Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

Supporting Information

1. General Information	S2
2. Preparation of Starting Materials	S2
3. Reaction Optimization	S8
4. Procedure for Catalytic Reactions and Characterization of Three-Component Products	S11
5. Carboformylation Mechanistic Experiments	S24
6. Mechanistic Experiments Involving Co-1	S31
7. Diversification Reactions	S41
8. NMR Spectra	S47
9. References	S97

1. General Information

Unless otherwise noted, all catalytic reactions were set up in a nitrogen-filled glovebox, using glassware that was oven-dried (120 °C) and evacuated while hot prior to use. Proton Sponge® was recrystallized from EtOH prior to use.¹ LiOAc was dried under reduced pressure at 120 °C overnight prior to use. Unless otherwise indicated, all reactions for substrate preparation were carried out on the benchtop under a nitrogen atmosphere. Solvents were sparged with argon and purified by elution through a column of activated alumina under argon before use and were stored in a nitrogen-filled glovebox over activated 3 Å molecular sieves; molecular sieves were dried at 200 °C overnight under vacuum prior to use. CD_2Cl_2 was distilled over CaH_2 under nitrogen and stored in a bulb with a Teflon tap over activated 3 Å molecular sieves. Unless otherwise noted, all reagents were purchased from commercial sources and used without further purification. Microwave vials and caps were purchased from Biotage® with part numbers 351521 and 352298 respectively. Product purification was performed by either flash column chromatography with SiliaFlash® P60 (230-400 mesh) silica gel or preparative thin-layer chromatography with plates from Analtech (1 mm SiO₂, 20 x 20 cm).

NMR spectra were recorded on Agilent DD2 400, 500, or 600 MHz spectrometers between 20– 25 °C unless otherwise indicated, with chemical shifts (in ppm) referenced to residual protio solvent peaks (¹H), deuterated solvent peaks (¹³C{¹H}), or external CFCl₃ (¹⁹F). Splitting patterns are indicated as follows: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublets; dt, doublet of triplets; m, multiplet, with all coupling constants (*J*) reported in Hertz (Hz). IR spectra were collected on a FTIR Shimadzu IRTracer-100 spectrometer. High-resolution mass spectra (HRMS) were obtained using electrospray ionization (ESI) or dual ion source (DUIS, combining ESI and atmospheric pressure chemical ionization, APCI) on a time of flight (TOF) mass spectrometer. Melting points are reported uncorrected.

2. Preparation of Starting Materials

2a. Preparation of Catalysts

 $[Cp^*Co(C_6H_5)][B(C_6F_5)_4]_2$,² $[Cp^*Co(C_6H_5)(PF_6)_2$,³ $[Cp^*Co(CO)I_2]$,⁴ $[Cp^*Co(MeCN)_3](SbF_6)_2$,⁵ and $[Cp^*RhCI_2]_2^6$ were prepared according to literature procedures.

2b. Preparation of C-H Bond Substrates

1-(*m*-Tolyl)-1*H*-pyrazole (**1a**),⁷ 1-(3-(trifluoromethyl)phenyl)-1*H*-pyrazole (**1b**),⁷ 1-(4-(trifluoromethyl)phenyl)-1*H*-pyrazole (**1e**),⁷ *tert*-butyl (4-(1*H*-pyrazol-1-yl)phenyl)carbamate (**1f**),⁸ 1-(benzo[*d*][1,3]dioxol-5-yl)-1*H*-pyrazole (**1g**),⁷ ⁹ 2-(*m*-tolyl)-2*H*-1,2,3-triazole (**1i**),¹⁰ 2-(*m*-tolyl)pyrimidine (**1j**),¹¹ and 1-(pyrimidin-2-yl)-1*H*-indole (**1k**)¹² were prepared according to literature procedures. 1-(3-bromophenyl)-1*H*-pyrazole (**1c**) and 1-phenyl-1*H*-pyrazole (**1h**) were purchased from commercial sources and used as received.

Chart S1. C-H bond substrates used in this investigation.

3-(1H-Pyrazol-1-yl)phenol (intermediate to C-H bond substrate 1d). This procedure was adapted from the literature.¹³ An oven-dried 100 mL round bottom flask was charged with Cu₂O (71.5 mg, 0.500 mmol, 0.1 equiv), pyrazole (0.511 g, 7.50 mmol, 1.5 equiv), and Cs₂CO₃ (2.44 g, 7.50 mmol, 1.5 equiv). Then, to the degassed flask were added 3-bromophenol (0.53 mL, 5.00 mmol, 1.0 equiv) and anhydrous DMF (1 mL). The solution was placed in a pre-heated oil bath set to 110 °C and stirred at this temperature under nitrogen for 18 h (unoptimized). After this time, the flask was removed from the bath and allowed to cool to room temperature. The heterogenous mixture was diluted with CH₂Cl₂ (20 mL) and filtered through silica, rinsing the silica plug with EtOAc (100 mL). The filtrate was concentrated, and the resulting residue was purified via flash chromatography on silica gel (40% EtOAc in hexanes), affording the title compound as a white solid (49.3 mg, 62%). M.p. 90-02 °C. IR (neat): 3013, 2939, 2822, 2689, 2579, 1597, 1523, 1491, 1428, 1404, 1363, 1332, 1224, 1190, 1158, 1057, 1046, 968, 869, 826, 764, 691, 652, 625, 607, 532, 463 cm⁻¹. ¹**H NMR** (400 MHz, DMSO- d_6): δ 9.74 (s, 1H), 8.38 (d, J = 2.8 Hz, 1H), 7.67 (d, J= 2.1 Hz, 1H), 7.24–7.18 (m, 3H), 6.67–6.65 (m, 1H), 6.47 (t, J = 2.2 Hz, 1H). ¹³C{¹H} NMR (126 MHz, DMSO-d₆): δ 158.8, 141.3, 141.2, 130.7, 128.1, 113.6, 109.3, 108.1, 106.1. HRMS-ESI (m/z): $[M+H]^+$ calc'd for C₉H₉N₂O⁺, 161.0709; found, 161.0713.

3-(1*H***-Pyrazol-1-yl)phenyl pivalate (1d)**. This procedure was adapted from the literature.¹³ A flame-dried 100 mL round bottom flask was charged with 3-(1*H*-pyrazol-1-yl)phenol (128 mg, 8.02 mmol, 1.0 equiv) and CH₂Cl₂ (24 mL). Then, under nitrogen, NEt₃ (1.20 mL, 8.82 mmol, 1.1 equiv) and PivCl (1.10 mL, 8.82 mmol, 1.1 equiv) were consecutively added dropwise via syringe to the stirring solution at 0 °C. The resulting solution was gradually warmed to room temperature over 3 h. Upon completion of the reaction (as determined by TLC analysis), the solution was diluted with 5% v/v aq. HCl (30 mL). The aqueous layer was extracted with CH₂Cl₂ (2 x 20 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, and concentrated. The resulting residue was purified via flash chromatography on silica gel (20% EtOAc in hexanes), affording the title compound as a pale-yellow oil (190.8 mg, 98%). **IR** (neat): 2974, 1748, 1608, 1521, 1490, 1392, 1277, 1252, 1183, 1159, 1104, 1044, 1001, 952, 874, 746, 678, 655, 611, 564 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃): δ 7.91 (s, 1H), 7.71 (s, 1H), 7.51 (d, *J* = 8.7 Hz, 1H), 7.46–7.41 (m, 2H), 6.99 (d, *J* = 7.8 Hz, 1H), 6.46 (s, 1H), 1.35 (s, 9H). ¹³C**{**¹**H} NMR** (126 MHz, CDCl₃): δ 176.8, 151.9, 141.3, 141.0, 130.1, 126.9, 119.5, 115.9, 112.9, 107.9, 39.1, 27.1. **HRMS-ESI (m/z)**: [M+H]⁺ calc'd for C₁₄H₁₇N₂O₂⁺, 245.1285; found, 245.1285.

2c. Preparation of Dienes

Chart S2. 1,3-Dienes used in this investigation.

Isoprene (**2a**) was purchased from commercial sources, purified according to the literature,¹ and stored in the freezer (-25 °C) in a nitrogen-filled glovebox. All synthesized dienes were stored in

microwave vials under nitrogen at -78 °C. For use in catalytic reactions, the vials were allowed to warm to room temperature, then transferred into the glovebox to minimize exposure of the dienes to air. Buta-1,3-dien-2-ylcyclopentane (**2b**),¹⁴ 5-methyl-3-methylenehex-1-ene (**2c**),¹⁵ (*E*)-(2-methylbuta-1,3-dien-1-yl)cyclohexane (**2d**),¹⁶ 1-vinylcyclohex-1-ene (**2e**),¹⁷ 4-vinyl-3,6-dihydro-*2H*-pyran (**2f**),¹⁸ benzyl 4-vinyl-3,6-dihydropyridine-1(*2H*)-carboxylate (**2g**),¹⁹ (*E*)-(2-methylbuta-1,3-dien-1-yl)benzene (**2h**),²⁰, (*E*)-1-(2-methylbuta-1,3-dien-1-yl)-4-(trifluoromethyl)benzene (**2k**),²¹ and (*E*)-1-chloro-3-(2-methylbuta-1,3-dien-1-yl)benzene (**2m**)¹⁶ were prepared according to literature procedures. (*E*)-2-(2-Methylbuta-1,3-dien-1-yl)naphthalene (**2q**) was prepared according to General Procedure A (see below), and the spectroscopic data were in agreement with those previously reported.²²

General Procedure for the Synthesis of 1-Aryl-2-methyl Dienes (General Procedure A). This procedure was adapted from the literature.²¹ A flame-dried 250 mL three-neck flask containing a magnetic stir bar was charged with MePPh₃Br (1.0 equiv). The flask was sealed with two septa and a vacuum inlet adapter, connected to a Schlenk line, and evacuated and degassed with N₂ three times. THF (V = (moles aldehyde/0.17 M) - 5 mL) was added via syringe, and the cloudy white mixture was cooled to -78 °C (acetone/dry ice). n-BuLi (2.5 M solution in hexanes, 1.0 equiv) was then added dropwise via syringe to the cooled mixture, affording a cloudy, bright yellow mixture upon complete addition. The flask was removed from the -78 °C bath and placed in a 0 °C bath (water/ice), and the mixture was stirred at this temperature for 1 h. After this time, the mixture was cooled to -78 °C, where a solution of (*E*)- α . β -unsaturated aldehvde in 5 mL of THF (prepared in a separate, flame-dried round bottom flask under nitrogen) was added to the cooled mixture dropwise via syringe. The reaction mixture was then removed from the -78 °C bath, placed in a 0 °C bath, and the mixture was stirred and allowed to warm up to room temperature over 18 h (unoptimized). The next day, the reaction mixture was transferred to a separatory funnel and quenched with saturated aq. NH₄CI (20–50 mL). The aqueous layer was extracted with Et₂O (3 x 50-100 mL). The Et₂O fractions were combined, washed with brine (50 mL), dried over Na₂SO₄, filtered, and concentrated. The resulting residue was purified via flash chromatography on silica gel to afford the indicated 1-aryl-2-methyl diene products.

(*E*)-1-Fluoro-2-(2-methylbuta-1,3-dien-1-yl)benzene (2i). General Procedure A was followed using MePPh₃Br (7.395 g, 20.7 mmol, 1.0 equiv), *n*-BuLi (8.3 mL of 2.5 M solution in hexanes, 20.7 mmol, 1.0 equiv), and (*E*)-3-(2-fluorophenyl)-2-methylacrylaldehyde²³ (3.350 g, 20.7 mmol, 1.0 equiv) in THF (120 mL total). After flash chromatography on silica gel (hexanes), the title compound was obtained as colourless oil (2.361 g, 71%). **IR** (neat): 1601, 1483, 1452, 1233, 1099, 1061, 1034, 988, 849, 797, 750 cm⁻¹. ¹H **NMR** (400 MHz, CDCl₃): δ 7.32–7.30 (m, 1H), 7.25 –7.20 (m, 1H), 7.14–7.10 (m, 1H), 7.08–7.03 (m, 1H), 6.59 (dd, *J* = 17.4, 10.7 Hz, 1H), 6.52 (br s, 1H), 5.34 (d, *J* = 17.4 Hz, 1H), 5.17 (d, *J* = 10.6 Hz, 1H), 1.94 (s, 3H). ¹³C{¹H} **NMR** (101 MHz, CDCl₃): δ 160.4 (d, *J*_{CF} = 247.5 Hz), 141.5, 138.1, 130.9 (d, *J*_{CF} = 3.4 Hz), 128.6 (d, *J*_{CF} = 8.1 Hz), 125.6 (d, *J*_{CF} = 1.5 Hz), 124.1 (d, *J*_{CF} = 3.1 Hz), 123.7 (d, *J*_{CF} = 3.5 Hz), 115.5 (d, *J*_{CF} = 22.4 Hz), 113.8, 13.6 (d, *J*_{CF} = 1.5 Hz). ¹⁹F **NMR** (376 MHz, CDCl₃): δ –114.48 – –114.52 (m). **HRMS-ESI** (*m/z*): [M+H]⁺ calc'd for C₁₁H₁₂F⁺, 163.0918; found, 163.0916.

(*E*)-1-Bromo-4-(2-methylbuta-1,3-dien-1-yl)benzene (2j). General Procedure A was followed using MePPh₃Br (3.574 g, 10.0 mmol, 1.0 equiv), *n*-BuLi (4.0 mL of a 2.5 M soln in hexanes, 10.0 mmol, 1.0 equiv), and (*E*)-3-(4-bromophenyl)-2-methylacrylaldehyde^{23a} (2.252 g, 10.0 mmol, 1.0 equiv) in THF (60 mL total). After flash chromatography on silica gel (pentane), the title compound was obtained as a colourless oil that solidified to a white solid under reduced pressure (1.466 g, 66%). M.p.: 54–55 °C. IR (neat): 3086, 1599, 1578, 1483, 1361, 1074, 995, 887, 815, 799, 711, 671, 517 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.48–7.45 (m, 2H), 7.18–7.15 (m, 2H), 6.56–6.50 (m, 1H), 6.44 (br s, 1H), 5.33 (d, *J* = 17.3 Hz, 1H), 5.17 (d, *J* = 10.6 Hz, 1H), 1.97 (d, *J* = 1.3 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 141.7, 136.8, 136.7, 131.4, 130.9, 130.5, 120.6, 113.7, 13.3. HRMS-APCI (*m/z*): [M]⁺⁺ calc'd for C₁₁H₁₁Br⁺⁺, 222.0039; found, 222.0042.

(E)-2-Methyl-3-(3-nitrophenyl)acrylaldehyde (intermediate to 21). This procedure was adapted from the literature.²⁴ A 500 mL, single-necked round-bottom flask containing a magnetic stir bar was charged with 3-nitrobenzaldehyde (6.045 g, 40.0 mmol, 1.0 equiv), followed by 50% aq. EtOH (240 mL), affording a cloudy vellow mixture. The flask was sealed with a rubber septum, the reaction mixture was placed under nitrogen, and propionaldehyde (3.0 mL, 41.6 mmol, 1.04 equiv) was added via syringe with no apparent change. Then, aq. NaOH solution (0.440 g in 10.8 mL distilled H₂O) was added slowly via syringe pump (over ~20 min; flow rate = 0.54 mL/min). During the addition, the solid (benzaldehyde) dissolved affording an orange solution. About halfway through the addition, an off-white solid precipitated. Upon complete addition, the now cloudy, offwhite mixture was stirred for 1 h at room temperature. After this time, the precipitated, off-white solid was collected by vacuum filtration on a medium fritted funnel, washed with distilled H₂O (3 x 20 mL), and dried under vacuum over P_2O_5 overnight. Yield: 5.829 g (76%). The title compound has been reported previously,²⁵ but full characterization data were not provided. M.p.: 87-88 °C. IR (neat): 3065, 2864, 1670 1624, 1516, 1472, 1414, 1352, 1288, 1186, 1096, 1016, 908, 843, 806, 735, 696, 669 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 9.63 (s, 1H), 8.36 (t, J = 2.0 Hz, 1H), 8.25– 8.22 (m, 1H), 7.83 (d, J = 7.7 Hz, 1H), 7.65 (t, J = 8.0 Hz, 1H), 7.32 (s, 1H), 2.09 (d, J = 1.5 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 194.8, 148.5, 146.2, 140.7, 136.7, 135.5, 129.9, 124.4, 124.0, 11.0. **HRMS-ESI** (*m/z*): [M+H]⁺ calc'd for C₁₀H₁₀NO₃⁺, 192.0655; found, 192.0655.

(*E*)-1-(2-Methylbuta-1,3-dien-1-yl)-3-nitrobenzene (2I). General Procedure A was followed using MePPh₃Br (5.605 g, 15.7 mmol, 1.0 equiv), *n*-BuLi (6.3 mL of a 2.5 M soln in hexanes, 15.7 mmol, 1.0 equiv), and (*E*)-2-methyl-3-(3-nitrophenyl)acrylaldehyde (3.0 g, 15.7, 1.0 mmol) in THF (90 mL total). After flash chromatography on silica gel (~800 mL pentane, then 5% EtOAc in hexanes), the title compound was obtained as an opaque yellow oil (2.563 g, 87%). IR (neat): 3090, 2803, 1603, 1524, 1346, 1307, 1080, 1057, 986, 901, 824, 733 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.15 (t, *J* = 2.0 Hz, 1H), 8.09–8.06 (m, 1H), 7.59 (dt, *J* = 7.7, 1.5 Hz, 1H), 7.52–7.48 (m, 1H), 6.58–6.51 (overlapping m, 2H), 5.40 (d, *J* = 17.3 Hz, 1H), 5.23 (d, *J* = 10.6 Hz, 1H), 2.01 (d,

J = 1.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 148.3, 141.1, 139.5, 138.7, 135.2, 129.2, 129.0, 123.9, 121.5, 115.0, 13.3. HRMS-APCI (*m/z*): [M]⁺⁺ calc'd for C₁₁H₁₁NO₂⁺⁺, 189.0784; found, 189.0788.

Methyl (E)-3-(2-methyl-3-oxoprop-1-en-1-yl)benzoate (intermediate to **2n**). This procedure was adapted from the literature.²⁶ A flame-dried 200 mL Schlenk flask was charged with methyl 3formylbenzoate (1.720 g, 10.5 mmol, 1.0 equiv), 2-(triphenylphosphoranylidene)propionaldehyde (4.335 g, 13.6 mmol, 1.3 equiv), and a magnetic stir bar. The flask was sealed with a septum and connected to a Schlenk line and evacuated and backfilled with nitrogen three times. Toluene (52 mL) was added affording a cloudy, beige mixture. The septum was replaced with a reflux condenser against a positive pressure of nitrogen, the flask was placed in a pre-heated oil bath set to 80 °C, and the mixture was stirred at this temperature for 48 h, after which time NMR spectroscopic analysis of an aliquot indicated complete conversion. The flask was removed from the bath and allowed to cool to room temperature. The mixture was transferred to a 500 mL roundbottom flask and the volatiles were removed under reduced pressure. The resulting residue was suspended in Et₂O (50 mL) and filtered through Celite, rinsing the additional Et₂O (100 mL) until the filtrate ran colourless. The volatiles were removed from the clear, yellow filtrate, affording a yellow-orange residue, which was purified via flash chromatography on silica gel (15% MTBE in hexanes), affording an off-white solid. The solid was washed with 5% MTBE in pentane (3 x 3 mL), affording the title compound as a white solid (0.679 g, 32%). M.p.: 49–50 °C. IR (neat): 2967, 2851, 1717, 1674, 1624, 1429, 1400, 1364, 1292, 1207, 1190, 1105, 1086, 1016, 966, 833, 820, 750, 711, 687 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 9.60 (s, 1H), 8.19 (t, J = 1.8 Hz, 1H), 8.05 (dt, J = 7.8, 1.5 Hz, 1H), 7.70 (dt, J = 7.8, 1.6 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.29 (d, J = 1.7 Hz, 1H), 3.94 (s, 3H), 2.08 (d, J = 1.5 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 195.4, 166.6, 148.4, 139.5, 135.5, 134.1, 131.1, 130.9, 130.5, 129.0, 52.5, 11.1. HRMS-ESI (m/z): [M+H]+ calc'd for C₁₂H₁₃O₃⁺, 205.0859; found, 205.0860.

