Supporting Information

Catalytic Photochemical Enantioselective a-Alkylation with Pyridinium Salts

Santhivardhana Reddy Yetra, Nathan Schmitt, and Uttam K. Tambar*
Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 HarryHines Boulevard, Dallas, Texas 75390-9038, United StatesEmail: Uttam.Tambar@utsouthwestern.edu
Contents:

1. General Information S2
2. Synthesis and Characterization of Pyridinium Substrates S2
3. Optimization Studies S12
4. General Procedures for Catalytic Photochemical Enantioselective α - Alkylation with Pyridinium Salts S14
5. Characterization Data for Products S17
6. Mechanistic Studies S34
7. Synthesis of (-)-Enterolactone and (-)-Enterodiol S44
8. References S46
9. NMR Spectra S47
10. HPLC Charts. S113

1. General Information

All reactions were carried out in capped reaction vials with magnetic stirring unless otherwise indicated. Commercially obtained reagents were used as received. Solvents were dried by passage through an activated alumina column under argon. Liquids and solutions were transferred via syringe. All reactions were monitored by thin-layer chromatography with E. Merck silica gel 60 F254 pre-coated plates (0.25 mm). Silica gel (particle size $0.032-0.063 \mathrm{~mm}$) purchased from SiliCycle was used for flash chromatography. For irradiation, a 390 Kessil LED lamp (model number: PR-160-390) or a 427 Kessil LED lamp (model number: PR-160-427) was placed 4 cm away from the reaction vials. NMR spectra were recorded on Varian MR400, Bruker AN400, and Bruker AN600 instruments and calibrated using residual undeuterated solvent as an internal reference. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported relative to chloroform or benzene as an internal standard (7.26 ppm and 7.16 ppm respectively) and are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity, coupling constant (Hz), and integration. Data for ${ }^{13} \mathrm{C}$ NMR spectra are reported relative to chloroform or benzene as an internal standard (77.2 ppm and 128.1 ppm respectively) and are reported in terms of chemical shift ($\delta \mathrm{ppm}$). HRMS electrospray (ESI) data was obtained on a Sciex Triple Quad 6500+ System. UV-Vis absorption spectra were recorded on a Cary 60 UV-Vis spectrometer (Agilent Technologies). All measurements were carried out with a 1.0 cm path length quartz cell. Optical rotations were measured on a JAS DIP-360 digital polarimeter. Chiral HPLC analyses were performed on an Agilent 1200 Series system. Low temperature photochemical-reactions were performed using EasyMax 102 Advanced Thermostat system from Mettler-Toledo AutoChem, Inc. (Product ID: 51161711).

2. Synthesis and Characterization of Pyridinium Substrates

Preparation of Pyridinium Salts

Pyridinium salt 10a was synthesized as described previously. ${ }^{1}$

Pyridinium salt $\mathbf{1 4 g}$ was synthesized as described previously. ${ }^{2}$

General Procedure A: Synthesis of Trifluoroethyl Aminoester Pyridinium Salts 12

Following the reported method, ${ }^{3} \mathrm{~N}$-Boc-amino acid derivatives $\mathbf{S} 1$ were converted to trifluoroethyl aminoester $\cdot \mathrm{HCl}$ salts $\mathbf{S 2}$. Further following the literature reports, ${ }^{4}$ these aminoesters (1.0 equiv) were added to a suspension of 2,4,6-triphenylpyrylium tetrafluoroborate $\mathbf{S 3}$ (1.0 equiv), powdered activated $4 \AA$ molecular sieves $(\sim 500 \mathrm{mg} / \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{M})$ in a round-bottomed flask equipped with a stir bar. The flask was fitted with a septum and a vent needle. The mixture was stirred as $\mathrm{Et}_{3} \mathrm{~N}$ (1.0 equiv for free base amines; 2.0 equiv for amine hydrochloride salts) was added by syringe. The vent needle was removed, and the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 min . The vent needle was reinserted before the addition of acetic acid (2.0 equiv). The needle was again removed, and the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 12 h . The mixture was then filtered through a short pad of celite using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to rinse the flask and celite pad. The filtrate was washed successively with aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 2 \times 30 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$, and saturated aqueous $\mathrm{NaCl}(2 \times 30 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, filtered, concentrated under reduced pressure, and purified by silica gel chromatography with acetone/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent or recrystallization.

General Procedure B: Synthesis of Aminoketone Pyridinium Salts 14

Following the previously described methods ${ }^{1}$, aminoketone $\mathbf{S 4}$ (1.2 equiv) was added to a suspension of 2,4,6-triphenylpyrylium tetrafluoroborate $\mathbf{S 3}$ (1.0 equiv) and $\mathrm{EtOH}(1.0 \mathrm{M})$ in a round-bottomed flask. The flask was fitted with a reflux condenser. The mixture was stirred and heated at reflux in an oil bath at $80^{\circ} \mathrm{C}$ for 4 h . The mixture was then allowed to cool to $23{ }^{\circ} \mathrm{C}$, concentrated under reduced pressure, and purified by silica gel chromatography with acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent or recrystallization.

1-(2-oxo-2-(2,2,2-Trifluoroethoxy)ethyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate,

 12a:

12a was synthesized by following the general procedure A at 5.0 mmol scale from N -Boc glycine and purified by silica gel column chromatography ($1 \rightarrow 10 \rightarrow 20 \%$ acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). 12a was obtained as a white solid ($2.0 \mathrm{~g}, 75 \%$): ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~s}, 2 \mathrm{H}), 7.94-7.78$ $(\mathrm{m}, 3 \mathrm{H}), 7.79-7.31(\mathrm{~m}, 12 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.00,157.48,157.41,133.69,132.79,131.82,131.69,129.97,129.63,128.87,128.36,126.28$, $121.99(\mathrm{q}, J=277.7 \mathrm{~Hz}), 61.42(\mathrm{~d}, J=37.6 \mathrm{~Hz}), 55.82 .{ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-73.68$, 153.15. HRMS (ESI) calculated for $\left[\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{2}, \mathrm{M}-\mathrm{BF}_{4}\right]^{+}: 448.1519$, Found 448.1582.
(S)-1-(1-oxo-1-(2,2,2-Trifluoroethoxy)propan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate, (S)-12f:

(\boldsymbol{S})-12f was synthesized by following the general procedure A at 5.0 mmol scale from (S)-N-Boc alanine and purified by silica gel column chromatography ($1 \rightarrow 10 \rightarrow 20 \%$ acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). (\boldsymbol{S})$12 f$ was obtained as a white solid ($2.2 \mathrm{~g}, 80 \%$): ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~s}, 2 \mathrm{H}), 7.87$ $-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{brs}, 3 \mathrm{H}), 7.65-7.45(\mathrm{~m}, 10 \mathrm{H}), 5.68(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.46(\mathrm{~m}, 1 \mathrm{H})$, $4.45-4.34(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.0,157.4,134.0$, 132.7, 132.5, 131.7, 129.8, 129.4, 128.6, $62.1(\mathrm{~d}, J=32.9 \mathrm{~Hz}), 17.1 .{ }^{19}$ F NMR (565 MHz, C ${ }_{6} \mathrm{D}_{6}$) $\delta-73.4,-153.1$. HRMS (ESI) calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{2}, \mathrm{M}+\mathrm{H}-\mathrm{BF}_{4}\right]^{+}: 463.1754$, Found 463.1807.

(R)-1-(1-oxo-1-(2,2,2-Trifluoroethoxy)propan-2-yl)-2,4,6-triphenylpyridin-1-ium

 tetrafluoroborate, $(\boldsymbol{R})-12 \mathrm{f}$:
(\boldsymbol{R})-12f was synthesized by following the general procedure A at 5.0 mmol scale from (R)-N-Boc alanine and purified by silica gel column chromatography ($1 \rightarrow 10 \rightarrow 20 \%$ acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). (\boldsymbol{R})12f was obtained as a white solid ($2.3 \mathrm{~g}, 84 \%$): ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~s}, 2 \mathrm{H}), 7.83$ (dd, $J=7.3,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.77 (brs, 3 H), $7.64-7.47$ (m, 10H), 5.68 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.50 (dq, $J=12.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dq}, J=12.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl} 3$) 168.0, 157.4, 134.0, 132.7, 132.5, 131.7, 129.8, 129.4, 128.6, 62.1 (d, $J=32.9 \mathrm{~Hz}$), 17.1. ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-73.4,-153.1$. HRMS (ESI) calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{2}, \mathrm{M}\right.$

(S)-1-(3-Methyl-1-oxo-1-(2,2,2-trifluoroethoxy)butan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate, $(\boldsymbol{S}) \mathbf{- 1 2 g}$:

$(\boldsymbol{S}) \mathbf{- 1 2 g}$ was synthesized by following General Procedure B on a 3.05 mmol scale from N-Boc valine and purified by recrystallization $\left(\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}\right) .(\boldsymbol{S}) \mathbf{- 1 2 g}$ was obtained as a white powder ($1.07 \mathrm{~g}, 61 \%$): ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~s}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.53$ $(\mathrm{m}, 11 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{q}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{dt}, J$ $=10.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.75(\mathrm{dd}, J=8.2,6.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.31,157.80$, $133.48,133.29,132.34,132.11,130.20,129.87,129.79,129.38,129.10,128.29,122.76$ (q, $J=$ $277.8 \mathrm{~Hz}), 73.47,61.97(\mathrm{q}, J=37.1 \mathrm{~Hz}), 30.43,22.32,19.43 .{ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-$ 73.19, -153.03. HRMS (ESI) calculated for $\left[\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{2}, \mathrm{MH}-\mathrm{BF}_{4}\right]^{+}$: 491.2061, Found 491.2091.
(S)-1-(1-oxo-3-Phenyl-1-(2,2,2-trifluoroethoxy)propan-2-yl)-2,4,6-triphenylpyridin-1-ium, (S)-12h:

$(\boldsymbol{S}) \mathbf{- 1 2 h}$ was synthesized by following General Procedure B on a 2.54 mmol scale from N-Boc phenylalanine and purified by recrystallization $\left(\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}\right)$. $(\boldsymbol{S}) \mathbf{- 1 2 h}$ was obtained as a white powder ($1.02 \mathrm{~g}, 64 \%$): ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~s}, 2 \mathrm{H}), 7.89-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.49(\mathrm{~m}, 11 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.77(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{~d}, J=$ $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=14.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ $(\mathrm{dd}, J=14.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.54,157.40,135.86,133.69,132.58$, 132.15, 131.78, 129.76, 129.32, 128.97, 128.68, 128.62, 127.40, 122.26 (q, $J=277.4 \mathrm{~Hz}$), 70.01, $62.14(\mathrm{q}, J=37.2 \mathrm{~Hz}), 37.65 .{ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-72.93,-152.70$. HRMS (ESI) calculated for $\left[\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{2}, \mathrm{M}-\mathrm{BF}_{4}\right]^{+}$: 538.1988, Found 538.2001.
(S)-1-(4-(Methylthio)-1-oxo-1-(2,2,2-trifluoroethoxy)butan-2-yl)-2,4,6-triphenylpyridin-1ium, (S)-12i:

(\boldsymbol{S}-12i was synthesized by following General Procedure B on a 2.76 mmol scale from N-Boc methionine and purified by silica gel column chromatography ($1 \rightarrow 10 \rightarrow 20 \%$ acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) as eluting solvent. (\boldsymbol{S})-12i was obtained as a yellow powder ($811.3 \mathrm{mg}, 48 \%$): ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~m}, 3 \mathrm{H}), 7.86-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.66-7.47(\mathrm{~m}, 11 \mathrm{H}), 6.21(\mathrm{dd}, J=9.1,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.58-4.42(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H})$, 1.88 - $1.80(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.49,157.54,134.14,133.96,132.50$, $132.36,132.15,131.64,131.35,129.69,129.63,128.61,122.18$ (q, $J=277.4 \mathrm{~Hz}), 66.30,62.03(\mathrm{q}$, $J=37.3 \mathrm{~Hz}$), $31.44,30.54,14.68 .{ }^{19} \mathbf{F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-73.22,-152.73$. HRMS (ESI) calculated for $\left[\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}, \mathrm{M}-\mathrm{BF}_{4}\right]^{+}$: 522.1709, Found 522.1705.

(S)-1-(3-(4-Hydroxyphenyl)-1-oxo-1-(2,2,2-trifluoroethoxy)propan-2-yl)-2,4,6-

 triphenylpyridin-1-ium tetrafluoroborate, (\boldsymbol{S})-12j:
(\boldsymbol{S} - $\mathbf{- 1 2 j}$ was synthesized by following the general procedure A at 5.0 mmol scale from N -Boc tyrosine and purified by silica gel column chromatography ($1 \rightarrow 10 \rightarrow 40 \%$ acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). (\boldsymbol{S})$\mathbf{1 2 j}$ was obtained as a white solid ($2.5 \mathrm{~g}, 78 \%$): ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~s}, 2 \mathrm{H}), 7.83$ $-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.67$ (brs, 2H), $7.61-7.35(\mathrm{~m}, 9 \mathrm{H}), 7.26(\mathrm{~s}, 2 \mathrm{H}), 6.88$ (brs, 1H), $6.63-6.48(\mathrm{~m}$, $2 \mathrm{H}), 6.47-6.33(\mathrm{~m}, 2 \mathrm{H}), 5.67(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{dq}, J=12.6,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.15(\mathrm{dd}, J=14.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=14.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 166.24,157.20,156.32,133.27,132.94,132.05,131.88,129.95,129.84,129.43,128.65,125.52$,
$122.42(\mathrm{q}, J=277.3 \mathrm{~Hz}), 116.13, \quad 70.39,62.16(\mathrm{q}, J=37.2 \mathrm{~Hz}), 36.61 .{ }^{19}$ F NMR (565 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-72.92,-151.32$. HRMS (ESI) calculated for $\left[\mathrm{C}_{34} \mathrm{H}_{2} \mathrm{~F}_{3} \mathrm{NO}_{3}, \mathrm{M}+\mathrm{H}-\mathrm{BF}_{4}\right]^{+}: 555.2016$, Found 555.2162.

1-(3-(3-Hydroxyphenyl)-1-oxo-1-(2,2,2-trifluoroethoxy)propan-2-yl)-2,4,6-triphenylpyridin-

 1-ium, 12k:

12k was synthesized by following General Procedure B on a 2.67 mmol scale from (dl)-N-Boc meta-tyrosine and purified by silica gel column chromatography ($1 \rightarrow 10 \rightarrow 40 \%$ acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) as eluting solvent. 12k was obtained as a white powder ($891.4 \mathrm{mg}, 52 \%$): ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~s}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.31(\mathrm{~m}, 10 \mathrm{H}), 6.95(\mathrm{dd}, J=8.9,6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 6.78-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-$ $4.37(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=14.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 165.99,157.38,135.28,133.22,132.97,132.00,131.75,130.33,129.91,128.76,122.41$ ($\mathfrak{q}, J=$ $277.4 \mathrm{~Hz}), 120.25,115.51,115.27,70.07,62.27(\mathrm{q}, ~ J=37.2 \mathrm{~Hz}), 36.81 .{ }^{19}$ F NMR (565 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-72.98,-150.71$. HRMS (ESI) calculated for $\left[\mathrm{C}_{34} \mathrm{H}_{2} 7 \mathrm{~F}_{3} \mathrm{NO}_{3}, \mathrm{M}-\mathrm{BF}_{4}\right]^{+}$: 554.1938, Found 554.1944.

1-(2-oxo-2-Phenylethyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate, 14a:

14a was synthesized by following the general procedure B at 5.0 mmol scale from α-amino acetophenone and purified by silica gel column chromatography ($1 \rightarrow 10 \%$ acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). 14a was obtained as a white solid ($1.8 \mathrm{~g}, 70 \%$):. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz , DMSO) $\delta 8.64(\mathrm{~s}, 2 \mathrm{H}), 8.41-$
$8.33(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.54(\mathrm{~m}, 15 \mathrm{H}), 7.44(\mathrm{dd}, J=8.5,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 $\mathrm{MHz}, \mathrm{DMSO}) \delta 191.55,156.62,155.42,135.12,133.12,132.73,132.33,131.12,129.64,129.54$, 129.13, 129.01, 128.99, 128.97, 128.07, 127.95, 125.84, 61.12. ${ }^{19}$ F NMR (565 MHz , DMSO) $\delta-$ 148.2. HRMS (ESI) calculated for $\left[\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{NO}, \mathrm{M}+\mathrm{H}-\mathrm{BF}_{4}\right]^{+}$: 427.1931, Found 427.1940.

