)CH2CH3; (N)CH2CH2CH3), 0.86-0.90 (m, 9H, 3xCH3). 13C 

NMR (100 MHz, CDCl3, see Figure S24): δ (ppm) = 73.14 (O-C-C-OH), 73.12 (O-C-C-OH), 71.41 (C-O-C), 

71.39 (C-O-C), 68.13 (C-OH), 67,79 (C-OH), 58.05 (N-C-C-OH), 57.71 (N-C-C-OH), 55.40 (N-C-C), 31.70 

(2xC-C-O-C), 29.28 (N-C-C), 20.48 (N-C-C-C), 19.28 (2xC-C-C-O-C), 14.02 (N-C-C-C-C), 13.90 (C-C-C-C-O). 

Network synthesis (N-1%, N-5%, N-10% and N-20%). Trimethylolpropane (0.24 g, 1.8 mmol, 0.4 eq.), 

hexanediol (see values below) and aminodiol 2 (see values below) were added to a 20 mL 

polypropylene cup and the cup was heated in an oven to melt the alcohol mixture. Pripol dianhydride 

1 (4 g, 4.5 mmol, 1 eq.) was added and mixing was done using a DAC 150.1 FVZ speed mixer (typical 

conditions of mixing: 2 min with a speed of 2500 rpm) to obtain a homogeneous mixture. Then, the 

cup was placed in an oven at 80 °C for up to 4h to initiate the network formation. Hereafter, the 

network was further cured for 16 h at 100 °C under vacuum. The following diol mixtures were used for 

N-1%: hexanediol (0.21 g, 1.8 mmol, 0.396 eq.) and aminodiol 2 (0.01 g, 0.02 mmol, 0.004 eq.); N-5%: 

hexanediol (0.20 g, 1.7 mmol, 0.38 eq.) and aminodiol 2 (0.03 g, 0.09 mmol, 0.02 eq.); N-10%: 



hexanediol (0.19 g, 1.6 mmol, 0.36 eq.) and aminodiol 2 (0.06 g, 0.18 mmol, 0.04 eq.); N-20%: 

hexanediol (0.17 g, 1.4 mmol, 0.32 eq.) and aminodiol 2 (0.12 g, 0.36 mmol, 0.09 eq.). 

1,1,1-Trimethylpropane trisacetoacetate (5, TMP-AA). Trimethylolpropane (10 g, 74.5 mmol, 1 eq.) and 

tert-butyl acetoacetate (42.44 g, 268.2 mmol, 3.6 eq.) were added in a 250 mL flask equipped with a 

still-head, a thermometer and a cooler. The viscous mixture was heated to 135 °C until the temperature 

of the vapour dropped to 40 °C. The unreacted tert-butyl acetoacetate was removed by vacuum 

distillation at 130 °C under 2 mbar pressure. Yield: 94 % 1H NMR (300 MHz, CDCl3): δ (ppm) = 0.85 (t, 

3H, CH3CH2C), 1.42 (q, 2H, CH3CH2C), 2.21 (s, 9H, 3xCH3COCH2), 3.45 (s, 6H, 3xCH3COCH2COO), 4.04 (s, 

6H, 3xCCH2OCO) (See Figure S25). 

Network synthesis (VU-ref and VU-pTsOH). TMP-AA (1.5 g, 3.9 mmol and 1.0 eq.) and Priamine 1074 

(3.7 g, 6.7 mmol, 1.725 eq.) were mixed in a 20 mL polypropylene cup using a DAC 150.1 FVZ speed 

mixer (typical conditions of mixing: 2 min with a speed of 2500 rpm). Then, the cup was placed in an 

oven at 80 °C for up to 4h to initiate the network formation. Hereafter, the network was further cured 

for 18 h at 100 °C under vacuum. The same procedure was repeated with the addition of p-

toluenesulfonic acid (0.1 g, 0.7 mmol and 0.17 eq.) to the curing mixture. 

 

Material characterisation  
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Figure S1. FT-IR spectrum of N-1%, N-5%, N-10% and N-20%. 

 

 

 



Table S1. Overview of compositions and physical properties of PME networks. 

CAN Tg
a   

(°C) 

Td5%
b  

(°C) 

Swel.  

Rat.c (%) 

Sol.  

Frac.c (%) 

N-1% 14 274 299 ± 5 6.8 ± 0.9 

N-5% 6 297 336 ± 7 5.8 ± 0.4  

N-10% 7 300 363 ± 23 5.7 ± 0.4 

N-20% 13 295 332 ± 24  6.9 ± 0.8 

 a DSC glass transition temperature (Tg), b TGA onset temperatures after 5% weight loss (Td5%), c obtained 

after swelling for 24 h in THF.  
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Figure S2. DSC thermograms of the second heating step of N-1%, N-5%, N-10% and N-20%, measured at a heating rate of 10 
°C.min-1. 
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Figure S3. TGA analysis under N2 atmosphere of N-1%, N-5%, N-10% and N-20% with a temperature ramp from 25-800 °C and 
a heating rate of 10 °C.min-1. 
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Figure S4. Isothermal TGA measurements of N-1%, N-5%, N-10% and N-20% at 150 °C for 120 minutes under air. 
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b) N-5%        d) N-20%   
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Figure S5. Stress-relaxation graphs of a) N-1%, b) N-5%, c) N-10%  and d) N-20% measured at different temperatures between 
160 and 110 °C. Data were not normalised due to a large variation in initial relaxation modulus (G0) as a function of 
temperature. 
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Figure S6. Overlay of the initial relaxation modulus (G0) of N-1% and N-20% as a function of temperature. 
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Figure S7. Stress-relaxation graphs displaying a a) single and b) stretched exponential fit to the stress-relaxation data of N-
20% from 160 °C to 110 °C. 