Methyl (*E***)-3-(2-methylbuta-1,3-dien-1-yl)benzoate (2n**). General Procedure A was followed using MePPh₃Br (1.155 g, 3.2 mmol, 1.0 equiv), *n*-BuLi (1.3 mL of 2.5 M solution in hexanes, 3.2 mmol, 1.0 equiv), and (*E*)-3-(2-methyl-3-oxoprop-1-en-1-yl)benzoate (0.660 g, 3.2 mmol, 1.0 equiv) in THF (19 mL total). After flash chromatography on silica gel (5% Et₂O in hexanes), the title compound was obtained as an opaque colourless oil (0.423 g, 65%). **IR** (neat): 3088, 2999, 2951, 1721, 1608, 1580, 1437, 1271, 1206, 1107, 1084, 988, 897, 862, 748, 696, 633 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃): δ 7.98 (d, *J* = 1.8 Hz, 1H), 7.90 (dt, *J* = 7.8, 1.5 Hz, 1H), 7.48 (dt, *J* = 7.8, 1.6 Hz, 1H), 7.41 (t, *J* = 7.7 Hz, 1H), 6.58–6.53 (m, 2H), 5.34 (d, *J* = 17.4 Hz, 1H), 5.17 (d, *J* = 10.7 Hz, 1H), 3.92 (s, 3H), 2.00 (d, *J* = 1.3 Hz, 3H). ¹³C{¹H} **NMR** (126 MHz, CDCl₃): δ 167.2, 141.7, 138.1, 137.2, 133.6, 130.6, 130.4, 130.2, 128.3, 127.8, 113.8, 52.3, 13.3. **HRMS-ESI** (*m/z*): [M+H]⁺ calc'd for C₁₃H₁₅O₂⁺, 203.1067; found, 203.1071.

(*E*)-1-methyl-3-(2-methylbuta-1,3-dien-1-yl)benzene (2o). General Procedure A was followed using MePPh₃Br (3.751 g, 10.5 mmol, 1.0 equiv), *n*-BuLi (4.2 mL of a 2.5 M solution in hexanes, 10.5 mmol, 1.0 equiv) (*E*)-2-methyl-3-(*m*-tolyl)acrylaldehyde^{23a} (1.681 g, 10.5 mmol, 1.0 equiv) in THF (62 mL total). After flash chromatography on silica gel (pentane), the title compound was obtained as a colourless oil (1.134 g, 68%). **IR** (neat): 3090, 3007, 2947, 2918, 2862, 1607, 1581, 1487, 1356, 1063, 988, 891, 860, 779, 764, 746, 698, 453 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.27–7.23 (m, 1H), 7.14–7.12 (m, 2H), 7.06 (d, *J* = 7.6 Hz, 1H), 6.56 (dd, *J* = 17.3, 10.6 Hz, 1H), 6.51 (br s, 1H), 5.31 (d, *J* = 17.3 Hz, 1H), 5.14 (d, *J* = 10.6 Hz, 1H), 2.37 (s, 3H), 2.02 (d, *J* = 1.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 142.1, 137.8, 137.8, 136.0, 131.9, 130.1, 128.1, 127.5, 126.4, 112.9, 21.6, 13.3. HRMS-ESI (*m/z*): [M+H]⁺ calc'd for C₁₂H₁₅⁺, 159.1168; found, 159.1166.

(*E*)-1-Methoxy-3-(2-methylbuta-1,3-dien-1-yl)benzene (2p). General Procedure A was followed using MePPh₃Br (4.798 g, 13.4 mmol, 1.0 equiv), *n*-BuLi (5.4 mL of a 2.5 M soln in hexanes, 13.4 mmol, 1.0 equiv), and (*E*)-3-(3-methoxyphenyl)-2-methylacrylaldehyde²⁷ (2.367 g, 13.4 mmol, 1.0 equiv) in THF (80 mL total). After flash chromatography on silica gel (1% EtOAc in hexanes), the title compound was obtained as a colourless oil (0.959 g, 58%). IR (neat): 3088, 2833, 1607, 1596, 1574, 1487, 1425, 1290, 12677, 1258, 1155, 1049, 986, 889, 874, 775, 694 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.29 (t, *J* = 7.9 Hz, 1H), 6.93 (d, *J* = 7.6 Hz, 1H), 6.88 (t, *J* = 2.2 Hz, 1H), 6.83–6.80 (m, 1H), 6.61–6.53 (overlapping m, 2H), 5.34 (d, *J* = 17.3 Hz, 1H), 5.17 (d, *J* = 10.6 Hz, 1H), 3.83 (s, 3H), 2.04 (d, *J* = 1.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 159.5, 141.9, 139.2, 136.4, 131.6, 129.2, 121.9, 114.9, 113.2, 112.3, 55.3, 13.4. HRMS-ESI (*m/z*): [M+H]⁺ calc'd for C₁₂H₁₅O⁺, 175.1117; found, 175.1125.

2d. Preparation of Formylating Agents

Acetic formic anhydride²⁸ (**3**, 200 mmol scale) and formic pivalic anhydride²⁹ were prepared according to the literature and stored in the freezer (-25 °C) in a nitrogen-filled glovebox. 4-nitrophenylformate and 2,4,6-trichlorophenylformate were purchased from commercial suppliers and used as received.

3. Reaction Optimization

General Procedure for Catalytic Screening Reactions. In a nitrogen-filled glovebox, a 0.5-2 mL Biotage® microwave vial was consecutively charged with additive (if solid; 0.0200 mmol, 0.1 equiv), catalyst (0.0400 mmol, 0.2 equiv), solvent, 1-(m-tolyl)-1*H*-pyrazole (15.8 mg, 0.100 mmol, 1.0 equiv), acetic formic anhydride (26.4 mg, 0.300 mmol, 3.0 equiv), and isoprene (40.0 µL, 0.400 mmol, 4.0 equiv), followed by a magnetic stir bar. The vial was sealed, removed from the glovebox, and placed in a pre-heated oil bath set to the indicate temperature. The reaction mixture was stirred at this temperature for 20 h (unoptimized), after which time it was removed from the bath and allowed to cool room temperature. The vial was then uncapped, diluted with EtOAc (1 mL), and transferred to a separatory funnel. Saturated aq. NaHCO₃ (1 mL) was added, and the layers were separated. The aqueous layer was extracted with EtOAc (3 x 1 mL). The organic

fractions were combined, dried over Na_2SO_4 , filtered, and concentrated. Trimethyl(phenyl)silane (0.100 mmol, 1.0 equiv) was added and the reaction mixture was analyzed by NMR spectroscopic methods in CDCl₃.

Table S1. Catalyst screening for the three-component sequential C–H bond addition to isoprene and acetic formic anhydride.

^aYield determined by crude ¹H NMR spectroscopic analysis relative to trimethyl(phenyl)silane as standard.

Table S2. Additive screening for the Co(III)-catalysed sequential C–H bond addition to isoprene and acetic formic anhydride.

Me A		[Cp*Co(C ₆ H ₆)][B(C ₆ F ₅) ₄] ₂ (20 mo additive DCE (1.0 M), 70 °C, 20 h	N Me Me Me
1a	2a 3		4a
1.0 equiv	4.0 equiv 3.0 equiv		
Entry	Ado	litive	Yield of 4a (%) ^a
1	Proton Sponge® (20 mol %)		71
2	None		51
3	Proton Sponge® (10 mol %)		59
4	Proton Sponge® (30 mol %) 4		4
5	Proton Sponge® (50 mol %) 0		
6	4-Dimethylaminopyridine (20 mol %)		20
7	<i>i</i> -Pr ₂ NEt (20 mol %)		49
8	2,6-Di- <i>tert</i> -butylpyridine (20 mol %)		48
9	LiOAc (20 mol %)		22
10	HOAc (2	44	

^aYield determined by crude ¹H NMR spectroscopic analysis relative to trimethyl(phenyl)silane as standard.

Table S3. Temperature screening for the Co(III)-catalysed sequential C–H bond addition to isoprene and acetic formic anhydride.

^aYield determined by crude ¹H NMR spectroscopic analysis relative to trimethyl(phenyl)silane as standard. ^bUsing 6.0 equiv (E)-(2-methylbuta-1,3-dien-1-yl)benzene (**2h**) in place of **2a**.

Table S4. Concentration and solvent screening for the Co(III)-catalysed sequential C–H bond addition to isoprene and acetic formic anhydride.

Me A	Me +		*Co(C ₆ H ₆)][B(C ₆ F ₅) ₄] ₂ (20 mol %) Proton Sponge® (20 mol %) solvent (conc'n), 70 (°C), 20 h	Me Me
1a	2a	3		4a
1.0 equiv	4.0 equiv	3.0 equiv		
Entr	У	Solvent	Concentration (M)	Yield of 4a (%) ^a
1		DCE	1.0	71
2		DCE	0.5	73
3		toluene	1.0	75
4		1,4-dioxane	1.0	62
5			1.0	76
		0112012		
6		PhCl	1.0	74

^aYield determined by crude ¹H NMR spectroscopic analysis relative to trimethyl(phenyl)silane as standard.

Table S5. Formylating agent screening for the three-component Co(III)-catalysed sequential C– H bond addition to isoprene and alkyl formic anhydride.

Me	* *	R ₀	[Cp*Co(C ₆ H ₆)][B(C ₆ F ₅) ₄] ₂ (20 m Proton Sponge® (20 mol % DCE (1.0 M), 70 (°C), 20 h	ol %) Me	⁄le]] 0
1 1.0 equiv	2 4.0 equiv	3.0 equiv		4a	
Entry	Formylating Agent (R =)		Yield of 4a (%) ^a		
1	Ac (acetic formic anhydride, 3)		71		
2	Piv (formic pivalic anhydride)		62		
3	4-nitrophenyl		0		
4	2.4.6-trichlorophenyl		2.4.6-trichlorophenyl 0		

^aYield determined by crude ¹H NMR spectroscopic analysis relative to trimethyl(phenyl)silane as standard.

4. Procedure for Catalytic Reactions and Characterization of Three-Component Products

General Procedure for the Co(III)-catalyzed Three-Component Coupling of C–H Bond Substrates, Dienes, and Acetic Formic Anhydride (General Procedure B). In a nitrogen-filled glovebox, a 2–5 mL Biotage® microwave vial was consecutively charged with Proton Sponge (8.6 mg, 0.0400 mmol, 0.2 equiv), $[Cp^*Co(C_6H_6)][B(C_6F_6)_4]_2$ (65.2 mg, 0.0400 mmol, 0.2 equiv), solvent (200 µL, 1.0 M in C–H bond substrate), C–H bond substrate (0.200 mmol, 1.0 equiv), acetic formic anhydride (52.8 mg, 0.600 mmol, 3.0 equiv), and diene (0.800 mmol, 4.0 equiv or

1.20 mmol, 6.0 equiv), followed by a magnetic stir bar. The vial was sealed, removed from the glovebox, and placed in a pre-heated oil bath set to 70 °C. The reaction mixture was stirred at 70 °C for 20 h (unoptimized), after which time it was removed from the bath and allowed to cool room temperature. The vial was then uncapped, diluted with EtOAc (5 mL), and transferred to a separatory funnel. Saturated aq. NaHCO₃ (5 mL) was added, and the layers were separated. The aqueous layer was extracted with EtOAc (3 x 5 mL). The organic fractions were combined, dried over Na₂SO₄, filtered, and concentrated. The resulting residue was purified via flash chromatography on silica gel (typical column dimensions: 6-inch length × 1-inch diameter).

<u>Note</u>: aldehyde products were found to decompose under acidic conditions (e.g., silica gel), so two eluent systems or a gradient were often chosen in order to remove starting material quickly and rapidly elute the product to minimize decomposition.

(*E*)-2,2-Dimethyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-enal (4a). General Procedure B was followed using DCE as solvent, 1-(*m*-tolyl)-1*H*-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), and isoprene (80 μL, 0.800 mmol, 4.0 equiv). After flash chromatography (150 mL of 20% Et₂O in hexanes, then 150 mL of 50% Et₂O in hexanes), the title compound was obtained as a yellow oil (36.6 mg, 72%). **IR** (neat): 2969, 1722, 1615, 1516, 1458, 1392, 1328, 1192, 1098, 973, 950, 884, 808, 751, 622 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 9.37 (s, 1H), 7.72 (d, *J* = 1.9 Hz, 1H), 7.57 (d, *J* = 2.3 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.23 (d, *J* = 1.8 Hz, 1H), 7.18 (dd, *J* = 8.0, 1.8 Hz, 1H), 6.43 (t, *J* = 2.1 Hz, 1H), 6.27 (d, *J* = 16.3 Hz, 1H), 6.01 (d, *J* = 16.3 Hz, 1H), 2.37 (s, 3H), 1.20 (s, 6H). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 202.1, 140.7, 138.8, 138.5, 132.9, 131.3, 129.7, 129.3, 126.9, 126.8, 126.8, 106.6, 49.1, 21.5, 21.1. HRMS-ESI (*m/z*): [M+H]⁺ calc'd for C₁₆H₁₉N₂O⁺, 255.1492; found, 255.1490.

(*E*)-4-(2-(1*H*-Pyrazol-1-yl)-4-(trifluoromethyl)phenyl)-2,2-dimethylbut-3-enal (4b). General Procedure B was followed using DCE as solvent, 1-(3-(trifluoromethyl)phenyl)-1*H*-pyrazole (42.4 mg, 0.200 mmol, 1.0 equiv), and isoprene (80 μL, 0.800 mmol, 4.0 equiv). After flash chromatography (150 mL of 20%, then 50 mL of 30%, 40%, and 50% Et₂O in hexanes), the title compound was obtained as a colorless oil (41.6 mg, 67%). **IR** (neat): 2974, 2935, 2874, 2805, 2705, 1726, 1645, 1622, 1578, 1520, 1457, 1402, 1340, 1308, 1278, 1233, 1168, 1123, 1101, 1075, 1029, 975, 942, 895, 825, 757, 704, 651, 627 cm⁻¹. ¹H **NMR** (500 MHz, CDCl₃): δ 9.42 (s, 1H), 7.77 (d, *J* = 2.0 Hz, 1H), 7.71–7.70 (m, 2H), 7.64–7.61 (m, 2H), 6.50 (t, *J* = 2.1 Hz, 1H), 6.37 (d, *J* = 16.3 Hz, 1H), 6.22 (d, *J* = 16.3 Hz, 1H), 1.24 (s, 6H). ¹³C{¹H} **NMR** (126 MHz, CDCl₃): δ 201.6, 141.3, 138.6, 136.4, 135.9, 131.3, 130.5 (q, *J* = 33.4 Hz), 127.6, 125.7, 124.9 (q, *J* = 3.7 Hz), 123.45 (q, *J* = 272 Hz), 123.39 (q, *J* = 3.9 Hz), 107.3, 49.2, 21.4. ¹⁹F **NMR** (471 MHz, CDCl₃): δ –62.7 (s). **HRMS-ESI** (*m/z*): [M+H]⁺ calc'd for C₁₆H₁₆F₃N₂O⁺, 309.1209; found, 309.1216.

(*E*)-4-(4-Bromo-2-(1*H*-pyrazol-1-yl)phenyl)-2,2-dimethylbut-3-enal (4c). General Procedure B was followed using DCE as solvent, 1-(3-bromophenyl)-1*H*-pyrazole (44.6 mg, 0.200 mmol, 1.0 equiv), and isoprene (80 μL, 0.800 mmol, 4.0 equiv). After flash chromatography (150 mL of 20% Et₂O in hexanes, then 150 mL of 50% Et₂O in hexanes), the title compound was obtained as a yellow oil (42.2 mg, 66%). **IR** (neat): 2969, 2931, 2871, 2807, 2704, 1722, 1590, 1517, 1482, 1399, 1192, 1100, 1081, 1027, 972, 940, 878, 809, 751, 624 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 9.39 (s, 1H), 7.73 (s, 1H), 7.59–7.58 (m, 2H), 7.49 (dd, J = 8.4, 2.0 Hz, 1H), 7.44 (d, J = 8.4 Hz, 1H), 6.46 (t, J = 2.1 Hz, 1H), 6.28 (d, J = 16.4 Hz, 1H), 6.10 (d, J = 16.3 Hz, 1H), 1.21 (s, 6H). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 201.7, 141.1, 139.3, 134.5, 131.39, 131.37, 131.2, 129.1, 128.2, 125.9, 121.4, 107.0, 49.1, 21.4. HRMS-ESI (*m/z*): [M+H]⁺ calc'd for C₁₅H₁₆BrN₂O⁺, 319.0441; found, 319.0440.

(*E*)-4-(3,3-Dimethyl-4-oxobut-1-en-1-yl)-3-(1*H*-pyrazol-1-yl)phenyl pivalate (4d). General Procedure B was followed using DCE as solvent, 3-(*1H*-pyrazol-1-yl)phenyl pivalate (48.8 mg, 0.200 mmol, 1.0 equiv), and isoprene (80 μL, 0.800 mmol, 4.0 equiv). After flash chromatography (30% Et₂O in hexanes), the title compound was obtained as a white solid (46.1 mg, 68%). **IR** (neat): 2973, 2935, 2875, 2812, 2718, 1747, 1723, 1607, 1514, 1456, 1404, 1278, 1241, 1195, 1168, 1113, 1031, 980, 906, 763, 628 cm⁻¹. ¹H **NMR** (500 MHz, CDCl₃): δ 9.39 (s, 1H), 7.72 (s, 1H), 7.61 (d, J = 2.6 Hz, 1H), 7.56 (d, J = 8.7 Hz, 1H), 7.18 (d, J = 2.4 Hz, 1H), 7.09 (dd, J = 8.6, 2.4 Hz, 1H), 6.44 (t, J = 2.1 Hz, 1H), 6.32 (d, J = 16.3 Hz, 1H), 6.06 (d, J = 16.3 Hz, 1H), 1.33 (s, 9H), 1.21 (s, 6H). ¹³C{¹H} **NMR** (126 MHz, CDCl₃): δ 201.8, 176.7, 150.7, 140.9, 139.0, 133.9, 131.3, 129.7, 127.8, 126.2, 121.6, 119.4, 106.8, 49.0, 39.1, 27.1, 21.4. **HRMS-ESI** (*m/z*): [M+H]⁺ calc'd for C₂₀H₂₅N₂O₃⁺, 341.1860; found, 341.1857.

(*E*)-4-(2-(1*H*-Pyrazol-1-yl)-5-(trifluoromethyl)phenyl)-2,2-dimethylbut-3-enal (4e). General Procedure B was followed using DCE as solvent, 1-(4-(trifluoromethyl)phenyl)-1*H*-pyrazole (42.4 mg, 0.200 mmol, 1.0 equiv), and isoprene (80 μ L, 0.800 mmol, 4.0 equiv) at 50 °C. After flash chromatography (150 mL of 20%, then 50 mL of 30%, 40%, and 50% Et₂O in hexanes), the title compound was obtained as a white solid (34.7 mg, 56%). M.p. 131–132 °C. **IR** (neat): 3096, 2975,

2930, 2874, 2808, 2707, 1726, 1616, 1517, 1395, 1334, 1316, 1271, 1159, 1107, 1081, 972, 934, 893, 836, 766, 625, 507 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 9.43 (s, 1H), 7.82 (s, 1H), 7.77 (d, J = 2.0 Hz, 1H), 7.64 (d, J = 2.4 Hz, 1H), 7.61 (dd, J = 8.4, 2.3 Hz, 1H), 7.56 (d, J = 8.2 Hz, 1H), 6.49 (t, J = 2.1 Hz, 1H), 6.41 (d, J = 16.4 Hz, 1H), 6.21 (d, J = 16.4 Hz, 1H), 1.25 (s, 6H). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 201.6, 141.4, 140.9, 135.7, 132.8, 131.2, 130.4 (q, $J_{CF} = 32.7$ Hz), 126.4, 126.0, 125.1 (q, $J_{CF} = 3.6$ Hz), 124.4 (q, $J_{CF} = 3.8$ Hz), 123.7 (q, $J_{CF} = 273$ Hz),107.3, 49.1, 21.5. ¹⁹F NMR (471 MHz, CDCl₃): δ -62.6 (s). HRMS-ESI (*m/z*): [M+H]⁺ calc'd for C₁₆H₁₆F₃N₂O⁺, 309.1209; found, 309.1211.