1-(2-oxo-2-(p-Tolyl)ethyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate, 14b:

$\mathbf{1 4 b}$ was synthesized by following the general procedure B at 2.5 mmol scale from α-amino 4methylacetophenone and purified by silica gel column chromatography ($1 \rightarrow 10 \%$ acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). 14b was obtained as a white solid ($0.8 \mathrm{~g}, 60 \%$):. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO) $\delta 8.60(\mathrm{~s}$, $2 \mathrm{H}), 8.37-8.27(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.42(\mathrm{~m}, 15 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{~s}$, 3H). ${ }^{13}$ C NMR (151 MHz, DMSO) $\delta 191.29,157.04,155.83,146.38,133.57,132.78,131.55$, $130.65,130.09,129.94,129.55,129.43,128.46,126.27,61.52,40.39,40.25,40.11,21.72 .{ }^{19} \mathbf{F}$ NMR (565 MHz , DMSO) $\delta-148.2$. HRMS (ESI) calculated for $\left[\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO}, \mathrm{M}+\mathrm{H}-\mathrm{BF}_{4}\right]^{+}$: 441.2087, Found 441.2000.

1-(2-(4-Bromophenyl)-2-oxoethyl)-2,4,6-triphenylpyridin-1-ium, 14c:

14c was synthesized by following General Procedure A on a 2.69 mmol scale from α-amino 4bromoacetophenone and purified by silica gel column chromatography ($1 \rightarrow 10 \%$ acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) as eluting solvent followed by trituration with $\mathrm{Et}_{2} \mathrm{O} .14 \mathbf{c}$ was obtained as a white powder
($594.9 \mathrm{mg}, 46 \%$): ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~s}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-$ $7.55(\mathrm{~m}, 4 \mathrm{H}), 7.60-7.18(\mathrm{~m}, 13 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.09,157.52$, $156.60,133.73,132.61,132.43,132.04,131.39,131.36,130.61,129.93,129.44,128.16,125.91$, 61.69. ${ }^{19} \mathbf{F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-152.76$. HRMS (ESI) calculated for $\left[\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{BrNO}, \mathrm{M}-\right.$ $\left.\mathrm{BF}_{4}\right]^{+}$: 504.0958, Found 504.0951.

1-(2-(4-Chlorophenyl)-2-oxoethyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate, 14d:

14d was synthesized by following the general procedure B at 2.5 mmol scale from α-amino 4chloroacetophenone and purified by silica gel column chromatography ($1 \rightarrow 10 \%$ acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). $\mathbf{1 4 d}$ was obtained as a white solid ($1.0 \mathrm{~g}, 73 \%$): ${ }^{\mathbf{1}} \mathbf{H}$ NMR 1 H NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~s}, 3 \mathrm{H}), 7.91-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.56(\mathrm{~m}, 6 \mathrm{H}), 7.56-7.29(\mathrm{~m}, 8 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) δ 190.76, 156.61, 155.44, 139.84, 132.25, 131.48, 131.07, 129.83, $129.59,129.16,129.07,128.93,125.79,60.95 .{ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{DMSO}$) $\delta-148.24$. HRMS (ESI) calculated for $\left[\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{ClNO}, \mathrm{M}+\mathrm{H}-\mathrm{BF}_{4}\right]^{+}: 461.1541$, Found 461.1528.

1-(2-(4-Fluorophenyl)-2-oxoethyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate, 14e:

$\mathbf{1 4 e}$ was synthesized by following the general procedure B at 2.5 mmol scale from α-amino 4fluoroacetophenone and purified by silica gel column chromatography ($1 \rightarrow 20 \%$ acetone in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathbf{1 4 e}$ was obtained as a white solid $\left.(0.7 \mathrm{~g}, 53 \%):{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~ M H z}, \mathrm{DMSO}\right) \delta 8.61(\mathrm{~s}$,
$2 \mathrm{H}), 8.36-8.31(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.41(\mathrm{~m}, 17 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO) δ $190.80,156.63,155.45,139.86,133.09,132.67,132.28,131.50,131.10,129.87,129.62,129.20$, 129.10, 128.96, 125.81, 60.97. ${ }^{19}$ F NMR (565 MHz , DMSO) $\delta-102.57,-148.27$. HRMS (ESI) calculated for $\left[\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{FNO}, \mathrm{M}+\mathrm{H}-\mathrm{BF}_{4}\right]^{+}: 444.1836$, Found 444.1825.

1-(2-(2-Fluorophenyl)-2-oxoethyl)-2,4,6-triphenylpyridin-1-ium, 14f:

14f was synthesized by following General Procedure A on a 2.00 mmol scale from α-amino 2fluoroacetophenone and purified by silica gel column chromatography ($1 \rightarrow 20 \%$ acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) followed by trituration with $\mathrm{Et}_{2} \mathrm{O} . \mathbf{1 4 f}$ was obtained as a white powder ($478.8 \mathrm{mg}, 44 \%$): ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~s}, 2 \mathrm{H}), 7.87-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.20(\mathrm{~m}, 15 \mathrm{H}), 7.15(\mathrm{td}$, $J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=11.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $189.73,162.73,160.17,156.92,156.55,136.55,136.45,133.73,132.15,132.06,131.03,129.95$, 129.57, 128.00, 125.86, 124.67, 116.85, 116.63, 64.02. ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-108.09$, 153.26. HRMS (ESI) calculated for $\left[\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{FNO}, \mathrm{M}-\mathrm{BF}_{4}\right]^{+}$: 444.1758, Found 444.1784.

3. Optimization Studies

Entry	Pyridinium Salt	Catalyst	Solvent	Base	Additive	Yield ${ }^{\text {b }}$ (\%)	$e e^{c}$ (\%)
1	10a	A	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2,6-lutidine	-	5	58
2	10b	A	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2,6-lutidine	-	36	60
3	10b	A	DMA	2,6-lutidine	-	40	92
4	10b	B	DMA	2,6-Iutidine	-	22	5
5	10b	C	DMA	2,6-lutidine	-	55	15
6	10b	D	DMA	2,6-lutidine	-	52	23
7	10b	A	DMA	2,6-lutidine	NaI	65	92
8	10b	A	DMA	2,6-lutidine	$\mathrm{NaI}, \mathrm{H}_{2} \mathrm{O}$	75	92
$9{ }^{\text {d }}$	10b	A	DMA	2,6-lutidine	$\mathrm{NaI}, \mathrm{H}_{2} \mathrm{O}$	80	46
10^{e}	10b	A	DMA	2,6-lutidine	$\mathrm{NaI}, \mathrm{H}_{2} \mathrm{O}$	58	91
$11^{\text {f }}$	10b	A	DMA	2,6-lutidine	$\mathrm{NaI}, \mathrm{H}_{2} \mathrm{O}$	50	91
12^{9}	10b	A	DMA	2,6-lutidine	$\mathrm{NaI}, \mathrm{H}_{2} \mathrm{O}$	62	92
$13^{\text {h }}$	10b	A	DMA	2,6-lutidine	$\mathrm{NaI}, \mathrm{H}_{2} \mathrm{O}$	18	92
14^{j}	10b	A	DMA	2,6-lutidine	$\mathrm{NaI}, \mathrm{H}_{2} \mathrm{O}$	< 5	-
15^{k}	10b	A	DMA	2,6-lutidine	$\mathrm{NaI}, \mathrm{H}_{2} \mathrm{O}$	<5	-

$16^{\text {d,i }}$	14a	D	MTBE	2,6-lutidine	-	40	56
$17^{\text {d,i }}$	14a	D	$\mathrm{Et}_{2} \mathrm{O}$	2,6-lutidine	-	49	60
$18^{\text {d,i }}$	14a	D	DMSO	2,6-lutidine	-	30	57
$19^{\text {d,i }}$	14a	D	PhCF_{3}	2,6-lutidine	-	60	74
$20^{\text {d,i }}$	14a	D	MeCN	2,6-lutidine	-	35	66
$21^{\text {d,i }}$	14a	D	THF	2,6-lutidine	-	22	48
$22^{\text {d,i }}$	14a	D	1,4-dioxane	2,6-lutidine	-	75	67
$23^{\text {d,i }}$	14a	D	1,2-DCE	2,6-Iutidine	-	83	55
$24^{\text {d,i }}$	14a	D	DME	2,6-Iutidine	-	50	62
$25^{\text {d, }}$	14a	D	benzene	2,6-lutidine	-	20	4
$26^{\text {d,i }}$	14a	D	CDCl_{3}	2,6-Iutidine	-	60	74
$27^{\text {d, }}$	14a	D	TFE	2,6-Iutidine	-	-	-
$28^{\text {d, }}$	14a	D	Hexane	2,6-Iutidine	-	-	-
$29^{\text {d, }}$	14a	D	EtOAc	2,6-Iutidine	-	-	-
$30^{\text {d,i }}$	14a	D	MeOH	2,6-lutidine	-	-	-
$31^{\text {d,i }}$	14a	D	toluene	2,6-Iutidine	-	65	70
$32^{\text {d, }}$ i	14a	D	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	-	80	82
$33^{\text {d, }}$ i	14a	D	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	LiOAc	-	75	80
$34^{\text {d, }}$	14a	D	DMSO	$\mathbf{i P r} \mathbf{2}^{\mathbf{N E t}}$	-	5	10
$35^{\text {d, }}$	14a	D	Anisole	iPr ${ }_{2}$ NEt	-	18	92
$36^{\text {d, }}$	14a	D	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	DABCO	-	30	80
$37^{\text {d, }}$ i	14a	D	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Imidazole	-	30	76
$38^{\text {d, }}$	14a	A	DMSO	iPr ${ }_{2}$ NEt	-	68	35
$39^{\text {d,i }}$	14a	B	DMSO	iPr ${ }_{2}$ NEt	-	70	47
$40^{\text {d,i }}$	14a	C	DMSO	iPr ${ }_{2}$ NEt	-	60	42
$41^{\text {d,i }}$	14a	A	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2,6-Iutidine	-	45	92
42 ${ }^{\text {d,h }}$	14a	A	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2,6-lutidine	-	70	92

${ }^{\text {a }}$ Reaction conditions: 9 (3 equiv, 0.30 mmol), 10 (1 equiv, 0.1 mmol), catalyst ($20 \mathrm{~mol} \%, 0.02 \mathrm{mmol}$), base (1 equiv, 0.1 mmol) $\mathrm{NaI}(1$ equiv, 0.1 mmol$), \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol}), 4{ }^{\circ} \mathrm{C}, 24 \mathrm{~h} .{ }^{\mathrm{b}}$ Isolated yield. ${ }^{\mathrm{c}}$ Enantiomeric excess determined by chiral HPLC analysis of lactone derivative 13aa. ${ }^{\text {d }}$ Reaction conducted at $23{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{e}} 50$
 Kessil Lamp. ${ }^{\text {i}}$ Irradiation with 467 nm Kessil Lamp. ${ }^{\mathrm{j}}$ Irradiation with 525 nm Kessil Lamp. ${ }^{\mathrm{k}}$ No light.

A

B

c

D

4. General Procedures for Catalytic Photochemical Enantioselective

 α-Alkylation with Pyridinium Salts
General Procedure C: Enantioselective α-Alkylation with Amino Acid Derived Pyridinium

 Salts

In a flame dried vial under argon, the MacMillan catalyst $\mathbf{A}(5 \mathrm{mg}, 20 \mathrm{~mol} \%, 0.02 \mathrm{mmol})$, pyridinium salt 12 (1.0 equiv, 0.1 mmol), and $\mathrm{NaI}(15 \mathrm{mg}, 1$ equiv, 0.1 mmol$)$ were dissolved in 1.0 mL DMA. Aldehyde 1 (3 equiv, 0.3 mmol), 2,6-lutidine ($12 \mu \mathrm{~L}$, 1 equiv, 0.1 mmol), and $\mathrm{H}_{2} \mathrm{O}$ $(18 \mu \mathrm{~L}, 10$ equiv, 1.0 mmol) were then added. The reaction mixture was carefully degassed via freeze-pump-thaw (three times), and the vial was refilled with argon. The reaction was stirred and irradiated at $4{ }^{\circ} \mathrm{C}$ with a 390 nm Kessil Lamp positioned approximately at 4 cm distance from the reaction vessel using the EasyMax 102 Advanced Thermostat system (Figure S1). After 24 h of irradiation, saturated aqueous $\mathrm{NaCl}(2 \mathrm{~mL})$ was added, and the mixture was extracted with EtOAc $(4 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under
reduced pressure. The crude mixture was purified by column flash chromatography on silica gel using hexanes/EtOAc as an eluent to afford the desired product 13.

General Procedure D: Enantioselective a-Alkylation with Aminoketone Derived Pyridinium Salts

In a flame dried vial under argon, the Macmillan catalyst $\mathbf{A}(5 \mathrm{mg}, 20 \mathrm{~mol} \%, 0.02 \mathrm{mmol})$ and pyridinium salt $\mathbf{1 4}$ (1.0 equiv, 0.1 mmol) were dissolved in $1.0 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$. Aldehyde 9 (3 equiv, 0.3 mmol) and 2,6-lutidine ($12 \mu \mathrm{~L}, 1$ equiv, 0.1 mmol) were then added. The reaction mixture was carefully degassed via freeze-pump-thaw (three times), and the vial was refilled with argon. The reaction was stirred and irradiated at $4{ }^{\circ} \mathrm{C}$ with a 427 nm Kessil Lamp positioned approximately at 4 cm distance from the reaction vessel using the EasyMax 102 Advanced Thermostat system (Figure S 1). After 24 h of irradiation, saturated aqueous $\mathrm{NaCl}(2 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude mixture was purified by column flash chromatography on silica gel using hexanes/EtOAc as an eluent to afford the desired products $\mathbf{1 5}$.

General Procedure E: Synthesis of Lactones

13

(4:1)
$10 \mathrm{~min} 0^{\circ}$

13aa, 13ea, 13ha,
13ja, 13ka

To assess the enantiopurity of the products $\mathbf{1 3}$ derived from amino acids, a duplicate experiment of the enantioselective α-alkylation (general procedure C) was performed. Upon completion of the reaction, the crude mixture was concentrated under reduced pressure, redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(4 / 1\right.$ ratio, 1 mL) under argon, and cooled to $0{ }^{\circ} \mathrm{C}$. NaBH_{4} (1.0 equiv, 0.1 mmol) was added. After 10 minutes of stirring, the mixture was concentrated under reduced pressure. The reaction mixture was diluted with $\mathrm{EtOAc}(10 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NaCl}(10$
mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using hexanes/EtOAc as an eluent to afford the desired lactone.

General Procedure F: Synthesis of Diesters

13

13ba, 13ca, 13da, 13fa 13ga, 13gb, 13ia, 13ib

To assess the enantiopurity of the products $\mathbf{1 3}$ derived from amino acids, a duplicate experiment of the enantioselective α-alkylation (general procedure C) was performed. Upon completion of the reaction, the crude mixture was concentrated under reduced pressure, redissolved in THF (1 mL) under argon, and cooled to $0{ }^{\circ} \mathrm{C}$. LiAH_{4} (5.0 equiv, 0.5 mmol) was added. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h and then quenched according to the Fieser workup method by the sequential addition of $10 \mu \mathrm{~L} \mathrm{H}_{2} \mathrm{O}, 10 \mu \mathrm{~L} 15 \%$ aqueous NaOH , and $30 \mu \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$. The reaction was dried over MgSO_{4}, passed through a short pad of celite and concentrated under reduced pressure. The crude diol was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and treated with pyridine (3.0 equiv, 0.3 mmol) and benzoyl chloride (2.5 equiv, 0.25 mmol). After 2 h of stirring at $23^{\circ} \mathrm{C}$, the reaction mixture was concentrated under reduced pressure and purified by preparative TLC using hexanes/EtOAc as the eluent to afford the desired diester.