 

 

 

a) N-20% single Maxwell b) N-20% stretched single Maxwell
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Table S2. Representative relaxation parameters obtained by fitting relaxation data of N-1% (left) and N-20% (right) to a 
generalised Maxwell model (2 elements). 

 
a No complete relaxation during investigated time window. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Temperature 

(°C) 

G0,fast 

(kPa) 

τfast 

(s) 

G0,slow 

(kPa) 

τslow 

(s) 

160 32 29 100 105 

150 171 126 196 435 

140 358 376 404 1399 

130 542 1142 651 4628 

120 428 3249 1043 10886 

110 a a a a 

Temperature 

(°C) 

G0,fast 

(kPa) 

τfast 

(s) 

G0,slow 

(kPa) 

τslow 

(s) 

160 24 7 41 27 

150 68 22 140 73 

140 113 53 250 181 

130 267 220 501 808 

120 312 523 626 2142 

110 a a a a 



a) Single Maxwell fit     c) Generalised Maxwell fit (1st element)   
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b) Stretched single Maxwell fit     d) Generalised Maxwell fit (2nd element)   
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Figure S8. Temperature dependence of calculated relaxation time (τ*) values obtained by fitting to a) single exponential, b) 
stretched exponential, c) double exponential (1st exponent) and d) double exponential (2nd exponent) decay from 160 °C to 110 
°C. Note a small deviation from linearity at lower temperatures, when fitting was done to non-sufficiently relaxed data. 
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a) Single Maxwell fit     c) Generalised Maxwell fit (1st element)   
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b) Stretched single Maxwell fit     d) Generalised Maxwell fit (2nd element)   
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Figure S9. Temperature dependence of exchange rate according to the adjusted Eyring equation. Values were obtained by 
fitting to a) single exponential, b) stretched exponential, c) double exponential (1st exponent) and d) double exponential (2nd 
exponent) decay from 160 °C to 110 °C. Note a small deviation from linearity at lower temperatures, when fitting was done to 
non-sufficiently relaxed data. 

 

Scheme S1. Difference in transition state stabilisation between slow and fast exchanging bonds. 
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Figure S10. Stress-relaxation graph of N-0% from 160 °C to 110 °C. Note that the absolute values of the initial relaxation 
modulus (G0) cannot be compared to those of N-1% to N-20% since the building blocks for this material have been made from 
a different batch of pripol 2033. Nevertheless, this does not affect kinetic analysis. 
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Figure S11. Overview of a) activation enthalpy (ΔH‡) and b) activation entropy (ΔS‡) of N-0% and N-1% to N-20%. The 
respective data were obtained by fitting to a single and generalised Maxwell model respectively.  

Network composition and elastically active segments - Statistical modelling and rationale  

To analyse the rheological results, we created a statistical code that allowed us to determine the 

average molar mass between two cross-linking points as well as the polymer fraction that is effectively 

trapped between two branching points based on the synthesis recipe. Following that, the 

corresponding value of the modelled plateau modulus was determined, as a function of the association 

probability of the moieties, and compared to the experimental data. 



The first input data, which are directly coming from the synthesis, are the amount of the different 

monomers, Eqdianhydride, Eqdiol, Eqaminodiol and Eqtriol as well as their corresponding molar mass Mdianhydride, 

Mdiol, Maminodiol and Mtriol.  

 

Figure S12. Cartoon representation of each monomer. 

From these parameters, the fraction in number of end groups of each species are determined, 

accounting for the functionality of the branched building blocks: 

 𝜐𝑑𝑖𝑎𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒 = 1, 𝜐𝑑𝑖𝑜𝑙 =
𝐸𝑞𝑑𝑖𝑜𝑙

Σ
, 𝜐𝑎𝑚𝑖𝑛𝑜𝑑𝑖𝑜𝑙 =

𝐸𝑞𝑎𝑚𝑖𝑛𝑜𝑑𝑖𝑜𝑙

Σ
, 𝜐𝑡𝑟𝑖𝑜𝑙 =

3

2
 
𝐸𝑞𝑡𝑟𝑖𝑜𝑙

Σ
 with  

Σ = 𝐸𝑞𝑑𝑖𝑜𝑙 + 𝐸𝑞𝑎𝑚𝑖𝑛𝑜𝑑𝑖𝑜𝑙 +
3

2
 𝐸𝑞𝑡𝑟𝑖𝑜𝑙. For this system specifically, there was a stoichiometric 

amount of dianhydride, resulting in Σ = 1, as 𝜐𝑑𝑖𝑎𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒 is fixed to 1. 