(E)-(3-(3,3-dimethyl-4-oxobut-1-en-1-yl)-4-(1H-pyrazol-1-yl)phenyl)carbamate *tert*-Butyl (4f). General Procedure B was followed using DCE as solvent, tert-butyl (4-(1H-pyrazol-1yl)phenyl)carbamate (51.8 mg, 0.200 mmol, 1.0 equiv), and isoprene (80 µL, 0.800 mmol, 4.0 equiv). The compound was purified via flash column chromatography (30% EtOAc in hexanes) on silica gel, followed by C18 reverse phase column chromatography. The crude mixture was loaded with 0.4 mL of 25% CH₃CN in H₂O containing 0.1% TFA and 0.2 mL of DMSO and was purified with 5.5 g of reverse phase media and a 56 column volume gradient from 20-100% CH₃CN/H₂O containing 0.1% TFA. The presence of the desired product was confirmed by LC-MS, and the relevant fractions were combined and concentrated. The compound was diluted with saturated ag. NaHCO₃ and extracted with EtOAc (5 x 3 mL). The combined organic layers washed with brine (50 mL), dried over Na₂SO₄, and concentrated, affording the title compound as a vellow foam (34.8 mg, 49%). IR (neat): 3296, 2974, 2934, 1721, 1612, 1587, 1520, 1393, 1366, 1314, 1234, 1153, 1101, 1051, 1051, 1020, 970, 937, 889, 837, 752, 623 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 50 °C): δ 9.36 (s, 1H), 7.69 (d, J = 1.8 Hz, 1H), 7.60 (d, J = 2.1 Hz, 1H), 7.51 (d, J = 2.4 Hz, 1H), 7.29–7.27 (m, 2H), 6.80 (s, 1H), 6.41 (t, J = 2.1 Hz, 1H), 6.22 (d, J = 16.3 Hz, 1H), 6.02 (d, J = 16.3 Hz, 1H), 1.52 (s, 9H), 1.17 (s, 6H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C): δ 201.9, 152.7, 140.5, 138.7, 134.0, 133.6, 133.5, 131.4, 127.0, 126.4, 118.3, 116.0, 106.4, 80.8, 49.0, 28.3, 21.4. **HRMS-ESI** (m/z): [M+H]⁺ calc'd for C₂₀H₂₆N₃O₃⁺, 356.1969; found, 356.1964.

(*E*)-4-(5-(1*H*-Pyrazol-1-yl)benzo[*d*][1,3]dioxol-4-yl)-2,2-dimethylbut-3-enal (4g). General Procedure B was followed using DCE as solvent, 1-(benzo[*d*][1,3]dioxol-5-yl)-1*H*-pyrazole (37.6 mg, 0.200 mmol, 1.0 equiv), and isoprene (80 μL, 0.800 mmol, 4.0 equiv). After flash chromatography (150 mL of 40% Et₂O in hexanes, then 150 mL of 60% Et₂O in hexanes), the title compound was obtained as a yellow solid (41.2 mg, 72%). **IR** (neat): 2974, 1719, 1456, 1395, 1362, 1308, 1252, 1192, 1161, 1119, 1074, 1045, 1026, 962, 934, 870, 812, 756, 621 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃): δ 9.34 (s, 1H), 7.69 (d, J = 2.0 Hz, 1H), 7.51 (d, J = 2.3 Hz, 1H), 6.87 (d,

J = 8.2 Hz, 1H), 6.74 (d, J = 8.2 Hz, 1H), 6.42–6.38 (m, 2H), 6.09 (s, 2H), 5.88 (d, J = 16.5 Hz, 1H), 1.15 (s, 6H). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 201.9, 147.7, 145.5, 140.4, 137.2, 133.1, 131.6, 121.3, 120.3, 117.1, 106.7, 106.3, 101.9, 49.4, 21.1. HRMS-ESI (*m/z*): [M+H]⁺ calc'd for C₁₆H₁₇N₂O₃⁺, 285.1234; found, 285.1233.

(*E*)-4-(2-(1*H*-Pyrazol-1-yl)phenyl)-2,2-dimethylbut-3-enal (4h). General Procedure B was followed using DCE as solvent, 1-phenyl-1*H*-pyrazole (26.4 μL, 0.200 mmol, 1.0 equiv), and isoprene (80 μL, 0.800 mmol, 4.0 equiv) at 50 °C. After flash chromatography (150 mL of 20% Et₂O in hexanes, then 150 mL of 50% Et₂O in hexanes), the title compound was obtained as a yellow oil (33.2 mg, 69%). **IR** (neat): 2969, 2930, 2872, 2806, 2705, 1721, 1631, 1602, 1576, 1517, 1487, 1462, 1394, 1330, 1192, 1096, 1044, 1020, 970, 936, 915, 891, 752, 691, 660, 622, 584 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃): δ 9.38 (s, 1H), 7.72 (d, *J* = 1.9 Hz, 1H), 7.59–7.57 (m, 2H), 7.40–7.33 (m, 3H), 6.44 (t, *J* = 2.1 Hz, 1H), 6.31 (d, *J* = 16.3 Hz, 1H), 6.07 (d, *J* = 16.3 Hz, 1H), 1.20 (s, 6H). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 202.0, 140.8, 138.7, 133.9, 132.7, 131.3, 128.53, 128.46, 127.0, 126.8, 126.3, 106.7, 49.1, 21.5. **HRMS-ESI** (*m/z*): [M+H]⁺ calc'd for C₁₅H₁₇N₂O⁺, 241.1335; found, 241.1338.

(*E*)-2,2-Dimethyl-4-(4-methyl-2-(2*H*-1,2,3-triazol-2-yl)phenyl)but-3-enal (4i). General Procedure B was followed using 1,2-dichlorobenzene as solvent, 2-(*m*-tolyl)-2*H*-1,2,3-triazole (31.8 mg, 0.200 mmol, 1.0 equiv), and isoprene (80 μ L, 0.800 mmol, 4.0 equiv). The remaining solvent was removed through distillation under vacuum after work-up. After flash chromatography (150 mL of 20% Et₂O in hexanes, then 150 mL of 50% Et₂O in hexanes), the title compound was obtained as a yellow oil (34.0 mg, 67%). **IR** (neat): 2970, 2930, 2870, 2806, 2706, 1722, 1616, 1506, 1462, 1412, 1362, 1152, 961, 880, 812, 773, 584 cm⁻¹. ¹H **NMR** (500 MHz, CDCl₃): δ 9.38 (s, 1H), 7.84 (s, 2H), 7.51 (d, *J* = 8.1 Hz, 1H), 7.39 (s, 1H), 7.21 (d, *J* = 8.1 Hz, 1H), 6.53 (d, *J* = 16.1 Hz, 1H), 6.02 (d, *J* = 16.3 Hz, 1H), 2.38 (s, 3H), 1.20 (s, 6H). ¹³C{¹H} **NMR** (126 MHz, CDCl₃): δ 202.0, 138.6, 137.9, 135.3, 132.9, 129.9, 129.2, 126.9, 126.8, 126.0, 49.0, 21.4, 20.9. **HRMS**-**ESI** (*m*/*z*): [M+H]⁺ calc'd for C₁₅H₁₈N₃O⁺, 256.1444; found, 256.1443.

(*E*)-2,2-Dimethyl-4-(4-methyl-2-(pyrimidin-2-yl)phenyl)but-3-enal (4j). General Procedure B was followed using PhCl as solvent, 2-(*m*-tolyl)pyrimidine (34.0 mg, 0.200 mmol, 1.0 equiv), and isoprene (80 μ L, 0.800 mmol, 4.0 equiv). After flash chromatography (100 mL of 30% Et₂O in hexanes, then 40% Et₂O in hexanes), the title compound was obtained as an orange oil (27.7 mg, 52%). **IR** (neat): 3032, 2968, 2926, 2870, 2805, 2706, 1721, 1568, 1553, 1418, 1395, 966, 804, 731, 634, 583 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 9.43 (s, 1H), 8.84 (d, *J* = 4.9 Hz, 2H), 7.68 (br s, 1H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.24–7.23 (m, 2H), 6.97 (d, *J* = 16.1 Hz, 1H), 5.99 (d, *J* = 16.2 Hz, 1H), 2.40 (s, 3H), 1.24 (s, 6H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 202.4, 167.1, 157.0, 137.8, 136.9, 133.6, 131.3, 130.9, 130.8, 127.0, 118.8, 49.1, 21.7, 21.2. HRMS-ESI (*m/z*): [M+H]⁺ calc'd for C₁₇H₁₉N₂O⁺, 267.1492; found, 267.1489.

(*E*)-2,2-Dimethyl-4-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)but-3-enal (4k). General Procedure A was followed using toluene as solvent, 1-(pyridin-2-yl)-1*H*-indole (38.8 mg, 0.200 mmol, 1.0 equiv), and isoprene (120 μL, 1.200 mmol, 6.0 equiv). After flash chromatography (150 mL of 40% Et₂O in hexanes, then 150 mL of 70% Et₂O in hexanes), the title compound was obtained as an orange oil (31.0 mg, 53%). **IR** (neat): 3048, 2968, 2930, 2870, 2803, 2704, 1721, 1572, 1560, 1450, 1418, 1346, 1209, 1150, 959, 891, 804, 739, 629, 600 cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ 9.49 (s, 1H), 8.80 (d, J = 4.8 Hz, 2H), 8.30 (dd, J = 8.3, 1.1 Hz, 1H), 7.58 (dt, J = 7.7, 0.9 Hz, 1H), 7.28–7.25 (m, 1H), 7.23–7.19 (m, 1H), 7.17 (t, J = 4.8 Hz, 1H), 7.06 (dd, J = 16.1, 0.9 Hz, 1H), 6.85 (s, 1H), 6.17 (d, J = 16.2 Hz, 1H), 1.32 (s, 6H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 202.1, 158.3, 158.1, 138.1, 137.2, 132.0, 129.3, 124.0, 123.7, 122.4, 120.5, 117.4, 114.2, 105.6, 49.2, 21.7. HRMS-ESI (*m/z*): [M+H]⁺ calc'd for C₁₈H₁₈N₃O⁺, 292.1444; found, 292.1441.

(*E*)-2-Cyclopentyl-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-enal (4I). General Procedure B was followed using DCE as solvent, 1-(m-tolyl)-1*H*-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), and buta-1,3-dien-2-ylcyclopentane (98.7 mg, 0.800 mmol, 4.0 equiv). After flash chromatography (150 mL of 20% Et₂O in hexanes, then 150 mL of 40% Et₂O in hexanes), the title compound was obtained as a colourless oil (35.2 mg, 57%). **IR** (neat): 2951, 2868, 1721, 1616, 1516, 1452, 1391, 1329, 1192, 1098, 1038, 974, 949, 808, 750, 623 cm⁻¹. ¹**H NMR** (500 MHz,

CDCl₃): δ 9.45 (s, 1H), 7.71 (d, J = 1.9 Hz, 1H), 7.56 (d, J = 2.3 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.24 (d, J = 1.8 Hz, 1H), 7.18 (dd, J = 8.0, 1.8 Hz, 1H), 6.43 (t, J = 2.2 Hz, 1H), 6.23 (d, J = 16.4 Hz, 1H), 6.12 (d, J = 16.4 Hz, 1H), 2.37 (s, 3H), 2.26–2.19 (app pent, 1H), 1.71–1.62 (m, 2H), 1.58–1.49 (m, 4H), 1.33–1.23 (m, 2H), 1.12 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 202.8, 140.7, 138.7, 138.4, 131.7, 131.3, 130.1, 129.3, 127.5, 126.9, 126.8, 106.5, 55.0, 44.7, 27.3, 27.2, 25.7, 25.6, 21.1, 16.1. HRMS-ESI (*m/z*): [M+H]⁺ calc'd for C₂₀H₂₅N₂O⁺, 309.1961; found, 309.1961.

(*E*)-2,4-Dimethyl-2-(4-methyl-2-(1*H*-pyrazol-1-yl)styryl)pentanal (4m). General Procedure B was followed using DCE as solvent, 1-(*m*-tolyl)-1*H*-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), and 5-methyl-3-methylenehex-1-ene (88.2 mg, 0.800 mmol, 4.0 equiv). After flash chromatography (150 mL of 15% Et₂O in hexanes, then 150 mL of 30% Et₂O in hexanes), the title compound was obtained as a pale-yellow oil (27.2 mg, 46%). **IR** (neat): 2957, 2926, 2870, 1722, 1616, 1516, 1456, 1329, 1099, 1038, 974, 949, 808, 750, 623 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 9.38 (s, 1H), 7.72 (d, *J* = 1.9 Hz, 1H), 7.56 (d, *J* = 2.4 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.23 (d, *J* = 1.8 Hz, 1H), 7.18 (dd, *J* = 8.0, 1.8 Hz, 1H), 6.44 (t, *J* = 2.1 Hz, 1H), 6.24 (d, *J* = 16.4 Hz, 1H), 6.06 (d, *J* = 16.3 Hz, 1H), 2.38 (s, 3H), 1.73–1.66 (m, 1H), 1.59 (d, *J* = 6.4 Hz, 2H), 1.18 (s, 3H), 0.89–0.85 (overlapping d, 6H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 202.5, 140.7, 138.7, 138.5, 132.7, 131.4, 129.9, 129.4, 126.85, 126.84, 126.76, 106.6, 52.6, 45.3, 24.8, 24.4, 24.2, 21.1, 19.0. HRMS-ESI (*m/z*): [M+H]⁺ calc'd for C₁₉H₂₅N₂O⁺, 297.1961; found, 297.1962.

(*E*)-2-(Cyclohexylmethyl)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-enal (4n). General Procedure B was followed using DCE as solvent, 1-(*m*-tolyl)-1*H*-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), and (*E*)-(2-methylbuta-1,3-dien-1-yl)cyclohexane (180.3 mg, 1.20 mmol, 6.0 equiv). After flash chromatography (150 mL of 15% Et₂O in hexanes, then 150 mL 30% Et₂O in hexanes), the title compound was obtained as a pale-yellow oil (23.7 mg, 41%). **IR** (neat): 2920, 2849, 1721, 1616, 1516, 1449, 1329, 1099, 1038, 972, 949, 808, 748, 623 cm⁻¹. ¹H **NMR** (500 MHz, CDCl₃): δ 9.38 (s, 1H), 7.72 (d, *J* = 1.9 Hz, 1H), 7.56 (d, *J* = 2.3 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.24 (d, *J* = 1.8 Hz, 1H), 7.18 (dd, *J* = 8.0, 1.8 Hz, 1H), 6.44 (t, *J* = 2.1 Hz, 1H), 6.25 (d, *J* = 16.4 Hz, 1H), 6.06 (d, *J* = 16.4 Hz, 1H), 2.38 (s, 3H), 1.66–1.59 (m, 4H), 1.56 (d, *J* = 6.1 Hz, 2H), 1.36–1.26 (m, 2H), 1.22–1.08 (overlapping m, 6H), 0.95–0.85 (m, 2H). ¹³C{¹H} **NMR** (126 MHz, CDCl₃): δ 202.5, 140.7, 138.7, 138.5, 132.8, 131.4, 130.0, 129.4, 126.9, 126.8, 126.8, 106.6, 52.5, 44.0, 34.9, 34.7, 34.1, 26.4, 26.4, 26.3, 21.1, 19.1. **HRMS-ESI** (*m*/z): [M+H]⁺ calc'd for C₂₂H₂₉N₂O⁺, 337.2274; found, 337.2274.

(*E*)-1-(4-Methyl-2-(1*H*-pyrazol-1-yl)styryl)cyclohexane-1-carbaldehyde (40). General Procedure B was followed using PhCl as solvent, 1-(*m*-tolyl)-1*H*-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), and 1-vinylcyclohex-1-ene (86.5 mg, 0.800 mmol, 4.0 equiv). After flash chromatography (150 mL of 20% Et₂O in hexanes, then 150 mL 50% Et₂O in hexanes), the title compound was obtained as a pale-yellow oil (50.5 mg, 86%). **IR** (neat): 3127, 3046, 2934, 2920, 2851, 2797, 2687, 1717, 1616, 1568, 1516, 1456, 1449, 1387, 1327, 1192, 1099, 1038, 974, 947, 818, 808, 766, 745, 623 cm⁻¹. ¹H **NMR** (600 MHz, CDCl₃) δ 9.27 (s, 1H), 7.71 (d, *J* = 1.8 Hz, 1H), 7.56 (d, *J* = 2.3 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.22 (d, *J* = 1.9 Hz, 1H), 7.16 (dd, *J* = 8.0, 1.8 Hz, 1H), 6.43 (t, *J* = 2.1 Hz, 1H), 6.25 (d, *J* = 16.4 Hz, 1H), 5.80 (d, *J* = 16.4 Hz, 1H), 2.36 (s, 3H), 1.91–1.87 (m, 2H), 1.58–1.52 (m, 4H), 1.47–1.32 (m, 4H). ¹³C{'H} **NMR** (151 MHz, CDCl₃): δ 202.0, 140.6, 138.8, 138.4, 132.0, 131.3, 129.8, 129.3, 128.0, 126.8, 126.7, 106.6, 53.1, 31.0, 25.7, 22.4, 21.0. **HRMS-ESI** (*m/z*): [M+H]⁺ calc'd for C₁₉H₂₃N₂O⁺, 295.1805; found, 295.1810.

(*E*)-1-(4-Methyl-2-(1*H*-pyrazol-1-yl)styryl)cyclohexane-1-carbaldehyde (4p). General Procedure B was followed using DCE as solvent, 1-(*m*-tolyl)-1*H*-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), and 4-vinyl-3,6-dihydro-2H-pyran (88.1 mg, 0.800 mmol, 4.0 equiv). After flash chromatography (150 mL of 20% Et₂O in hexanes, then 150 mL 50% Et₂O in hexanes), the title compound was obtained as a pale-yellow oil (36.7 mg, 62%). **IR** (neat): 3134, 3055, 2970, 2918, 2860, 1711, 1614, 1510, 1456, 1402, 1383, 1329, 1304, 1287, 1240, 1193, 1103, 1036, 978, 949, 939, 816, 770, 750, 658, 625 cm⁻¹. ¹H **NMR** (500 MHz, CDCl₃): δ 9.31 (s, 1H), 7.72 (s, 1H), 7.57–7.56 (m, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.22 (s, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 6.44 (br s, 1H), 6.30 (d, *J* = 16.4 Hz, 1H), 5.80 (d, *J* = 16.4 Hz, 1H), 3.78–3.73 (m, 2H), 3.57–3.52 (m, 2H), 2.38 (s, 3H), 2.04–1.99 (m, 2H), 1.78–1.73 (m, 2H). ¹³C{¹H} **NMR** (126 MHz, CDCl₃): δ 200.4, 140.8, 139.2, 138.6, 131.2, 130.1, 129.5, 129.4, 129.2, 126.9, 126.8, 106.7, 64.4, 51.0, 30.9, 21.1. **HRMS-ESI** (*m/z*): [M+H]⁺ calc'd for C₁₈H₂₁N₂O₂⁺, 297.1598; found, 297.1605.