Figure S1. Reaction Setup

The EasyMax 102 Advanced Thermostat system from Mettler-Toledo AutoChem, Inc. (Product ID: 51161711) was used for the first time to perform low temperature photochemical reactions. We chose the EasyMax 102 for reaction setup because of the ease of maintaining low reaction temperatures for long periods of time, while also shining light on the reaction mixture through the clear window display. All photochemical reactions were carried out using Kessil lamps PR160L (https://www.kessil.com/science/PR160L.php) with wavelength of peak intensity of 390 nm or 427 nm . The lamp intensity was set to 100% and positioned at a distance of 4 cm from the reaction vessel, unless otherwise stated.

5. Characterization Data for Products

2,2,2-Trifluoroethyl (R)-3-benzyl-4-oxobutanoate, 13a:

13a was synthesized by following the general procedure C at 0.1 mmol scale from 12a and purified by silica gel column chromatography using hexanes/EtOAc (9.5:0.5) as eluting solvent. 13a was obtained as a colorless oil ($21 \mathrm{mg}, 75 \%$): $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=3.33\left(\mathrm{c}=0.15, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 9.26(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.76(\mathrm{~m}, 2 \mathrm{H}), 3.95-$ $3.85(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.79(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{dd}, \mathrm{J}=13.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}$, $J=17.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J=13.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{dd}, J=17.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 200.5,170.1,137.8,128.8,128.5,126.6,123.5(\mathrm{~d}, J=277.2 \mathrm{~Hz}), 60.2(\mathrm{q}, J=$ 36.0 Hz) 49.2, 34.2, 31.6. ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ 73.8. HRMS (ESI) calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{3}, \mathrm{M}+\mathrm{Na}\right]^{+}: 297.0709$, Found 297.0712. The enantiomeric excess of product 13a determined to be 92% after conversion to lactone 13aa.

(R)-4-Benzyldihydrofuran-2(3H)-one, 13aa:

13aa was synthesized by following the general procedure E at 0.1 mmol scale from 13a and
purified by silica gel column chromatography using hexanes/EtOAc (9:1) as eluting solvent. 13aa was obtained as a colorless oil ($10 \mathrm{mg}, 57 \%$): 92% ee. HPLC conditions: Chiralpak AD_H column $(25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID $)$, hexanes $/ \mathrm{IPA}=95: 05,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$ UV detector, $\mathrm{tR}=22.68 \mathrm{~min}$ (major) and $\mathrm{tR}=24.62 \mathrm{~min}$ (minor). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=7.98\left(\mathrm{c}=0.05, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}, \mathrm{CDCl} 3)$ $\delta 7.31-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.04(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{dd}, J=9.2,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.97(\mathrm{dd}, J=9.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.65(\mathrm{~m}, 3 \mathrm{H}), 2.54(\mathrm{dd}, J=17.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=$ $17.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 177.0,138.3,129.0,128.8,127.0,77.5,77.2$, 76.8, 72.8, 39.1, 37.3, 34.4. HRMS (ESI) calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 199.0730, Found 199.0745.

2,2,2-Trifluoroethyl (R)-3-formylheptanoate, 13b:

13b was synthesized by following the general procedure C at 0.1 mmol scale from $\mathbf{1 2 b}$ and purified by silica gel column chromatography using hexanes/EtOAc (9.5:0.5) as eluting solvent. 13b was obtained as a colorless oil ($16.5 \mathrm{mg}, 69 \%) \cdot[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+5.38\left(\mathrm{c}=0.29, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 9.21(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{dq}, J=12.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dq}, J=12.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.27$ $(\mathrm{m}, 2 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.06-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.80(\mathrm{~m}, 3 \mathrm{H}), 0.73$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 201.1,170.3,123.5(\mathrm{~d}, J=277.2 \mathrm{~Hz}), 60.2(\mathrm{q}, J$ $=33.8 \mathrm{~Hz}$), 47.5, 32.0, 28.8, 28.0, 22.9, 13.9. HRMS (ESI) calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 263.0866, Found 263.0868. The enantiomeric excess of product 13b determined to be 91% after conversion to diester 13ba.

(R)-2-Butylbutane-1,4-diyl dibenzoate, 13ba:

13ba was synthesized by following the general procedure F at 0.1 mmol scale from $\mathbf{1 3 b}$ and purified by preparative TLC using hexanes/EtOAc (9:1) as eluting solvent. 13ba was obtained as a colorless oil ($19 \mathrm{mg}, 54 \%$): 91\% ee. HPLC conditions: Chiralpak AD_H column ($25 \mathrm{~cm} \times 0.46$ cm ID), hexanes $/ \mathrm{IPA}=95: 05,0.7 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$ UV detector, $\mathrm{tR}=12.53 \mathrm{~min}$ (major) and $\mathrm{tR}=$
11.74 min (minor). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-27.99\left(\mathrm{c}=0.05, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03$ (ddd, J $=8.4,4.2,1.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.60-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{td}, J=7.6,5.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.51-4.41(\mathrm{~m}, 2 \mathrm{H})$, $4.38(\mathrm{dd}, J=11.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=11.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{qd}, J=6.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.93$ (dq, $J=10.8,7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.50 (ddt, $J=8.3,6.2,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.37 (ddtd, $J=19.7,9.5,7.5,5.9$ $\mathrm{Hz}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.7,166.7,133.1,133.0,130.4$, 129.7, 128.5, 128.5, 67.5, 63.3, 35.1, 31.2, 30.9, 29.1, 23.0, 14.1. HRMS (ESI) calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}: 377.1723$, Found 377.1713.

2,2,2-Trifluoroethyl (S)-3-formyl-4-methylpentanoate, 13c:

13c was synthesized by following the general procedure C at 0.1 mmol scale from $\mathbf{1 2 c}$ and purified by silica gel column chromatography using hexanes/EtOAc (9.5:0.5) as eluting solvent. 13c was obtained as a colorless oil ($14 \mathrm{mg}, 62 \%$). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+34.26\left(\mathrm{c}=0.17, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 9.37$ ($\mathrm{s}, 1 \mathrm{H}$), $4.26-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.92$ (dddd, $\left.J=14.7,8.3,4.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.59(\mathrm{dd}, J$ $=16.7,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dt}, J=9.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{ddd}, J=16.8,3.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-$ $1.58(\mathrm{~m}, 1 \mathrm{H}), 0.63(\mathrm{dd}, J=6.9,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.53(\mathrm{dd}, J=7.0,1.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 201.5,170.8,123.7(\mathrm{q}, ~ J=277.2 \mathrm{~Hz}), 60.2(\mathrm{q}, J=36.4 \mathrm{~Hz}), 53.4,53.3,28.8,27.3,19.8$, 18.6. ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-73.80(\mathrm{t}, J=8.5 \mathrm{~Hz}$). HRMS (ESI) calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{3}, \mathrm{M}+\mathrm{Na}\right]^{+}: 249.0709$, Found 249.0710. The enantiomeric excess of product 13c determined to be 95% after conversion to diester 13ca.

(S)-2-Isopropylbutane-1,4-diyl dibenzoate, 13ca:

13ca was synthesized by following the general procedure F at 0.1 mmol scale from 13c and purified by preparative TLC using hexanes/EtOAc (9:1) as eluting solvent. 13ca was obtained as a colorless oil ($12 \mathrm{mg}, 34 \%$): 95\% ee. HPLC conditions: Chiralpak AD_H column ($25 \mathrm{~cm} \times 0.46$ cm ID), hexanes $/ \mathrm{IPA}=95: 05,0.7 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$ UV detector, $\mathrm{t} \mathrm{R}=13.75 \mathrm{~min}$ (major) and $\mathrm{tR}=$
12.80 min (minor). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+13.99\left(\mathrm{c}=0.20, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03$ (ddd, $J=8.4,3.0,1.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.55$ (dddd, $J=8.7,5.5,2.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{tdd}, J=7.4,4.3,1.6 \mathrm{~Hz}$, $4 \mathrm{H}), 4.50-4.39(\mathrm{~m}, 3 \mathrm{H}), 4.32(\mathrm{dd}, J=11.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.01(\mathrm{dd}, J=6.8$, $4.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.8,166.7,133.1,133.0,130.4,130.4,129.7,128.5$, 128.5, 66.1, 63.8, 40.7, 29.1, 28.1, 19.7, 19.7. HRMS (ESI) calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}, \mathrm{M}+\mathrm{H}\right]^{+}$: 341.1747, Found 341.1789.

2,2,2-Trifluoroethyl (S)-3-cyclohexyl-4-oxobutanoate, 13d:

13d was synthesized by following the general procedure C at 0.1 mmol scale from $\mathbf{1 2 d}$ and purified by silica gel column chromatography using hexanes/EtOAc (9.5:0.5) as eluting solvent. 13d was obtained as a colorless oil ($16 \mathrm{mg}, 60 \%$). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+9.59\left(\mathrm{c}=0.25, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 9.32(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=12.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=12.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, \mathrm{J}$ $=16.9,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=16.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.23$ (dddt, $J=13.4,10.0,6.5,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.10(\mathrm{ddd}, J=13.2,4.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.05-0.78(\mathrm{~m}, 3 \mathrm{H})$, $0.60(\mathrm{dqd}, J=35.3,12.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 201.6,170.8,124.6(\mathrm{q}, J=$ $275.1 \mathrm{~Hz}), 60.3(\mathrm{q}, J=33.8 \mathrm{~Hz}), 53.1,37.5,30.6,29.4,29.4,26.6,26.5,26.1 .{ }^{19}$ F NMR (565 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 73.8. HRMS (ESI) calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3}, \mathrm{M}+\mathrm{Na}\right]^{+}:$289.1022, Found 289.1044. The enantiomeric excess of product 13d determined to be 96% after conversion to diester 13da.

(S)-2-Cyclohexylbutane-1,4-diyl dibenzoate, 13da:

13da was synthesized by following the general procedure F at 0.1 mmol scale from 13 d and purified by preparative TLC using hexanes/EtOAc (9.5:0.5) as eluting solvent. 13da was obtained as a colorless oil ($12 \mathrm{mg}, 32 \%$): 96\% ee. HPLC conditions: Chiralcel OJ_H column ($25 \mathrm{~cm} \times 0.46$ cm ID), hexanes $/ \mathrm{IPA}=97: 03,0.6 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$ UV detector. $\mathrm{tR}=24.64 \mathrm{~min}$ (major) and $\mathrm{tR}=$ 27.51 min (minor). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-24.20\left(\mathrm{c}=0.19, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-7.98$
$(\mathrm{m}, 4 \mathrm{H}), 7.60-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 4 \mathrm{H}), 4.50-4.38(\mathrm{~m}, 3 \mathrm{H}), 4.30(\mathrm{dd}, J=11.2,5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.07-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{tt}, J=10.6,3.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 1 \mathrm{H})$, $1.60-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.15(\mathrm{dddd}, J=17.3,13.6,8.6,3.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl_{3}) $\delta 166.8,166.7,133.1,133.0,130.4,129.7,129.7,128.5,128.5,66.2,63.9$, $40.3,39.6,30.5,29.9,28.4,26.9,26.8,26.7$. HRMS (ESI) calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 403.1880, Found 403.1908.

2,2,2-Trifluoroethyl (S)-4-(((benzyloxy)carbonyl)amino)-3-formylbutanoate, 13f:

13f was synthesized by following the general procedure C at 0.1 mmol scale from $\mathbf{1 2 f}$ and purified by silica gel column chromatography using hexanes/EtOAc (8.5:1.5) as eluting solvent. $\mathbf{1 3 f}$ was obtained as a colorless oil ($27 \mathrm{mg}, 78 \%$) $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+3.50\left(\mathrm{c}=0.40, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.75(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.09(\mathrm{dd}, J=10.3,5.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.47(\mathrm{q}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.57(\mathrm{q}, J=6.1,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=17.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ $(\mathrm{dd}, J=17.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.8,200.8,170.2,156.7,136.2,128.7$, $128.5,128.3,123.8(\mathrm{q}, ~ J=275.1 \mathrm{~Hz}), 67.2,60.9(\mathrm{q}, J=32.8 \mathrm{~Hz}), 48.5,39.4,30.5 .{ }^{19}$ F NMR (565 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 73.7. HRMS (ESI) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{5}, \mathrm{M}+\mathrm{Na}\right]^{+}: 370.0873$, Found 370.0854. The enantiomeric excess of product $\mathbf{1 3 f}$ determined to be 90% after conversion to lactone 13fa

Benzyl (S)-((5-oxotetrahydrofuran-3-yl)methyl)carbamate, 13fa:

13fa was synthesized by following the general procedure E at 0.1 mmol scale from $\mathbf{1 3 f}$ and purified by silica gel column chromatography using hexanes/EtOAc (9:1) as eluting solvent. 13fa was obtained as a colorless oil ($15 \mathrm{mg}, 60 \%$): 90\% ee. HPLC conditions: Chiralcel OJ_H column (25 $\mathrm{cm} \times 0.46 \mathrm{~cm}$ ID), hexanes $/ \mathrm{IPA}=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$ UV detector, $\mathrm{tR}=38.15 \mathrm{~min}$ (major) and $\mathrm{tR}=35.58 \mathrm{~min}$ (minor). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-11.99\left(\mathrm{c}=0.15, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44$
$-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{dd}, \mathrm{J}=9.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=9.4,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.30(\mathrm{td}, J=6.7,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.89-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=17.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}$, $J=17.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.2,156.5,136.0,128.6,128.2,70.8$, 67.1, 42.9, 35.9, 31.9. HRMS (ESI) calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}: 272.0893$, Found 272.0871.

2,2,2-Trifluoroethyl (3R)-3-benzyl-2-methyl-4-oxobutanoate, 13 g :

$\mathbf{1 3 g}$ was synthesized by following the general procedure C at 0.1 mmol scale from $\mathbf{1 2 g}$ and purified by silica gel column chromatography using hexanes/EtOAc (9.5:0.5) as eluting solvent. 13g was obtained as a colorless oil ($16 \mathrm{mg}, 56 \%$): $d r 2: 1,[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+6.82\left(\mathrm{c}=0.16, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.66(\mathrm{~s}, 1.2 \mathrm{H}), 9.63(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=7.4,4.0 \mathrm{~Hz}, 5 \mathrm{H}), 7.19-7.14$ $(\mathrm{m}, 2.74 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 4.91 \mathrm{H}), 4.45-4.33(\mathrm{~m}, 3.79 \mathrm{H}), 4.28(\mathrm{dq}, J=12.6,8.4 \mathrm{~Hz}, 1.41 \mathrm{H})$, $3.10-3.01(\mathrm{~m}, 2.57 \mathrm{H}), 3.01-2.93(\mathrm{~m}, 2.90 \mathrm{H}), 2.91-2.77(\mathrm{~m}, 4.12 \mathrm{H}), 2.76-2.66(\mathrm{~m}, 1.35 \mathrm{H})$, 1.21 (dd, $J=7.2,5.1 \mathrm{~Hz}, 7.94 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.23,202.16,173.38,172.97$, 137.92, 137.84, 129.16, 129.02, 128.94, 128.88, 126.97, 126.95, 123.93 ($\mathrm{q}, J=275.1 \mathrm{~Hz}$), 123.89 $(\mathrm{q}, J=275.1 \mathrm{~Hz}), 60.73(\mathrm{q}, J=32.8 \mathrm{~Hz}), 55.21,54.70,38.64,38.04,32.84,32.37,14.23,13.50$. ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 73.74,73.76$. HRMS (ESI) calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 311.0866, Found 311.0872 . The enantiomeric excess of product $\mathbf{1 3 g}$ determined to be 99% and 97% for the major and minor diastereomers, respectively, after conversion to diester 13ga.