We then introduce the probabilities pass,slow and pass,fast (or equivalently, the probabilities (1- pass,slow) 

and (1- pass,fast)) that at a specific moment, the end groups of the building blocks diol and triol, or of the 

building blocks aminodiol are associated (or equivalently, are not associated) to a dianhydride. These 

parameters are unknown.  

It must be noted here that the probabilities pass,slow and pass,fast must be considered with care as they 

only approximate reality. For example, they do not account for the creation of inefficient small loops 

(containing, for example, only one dianhydride and one alcohol building block), which are not 

considered to contribute to elasticity.   

 

With these parameters defined, a simulated polymer network could be generated by growing a 

random dianhydride from the left and the right side. The probability that at a specific moment a diol 

(eq S4), triol (eq S5) or aminodiol (eq S6) is connected at e.g. the right side of the dianhydride depends 

on both the fraction of the available building blocks and their reactivity (i.e., their association 

probability).  

𝑝𝑑𝑖𝑜𝑙 = 𝑝𝑎𝑠𝑠,𝑠𝑙𝑜𝑤 𝜐𝑑𝑖𝑜𝑙 (𝑆4) 

𝑝𝑡𝑟𝑖𝑜𝑙 = 𝑝𝑎𝑠𝑠,𝑠𝑙𝑜𝑤 𝜐
𝑡𝑟𝑖𝑜𝑙

(𝑆5) 

𝑝𝑎𝑚𝑖𝑛𝑜𝑑𝑖𝑜𝑙 = 𝑝𝑎𝑠𝑠,𝑓𝑎𝑠𝑡 𝜐
𝑎𝑚𝑖𝑛𝑜𝑑𝑖𝑜𝑙

(𝑆6) 

Thus, the right side of the dianhydride has a probability equal to (1 − 𝑝𝑑𝑖𝑜𝑙 − 𝑝𝑡𝑟𝑖𝑜𝑙 − 𝑝𝑎𝑚𝑖𝑛𝑜𝑑𝑖𝑜𝑙) 

to be a chain end (i.e. an end of the polymer network assembly). 

Dianhydride Diol Aminodiol Triol



If a diol or triol is added, each of its remaining end group(s) has a probability equal to pass,slow to be 

associated to a dianhydride, and allow the growing network to further develop. If an aminodiol is 

added, its remaining end group has a probability equal to pass,fast to be associated to a dianhydride. If 

not, this would mean that the respective building block  will act as a dead or free chain end. 

If in a next step another dianhydride is added, the same process can be repeated over and over again.  

Each time an alcohol or a dianhydride is added, its molar mass is also added to the polymer network 

assembly under construction. 

In this algorithm, the entire polymer network was not replicated but we rather focused on keeping 

track of the molecular segments between two branching points or chain ends: as soon as a chain end 

was reached or a triol was added, we stopped growing the polymer network assembly and applied the 

same protocol on the left side of the first, starting dianhydride, in order to determine whether the 

molecular segments under construction will be a free linear chain (i.e. with two chain ends), a dangling 

end (i.e. with a triol on one side and a chain end on the other) or a trapped segment (i.e. terminated 

by a triol on both sides). This protocol enabled the construction of thousands of molecular strands 

from which we could determine their average molar masses in number (i.e. Mn,free, Mn,dangling and Mn, 

trapped), weight molar masses (i.e. Mw,free, Mw,dangling and Mw,trapped), and weight proportions (i.e. φfree, 

φdangling and φtrapped). Using these values, the theoretical plateau modulus G0,N was calculated using eq 

S7, according to which only the molecular segments trapped between two branching points contribute 

to the network elasticity: 

𝐺0,𝑁 =  𝜑𝑡𝑟𝑎𝑝𝑝𝑒𝑑

𝜌𝑅𝑇

𝑀𝑤,𝑡𝑟𝑎𝑝𝑝𝑒𝑑

(𝑆7) 

The molar mass distributions of the different types of segments can also be determined.  

The same procedure was then used to isolate the contribution of the slower exchanging bonds to the 

network, which are responsible for the second shoulder observed in the relaxation curve. In this case, 

the G0,N,slow values were calculated by considering that only the molecular segments without any 

aminodiol are contributing to the sample elastic modulus. 