Benzyl (*E*)-4-formyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)styryl)piperidine-1-carboxylate (4q). General Procedure B was followed using DCE as solvent, 1-(*m*-tolyl)-1*H*-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), and benzyl 4-vinyl-3,6-dihydropyridine-1(2H)-carboxylate (194.6 mg, 0.800 mmol, 4.0 equiv). After flash chromatography (150 mL of 30% EtOAc in hexanes, then 150 mL

50% EtOAc in hexanes), the title compound was obtained as a pale-yellow oil (70.5 mg, 82%). **IR** (neat): 2945, 2922, 2860, 1719, 1694, 1616, 1516, 1429, 1277, 1238, 1157, 1142, 1098, 970, 949, 908, 810, 752, 727, 696 cm⁻¹.¹**H NMR** (500 MHz, CDCl₃, 50 °C): δ 9.31 (s, 1H), 7.71 (s, 1H), 7.55 (d, J = 2.4 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.37–7.29 (m, 5H), 7.21–7.18 (m, 2H), 6.44 (s, 1H), 6.33 (d, J = 16.5 Hz, 1H), 5.76 (d, J = 16.4 Hz, 1H), 5.13 (s, 2H), 3.67–3.62 (m, 2H), 3.37–3.32 (m, 2H), 2.38 (s, 3H), 2.00–1.95 (m, 2H), 1.73–1.67 (m, 2H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 50 °C): δ 200.0, 155.4, 140.8, 139.3, 138.8, 137.0, 131.1, 129.8, 129.7, 129.6, 129.4, 128.6, 128.1, 128.0, 127.0, 126.9, 106.8, 67.3, 51.7, 40.8, 30.4, 21.0. HRMS-ESI (*m/z*): [M+H]⁺ calc'd for C₂₆H₂₈N₃O₃⁺, 430.2125; found, 430.2133.

(*E*)-2-Benzyl-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-enal (4r). General Procedure B was followed using DCE as solvent, 1-(*m*-tolyl)-1*H*-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), and (*E*)-(2-methylbuta-1,3-dien-1-yl)benzene (173.1 mg, 1.20 mmol, 6.0 equiv). After flash chromatography (100 mL of 20% Et₂O in hexanes, then 200 mL 50% Et₂O in hexanes), the title compound was obtained as a yellow oil (43.6 mg, 66%). **IR** (neat): 3028, 2974, 2920, 2710, 1721, 1616, 1516, 1497, 1452, 1400, 1329, 1038, 974, 949, 808, 750, 700, 623, 484 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃): δ 9.52 (s, 1H), 7.68 (d, *J* = 1.8 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.33 (d, *J* = 2.3 Hz, 1H), 7.28–7.22 (m, 4H), 7.20–7.18 (m, 1H), 7.10–7.09 (m, 2H), 6.34 (t, *J* = 2.1 Hz, 1H), 6.19 (d, *J* = 16.3 Hz, 1H), 6.08 (d, *J* = 16.3 Hz, 1H), 2.96, 2.95 (ABq, *J*_{AB} = 13.6 Hz, 2H), 2.38 (s, 3H), 1.14 (s, 3H). ¹³C{¹H} **NMR** (126 MHz, CDCl₃): δ 202.0, 140.7, 139.0, 138.5, 136.5, 131.6, 131.4, 130.5, 129.5, 129.3, 128.3, 127.9, 126.9, 126.8, 126.7, 106.6, 53.7, 42.4, 21.1, 18.3. **HRMS-ESI** (*m*/z): [M+H]⁺ calc'd for C₂₂H₂₃N₂O⁺, 331.1805; found, 331.1825.

(*E*)-2-(2-Fluorobenzyl)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-enal (4s). General Procedure B was followed using DCE as solvent, 1-(*m*-tolyl)-1*H*-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), and (*E*)-1-fluoro-2-(2-methylbuta-1,3-dien-1-yl)benzene (129.8 mg, 0.800 mmol, 4.0 equiv). After flash chromatography (150 mL of 20% Et₂O in hexanes, then 150 mL 50% Et₂O in hexanes), the title compound was obtained as a pale-yellow oil (41.7 mg, 60%). **IR** (neat): 2974, 2926, 2810, 2710, 1721, 1616, 1584, 1516, 1491, 1454, 1229, 1036, 974, 949, 880, 808, 752, 623 cm⁻¹. ¹H **NMR** (500 MHz, CDCl₃): δ 9.52 (s, 1H), 7.68 (d, *J* = 1.8 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.37 (d, *J* = 2.3 Hz, 1H), 7.24 (d, *J* = 1.8 Hz, 1H), 7.22–7.18 (overlapping m, 2H), 7.10 (td, *J* = 7.6, 1.9 Hz, 1H), 7.05–6.98 (m, 2H), 6.35 (t, *J* = 2.1 Hz, 1H), 6.19 (d, *J* = 16.3 Hz, 1H), 6.11 (d, *J* = 16.3, 1H), 3.01, 2.99 (dABq, *J*_{AB} = 13.6 Hz, *J*_{HF} = 1.6 Hz, 2H), 2.38 (s, 3H), 1.16 (s, 3H). ¹³C{¹H} **NMR** (126 MHz, CDCl₃) δ 201.5, 161.4 (d, *J*_{CF} = 246 Hz), 140.7, 138.9, 138.5, 132.8 (d, *J*_{CF} = 5.0 Hz), 131.4, 131.2, 129.4, 129.3, 128.7 (d, *J*_{CF} = 23.0 Hz), 106.6, 53.7, 34.9, 21.1,

18.0. ¹⁹**F NMR** (471 MHz, CDCl₃) δ –115.09 to –115.14 (m). **HRMS-ESI** (*m/z*): [M+H]⁺ calc'd for C₂₂H₂₂FN₂O⁺, 349.1711; found, 349.1714.

(*E*)-2-(4-Bromobenzyl)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-enal (4t). General Procedure B was followed using DCE as solvent, 1-(*m*-tolyl)-1*H*-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), and methyl (*E*)-1-bromo-4-(2-methylbuta-1,3-dien-1-yl)benzene (178.5 mg, 0.800 mmol, 4.0 equiv). After flash chromatography (100 mL 20%, Et₂O in hexanes, then 200 mL 50% Et₂O in hexanes), the title compound was obtained as a pale yellow oil (41.5 mg, 51%). **IR** (neat): 2972, 2922, 2806, 2708, 1721, 1614, 1516, 1487, 1456, 1402, 1099, 1072, 1037, 1011, 974, 949, 808, 752, 731, 621, 490 cm⁻¹.¹H **NMR** (500 MHz, CDCl₃): δ 9.48 (s, 1H), 7.69 (d, *J* = 1.8 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.38–7.35 (overlapping m, 3H), 7.24 (s, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 6.96 (d, *J* = 8.0 Hz, 2H), 6.38 (t, *J* = 2.1 Hz, 1H), 6.19 (d, *J* = 16.3 Hz, 1H), 6.01 (d, *J* = 16.3 Hz, 1H), 2.91, 2.87 (ABq, *J*_{AB} = 13.6 Hz, 2H), 2.38 (s, 3H), 1.12 (s, 3H). ¹³C{¹H} **NMR** (126 MHz, CDCl₃): δ 201.6, 140.8, 139.1, 138.5, 135.6, 132.2, 131.3, 131.3, 131.0, 129.4, 129.3, 128.4, 126.9, 126.8, 120.8, 106.7, 53.5, 41.5, 21.1, 18.3. **HRMS-ESI** (*m/z*): [M+H+2]⁺ calc'd for C₂₂H₂₂BrN₂O⁺, 411.0892; found, 411.0898.

(*E*)-2-Methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)-2-(4-(trifluoromethyl)benzyl)but-3-enal (4u). General Procedure B was followed using DCE as solvent, 1-(*m*-tolyl)-1*H*-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), and (*E*)-1-(2-methylbuta-1,3-dien-1-yl)-4-(trifluoromethyl)benzene (254.7 mg, 1.20 mmol, 6.0 equiv). After flash chromatography (150 mL of 20% Et₂O in hexanes, then 150 mL 50% Et₂O in hexanes), the title compound was obtained as a pale yellow oil (43.4 mg, 54%). **IR** (neat): 2974, 2926, 1724, 1618, 1518, 1456, 1323, 1163, 1119, 1067, 1018, 908, 808, 754, 729, 623 cm⁻¹. ¹H **NMR** (500 MHz, CDCl₃): δ 9.48 (s, 1H), 7.68 (d, *J* = 1.8 Hz, 1H), 7.51 (d, *J* = 7.9 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.35 (d, *J* = 2.3 Hz, 1H), 7.23–7.19 (overlapping m, 4H), 6.35 (t, *J* = 2.1 Hz, 1H), 6.21 (d, *J* = 16.3 Hz, 1H), 6.01 (d, *J* = 16.3 Hz, 1H), 3.02, 2.98 (ABq, *J*_{AB} = 13.5 Hz, 2H), 2.39 (s, 3H), 1.14 (s, 3H). ¹³C{¹H} **NMR** (126 MHz, CDCl₃) δ 201.3, 140.9, 140.8, 139.2, 138.6, 131.2, 130.9, 130.8, 129.38, 129.35, 129.1 (q, *J*_{CF} = 32.5 Hz), 128.6, 126.85, 126.82, 125.1 (q, *J*_{CF} = 3.7 Hz), 124.3 (q, *J*_{CF} = 272 Hz), 106.6, 53.5, 41.8, 21.1, 18.3. ¹⁹F **NMR** (471 MHz, CDCl₃) δ -62.4 (s). **HRMS-ESI (***m***/z)**: [M+H]⁺ calc'd for C₂₃H₂₂F₃N₂O⁺, 399.1679; found, 399.1684.

(*E*)-2-Methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)-2-(3-nitrobenzyl)but-3-enal (4v). General Procedure B was followed using DCE as solvent, 1-(*m*-tolyl)-1*H*-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), and (*E*)-1-(2-methylbuta-1,3-dien-1-yl)-3-nitrobenzene (151.4 mg, 0.800 mmol, 4.0 equiv). After flash chromatography (50 mL each of 20%, 40% and 50% Et₂O in hexanes, then 150 mL 60% Et₂O in hexanes), the title compound was obtained as a pale-yellow oil (52.4 mg, 70%). **IR** (neat): 2972, 2924, 2872, 1721, 1616, 1521, 1506, 1456, 1348, 1328, 1192, 1098, 1037, 974, 948, 804, 754, 731, 696, 621, 588 cm⁻¹. ¹H **NMR** (500 MHz, CDCl₃) δ 9.47 (s, 1H), 8.08 (dt, *J* = 7.4, 2.1 Hz, 1H), 7.99 (br s, 1H), 7.67 (d, *J* = 1.8 Hz, 1H), 7.45–7.40 (m, 4H), 7.21–7.19 (m, 2H), 6.38 (t, *J* = 2.1 Hz, 1H), 6.23 (d, *J* = 16.3 Hz, 1H), 5.98 (d, *J* = 16.3 Hz, 1H), 3.07, 3.03 (ABq, *J*_{AB} = 13.7 Hz, 2H), 2.39 (s, 3H), 1.15 (s, 3H). ¹³C{¹H} **NMR** (126 MHz, CDCl₃) δ 200.9, 148.1, 140.8, 139.3, 138.9, 138.6, 136.8, 131.1, 130.3, 129.5, 129.4, 129.17, 129.16, 126.89, 126.86, 125.3, 121.9, 106.7, 53.5, 41.5, 21.1, 18.4. **HRMS-ESI** (*m/z*): [M+H]⁺ calc'd for C₂₂H₂₂N₃O₃⁺, 376.1656; found, 376.1656.

(*E*)-2-(3-Chlorobenzyl)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-enal (4w). General Procedure B was followed using DCE as solvent, 1-(*m*-tolyl)-1*H*-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), and (*E*)-1-chloro-3-(2-methylbuta-1,3-dien-1-yl)benzene (142.9 mg, 0.800 mmol, 4.0 equiv). After flash chromatography (100 mL 20% Et₂O in hexanes, then 200 mL 50% Et₂O in hexanes), the title compound was obtained as a pale-yellow oil (36.2 mg, 50%). **IR** (neat): 2972, 2713, 1721, 1616, 1597, 1572, 1516, 1456, 1391, 1329, 1192, 1099, 1080, 1038, 974, 849, 881, 808, 791, 752, 731, 708, 685, 623 cm⁻¹. ¹H **NMR** (500 MHz, CDCl₃): δ 9.48 (s, 1H), 7.69 (d, *J* = 1.8 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.39 (d, *J* = 2.4 Hz, 1H), 7.24 (d, *J* = 1.7 Hz, 1H), 7.21–7.16 (overlapping m, 3H), 7.11–7.10 (m, 1H), 6.97 (dt, *J* = 7.1, 1.6 Hz, 1H), 6.38 (t, *J* = 2.1 Hz, 1H), 6.20 (d, *J* = 16.3 Hz, 1H), 6.00 (d, *J* = 16.3 Hz, 1H), 2.93, 2.91 (ABq, *J*_{AB} = 13.6 Hz, 2H), 2.39 (s, 3H), 1.14 (s, 3H). ¹³C{¹H} **NMR** (126 MHz, CDCl₃) δ 201.5, 140.8, 139.1, 138.7, 138.5, 134.1, 131.3, 131.1, 130.6, 129.5, 129.4, 129.4, 128.7, 128.4, 127.0, 126.9, 126.8, 106.6, 53.5, 41.8, 21.1, 18.4. **HRMS-ESI** (*m/z*): [M+H]⁺ calc'd for C₂₂H₂₂ClN₂O⁺, 365.1415; found, 365.1420.

Methyl (*E*)-3-(2-formyl-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-en-1yl)benzoate (4x). General Procedure B was followed using DCE as solvent, 1-(*m*-tolyl)-1*H*pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), and methyl (*E*)-3-(2-methylbuta-1,3-dien-1yl)benzoate (161.8 mg, 0.800 mmol, 4.0 equiv). After flash chromatography (150 mL 15%, EtOAc in hexanes, then 150 mL 30% EtOAc in hexanes), the title compound was obtained as a yellow oil (48.5 mg, 62%). **IR** (neat): 2951, 2924, 1717, 1686, 1614, 1516, 1447, 1433, 1281, 1202, 1099, 1038, 976, 951, 914, 808, 746, 731, 702, 623 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃): δ 9.50 (s, 1H), 7.90 (dt, *J* = 7.5, 1.6 Hz, 1H), 7.80 (t, *J* = 1.8 Hz, 1H), 7.68 (d, *J* = 1.8 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.39 (d, *J* = 2.4 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.29 (dt, *J* = 7.7, 1.7 Hz, 1H), 7.23 (d, *J* = 1.8 Hz, 1H), 7.18 (dd, *J* = 8.0, 1.8 Hz, 1H), 6.35 (t, *J* = 2.1 Hz, 1H), 6.19 (d, *J* = 16.3 Hz, 1H), 6.04 (d, *J* = 16.3 Hz, 1H), 3.89 (s, 3H), 3.01, 2.99 (ABq, J_{AB}= 13.6 Hz, 2H), 2.38 (s, 3H), 1.14 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 201.5, 167.1, 140.7, 139.1, 138.5, 137.0, 135.0, 131.5, 131.3, 131.2, 130.2, 129.5, 129.3, 128.4, 128.4, 128.1, 127.0, 126.7, 106.6, 53.6, 52.3, 41.9, 21.1, 18.3. HRMS-ESI (*m*/z): [M+H]⁺ calc'd for C₂₄H₂₅N₂O₃⁺, 389.1860; found, 389.1852.

(*E*)-2-Methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)-2-(3-methylbenzyl)but-3-enal (4y). General Procedure B was followed using DCE as solvent, 1-(*m*-tolyl)-1*H*-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), and (*E*)-1-methyl-3-(2-methylbuta-1,3-dien-1-yl)benzene (126.6 mg, 0.800 mmol, 4.0 equiv). After flash chromatography (150 mL of 20% Et₂O in hexanes, then 150 mL of 50% Et₂O in hexanes), the title compound was obtained as a yellow oil (38.4 mg, 56%). **IR** (neat): 3025, 2971, 2919, 2858, 2809, 2711, 1721, 1608, 1517, 1456, 1401, 1391, 1328, 1192, 1098, 1037, 973, 949, 916, 881, 870, 844, 807, 792, 751, 701, 622 cm⁻¹. ¹H **NMR** (500 MHz, CDCl₃): δ 9.53 (s, 1H), 7.69 (d, *J* = 2.1 Hz, 1H), 7.45 (d, *J* = 7.9 Hz, 1H), 7.36 (d, *J* = 2.3 Hz, 1H), 7.26 (s, 1H), 7.20–7.13 (m, 2H), 7.04 (d, *J* = 7.6 Hz, 1H), 6.91–6.89 (m, 2H), 6.36 (t, *J* = 2.1 Hz, 1H), 6.20 (d, *J* = 16.4 Hz, 1H), 6.09 (d, *J* = 16.4 Hz, 1H), 2.92 (s, 2H), 2.39 (s, 3H), 2.30 (s, 3H), 1.15 (s, 3H). ¹³C{¹H} **NMR** (126 MHz, CDCl₃): δ 202.0, 140.6, 138.8, 138.4, 137.7, 136.3, 131.7, 131.3, 131.2, 129.4, 129.1, 128.1, 127.6, 127.44, 127.39, 126.8, 126.5, 106.4, 53.5, 42.3, 21.4, 21.0, 18.2. **HRMS-ESI (***m/z***)**: [M+H]⁺ calc'd for C₂₃H₂₅N₂O⁺, 345.1961; found, 345.1964.

(*E*)-2-(3-Methoxybenzyl)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-enal (4z). General Procedure B was followed using DCE as solvent, 1-(*m*-tolyl)-1*H*-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), and (*E*)-1-methoxy-3-(2-methylbuta-1,3-dien-1-yl)benzene (139.4 mg, 0.800 mmol, 4.0 equiv). After flash chromatography (50 mL each of 20%, 40% and 50% Et₂O in hexanes, then 150 mL 60% Et₂O in hexanes), the title compound was obtained as a pale-yellow oil (36.6 mg, 51%). **IR** (neat): 2961, 2934, 2836, 2712, 1721, 1601, 1584, 1516, 1489, 1454, 1263, 1155, 1040, 974, 949, 750, 729, 698, 623 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 9.52 (s, 1H), 7.69 (d, *J* = 1.8 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.38 (d, *J* = 2.4 Hz, 1H), 7.25 (d, *J* = 1.8 Hz, 1H), 7.19–7.15 (m, 2H), 6.77 (dd, *J* = 8.3, 2.5 Hz, 1H), 6.68 (d, *J* = 7.6 Hz, 1H), 6.66–6.65 (m, 1H), 6.36 (t, *J* = 2.1 Hz, 1H), 6.20 (d, *J* = 16.4 Hz, 1H), 6.08 (d, *J* = 16.3 Hz, 1H), 3.75 (s, 3H), 2.93 (br s, 2H), 2.38 (s, 3H), 1.15 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 201.9, 159.5, 140.7, 138.9, 138.5, 138.1, 131.7, 131.4, 129.5, 129.24, 129.21, 127.9, 126.9, 126.7, 122.9, 116.3, 112.0, 106.5, 55.2, 53.6, 42.4, 21.1, 18.4. HRMS-ESI (*m*/z): [M+H]⁺ calc'd for C₂₃H₂₅N₂O₂⁺, 361.1911; found, 361.1904.

(E)-2-Methyl-4-(4-methyl-2-(1H-pyrazol-1-yl)phenyl)-2-(naphthalen-2-ylmethyl)but-3-enal

(4aa). General Procedure B was followed using DCE as solvent, 1-(*m*-tolyl)-1*H*-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), and (*E*)-2-(2-methylbuta-1,3-dien-1-yl)naphthalene (155.4 mg, 0.800 mmol, 4.0 equiv). After flash chromatography (150 mL of 20% Et₂O in hexanes, then 150 mL of 50% Et₂O in hexanes), the title compound was obtained as a yellow oil (35.8 mg, 47%). **IR** (neat): 3053, 2977, 2925, 2860, 2812, 2709, 1722, 1615, 1517, 1507, 1456, 1371, 1328, 1240, 1192, 1098, 1038, 973, 949, 907, 858, 814, 750, 733, 622, 475 cm⁻¹. ¹H **NMR** (500 MHz, CDCl₃): δ 9.58 (s, 1H), 7.81–7.77 (m, 2H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.63 (d, *J* = 2.2 Hz, 1H), 7.58 (d, *J* = 1.8 Hz, 1H), 7.48–7.43 (m, 3H), 7.24–7.18 (m, 3H), 7.19 (d, *J* = 7.9 Hz, 1H), 6.20 (d, *J* = 16.4 Hz, 1H), 6.14–6.11 (m, 2H), 3.14, 3.11 (ABq, *J*_{AB} = 13.6 Hz, 2H), 2.38 (s, 3H), 1.20 (s, 3H). ¹³C{¹H} **NMR** (126 MHz, CDCl₃): δ 201.9, 140.6, 138.8, 138.4, 134.0, 133.3, 132.2, 131.5, 131.2, 129.3, 129.1, 129.0, 128.8, 128.0, 127.63, 127.60, 127.59, 126.9, 126.5, 126.1, 125.7, 106.3, 53.7, 42.4, 21.0, 18.4. **HRMS-ESI** (*m/z*): [M+H]⁺ calc'd for C₂₆H₂₅N₂O⁺, 381.1961; found, 381.1956.