(2R)-2-Benzyl-3-methylbutane-1,4-diyl dibenzoate, 13ga:

13ga was synthesized by following the general procedure F at 0.1 mmol scale from $\mathbf{1 3 g}$ and purified by preparative TLC using hexanes/EtOAc (9.5:0.5) as eluting solvent. 13ga was obtained as a colorless oil ($20 \mathrm{mg}, 50 \%$): $d r 2: 1,99 \%$ ee, 97% ee. HPLC conditions: Chiralcel OJ_H column $(25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID $)$, hexanes $/ \mathrm{IPA}=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$ UV detector, $d r 1 \mathrm{tR}=14.76 \mathrm{~min}$ (major) and $\mathrm{tR}=19.01 \mathrm{~min}$ (minor), $\mathrm{t} \mathrm{R}=16.52 \mathrm{~min}$ (major) and $\mathrm{tR}=19.94 \mathrm{~min}$ (minor). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=$
$-15.64\left(\mathrm{c}=0.11, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07-8.03(\mathrm{~m}, 2 \mathrm{H}), 8.02-7.98(\mathrm{~m}, 2 \mathrm{H})$, $7.98-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 8 \mathrm{H}), 7.27(\mathrm{dt}, J=4.9,3.3 \mathrm{~Hz}, 6 \mathrm{H}), 7.23$ $-7.16(\mathrm{~m}, 6 \mathrm{H}), 4.42(\mathrm{ddd}, J=11.2,6.4,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.38-4.30(\mathrm{~m}, 4 \mathrm{H}), 4.28(\mathrm{dd}, J=11.3,4.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.92(\mathrm{dd}, J=13.9,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.88-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{dd}, J=13.9,9.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.42$ $-2.32(\mathrm{~m}, 4 \mathrm{H}), 1.16(\mathrm{dd}, J=6.9,5.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) 166.69,166.65$, $166.64,166.62,140.12,140.02,133.15,133.12,130.33,130.23,129.70,129.67,129.15,129.14$, $128.57,128.53,126.40,68.21,67.66,65.07,64.81,53.59,41.96,41.53,35.82,34.23,33.76,33.69$, 13.91, 13.64. HRMS (ESI) calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}: 425.1723$, Found 425.1721.

2,2,2-Trifluoroethyl (3R)-3-benzyl-2-isopropyl-4-oxobutanoate, 13 h :

13h was synthesized by following the general procedure C at 0.1 mmol scale from $\mathbf{1 2 h}$ and purified by silica gel column chromatography using hexanes/EtOAc (9.5:0.5) as eluting solvent. 13h was obtained as a colorless oil ($16 \mathrm{mg}, 51 \%$): $d r 1: 1 .[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-8.80\left(\mathrm{c}=0.13, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.83(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.39(\mathrm{~m}, 2 \mathrm{H}), 3.07-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.80(\mathrm{~m}$, $1 \mathrm{H}), 2.53(\mathrm{dd}, J=7.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.8,202.8,172.3,137.7,129.1,128.9,127.0,123.9(\mathrm{q}$, $J=274.1 \mathrm{~Hz}), 60.4(\mathrm{q}, ~ J=38.0 \mathrm{~Hz}), 52.2,51.9,33.5,28.0,20.9,19.6 .{ }^{19} \mathbf{F} \mathbf{N M R}\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ 73.74. HRMS (ESI) calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3}, \mathrm{M}+\mathrm{Na}\right]^{+}: 339.1179$, Found 339.1187. The enantiomeric excess of product $\mathbf{1 3 h}$ determined to be 97% and 98% for the major and minor diastereomers, respectively, after conversion to diester 13ha and 13hb.

(2R)-2-Benzyl-3-isopropylbutane-1,4-diyl dibenzoate, 13ha and 13hb:

13ha and 13hb were synthesized by following the general procedure F at 0.2 mmol scale from 13h and purified by silica gel column chromatography using hexanes/EtOAc (10:1) as eluting solvent to yield separable diastereomers.

13ha (diastereomer 1) was obtained as a colorless oil ($6.2 \mathrm{mg}, 8 \%$ yield, 97% ee): HPLC conditions: Chiralpak AD-H column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), hexanes $/ \mathrm{IPA}=95: 5,0.8 \mathrm{~mL} / \mathrm{min}, 230$ nm UV detector, $\mathrm{tR}=9.05 \mathrm{~min}$ (major) and $\mathrm{tR}=11.19 \mathrm{~min}$ (minor). $\quad[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+37.1(\mathrm{c}=0.07$, CHCl_{3}). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.97-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.50(\mathrm{~m}$, $2 \mathrm{H}), 7.43(\mathrm{dt}, J=14.0,7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.19(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.60-4.48(\mathrm{~m}$, $2 \mathrm{H}), 4.35-4.27(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{dd}, J=13.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=13.7,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.52$ (dp, $J=10.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~h}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{p}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.73,166.59,140.41,133.15$, $133.08,130.34,130.27,129.69,129.64,129.10,128.72,128.61,128.52,126.39,65.77,63.86$, 44.28, 40.03, 34.77, 27.53, 21.94, 20.19. HRMS (ESI) calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 453.2042, Found 453.2020.

13hb (diastereomer 2) was obtained as a colorless oil ($4.8 \mathrm{mg}, 6 \%$ yield, 98% ee): HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), hexanes $/ \mathrm{IPA}=98: 2,0.5 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$ UV detector, $\mathrm{tR}=26.67 \mathrm{~min}$ (major) and $\mathrm{tR}=28.52 \mathrm{~min}$ (minor). $[\alpha]_{\mathrm{D}}{ }^{25}=-5.0\left(\mathrm{c}=0.12, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{ddd}, J=24.6,8.3,1.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.45-$ $7.37(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 4.57-4.47(\mathrm{~m}, 3 \mathrm{H}), 4.30(\mathrm{dd}, J=11.3$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=13.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=13.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{qt}, J=7.4,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.15-2.04(\mathrm{~m}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.62,166.54,140.02,133.00,132.96,130.18$, $130.15,129.54,129.53,129.09,128.57,128.46,128.40,126.23,65.38,63.37,44.52,40.07,37.00$, 27.56, 21.59, 20.22. HRMS (ESI) calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}: 453.2042$, Found 453.2024.

2,2,2-Trifluoroethyl (3R)-2,3-dibenzyl-4-oxobutanoate, 13i:

$\mathbf{1 3 i}$ was synthesized by following the general procedure C at 0.1 mmol scale by $\mathbf{1 2 i}$ and purified by silica gel column chromatography using pentane/ $\mathrm{Et}_{2} \mathrm{O}$ (9.5:0.5) as eluting solvent. 13i was obtained as a colorless oil ($20 \mathrm{mg}, 55 \%$): $d r 1: 1,[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-5.50\left(\mathrm{c}=0.35, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{~s}, 0.3 \mathrm{H}), 9.68(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{td}, J=7.4,4.9 \mathrm{~Hz}, 5.2 \mathrm{H}), 7.25-$ $7.21(\mathrm{~m}, 3.2 \mathrm{H}), 7.14(\mathrm{dd}, J=9.0,7.2 \mathrm{~Hz}, 4.4 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 1.4 \mathrm{H}), 4.54-4.36(\mathrm{~m}, 1.7 \mathrm{H}), 4.36$

- $4.22(\mathrm{~m}, 1.6 \mathrm{H}), 3.31(\mathrm{dt}, J=8.9,6.4 \mathrm{~Hz}, 1.1 \mathrm{H}), 3.22-3.02(\mathrm{~m}, 3.7 \mathrm{H}), 3.00-2.87(\mathrm{~m}, 4.8 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.14,201.85,172.20,171.67,137.74,129.16,129.08,129.01$, $128.92,128.85,128.79,127.14,127.02,123.76(\mathrm{q}, J=275.1 \mathrm{~Hz}), 60.53(\mathrm{q}, J=38.0 \mathrm{~Hz}), 53.61$, $53.35,46.83,45.94,35.39,35.38,33.05,32.84 .{ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 73.52,73.53$. HRMS (ESI) calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{3}, \mathrm{M}+\mathrm{Na}\right]^{+}: 387.1179$, Found 387.1153. The enantiomeric excess of product $\mathbf{1 3 i}$ determined to be 97% and 97% respectively, after conversion to lactone 13ia.
(4R)-3,4-Dibenzyldihydrofuran-2(3H)-one, 13ia:

13ia was synthesized by following the general procedure E at 0.2 mmol scale from $\mathbf{1 3 i}$ and purified by silica gel column chromatography using hexanes/EtOAc (5:1) as eluting solvent. 13ia was obtained as a colorless oil ($10.3 \mathrm{mg}, 19 \%$ yield, $3: 2 \mathrm{dr}, 97 \% / 97 \%$ ee). HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), hexanes $/ \mathrm{IPA}=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$ UV detector: $\mathrm{tR}=$ 33.91 min (major), $\mathrm{tR}=35.19 \mathrm{~min}$ (major) $\mathrm{tR}=38.86 \mathrm{~min}$ (minor), 46.22 min (minor). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=$ $+14.7\left(\mathrm{c}=0.45, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.19(\mathrm{~m}$, $13 \mathrm{H}), 7.17$ (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-3.99(\mathrm{~m}$, $3 \mathrm{H}), 3.86(\mathrm{dd}, J=9.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=15.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.06(\mathrm{~m}, 2 \mathrm{H}), 3.02-$ $2.93(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{dd}, J=15.0,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.60(\mathrm{~m}, 3 \mathrm{H}), 2.55-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{dd}$, $J=13.7,12.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.51,177.96$ 138.60, 137.96, 137.71, $129.32,128.98,128.84,128.76,128.75,128.61,128.41,126.93,126.80,126.75,126.71,71.18$, 69.43, 46.45, 45.29, 41.32, 39.92, 38.53, 35.05, 32.93, 30.88. HRMS (ESI) calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}: 289.1199$, Found 289.1140.

2,2,2-Trifluoroethyl (3R)-3-benzyl-2-(2-(methylthio)ethyl)-4-oxobutanoate, 13j:

$\mathbf{1 3 j}$ was synthesized by following the general procedure C at 0.1 mmol scale from $\mathbf{1 2} \mathbf{j}$ and purified by silica gel column chromatography using pentane/ $\mathrm{Et}_{2} \mathrm{O}$ (9.5:0.5) as eluting solvent. 13j was
obtained as a colorless oil ($15 \mathrm{mg}, 43 \%$): $d r$ 1:1.7, $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-23.63\left(\mathrm{c}=0.11, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600$ $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 9.75(\mathrm{~s}, 0.6 \mathrm{H}), 9.68(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.25-7.21(\mathrm{~m}$, $2 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 4 \mathrm{H}), 4.62-4.31(\mathrm{~m}, 3.9 \mathrm{H}), 3.19-3.00(\mathrm{~m}, 5.7 \mathrm{H}), 2.88(\mathrm{dd}, \mathrm{J}=13.5,5.5 \mathrm{~Hz}$, 0.7 H), 2.80 (dd, J = 13.3, $5.0 \mathrm{~Hz}, 1.2 \mathrm{H}$), $2.62-2.50(\mathrm{~m}, 2.2 \mathrm{H}), 2.48-2.42(\mathrm{~m}, 2.2 \mathrm{H}), 2.20-2.07$ $(\mathrm{m}, 2 \mathrm{H}), 2.06(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.94-1.71(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl3) δ 201.86, $201.83,172.35,171.97,137.74,137.67,129.14,129.09,129.07,128.95,128.94,127.05,125.67$, $123.90(\mathrm{q}, \mathrm{J}=276.0 \mathrm{~Hz}), 123.84(\mathrm{q}, \mathrm{J}=276.6 \mathrm{~Hz}), 122.06,122.00,120.16,60.95(\mathrm{q}, \mathrm{J}=35.0 \mathrm{~Hz})$, 60.79 (q, J = 36.0 Hz), 54.34, 54.30, 43.71, 42.94, 33.09, 32.71, 32.01, 31.80, 28.49, 28.36, 15.46, 15.41. ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 73.50(\mathrm{~m})$. HRMS (ESI) calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}, \mathrm{M}+\right.$ $\mathrm{Na}]^{+}: 371.0899$, Found 371.0915 . The enantiomeric excess of product $\mathbf{1 3 j}$ determined to be 99% and 97% respectively, after conversion to diesters 13ja and 13jb.
(2R)-2-Benzyl-3-(2-(methylthio)ethyl)butane-1,4-diyl dibenzoate, 13ja and 13jb:

$\mathbf{1 3} \mathbf{j a}$ and $\mathbf{1 3} \mathbf{j b}$ were synthesized by following the general procedure F at 0.25 mmol scale from $\mathbf{1 3} \mathbf{j}$ and purified by silica gel column chromatography using hexanes/EtOAc (5:1) as eluting solvent to yield separable diastereomers.

13ja (diastereomer 1) was obtained as a colorless oil ($12.9 \mathrm{mg}, 11 \%$ yield, 97% ee): HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), hexanes $/ \mathrm{IPA}=95: 5,0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$ UV detector, $\mathrm{tR}=22.42 \mathrm{~min}$ (major) and $\mathrm{tR}=25.17 \mathrm{~min}$ (minor). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{25}=+13.8\left(\mathrm{c}=0.39, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03-7.93(\mathrm{~m}, 4 \mathrm{H}), 7.61-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.24$ $(\mathrm{m}, 3 \mathrm{H}), 7.21(\mathrm{~m}, 3 \mathrm{H}), 4.55-4.39(\mathrm{~m}, 2 \mathrm{H}), 4.42-4.27(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{dd}, J=13.8,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.83-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.25$ $(\mathrm{m}, 1 \mathrm{H}), 1.99-1.76(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.50, 166.45, 139.81, 133.10, $133.05,130.02,130.00,129.57,128.99,128.65,128.51,128.48,128.44,126.39,65.46,65.08$, 41.26, 37.67, 35.09, 32.47, 28.03, 15.57. HRMS (ESI) calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~S}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 485.1757, Found 483.1745.

13jb (diastereomer 2) was obtained as a colorless oil ($13.5 \mathrm{mg}, 12 \%$ yield, 99% ee): HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), hexanes $/ \mathrm{IPA}=95: 5,0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$

UV detector, $\mathrm{tR}=17.97 \mathrm{~min}$ (major) and $\mathrm{tR}=20.72 \mathrm{~min}$ (minor). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+8.9\left(\mathrm{c}=0.38, \mathrm{CHCl}_{3}\right)$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06-8.00(\mathrm{~m}, 2 \mathrm{H}), 8.01-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.48$ $-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 3 \mathrm{H}), 4.51(\mathrm{dd}, J=11.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-$ $4.35(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{dd}, J=11.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=13.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=13.9$, $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.97-$ $1.80(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.55,166.46,139.75,133.14,133.06,130.02$, $130.00,129.57,129.55,129.00,128.66,128.51,128.44,126.38,65.10,64.80,41.40,37.99,35.37$, 32.36, 28.57, 15.50. HRMS (ESI) calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~S}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 485.1757, Found 485.1755.