Practically, in the code, the association state of the different groups are determined by generating 

random numbers between 0 and 1, and comparing their values to the corresponding probabilities.  
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Figure S13. Evolution of the mass fraction of free chains (green), dangling ends (light blue), trapped segments (black) and 
trapped segments which do not contain aminodiol (dark blue) as a function of the probability that any alcohol reacts with a 
dianhydride (with pass,slow = pass,fast = pass) for a) N-1%, b) N-5%, c) N-10% and d) N-20%. 
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Figure S14. Evolution of the molar mass of free chains (green), dangling ends (light blue), trapped segments (black) and 
trapped segments that do not contain aminodiol (dark blue) as a function of the probability that any alcohol reacts with a 
dianhydride (with pass,slow = pass,fast = pass) for a) N-1%, b) N-5%, c) N-10% and d) N-20%.  
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Figure S15. Evolution of the theoretical plateau modulus G0,N (black) and theoretical plateau modulus G0,N,slow which does not 
consider segments with aminodiol  (dark blue) as a function of the probability that any alcohol reacts with a dianhydride (with 
pass,slow = pass,fast = pass) for a) N-1%, b) N-5%, c) N-10% and d) N-20%.  
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Figure S16. Temperature dependence of association probability (pass) values  for a) N-1%, b) N-5%, c) N-10% and d) N-20%. 
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Figure S17. Comparison of the experimental G0 (black) and theoretical G0,N (green) plateau modulus and theoretical G0,N,slow 
(light blue) plateau modulus which does not consider segments with aminodiol as a function of temperature for a) N-1%, b) 
N-5%, c) N-10% and d) N-20%.  

 

 

 

 

 

 

 

 



Conversion of association probability to association constant 

The association probability (pass) is defined as the probability that any alcohol functionality reacts with 

an anhydride functionality. In terms of concentration, at a fixed temperature, this value will represent 

the relative amounts of phthalate monoester bonds compared to anhydride and alcohol in the mixture 

(eq S8). 

𝑝𝑎𝑠𝑠 =  
[𝑝ℎ𝑡ℎ𝑎𝑙𝑎𝑡𝑒 𝑚𝑜𝑛𝑜𝑒𝑠𝑡𝑒𝑟]

[𝐴𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒] + [𝐴𝑙𝑐𝑜ℎ𝑜𝑙]
 (𝑆8) 

 

If for this system equimolar amounts of dianhydride and alcohol are used, eq S8 simplifies to: 

  

𝑝𝑎𝑠𝑠 =  
[𝑝ℎ𝑡ℎ𝑎𝑙𝑎𝑡𝑒 𝑚𝑜𝑛𝑜𝑒𝑠𝑡𝑒𝑟]

[𝐴𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒]0
 (𝑆9) 

With [𝐴𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒]0 being the initial concentration of anhydride added to the curing mixture. 

In terms of chemical thermodynamics, the concentration of phthalate monoester bonds follows from 

the association constant (Kass): 

𝐾𝑎𝑠𝑠 =  
[𝑝ℎ𝑡ℎ𝑎𝑙𝑎𝑡𝑒 𝑚𝑜𝑛𝑜𝑒𝑠𝑡𝑒𝑟]

[𝐴𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒][𝐴𝑙𝑐𝑜ℎ𝑜𝑙]
(𝑆10) 

Since every association needs at least one anhydride and at least one alcohol and equimolar amounts 

of compounds are used, at equilibrium the concentration of anhydride is equal to the concentration 

of alcohol: 

𝐾𝑎𝑠𝑠 =  
[𝑝ℎ𝑡ℎ𝑎𝑙𝑎𝑡𝑒 𝑚𝑜𝑛𝑜𝑒𝑠𝑡𝑒𝑟]

[𝐴𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒]2
(𝑆11) 

At equilibrium, the concentration of anhydride will be equal to the initial concentration of anhydride 

minus the concentration of anhydride needed to form a phthalate monoester bond:  

𝐾𝑎𝑠𝑠 =  
[𝑝ℎ𝑡ℎ𝑎𝑙𝑎𝑡𝑒 𝑚𝑜𝑛𝑜𝑒𝑠𝑡𝑒𝑟]

([𝐴𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒]0 − [𝑝ℎ𝑡ℎ𝑎𝑙𝑎𝑡𝑒 𝑚𝑜𝑛𝑜𝑒𝑠𝑡𝑒𝑟])2
(𝑆12) 

Starting from this expression, we can substitute the [𝑝ℎ𝑡ℎ𝑎𝑙𝑎𝑡𝑒 𝑚𝑜𝑛𝑜𝑒𝑠𝑡𝑒𝑟] for 𝑝
𝑎𝑠𝑠

[𝐴𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒]0 

in eq S12: 

𝐾𝑎𝑠𝑠 =  
[𝐴𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒]0𝑝𝑎𝑠𝑠

([𝐴𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒]0 − [𝐴𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒]0𝑝𝑎𝑠𝑠)2
 (𝑆13) 



Which could be further simplified to: 

𝐾𝑎𝑠𝑠 =  
1

[𝐴𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒]0
 

𝑝𝑎𝑠𝑠

(1 − 𝑝𝑎𝑠𝑠)2
(𝑆14) 

For each investigated temperature, [𝐴𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒]0 was calculated by dividing the total moles of 

anhydride added to the curing mixture by the volume of the disc-shaped sample (𝑉 =  𝜋𝑟2ℎ) used for 

each rheology experiment. The diameter of the sample was fixed at 8 mm (𝑟 = 4 mm), while the height 

(ℎ) of the sample was measured by the rheometer as the gap distance at the start of each experiment 

(160 °C to 110 °C). The obtained values varied between 6.98x10-5 m3 and 7.74x10-5 m3. 