Chart S3. Unsuccessful 1,3-diene substrates tested (<5% NMR yield of aldehyde product in each case).

5. Carboformylation Mechanistic Experiments

5a. Co(III)-Catalyzed Sequential C–H Bond Addition Reactions with Isoprene and CO Gas (Scheme 2A, top)

General Procedure. In a nitrogen-filled glovebox, an oven-dried pressure tube equipped with a Teflon tap containing a magnetic stir bar was consecutively charged with additive (0.0200 mmol, 0.2 equiv), [Cp*Co(C₆H₆)][B(C₆F₆)₄]₂ (32.6 mg, 0.0200 mmol, 0.2 equiv), DCE (100 µL, 1.0 M in C-H bond substrate), 1-(m-tolyl)-1H-pyrazole (15.8 mg, 0.100 mmol, 1.0 equiv), acetic formic anhydride (26.4 mg, 0.300 mmol, 3.0 equiv), and isoprene (40 µL, 0.400 mmol, 4.0 equiv). The tube was sealed, removed from the glovebox, and attached to a Schlenk line connected to a CO gas cylinder. The sidearm of the flask was evacuated and backfilled with CO three times. Then, under a positive pressure of CO, the Teflon tap was removed and quickly replaced with a septum with an outlet needle. The tube was flushed with CO for 5 min. after which time the septum was removed and quickly replaced with the Teflon tap under a positive pressure of CO. The tube was sealed and placed in a pre-heated oil bath set to 70 °C. The reaction mixture was stirred at 70 °C for 20 h, after which time it was removed from the bath and allowed to cool room temperature. The tube was then opened, diluted with EtOAc (2 mL), and transferred to a separatory funnel. Saturated ag. NaHCO₃ (2 mL) was added, and the layers were separated. The aqueous layer was then extracted with EtOAc (3 x 2 mL). The organic fractions were combined, dried over Na₂SO₄, filtered, and concentrated. Trimethyl(phenyl)silane (0.100 mmol) was added as a standard and the residue was analyzed via NMR spectroscopic methods.

<u>5b. Co(III)-Catalyzed Sequential C–H Bond Addition to Isoprene and Acetic Anhydride (Scheme Scheme 2A, bottom)</u>

(E)-3,3-dimethyl-5-(4-methyl-2-(1H-pyrazol-1-yl)phenyl)pent-4-en-2-one (6). In a nitrogenfilled glovebox, a 2-5 mL Biotage® microwave vial was consecutively charged with Proton Sponge (8.6 mg, 0.0400 mmol, 0.2 equiv), [Cp*Co(C₆H₆)][B(C₆F₆)₄]₂ (65.2 mg, 0.0400 mmol, 0.2 equiv), DCE (200 µL, 1.0 M in C–H bond substrate), 1-(*m*-tolyl)-1*H*-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), acetic anhydride (56.8 µL, 0.600 mmol, 3.0 equiv), and isoprene (80 µL, 0.800 mmol, 4.0 equiv), followed by a magnetic stir bar. The vial was sealed, removed from the glovebox, and placed in a pre-heated oil bath set to 110 °C. The reaction mixture was stirred at 110 °C for 20 h (unoptimized), after which time it was removed from the bath and allowed to cool room temperature. The vial was then uncapped, diluted with EtOAc (5 mL), and transferred to a separatory funnel. Saturated ag. NaHCO₃ (5 mL) was added, and the layers were separated. The aqueous layer was then extracted with EtOAc (3 x 5 mL). The organic fractions were combined, dried over Na₂SO₄, filtered, and concentrated. The resulting residue was purified via preparative thin-layer chromatography (20% EtOAc in hexanes), affording the title compound as a yellow oil (12.4 mg, 23%). IR (neat): 2970, 2926, 2870, 1705, 1616, 1516, 1458, 1391, 1352, 1192, 1123, 1099, 1038, 972, 949, 808, 750, 623, 584 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.72 (d, *J* = 1.9 Hz, 1H), 7.57 (d, J = 2.3 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.23 (s, 1H), 7.18 (d, J = 8.0 Hz, 1H), 6.44 $(t, J = 2.1 \text{ Hz}, 1\text{H}), 6.26 \text{ (d}, J = 16.2 \text{ Hz}, 1\text{H}), 6.11 \text{ (d}, J = 16.2 \text{ Hz}, 1\text{H}), 2.38 \text{ (s}, 3\text{H}), 2.11 \text{ (s}, 3\text{H}), 3.11 \text{$ 1.23 (s, 6H). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 211.0, 140.7, 138.6, 138.5, 136.0, 131.3, 130.1,

129.4, 126.9, 126.8, 125.3, 106.6, 50.9, 25.8, 24.0, 21.1. **HRMS-ESI** (*m/z*): $[M+H]^+$ calc'd for $C_{14}H_{21}N_2O^+$, 269.1648; found, 269.1650.

5c. Co(III)-Catalyzed Sequential C–H Bond Addition to *d*₂-Isoprene and Acetic Formic Anhydride (Scheme 2B)

*d*₂-4a. General Procedure B was followed using DCE as solvent, 1-(*m*-tolyl)-1*H*-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), and *d*₂-isoprene³⁰ (52.8 mg, 0.800 mmol, 4.0 equiv). After flash chromatography on silica gel (150 mL 20% Et₂O in hexanes, then 150 mL 50% Et₂O in hexanes), the title compound was obtained as a yellow oil (40.7 mg, 79%). **IR** (neat): 2968, 2930, 2805, 2710, 1722, 1616, 1516, 1456, 1391, 1327, 1192, 1101, 1040, 949, 885, 826, 750, 621 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃): δ 9.37 (s, 1H), 7.71 (d, *J* = 1.9 Hz, 1H), 7.57 (d, *J* = 2.4 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.22 (d, *J* = 1.8 Hz, 1H), 7.17 (dd, *J* = 8.0, 1.8 Hz, 1H), 6.43 (t, *J* = 2.1 Hz, 1H), 6.01 (t, *J*_{HD} = 2.2 Hz, 1H). 2.37 (s, 3H), 1.19 (s, 3H), 1.18 (t, *J*_{HD} = 1.7 Hz, 2H). ¹³C{¹H} **NMR** (126 MHz, CDCl₃): δ 202.1, 140.6, 138.8, 138.5, 132.8, 131.3, 129.6, 129.3, 126.8, 126.7, 126.4 (t, *J*_{DC} = 23.9 Hz), 106.6, 49.0, 21.5, 21.4 (t, *J*_{DC} = 17.6 Hz), 21.1. **HRMS-ESI** (*m/z*): [M+H]⁺ calc'd for C₁₆H₁₇D₂N₂O⁺, 257.1617; found, 257.1621.

Figure S3. Comparison of the ¹H NMR spectra of (*E*)-2,2-Dimethyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-enal, **4a** (500 MHz, CDCl₃), and d_2 -**4a** (500 MHz, CDCl₃).

<u>5d. Crossover Diene Reaction: Addition of 1.0 equiv (*E*)-(2-methylbuta-1,3-dien-1-yl)benzene (**2h**) to the Co(III)-Catalyzed Sequential C–H Bond Addition of d_2 -Isoprene and Acetic Formic Anhydride (Scheme 2C)</u>

General Procedure B was followed using DCE as solvent, 1-(m-tolyl)-1H-pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), d_2 -isoprene (52.8 mg, 0.800 mmol, 4.0 equiv), and <u>(*E*)-(2-methylbuta-1,3-dien-1-yl)benzene</u> (**2h**; 28.8 mg, 0.200 mmol, 1.0 equiv). After flash chromatography on silica gel (5% Et₂O in benzene), aldehyde **4r** was obtained as a colourless oil (7.7 mg, 12%) and aldehyde d_2 -**4a** was obtained as a yellow oil (19.9 mg, 39%). NMR spectroscopic data for **4r** and d_2 -**4a** are consistent those reported in Section 4 (**4r**) and above (d_2 -**4a**).

<u>Figure S4.</u>¹H NMR spectrum (CDCl₃, 400 MHz) of aldehyde **4r** showing no deuterium incorporation at the expected benzylic position.

1.1 2.252 2.252555 2.252555 2.252555 2.252555 2.2525555 2.2525555 2.2525555 2.2525555 2.2525555 2.2525555 2.2525555 2.2525555 2.2525555 2.2525555 2.2525555 2.2525555 2.2525555 2.2525555 2.2525555 2.2525555 2.2525555 2.25255 2.25255 2.25255 2.25255 2.25255 2.25255 2.25255 2.25255 2.25255 2.25255 2.25255 2.25255 2.25255 2.25255 2.2525 2.25255 2.2525 2.2555 2.2555 2.2555 2.2555 2.2555 2.2555 2.2555 2.25555 2.

<u>5e. Reversibility of C–H Activation: Co(III)-Sequential C–H Bond Addition to Isoprene and Acetic</u> Formic Anhydride Using 1-(Phenyl-*d*₅)-1*H*-pyrazole at Short Reaction Times

Scheme S1. Co(III)-catalyzed sequential C–H bond addition to isoprene and acetic formic anhydride using 1-(phenyl)- d_5 -1H-pyrazole at short reaction times.

In a nitrogen-filled glovebox, a 2–5 mL Biotage® microwave vial was consecutively charged with Proton Sponge (8.6 mg, 0.0400 mmol, 0.2 equiv), [Cp*Co(C₆H₆)][B(C₆F₆)₄]₂ (65.2 mg, 0.0400 mmol, 0.2 equiv), DCE (200 µL, 1.0 M in C–H bond substrate), 1-(phenyl-*d*₅)-1*H*-pyrazole³¹ (29.8 mg, 0.200 mmol, 1.0 equiv), acetic formic anhydride (52.8 mg, 0.600 mmol, 3.0 equiv), and isoprene (80 µL, 0.800 mmol, 4.0 equiv), followed by a magnetic stir bar. The vial was sealed, removed from the glovebox, and placed in a pre-heated oil bath set to 70 °C. The reaction mixture was stirred at 70 °C for 30 min, after which time it was removed from the bath and allowed to cool room temperature. The vial was then uncapped, diluted with EtOAc (5 mL), and transferred to a separatory funnel. Saturated aq. NaHCO₃ (5 mL) was added, and the layers were separated. The aqueous layer was extracted with EtOAc (3 x 5 mL). The organic fractions were combined, dried over Na₂SO₄, filtered, and concentrated. The resulting residue was purified via flash chromatography on silica gel (150 mL 20% Et₂O in hexanes, then 200 mL 50% Et₂O in hexanes), affording the three-component product as a colourless oil (9.0 mg, 18%) and 19.6 mg (66%) of recovered C–H bond substrate. NMR spectroscopic analysis of the recovered C–H bond substrate.

Figure S7. ¹H–¹H COSY NMR spectrum of recovered 1-(phenyl-*d*₅)-1*H*-pyrazole (CDCl₃).

Figure S8. ¹H–¹³C{¹H} HSQC NMR spectrum of recovered 1-(phenyl- d_5)-1*H*-pyrazole (CDCl₃).

Figure S9. ¹H–¹³C{¹H} HMBC NMR spectrum of recovered 1-(phenyl-*d*₅)-1*H*-pyrazole (CDCl₃).

6. Mechanistic Experiments Involving Co-1

<u>6a. Reaction of $[Cp^*Co(C_6H_6)][B(C_6F_5)_4]_2$ with Proton Sponge® – Identification of **Co-1** (Scheme 2D).</u>

In a nitrogen-filled glovebox, a 2 mL vial was charged with Proton Sponge® (8.6 mg, 0.040 mmol. 1.0 equiv) and dissolved in CD_2Cl_2 (100 μ L). The vial was sealed with a cap with a PTFE septum, removed from the glovebox, and placed under N₂ on a Schlenk via a needle. Separately, on the benchtop, a 5 mL Schlenk flask was charged with [Cp*Co(C₆H₆)][B(C₆F₆)₄]₂ (65.2 mg, 0.040 mmol, 1.0 equiv) and a magnetic stir bar. The flask was sealed with a septum, attached to a Schlenk line, and evacuated and backfilled with N2 three times. Then, CD2Cl2 (100 µL) was added, and the green heterogeneous mixture was cooled to -50 °C. The Proton Sponge® solution was then transferred via syringe to the cold (-50 °C) Cp*Co(III) mixture, affording an intensely coloured red-orange solution upon complete addition. Additional CD₂Cl₂ (2 x 100 µL) was used to ensure quantitative transfer of Proton Sponge®. The reaction mixture was stirred at -50 °C for 2 h, after which time the reaction mixture was transferred to an oven-dried J-Young NMR tube under N₂ cooled to -50 °C, rinsing with additional CD₂Cl₂ (2 x 100 µL). Mesitylene standard solution (50.0 µL of a 0.267 M solution in CD₂Cl₂, 0.0133 mmol, 0.333 equiv) was then added, the tube was sealed under N₂, and the reaction mixture was analyzed using NMR spectroscopic methods at -50 °C, revealing a 26% NMR yield of Co-1. NMR characterization data for Co-1: ¹H NMR (500 MHz, CD₂Cl₂, -50 °C): δ 6.13 (s, 6H), 3.91 (s, 2H), 1.99 (s, 6H), 1.29 (s, 6H). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, -50 °C): δ 140.5, 102.0, 98.3, 84.8, 84.7, 11.7, 10.5. ¹⁹F NMR (471 MHz, CD₂Cl₂) -50 °C): δ -132.44 (d, J = 19.0 Hz), -161.73 (t, J = 21.2 Hz), -165.35 (d, J = 20.8 Hz).

Figure S11. ¹H NMR spectrum of the reaction between $[Cp^*Co(C_6H_6)][B(C_6F_5)_4]_2$ with Proton Sponge® – NMR Yield with **Co-1** and mesitylene peaks identified (500 MHz, CD_2Cl_2 , -50 °C).

Figure S13. ¹H–¹³C{¹H} HSQC NMR spectrum of the reaction between $[Cp^*Co(C_6H_6)][B(C_6F_5)_4]_2$ with Proton Sponge® with **Co-1** peaks identified $(CD_2Cl_2, -50 \text{ °C})$.

Figure S15. ¹⁹F NMR spectrum of the of the reaction between $[Cp^*Co(C_6H_6)][B(C_6F_5)_4]_2$ with Proton Sponge® (471 MHz, CD_2Cl_2 , -50 °C).

-132.42 -132.46	-161.69 -161.73 -161.78 -161.78 -165.28 -165.33
-----------------	--

<u>6b. Co(III)-Catalyzed Sequential C–H Bond Addition to Isoprene and Acetic Anhydride using Co-</u> <u>1 as Catalyst</u>

Scheme S2. Co(III)-catalyzed sequential C–H bond addition to isoprene and acetic formic anhydride using **Co-1** as catalyst.

In a nitrogen-filled glovebox, separate 2 mL vials were charged with Proton Sponge® (8.6 mg, 0.040 mmol, 0.2 equiv), 1-(*m*-tolyl)-1*H*-pyrazole (**1a**; 31.6 mg, 0.200 mmol, 1.0 equiv), and acetic formic anhydride (3; 52.8 mg, 0.600 mmol, 3.0 equiv), and each compound was dissolved in CD_2Cl_2 (50 µL). Another 2 mL vial was charged with isoprene (2a; ~100 µL). All the vials were sealed with caps containing PTFE septa, removed from the glovebox, and placed under N₂ on a Schlenk line via needle. Separately, on the benchtop, a 0.5-2 mL Biotage® microwave vial was charged with $[Cp^*Co(C_6H_6)][B(C_6F_6)_4]_2$ (65.2 mg, 0.0400 mmol, 0.2 equiv) and a magnetic stir bar. The vial was sealed, attached to a Schlenk line via a needle, and evacuated and backfilled with N_2 three times Then, CD_2Cl_2 (100 µL) was added, and the green heterogeneous mixture was cooled to -50 °C. The Proton Sponge® solution was transferred via syringe to the cold (-50 °C) Cp*Co(III) mixture, affording an intensely coloured red-orange solution upon complete addition. Additional CD₂Cl₂ (50 µL) was used to ensure quantitative transfer of Proton Sponge[®]. The reaction mixture was stirred at -50 °C for 2 h, after which time the 1-(*m*-tolyl)-1*H*-pyrazole solution, acetic formic anhydride solution, and isoprene (80.0 µL, 0.800 mmol, 4.0 equiv) were sequentially added to the reaction mixture via syringe (using additional CD₂Cl₂ (2 x 50 µL) to ensure guantitative transfer of **1a** and **3**; total volume = 400 μ L, [**1a**] = 0.5 M). The vial was then *very quickly* uncapped and re-capped under N₂ and placed in a pre-heated 70 °C oil bath. The reaction mixture was stirred at 70 °C for 20 h, after which time it was removed from the bath and allowed to cool room temperature. The vial was uncapped, diluted with EtOAc (5 mL), and transferred to a separatory funnel. Saturated aq. NaHCO₃ (5 mL) was added, and the layers were separated. The aqueous layer was extracted with EtOAc (3 x 5 mL). The organic fractions were combined, dried over Na₂SO₄, filtered, and concentrated. The resulting residue was purified via flash chromatography on silica gel (typical column dimensions: 6-inch length x 1-inch diameter), affording 4a as a pale-yellow oil (0.0359 g, 70%). NMR spectroscopic data are consistent with those reported in Section 4.

6c. Reaction of [Cp*Co(C₆H₆)][B(C₆F₅)₄]₂ with 2.0 equiv Proton Sponge®

In a nitrogen-filled glovebox, a 2 mL vial was charged with Proton Sponge® (17.1 mg, 0.080 mmol, 2.0 equiv) and dissolved in CD₂Cl₂ (100 µL). The vial was sealed with a cap with a PTFE septum, removed from the glovebox, and placed under N₂ on a Schlenk via a needle. Separately, on the benchtop, a 5 mL Schlenk flask was charged with [Cp*Co(C₆H₆)][B(C₆F₆)₄]₂ (65.2 mg, 0.040 mmol, 1.0 equiv) and a magnetic stir bar. The flask was sealed with a septum, attached to a Schlenk line, and evacuated and backfilled with N₂ three times. Then, CD₂Cl₂ (100 µL) was added, and the green heterogeneous mixture was cooled to -50 °C. The Proton Sponge® solution was then transferred via syringe to the cold (-50 °C) Cp*Co(III) mixture, affording an intensely coloured red-orange solution upon complete addition. Additional CD₂Cl₂ (2 x 100 µL) was used to ensure quantitative transfer of Proton Sponge®. The reaction mixture was stirred at -50 °C for 2 h, after which time the reaction mixture was transferred to an oven-dried J-Young NMR tube under N₂ cooled to -50 °C, rinsing with additional CD₂Cl₂ (2 x 100 µL). Mesitylene standard solution (50.0 µL of a 0.267 M solution in CD₂Cl₂, 0.0133 mmol, 0.333 equiv) was then added, the tube was sealed under N₂, and the reaction mixture was analyzed using NMR spectroscopic methods at -50 °C, revealing a 16% NMR yield of **Co-1**.

Figure S16. ¹H NMR spectrum of the reaction between $[Cp^*Co(C_6H_6)][B(C_6F_5)_4]_2$ with 2.0 equiv of Proton Sponge® – NMR Yield with **Co-1** and mesitylene peaks identified (500 MHz, CD₂Cl₂, -50 °C).