2,2,2-Trifluoroethyl (3R)-3-benzyl-2-(4-hydroxybenzyl)-4-oxobutanoate, 13k:

$\mathbf{1 3 k}$ was synthesized by following the general procedure C at 0.1 mmol scale from $\mathbf{1 2 k}$ and purified by silica gel column chromatography using hexanes/EtOAc (8.0:2.0) as eluting solvent. 13k was obtained as a colorless oil ($25 \mathrm{mg}, 66 \%$): $d r 2: 1,[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-5.83\left(\mathrm{c}=0.26, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.76(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 0.35 \mathrm{H}), 9.66(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dt}, \mathrm{J}=7.7,6.6 \mathrm{~Hz}, 4 \mathrm{H})$, $7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, \mathrm{J}=13.6,8.5 \mathrm{~Hz}, 3 \mathrm{H}), 5.06(\mathrm{brs}, 2 \mathrm{H}), 4.49-4.36(\mathrm{~m}, 2 \mathrm{H}), 4.35-4.21(\mathrm{~m}$, 2 H), $3.24(\mathrm{dt}, \mathrm{J}=8.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.11(\mathrm{~m}, 0.74 \mathrm{H}), 3.06-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.93(\mathrm{~m}$, 2 H), 2.86 (ddd, $\mathrm{J}=28.1,14.0,6.0 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.28,202.01,172.26$, $171.74,154.72,154.65,137.76,137.66,130.23,130.14,129.74,129.15,129.09,128.92,127.02$, $126.99,123.85(q, J=276.2 \mathrm{~Hz}), 123.78(\mathrm{q}, \mathrm{J}=275.6 \mathrm{~Hz}), 115.69,115.62,60.76(\mathrm{q}, \mathrm{J}=36.0$ $\mathrm{Hz}), 60.62(\mathrm{q}, \mathrm{J}=36.0 \mathrm{~Hz}), 53.57,53.26,47.10,46.24,34.60,34.55,33.04,32.88 .{ }^{19}$ F NMR (565 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 73.49(\mathrm{t}, \mathrm{J}=8.7) 73.74(\mathrm{t}, \mathrm{J}=8.9)$. HRMS (ESI) calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{4}, \mathrm{M}+\right.$ $\mathrm{Na}]^{+}: 403.1128$, Found 403.1154. The enantiomeric excess of product $\mathbf{1 3 k}$ determined to be 97% and 96% for the major and minor diastereomers, respectively, after conversion to lactone $\mathbf{1 3 k} \mathbf{k a}$.
(4R)-4-Benzyl-3-(4-hydroxybenzyl)dihydrofuran-2(3H)-one, 13ka:

13ka was synthesized by following the general procedure E at 0.1 mmol scale from $\mathbf{1 3 k}$ and purified by silica gel column chromatography using hexanes/EtOAc (8:2) as eluting solvent. 13ka was obtained as a colorless oil ($10 \mathrm{mg}, 35 \%$): $d r 2: 197 \%$ ee, 96% ee. HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), hexanes $/ \mathrm{IPA}=80: 20,0.9 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$ UV detector, $d r 1 \mathrm{tR}$ $=19.44 \min$ (major) and $\mathrm{tR}=22.273 \mathrm{~min}$ (minor), $d r 2 \mathrm{tR}=28.70 \mathrm{~min}$ (major) and $\mathrm{tR}=28.42 \mathrm{~min}$ (minor). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+16.87\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.08-6.97(\mathrm{~m}, 4 \mathrm{H}), 6.86$ (d, J = 8.4 Hz, 1.5H), $6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.9 \mathrm{H}), 6.69-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.9 \mathrm{H})$, 6.49 (d, $J=8.5 \mathrm{~Hz}, 1.43 \mathrm{H}$), 4.31 (brs, 0.5 H), 4.24 (brs, 0.7 H), 3.60 (d, $J=9.1 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.42$ (dd, $J=8.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=9.2,4.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.18-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.65(\mathrm{~m}, 1.9 \mathrm{H})$, $2.58-2.45(\mathrm{~m}, 1.3 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 0.6 \mathrm{H}), 2.16(\mathrm{dd}, \mathrm{J}=13.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.92(\mathrm{~m}$, 2.7 H), $1.81(\mathrm{dd}, \mathrm{J}=13.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}) . .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 177.96,177.29,155.52$, $155.26,139.20,138.69,130.88,130.85,129.85,129.81,129.21,128.81,128.33,128.14,127.98$, $115.72,115.68,70.56,68.68,46.74,46.63,45.30,38.37,38.25,33.97,30.41,30.23$. HRMS (ESI) calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}, \mathrm{M}+\mathrm{Na}\right]^{+}: 305.1148$, Found 305.1120.

2,2,2-Trifluoroethyl (3R)-3-benzyl-2-(3-hydroxybenzyl)-4-oxobutanoate, 131:

$\mathbf{1 3 1}$ was synthesized by following the general procedure C at 0.1 mmol scale from $\mathbf{1 2 1}$ and purified by silica gel column chromatography using hexanes/EtOAc (8:1) as eluting solvent. 131 was obtained as a colorless oil ($18.2 \mathrm{mg}, 48 \%$ yield, $5: 4 \mathrm{dr}):[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-4.4\left(\mathrm{c}=0.91, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.70(\mathrm{~s}, 1 \mathrm{H}), 9.59(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{~m}, 2 \mathrm{H})$, $7.10-6.98(\mathrm{~m}, 6 \mathrm{H}), 6.62(\mathrm{dd}, J=8.4,2.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{t}$,
$J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.76(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{dd}, J=12.9,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.30-4.19(\mathrm{~m}, 2 \mathrm{H}), 3.25-$ $3.18(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.05(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.76(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.22$, $201.91,172.08,171.56,155.81,155.74,139.46,137.63,137.52,129.98,129.94,129.06,129.03$, $128.82,126.93,126.88,121.33,121.19,115.72,114.01,113.92,60.71,60.46,53.44,53.22,46.55$, 45.47, 35.06, 35.05, 32.94, 32.67. ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-73.47. HRMS (ESI) calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}: 403.1128$, Found 403.1158. The enantiomeric excess of product 131 determined to be 98% and 83% for the major and minor diastereomers, respectively, after conversion to lactone 13la.
(4R)-4-Benzyl-3-(3-hydroxybenzyl)dihydrofuran-2(3H)-one, 13la:

131a was synthesized by following the general procedure E at 0.05 mmol scale from 131 and purified by silica gel column chromatography using hexanes/EtOAc (3:1) as eluting solvent. 13la was obtained as a colorless oil ($2.8 \mathrm{mg}, 20 \%$ yield, $5: 4 \mathrm{dr}, 98 \% / 83 \%$ ee). HPLC conditions: Chiralcel OJ-H column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), hexanes $/$ IPA $=80: 20,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$ UV detector: $\mathrm{tR}=28.83 \mathrm{~min}$ (minor), $\mathrm{tR}=30.43 \mathrm{~min}$ (major), $\mathrm{tR}=33.90 \mathrm{~min}$ (minor) and $\mathrm{tR}=38.14$ \min (major). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+11.7\left(\mathrm{c}=0.12, \mathrm{CDCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~m}, 6 \mathrm{H}), 7.22$ (m, 2H), $7.17(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.72$ $(\mathrm{s}, 1 \mathrm{H}), 4.13-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.08-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=15.1,4.7 \mathrm{~Hz}$, 1 H), 3.11 (ddd, $J=11.5,7.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{td}, J=15.7,14.9,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{dd}, J=14.1$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=15.1,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{ddd}, J=8.7,7.0,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.57-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{dd}, J=13.7,12.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.58$, $177.96,155.85,155.78,140.55,139.47,138.45,138.00,130.05,129.93,128.99,128.79,128.70$, $126.80,126.72,121.81,120.86,116.04,115.33,113.91,113.71,71.26,69.49,46.28,45.14,41.21$, 39.90, 38.55, 34.68, 32.94, 30.74. HRMS (ESI) calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}, \mathrm{M}+\mathrm{Na}\right]^{+}: 305.1148$, Found 305.1177.

(R)-2-Benzyl-4-oxo-4-phenylbutanal, 15a:

$\mathbf{1 5 a}$ was synthesized by following the general procedure D at 0.1 mmol scale from $\mathbf{1 4 a}$ and purified by silica gel column chromatography using Hexane/EtOAc (9:1) as eluting solvent. 15a was obtained as a colorless oil ($18 \mathrm{mg}, 70 \%$): 93\% ee. HPLC conditions: Chiralpak IC column (25 cm $\times 0.46 \mathrm{~cm} \mathrm{ID}$), hexanes $/ \mathrm{IPA}=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$ UV detector, $\mathrm{tR}=30.26 \mathrm{~min}($ maJor $)$ and $\mathrm{tR}=23.98 \mathrm{~min}$ (minor). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{25}=-7.27\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.90$ (s, 1H), 7.91 (dd, $J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.3,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-$ $7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 3 \mathrm{H}), 3.52-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{dd}, J=13.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-$ $2.96(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=13.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.1,198.0,138.3$, 136.6, 133.5, 129.2, 128.9, 128.8, 128.2, 126.9, 48.5, 37.4, 34.9. HRMS (ESI) calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}: 275.1043$, Found 275.1048.

(R)-2-Benzyl-4-oxo-4-(p-tolyl)butanal, 15b:

$\mathbf{1 5 b}$ was synthesized by following the general procedure D at 0.1 mmol scale from $\mathbf{1 4 b}$ and purified by silica gel column chromatography using Hexane/EtOAc (9:1) as eluting solvent. 15b was obtained as a colorless oil ($16 \mathrm{mg}, 60 \%$): 93\% ee. HPLC conditions: Chiralpak IC column (25 cm $\times 0.46 \mathrm{~cm} \mathrm{ID}$), hexanes $/ \mathrm{IPA}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector, $\mathrm{tR}=39.56 \mathrm{~min}$ (maJor) and $\mathrm{tR}=32.94 \mathrm{~min}$ (minor). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+7.99\left(\mathrm{c}=0.12, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.90$ $(\mathrm{s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=8.1,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 5 \mathrm{H}), 3.45-3.34$ $(\mathrm{m}, 2 \mathrm{H}), 3.16(\mathrm{dd}, J=13.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=13.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40$ (s, 3H). ${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.3,197.6,144.4,138.3,134.1,129.4,129.2,128.9$, 128.3, 126.8, 48.5, 37.3, 34.9, 21.8. HRMS (ESI) calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}: 289.1199$,

Found 289.1207.

(R)-2-Benzyl-4-(4-bromophenyl)-4-oxobutanal, 15c:

15c was synthesized by following the general procedure D at 0.20 mmol scale from $\mathbf{1 4 c}$ and purified by silica gel column chromatography using hexanes/EtOAc (9:1) as eluting solvent. 15c was obtained as a colorless oil ($27.3 \mathrm{mg}, 41 \%$ yield, 90% ee): HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), hexanes $/ \mathrm{IPA}=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} \mathrm{UV}$ detector, $\mathrm{tR}=20.31$ \min (minor) and $\mathrm{tR}=22.30 \mathrm{~min}$ (major). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+10.5\left(\mathrm{c}=1.10, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28-7.15(\mathrm{~m}, 3 \mathrm{H}), 3.47-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}$, $J=14.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.84,196.92,137.93,135.16,131.96$, 129.60, 129.03, 128.83, 128.58, 126.86, 48.40, 37.05, 34.67. HRMS (ESI) calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}: 353.0148$, Found 353.0169, 355.0151.

(R)-2-Benzyl-4-(4-chlorophenyl)-4-oxobutanal, 15d:

15d was synthesized by following the general procedure D at 0.1 mmol scale from $\mathbf{1 4 d}$ and purified by silica gel column chromatography using Hexane/EtOAc (9:1) as eluting solvent. 15d was obtained as a colorless oil ($20.5 \mathrm{mg}, 72 \%$): 82\% ee. HPLC conditions: Chiralpak IC column (25 $\mathrm{cm} \times 0.46 \mathrm{~cm}$ ID), hexanes $/ \mathrm{IPA}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector, $\mathrm{tR}=21.75 \mathrm{~min}$ (maJor) and $\mathrm{tR}=19.51 \mathrm{~min}($ minor $) .[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+9.59\left(\mathrm{c}=0.25, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.89$ $(\mathrm{s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.4$
$\mathrm{Hz}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{dd}, J=14.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.91(\mathrm{~m}$, $1 \mathrm{H}), 2.82(\mathrm{dd}, J=13.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.0,196.8,139.9,138.0$, 134.9, 129.6, 129.1, 129.1, 128.9, 127.0, 48.5, 37.2, 34.8. HRMS (ESI) calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}: 309.0653$, Found 309.0629.

(R)-2-Benzyl-4-(4-fluorophenyl)-4-oxobutanal, 15e:

$\mathbf{1 5 e}$ was synthesized by following the general procedure D at 0.1 mmol scale from $\mathbf{1 4 e}$ and purified by silica gel column chromatography using Hexane/EtOAc (9:1) as eluting solvent. 15e was obtained as a colorless oil ($15.8 \mathrm{mg}, 58 \%$): 84% ee. HPLC conditions: Chiralpak IC column (25 $\mathrm{cm} \times 0.46 \mathrm{~cm}$ ID), hexanes $/ \mathrm{IPA}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} U V$ detector, $\mathrm{tR}=23.08$ (maJor) and $\mathrm{tR}=18.92 \mathrm{~min}$ (minor). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-9.83\left(\mathrm{c}=0.30, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.89$ (s, 1H), 7.93 (dd, $J=8.9,5.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.11$ (t, $J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.47-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dd}, \mathrm{J}=13.9,8.0 \mathrm{~Hz}$, 1H). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.0,196.4,166.0\left(\mathrm{~d},{ }^{1} J=255.2 \mathrm{~Hz}, \mathrm{Cq}\right), 138.1,133.0(\mathrm{~d}$, $\left.{ }^{4} J=2.9 \mathrm{~Hz}, \mathrm{Cq}\right), 130.8\left(\mathrm{~d},{ }^{3} J=9.4 \mathrm{~Hz}, \mathrm{CH}\right), 129.2,128.9,126.9,115.8\left(\mathrm{~d},{ }^{2} J=21.9 \mathrm{~Hz}, \mathrm{CH}\right)$, $48.5,37.2,34.8 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-104.7. HRMS (ESI) calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FO}_{2}\right.$, $\mathrm{M}+\mathrm{Na}]^{+}: 293.0948$, Found 293.0971.

(R)-2-Benzyl-4-(2-fluorophenyl)-4-oxobutanal, 15f:

15f was synthesized by following the general procedure D at 0.20 mmol scale from $\mathbf{1 4 f}$ and purified by silica gel column chromatography using hexanes/EtOAc (9:1) as eluting solvent. $\mathbf{1 5 f}$ was obtained as a colorless oil ($26.9 \mathrm{mg}, 50 \%$ yield, 90% ee) : HPLC conditions: Chiralpak IC
column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm} \mathrm{ID}$), hexanes $/$ IPA $=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$ UV detector, $\mathrm{tR}=20.16$ \min (minor) and $\mathrm{tR}=23.69 \mathrm{~min}$ (major). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-2.1\left(\mathrm{c}=1.35, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{td}, \mathrm{J}=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{tdd}, \mathrm{J}=7.4,5.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}$, $\mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{tt}, \mathrm{J}=7.5,4.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.11(\mathrm{dd}, \mathrm{J}=11.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.31(\mathrm{~m}, 2 \mathrm{H})$, $3.16(\mathrm{dd}, \mathrm{J}=13.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, \mathrm{J}=14.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, \mathrm{J}=13.9,8.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.90,196.07,163.33,160.80,138.15,134.93,134.84,130.63$, $129.04,128.73,126.72,124.47,116.82,116.58,48.51,42.41,34.77 .{ }^{19} \mathbf{F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-108.63. HRMS (ESI) calculated for [$\left.\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}: 293.0948$, Found 293.0971.

(R)-3-Benzyl-4-oxobutanenitrile, 15g:

$\mathbf{1 5 g}$ was synthesized by following the general procedure D at 0.1 mmol scale from $\mathbf{1 4 g}$ and purified by silica gel column chromatography using hexanes/EtOAc (4:1) as eluting solvent. 15g was obtained as a colorless oil ($13.7 \mathrm{mg}, 39 \%$ yield): $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 6}}=+8.0\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 2 H), $3.25-3.17$ (m, 1H), $3.05-2.97$ (m, 2H), 2.53 (dd, $J=17.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45 (dd, $J=16.9$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.49,135.91,129.15,128.98,127.47,117.62$, 49.42, 34.10, 15.60. HRMS (ESI) calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}, \mathrm{M}+\mathrm{Na}\right]^{+}: 196.0733$, Found 196.0749. The enantiomeric excess of product $\mathbf{1 5 g}$ determined to be 94% after conversion to ester 15ga.