From each calculated Kass value, a dissociation constant (Kdiss) could be derived by taking into account 

the following straightforward relationship: 

𝐾𝑑𝑖𝑠𝑠 =  
1

𝐾𝑎𝑠𝑠
 (𝑆15) 
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Figure S18. Temperature dependence of dissociation constant (Kdiss) values obtained from modelled association probability 
(pass)  for a) N-1%, b) N-5%, c) N-10% and d) N-20%. 
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Figure S19. Heat capacity as a function of temperature determined by modulated DSC measurements for a) N-1%, b) N-5%, c) 
N-10% and d) N-20%. 

Thermodynamic data from calorimetry measurements 

At constant pressure, the following relationship between the relative change in enthalpy upon bond 

dissociation (ΔrH) and molar heat capacity (Cp) was taken from literature:1  

𝛥𝑟𝐻 =  ∫ 𝐶𝑝

𝑇2

𝑇1

 𝑑𝑇 (𝑆16) 

Whereby the temperature dependent function of Cp can be written as: 

𝐶𝑝 =  𝑎 + 𝑏𝑇 +
𝑐

𝑇2
 (𝑆17) 



By fitting eq S17 to the experimental data for Cp as a function of temperature (Figure S20), numerical 

values for a, b and c could be retrieved. Subsequently, combining eq S16 and eq S17 resulted in an 

expression of ΔrH that could be numerically evaluated:  

𝛥𝑟𝐻 =  𝑎(𝑇2 − 𝑇1) +
𝑏

2
(𝑇2

2 − 𝑇1
2) − 𝑐 (

1

𝑇2
−

1

𝑇1
) (𝑆18) 

At constant pressure, the following relationship between the relative change in entropy upon bond 

dissociation (ΔrS) and molar heat capacity (Cp) was taken from literature: 1   

𝛥𝑟𝑆 =  ∫
𝐶𝑝

𝑇

𝑇2

𝑇1

 𝑑𝑇 (𝑆19) 

Subsequently combining eq S19 and eq S17 resulted in an expression of ΔrS that could be numerically 

evaluated: 

𝛥𝑟𝑆 =  𝑎 𝑙𝑛(
𝑇2

𝑇1
) + 𝑏(𝑇2 − 𝑇1) −

𝑐

2
 (

1

𝑇2
2 −

1

𝑇1
2) (𝑆20) 

 

Table S3. Overview of physical properties and relaxation data of (modified) vinylogous urethane networks. 

Vitrimer Tg
a   

(°C) 

Td5%
b  

(°C) 

Swel. Rat.c 

(%) 

Sol. Frac.c 

(%) 

ΔH‡
fast

d 

(kJ.mol-1) 

ΔH‡
slow

d 

(kJ.mol-1) 

ΔS‡fast
d        

(J K-1mol-1) 

ΔS‡
slow

d        

(J K-1mol-1) 

VU-ref - 16 317 225 ± 2 8.9 ± 0.4 e 114 ± 4e e -22 ± 2e 

VU-TfOH -7 269 514 ± 22 12 ± 1.0 65 ± 0.6 80 ± 1.1 -98 ± 2 -78 ± 2 

a Determined from the second heating in DSC analysis (10 °C.min-1). b TGA onset temperatures after 

5% weight loss (Td5%). c Obtained after swelling in THF for 24 h. d Obtained by fitting to a stretched 

single exponential decay. d Activation enthalpy (ΔH‡) and entropy (ΔS‡) values obtained by fitting the 

relaxation data of the double exponential decay to an adjusted Eyring equation. Errors were obtained 

by calculating the standard deviation on the respective values. Depending on the completeness of 

relaxation, a larger standard deviation was observed. e Fitting was done to a single exponential decay, 

since a double exponential decay did not lead to chemically interpretable data.    
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b) VU-pTsOH 
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Figure S20. Stress-relaxation graphs for a) VU-ref and b) VU-pTsOH measured at different temperatures between 160 and 120 
°C with non-normalised (left) and normalised data (right). Note a slight increase in modulus with temperature due to entropic 
elasticity. 
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Figure S21. Temperature dependence of exchange rate according to the adjusted Eyring equation for VU-ref and VU-pTsOH. 
Values were obtained by fitting to a single exponential or double exponential decay from 160 °C to 120 °C. 

 

Figure S22.  1H NMR of pripol dianhydride compound (1) in CDCl3. 

 



 

Figure S23.  1H NMR of aminodiol compound (2) in CDCl3. 

 

Figure S24.  13C NMR of aminodiol compound (2) in CDCl3. 



 
Figure S25. 1H NMR of 1,1,1-trimethyl-propane trisacetoacetate in CDCl3. 