<u>6d. Reaction of $[Cp^*Co(C_6H_6)][B(C_6F_5)_4]_2$ with Proton Sponge® – Addition of 1.0 equiv of 1-(*m*-Tolyl)-1*H*-pyrazole (**1a**), Isoprene (**2a**), or Acetic Formic Anhydride (**3**)</u>

In a nitrogen-filled glovebox, a 2 mL vial was charged with Proton Sponge® (8.6 mg, 0.040 mmol, 1.0 equiv) and dissolved in CD_2Cl_2 (50 μ L). Additionally, a 2 mL vial was charged with either:

a) 1-(*m*-tolyl)-1*H*-pyrazole (1a; 6.3 mg, 0.040 mmol, 1.0 equiv) in 50 µL CD₂Cl₂;

b) isoprene (**2a**; ~50 µL); or

c) a solution of acetic formic anhydride (3; 3.5 mg, 0.040 mmol, 1.0 equiv) in 50 µL of CD₂Cl₂

The vials were sealed with caps containing PTFE septa, removed from the glovebox, and placed under N₂ on a Schlenk line via needle. Separately, on the benchtop, a 5 mL Schlenk flask was charged with [Cp*Co(C₆H₆)][B(C₆F₆)₄]₂ (65.2 mg, 0.040 mmol, 1.0 equiv) and a magnetic stir bar. The flask was sealed with a septum, attached to a Schlenk line, and evacuated and backfilled with N₂ three times. Then, CD₂Cl₂ (100 μ L) was added, and the green heterogeneous mixture was cooled to -50 °C. The Proton Sponge solution was transferred via syringe to the cold (-50 °C) Cp*Co(III) mixture, affording an intensely coloured red-orange solution upon complete addition. Additional CD₂Cl₂ (2 x 50 μ L) was used to ensure quantitative transfer of Proton Sponge®. The reaction mixture was stirred at -50 °C for 2 h, after which time

a) the 1-(*m*-tolyl)-1*H*-pyrazole solution;

- b) isoprene (4.0 μ L 4.0 μ L, 0.040 mmol, 1.0 equiv) and CD₂Cl₂; or
- c) the acetic formic anhydride solution

was/were added to the reaction mixture (using additional CD₂Cl₂ (2 x 50 µL) to ensure quantitative transfer of **1a** and **3**; total volume in each reaction = 400 µL). The reaction mixture was stirred at -50 °C for 1 h, after which time the reaction mixture was transferred to an oven-dried J-Young NMR tube under N₂ cooled to -50 °C, rinsing with additional CD₂Cl₂ (2 x 100 µL). Mesitylene standard solution (50.0 µL of a 0.267 M solution in CD₂Cl₂, 0.0133 mmol, 0.333 equiv) was then added, the tube was sealed under N₂, and the reaction mixture was analyzed using NMR spectroscopic methods at -50 °C.

Figure S17. ¹H NMR spectrum of the reaction between $[Cp^*Co(C_6H_6)][B(C_6F_5)_4]_2$ and Proton Sponge® after addition of **1a**. Amount of **Co-1**: 21% vs 26% before addition of **2a** (500 MHz, CD_2Cl_2 , -50 °C).

Figure S18. ¹H NMR spectrum of the reaction between $[Cp^*Co(C_6H_6)][B(C_6F_5)_4]_2$ and Proton Sponge® after addition of **2a**. Amount of **Co-1**: 27% vs 26% before addition of **2a** (500 MHz, CD_2Cl_2 , -50 °C).

Figure S19. ¹H NMR spectrum of the reaction between $[Cp^*Co(C_6H_6)][B(C_6F_5)_4]_2$ and Proton Sponge® after addition of **3**. Amount of **Co-1**: 26% vs 26% before addition of **3** (500 MHz, CD_2Cl_2 , -50 °C).

<u>6e. Reaction of $[Cp^*Co(C_6H_6)][B(C_6F_5)_4]_2$ with Proton Sponge®, 1-(*m*-Tolyl)-1*H*-pyrazole (**1a**), Isoprene (**2a**), and Acetic Formic Anhydride (**3**)</u>

In a nitrogen-filled glovebox, three 2 mL vials were charged with Proton Sponge® (8.6 mg, 0.040 mmol, 1.0 equiv), 1-(m-tolyl)-1H-pyrazole (1a; 6.3 mg, 0.040 mmol, 1.0 equiv), and acetic formic anhydride (3: 3.5 mg, 0.040 mmol, 1.0 equiv). Each compound was dissolved in CD₂Cl₂ (50 µL). Another 2 mL vial was charged with isoprene (2a; ~50 µL). All the vials were sealed with caps containing PTFE septa, removed from the glovebox, and placed under N₂ on a Schlenk line via needle. On the benchtop, a 5 mL Schlenk flask was charged with $[Cp^*Co(C_6H_6)][B(C_6F_6)_4]_2$ (65.2 mg, 0.040 mmol, 0.2 equiv) and a magnetic stir bar. The flask was sealed with a septum, attached to a Schlenk line, and evacuated and backfilled with N₂ three times. Then, CD₂Cl₂ (100 µL) was added and the green heterogeneous mixture was cooled to -50 °C. The Proton Sponge® solution was transferred via syringe to the cold (-50 °C) Cp*Co(III) mixture, affording an intensely coloured red-orange solution upon complete addition. Additional CD₂Cl₂ (50 µL) was used to ensure quantitative transfer of Proton Sponge®. The reaction mixture was stirred at -50 °C for 2 h, after which time the 1-(*m*-tolyl)-1*H*-pyrazole solution, acetic formic anhydride solution, and isoprene (2a; 4.0 µL, 0.040 mmol, 4.0 equiv) were sequentially added to the reaction mixture via syringe (using additional CD_2Cl_2 (2 x 50 µL) to ensure quantitative transfer of **1a** and **3**; total volume = $400 \,\mu\text{L}$). The reaction mixture was stirred at $-50 \,^{\circ}\text{C}$ for 1 h, after which time the reaction mixture was transferred to an oven-dried J-Young NMR tube under N₂ cooled to -50 °C, rinsing with additional CD₂Cl₂ (2 x 100 µL). Mesitylene standard solution (50.0 µL of a 0.267 M solution in CD₂Cl₂, 0.0133 mmol, 0.333 equiv) was then added, the tube was sealed under N₂, and the reaction mixture was analyzed using NMR spectroscopic methods at -50 °C. After this analysis, the reaction mixture was transferred back to the Schlenk flask under N2 and allowed to warm to 0 °C over 2 h. Then, the reaction mixture was transferred to an oven-dried J-Young NMR tube under N₂ cooled to 0 °C and analyzed using NMR spectroscopic methods at 0 °C.

Figure S20. ¹H NMR spectrum of the reaction between $[Cp^*Co(C_6H_6)][B(C_6F_5)_4]_2$, Proton Sponge®, 1-(*m*-tolyl)-1*H*-pyrazole (**1a**), isoprene (**2a**), and acetic formic anhydride (**3**) at -50 °C (500 MHz, CD_2Cl_2).

Figure S21. ¹H NMR spectrum of the reaction between $[Cp^*Co(C_6H_6)][B(C_6F_5)_4]_2$, Proton Sponge®, 1-(*m*-tolyl)-1*H*-pyrazole (**1a**), isoprene (**2a**), and acetic formic anhydride (**3**) at 0 °C (400 MHz, CD_2Cl_2). Note the absence of **Co-1** peaks, as well as no appreciable change in the amounts of **1a**, **2a**, and **3**.

6f. Summary of Results from Experiments in Section 6d and 6e

Complex **Co-1** does not react with 1.0 equiv of either 1-(*m*-tolyl)-1*H*-pyrazole (**1a**), isoprene (**2a**), or acetic formic anhydride (**3**) at -50 °C, as evidenced by NMR spectroscopic analysis (see Figures S17–S19). Additionally, combining 1.0 equiv each of [Cp*Co(C₆H₆)][B(C₆F₅)₄]₂, Proton Sponge®, **1a**, **2a**, and **3** in CD₂Cl₂ at -50 °C and reacting over 2 h does not appreciably impact the amount of **Co-1** formed (21% NMR yield vs 26% NMR yield in the absence of **1a**, **2a**, and **3**). Warming this reaction mixture to 0 °C decreases the amount of **Co-1** but causes no corresponding change in the amounts of **1a**, **2a**, and **3** (see Figure S20–S21). HRMS analysis of the reaction mixture at this temperature did not identify any obvious cobalt-containing species.

7. Diversification Reactions

Synthesis of (*R*,*E*)-4-Hydroxy-5,5-dimethyl-7-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)hept-6en-2-one (7). This procedure was adapted from the literature.³² In an oven-dried 0.5-2.0 mL Biotage® microwave vial, aldehyde 4a (56.3 mg, 0.221 mmol, 1.0 equiv) was dissolved in 4:1 ratio of acetone (0.89 mL) and chloroform (0.22 mL) at 30 °C under nitrogen. Then, S-proline (5.1 mg, 0.044 mmol, 0.2 equiv) was added to the solution with no apparent change. After 3 days, the mixture was diluted with H₂O (5 mL) and Et₂O (5 mL) and transferred to a separatory funnel where the layers were separated. The aqueous layer was extracted with Et₂O (3 x 3 mL), and the organic layers were combined, dried over Na₂SO₄, and concentrated. The resulting residue was purified via a flash column chromatography on silica gel (40% EtOAc in hexanes), affording the title compound as a colorless oil (45.7 mg, 66%, 99:1 er). IR (neat): 3404, 2963, 1707, 1616, 1516, 1460, 1387, 1360, 1327, 1283, 1192, 1165, 1072, 1043, 976, 951, 808, 752, 623, 590 cm⁻¹. ¹H **NMR** (500 MHz, CDCl₃): δ 7.69 (d, J = 2.0 Hz, 1H), 7.59 (d, J = 2.3 Hz, 1H), 7.43 (d, J = 7.9 Hz, 1H), 7.18 (s, 1H), 7.15 (d, J = 7.9 Hz, 1H), 6.41 (t, J = 2.1 Hz, 1H), 6.15 (d, J = 16.4 Hz, 1H), 6.03 (d, J = 16.3 Hz, 1H), 3.82 (d, J = 10.0 Hz, 1H), 3.12 (s, 1H), 2.54 (dd, J = 17.0, 2.4 Hz, 1H), 2.44 (dd, J = 17.1, 10.1 Hz, 1H), 2.35 (s, 3H), 2.14 (s, 3H), 1.01–1.00 (overlapping s, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 210.0, 140.4, 138.5, 138.0, 137.9, 131.1, 130.5, 129.2, 126.8, 126.5, 124.1, 106.3, 74.2, 45.5, 40.6, 30.8, 23.4, 22.8, 20.9. HRMS-ESI (m/z): [M+H]* calc'd for C₁₉H₂₅N₂O₂⁺, 313.1911; found, 313.1907.

The configuration of the stereocenter was assigned by analogy to the product of the prolinecatalyzed asymmetric aldol addition of acetone to trimethylacetaldehyde as described in the literature.³²

Figure S22. er determination for 7.

Racemic 7 (Chiralpak OD-H, 90:10 hexanes: isopropanol, 1 mL/min, 254 nm):

Signal 2: MWD1 B, Sig=254,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	8.855	VB	0.3061	1.52306e4	765.71014	50.3208
2	11.610	VB	0.4070	1.50364e4	571.42316	49.6792
Total	ls :			3.02671e4	1337.13330	

Enantiomerically enriched 7 (99:1er):

Signal 2: MWD1 B, Sig=254,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.924	BB	0.3915	188.82727	6.89492	1.2189
2	11.724	BB	0.4156	1.53022e4	569.18707	98.7811
Total	ls :			1.54910e4	576.08199	

Synthesis of ethyl (2E,5E)-4,4-dimethyl-6-(4-methyl-2-(1H-pyrazol-1-yl)phenyl)hexa-2,5dienoate (8). This procedure was adapted from the literature.³³ NaH (60% dispersion in mineral oil, 6.2 mg, 0.156 mmol, 1.5 equiv) was dissolved in dry Et₂O (1.7 mL) in a 0.5–2.0 mL Biotage® microwave vial. The clear, colourless solution was then cooled to 0 °C under nitrogen. Triethyl phosphonoacetate (50 µL, 0.260 mmol, 2.5 equiv) was then added dropwise via syringe with no apparent change, and the reaction mixture was stirred and refluxed. After 1 h, the solution was cooled to 0 °C again, and the aldehyde 4a (26.4 mg, 0.104 mmol, 1.0 equiv) diluted in dry Et₂O (0.6 mL) was added dropwise via syringe. The reaction mixture was stirred at room temperature overnight. The next day, LC-MS analysis indicated ~50% conversion. Therefore, in a separate 0.5-2.0 mL Biotage® microwave vial, NaH (60% dispersion in mineral oil, 8.3 mg, 0.208 mmol, 2.0 equiv) was dissolved in dry Et₂O (0.5 mL). The solution was cooled to 0 °C under nitrogen, and triethyl phosphonoacetate (41 µL, 0.207 mmol, 2.0 equiv) was added dropwise via syringe, after which the solution was stirred and refluxed for 1 h. Then, the cooled phosphonoacetate solution was added dropwise via syringe to the original reaction mixture at 0 °C. After 1 h, complete conversion was achieved as evidenced by LC-MS analysis. The reaction mixture was diluted with H_2O (3 mL), transferred to a separatory funnel, and extracted with Et₂O (3 x 3 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated. The residue was purified via flash column chromatography on silica gel (20% EtOAc in hexanes) affording the title compound as a colorless oil (27.8 mg, 83%). IR (neat): 2965, 1714, 1646, 1517, 1458, 1391, 1366, 1308, 1267, 1171, 1098, 1036, 977, 950, 868, 808, 750, 624 cm⁻¹. ¹H NMR (500 MHz, $CDCl_3$): δ 7.70 (d, J = 2.0 Hz, 1H), 7.56 (d, J = 2.7 Hz, 1H), 7.45 (d, J = 8.1 Hz, 1H), 7.23 (s, 1H), 7.16 (d, J = 8.1 Hz, 1H), 6.91 (d, J = 15.9 Hz, 1H), 6.42 (t, J = 2.6 Hz, 1H), 6.16 (d, J = 16.3 Hz, 1H), 6.02 (d, J = 16.1 Hz, 1H), 5.74 (d, J = 15.9 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 2.36 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H), 1.18 (s, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 166.9, 155.8, 140.4, 138.3, 138.20, 138.15, 131.3, 129.9, 129.1, 126.7, 126.6, 123.3, 118.2, 106.3, 60.3, 39.4, 26.4, 20.9, 14.3. **HRMS-ESI** (*m/z*): [M+H]⁺ calc'd for C₂₀H₂₅N₂O₂⁺, 325.1911; found, 325.1910.

Synthesis of *tert*-butyl (*E*)-4-(2,2-dimethyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-en-1-yl)piperazine-1-carboxylate (9). This procedure was adapted from the literature.³⁴ An ovendried 0.5–2.0 mL Biotage® microwave vial containing a magnetic stir bar was charged with aldehyde 4a (25.2 mg, 0.0991 mmol, 1.0 equiv) and 1-Boc-piperazine (27.7 mg, 0.149 mmol, 1.5 equiv). MeCN (450 μ L) was added, affording a clear, colourless solution. Then, NaBH(OAc)₃ (42.0 mg, 0.198 mmol, 2.0 equiv) was added all at once as a solid, affording a cloudy, white mixture. The vial was sealed and placed under nitrogen, and the reaction mixture was stirred at room temperature for 1 h, after which TLC analysis (30% EtOAc in hexanes) indicated complete conversion. The vial was uncapped and diluted with saturated aq. NaHCO₃ solution (2 mL). The resulting clear, colourless solution was stirred at room temperature for 10 min, after which time it was transferred to a separatory funnel and extracted with EtOAc (3 x 3 mL). The EtOAc fractions were combined, dried over MgSO₄, filtered, and concentrated. The residue was purified via flash chromatography on silica gel (40% Et₂O in hexanes), affording the title compound as a colourless oil (30.0 mg, 69%). **IR** (neat): 2962, 2926, 2805, 1692, 1616, 1516, 1456, 1418, 1364, 1240, 1167, 1121, 1007, 866, 750, 731, 623 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃, 50 °C): δ 7.70 (d, *J* = 1.8 Hz, 1H), 7.60 (d, *J* = 2.3 Hz, 1H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.23, (s, 1H), 7.15 (d, *J* = 8.0 Hz, 1H), 6.42 (t, *J* = 2.2 Hz, 1H), 6.14 (d, *J* = 16.3 Hz, 1H), 6.09 (d, *J* = 16.3 Hz, 1H), 3.36–3.34 (m, 4H), 2.43–2.41 (m, 4H), 2.37 (s, 3H), 2.22 (s, 2H), 1.45 (s, 9H), 1.01 (s, 6H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 50 °C): δ 155.0, 141.8, 140.5, 138.5, 137.8, 131.4, 131.0, 129.2, 126.9, 126.7, 122.0, 106.2, 79.5, 69.8, 55.3, 44.2, 38.8, 28.6, 25.8, 21.0. HRMS-ESI (*m/z*): [M+H]⁺ calc'd for C₂₅H₃₇N₄O₂⁺, 425.2911; found, 425.2904.

Synthesis of (R)-N-((3E)-2,2-dimethyl-4-(4-methyl-2-(1H-pyrazol-1-yl)phenyl)but-3-en-1ylidene)-2-methylpropane-2-sulfinamide (10). This procedure was adapted from the literature.³⁵ An oven-dried Biotage® 2.0-5.0 mL microwave vial was charged with aldehyde 4a (117.0 mg, 0.460 mmol, 1.0 equiv) and (R)-2-methyl-2-propane-2-sulfinamide (111.5 mg, 0.920 mmol, 2.0 equiv). The vial was sealed and placed under nitrogen. THF (920 µL) was added, affording a clear, yellow solution. Then, Ti(Oi-Pr)₄ (411 µL, 1.38 mmol, 3.0 equiv) was added via syringe with no apparent change. The reaction mixture was placed in a pre-heated, 50 °C oil bath and stirred at that temperature for 1 h, after which TLC analysis indicated complete conversion. The vial was removed from the bath and allowed to cool to room temperature, after which time it was diluted with EtOAc (7 mL). The solution was then transferred via pipette to a beaker containing a rapidly stirring solution of brine (15 mL). A white solid immediately precipitated, and the mixture was stirred at room temperature for 5 min. Then, the mixture was filtered through Celite, eluting with EtOAc (3 x 10 mL) until the filtrate ran colourless. The filtrate was transferred to a separatory funnel and separated. The aqueous layer was extracted with EtOAc (3 x 10 mL). The EtOAc fractions were combined, dried over Na₂SO₄, filtered, and concentrated. The resulting residue was purified via flash chromatography on silica gel (50% Et_2O in hexanes), affording the title compound as a colourless oil that solidified to a white solid under reduced pressure (148.5 mg, 90%). M.p.: 72-73 °C. IR (neat): 3150, 2974, 2955, 2926, 2864, 1620, 1520, 1500, 1458, 1404, 1387, 1364, 1190, 1076, 1049, 1036, 980, 949, 883, 822, 775, 721, 627, 584, 507 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.88 (s, 1H), 7.71 (d, J = 1.9 Hz, 1H), 7.56 (d, J = 2.3 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.23 (d, J = 1.8 Hz, 1H), 7.17 (dd, J = 8.0, 1.9 Hz, 1H), 6.43 (t, J = 2.1 Hz, 1H), 6.24 (d, J = 16.2 Hz, 1H), 6.11 (d, J = 16.2 Hz, 1H), 2.37 (s, 3H), 1.28, (s, 3H), 1.27 (s, 3H), 1.16 (s, 9H). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 172.9, 140.6, 138.6, 138.5, 136.0, 131.4, 129.9, 129.3, 126.8, 126.8, 124.9, 106.5, 56.9, 43.8, 24.6, 24.6, 22.5, 21.1. HRMS-ESI (m/z): [M+H]⁺ calc'd for C₂₀H₂₈N₃OS⁺, 358.1948; found, 358.1941.

Synthesis of (R)-2-methyl-N-((S,E)-1,1,1-trifluoro-3,3-dimethyl-5-(4-methyl-2-(1H-pyrazol-1vl)phenvl)pent-4-en-2-vl)propane-2-sulfinamide (11). This procedure was adapted from the literature.³⁶ A flame-dried 10 mL Schlenk flask containing a magnetic stir bar was charged with 10 (35.7 0.100 mmol, 1.0 equiv) and tetrabutylammonium sulfinyl imine mg, difluorotriphenylsilicate (TBAT; 59.4 mg, 0.110 mmol, 1.1 equiv). The flask was sealed with a septum and flushed with nitrogen for ~5 min. THF (1.6 mL) was added via syringe, and the resulting clear, colourless solution was cooled to -55 °C affording a hazy, white suspension. Then, a solution of TMSCF₃ (17.7 µL, 0.120 mmol, 1.2 equiv) in THF (400 µL) prepared in a separate, flame-dried 5 mL round-bottom flask was added dropwise via syringe to the cooled sulfinyl imine mixture, affording a hazy white mixture upon complete addition. The mixture was stirred at -55 °C for 1 h, then warmed to -20 °C over 1 h and stirred at -20 °C for 2 h. The reaction mixture was then placed in a 0 °C bath (water/ice) and stirred at 0 °C for 2 h. The mixture was again cooled to -55 °C, after which additional TBAT (108.0 mg, 0.200 mmol, 2.0 equiv) was added quickly as a solid against a positive pressure of nitrogen, followed immediately by additional TMSCF₃ (30.0 µL, 0.200 mmol, 2.0 equiv) via syringe once the septum had been replaced, affording a hazy mixture. The mixture was stirred at -55 °C for 2 h, then allowed to warm to -20°C. After stirring at -20 °C for 1 h. TLC analysis indicated complete conversion. The mixture was cooled to -55 °C and saturated aq. NH₄Cl (1 mL) was added, affording a cloudy white mixture. The mixture was removed from the bath and allowed to warm to room temperature. The colourless biphasic mixture was transferred to a separatory funnel and separated. The aqueous layer was extracted with EtOAc (3 x 3 mL). The organic fractions were combined, dried over Na₂SO₄, filtered, and concentrated. The resulting green oil was purified via preparative thin-layer chromatography (1/2/7, CH₂Cl₂/acetone/hexanes), affording the title compound as a white solid (32.0 mg, 75%, >99:1 dr; single diastereomer). M.p.: 69–70 °C. IR (neat): 3404, 3142, 3100, 2980, 2928, 2868, 1616, 1518, 1458, 1396, 1352, 1258, 1179, 1148, 1096, 1028, 1016, 899, 845, 816, 766, 704, 590 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.72 (d, J = 1.9 Hz, 1H), 7.58 (d, J = 2.3 Hz, 1H), 7.50 (d, J = 7.9 Hz, 1H), 7.21–7.18 (m, 2H), 6.43 (t, J = 2.1 Hz, 1H), 6.28 (d, J = 16.2 Hz, 1H), 6.11 (dd, J = 16.2, 1.6 Hz, 1H), 3.55–3.48 (m, 2H), 2.38 (s, 3H), 1.26 (s, 3H), 1.23 (s, 3H), 1.18 (s, 9H). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 140.8, 138.8, 138.5, 135.7, 131.2, 129.8, 129.5, 127.1, 126.7, 126.2, 125.7 (q, J_{CF} = 284 Hz), 106.7, 65.1 (q, J_{CF} = 27.0 Hz) 57.1, 39.7, 25.7 (q, $J_{CF} = 2.5 \text{ Hz}$), 25.3, 22.6, 21.1. ¹⁹F NMR (471 MHz, CDCl₃): δ -68.09 (d, $J_{HF} = 7.2 \text{ Hz}$). HRMS-ESI (*m/z*): [M+H]⁺ calc'd for C₂₁H₂₉F₃N₃OS⁺, 428.1978; found, 428.1970.

The dr was determined via ¹⁹F NMR spectroscopic analysis of the crude reaction mixture in CDCl₃ prior to chromatography, comparing relevant peaks to an authentic mixture of diastereomers prepared according to the literature.³⁷ The configuration of the carbon stereocenter in **11** was assigned by analogy to the product of the reaction of (*R*)-*N*-(2,2-dimethylpropylidene)-2-methylpropane-2-sulfinamide and TBAT/TMSCF₃, as reported in the literature.³⁶

Synthesis of (R)-N-((S,E)-3,3-dimethyl-1-(4-methyl-2-(1H-pyrazol-1-yl)phenyl)hepta-1,6dien-4-yl)-2-methylpropane-2-sulfinamide (12). This procedure was adapted from the literature.³⁸ A flame-dried 0.5–2.0 mL Bitoage® microwave vial containing a magnetic stir bar was charged with sulfinyl imine 10 (35.8 mg, 0.100 mmol, 1.0 equiv). The vial was sealed and flushed with nitrogen for several minutes. CH_2CI_2 (625 μ L) was added and the resulting clear, colourless solution was cooled to -40 °C (MeCN/dry ice). Then, allylmagnesium bromide solution (200 µL of a 1.0 M solution in Et₂O, 0.200 mmol, 2.0 equiv) was added dropwise via syringe to the cooled solution, affording a clear, pale yellow solution upon complete addition. The solution was stirred at -40 °C for 3 h, after which time additional allyImagnesium bromide solution (100 µL of a 1.0 M solution in Et_2O , 0.100 mmol, 1.0 equiv) was added dropwise via syringe to the cooled solution. The solution was stirred at -40 °C for 1 h (4 h total) after which TLC analysis showed complete conversion. The solution was allowed to warm to 10 °C in the bath over ~3 h, after which time it was diluted with saturated ag. NH₄Cl (1 mL). The reaction mixture was transferred to a separatory funnel and separated. The aqueous layer was extracted with CH₂Cl₂ (2 x 3 mL). The CH₂Cl₂ fractions were combined, dried over MgSO₄, filtered and concentrated. The resulting opaque yellow oil was purified via flash chromatography on silica gel (70% Et₂O in hexanes), affording the title compound as a colourless oil (35.0 mg. 88%, 96:4 dr: mixture of diastereomers). IR (neat): 3285, 3221, 2959, 2924, 2868, 1639, 1616, 1516, 1456, 1387, 1362, 1329, 1192, 1057, 978, 951, 908, 808, 750, 623, 588 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃): δ 7.70 (s, 1H), 7.56 (d, *J* = 2.4 Hz, 1H), 7.43 (d, J = 7.9 Hz, 1H), 7.21 (s, 1H), 7.17 (d, J = 8.0 Hz, 1H), 6.42 (t, J = 2.2 Hz, 1H), 6.13 (d, J = 16.3 Hz, 1H), 6.02 (d, J = 16.2 Hz, 1H), 5.91–5.83 (m, 1H), 5.14–5.07 (m, 2H), 3.20–3.13 (m, 2H), 2.53–2.48 (m, 1H), 2.36 (s, 3H), 2.13–2.06 (m, 1H), 1.19 (s, 9H), 1.04 (s, 3H), 1.01 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 140.5, 139.3, 138.3, 138.1, 135.8, 131.3, 130.5, 129.3, 126.9, 126.8, 123.4, 118.3, 106.4, 63.2, 56.6, 41.9, 36.8, 25.1, 23.9, 23.0, 21.0. HRMS-ESI (m/z): [M+H]+ calc'd for C₂₃H₃₄N₃OS⁺, 400.2417; found, 400.2410.

The dr was determined via ¹H NMR spectroscopic analysis of the crude reaction mixture in CDCl₃ prior to chromatography, comparing relevant peaks to an authentic mixture of diastereomers prepared according to the literature.³⁷ The configuration of the carbon stereocenter in **12** was assigned by analogy to the product of the reaction of (*R*)-*N*-(2,2-dimethylpropylidene)-2-methylpropane-2-sulfinamide and allylmagnesium bromide, as reported in the literature.³⁸

8. NMR Spectra

Figure S27. ¹H NMR spectrum of (*E*)-1-fluoro-2-(2-methylbuta-1,3-dien-1-yl)benzene, **2i** (400 MHz, CDCl₃).

4 % % + 0 % % % % % % % % % % % % % % % %	00
00000000000000000000000000000000000000	თ თ
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	÷
	Y



**Figure S28**. ¹³C{¹H} NMR spectrum of (*E*)-1-fluoro-2-(2-methylbuta-1,3-dien-1-yl)benzene, **2i** (101 MHz, CDCl₃).

60	0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
50	4 - 6 6 6 6 6 7 - 0 6 6 6 4 8	2 2
- 0		4,4,4
<u>6</u>	400000000000000000000000000000000000000	<u>66</u>
17	11 V Lander	$\sim$



**Figure S29**. ¹⁹F NMR spectrum of (*E*)-1-fluoro-2-(2-methylbuta-1,3-dien-1-yl)benzene, **2i** (101 MHz,  $CDCI_3$ ).



# 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -200 ft (ppm)

Figure S30. ¹H NMR spectrum of (*E*)-1-bromo-4-(2-methylbuta-1,3-dien-1-yl)benzene, 2j (500 MHz, CDCl₃).



Figure S31. ¹³C{¹H} NMR spectrum of (*E*)-1-bromo-4-(2-methylbuta-1,3-dien-1-yl)benzene, 2j (126 MHz, CDCl₃). 141.70 136.82 136.74 131.39 130.91 —120.64 —113.71

									ĺ														
Nervouetres		~~~~~~		<b>1.</b> 6. 670 - 714 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 670 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770 - 770		****						an a											Name of the second s
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1





Figure S33. ¹³C{¹H} NMR spectrum of (*E*)-2-methyl-3-(3-nitrophenyl)acrylaldehyde (101 MHz, CDCl₃). 

9537 9533 9537 9533
146.8 129.5 123.2 123.2
2277755



Figure S34. ¹H NMR spectrum of (*E*)-1-(2-methylbuta-1,3-dien-1-yl)-3-nitrobenzene, 2I (400 MHz, CDCl₃).



Figure S35. ¹³C{¹H} NMR spectrum of (*E*)-1-(2-methylbuta-1,3-dien-1-yl)-3-nitrobenzene, 2I (101 MHz, CDCl₃). -148.34 -148.34 -141.12 -139.49 -135.18 -128.97 -123.88 -114.98

										1												
bayang Kenag	وار سر والرالي وي ا	e de server au		<b></b>	ters by the balance						 			aya ka aya ka sa ka s	torige shafter,	<del>La ju i ju i a i j</del> u		<u>,</u>	in fracti del versi d'An		t ^{an} menerita di da	بىغۇن
220	210	200	190	180	170	160	150	140	130	120	 110 100 f1 (ppm)	90	80	70	60	50	40	30	20	10	0	-1

**Figure S36**. ¹H NMR spectrum of methyl (*E*)-3-(2-methyl-3-oxoprop-1-en-1-yl)benzoate (400 MHz, CDCl₃).



**Figure S37**. ¹³C{¹H} NMR spectrum of methyl (*E*)-3-(2-methyl-3-oxoprop-1-en-1-yl)benzoate (101 MHz, CDCl₃)

220	210	200	 180	170	160	150	140	130	120	110	100	90	80	70	60	 40	30	20	 	-1

Figure S38. ¹H NMR spectrum of methyl (*E*)-3-(2-methylbuta-1,3-dien-1-yl)benzoate, 2n (500 MHz, CDCl₃).



Figure S39. ¹³C{¹H} NMR spectrum of methyl (*E*)-3-(2-methylbuta-1,3-dien-1-yl)benzoate, 2n (126 MHz, CDCl₃). 7141.65 7138.14 7137.17 7137.17 7133.64 7130.57 7130.57 7130.23 -128.33 -127.81 -167.21 

--52.28

-13.30



**Figure S40**. ¹H NMR spectrum of (*E*)-1-methyl-3-(2-methylbuta-1,3-dien-1-yl)benzene, **20** (400 MHz, CDCl₃).



**Figure S41**. ¹³C{¹H} NMR spectrum of (*E*)-1-methyl-3-(2-methylbuta-1,3-dien-1-yl)benzene, **20** (126 MHz, CDCl₃)

142.09 137.77 137.77 135.95 131.92 131.92 130.08 130.08 128.15 128.15 126.41	112.92	21.60	13.33
	- i		- Ì



**Figure S42**. ¹H NMR spectrum of (*E*)-1-methoxy-3-(2-methylbuta-1,3-dien-1-yl)benzene, **2p** (400 MHz, CDCl₃).





Figure S44. ¹H NMR spectrum of (*E*)-2,2-dimethyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-







**Figure S47**. ¹³C{¹H} NMR spectrum of (*E*)-4-(2-(1*H*-pyrazol-1-yl)-4-(trifluoromethyl)phenyl)-2,2-dimethylbut-3-enal, **4b** (126 MHz, CDCl₃).

		.			
enerteenendimiteenjärigteite ^k een puoveitet iStenet	lan a dan menangkan katalan kanangkan kanangkan kanangkan kanangkan kanangkan kanangkan kanangkan kanangkan ka	ann ann de le le Marie Madeil (1997)	a, a	 ********	*********

**Figure S48**. ¹⁹F NMR spectrum of (*E*)-4-(2-(1*H*-pyrazol-1-yl)-4-(trifluoromethyl)phenyl)-2,2dimethylbut-3-enal, **4b** (471 MHz, CDCl₃).

> -80 -90 f1 (ppm)

-100 -110

-120 -130 -140

-160 -170 -180

-150

-190 -20

10 20 10 0 -10 -20 -30 -40 -50 -60 -70



**Figure S50**. ¹³C{¹H} NMR spectrum of (*E*)-4-(4-bromo-2-(1*H*-pyrazol-1-yl)phenyl)-2,2-dimethylbut-3-enal, **4c** (126 MHz, CDCl₃).

	1141.1. 134.44 131.134.44 131.131.131.131.13 128.2 121.48 1221.49	- 107.0	 
			ł







**Figure S52**. ¹³C{¹H} NMR spectrum of (*E*)-4-(3,3-dimethyl-4-oxobut-1-en-1-yl)-3-(1*H*-pyrazol-1-yl)phenyl pivalate, **4d** (126 MHz, CDCl₃).

	—176.66		140.94 138.98 133.89 131.26 121.62 121.62 119.36						-21.43
--	---------	--	--------------------------------------------------------------------	--	--	--	--	--	--------







**Figure S54**. ¹³C{¹H} NMR spectrum of (*E*)-4-(2-(1*H*-pyrazol-1-yl)-5-(trifluoromethyl)phenyl)-2,2-dimethylbut-3-enal, **4e** (126 MHz, CDCl₃).

ethylbut-3-enal,	<b>4e (126 MHz, CDCI₃).</b>			-21.48
220 210 200 190	180 170 160 150 140 130 120 110 H Gpm	100 90 80 70 )	60 50 40	



uo 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2( 171 (ppm)





**Figure S57**. ¹³C{¹H} NMR spectrum of *tert*-butyl (*E*)-(3-(3,3-dimethyl-4-oxobut-1-en-1-yl)-4-(1*H*-pyrazol-1-yl)phenyl)carbamate, **4f** (126 MHz, CDCl₃).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	· · · ·	- /			
201.90	152.69	140.47 138.72 138.72 133.62 133.45 131.40 131.40 126.37 118.29 116.00	106.39	30.84	t9.02	28.32 21.36
Ĩ	Ì		Ì	ĩ	Ĩ	ΪÏ





**Figure S59**. ¹³C{¹H} NMR spectrum of (*E*)-4-(5-(1*H*-pyrazol-1-yl)benzo[*d*][1,3]dioxol-4-yl)-2,2-dimethylbut-3-enal, **4g** (126 MHz, CDCl₃).

-201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.94 -201.9	
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--



**Figure S60**. ¹H NMR spectrum of (*E*)-4-(2-(1*H*-pyrazol-1-yl)phenyl)-2,2-dimethylbut-3-enal, **4h** (500 MHz, CDCl₃).



Figure S61. ¹³C{¹H} NMR spectrum of (*E*)-4-(2-(1*H*-pyrazol-1-yl)phenyl)-2,2-dimethylbut-3-enal, **4h** (126 MHz, CDCl₃).

140.75 138.67 138.67 132.33 132.33 132.33 132.33 132.33 132.33 132.33 132.33 132.33 132.33 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 12	—106.67		-49.12	21.51
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------	--	--------	-------







**Figure S64**. ¹H NMR spectrum of (*E*)-2,2-dimethyl-4-(4-methyl-2-(pyrimidin-2-yl)phenyl)but-3-enal, **4j** (600 MHz, CDCl₃).



**Figure S65**. ¹³C{¹H} NMR spectrum of (*E*)-2,2-dimethyl-4-(4-methyl-2-(pyrimidin-2-yl)phenyl)but-3-enal, **4j** (151 MHz, CDCl₃).

-		•					
	202.44	167 15	2.0	157.01	137.78 136.91 133.62 130.78 130.77 127.00 118.81	49.10	21.73 21.23
	T				SUK-		SZ.



**Figure S66**. ¹H NMR spectrum of (*E*)-2,2-dimethyl-4-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)but-3-enal, **4k** (600 MHz, CDCl₃).





**Figure S67**. ¹³C{¹H} NMR spectrum of (*E*)-2,2-dimethyl-4-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)but-3-enal, **4k** (151 MHz, CDCl₃).





**Figure S69**. ¹³C{¹H} NMR spectrum of (*E*)-2-cyclopentyl-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-enal, **4I** (126 MHz, CDCl₃).

<i>,</i>	'	•	,	- /			
			140.65 138.67 138.44 131.66	131.34 130.05 129.30 129.30 126.92 126.92 126.83	—106.53	54.99	 27.32 27.20 25.71 25.71 25.64 21.06 16.11



yl)phenyl)but-3-enal, **4**I (500 MHz, CDCl₃).

Figure S68. ¹H NMR spectrum of (*E*)-2-cyclopentyl-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-



 Figure
 S71.
 ¹³C{¹H}
 NMR
 spectrum
 of
 (*E*)-2,4-dimethyl-2-(4-methyl-2-(1*H*-pyrazol-1-yl)styryl)pentanal, 4m (151 MHz, CDCl₃).

 ¹⁵
 ¹⁵
 ¹⁵
 ¹⁵
 ¹⁵
 ¹⁵
 ¹⁵
 ¹⁶
 ¹⁶
 ¹⁷
 ¹⁷
 ¹⁷
 ¹⁸
 ¹⁹
 ¹⁹



S72
**Figure S72**. ¹H NMR spectrum of (*E*)-2-(cyclohexylmethyl)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-enal, **4n** (500 MHz, CDCl₃).



Figure S73. ¹³C{¹H} NMR spectrum of (*E*)-2-(cyclohexylmethyl)-2-methyl-4-(4-methyl-2-(1*H*pyrazol-1-yl)phenyl)but-3-enal, **4n** (126 MHz, CDCl₃).

 J / I - J	 ( - )	•,		
53	69 36 36 36 36 36 36 36 36 36 37 88 78 28 58 58 58 50 50 50 50 50 50 50 50 50 50 50 50 50	55	7	ω ←4 ⊢4 − 0 ∞4
03.	26.26.29.33.38.90	00.	2.5	4 444000-0
4		<u>-</u>	ц.	4 66969995







**Figure S75**. ¹H NMR spectrum of (*E*)-1-(4-methyl-2-(1*H*-pyrazol-1-yl)styryl)cyclohexane-1-carbaldehyde, **40** (151 MHz, CDCl₃).

_		•	,	- /			
	.96			64 141 178 178 178 178 178 178 178 178 178 17	.56	2	0 0 0 0
	201			140 138 131 131 126 128 128 128	106	33.1	10.25.6
	ĩ				ì	Î	1221





Figure S76. ¹H NMR spectrum of (*E*)-1-(4-methyl-2-(1*H*-pyrazol-1-yl)styryl)cyclohexane-1-

110 100 f1 (ppm)

 -1

ò

Figure S78. ¹H NMR spectrum of benzyl (*E*)-4-formyl-4-(4-methyl-2-(1*H*-pyrazol-1yl)styryl)piperidine-1-carboxylate, **4q** (500 MHz, CDCl₃, 50 °C). -5.13 -5.13 -5.13 -5.13 -5.13 -5.13 -5.13 -5.13 -5.13 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.53 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33 -5.33



**Figure S79**. ¹³C{¹H} NMR spectrum of benzyl (*E*)-4-formyl-4-(4-methyl-2-(1*H*-pyrazol-1yl)styryl)piperidine-1-carboxylate, 4q (126 MHz, CDCl₃, 50 °C). 