(R)-2-Benzyl-3-cyanopropyl benzoate, 15ga:

15ga was synthesized by following the general procedure F at 0.1 mmol scale from $\mathbf{1 5 g}$ and purified by silica gel column chromatography using hexanes/EtOAc (3:1) as eluting solvent. 15ga was obtained as a colorless oil ($2.3 \mathrm{mg}, 8 \%$ yield, $94 \% \mathrm{ee}$). HPLC conditions: Chiralpak IC column $(25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID $)$, hexanes $/ \mathrm{IPA}=80: 20,0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$ UV detector, $\mathrm{tR}=19.46 \mathrm{~min}$ (major) and $\mathrm{tR}=22.86 \mathrm{~min}$ (minor). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+8.3\left(\mathrm{c}=0.12, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.09-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.3,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.2$

Hz, 2H), $7.30-7.19$ (m, 5H), 4.45 (dd, $J=11.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ (dd, $J=11.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ (dd, $J=13.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (dd, $J=13.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.58-2.40(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.20,137.43,133.76,133.38,130.22,129.67,129.60,129.05,128.93,128.56$, 128.53, 127.04, 117.90, 65.62, 37.17, 36.66, 19.32. HRMS (ESI) calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}, \mathrm{M}+\right.$ $\mathrm{Na}]^{+}: 302.1151$, Found 302.1112.

6. Mechanistic Studies

A. Enantioconvergent Synthesis

Following the general procedure C at 0.1 mmol scale, both enantiomers of alanine-derived Katritzky salt, ($\boldsymbol{S}) \mathbf{- 1 2 f}$ and $(\boldsymbol{R}) \mathbf{- 1 2 f}$, were subjected to reaction conditions to test whether the same enantiomer of product would be favored. Alkylation product $\mathbf{1 3 f}$ was synthesized from (\boldsymbol{S}) - $\mathbf{1 2 f}$ in 56% yield ($2: 1 \mathrm{dr}, 99 \%$ ee, 97% ee) and from (\boldsymbol{R})-12f in 50% yield ($2: 1 \mathrm{dr}, 97 \%$ ee, 97% ee). In both cases, the major enantiomer of both diastereomers of product $\mathbf{1 3 f}$ was the same, as measured by chiral HPLC analysis of diester 13fa. HPLC conditions: Chiralcel OJ_H column ($25 \mathrm{~cm} \times 0.46$ cm ID), hexanes $/ \mathrm{IPA}=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm} U V$ detector.

B. Quantum Yield

The quantum yield of the reaction was determined using procedures reported previously by standard ferrioxalate actinometry. ${ }^{5}$

The photon flux of the Kessil lamp (390 nm) was determined by standard ferrioxalate actinometry. A 0.15 M solution of ferrioxalate was prepared by dissolving potassium ferrioxalate hydrate (2.21 $\mathrm{g})$ in in $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(30 \mathrm{~mL})$. A buffered solution of phenanthroline was prepared by dissolving phenanthroline (50 mg) and sodium acetate $(11.25 \mathrm{~g})$ in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(50 \mathrm{~mL})$. Both solutions were stored in the dark. To determine the photon flux of the Kessil lamp (390 nm), 2.0 mL of the ferrioxalate solution was placed in a vial and irradiated for 90 s . After irradiation, 0.35 mL of the phenanthroline solution was added to the vial, and the solution was stored in the dark for 1 h . The absorbance of the solution was measured at 510 nm . A non-irradiated sample was also prepared and the absorbance at 510 nm was measured. Conversion was calculated using eq 1 .

$$
\begin{equation*}
\mathrm{mol} \mathrm{Fe}{ }^{2+}=\frac{\mathrm{V} \cdot \Delta \mathrm{~A}}{\mathrm{l} \cdot \varepsilon} \tag{1}
\end{equation*}
$$

V is the total volume $(0.00235 \mathrm{~L}), \Delta \mathrm{A}$ is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions (0.587), 1 is the path length $(1.00 \mathrm{~cm})$, and ε is the molar absorptivity at $510 \mathrm{~nm}\left(11,100 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$. The $\mathrm{mol} \mathrm{Fe}{ }^{2+}$ was calculated to be 1.24×10^{-7}, which was then used to calculate the photon flux with eq 2.

$$
\begin{equation*}
\text { photon flux }=\frac{\mathrm{mol} \mathrm{Fe}^{2+}}{\Phi \cdot \mathrm{t} \cdot \mathrm{f}} \tag{2}
\end{equation*}
$$

Φ is the quantum yield for the ferrioxalate actinometer (1.13 for a 0.15 M solution at 405 nm), t is the time (1800.0 s), and f is the fraction of light absorbed at $390 \mathrm{~nm}(>0.999, \mathrm{~A}=4.77$, eq 3). The photon flux was calculated to be 1.22×10^{-9} einstein s^{-1}.

$$
\begin{equation*}
\mathrm{f}=1-10^{-\mathrm{A}} \tag{3}
\end{equation*}
$$

Determination of quantum yield

Standard reaction conditions (0.1 mmol scale) with an NMR standard were employed in the same vial size with the same volume of solvent as performed for the photon flux calculation. Pyridinium salt $\mathbf{1 0 b}(0.1 \mathrm{mmol})$, aldehyde $9(0.3 \mathrm{mmol})$, catalyst $\mathbf{A}(0.02 \mathrm{mmol})$, , 2, 6 -lutidine $(0.1$ $\mathrm{mmol}), \mathrm{NaI}(0.1 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol})$ and $\mathrm{PhCF}_{3}(0.1 \mathrm{mmol})$ were dissolved in DMA (2 mL) and were degassed via freeze-pump-thaw (three times) before irradiation at 390 nm for 1800 s (30 min). The yield of product formed was determined by ${ }^{19} \mathrm{~F}$ NMR based on the PhCF_{3} standard for
a diluted aliquot of the reaction sample in CDCl_{3}. The quantum yield was determined using eq 4 . Essentially all incident light is absorbed by the reaction mixture at $390 \mathrm{~nm}(\mathrm{f}>0.999, \mathrm{~A}=4.57$, eq $3)$.

$$
\begin{equation*}
\Phi=\frac{\text { mol product }}{\text { flux } \cdot \mathrm{t} \cdot \mathrm{f}} \tag{4}
\end{equation*}
$$

Based on the observed 9% yield (0.009 mmol product), $\boldsymbol{\Phi}(\mathbf{9 \%})=4$.

C. CT Complex Effect on Enamine Equilibrium ${ }^{6}$

The equilibrium constants $\left(\mathbf{K}_{\mathbf{e q}}\right)$ for the formation of the enamine, generated upon condensation of amine catalyst \mathbf{A} and aldehyde 9, were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. For these measurements, a 0.16 M stock solution of the free base of catalyst A (S5) was prepared in dry $\mathrm{CD}_{3} \mathrm{CN}$ with PhSiMe_{3} as an internal standard. Multiple experiments were performed to calculate \mathbf{K}_{eq} of $\mathbf{9}$ and $\mathbf{2 0}$ in the presence of other reaction components in the same relative proportions. After mixing the components in dry $\mathrm{CD}_{3} \mathrm{CN}$ with a total volume of 1 mL , solutions were stirred in the dark for 30 minutes to secure equilibration. The relative amount of enamine $\mathbf{2 0}$ in solution with respect to free catalyst $\mathbf{S 5}$ was determined by integration of the following diagnostic peaks: doublet at $6.25 \mathrm{ppm}(J=13.8 \mathrm{~Hz}, 1 \mathrm{H})$ for enamine $\mathbf{2 0}$; doublet of doublet at $3.70(J=8.8,3.9 \mathrm{~Hz}, 1 \mathrm{H})$ for catalyst $\mathbf{S 5}$. The integration of $\mathbf{S 5}$ and $\mathbf{2 0}$ compared to the internal standard PhSiMe_{3} gave their concentrations, which could be used to calculate $\mathbf{K}_{\text {eq }}$ based on eq 5 .

$$
\begin{equation*}
\mathrm{K}_{\mathrm{eq}}=\frac{[20]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathbf{S 5}][9]}=\frac{[20]^{2}}{[\mathbf{S 5}][0.3 \mathrm{M}-[\mathbf{S 5}]]} \tag{5}
\end{equation*}
$$

Sample 1: amine catalyst $\mathbf{S 5}(0.02 \mathrm{mmol})$ and aldehyde $9(0.3 \mathrm{mmol})$. Ratio of $\mathbf{S 5 : 2 0}=$ 20.7:1. Calculated $\mathbf{K}_{\text {eq }}=1.4 \times 10^{-4}$.

Sample 2: amine catalyst $\mathbf{S 5}(0.02 \mathrm{mmol})$, aldehyde $9(0.3 \mathrm{mmol})$, and Katritzky salt $\mathbf{1 0 b}$ (0.1 $\mathrm{mmol})$. Ratio of $\mathbf{S 5 : 2 0}=11.2: 1$. Calculated $\mathbf{K}_{\mathrm{eq}}=4.8 \times 10^{-4}$.
Sample 3: amine catalyst $\mathbf{S 5}(0.02 \mathrm{mmol})$, aldehyde $9(0.3 \mathrm{mmol})$, Katritzky salt $\mathbf{1 0 b}(0.1 \mathrm{mmol})$,
$\mathrm{NaI}(0.1 \mathrm{mmol})$, and DMA $(50 \mu \mathrm{~L})$. Ratio of $\mathbf{S 5 : 2 0}=5.1: 1$. Calculated $\mathbf{K}_{\text {eq }}=2.1 \times 10^{-3}$.
Sample 4: amine catalyst $\mathbf{S 5}(0.02 \mathrm{mmol})$, aldehyde $9(0.3 \mathrm{mmol})$, and 2,6-lutidine (0.1 mmol). Ratio of S5:20 $=10.8: 1$. Calculated $\mathbf{K}_{\text {eq }}=5.4 \times 10^{-4}$.

D. Radical Probe Experiments

cis-22 and trans-22 aldehyde starting materials were prepared according to literature procedure. ${ }^{7}$

trans-22

cis-22

Photocatalyzed α-alkylation of aldehyde trans-22

1:0 trans:cis
trans-23 was synthesized by following the general procedure C using trans-22 at 0.1 mmol scale and purified by silica gel column chromatography using hexanes/EtOAc (9.5:1.5) as eluting solvent. trans-23 was obtained as a colorless oil ($15 \mathrm{mg}, 40 \%$) as an inseparable 1.3:1 mixture of diastereomers at C 1 .
trans-23: $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-9.99\left(\mathrm{c}=0.10, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 9.37$ (s, 0.62 H , minor), $9.34(\mathrm{~s}, 0.82 \mathrm{H}$, major), $7.13-7.08(\mathrm{~m}, 3.2 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 1.7 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 1.3 \mathrm{H}), 6.79$ $-6.74(\mathrm{~m}, 1.7 \mathrm{H}), 4.06(\mathrm{dd}, \mathrm{J}=12.8,8.6 \mathrm{~Hz}, 0.8 \mathrm{H}), 4.00-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.79(\mathrm{~m}, 1.7 \mathrm{H})$, 2.48 (ddd, J = 21.7, 16.9, $8.2 \mathrm{~Hz}, 1.8 \mathrm{H}$), 2.08 (ddd, $\mathrm{J}=16.8,5.3,4.0 \mathrm{~Hz}, 1.8 \mathrm{H}$), 1.71 (ddt, J = 10.2, $8.3,5.6 \mathrm{~Hz}, 1.9 \mathrm{H}$), 1.51 (dt, J = 9.4, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.30(\mathrm{dd}, \mathrm{J}=9.1,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.18-1.06$ (m, $0.5 \mathrm{H}), 0.61(\mathrm{ddt}, \mathrm{J}=10.9,8.6,5.2 \mathrm{~Hz}, 1.7 \mathrm{H}), 0.58-0.45(\mathrm{~m}, 2.7 \mathrm{H}), 0.34(\mathrm{dt}, \mathrm{J}=8.8,5.0 \mathrm{~Hz}$, $0.8 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 199.5,199.3,169.8,141.5,141.4,128.0,127.8,127.6,126.0$, $125.9,125.9,125.8,59.9,51.9,51.8,32.4,32.2,29.9,22.0,22.0,21.1,21.0,14.1,13.6 .{ }^{19}$ F NMR $\left(565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta-73.70--73.81(\mathrm{~m})$. HRMS (ESI) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 323.0866, Found 323.0862.
nOe experiments on trans-23

The trans stereochemistry of the substituents on the cyclopropane ring was assigned based nOe experiments on pure trans-23 as a mixture of diastereomers at C 1 . Selective excitation ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Mercury 400 in $\mathrm{C}_{6} \mathrm{D}_{6}$ (Figure S2).

Figure S2. Selective excitation experiments of $\mathbf{H}^{\mathbf{2}}, \mathbf{H}^{\mathbf{3}}, \mathbf{H}^{\mathbf{5}}$ (minor) and $\mathbf{H}^{\mathbf{5}}$ (major) on trans-23 (inseparable mixture of diastereomers)
A. Selective excitation of H^{2} shows a nOe interaction with H^{1} and H^{3}.
B. Selective excitation of H^{3} shows a nOe interaction with $\mathrm{H}^{1}, \mathrm{H}^{2}, \mathrm{H}^{5}$ (major and minor diastereomers) and H^{7}.
C. Selective excitation of H^{5} signal of the minor diastereomer shows a nOe interaction with H^{3}, H^{7}, and H^{9}.
D. Selective excitation of H^{5} signal of the major diastereomer shows a nOe interaction with H^{3}, H^{7}, and H^{9}.
trans-23 was assigned the indicated relative stereochemistry based on key nOe interactions
between $\mathrm{H}^{3}-\mathrm{H}^{5}$ and $\mathrm{H}^{5}-\mathrm{H}^{7}$, as shown in Figure S 3 .

Figure S3. ${ }^{1}$ HMNR spectrum of trans-23 diastereomers (inseparable mixture of diastereomers)

Photocatalyzed α-alkylation of aldehyde cis-22.

Following the general procedure C using cis-22 aldehyde as starting material at 0.1 mmol scale, both cis-23 and trans-23 alkylation products were formed in 2.6:1 ratio and purified by silica gel column chromatography using hexanes/EtOAc (9.5:1.5) as eluting solvent. cis-23 was obtained as a colorless oil ($7.5 \mathrm{mg}, 20 \%$) as a single diastereomer. trans-23 was obtained as a colorless oil (3.0 $\mathrm{mg}, 8 \%$) as an inseparable $1: 1$ mixture of diastereomers at C 1 (see Figure S 4).
cis-23: $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-10.22\left(\mathrm{c}=0.19, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(c i s$ diastereomer $) 9.20(\mathrm{~s}$,
$1 \mathrm{H}), 7.07$ (dd, $J=8.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.94(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{dq}, J=$ $12.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dq}, J=12.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=16.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=$ $16.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.82(\mathrm{~m}, 3 \mathrm{H}), 0.68(\mathrm{dtd}, J=11.1,8.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.62-0.52(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13}$ C NMR (151 MHz, C ${ }_{6} \mathrm{D}_{6}$) δ 199.6, 169.8, 137.7, 128.6, 128.3, 128.2, 126.4, 59.5, 46.1, 32.7, 21.2, 18.7, 7.9. ${ }^{19}$ F NMR ($\left.565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta-73.75(\mathrm{t}, J=8.2 \mathrm{~Hz})$. ESI-MS calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3}\right.$, $\mathrm{M}+\mathrm{Na}]^{+}: 323.0866$, Found 323.0860.

Figure S4. Crude reaction mixture of the photochemical alkylation of aldehyde cis-22
nOe experiments on cis-23

The cis stereochemistry of the substituents on the cyclopropane ring was assigned based nOe experiments on pure cis-23. Selective excitation ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Mercury 400 in $\mathrm{C}_{6} \mathrm{D}_{6}$ (Figure S5).

Figure S5. Selective excitation experiments of \mathbf{H}^{2} and \mathbf{H}^{4} on cis-23
A. Selective excitation of H^{2} shows a nOe interaction with H^{1} and H^{3}.
B. Selective excitation of H^{4} shows a nOe interaction with H^{5}.
cis-23 was assigned the indicated relative stereochemistry based on the key nOe interaction between $\mathrm{H}^{4}-\mathrm{H}^{5}$, as shown in Figure S 6 .