 

Python code (example for N-1%) 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import progressbar 

import os 

 

# molar masses: 

Mw_connector = 885.19 

Mw_bis_a = 118.17 

Mw_bis_b = 333.51 

Mw_tris = 134.17 

# (molar) equivalents 

Eq_connector = 1 

Eq_bis_a = 0.396 

Eq_bis_b = 0.004 

Eq_tris = 0.4 

# functionality 

# caution! This is actually hardcoded in the simulation, for example to 

calculate the Mw of the strands, for future reference only 

F_connector = 2 

F_bis_a = 2 

F_bis_b = 2 

F_tris = 3 

# Resulting fraction (in number) of reactive groups in each species 

# This is effectively the probability to encounter a specific reactive 

group in the soup of equivalent groups 

# so this takes the equivalents and functionality into account 

prob_connector = Eq_connector * F_connector / (Eq_connector * F_connector) 

prop_bis_a = Eq_bis_a * F_bis_a / (Eq_bis_a * F_bis_a + Eq_bis_b * F_bis_b 

+ Eq_tris * F_tris) 



prop_bis_b = Eq_bis_b * F_bis_b / (Eq_bis_a * F_bis_a + Eq_bis_b * F_bis_b 

+ Eq_tris * F_tris) 

prop_tris = Eq_tris * F_tris / (Eq_bis_a * F_bis_a + Eq_bis_b * F_bis_b + 

Eq_tris * F_tris) 

 

nbchain = 20000 

numblocs = 400  # maximum number of blocks in a strand 

 

step_size = 0.02 

 

# Time (s) at which to determine the plateau modulus in the experimental 

stress relaxation 

exp_GN0_time = 1 

 

def simulation(Mw_connector, Mw_bis_a, Mw_bis_b, Mw_tris, prop_bis_a, 

prop_bis_b, prop_tris, p_attach_a, p_attach_b, nbchain, numblocs): 

    # %probabilities to attach a block to the connector: 

    p_tris = p_attach_a * prop_tris 

    p_bis_a = p_attach_a * prop_bis_a 

    p_bis_b = p_attach_b * prop_bis_b 

    p_end = 1 - p_tris - p_bis_a - p_bis_b 

 

    rand1 = np.random.rand(nbchain, numblocs) 

    rand2 = np.random.rand(nbchain, numblocs) 

    side_1 = np.where((rand1 < p_tris) & (rand2 < p_attach_a), 1, 0) + \ 

             np.where((p_tris <= rand1) & (rand1 < (p_tris + p_bis_a)) & 

(rand2 < p_attach_a), 2, 0) + \ 

             np.where(((p_tris + p_bis_a) <= rand1) & (rand1 < (p_tris + 

p_bis_a + p_bis_b)) & (rand2 < p_attach_b), 3, 0) + \ 

             np.where((p_tris + p_bis_a + p_bis_b) <= rand1, 100, 0) 

 

    temp = side_1 == 100 

    lastconnect_1 = np.where(np.count_nonzero(temp, axis=1) > 0, 

np.argmax(temp, axis=1), numblocs) 

    temp = side_1 == 0 

    lastblock_1 = np.where(np.count_nonzero(temp, axis=1) > 0, 

np.argmax(temp, axis=1), numblocs) 

    last_1 = np.minimum(lastconnect_1, lastblock_1) 

    temp = side_1 == 1 

    first_tris_1 = np.where(np.count_nonzero(temp, axis=1) > 0, 

np.argmax(temp, axis=1), numblocs) 

 

    rand1 = np.random.rand(nbchain, numblocs) 

    rand2 = np.random.rand(nbchain, numblocs) 

    side_2 = np.where((rand1 < p_tris) & (rand2 < p_attach_a), 1, 0) + \ 

             np.where((p_tris <= rand1) & (rand1 < (p_tris + p_bis_a)) & 

(rand2 < p_attach_a), 2, 0) + \ 

             np.where(((p_tris + p_bis_a) <= rand1) & (rand1 < (p_tris + 

p_bis_a + p_bis_b)) & (rand2 < p_attach_b), 3, 0) + \ 

             np.where((p_tris + p_bis_a + p_bis_b) <= rand1, 100, 0) 

 

    temp = side_2 == 100 

    lastconnect_2 = np.where(np.count_nonzero(temp, axis=1) > 0, 

np.argmax(temp, axis=1), numblocs) 

    temp = side_2 == 0 

    lastblock_2 = np.where(np.count_nonzero(temp, axis=1) > 0, 

np.argmax(temp, axis=1), numblocs) 

    last_2 = np.minimum(lastconnect_2, lastblock_2) 

    temp = side_2 == 1 

    first_tris_2 = np.where(np.count_nonzero(temp, axis=1) > 0, 

np.argmax(temp, axis=1), numblocs) 



 

    # %molar mass and strand specification: 

    #     %branching strand: 

 

    temp = np.broadcast_to(np.arange(numblocs), (nbchain, numblocs)) 

    branching_strands_1 = np.where(temp <= np.broadcast_to(first_tris_1, 

(numblocs, len(first_tris_1))).transpose(), 

                                   side_1, 

                                   -1)  # [(first_tris_1 < last_1) * 

(first_tris_2 < last_2)] 

    branching_strands_2 = np.where(temp <= np.broadcast_to(first_tris_2, 

(numblocs, len(first_tris_2))).transpose(), 

                                   side_2, 

                                   -1)  # [(first_tris_1 < last_1) * 

(first_tris_2 < last_2)] 

    dangling_strands_1 = np.where(temp <= np.broadcast_to(last_1, 

(numblocs, len(last_1))).transpose(), 

                                  side_1, 

                                  -1) 