		•						
	140.81 139.28 138.76 138.76 131.15 129.76 129.73	123.03 128.45 128.13 127.99 126.95 106.76	67.31	-51.72	40.78	30.38	21.04	



-1.14 Me. ll O Me 2.5 ^{1.00}→ 1.03 1.04 4 0.98 ⊭ 2.05⊣ 2.99 --.5 3.0 10.0 9.5 8.5 5.5 5.0 4.5 f1 (ppm) 4.0 3.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 9.0 8.0 7.5 6.5

**Figure S81**. ¹³C{¹H} NMR spectrum of (*E*)-2-benzyl-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-enal, **4r** (126 MHz, CDCl₃).

	-106.57	
--	---------	--



**Figure S82**. ¹H NMR spectrum of (*E*)-2-(2-fluorobenzyl)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1yl)phenyl)but-3-enal, **4s** (500 MHz, CDCl₃).

Me 0 0 Me 1 Hak 2.00 - 1 0.97 1.00 1.00 1.00 0.96 0.98 0.94 2.02 2.02 2.02 3.00 -2.92 ⊸ 0.95-.5 3.0 10.0 9.5 6.0 5.0 4.5 f1 (ppm) 4.0 3.5 2.5 2.0 1.5 0.5 0.0 -0.5 -1 9.0 8.5 8.0 7.5 70 6.5 5.5 1.0

**Figure S83**. ¹³C{¹H} NMR spectrum of (*E*)-2-(2-fluorobenzyl)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-enal, **4s** (126 MHz, CDCl₃).



**Figure S84**. ¹⁹F NMR spectrum of (*E*)-2-(2-fluorobenzyl)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-enal, **4s** (471 MHz, CDCl₃).

-115.09 -115.10 -115.12 -115.14



**Figure S85**. ¹H NMR spectrum of (*E*)-2-(4-bromobenzyl)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-enal, **4t** (500 MHz,  $CDCl_3$ ).

**Figure S86**. ¹³C{¹H} NMR spectrum of (*E*)-2-(4-bromobenzyl)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-enal, **4t** (126 MHz, CDCl₃).

3 / 1 3 /		-			
	140.75 138.08 135.58 132.24 131.34	131.27 131.27 131.02 129.33 129.33 128.38 128.38 126.76 120.79 106.65	53.48	-41.53	-21.11



**Figure S87**. ¹H NMR spectrum of (*E*)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)-2-(4-(trifluoromethyl)benzyl)but-3-enal, **4u** (500 MHz,  $CDCl_3$ ).





**Figure S89**. ¹⁹F NMR spectrum of (*E*)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)-2-(4-(trifluoromethyl)benzyl)but-3-enal, **4u** (471 MHz, CDCl₃).

10 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2( 11 (ppm) **Figure S90**. ¹H NMR spectrum of (*E*)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)-2-(3nitrobenzyl)but-3-enal, **4v** (500 MHz, CDCl₃).

NO ₂						
<b>&gt;</b>						
				1		
		j.				
	NO2	NO2	NO2	NO2	NO ₂	NO2

**Figure S91**. ¹³C{¹H} NMR spectrum of (*E*)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)-2-(3-nitrobenzyl)but-3-enal, 4v (126 MHz, CDCl₃).

6 4 8 9 2 3 2 1 2 2 3 2 3 2 1 2 2 3 2 3 2 3 2 3	
	-21.13 



Figure S92.
¹H NMR spectrum of (*E*)-2-(3-chlorobenzyl)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-enal, **4w** (500 MHz, CDCl₃).

Image: Comparison of the state o



Figure S93. ¹³C{¹H} NMR spectrum of (*E*)-2-(3-chlorobenzyl)-2-methyl-4-(4-methyl-2-(1) pyrazol-1-yl)phenyl)but-3-enal, **4w** (126 MHz, CDCl₃)



**Figure S94**. ¹H NMR spectrum of methyl (*E*)-3-(2-formyl-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-en-1-yl)benzoate, **4x** (500 MHz, CDCl₃).



**Figure S95**. ¹³C{¹H} NMR spectrum of methyl (*E*)-3-(2-formyl-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-en-1-yl)benzoate, 4x (126 MHz, CDCl₃).

201.51	167.07	10.101	140.73 139.05 1335.04 1335.04 135.04 131.53 131.53 131.53 131.29 131.52 131.52 131.52 131.52 131.52 131.52 131.52 132.53 126.59 126.53 126.53	53.56 52.25	40°. L 4	21.11	18.30
				V (/		1	1





**Figure S97**. ¹³C{¹H} NMR spectrum of (*E*)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)-2-(3-methylbenzyl)but-3-enal, **4y** (126 MHz,  $CDCl_3$ ).

 ,		•	·	- /		
—201.98		140.58 138.76 138.38 138.38 137.68 131.74 131.27	129.37 129.10 128.05 127.63		53.48	 $<^{21.39}_{20.98}$







**Figure S100**. ¹H NMR spectrum of (*E*)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)-2-(naphthalen-2-ylmethyl)but-3-enal, **4aa** (500 MHz, CDCl₃).



**Figure S101**. ¹³C{¹H} NMR spectrum of (*E*)-2-methyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)-2-(naphthalen-2-ylmethyl)but-3-enal, **4aa** (126 MHz, CDCl₃).

			•	•	,		
	-140.55 -138.82 -138.33 -138.33 -138.33 -138.33 -138.33 -138.33 -138.33 -138.33 -138.33 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.35 -138.25 -138.25 -138.25 -138.25 -138.25 -138.25 -138.25 -138.25 -138.25 -138.25 -138.25 -138.25 -138.25 -138.25 -138.25 -138.25 -138.25 -138.25 -138.25 -138.25 -138.25 -138.25 -138.25 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.55 -138.5	131.20 129.32 129.13 129.01 128.79	127.63 127.69 127.60 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 127.59 12			-53.72	 -20.98 -18.38



**Figure S102**. ¹H NMR spectrum of (*E*)-3,3-dimethyl-5-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)pent-4-en-2-one, **6** (500 MHz,  $CDCl_3$ ).







**Figure S105**. ¹³C{¹H} NMR spectrum of (R, E)-4-hydroxy-5,5-dimethyl-7-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)hept-6-en-2-one, **7** (500 MHz, CDCl₃).

-	140.40 140.40 138.52 137.91 137.91 137.91 129.15 128.49 128.49	 	 -30.84 23.39 22.79 20.88





**Figure S107**. ¹³C{¹H} NMR spectrum of ethyl (2E,5E)-4,4-dimethyl-6-(4-methyl-2-(1H-pyrazol-1-yl)phenyl)hexa-2,5-dienoate, **8** (126 MHz, CDCl₃).

1				



**Figure S109**. ¹³C{¹H} NMR spectrum of *tert*-butyl (*E*)-4-(2,2-dimethyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-en-1-yl)piperazine-1-carboxylate, **9** (126 MHz, CDCl₃, 50 °C).





**Figure S111**. ¹³C{¹H} NMR spectrum of (*R*)-*N*-((3*E*)-2,2-dimethyl-4-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)but-3-en-1-ylidene)-2-methylpropane-2-sulfinamide, **10** (126 MHz, CDCl₃).

		140.63 138.57 138.57 133.97 131.38 131.38 131.38 131.38 132.98 122.86 122.80 124.91		56.86		$\sum_{24.64}^{24.64}$ $\sum_{24.63}^{22.49}$ $\sum_{21.07}$
--	--	----------------------------------------------------------------------------------------------------------------------	--	-------	--	--------------------------------------------------------------------





Figure S113. ¹³C{¹H} NMR spectrum of (*R*)-2-methyl-*N*-((*S*,*E*)-1,1,1-trifluoro-3,3-dimethyl-5-(4methyl-2-(1H-pyrazol-1-yl)phenyl)pent-4-en-2-yl)propane-2-sulfinamide, 11 (126 MHz, CDCl₃). 140.78 138.79 138.79 138.46 131.18 129.46 129.46 129.06 129.06 122.08 126.19 124.54 122.29 -65.39 -65.17 -64.96 -64.74 -57.05 25.68 25.66 25.64 25.62 25.62 25.62 25.62 25.64 21.08 -39.71



**Figure S114**. ¹⁹F NMR spectrum of (*R*)-2-methyl-*N*-((*S*,*E*)-1,1,1-trifluoro-3,3-dimethyl-5-(4-methyl-2-(1*H*-pyrazol-1-yl)phenyl)pent-4-en-2-yl)propane-2-sulfinamide, **11** (471 MHz, CDCl₃).

и 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -150 -180 -190 -2с f1 (рртн)







## 9. References

- 1. Armarego, W. L. F.; Chai, C. L. L. Chapter 4 Purification of Organic Chemicals. In *Purification of Laboratory Chemicals (Sixth Edition)*, Armarego, W. L. F.; Chai, C. L. L., Eds. Butterworth-Heinemann: Oxford, 2009, pp 88-444.
- 2. Hummel, J. R.; Ellman, J. A. Cobalt(III)-Catalyzed Synthesis of Indazoles and Furans by C–H Bond Functionalization/Addition/Cyclization Cascades. *J. Am. Chem. Soc.* **2015**, 137, 490-498.
- 3. Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. A Cationic High-Valent Cp*CoIII Complex for the Catalytic Generation of Nucleophilic Organometallic Species: Directed C□H Bond Activation. *Angew. Chem. Int. Ed.* **2013**, *52*, 2207-2211.
- 4. Friis, S. D.; Johansson, M. J.; Ackermann, L. Cobalt-catalysed C–H methylation for latestage drug diversification. *Nature Chemistry* **2020**, *12*, 511-519.
- 5. Boerth, J. A.; Ellman, J. A. A Convergent Synthesis of Functionalized Alkenyl Halides through Cobalt(III)-Catalyzed Three-Component C-H Bond Addition. *Angew. Chem. Int. Ed.* **2017**, *56*, 9976-9980.
- 6. Fujita, K.-i.; Takahashi, Y.; Owaki, M.; Yamamoto, K.; Yamaguchi, R. Synthesis of Five-, Six-, and Seven-Membered Ring Lactams by Cp*Rh Complex-Catalyzed Oxidative N-Heterocyclization of Amino Alcohols. *Org. Lett.* **2004**, *6*, 2785-2788.
- 7. Liu, P. M.; Frost, C. G. Ruthenium-Catalyzed C–H Functionalization of Arylpyrazoles: Regioselective Acylation with Acid Chlorides. *Org. Lett.* **2013**, *15*, 5862-5865.
- 8. Herraiz, A. G.; Cramer, N. Cobalt(III)-Catalyzed Diastereo- and Enantioselective Three-Component C–H Functionalization. *ACS Catalysis* **2021**, *11*, 11938-11944.
- 9. Kim, Y. L.; Park, S.-a.; Choi, S.-M.; Park, J.-U.; Kim, J. H. Colll-Catalyzed C–H Alkenylation and Allylation with Cyclopropenes via Sequential C–H/C–C Bond Activation. *Org. Lett.* **2021**, *23*, 6674-6679.
- 10. Shi, W.; Shi, Z. Palladium-Catalyzed 2H-1,2,3-Triazole-Directed Oxidative Alkoxylation of Arenes with Alcohols. *Chin. J. Chem*. **2014**, *32*, 974-980.
- 11. Zheng, X.; Song, B.; Xu, B. Palladium-Catalyzed Regioselective C–H Bond ortho-Acetoxylation of Arylpyrimidines. *Eur. J. Org. Chem.* **2010**, *2010*, 4376-4380.
- 12. Xu, S.; Huang, X.; Hong, X.; Xu, B. Palladium-Assisted Regioselective C–H Cyanation of Heteroarenes Using Isonitrile as Cyanide Source. *Org. Lett.* **2012**, *14*, 4614-4617.
- 13. Correa, A.; León, T.; Martin, R. Ni-Catalyzed Carboxylation of C(sp2)– and C(sp3)–O Bonds with CO2. *J. Am. Chem. Soc.* **2014**, *136*, 1062-1069.
- 14. Cheung, L. L. W.; Yudin, A. K. Synthesis of Highly Substituted Cyclobutane Fused-Ring Systems from N-Vinyl β-Lactams through a One-Pot Domino Process. *Chemistry A European Journal* **2010**, *16*, 4100-4109.
- 15. Sen, S.; Singh, S.; Sieburth, S. M. A Practical, Two-Step Synthesis of 2-Substituted 1,3-Butadienes. *J. Org. Chem.* **2009**, *74*, 2884-2886.
- 16. Dongbang, S.; Ellman, J. A. Synthesis of Nitrile Bearing Acyclic Quaternary Centers through Co(III)-Catalyzed Sequential C-H Bond Addition to Dienes and N-Cyanosuccinimide. *Angew. Chem. Int. Ed.* **2021**, *60*, 2135-2139.
- 17. Iwai, Y.; Gligorich, K. M.; Sigman, M. S. Aerobic Alcohol Oxidation Coupled to Palladium-Catalyzed Alkene Hydroarylation with Boronic Esters. *Angew. Chem. Int. Ed.* **2008**, *47*, 3219-3222.
- (a) Gensini, M.; Altamura, M.; Dimoulas, T.; Fedi, V.; Giannotti, D.; Giuliani, S.; Guidi, A.; Harmat, N. J. S.; Meini, S.; Nannicini, R.; Pasqui, F.; Tramontana, M.; Triolo, A.; Maggi, C. A. Modulation on C- and N-Terminal Moieties of a Series of Potent and Selective Linear Tachykinin NK2 Receptor Antagonists. *ChemMedChem* **2010**, *5*, 65-78. (b) Liu, W.; Zhou, J.; Geng, G.; Shi, Q.; Sauriol, F.; Wu, J. H. Antiandrogenic, Maspin Induction, and

Antiprostate Cancer Activities of Tanshinone IIA and Its Novel Derivatives with Modification in Ring A. *J. Med. Chem.* **2012**, *55*, 971-975.

- 19. Ogata, M.; Matsumoto, H.; Shimizu, S.; Kida, S.; Nakai, H.; Motokawa, K.; Miwa, H.; Matsuura, S.; Yoshida, T. Synthesis and antibacterial activity of new 7-(aminoazabicycloalkanyl)quinolonecarboxylic acids. *European Journal of Medicinal Chemistry* **1991**, *26*, 889-906.
- 20. Maza, R. J.; Davenport, E.; Miralles, N.; Carbó, J. J.; Fernández, E. Transition-Metal-Free Allylic Borylation of 1,3-Dienes. *Org. Lett.* **2019**, *21*, 2251-2255.
- 21. Behlen, M. J.; Uyeda, C. C2-Symmetric Dinickel Catalysts for Enantioselective [4 + 1]-Cycloadditions. *J. Am. Chem. Soc.* **2020**, *142*, 17294-17300.
- 22. Mundal, D. A.; Lutz, K. E.; Thomson, R. J. Stereoselective Synthesis of Dienes from N-Allylhydrazones. *Org. Lett.* **2009**, *11*, 465-468.
- 23. (a) Süsse, L.; Vogler, M.; Mewald, M.; Kemper, B.; Irran, E.; Oestreich, M. Enantioselective Nazarov Cyclizations Catalyzed by an Axial Chiral C6F5-Substituted Boron Lewis Acid. *Angew. Chem. Int. Ed.* 2018, *57*, 11441-11444. (b) Zhang, X.-L.; Pan, G.-F.; Zhu, X.-Q.; Guo, R.-L.; Gao, Y.-R.; Wang, Y.-Q. Dehydrogenative β-Arylation of Saturated Aldehydes Using Transient Directing Groups. *Org. Lett.* 2019, *21*, 2731-2735.
- 24. Henrot, M.; Richter, M. E. A.; Maddaluno, J.; Hertweck, C.; De Paolis, M. Convergent Asymmetric Synthesis of (+)-Aureothin Employing an Oxygenase-Mediated Resolution Step. *Angew. Chem. Int. Ed.* **2012**, *51*, 9587-9591.
- 25. Kryshtal, G. V.; Zhdankina, G. M.; Zlotin, S. G. Tetraalkylammonium and 1,3-Dialkylimidazolium Salts with Fluorinated Anions as Recoverable Phase-Transfer Catalysts in Solid Base-Promoted Cross-Aldol Condensations. *Eur. J. Org. Chem.* **2005**, 2005, 2822-2827.
- 26. Noguchi, T.; Tanaka, N.; Nishimata, T.; Goto, R.; Hayakawa, M.; Sugidachi, A.; Ogawa, T.; Niitsu, Y.; Asai, F.; Ishizuka, T.; Fujimoto, K. Discovery of R-142086 as a factor Xa (FXa) inhibitor: syntheses and structure-activity relationships of cinnamyl derivatives. *Chem. Pharm. Bull.* **2009**, *57*, 22-33.
- 27. Ji, E.; Meng, H.; Zheng, Y.; Ramadoss, V.; Wang, Y. Copper-Catalyzed Stereospecific Hydroboration of Internal Allylic Alcohols. *Eur. J. Org. Chem.* **2019**, *2019*, 7367-7371.
- 28. Krimen, L. I. Acetic Formic Anhydride. Org. Synth. 1970, 50, 1.
- 29. Kovacevic, L. S.; Idziak, C.; Markevicius, A.; Scullion, C.; Corr, M. J.; Kennedy, A. R.; Tuttle, T.; Murphy, J. A. Superelectrophilic Amidine Dications: Dealkylation by Triflate Anion. *Angew. Chem. Int. Ed.* **2012**, *51*, 8516-8519.
- 30. Gajewski, J. J.; Peterson, K. B.; Kagel, J. R. Transition-state structure variation in the Diels-Alder reaction from secondary deuterium kinetic isotope effects: the reaction of a nearly symmetrical diene and dienophile is nearly synchronous. *J. Am. Chem. Soc.* **1987**, *109*, 5545-5546.
- 31. Umeda, N.; Hirano, K.; Satoh, T.; Shibata, N.; Sato, H.; Miura, M. Rhodium-Catalyzed Oxidative 1:1, 1:2, and 1:4 Coupling Reactions of Phenylazoles with Internal Alkynes through the Regioselective Cleavages of Multiple C-H Bonds. *J. Org. Chem.* **2011**, *76*, 13-24.
- 32. Martínez, A.; Zumbansen, K.; Döhring, A.; van Gemmeren, M.; List, B. Improved Conditions for the Proline-Catalyzed Aldol Reaction of Acetone with Aliphatic Aldehydes. *Synlett* **2014**, *25*, 932-934.
- 33. Brandau, S.; Hoppe, D. Asymmetric synthesis of (2-carbamoyloxy-1-alkenyl)cyclopropanes by intramolecular cycloalkylation. *Tetrahedron* **2005**, *61*, 12244-12255.
- 34. Murugesan, D.; Kaiser, M.; White, K. L.; Norval, S.; Riley, J.; Wyatt, P. G.; Charman, S. A.; Read, K. D.; Yeates, C.; Gilbert, I. H. Structure-activity relationship studies of pyrrolone antimalarial agents. *ChemMedChem* **2013**, *8*, 1537-44.

- 35. Wang, L.; Chen, M.; Zhang, P.; Li, W.; Zhang, J. Palladium/PC-Phos-Catalyzed Enantioselective Arylation of General Sulfenate Anions: Scope and Synthetic Applications. *J. Am. Chem. Soc.* **2018**, *140*, 3467-3473.
- 36. Prakash, G. K. S.; Mandal, M.; Olah, G. A. Stereoselective Nucleophilic Trifluoromethylation of N-(tert-Butylsulfinyl)imines by Using Trimethyl(trifluoromethyl)silane. *Angew. Chem. Int. Ed.* **2001**, *40*, 589-590.
- 37. Brak, K.; Barrett, K. T.; Ellman, J. A. General One-Pot Method for the Preparation of Ntert-Butanesulfinylamine Diastereomer Mixtures as Standards for Stereoselectivity Determinations. *J. Org. Chem.* **2009**, *74*, 3606-3608.
- 38. Liniger, M.; Liu, Y.; Stoltz, B. M. Sequential Ruthenium Catalysis for Olefin Isomerization and Oxidation: Application to the Synthesis of Unusual Amino Acids. *J. Am. Chem. Soc.* **2017**, *139*, 13944-13949.