Figure S6. ${ }^{1}$ HMNR spectrum of cis- 23

Our interpretation of the radical probe experiments is summarized in Figure S7. Radical probe trans-22 exclusively formed the alkylation product trans-23 as a 1.3:1 mixture of diastereomers at C 1 , which is consistent with either a radical chain or in-cage radical recombination. With radical probe cis-22, the expectation was that an in-cage radical process would exclusively furnish the thermodynamically stable alkylation product trans-23 via acyclic intermediate 27. Alternatively, the alkylation product cis-23 would form exclusively if the reaction proceeded through a radical chain. Surprisingly, starting from radical probe cis-22, we isolated both trans and cis isomers of alkylation product 24 in a 1:2.6 ratio. These observations suggest that the catalytic enantioselective reaction may proceed simultaneously through two mechanisms, which are both remarkably highly enantioselective. The existence of two distinct mechanistic pathways is also consistent with the measured quantum yield of 4 .

Figure S7. Interpretation of Radical Probe Experiments

E. Stability of Pyridinium Salt with Sodium Iodide

To test for the possibility of in situ generation of an α-iodoester species from the starting pyridinium salts, these salts were subjected to NaI conditions in the presence of various amounts of light. The starting pyridinium salt $\mathbf{1 0 b}$ was dissolved in DMA and treated with NaI and water, according to the proportions found in general procedure C at a 0.05 mmol scale. $\mathrm{Me}_{3} \mathrm{SiPh}$ was added as an internal standard. Three separate samples were prepared and stirred for 1 h before an aliquot was taken for ${ }^{1} \mathrm{H}$ analysis. The three samples were stirred in the presence of different amounts of light as follows: the first was wrapped in aluminum foil (no light), the second was left stirring in a clear vial (ambient fume hood lighting), and the final sample was subjected to 390 nm light at $0^{\circ} \mathrm{C}$, as in the reaction conditions. After 1 h , all three samples showed no decomposition of starting material in reference to the internal standard.

F. Reaction with TEMPO

The reaction was performed following the general procedure C with 1 equiv TEMPO.

7. Synthesis of (-)-Enterolactone and (-)-Enterodiol

(-)-Enterolactone, 17:

17 was synthesized by a two-reaction sequence. First, the general procedures C and E were carried out at 0.147 mmol scale using 3-(3-hydroxyphenyl)propanal ${ }^{8}$ and purified by silica gel column chromatography using hexanes/EtOAc (3:2) as eluent ($20.1 \mathrm{mg}, 46 \%$ yield, $3: 2 \mathrm{dr}, 97 \% / 96 \%$ ee). The inseparable mixture of diastereomers ($6.8 \mathrm{mg}, 0.0228 \mathrm{mmol}$) was dissolved in THF ($750 \mu \mathrm{~L}$) before LiHMDS (1.0 M in THF, $228 \mu \mathrm{~L}, 0.228 \mathrm{mmol}$) and $\operatorname{TMSCl}(15 \mu \mathrm{~L}, 0.114 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$. The reaction was allowed to warm to $23^{\circ} \mathrm{C}$ and stirred. After $16 \mathrm{~h}, 3 \mathrm{M}$ aqueous $\mathrm{HCl}(0.5 \mathrm{~mL})$ was added dropwise, and the reaction was stirred for 30 additional min before adding $\mathrm{H}_{2} \mathrm{O}$ and extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x2). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The product was purified by preparatory thin layer chromatography using hexanes/EtOAc (3:2) as eluent. (-)-Enterolactone 17 was obtained as a
colorless oil ($5.5 \mathrm{mg}, 81 \%$ yield, $12: 1 \mathrm{dr}, 97 \%$ ee): HPLC conditions: Chiralcel OD-H column (25 $\mathrm{cm} \times 0.46 \mathrm{~cm}$ ID), hexanes $/ \mathrm{IPA}=75: 25,0.5 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$ UV detector: $\mathrm{tR}=22.95 \mathrm{~min}$ (major), $\mathrm{tR}=28.18 \mathrm{~min}$ (minor) $\mathrm{tR}=36.52 \mathrm{~min}$ (minor), 42.21 min (major). $[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 6}}=-36.4^{\circ}(\mathrm{c}=0.20$, $\mathrm{MeOH}) .{ }^{1} \mathbf{H}$ NMR (600 MHz , acetone- d^{6}) $\delta 8.33(\mathrm{~s}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.80-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.65(\mathrm{~m}, 3 \mathrm{H}), 6.64(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.03(\mathrm{dd}, J=8.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=13.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ - $2.86(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (600 MHz , acetone-d ${ }^{6}$) δ $177.84,157.57,157.55,140.47,139.95,129.51,129.42,120.57,119.70,116.23,115.54,113.56$, $113.35,70.60,45.90,41.28,37.79,34.40$. HRMS (ESI) calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 321.1097, Found 321.1122.

(-)-Enterodiol, 18:

17 (enterolactone) ($4.2 \mathrm{mg}, 12: 1 \mathrm{dr}, 0.0141 \mathrm{mmol}$) was dissolved in THF $(1 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$, and treated with $\mathrm{LiAlH}_{4}(3.0 \mathrm{mg}, 0.07 \mathrm{mmol})$. After 1 h , the reaction was quenched according to the Fieser workup method by the sequential addition of $10 \mu \mathrm{~L} \mathrm{H}_{2} \mathrm{O}, 10 \mu \mathrm{~L} 15 \%$ aqueous NaOH , and $30 \mu \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$. The mixture was dried over MgSO_{4} and passed through celite plug and concentrated under reduced pressure. The product was purified by preparatory thin layer chromatography using hexanes/EtOAc (1:3) as eluent to yield a single diastereomer of (-)enterodiol 18, which was obtained as a colorless oil ($3.0 \mathrm{mg}, 70 \%$ yield, 97% ee): HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), hexanes $/ \mathrm{IPA}=75: 25,0.7 \mathrm{~mL} / \mathrm{min}, 280$ nm UV detector, $\mathrm{tR}=6.31 \mathrm{~min}$ (major) and $\mathrm{tR}=7.46 \mathrm{~min}$ (minor). $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{26}=-11.0(\mathrm{c}=0.10, \mathrm{MeOH})$. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.08-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.58(\mathrm{~m}, 6 \mathrm{H}), 3.63(\mathrm{dd}, J=11.1,4.0$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.54(\mathrm{dd}, J=11.1,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.01(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (600 MHz , acetone- d_{6}) $\delta 157.29,143.17,129.02,120.23,115.98,112.59,60.08,44.01,35.28$. HRMS (ESI) calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}: 325.1410$, Found 325.1436.

8. References

1. James, M. J.; Strieth-Kalthoff, F.; Sandfort, F.; Klauck, F. J. R.; Wagener, F.; Glorius, F. Visible-Light-Mediated Charge Transfer Enables C-C Bond Formation with Traceless Acceptor Groups. Chem. Eur. J. 2019, 25, 8240-8244.
2. Zhang, C.-S.; Bao, L.; Chen, K.-Q.; Wang, Z.-W.; Chen, X.-Y. Photoinduced α-Alkenylation of Katritzky Salts: Synthesis of β, γ-Unsaturated Esters. Org. Lett. 2021, 23, 5, 1577-1581.
3. Sugimoto, K.; Yamamoto, N.; Tominaga, D.; Matsuya. Y. Three-Component Domino Process for the Pyrrolizine Skeleton via [3 + 2]-Cycloaddition-Enamine Cyclization Triggered by a Gold Catalyst. Org. Lett. 2015, 17, 5, 1320-1323.
4. (a) Basch, C. H.; Liao, J. N.; Xu, J. Y.; Piane, J. J.; Watson, M. P. Harnessing Alkyl Amines as Electrophiles for Nickel-Catalyzed Cross Couplings via C-N Bond Activation. J. Am. Chem. Soc. 2017, 139, 5313-5316. (b) Wu, J.; He, L.; Noble, A.; Aggarwal, V. K. Photoinduced Deaminative Borylation of Alkylamines. J. Am. Chem. Soc. 2018, 140, 10700-1074. (c) Plunkett, S.; Basch, C. H.; Santana, S. O.; Watson, M. P. Harnessing Alkylpyridinium Salts as Electrophiles in Deaminative Alkyl-Alkyl Cross-Couplings. J. Am. Chem. Soc. 2019, 141, 2257-2262.
5. Cismesia, M. A.; Yoon, T. P. Characterizing chain processes in visible light photoredox catalysis. Chem. Sci. 2015, 6, 5426-5434.
6. Bahamonde, A.; Melchiorre, P. Mechanism of the Stereoselective α-Alkylation of Aldehydes Driven by the Photochemical Activity of Enamines. J. Am. Chem. Soc. 2016, 138, 8019-8030.
7. Gualandi, A.; Marchini, M.; Mengozzi, L.; Natali, M.; Lucarini, M.; Ceroni, P.; Cozzi, P. G. Organocatalytic Enantioselective Alkylation of Aldehydes with $\left[\mathrm{Fe}(\mathrm{bpy})_{3}\right] \mathrm{Br}_{2}$ Catalyst and Visible Light. ACS Catal. 2015, 5, 5927-5931.
8. Vassiliou, S.; Węglarz-Tomczak, E.; Berlicki, Ł.; Pawełczak, M.; Nocek, B.; Mulligan, R.; Joachimiak, A.; Mucha, A. Structure-Guided, Single-Point Modifications in the Phosphinic Dipeptide Structure Yield Highly Potent and Selective Inhibitors of Neutral Aminopeptidases. J. Med. Chem. 2014, 57, 19, 8140-8151.

9. NMR Spectra

1-(2-Ethoxy-2-oxoethyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate, 10a:
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

00	190	180		160	150	140	130	120			1								
	190	180	170	160	150	140	-	120	110	f1 (ppm)	90	80	70	60	50	40	30	20	10

1-(2-oxo-2-(2,2,2-Trifluoroethoxy)ethyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate, 10b:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{7}{\tilde{0}} 1$

${ }^{19}$ F NMR ($\left.565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(S)-1-(1-oxo-1-(2,2,2-Trifluoroethoxy)propan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate, (S)-12f:
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\sqrt[3]{8}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| 90 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\underset{\substack{1 \\ 100 \\ f 1(\mathrm{ppm})}}{90}$ | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 1 |
| :--- |

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\underset{\substack{\text { 筑 } \\ i}}{\stackrel{\infty}{\infty}}$

(R)-1-(1-oxo-1-(2,2,2-Trifluoroethoxy)propan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate, (R)-12f:
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{3}{8}$

${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3})

00	19	1	170	160						100	90	18	70	60	10	40	30	10	
00	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(S)-1-(3-Methyl-1-oxo-1-(2,2,2-trifluoroethoxy)butan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate, $(S)-12 \mathrm{~g}$:
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(S)-1-(1-oxo-3-Phenyl-1-(2,2,2-trifluoroethoxy)propan-2-yl)-2,4,6-triphenylpyridin-1-ium, (S)-12h: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(S)-1-(4-(Methylthio)-1-oxo-1-(2,2,2-trifluoroethoxy)butan-2-yl)-2,4,6-triphenylpyridin-1-ium, (S)-12i:
${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{6 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(S)-1-(3-(4-Hydroxyphenyl)-1-oxo-1-(2,2,2-trifluoroethoxy)propan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate, $(S)-12 \mathbf{j}$:

$$
\stackrel{\tilde{m}}{\stackrel{\sim}{n}} \underset{i}{i}
$$

1-(3-(3-Hydroxyphenyl)-1-0xo-1-(2,2,2-trifluoroethoxy)propan-2-yl)-2,4,6-triphenylpyridin-1-ium, 12k:
${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$
(
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1-(2-oxo-2-Phenylethyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate, 14a:

${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO)

${ }^{19}$ F NMR (565 MHz, DMSO)

1-(2-oxo-2-(p-Tolyl)ethyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate, 14b:
${ }^{1}$ H NMR (600 MHz , DMSO)

${ }^{13}$ C NMR (151 MHz, DMSO)

${ }^{19}$ F NMR (565 MHz , DMSO)

1-(2-(4-Bromophenyl)-2-oxoethyl)-2,4,6-triphenylpyridin-1-ium, 14c :
${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1-(2-(4-Chlorophenyl)-2-oxoethyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate, 14d:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl} 3$)

${ }^{13}$ C NMR (101 MHz, DMSO)

${ }^{19}$ F NMR (565 MHz, DMSO)

1-(2-(4-Fluorophenyl)-2-oxoethyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate, 14e:
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO)

${ }^{13}$ C NMR (101 MHz, DMSO)

${ }^{19}$ F NMR (565 MHz , DMSO)
$\stackrel{\text { in }}{\stackrel{\text { in }}{i}}$

1-(2-(2-Fluorophenyl)-2-oxoethyl)-2,4,6-triphenylpyridin-1-ium, 14f :
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2,2,2-Trifluoroethyl (R)-3-benzyl-4-oxobutanoate, 13a:

${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{13} \mathrm{C}$ NMR $\left(\mathbf{1 5 1 ~ M H z}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

[^0]${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

	1	10																
30	-35	-40	-45	-50	-55	-60	-65	-70	-75 f1 (ppm)	-80	-85	-90	-95	-100	-105	-110	-115	-1

(R)-4-Benzyldihydrofuran-2(3H)-one, 13aa:
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 1 |
| :--- |

2,2,2-Trifluoroethyl (R)-3-formylheptanoate, 13b:
${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{6 0 0} \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{19}$ F NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

(R)-2-Butylbutane-1,4-diyl dibenzoate, 13ba:
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

2,2,2-Trifluoroethyl (S)-3-formyl-4-methylpentanoate, 13c:

${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{6 0 0} \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathrm{C}_{6} \mathrm{D}_{6}$)

[^1]${ }^{19}$ F NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

(S)-2-Isopropylbutane-1,4-diyl dibenzoate, 13ca:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
									f1 (ppm)									

2,2,2-Trifluoroethyl (S)-3-cyclohexyl-4-oxobutanoate, 13d:
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

30	-35	-40	-45	-50	-55	-60	-65	70	-75	-80	-85	-90	-95	-100	-105	-11c
	-35				-55	-60	-65	f1 (pp	-75	-80	-85	-90	-95	-100		

(S)-2-Cyclohexylbutane-1,4-diyl dibenzoate, 13da:
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ハ1

2,2,2-Trifluoroethyl (S)-4-(((benzyloxy)carbonyl)amino)-3-formylbutanoate, 13f:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(

${ }^{13}$ C NMR ($151 ~ M H z, C D C l_{3}$)

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$
\begin{aligned}
& \text { N } \\
& \left.\begin{array}{lllllllllllllllllll}
\hline-35 & -40 & -45 & -50 & -55 & -60 & -65 & -70 & -75 & -80 \\
f 1(\mathrm{ppm})
\end{array}\right)
\end{aligned}
$$

Benzyl (S)-((5-oxotetrahydrofuran-3-yl)methyl)carbamate, 13fa:
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR (151 MHz, CDCl_{3})

N	N	$\begin{gathered} \stackrel{\circ}{\omega} \\ \stackrel{\mu}{j} \end{gathered}$

${ }^{13}$ C NMR (151 MHz, CDCl_{3})

$\stackrel{\infty}{\infty}$ N.