    dangling_strands_2 = np.where(temp <= np.broadcast_to(last_2, 

(numblocs, len(last_2))).transpose(), 

                                  side_2, 

                                  -1) 

    temp = (first_tris_1 < last_1) & (first_tris_2 < last_2) 

    branching_strands = np.concatenate((branching_strands_1[temp], 

branching_strands_2[temp]), axis=1) 

    temp = np.sum(branching_strands == 3, axis=1) 

    mass_strands = Mw_connector + 2 * Mw_tris / 3 + 

np.sum(branching_strands == 2, axis=1) * (Mw_bis_a + Mw_connector) + temp * 

(Mw_bis_b + Mw_connector) 

    mass_strands_strong = mass_strands[temp == 0] 

    mass_strands_weak = mass_strands[temp > 0] 

 

    temp = (first_tris_1 >= last_1) & (first_tris_2 >= last_2) 

    free_chains = np.concatenate((dangling_strands_1[temp], 

dangling_strands_2[temp]), axis=1) 

    mass_free_chains = Mw_connector + np.sum(free_chains == 2, axis=1) * 

(Mw_bis_a + Mw_connector) + np.sum(free_chains == 3, axis=1) * (Mw_bis_b + 

Mw_connector) + np.sum(free_chains == 0, axis=1) * (0.5 * Mw_bis_a + 0.5 * 

Mw_bis_b) 

 

    temp = [(first_tris_1 < last_1) & (first_tris_2 >= last_2), 

(first_tris_1 >= last_1) & (first_tris_2 < last_2)] 

    dangling_chains = 

np.concatenate((np.concatenate((branching_strands_1[temp[0]], 

dangling_strands_2[temp[0]]), axis=1), 

                                      

np.concatenate((dangling_strands_1[temp[1]], branching_strands_2[temp[1]]), 

axis=1))) 

    mass_dangling_chains = Mw_connector + np.sum(dangling_chains == 2, 

axis=1) * (Mw_bis_a + Mw_connector) + np.sum(dangling_chains == 3, axis=1) 

* (Mw_bis_b + Mw_connector) + np.sum(dangling_chains == 0, axis=1) * (0.5 * 

Mw_bis_a + 0.5 * Mw_bis_b) + np.sum(dangling_chains == 1, axis=1) * Mw_tris 

/ 3 

 

    mass_total = mass_strands.sum() + mass_free_chains.sum() + 

mass_dangling_chains.sum() 

 

    Mn_strands = np.average(mass_strands) if len(mass_strands) else None 

    Mw_strands = np.average(mass_strands, weights=mass_strands) if 

mass_strands.sum() else Mn_strands 



    Mfrac_strands = mass_strands.sum() / mass_total 

    Mn_strands_strong = np.average(mass_strands_strong) if 

len(mass_strands_strong) else None 

    Mw_strands_strong = np.average(mass_strands_strong, 

weights=mass_strands_strong) if mass_strands_strong.sum() else 

Mn_strands_strong 

    Mfrac_strands_strong = mass_strands_strong.sum() / mass_total 

    Mn_strands_weak = np.average(mass_strands_weak) if 

len(mass_strands_weak) else None 

    Mw_strands_weak = np.average(mass_strands_weak, 

weights=mass_strands_weak) if mass_strands_weak.sum() else Mn_strands_weak 

    Mfrac_strands_weak = mass_strands_weak.sum() / mass_total 

    Mn_free_chains = np.average(mass_free_chains) if len(mass_free_chains) 

else None 

    Mw_free_chains = np.average(mass_free_chains, weights=mass_free_chains) 

if mass_free_chains.sum() else Mn_free_chains 

    Mfrac_free_chains = mass_free_chains.sum() / mass_total 

    Mn_dangling_chains = np.average(mass_dangling_chains) if 

len(mass_dangling_chains) else None 

    Mw_dangling_chains = np.average(mass_dangling_chains, 

weights=mass_dangling_chains) if mass_dangling_chains.sum() else 

Mn_dangling_chains 

    Mfrac_dangling_chains = mass_dangling_chains.sum() / mass_total 

 

    roRT = 16051319359 (calculated from experimental values) 

 

    GN0 = Mfrac_strands * roRT / Mw_strands if Mw_strands else None 

    GN0_strong = Mfrac_strands_strong * roRT / Mw_strands if Mw_strands 

else None 

    GN0_weak = Mfrac_strands_weak * roRT / Mw_strands if Mw_strands else 

None 

    # GN0 = Mfrac_strands * roRT / Mn_strands if Mn_strands else None 

    # GN0_strong = Mfrac_strands_strong * roRT / Mn_strands if Mn_strands 

else None 

    # GN0_weak = Mfrac_strands_weak * roRT / Mn_strands if Mn_strands else 

None 

 

    return [(Mfrac_strands, Mn_strands, GN0), 

            (Mfrac_strands_strong, Mn_strands_strong, GN0_strong), 

            (Mfrac_free_chains, Mn_free_chains), 

            (Mfrac_dangling_chains, Mn_dangling_chains)] 

 

 

p_attach = np.arange(0, 1 + step_size, step_size) 

p_attach_2D = np.array(np.meshgrid(p_attach, p_attach)).T.reshape(-1, 2) 

strands = [] 

strands_strong = [] 

free_chains = [] 

dangling_chains = [] 

 

for p in progressbar.progressbar(p_attach, 0, len(p_attach)): 

    a, b, c, d = simulation(Mw_connector, Mw_bis_a, Mw_bis_b, Mw_tris, 

prop_bis_a, prop_bis_b, prop_tris, p, p, nbchain, numblocs) 

    strands.append(a) 

    strands_strong.append(b) 

    free_chains.append(c) 

    dangling_chains.append(d) 

 

data = pd.concat([ 

    pd.DataFrame(p_attach, columns=['p_ass-A']), 

    pd.DataFrame(p_attach, columns=['p_ass-B']), 



    pd.DataFrame(strands, columns=['Mfrac_strands', 'Mn_strands', 'GN0']), 

    pd.DataFrame(strands_strong, columns=['Mfrac_strands_strong', 

'Mn_strands_strong', 'GN0_strong']), 

    pd.DataFrame(free_chains, columns=['Mfrac_free_chains', 

'Mn_free_chains']), 

    pd.DataFrame(dangling_chains, columns=['Mfrac_dangling_chains', 

'Mn_dangling_chains']) 

], axis=1) 

 

data.to_excel(os.path.splitext(os.path.basename(__file__))[0] + '.xlsx') 

 

# strands = np.array(strands) 

# strands_strong = np.array(strands_strong) 

# free_chains = np.array(free_chains) 

# dangling_chains = np.array(dangling_chains) 

 

fig1 = plt.figure() 

ax = fig1.add_subplot(111) 

ax.set_xlabel(r'$\mathrm{p}_\mathrm{ass-A}$') 

ax.set_ylabel(r'$\varphi$') 

ax.plot(data['p_ass-A'], data['Mfrac_strands'], label='Trapped segments') 

ax.plot(data['p_ass-A'], data['Mfrac_strands_strong'], label='Trapped 

segments (no B)') 

ax.plot(data['p_ass-A'], data['Mfrac_dangling_chains'], label='Dangling 

chains') 

ax.plot(data['p_ass-A'], data['Mfrac_free_chains'], label='Free chains') 

ax.legend() 

plt.show() 

 

fig2 = plt.figure() 

ax = fig2.add_subplot(111) 

ax.set_xlabel(r'$\mathrm{p}_\mathrm{ass-A}$') 

ax.set_ylabel(r'$\mathrm{M}_\mathrm{n}$') 

ax.plot(data['p_ass-A'], data['Mn_strands'], label='Trapped segments') 

ax.plot(data['p_ass-A'], data['Mn_strands_strong'], label='Trapped segments 

(no B)') 

ax.plot(data['p_ass-A'], data['Mn_dangling_chains'], label='Dangling 

chains') 

ax.plot(data['p_ass-A'], data['Mn_free_chains'], label='Free chains') 

ax.set_yscale('log') 

ax.legend() 

plt.show() 

 

fig3 = plt.figure() 

ax = fig3.add_subplot(111) 

ax.set_xlabel(r'$\mathrm{p}_\mathrm{ass-A}$') 

ax.set_ylabel(r'$\mathrm{G}^0_\mathrm{N}$') 

ax.plot(data['p_ass-A'], data['GN0'], label='All') 

ax.plot(data['p_ass-A'], data['GN0_strong'], label='no B') 

ax.legend() 

plt.show() 

 

if os.path.exists(os.path.splitext(os.path.basename(__file__))[0] + 

'.csv'): 

    print("Opening experimental stress relaxation 

({}.csv)".format(os.path.splitext(os.path.basename(__file__))[0])) 

    import aprheology 

    from operator import itemgetter 

    experimental = aprheology.StressRelaxation( 

        os.path.splitext(os.path.basename(__file__))[0] + '.csv', 

        normalise_relax_mod=False 



    ) 

    print("Stress relaxation loaded...") 

    pT = [] 

    for curve in experimental.curves: 

        GN0 = experimental.get_tau_intersect(curve['data']['Relaxation 

Modulus'].to_numpy(), 

                                             

curve['data']['Time'].to_numpy(), 

                                             exp_GN0_time) 

        p = experimental.get_tau_intersect(data['p_ass-A'].to_numpy(), 

                                           data['GN0'].to_numpy(), 

                                           GN0) 

        pT.append([curve['T'], GN0, p]) 

    pT.sort(key=itemgetter(0)) 

    pd.DataFrame(pT, columns=['T', 'GN0 (exp)', 'p_ass-

A']).to_excel(os.path.splitext(os.path.basename(__file__))[0] + '_pT.xlsx') 

else: 

    print("No experimental stress relaxation data found 

({}.csv)".format(os.path.splitext(os.path.basename(__file__))[0])) 

For python package regarding the automated fitting of relaxation 
data:https://pypi.org/project/aprheology/ (aprheology 0.3.2) 
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