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(2R)-2-Benzyl-3-methylbutane-1,4-diyl dibenzoate, 13ga:
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2,2,2-Trifluoroethyl (3R)-3-benzyl-2-isopropyl-4-oxobutanoate, 13h:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(2R)-2-Benzyl-3-isopropylbutane-1,4-diyl dibenzoate, 13ha
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(2R)-2-Benzyl-3-isopropylbutane-1,4-diyl dibenzoate, 13 hb
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2,2,2-Trifluoroethyl (3R)-2,3-dibenzyl-4-oxobutanoate, 13i:
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(4R)-3,4-Dibenzyldihydrofuran-2(3H)-one, 13ia:
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2,2,2-Trifluoroethyl (3R)-3-benzyl-2-(2-(methylthio)ethyl)-4-oxobutanoate, 13j:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\text { ® }}{\stackrel{\infty}{\sim}} \underset{\sim}{\sim}$
ハウ

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(2R)-2-Benzyl-3-(2-(methylthio)ethyl)butane-1,4-diyl dibenzoate, 13ja ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(2R)-2-Benzyl-3-(2-(methylthio)ethyl)butane-1,4-diyl dibenzoate, 13jb:
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2,2,2-Trifluoroethyl (3R)-3-benzyl-2-(4-hydroxybenzyl)-4-oxobutanoate, 13k:

${ }^{1} \mathrm{H}$ NMR ($\mathbf{6 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{llllllllllllllllllllll}1 \\ -35 & -40 & -45 & -50 & -55 & -60 & -65 & -70 & -75 & -80 & -85 & -90 & -95 & -100 & -105 & -110 & -115 & -120 & -125 & -130 \\ f 1(\mathrm{ppm})\end{array}$
(4R)-4-Benzyl-3-(4-hydroxybenzyl)dihydrofuran-2(3H)-one, 13ka:
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR (151 MHz, CDCl_{3})

00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	$f 1(\mathrm{ppm})$			

2,2,2-Trifluoroethyl (3R)-3-benzyl-2-(3-hydroxybenzyl)-4-oxobutanoate, 131 :
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(4R)-4-Benzyl-3-(3-hydroxybenzyl)dihydrofuran-2(3H)-one, 13la :
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(R)-2-Benzyl-4-oxo-4-phenylbutanal, 15a:
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20
						140		120	11	100	90	80	70	60	50	40	30	20

(R)-2-Benzyl-4-oxo-4-(p-tolyl)butanal, 15b:
${ }^{1} \mathrm{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)
$\stackrel{\%}{\circ}$

${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(R)-2-Benzyl-4-(4-bromophenyl)-4-oxobutanal, 15c :
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(R)-2-Benzyl-4-(4-chlorophenyl)-4-oxobutanal, 15d:
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Nic

(R)-2-Benzyl-4-(4-fluorophenyl)-4-oxobutanal, 15e:

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)
$\stackrel{\text { ®. }}{\stackrel{\circ}{1}}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathbf{1 5 1 ~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

(R)-2-Benzyl-4-(2-fluorophenyl)-4-oxobutanal, 15f :
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)
(
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(R)-3-Benzyl-4-oxobutanenitrile, 15 g :
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(R)-2-Benzyl-3-cyanopropyl benzoate, 15ga :
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(-)-Enterolactone, 17 :
${ }^{1} \mathrm{H}$ NMR (600 MHz , acetone-d ${ }^{6}$)

${ }^{13} \mathrm{C}$ NMR (151 MHz , acetone- d^{6})

(-)-Enterodiol, 18
${ }^{1} \mathrm{H}$ NMR ($\mathbf{6 0 0} \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1 ~ M H z}$, acetone- d^{6})

2,2,2-Trifluoroethyl (R)-4-0xo-3-((1R,2R)-2-phenylcyclopropyl)butanoate, trans-23:
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

10	200	190	180	170	160	150	140	130	120	110	100	90	80		60		40			
	,	19	180	170	160	150	1	130	120		100		80	7		5		3	20	10

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

2,2,2-Trifluoroethyl (R)-4-0xo-3-((1R,2S)-2-phenylcyclopropyl)butanoate, cis-23:
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

$$
\underbrace{\substack{\sim}}
$$

10. HPLC Charts

(R)-4Benzyldihydrofuran-2(3H)-one, 13aa

HPLC conditions: Chiralpak AD_H column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=95: 05,0.8$ $\mathrm{mL} / \mathrm{min}, 210 \mathrm{~nm}$ UV detector.

\#	Time	Type	Area	Height	Width	Area\%	Symmetry
1	22.579	BB	2103.5	62.1	0.515	48.500	0.745
2	24.753	BB	2233.6	58.8	0.5655	51.500	0.75

\#	Time	Type	Area	Height	Width	Area\%	Symmetry
1	22.689	MM	2748.6	75.6	0.6057	95.870	0.627
2	24.626	MM	118.4	5	0.3949	4.130	0.883

(R)-2-Butylbutane-1,4-diyl dibenzoate, 13ba:

HPLC conditions: Chiralpak AD_H column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=95: 05,0.7$ $\mathrm{mL} / \mathrm{min}, 230 \mathrm{~nm}$ UV detector.

\#	Time	Type	Area	Height	Width	Area\%	Symmetry
1	11.757	BV	6014.7	311.7	0.2941	49.496	0.66
2	12.569	VB	6137.2	300.3	0.3094	50.504	0.662

\#	Time	Type	Area	Height	Width	Area\%	Symmetry
1	11.747	BVE	746.6	40.3	0.2813	4.082	0.684
2	12.536	VB R	17542.2	863.6	0.309	95.918	0.79

(S)-2-Isopropylbutane-1,4-diyl dibenzoate, 13ca:

HPLC conditions: Chiralpak AD_H column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=95: 05,0.7$ $\mathrm{mL} / \mathrm{min}, 230 \mathrm{~nm}$ UV detector.

\#	Time	Ty	Area	Height	Width	Area\%	Symmetry
1	12.806	BB	35.8	2.4	0.1845	2.443	0.865
2	13.752	BB	1429.5	74.3	0.2865	97.557	0.663

(S)-2-Cyclohexylbutane-1,4-diyl dibenzoate, 13da:

HPLC conditions: Chiralcel OJ_H column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=97: 03,0.6 \mathrm{~mL} / \mathrm{min}$, 230 nm UV detector.

Time Type							

Benzyl (S)-((5-oxotetrahydrofuran-3-yl)methyl)carbamate, 13fa:

HPLC conditions: Chiralcel OJ_H column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=70: 30,0.8 \mathrm{~mL} / \mathrm{min}$, 230 nm UV detector.

| \# | Time Type | | Area | | Height | Width | |
| ---: | ---: | :--- | ---: | ---: | ---: | ---: | ---: | Area\% Symmetry

(2R)-2-Benzyl-3-methylbutane-1,4-diyl dibenzoate, 13ga:

HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=95: 05,0.8 \mathrm{~mL} / \mathrm{min}$, 230 nm UV detector.

	Time Type		Area		Height		Width		Area\% Symmetry
1	14.642	BB	131.8	5.7	0.3563	3.492	0.937		
2	16.4	FM T	1745	66.4	0.4378	46.228	0.946		
3	18.901	MF	160.5	6.2	0.4331	4.251	1.005		
4	19.826	FM	1737.5	53.5	0.5418	46.029	0.918		

	Time Type		Area		Height		Width		Area\% Symmetry
1	14.768	BB	1451.8	62.2	0.3622	64.823	0.904		
2	16.528	MM	766.9	30.1	0.4251	34.243	0.917		
3	19.018	MM	10.4	$4.1 \mathrm{E}-1$	0.4267	0.465	1.243		
4	19.949	MM	10.5	$3.6 \mathrm{E}-1$	0.4798	0.469	1.002		

(2R)-2-Benzyl-3-isopropylbutane-1,4-diyl dibenzoate, 13ha:

HPLC conditions: Chiralpak AD-H column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), Hex/IPA $=95: 5,0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$ UV detector.
DAD1 B, Sig=230,4 Ref=360,100 (NateNSI-198A(3)(1)2021-11-17 $16-29.34 . \mathrm{D})$

\#	Time Type		Area		Height		Width		Area\% Symmetry	
1	9.043	BB	8395.8	576.4	0.2169	50.418	0.639			
2	11.186	BB	8256.6	487.1	0.2568	49.582	0.683			

	Time Type		Area		Height		Width		Area\% Symmetry	
1	9.048	MM	28934.9	1940.1	0.2486	98.572	0.635			
2	11.189	BB	419.1	24.6	0.2534	1.428	0.707			

(2R)-2-Benzyl-3-isopropylbutane-1,4-diyl dibenzoate, 13hb:

HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=98: 2,0.5 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$ UV detector.

	Time Type		Area		Height		Width		Area\% Symmetry
1	26.491	BV	7070.8	169.4	0.6469	49.552	0.816		
2	28.341	VB	7198.6	156.5	0.7127	50.448	0.825		

	Time Type		Area		Height		Width		Area\% Symmetry	
\#	26.672	BB	9754.5	251.7	0.6022	99.017	0.813			
2	28.515	BB	96.9	2.8	0.5148	0.983	0.759			

(4R)-3,4-Dibenzyldihydrofuran-2(3H)-one, 13ia:

HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$ UV detector.

\#	Time Type		Area		Height		Width		Area\% Symmetry
1	35.567	MM	12184.2	269.7	0.753	30.315	0.947		
2	36.997	MM	7900.5	160.8	0.8187	19.657	0.967		
3	40.985	MM	7726.7	145.8	0.8835	19.225	0.944		
4	49.41	MM	12380.1	193.5	1.0662	30.803	0.94		

	Time Type		Area		Height		Width		Area\% Symmetry	
1	33.912	MM	9536.3	219.6	0.7237	58.971	0.947			
2	35.194	MM	6420.4	140.8	0.7599	39.702	0.951			
3	38.859	MM	50.6	1.2	0.7092	0.313	1.127			
4	46.216	MM	164	2.9	0.9364	1.014	1.345			

(2R)-2-Benzyl-3-(2-(methylthio)ethyl)butane-1,4-diyl dibenzoate, 13ja:

HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=95: 5,0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$ UV detector.

Time Type	Area		Height		Width		Area\% Symmetry
1	23.156	BB	322	7.9	0.6225	49.769	0.913
2	25.898	MM	325	4.5	1.2059	50.231	0.644

\#	Time	Type	Area	Height	Width	Area\%	Symmetry
1	22.421	BB	15993.2	400.6	0.6217	98.644	0.843
2	25.17	MM	219.8	2.9	1.2449	1.356	0.559

(2R)-2-Benzyl-3-(2-(methylthio)ethyl)butane-1,4-diyl dibenzoate, 13jb:

HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=95: 5,0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$ UV detector.

\# Time Type	Area		Height		Width		Area\% Symmetry	
1	18.093	BB	1871.8	60.1	0.4853	50.432	0.876	
2	20.893	BB	1839.7	48.8	0.5839	49.568	0.913	

\#	Time	Type	Area	Height	Width	Area\%	Symmetry
1	17.969	MM	27040.1	877.8	0.5134	99.233	0.847
2	20.72	MM	209	5.8	0.5983	0.767	0.879

(4R)-4-Benzyl-3-(4-hydroxybenzyl)dihydrofuran-2(3H)-one, 13ka:
HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=80: 20,0.9 \mathrm{~mL} / \mathrm{min}$, 230 nm UV detector.

\#	Time	Ty	Area	Height	Width	Area\%	Symmetry
1	19.089	BB	1059.2	31.1	0.5268	21.474	0.936
2	21.849	BV	1053.9	27.1	0.5998	21.367	0.958
3	23.2	VB	1412.8	33.5	0.6527	28.644	0.934
4	27.978	BB	1406.5	27.3	0.8023	28.516	0.916

(4R)-4-Benzyl-3-(3-hydroxybenzyl)dihydrofuran-2(3H)-one, 13la:
HPLC conditions: Chiralcel OJ-H column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=80: 20,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$ UV detector.

	Time		Area		Height		Width		Area\% Symmetry	
\#	28.928	BB	2915.1	57.8	0.6643	21.611	0.739			
1	31.053	BB	2855.7	53.4	0.6722	21.171	0.671			
2	34.022	BB	3839.1	64.9	0.8108	28.461	0.696			
3	38.786	BB	3879	54.1	0.8574	28.757	0.688			
4										

DAD1 C, Sig=210,8 Ref=360,100(Nate1NSI-272(2)(1)2022-03-11 14-50-13.D)

	Time		Type		Area		Height		Width		Area\% Symmetry	
1	28.829	BB	194.3	5.1	0.4554	0.604	0.712					
2	30.431	BB	17071	292.9	0.839	53.073	0.462					
3	33.9	BB	1257.3	21.6	0.6852	3.909	0.733					
4	38.144	BB	13642.2	187.6	1.0115	42.414	0.506					

(R)-2-Benzyl-4-oxo-4-phenylbutanal, 15a

HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm} \mathrm{ID}$), $\mathrm{Hex} / \mathrm{IPA}=90: 10,0.8 \mathrm{~mL} / \mathrm{min}$, 220 nm UV detector.

\#	Time	Ty	Area	Height	Width	Area\%	Symmetry
1	24.461	BB	207.4	6.1	0.4099	47.096	0.896
2	30.791	BB	232.9	5.6	0.4915	52.904	0.939

\#	Time	Typ	Area	Height	Width	Area\%	Symmetry
1	23.987	MM	46.2	1.3	0.587	3.460	1.081
2	30.267	BB	1289.4	30	0.6333	96.540	0.919

(R)-2-Benzyl-4-oxo-4-(p-tolyl)butanal, 15b

HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 254$ nm UV detector.

\# Time Type	Area		Height		Width		Area\% Symmetry
1	32.908	BB	5527.7	126	0.6587	50.041	0.898
2	39.536	BB	5518.6	105.9	0.7859	49.959	0.897

	Time Type		Area		Height		Width	
\#	Area\% Symmetry							
1	32.942	MM	86.2	2.1	0.6923	3.423	1.059	
2	39.568	MM	2432.5	47	0.8628	96.577	0.921	

(R)-2-Benzyl-4-(4-bromophenyl)-4-oxobutanal, 15c:

HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector.

	Time Type		Area		Height		Width		Area\% Symmetry	
\#	21.366	BB	1230.2	42.3	0.4442	50.215	0.921			
2	23.448	BB	1219.6	38.4	0.4768	49.785	0.946			

\#	Time Type		Area		Height		Width		Area\% Symmetry
1	20.31	BB	100.3	3.7	0.3212	4.769	0.851		
2	22.302	BB	2003.3	65.8	0.4712	95.231	0.922		

(R)-2-Benzyl-4-(4-chlorophenyl)-4-oxobutanal, 15d:

HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 254$ nm UV detector.

(R)-2-Benzyl-4-(4-fluorophenyl)-4-oxobutanal, 15e:

HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 254$ nm UV detector.

\#	Time	Ty	Area	Height	Width	Area\%	Symmetry
1	19.401	BB	362.9	14	0.3755	51.145	0.929
2	23.903	BB	346.7	11	0.4046	48.855	0.977

\#	Time	Type	Area	Height	Width	Area\%	Symmetry
1	18.927	BB	67.1	2.8	0.299	7.685	0.978
2	23.085	BB	805.6	26.9	0.4534	92.315	0.953

(R)-2-Benzyl-4-(2-fluorophenyl)-4-oxobutanal, 15f:

HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$ UV detector.

(R)-2-Benzyl-3-cyanopropyl benzoate, 15 g :

HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=80: 20,0.8 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$ UV detector.

	Time Type		Area		Height		Width		Area\% Symmetry
1	19.582	BB	6688.6	244.7	0.427	49.890	0.915		
2	23.074	BB	6718.2	207.4	0.5059	50.110	0.925		

	Time Type		Area		Height		Width		Area\% Symmetry
1	19.463	BB	635.1	23.4	0.4222	2.953	0.943		
2	22.856	BB	20869.2	648.5	0.5035	97.047	0.862		

(-)-Enterolactone, 17:

HPLC conditions: Chiralcel OD-H column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=75: 25,0.5 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$ UV detector.

\#	Time Type		Area		Height		Width		Area\% Symmetry
1	22.948	BB	8659.8	135.4	0.9252	90.914	0.635		
2	28.182	MM	149.7	1.7	1.4446	1.571	0.697		
3	36.518	MM	9.8	$9.9 \mathrm{E}-2$	1.638	0.103	1.097		
4	42.212	MM	706	6.6	1.7786	7.412	0.874		

(-)-Enterodiol, 18:

HPLC conditions: Chiralpak IC column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ ID), $\mathrm{Hex} / \mathrm{IPA}=75: 25,0.7 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}$ UV detector.

	Time Type		Area		Height		Width		Area\% Symmetry	
1	6.377	BB	1582.2	105.7	0.2267	50.280	0.685			
2	7.533	MM	1564.6	84.3	0.3092	49.720	0.812			

DAD1 $\mathrm{D}, \mathrm{Sig}=280,4$ Refooff (NatelNSI-278(2) (1) 2022-03-21 18-51-25.D)

\#	Time	Type	Area	Height	Width	Area\%	Symmetry
1	6.307	BB	3157.8	194.2	0.2477	98.558	0.708
2	7.464	BB	46.2	2	0.367	1.442	0.783

[^0]:

[^1]:

