This journal is © The Royal Society of Chemistry 2022
Supplementary Information File
Benzoates as Photosensitization Catalysts and Auxiliaries in Efficient, Practical, Visible Light- Powered Direct C(sp ${ }^{3}$)-H Fluorinations
(*correspondence: Joshua-Philip.Barham@chemie.uni-regensburg.de)${ }^{a}$ Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.${ }^{\text {b }}$ Chemistry Department, Faculty of Science, Benha University, 13518 Benha, Egypt.
Table of Contents
1 Experimental2
1.1 General Comments 2
1.2 Optimization reactions 4
2 Synthesis of Substrates 8
2.1 Synthesis of Starting Materials 8
2.2 Synthesis of Fluorinated products via PS Fluorination 26
3 Mechanistic Studies 58
3.1 Radical Trapping 58
3.2 UV-visible Spectroscopy Studies 59
3.3 Luminescence Measurements 63
3.4 Advanced NMR-spectroscopic Investigations 68
3.4.1 General 68
3.4.2 Chemicals 68
3.4.3 Method for quantitative reaction monitoring by in situ illumination-NMR spectroscopy 68
3.4.4 Reaction monitoring of photosensitization auxiliary method 69
3.4.4.1 NMR sample preparation 69
3.4.4.2 Reaction monitoring of photosensitization auxiliary method applying different substrateequivalents69
3.4.5 Reaction monitoring of photocatalytic $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-H fluorination 78
3.4.5.1 NMR sample preparation 78
3.4.5.2 Reaction monitoring of photocatalytic $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ fluorination with different catalyst and substrate loadings 79
3.4.6 Method for aggregate-investigations by diffusion ordered spectroscopy (DOSY) in photosensitizationauxiliary fluorination82
3.4.6.1 NMR sample preparation 82
3.4.6.2 DOSY studies of photosensitization auxiliary fluorination using pure compounds at differentconcentrations and reaction mixtures with different substrate loadings and substrates 83
3.4.6.3 DOSY plots 87
3.4.7 Structural elucidation of $\mathbf{2 o}$ in CDCl_{3} at $25^{\circ} \mathrm{C}$ 99
3.5 Density Functional Theory Computational Details and Cartesian Coordinates 104
3.6 Quantum Yield Measurement 111
$4 \quad{ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR Spectra 115
5 X-Ray Crystallography 263
6 References 273

1

Experimental

1.1 General Comments

All reactions were performed using dried, deoxygenated solvents. Purifications were conducted by column chromatography with silica gel 60 (Macherey Nagel 0.063-0.2 mm) and the solvents were used without further purification. Starting materials that were commercially available were used as received. Syntheses of products were confirmed by comparisons with the literature data where possible and by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectra. The reactions were followed and pure fractions from column chromatography were detected by Thin Layer Chromatography using silica gel pre-coated aluminum sheets (Macherey Nagel: Alugram Xtra SIL G UV254 Nr. 818333, thickness 0.2 mm). TLC plates were analyzed under a UV-light (254 nm) and by potassium permanganate stain.

NMR-spectra were recorded in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{CN}$ on a Bruker Avance $400\left(400 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}, 101 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 376 \mathrm{MHz}$ for ${ }^{19} \mathrm{~F}, 162 \mathrm{MHz}$ for ${ }^{31} \mathrm{P}$). For ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ chemical shifts are presented in δ-scale as ppm (parts per million) with residual chloroform peak as the internal standard (7.26 ppm for 1 H and 77.00 ppm for 13 C). For ${ }^{19} \mathrm{~F}$ NMR, trifluorotoluene was used as the reference (-63.38 ppm), if not stated, no reference is used. NMR yields were calculated based on ${ }^{19} \mathrm{~F}$ NMR using either trifluorotoluene or pentafluorobenzene as an Internal Standard. MestReNova v6.0.2-5475 was used to process NMR spectra. The description of multiplicity that were used is as follows: $s=$ singlet, $d=$ doublet, dd=doublet of doublet, ddd=doublet of doublet of doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, $\mathrm{m}=$ multiplet.
UV-vis absorption spectra were recorded on an Agilent Cary 100 UV/Vis spectrometer (the range of wavelength is 200 nm to 800 nm) and 0.10 mm thick $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ quartz cuvettes were used at $25^{\circ} \mathrm{C}$. HR-MS were recorded at the Central Analytical Department of our University and the spectra were measured on an JOEL AccuTOF GCx instrument for electron ionization (EI), Agilent Q-TOF 6540 UHD instrument for electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI).

Figure S1. Typical set-up for photochemical reactions using purple LEDs of input power 3.8 W (left) and 0.35 W (right).

Figure S2. Relative LED intensities of 400 nm LEDs measured at a 30 cm distance directly above the LED. Input power of the higher intensity LED (left) $=3.8 \mathrm{~W}$ [LED Engine LZ4-40UB00-00U4 LEDs ($\lambda=395 \mathrm{~nm}, 14.8 \mathrm{~V}, 700 \mathrm{~mA}$)], input power of lower intensity LED (right) $=350 \mathrm{~mW}$. [Edison EDEV-SLC1-03 LEDs $(\lambda=400 \mathrm{~nm}, 3.7 \mathrm{~V}, 700 \mathrm{~mA})$].

Figure S3. Fluorination reactions were conducted in sealed glass vials by irradiation with the higher intensity 3.8 W input power LED.

Figure S4. Large scale set-up for photochemical reactions using purple LEDs 3.8 W (left). Gram-scale reaction mixtures of two different substrates after 24 h irradiation (right).

1.2 Optimization reactions

Table S1: Solvent screen.

Entry	Solvent	Concentrations of Amyl	Ratio of amyl	Duration	NMR
		Benzoate and Selectfluor	benzoate and	(h)	yield
		Selectfluor		$(\%)$	
1	$\mathrm{MeCN}+\mathrm{H}_{2} \mathrm{O}(4: 1)$	$0.313 \mathrm{M}: 0.209 \mathrm{M}$	$1.5: 1$	24	1
2	$\mathrm{MeCN}+\mathrm{TFA}+\mathrm{H}_{2} \mathrm{O}(4: 1: 1)$	$0.313 \mathrm{M}: 0.209 \mathrm{M}$	$1.5: 1$	24	3
3	Dry MeCN+TFA (4:1)	$0.313 \mathrm{M}: 0.209 \mathrm{M}$	$1.5: 1$	24	29
4	$\mathrm{MeCN}+\mathrm{H}_{2} \mathrm{O}(40: 1)$	$0.313 \mathrm{M}: 0.209 \mathrm{M}$	$1.5: 1$	24	2
5	Dry DMA	$0.313 \mathrm{M}: 0.209 \mathrm{M}$	$1.5: 1$	24	0
6	HFIP	$0.313 \mathrm{M}: 0.209 \mathrm{M}$	$1.5: 1$	24	0

7	Dry MeNO	$0.313 \mathrm{M}: 0.209 \mathrm{M}$	$1.5: 1$	24	0
8	Dry MeCN				
$[a]$	$0.313 \mathrm{M}: 0.209 \mathrm{M}$	$1.5: 1$	48	0	
9	Dry MeCN	$[b]$	$0.313 \mathrm{M}: 0.209 \mathrm{M}$	$1.5: 1$	48
10	Dry MeCN	$0.313 \mathrm{M}: 0.209 \mathrm{M}$	$1.5: 1$	48	42
11	Dry MeCN	$0.157 \mathrm{M}: 0.105 \mathrm{M}$	$1.5: 1$	48	48
12	Dry MeCN	$0.091 \mathrm{M}: 0.063 \mathrm{M}$	$1.5: 1$	48	1
13	Dry MeCN	$0.209 \mathrm{M}: 0.209 \mathrm{M}$	$1: 1$	24	0
14	Dry MeCN	$0.105 \mathrm{M}: 0.105 \mathrm{M}$	$1: 1$	24	0

[a] Under air with no F/P/T, [b] no light.

Table S2: Comparison of PScat and PSAux.
(A) PSCat method

Entry	Deviations from standard conditions	NMR yield ${ }^{[a]}$ of $\mathbf{2 k}+\mathbf{3 k}$ $($ PSCat $)(\%)$	NMR yield ${ }^{[a]}$ of $\mathbf{9 b}$ (PSAux) (\%)
1	none	$57+16$	75
2	Bubbled with N_{2} for 15 min $^{[\mathrm{bb]}}$	$53+11$	75
3	Under air	<5	74

[a] NMR yield determined by ${ }^{19} \mathrm{~F}$ NMR with trifluorotoluene as IS. [b] Instead of doing three cycles of freeze-pump-thaw.

Table S3: Applicability of the Photosensitization Auxiliary Approach

Entry	Substrate	Duration (h)	NMR yieldd ${ }^{[\text {a] }}$ (\%)
1	Isoamyl benzoate (1c)	24	Traces (2c)
2	n-butylphenyl benzoate (5b)	60	$21(\mathbf{1 7)}$
3	1-Adamantyl benzoate (22)	48	$43(\mathbf{2 3)}$

[a] NMR yield determined by ${ }^{19} \mathrm{~F}$ NMR with trifluorotoluene as IS.
Table S4: Solubility of Selectfluor ${ }^{\circledR}(\mathrm{SF})$.

Entry	Solvent	Solubility
1	Toluene	Not soluble
2	p-Xylene	Not soluble
3	THF	Not soluble
4	Ethanol	Slightly soluble
5	Acetone	Slightly soluble (less than 0.05 M)
6	DMA	Slightly soluble
7	HFIP	Fairly soluble
8	MeCN^{9}	MeNO_{2}

Table S5: Catalyst optimization reactions.

Entry	PSCat	Product (2b): yield ${ }^{[a]}$
1	$\mathbf{4 a}$	n.d.

2	$\mathbf{4 b}$	traces
3	$\mathbf{4 c}$	traces
4	$\mathbf{4 d}$	traces
5	$\mathbf{4 e}$	traces
6	$\mathbf{4 f}$	traces
7	$\mathbf{4 g}$	44%
8	$\mathbf{M F B}$	46%
9	benzamide	n.d.
10	benzonitrile	n.d.

[a] NMR yield determined by ${ }^{19} \mathrm{~F}$ NMR with trifluorotoluene as IS.
Table S6: Control reactions with different MFB loading

Entry	R (Substrate)	MFB 'x' mol\%	Yield ${ }^{\text {a }}$ (Product)
1	Ph (5b)	1	8\% (17)
2	Me (19)	1	19\% (20)
3	Ph (5b)	0	10\% (17)
4	Me (19)	0	14\% (20)
5	Ph (5b)	150	47\% (17)
6	Me (19)	150	30\% (20)
7	Ph (5b)	$150{ }^{\text {b }}$	35\% (17)
8	Me (19)	$150{ }^{\text {b }}$	26\% (20)
9	para-F-Ph (8b)	0	75\% (9b)
10	para-F-Ph (8b)	$0{ }^{\text {b }}$	74\% (9b)
11	Ph (5b)	$150{ }^{\text {c }}$	19\% (17)
12	Me (19)	$150{ }^{\text {c }}$	31\% (20)
13	para-F-Ph (8b)	$0^{\text {c }}$	23\% (9b)

$\overline{\mathrm{a} N M R}$ yield, based on ${ }^{19}$ F NMR and trifluorotoluene as IS. ${ }^{\text {b under air. }{ }^{\text {I }} \text { Instead of SF, NFSI was used as a }}$ fluorine source.

2.1 Synthesis of Starting Materials

General Procedure 1: Esterification
To a solution of $E t_{3} \mathrm{~N}$ (1.5 eq .) in DCM (0.2 M), DMAP (0.1 eq .) was added followed by the addition of the alcohol (1.0 eq.). At $0^{\circ} \mathrm{C}$, benzoyl chloride (1.2 eq.) was added dropwise to the reaction mixture. The reaction was stirred overnight at room temperature (rt). The solution was quenched with water and extracted 2 times with $\mathrm{DCM}(20 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and the filtrate was concentrated in vacuo. The residue was purified by column chromatography to yield the desired ester.

General Procedure 2: Ketone reduction

Sodium borohydride (0.5 eq.) was added to a solution of the ketone in methanol at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h . The solvent was removed in vacuo and the residue was dissolved in DCM. The solution was washed with a saturated solution of NaHCO_{3}, brine, and the organic phase was dried with MgSO_{4}. After evaporation of the solvent in vacuo the residue was purified on silica gel to yield the desired alcohol.

General Procedure 3: Amidation

To a solution of the amine (1.0 eq.) in DCM (0.1 M), 4-fluorobenzoyl chloride (1.1 eq .) and $\mathrm{Et}_{3} \mathrm{~N}$ (1.1 eq .) were added. The reaction mixture was stirred at rt for 1 hour and washed with water and brine. The organic phase was separated and dried over MgSO_{4}. After filtration and evaporation of the solvent in vacuo, the residue was purified over silica gel to obtain the desired amide.

General Procedure 4:

To a solution of the amine (1.0 eq.) in MeCN (1 M), alkyl bromide (2.0 eq.) was added. The reaction mixture was refluxed for 24 h . The solvent was removed under reduced pressure and the residue was dissolved in
water. Solution of KPF_{6} (1.1 eq.) in water was added to the mixture and stirred for 30 min . The product was extracted with EtOAc, dried over MgSO_{4}, filtered, and dried in vacuo to afford the desired product.

Methyl 4-fluorobenzoate (MFB)

According to General Procedure 1. Yield: $2.16 \mathrm{~g}, 94 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03$ (dd, $J=8.9,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 167.0,166.1$, $164.4,132.1(\mathrm{~d}, J=9.3 \mathrm{~Hz}), 126.4(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 115.5,115.3,52.1 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCI} 3$) δ $106.3 \mathrm{ppm} ; \mathrm{HRMS}(\mathrm{EI})(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$: exact mass calc. for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{2}$: 154.0430, found: 154.0428.
Data are consistent with the literature. ${ }^{[1]}$

(3s,5s,7s)-Adamantan-1-yl benzoate (26)

According to General Procedure 1. Column chromatography was conducted using 5\% EtOAc in n-pentane. Yield: $1.80 \mathrm{~g}, 87 \%$; white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.53$ (dd, $J=10.7,4.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.14 (s, 3H), 1.71 (d, $J=2.7 \mathrm{~Hz}, 6 \mathrm{H}$), $1.66-1.56$ (m, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.3,134.5,130.6,128.9,68.2,45.3,36.1,30.7 \mathrm{ppm}$; HRMS (EI) (m / z) [M]+: exact mass calc. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}$: 256.1463 , found: 256.1451 .
Data are consistent with the literature. ${ }^{[2]}$

4-Methyl-N-pentylbenzenesulfonamide (7)

To a solution of amylamine ($435.0 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in DCM, p-toluenesulfonyl chloride (1.045 g , $5.50 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and $\mathrm{Et}_{3} \mathrm{~N}\left(555.0 \mathrm{mg}, 5.50 \mathrm{mmol}, 1.1 \mathrm{eq}\right.$.) were added at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 5 minutes at $0^{\circ} \mathrm{C}$ and diluted with water and extracted with DCM. The organic phase was washed with water and brine and dried over MgSO_{4}. The mixture was filtered and concentrated in vacuo to obtain 4-methyl- N-pentylbenzenesulfonamide. Purification was conducted by column chromatography using 20\% EtOAc in n-pentane.

Yield: $1.11 \mathrm{~g}, 92 \%$; slightly yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.30 (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 2.91(\mathrm{dd}, \mathrm{J}=12.7,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.16(\mathrm{~m}, 4 \mathrm{H})$, $0.81(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.2,137.0,130.2,129.6,127.1,127.0,43.2$, 29.1, 28.6, 22.1, 21.5, 13.8 ppm ; HRMS (ESI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$: exact mass calc. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}: 242.1209$, found: 242.1213.

Data are consistent with the literature. ${ }^{[3]}$
Pentyl 4-methylbenzenesulfonate (1f)

To a stirred solution of alkyl alcohol ($5.00 \mathrm{mmol}, 1.0$ eq.) and $\mathrm{Et}_{3} \mathrm{~N}(7.50 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) in \mathrm{DCM}(25 \mathrm{~mL})$, ptoluenesulfonyl chloride ($6.00 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was slowly warmed to rt with continue stirring for 10 hours. The reaction mixture was diluted with saturated sodium bicarbonate $(10 \mathrm{~mL})$ and extracted with DCM ($2 \times 20 \mathrm{~mL}$). The combined organic layer was washed with brine (2×10 mL), dried over MgSO_{4}, and concentrated in vacuo. Purification was conducted by column chromatography using 5% EtOAc in n-pentane.

Yield: $1.06 \mathrm{~g}, 88 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.33 (d, J=8.0 Hz, $2 \mathrm{H}), 4.01(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.53(\mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.35-1.11(\mathrm{~m}, 4 \mathrm{H}), 0.84(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 144.6,133.2,129.8,127.8,70.7,28.5,27.4,22.0,21.6$, 13.8 ppm ; HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: exact mass calc. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}: 260.1320$, found: 260.1320.

Data are consistent with the literature. ${ }^{[4]}$

Isopentyl benzoate (1c)

According to General Procedure 1. Yield: $1.77 \mathrm{~g}, 92 \%$; colorless oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-$ $8.01(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{~h}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.67(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,132.8,130.5$, 129.5, 128.3, 63.6, 37.4, 25.2, 22.5 ppm ; HRMS (ESI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$: exact mass calc. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$: 193.1223, found: 193.1227.

Data are consistent with the literature. ${ }^{[5]}$

Pentyl 4-methoxybenzoate (27)

According to General Procedure 1. Yield: $2.00 \mathrm{~g}, 90 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.99$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.46-$ $1.32(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.4,163.2,131.5,123.0,113.5$, $64.8,55.4,28.5,28.2,22.4,14.0 \mathrm{ppm}$; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}: 222.1256$, found: 222.1252.
Data are consistent with the literature. ${ }^{[6]}$

4-Phenylbutyl benzoate (5b)

According to General Procedure 1. Yield: $2.30 \mathrm{~g}, 91 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06$ (dd, $J=8.1,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 3 \mathrm{H})$, $4.36(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.73(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 166.6, 142.0, 132.8, 130.4, 129.5, 128.4, 128.4, 128.3, 128.3, 125.9, 64.8, 35.5, 28.3, 27.8 ppm; HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: exact mass calc. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$: 272.1645, found: 272.1654.
Data are consistent with the literature. ${ }^{[7]}$

2-Chloro-1-phenyldodecyl diphenylphosphinate (1g)

The chlorinated ketone was prepared using NCS according to literature procedures. ${ }^{[8]}$ To a solution of α chlorinated ketone ($3.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $20 \mathrm{~mL} \mathrm{MeOH}, \mathrm{NaBH}_{4}$ ($57.0 \mathrm{mg}, 0.5 \mathrm{eq}$.) was added in 2 portions, at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt for 2 h . Solvent was removed under vacuum and $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ was added to the residue. The resulting mixture was then extracted with DCM ($10 \mathrm{~mL} \times 3$). The organic layers were combined, dried over MgSO_{4}, and concentrated in vacuo. The residue was treated with $\mathrm{Et}_{3} \mathrm{~N}$ ($4.50 \mathrm{mmol}, 1.5$ eq.), 4-dimethylamino pyridine ($0.30 \mathrm{mmol}, 0.1 \mathrm{eq}$.), 20 mL DCM and diphenylphosphinic chloride ($3.60 \mathrm{mmol}, 1.2 \mathrm{eq}$.) , at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt for 18 h . Solvent was removed in vacuo and the residue was purified by column chromatography using 50% EtOAc in pentane to give the desired product.

Yield: $1.09 \mathrm{~g}, 73 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.50(\mathrm{~m}, 3 \mathrm{H})$, 7.49$7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.20(\mathrm{~m}, 1 \mathrm{H}), 1.78-$ $1.65(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.11(\mathrm{~m}, 15 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=6.8,3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (the major isomer) $\delta 137.1(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.86(\mathrm{~d}, J=10.4$ $\mathrm{Hz}), 131.76(\mathrm{~d}, J=138.9 \mathrm{~Hz}), 131.67(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=133.7 \mathrm{~Hz}), 128.54,128.49(\mathrm{~d}, J=13.2$ $\mathrm{Hz}), 128.139,128.136(\mathrm{~d}, ~ J=13.2 \mathrm{~Hz}), 127.6,79.7(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 65.4(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 33.5,31.9,29.57$, 29.51, 29.38, 29.32, 28.9, 26.3, 22.7, 14.1 ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.0 \mathrm{ppm} ; \mathrm{HRMS}(\mathrm{ESI})(\mathrm{m} / \mathrm{z})$ $[\mathrm{M}+\mathrm{H}]^{+}$: exact mass calc. for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{ClO}_{2} \mathrm{P}: 497.2371$, found 497.2372.

Data are consistent with the literature. ${ }^{[9]}$
Methyl (R)-4-((5S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-3,7,12-trioxohexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoate (10)

Prepared according to the literature procedure. ${ }^{[10]}$ To a previously stirred mixture of dehydrocholic acid 1c ($2.00 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.02 \mathrm{~g}, 6.20 \mathrm{mmol} 1.2 \mathrm{eq}$.) in 10 mL DMF, methyl lodide (4.05 g , $28.50 \mathrm{mmol}, 5.7$ eq.) was added. The mixture was stirred at rt for 24 h . The precipitate obtained after the addition of water (40 mL) was filtered and dried. Yield: $1.90 \mathrm{~g}, 92 \%$; white solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 3.65(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.96-2.75(\mathrm{~m}, 3 \mathrm{H}), 2.44-2.16(\mathrm{~m}, 8 \mathrm{H}), 2.12(\mathrm{dd}, J=12.8,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-$ $1.91(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{tt}, J=11.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.41-1.21(\mathrm{~m}, 7 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 211.9,209.0,208.7,174.5,56.9,51.7,51.5,49.0,46.8$, $45.6,45.5,44.9,42.8,38.6,36.4,36.0,35.5,35.2,31.2,30.4,27.6,25.1,21.9,18.6,11.8 \mathrm{ppm}$; HRMS (EI) $(\mathrm{m} / \mathrm{z})$ [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{5}$: 416.2563, found: 416.2554.

Data are consistent with the literature. ${ }^{[11]}$
1-Cyclohexyl-2-methoxy-2-oxo-1-phenylethyl 4-fluorobenzoate (8i)

Prepared from 2-cyclohexyl-2-hydroxy-2-phenylacetic acid in two steps. Step 1: To a mixture of 2-cyclohexyl-2-hydroxy-2-phenylacetic acid ($1.24 \mathrm{~g}, 5.30 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and potassium carbonate (1.83 g , $13.25 \mathrm{mmol}, 2.5 \mathrm{eq}$.) in 10 mL DMF, methyl iodide ($2.27 \mathrm{~g}, 16.00 \mathrm{mmol}, 3.0 \mathrm{eq}$.) was added at rt . The mixture was stirred for 2 h and poured into water and extracted with hexane three times. The organic phase was
dried over MgSO_{4} and concentrated in vacuo to give a crude product. The crude product was used for the next step without further purification.

Step 2: To the mixture of the crude product of the first step, sodium hydride ($317.0 \mathrm{mg}(60 \% \mathrm{NaH}), 7.92$ mmol, 1.5 eq.) in 10 mL DMF, 4-fluorobenzoyl chloride ($0.75 \mathrm{~mL}, 6.36 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added slowly at rt . The mixture was stirred for 18 h and poured into water and extracted with hexane three times. The organic phase was dried over MgSO_{4} and the solvent was concentrated in vacuo. Purification by column chromatography with 5% EtOAc in n-pentane provided the desired product.

Yield: $1.52 \mathrm{~g}, 82 \%$; white solid; IR (neat) v $\left(\mathrm{cm}^{-1}\right): 2937,2855,1729,1602,1505,1449,1412,1282,1237$, 1207, 1088, 1025, 853, 767, 704; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б $8.19-8.10(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 2 \mathrm{H})$, $7.39-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{tt}, J=12.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.74(\mathrm{dd}, J=9.5,3.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.63(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~m}, 2 \mathrm{H}), 1.08-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.84$ (m, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5$ (s), 167.2 (s), 164.7 (s), 164.0 (s), 137.0 (s), 132.4 (d, J $=9.3 \mathrm{~Hz}$), 127.8 (s$), 127.6$ (s$), 126.3$ (d, $J=3.0 \mathrm{~Hz}$), 126.2 (s), 115.7 (d, J = 22.0 Hz), 86.9 (s$), 52.3$ (s), $46.8(\mathrm{~s}), 27.8(\mathrm{~d}, J=76.7 \mathrm{~Hz}), 26.4(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 26.1(\mathrm{~s}) \mathrm{ppm} ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-105.4 \mathrm{ppm} ;$ HRMS (ESI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$: exact mass calc. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{FO}_{4}$: 393.1478, found: 393.1476.

2-Butoxyethyl 4-fluorobenzoate (8a)

According to General Procedure 1. Yield: $2.11 \mathrm{~g}, 88 \%$; colorless oil; IR (neat) v (cm-1): 2959, 2937, 2870, 1722, 1603, 1510, 1457, 1413, 1383, 1267, 1226, 1155, 1088, 1014, 980, $905,854,768,690 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.03(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{dd}, \mathrm{J}=5.5,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.77-3.70(\mathrm{~m}, 2 \mathrm{H})$, $3.50(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.29(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0$ (s), 165.6 (s), 164.5 (s), 132.2 (d, $J=9.3 \mathrm{~Hz}$), 126.4 (d, $J=3.0 \mathrm{~Hz}$), 115.4 (d, J
$=21.9 \mathrm{~Hz}$), 71.1 (s), 68.5 (s), 64.3 (s), 31.6 (s), 19.2 (s), 13.8 (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס -106.3 ppm; HRMS (ESI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{FO}_{3}$: 240.1162, found: 240.1167.

4-Phenylbutyl 4-fluorobenzoate (8b)

According to General Procedure 1. Yield: $2.48 \mathrm{~g}, 91 \%$; colorless oil; IR (neat) v (cm^{-1}): 3064, 3027, 2941, $2863,1715,1603,1506,1454,1409,1267,1237,1152,1114,1014,950,854,768,750,701 ;{ }^{1}{ }^{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.07(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{dd}$, $J=8.4,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.74(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.0$ (s), 165.6 (s), 164.4 (s), 142.0 (s), 132.1 (d, $J=9.3 \mathrm{~Hz}$), 128.4 (d, $J=2.6 \mathrm{~Hz}$), 126.7 (d, $J=3.0 \mathrm{~Hz}$), 125.9 (s), 115.5 (d, $J=21.9 \mathrm{~Hz}$), $65.0(\mathrm{~s}), 35.5(\mathrm{~s}), 28.0(\mathrm{~d}, J=51.5 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.4$ ppm; HRMS (EI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$: exact mass calc. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{2}$: 272.1213, found: 272.1212.

1-Phenyldodecyl 4-fluorobenzoate (8c)

Prepared from 1-phenyldodecan-1-one in two steps. Step 1: According to General Procedure 2. Step 2: According to General Procedure 1.
Yield: $3.27 \mathrm{~g}, 85 \%$; colorless oil; IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$: 2922, 2855, 1722, 1602, 1505, 1457, 1412, 1267, 1151, 1110, 954, 853, 767, 700; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.16-$ 7.07 (m, 2H), 5.99 (dd, $J=7.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.23(\mathrm{~m}, 18 \mathrm{H}), 0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0$ (s), 164.9 (s), 164.5 (s), 140.8 (s), 132.1 (d, J=9.3 Hz), 128.5 (s), 127.9 (s), 126.8 (d, J = 3.0 Hz), 126.4 (s$), 115.4$ (d, $J=22.0 \mathrm{~Hz}$), 36.5 (s), 31.9 (s$), 29.6$ (s$), 29.5$ (d, J $=9.2 \mathrm{~Hz}$), $29.3(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}), 25.5(\mathrm{~s}), 22.7(\mathrm{~s}), 14.1$ (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.3 \mathrm{ppm}$; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{FO}_{2}: 384.2465$, found: 384.2466.

1-Phenyldodecan-1-ol (5c)

According to General Procedure 2. Yield: $2.60 \mathrm{~g}, 99 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ $7.15(\mathrm{~m}, 5 \mathrm{H}), 4.57(\mathrm{dd}, J=7.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.10(\mathrm{~m}, 19 \mathrm{H}), 0.81(\mathrm{t}, J=6.8 \mathrm{~Hz}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 144.9,128.4,127.4,125.9,74.7,39.1,31.9,29.6,29.6,29.6,29.5$,
29.5, 29.3, 25.8, 22.7, 14.1 ppm ; $\mathrm{HRMS}(\mathrm{El})(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$: exact mass calc. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}: 262.2297$, found: 262.2293.

Data are consistent with the literature. ${ }^{[12]}$
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 4-fluorobenzoate (8d)

According to General Procedure 1. Yield: $2.48 \mathrm{~g}, 89 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14$ $7.98(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.04(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{td}, J=10.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.94$ (dtd, $J=14.0$, $7.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.03(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{dd}, J=6.8,4.1 \mathrm{~Hz}$, 6 H), 0.79 (d, J=7.0 Hz, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) ס 166.9 (s), 165.1 (s), 164.3 (s), 132.0 (d, J $=9.2 \mathrm{~Hz}$), 127.0 (d, $J=3.0 \mathrm{~Hz}$), 115.3 (d, $J=21.9 \mathrm{~Hz}$), 75.0 (s$), 47.2$ (s), 40.9 (s), 34.3 (s$), 31.4$ (s), 26.5 (s), 23.6 (s), 22.0 (s), 20.7 (s), 16.5 (s) ppm; ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.7 \mathrm{ppm} ; \mathrm{HRMS}$ (ESI) (m / z) $[\mathrm{M}+\mathrm{Na}]^{+}$: exact mass calc. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{FO}_{2}: 301.1580$, found: 301.1569.

Data are consistent with the literature. ${ }^{[13]}$

3-Methyl-1-phenylbutyl 4-fluorobenzoate (8e)

Prepared from 3-methyl-1-phenylbutan-1-one in two steps. Step 1: According to General Procedure 2. Step 2: According to General Procedure 1.

Yield: $2.50 \mathrm{~g}, 87 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.20$ $-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.15(\mathrm{dd}, \mathrm{J}=8.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{dd}, J=8.5$, $6.4 \mathrm{~Hz}, 6 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0$ (s), 164.9 (s), 164.5 (s), 141.1 (s), 132.2 (d, J = 9.3
 22.9 (s), 22.4 (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ - 106.1 ppm ; HRMS (EI) (m / z) [M]+: exact mass calc. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FO}_{2}$: 286.1369, found: 286.1366.

Data are consistent with the literature. ${ }^{[14]}$

3-Methyl-1-phenylbutan-1-ol (5e)

According to General Procedure 2. Yield: $1.62 \mathrm{~g}, 99 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36$ $7.14(\mathrm{~m}, 5 \mathrm{H}), 4.63(\mathrm{dd}, \mathrm{J}=11.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.32(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{dd}, J=6.4$, $3.4 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.3,128.4,127.4,125.9,72.6,48.3,24.7,23.1,22.3 \mathrm{ppm}$; HRMS (EI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{M}^{+}\right.$: exact mass calc. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}: 164.1201$, found: 164.1197.

Data are consistent with the literature. [15]
((1R,2R,4S)-Bicyclo[2.2.1]heptan-2-yl)methyl 4-fluorobenzoate (8f)

According to General Procedure 1. Yield: $2.30 \mathrm{~g}, 93 \%$; colorless oil; IR (neat) v (cm^{-1}): 2955, 2929, 2870, $1714,1602,1505,1453,1412,1371,1267,1181,1151,1110,1039,961,916,853,805,767,685 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.03(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.00(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.23$ (dd, $J=9.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.27-1.07(\mathrm{~m}, 2 \mathrm{H})$, 0.77 (ddd, $J=12.3,5.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.9$ (s), 165.6 (d, $J=10.7 \mathrm{~Hz}$), 164.4 (s), 132.0 (d, J = 9.3 Hz), 126.8 (d, J = 2.9 Hz), 115.4 (d, $J=21.9 \mathrm{~Hz}$), 68.3 (s$), 67.0$ (s$), 41.0$ (s), 39.7
 (s) ppm; ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.5 \mathrm{ppm}$; HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: exact mass calc. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{FO}_{2}$: 266.1556 , found: 266.1552 .

6,7,8,9-Tetrahydro-5H-benzo[7]annulen-5-yl 4-fluorobenzoate (8g)

Prepared from 6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one in two steps. Step 1: According to General Procedure 2. Step 2: According to General Procedure 1.
Yield: $2.53 \mathrm{~g}, 89 \%$; colorless oil; IR (neat) v (cm^{-1}): 2929, 2855, 1714, 1602, 1505, 1446, 1408, 1360, 1267, 1151, 1110, 1013, 972, 924, 853, 805, 760, 685; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27-8.11$ (m, 2H), $7.48-$ $7.38(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.10(\mathrm{~m}, 5 \mathrm{H}), 6.33-6.19(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.87$ (ddd, $J=14.2,7.9,3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.26-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{ddd}, J=9.7,9.0,3.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0$ (s), 164.5 (s), 141.6 (s), 140.0 (s), 132.2 (d, J = 9.3 Hz), 129.9 (s), 127.8 (s), 127.0 125.8 (m), 115.7 (s), 115.5 (s), 77.0 (s), 36.0 (s), 33.4 (s), 27.8 (s), 27.2 (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.0 \mathrm{ppm} ; \mathrm{HRMS}(\mathrm{El})(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$: exact mass calc. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FO}_{2}$: 284.1213, found: 284.1207.

Cyclododecyl 4-fluorobenzoate (8h)

Prepared from cyclododecanone in two steps. Step 1: According to General Procedure 2. Step 2: According to General Procedure 1.

Yield: $2.76 \mathrm{~g}, 90 \%$; colorless oil; IR (neat) v (cm^{-1}): 2929, 2862, 1714, 1602, 1505, 1468, 1412, 1271, 1151, 1110, 1043, 1013, 984, 931, 902, 853, 767, 719, 685; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11$ - 7.94 (m, 2H), $7.19-6.96$ (m, 2H), 5.24 (tt, J = 7.2, $4.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.89-1.75$ (m, 2H), 1.73 - 1.57 (m, 2H), 1.44 (dd, J = $12.5,6.5 \mathrm{~Hz}, 8 \mathrm{H}$), $1.36(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 10 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.1-166.6$ (m), 165.3 (s), 164.6 - 164.0 (m), 132.0 (d, $J=9.3 \mathrm{~Hz}$), 127.2 (d, J = 3.0 Hz), 115.3 (d, $J=21.9 \mathrm{~Hz}), 73.1$ (s), 29.1 (s), 24.2 (s), 23.9 (s), 23.2 (d, J=19.1 Hz), 20.8 (s$) \mathrm{ppm}$; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.8 \mathrm{ppm}$; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{FO}_{2}$: 306.1995, found: 306.1988.

Amyl 4-fluorobenzoate (8j)

According to General Procedure 1. Yield: $2.06 \mathrm{~g}, 98 \%$; colorless oil; IR (neat) v (cm^{-1}): 2959, 2933, 2863, 1722, 1603, 1510, 1469, 1413, 1271, 1238, 1156, 1111, 1014, 969, 854, 768, 686; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.30-8.15(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.17(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.46$ (m, 4H), $1.10(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6(\mathrm{t}, \mathrm{J}=126.8 \mathrm{~Hz}), 132.0(\mathrm{~d}, \mathrm{~J}=$ $9.2 \mathrm{~Hz}), 126.8$ (d, $J=3.0 \mathrm{~Hz}), 115.4$ (d, $J=22.0 \mathrm{~Hz}), 65.2$ (s), 28.3 (d, $J=23.7 \mathrm{~Hz}), 22.3$ (s), 13.9 (s) ppm; ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.6(\mathrm{tt}, J=8.4,5.5 \mathrm{~Hz}$) ppm; HRMS (EI) (m / z) [M]+: exact mass calc. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{FO}_{2}$: 210.1056 , found: 210.1055 .
(3R,5R,8R,9S,10S,13R,14S,17R)-17-((R)-5-(Benzyloxy)-5-oxopentan-2-yl)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-3-yl 4-fluorobenzoate (8k)

Prepared according to literature procedures. ${ }^{[16]}$

Step 1: To a solution of lithocholic acid ($2.00 \mathrm{~g}, 5.31 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in 14 mL DMF, potassium carbonate ($810.0 \mathrm{mg}, 5.86 \mathrm{mmol}, 1.1$ eq.) was added. After 30 min of stirring, benzyl bromide ($950.0 \mu \mathrm{~L}, 7.99 \mathrm{mmol}$, 1.5 eq.) was added to the mixture. The resulting solution was stirred for 3 hours at rt. Ethyl acetate and water were added to the reaction mixture. The organic layer was washed with water, dried over MgSO_{4}, and concentrated in vacuo to yield the crude product that was used for the next step without further purification.

Step 2: To a solution of crude product of the first step reaction in 25 mL pyridine, 4-dimethylaminopyridine ($630.0 \mathrm{mg}, 5.31 \mathrm{mmol}, 1.0$ eq.) and 4-fluorobenzoyl chloride ($1.25 \mathrm{~mL}, 10.62 \mathrm{mmol}, 2.0$ eq.) were added at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at rt for 24 hours. Aqueous hydrochloric acid was added to the mixture and was extracted with ethyl acetate. The organic layer was washed with aqueous sodium bicarbonate and water, dried over MgSO_{4}, and concentrated in vacuo. Purification of the residue by column chromatography on silica gel with 5% EtOAc in n-pentane provided the desired product.

Yield: $2.75 \mathrm{~g}, 88 \%$; white solid; IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$: 2937, 2866, 1718, 1602, 1505, 1453, 1412, 1379, 1274, 1155, 1114, 1017, 984, 857, 767, 697; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11$ - 8.01 (m, 2H), 7.39 - 7.29 (m, 5H), $7.13-7.03(\mathrm{~m}, 2 \mathrm{H}), 5.19-5.05(\mathrm{~m}, 2 \mathrm{H}), 5.05-4.90(\mathrm{~m}, 1 \mathrm{H}), 2.34$ (dddd, $J=22.0,15.5,9.4,5.9 \mathrm{~Hz}$, 2 H), $2.00(\mathrm{dd}, J=21.9,10.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.76(\mathrm{~m}, 5 \mathrm{H}), 1.67(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.47(\mathrm{~m}, 3 \mathrm{H})$, $1.47-1.32(\mathrm{~m}, 6 \mathrm{H}), 1.32-1.15(\mathrm{~m}, 4 \mathrm{H}), 1.08(\mathrm{tt}, J=13.2,7.4 \mathrm{~Hz}, 5 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}$, 3H), 0.64 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.0$ (s), 166.8 (s), 165.1 (s), 164.3 (s), 136.1 (s), 133.3 (d, $J=9.7 \mathrm{~Hz}$), 132.0 (d, $J=9.2 \mathrm{~Hz}$), 128.4 ($\mathrm{d}, \mathrm{J}=30.7 \mathrm{~Hz}$), 128.1 (s$), 127.2$ ($\mathrm{d}, \mathrm{J}=2.9 \mathrm{~Hz}$), 116.2 ($\mathrm{d}, J=22.3 \mathrm{~Hz}$), 115.3 ($\mathrm{d}, J=21.9 \mathrm{~Hz}$), 75.1 (s$), 66.0$ (s$), 56.5$ (s$), 56.0$ (s$), 42.7$ (s$), 41.9$ (s$), 40.5$ (s), 40.1 (s), 35.8 (s), 35.3 (s), 35.1 (s), 34.6 (s), 32.3 (s), 31.2 (s), 31.0 (s), 28.2 (s), 27.0 (s), 26.8 (s), 26.3 (s), 24.2 (s), 23.3 (s), 20.9 (s), 18.3 (s), 12.0 (s) ppm; ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.6 \mathrm{ppm} ; \mathrm{HRMS}$ (ESI) (m / z) [M+Na] : exact mass calc. for $\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{FO}_{4}:$ 611.3513, found: 611.3505.

N -((3s,5s,7s)-Adamantan-1-yl)-4-fluorobenzamide (10d)

According to General Procedure 3. Yield: $2.60 \mathrm{~g}, 96 \%$; white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76$ $7.59(\mathrm{~m}, 2 \mathrm{H}), 7.12-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 9 \mathrm{H}), 1.69(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס 165.6 (s), 165.5 (s), 163.1 (s), 132.2 (d, J = 3.1 Hz), 129.0 (d, J = 8.8 Hz), 115.3 (d, J=21.8 Hz), 52.3 (s), 41.6 (s), 36.3 (s), 29.4 (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-109.7 \mathrm{ppm}$; HRMS (El) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{FNO}$: 273.1529 , found: 273.1516 .

Data are consistent with the literature. ${ }^{[17]}$

4-Fluoro-N-pentylbenzamide (10a)

According to General Procedure 3. Yield: $1.90 \mathrm{~g}, 92 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-$ $7.70(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 3.43-3.23(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.19(\mathrm{~m}$, 4H), $0.93-0.75(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6$ (s), 165.7 (s), 163.2 (s$), 131.0$ (d, $\mathrm{J}=$ 3.1 Hz), 129.2 (d, $J=8.8 \mathrm{~Hz}$), 115.3 (d, $J=21.8 \mathrm{~Hz}$), 40.2 (s$), 29.3$ (s$), 29.1$ (s$), 22.3$ (s$), 13.9$ (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-109.3 ppm; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{FNO}$ 209.1216, found: 209.1208.

Data are consistent with the literature. ${ }^{[18]}$

Azepan-1-yl(4-fluorophenyl)methanone (10b)

According to General Procedure 3. Yield: $1.97 \mathrm{~g}, 89 \%$; white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31$ (dt, $J=4.7,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.66(\mathrm{~m}$, 2H), 1.54 (d, J = $8.7 \mathrm{~Hz}, 6 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 170.5 (s), 164.1 (s), 161.7 (s), 133.3 (d, J $=3.5 \mathrm{~Hz}$), 128.6 (d, $J=8.3 \mathrm{~Hz}$), 115.3 (d, J = 21.7 Hz), 49.7 (s), 46.4 (s$), 29.4$ (s), 27.7 (s$), 27.2$ (s$), 26.3$ (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.0 \mathrm{ppm}$; $\mathrm{HRMS}(\mathrm{EI})(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$: exact mass calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{FNO}$: 221.1216, found: 221.1199.

Data are consistent with the literature. ${ }^{[19]}$

N-Cycloheptyl-4-fluorobenzamide (10c)

According to General Procedure 3. Yield: 2.30 g, 99%; white solid; IR (neat) v (cm^{-1}): 3298, 2926, 2855, 1628, 1543, 1502, 1446, 1326, 1289, 1226, 1155, 1051, 1013, 887, 846, 801, 767, 711, 670; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 4.39-4.25(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.11(\mathrm{~m}$, 2H), 1.85 (td, J = 8.0, $2.2 \mathrm{~Hz}, 4 \mathrm{H}$), 1.78 - 1.66 ($\mathrm{m}, 6 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8$ (s), 165.3 (s), 163.3 (s), 131.3 (d, J = 3.2 Hz), 129.1 (d, J = 8.8 Hz), 115.4 (d, J = 21.9 Hz), 51.0 (s$), 35.1$ (s$), 28.0$ (s), 24.1 (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-109.3 \mathrm{ppm}$; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{FNO}$: 235.1372 , found: 235.1363.

N-(Cyclohexylmethyl)-4-fluorobenzamide (10e)

According to General Procedure 3. Yield: $2.16 \mathrm{~g}, 92 \%$; white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12$ $7.84(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 3.45(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{dd}, J=16.9,8.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.87$ - $1.81(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.08(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.5$ (s), 165.8 (s), 163.3 (s), $131.0(\mathrm{~d}, J=3.1 \mathrm{~Hz}$), 129.1 (d, $J=8.9 \mathrm{~Hz}$), $115.5(\mathrm{~d}, J=21.8 \mathrm{~Hz})$, 46.3 (s), 38.0 (s), 30.9 (s), 26.3 (s), 25.8 (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ - 109.1 ppm ; HRMS (EI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$: exact mass calc. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{FNO}$ 235.1372, found: 235.1368.

Data are consistent with the literature. ${ }^{[20]}$

4-Fluoro-N-(1-hydroxy-2-(hydroxymethyl)-4-(4-octylphenyl)butan-2-yl)benzamide (10f)

Prepared from Fingolimod Hydrochloride according to General Procedure 3. Yield: $1.26 \mathrm{~g}, 90 \%$; white solid; IR (neat) v (cm-1): 2926, 2855, 1714, 1643, 1602, 1535, 1498, 1461, 1364, 1233, 1159, 1095, 1051, 849, 812, 767; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.63-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.00(\mathrm{~m}, 6 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~d}$, $J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{dd}, J=104.8,11.5 \mathrm{~Hz}, 6 \mathrm{H}), 3.71(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.74-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.60-$ 2.47 (m, 2H), $2.15-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{dd}, \mathrm{J}=14.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 5 \mathrm{H}), 1.26(\mathrm{~s}, 5 \mathrm{H}), 0.88(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4$ (s), 166.1 (s), 163.6 (s), 139.7 (d, J=244.3 Hz), 130.4 (d, $J=3.1 \mathrm{~Hz}$), $129.3(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=53.7 \mathrm{~Hz}), 115.6(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 65.8(\mathrm{~s}), 61.6$ (s), 35.5
(s), 34.3 (s), 31.8 (s), 31.5 (s), 29.4 (s), 29.3 (s), 29.2 (s), 22.6 (s), 14.1 (s) ppm; ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-108.1 \mathrm{ppm}$; HRMS (ESI) (m / z) [M+H] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{FNO}_{3}$: 430.2752, found: 430.2752.
(4-Fluorophenyl)((4bS,9S)-3-methoxy-6,7,8,8a,9,10-hexahydro-5H-9,4b-
(epiminoethano)phenanthren-11-yl)methanone (10h)

The substrate was synthesized in two steps. Step 1: Following the procedure of Olfoson et al. ${ }^{[21]}$ A mixture of dextromethorphan ($3.13 \mathrm{~g}, 11.50 \mathrm{mmol}, 1.0$ eq.) , alpha-chloroethyl chloroformate ($11 \mathrm{~mL}, 100.00 \mathrm{mmol}$, 9.0 eq.), 1,2-dichloroethane (48 mL), and $\mathrm{NaHCO}_{3}(1.44 \mathrm{~g}, 17.00 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was allowed to reflux for 48 h . After filtration, the filtrate was concentrated under vacuum and 300 mL MeOH was added. The resulting mixture was heated to reflux for 3 h . The solvent was evaporated under vacuum and the residue was dissolved 35 mL DCM. The mixture was washed with $\mathrm{NaOH}(1.80 \mathrm{~N}, 6 \mathrm{~mL}$) and water (to pH 7), dried over MgSO_{4}, and concentrated to afford an oil $\mathbf{2 5}$. The product was used for the next step reaction.

Step 2: According to General Procedure 3. Yield: $3.75 \mathrm{~g}, 86 \%$; white solid; IR (neat) v (cm^{-1}): 2929, 2855, $1714,1625,1498,1423,1371,1326,1297,1271,1241,1155,1121,1039,913,849,808,760,700 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 7.45-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{tt}, J=14.5,7.3 \mathrm{~Hz}, 6 \mathrm{H}), 6.87-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.71$ (dd, $J=8.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=13.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.38$ (dd, $J=13.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.21 (dd, $J=18.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.13-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.54(\mathrm{~m}, 3 \mathrm{H}), 2.45-$ $2.24(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.41(\mathrm{~m}, 9 \mathrm{H}), 1.39-1.17(\mathrm{~m}, 8 \mathrm{H}), 1.04$ (ddd, $J=47.0,24.5$, $12.3 \mathrm{~Hz}, 2 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.3$ (s), 169.1 (s), 164.3 (s), 161.9 (s), 158.6 (s), 158.5 (s), 140.2 (s$), 132.9$ ($\mathrm{d}, J=2.9 \mathrm{~Hz}$), 132.7 ($\mathrm{d}, J=3.2 \mathrm{~Hz}$), 129.1 (s$), 129.0$ (s$), 128.8$ ($\mathrm{d}, J=9.6 \mathrm{~Hz}), 128.7$ (s), 128.2 (s), 127.5 (s), 115.7 (s), 115.5 (s), 115.3 (s), 111.4 (s), 111.3 (s), 111.2 (s), 55.1 (s), 54.1 (s), 47.8 (s), 44.8 (s), 43.9 (s), 42.5 (s), 42.2 (s), 41.2 (s), 38.0 (s), 37.9 (s), 36.4 (s), 36.3 (s), 31.8 (s), 31.1 (s), 26.4
(s), 26.3 (s), 26.2 (s), 22.0 (s), 21.9 (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.3 \mathrm{ppm}$; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{FNO}_{2}$: 379.1948, found: 379.1934.
(4bS,9S)-11-Methyl-6,7,8,8a,9,10-hexahydro-5H-9,4b-(epiminoethano)phenanthren-3-yl 4fluorobenzoate (8I)

The substrate was synthesized in two steps.
Step 1: Following the procedure of Senderoff et al. ${ }^{[22 a]}$ dextromethorphan hydrobromide hydrate (2.70 g , $7.29 \mathrm{mmol}, 1.0$ eq.) was added to a round bottom flask equipped with a magnetic stir bar. Hydrobromic acid ($16 \mathrm{~mL}, 48 \mathrm{wt} . \%$ in $\mathrm{H}_{2} \mathrm{O}$) was added, and the reaction was refluxed for 24 hours. After cooling the reaction mixture to rt, it was poured onto ice and the resultant solution was basified with saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$ to $\mathrm{pH}=$ 10. The aqueous layer was extracted with DCM three times. The combined organic layer was washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo to afford the crude product. The product was used for the next step reaction without further purification.

Step 2: According to General procedure 1.
Yield: $2.41 \mathrm{~g}, 87 \%$; white solid; IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$: 3406, 2929, 2858, 2378, 1736, 1602, 1494, 1435, 1360, 1256, 1211, 1151, 1058, 894, 853, 782, 755, 730, 685; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22-8.11(\mathrm{~m}, 2 \mathrm{H})$, $7.17-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=23.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.72-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.21(\mathrm{~m}, 5 \mathrm{H}), 2.06(\mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{td}$, $J=12.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{t}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.26(\mathrm{~m}, 5 \mathrm{H}), 1.10(\mathrm{dd}, J=$ 23.7, 11.7 Hz, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) ס 167.3 (s), 164.7 (s), 164.2 (s), 149.4 (s), 142.0 (s), 135.3 (s), 132.7 (d, $J=9.4 \mathrm{~Hz}$), 128.6 (s$), 126.0$ (d, $J=3.0 \mathrm{~Hz}$), 118.6 (s$), 118.2$ (s$), 115.8$ (s$), 115.5$ (s$)$, 57.8 (s), 47.1 (s), 45.2 (s), 42.8 (s), 41.9 (s), 37.3 (s), 36.5 (s), 26.6 (s), 26.5 (s), 23.7 (s), 22.1 (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-105.1 \mathrm{ppm}$; HRMS (ESI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$: exact mass calc. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{FNO}_{2}$: 380.2020, found: 380.2064.

Methyl 2-(4-isobutylphenyl)propanoate (1y)

The methyl 2-(4-isobutylphenyl)propanoate was prepared according to the literature procedures. ${ }^{[22 b]}$ The mixture of racemic Ibuprofen ($10.00 \mathrm{mmol}, 1.0$ eq.), methanol ($30.00 \mathrm{mmol}, 3.0 \mathrm{eq}$.), and DMAP (1.00 mmol , 0.1 eq.) in 10 mL DCM at $0^{\circ} \mathrm{C}$ was stirred for 5 min . DCC ($11.00 \mathrm{mmol}, 1.1$ eq.) was added to the mixture and stirred at $0^{\circ} \mathrm{C}$ for 5 min . The reaction was stirred at rt for 3 h . The resulting precipitates were filtered and the filtrate was treated with diluted HCl . The product was extracted with DCM. The organic layers were combined, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by column chromatography using 5% EtOAc in pentane to give the desired product.

Yield: $2.14 \mathrm{~g}, 97 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 2 H), 3.77 (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.72(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{td}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.56$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.2,140.5,137.8,129.3$, 127.1, 55.7, 51.9, 45.1, 45.0, 34.9, 30.2, 25.5, 24.7, 22.4, 18.6 ppm ; HRMS (ESI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$: 220.1463 , found: 220.1460 .

Data are consistent with the literature. ${ }^{[22 b]}$
1-(2-Ethylhexyl)-1-methylpyrrolidin-1-ium hexafluorophosphate (1aa)

Prepared according to the General Procedure 4. Yield: 3.40 g, 99%.
IR (neat) v $\left(\mathrm{cm}^{-1}\right)$: 2963, 2940, 2874, 1711, 1465, 1364, 1223, 1006, 932, 828; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) б $3.57-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.15-1.99(\mathrm{~m}, 4 \mathrm{H}), 1.92-$ $1.77(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.16(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{td}, J=7.1,4.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 67.5$
 ppm; ${ }^{19}$ F NMR (377 MHz, DMSO) $\delta-69.8(\mathrm{~d}, ~ J=711.4 \mathrm{~Hz})$ ppm; ${ }^{31}$ P NMR (162 MHz, DMSO) $\delta-143.0$ (hept, $J=711.4 \mathrm{~Hz})$ ppm; HRMS (EI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$: exact mass calc. for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{~N}$: 198.2216, found: 198.2218.

1-Heptyl-3-methyl-1H-imidazol-3-ium tetrafluoroborate (1ac)

Prepared according to the General Procedure 4. Yield: $2.65 \mathrm{~g}, 98 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70$ (s, $1 \mathrm{H}), 7.34(\mathrm{dt}, J=17.2,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{e}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~b}, J=14.5,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.32-1.01(\mathrm{~m}$, 8 H), 0.77 (t, J = 6.9 Hz, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.0$ (s), 123.8 (s), 122.3 (s), 49.9 (s), 36.1 (s), 31.4 (s), 30.0 (s), 28.5 (s), 26.0 (s), 22.4 (s), 13.9 (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-151.4-$ $-151.6(\mathrm{~m}, \mathrm{~J}=10.9,10.0 \mathrm{~Hz})$; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}_{2}$: 181.1699, found: 181.1703.

Data are consistent with the literature. ${ }^{[23 a]}$

3-Methyl-1-(3-phenylpropyl)-1H-imidazol-3-ium hexafluorophosphate (1ad)

Prepared according to the General Procedure 4. Yield: $3.43 \mathrm{~g}, 99 \%$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 3168,3124,3030$, 2937, 2866, 1707, 1603, 1573, 1498, 1454, 1364, 1226, 1170, 1111, 1029, 820, 746, 701; ${ }^{1}$ H NMR (400 $\mathrm{MHz}, \mathrm{DMSO}) \delta 8.94(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.08$ (ddd, $J=6.4,5.3,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 4.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.94(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 140.9$ (s), 137.0 (s$), 128.8$ (d, J = 15.7 Hz), 126.5 (s$), 124.0$ (s$), 122.6$ (s), 49.0 (s), 36.1 (s), 32.1 (s), 31.3 (s) ppm; ${ }^{19} \mathrm{~F}$ NMR (377 MHz , DMSO) $\delta-69.7$ (d, J = 711.4 Hz) ppm; ${ }^{31} \mathrm{P}$ NMR (162 MHz, DMSO) $\delta-142.9$ (hept, $J=711.5 \mathrm{~Hz}$) ppm; HRMS (EI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$: exact mass calc. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2}$: 201.1386, found: 201.1391 .

1-Butyl-2,3-dimethyl-1H-imidazol-3-ium bis((trifluoromethyl)sulfonyl)amide (1ae)

Prepared according to the General Procedure 4. Yield: $4.30 \mathrm{~g}, 99 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26$ (s, 2 H), $4.09(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{dq}, J=14.8,7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 1.00 (t, J = 7.3 Hz, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.6$ (s), 124.5 (s), 122.4 (s), 121.3 (s), 120.8 (s), 118.1 (s), 114.9 (s), 48.4 (s), 35.0 (s), 31.3 (s), 19.3 (s), 13.1 (s), 9.3 (s) ppm; ${ }^{19} \mathrm{~F}$ NMR (377 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-79.8$ (s) ppm; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~N}_{2}$: 153.1386, found: 153.1390. Data are consistent with the literature. ${ }^{[23 a]}$

N-(2-((S)-2-cyanopyrrolidin-1-yl)-2-oxoethyl)-4-fluoro-N-((1r,3R,5R,7S)-3-hydroxyadamantan-1yl)benzamide (10g)

Prepared from Vildagliptin according to General Procedure 3. Purification was conducted via column chromatography (pure EtOAc) that afforded the desired product as white solid. Yield: $1.20 \mathrm{~g}, 94 \%$. IR (neat) v (cm $^{-1}$): 3399, 2915, 2855, 2244, 1662, 1633, 1510, 1443, 1394, 1323, 1260, 1223, 1159, 1096, 1044, 999, 910, 846, 727; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.27(\mathrm{~m}, 9 \mathrm{H}), 6.98(\mathrm{t}, J=8.7 \mathrm{~Hz}, 9 \mathrm{H}), 4.73-$ $4.54(\mathrm{~m}, 4 \mathrm{H}), 3.90(\mathrm{q}, ~ J=18.3 \mathrm{~Hz}, 8 \mathrm{H}), 3.02(\mathrm{dd}, J=17.7,9.8 \mathrm{~Hz}, 8 \mathrm{H}), 2.67(\mathrm{~s}, 5 \mathrm{H}), 2.34-1.93(\mathrm{~m}, 56 \mathrm{H})$, $1.76-1.40$ (m, 28H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2$ (s), 168.8 (s), 164.1 (s), 161.6 (s), 135.3 (d, $J=3.5 \mathrm{~Hz}$), 128.0 (d, J = 8.2 Hz), 117.8 (s), 115.6 (d, J = 21.6 Hz), 77.4 (s), 69.5 (s$), 61.3$ (s$), 49.0$ (s), 47.3 (s), 46.8 (s), 45.4 (s), 44.0 (d, J = 17.2 Hz), 37.9 (s), 34.8 (s), 31.0 (d, J = 2.9 Hz), 29.5 (s), 25.1 (s) ppm; ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.5--111.6(\mathrm{~m}) \mathrm{ppm}$; HRMS (EI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$: exact mass calc. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FN}_{3} \mathrm{O}_{3}: 448.2012$, found: 448.2010 .

4-Phenylbutyl acetate (19)

Prepared according to the General Procedure 1. Purification was conducted via column chromatography (5% EtOAc in PE) that afforded the desired product as colorless oil. Yield: $1.93 \mathrm{~g}, 97 \%$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.21(\mathrm{~m}, 5 \mathrm{H}), 4.16$ (dd, $\left.J=8.6,4.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 2.11 ($\mathrm{s}, 3 \mathrm{H}$), 1.83 - 1.63 (m, 4H) ppm; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2$ (s), 142.1 (s), 128.4 (d, J= 4.3 Hz), 125.9 (s), $64.4(\mathrm{~s}), 35.5(\mathrm{~s}), 28.0(\mathrm{~d}, J=47.6 \mathrm{~Hz}), 21.0(\mathrm{~s}) \mathrm{ppm}$; HRMS (EI) (m / z) [M] $]^{+}$: exact mass calc. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$: 192.1150, found: 192.1145.

Data are consistent with the literature. ${ }^{[23 b]}$

2.2 Synthesis of Fluorinated products via PS Fluorination

General Procedure A

Selectfluor ${ }^{\circledR}$ (SF) ($0.564 \mathrm{mmol}, 1.0$ eq.), starting material ($0.846 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and methyl 4 -fluorobenzoate ($1 \mathrm{~mol} \%$ based on SF) are dissolved in 2.7 mL dry MeCN inside a 5 mL crimp vial equipped with stir bar. The vial was sealed and degassed via three cycles of freeze-pump-thaw and then filled with N_{2}. The reaction mixture was stirred under 400 nm (LED) irradiation for 24 hours at room temperature.

General Procedure B

SF ($0.282 \mathrm{mmol}, 1.0 \mathrm{eq}$.), starting material ($0.423 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and methyl 4-fluorobenzoate ($10 \mathrm{~mol} \%$ based on SF) are dissolved in 2.7 mL dry MeCN inside a 5 mL crimp vial equipped with stir bar. The vial was sealed and degassed via three cycles of freeze-pump-thaw and then filled with N_{2}. The reaction mixture was stirred under 400 nm (LED) irradiation for 24 hours at room temperature.

General Procedure C

SF ($0.564 \mathrm{mmol}, 1.0$ eq.) and starting material ($0.846 \mathrm{mmol}, 1.5 \mathrm{eq}$.) are dissolved in 2.7 mL dry MeCN inside a 5 mL crimp vial equipped with stir bar. The vial was sealed and degassed via three cycles of freeze-pump-thaw and then filled with N_{2}. The reaction mixture was stirred under 400 nm (LED) irradiation for 24 hours at room temperature.

Isolation for General Procedure A, B and C

After the reaction, diethyl ether was added to the reaction mixture, and instant precipitation of unreacted SF and salt derived from SF was observed. The mixture was filtered into a flask and the residue was washed with more diethyl ether. Solvent was removed under reduced pressure. Purification of the residue was conducted by column chromatography using silica gel and the specified solvent to afford the corresponding product.

General Procedure D

To a solution of the ester in methanol (0.5 M), NaOH (3.0 eq .) was added, and the reaction mixture was refluxed for 30 min . The solvent was removed under vacuum and the residue was extracted with water and DCM. Organic layers were combined, dried over MgSO_{4}, filtered, and concentrated. Purification of the crude product was performed by column chromatography.

General Procedure E

Following procedure from literature ${ }^{[23 c]}$ an amide substrate (neat) was added to an oven-dried vial equipped with a stir bar, a positive pressure of N_{2} was applied, and three evacuation/backfilling cycles under high vacuum were performed. Samarium(II) iodide (THF solution, 8.0 eq.) was added to the vial followed by the addition of $\mathrm{Et}_{3} \mathrm{~N}$ (72.0 eq.) and water (72.0 eq .) with vigorous stirring. Formation of a characteristic dark brown color of the $\mathrm{Sml}_{2}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}_{2} \mathrm{O}$ complex was observed, and the reaction mixture was stirred for 18 h . Air was bubbled through the reaction mixture to oxidize the excess of $\mathrm{Sm}(\mathrm{II})$ and the reaction mixture was diluted with 30 mL DCM and $\mathrm{NaOH}(1.0 \mathrm{~N}, 10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{DCM}(3 \times 30 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude product was purified by column chromatography on silica gel.

4-(3-fluorobutyl)benzamide (2e)

Prepared from 4-n-butylbenzamide according to the General Procedure A to give $\mathbf{2 e}$ (66% NMR yield, (trifluoromethyl)benzene as IS) in $8: 2.5: 1$ (3F:2F:1F) ratio (according to ${ }^{19} \mathrm{~F}$ NMR). ${ }^{9} \mathrm{~F}$ NMR (377 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-174.9(2 \mathrm{~F}),-178.4(3 \mathrm{~F}),-180.6(1 \mathrm{~F}) \mathrm{ppm} ; \mathrm{HRMS}(\mathrm{El})(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$: exact mass calc. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{FNO}$: 195.1059, found: 195.1058.

3-Fluoro-2,3-dihydro-1H-inden-1-one (2i)

Prepared from 1-indanone according to the General Procedure A to give 2i (41\% NMR yield, (trifluoromethyl)benzene as IS) in $9: 1$ ($3 \mathrm{~F}: 2 \mathrm{~F}$) ratio (according to ${ }^{19} \mathrm{~F} \mathrm{NMR}$). ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס-169.1 (3F), -194.4 (2F) ppm.

Data are consistent with the literature. ${ }^{[24]}$

13-Fluoro- N, N-dimethyltetradecan-1-amine (2s)

Prepared from N, N-dimethyltetradecylamine according to the general procedure B to give 2s (33\% NMR yield, (trifluoromethyl)benzene as IS). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-132.0$, -156.4 ppm.

1-Fluorocyclohexane (2u)

Prepared from cyclohexane according to the general procedure A to give 2t (95\% NMR yield, (trifluoromethyl)benzene as IS). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) δ - 171.0 ppm .

Data are consistent with the literature. ${ }^{[25]}$

1-Fluoro-1-methylcyclohexane (2v)

Prepared from cyclohexane according to the general procedure A to give $\mathbf{2 u}$ (mixture of fluorinated isomers, difficult to assign fluorine positions) (96% NMR yield, (trifluoromethyl)benzene as IS). ${ }^{19} \mathrm{~F}$ NMR (282 MHz , $\mathrm{CD}_{3} \mathrm{CN}$) δ-165.7, -172.6, -181.2, -182.7 ppm.
1-Fluorocyclooctane (2t)

Prepared from cyclooctane according to the general procedure \mathbf{A} to give $\mathbf{2 m}$ (80% NMR yield, (trifluoromethyl)benzene as IS). ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-159.9 \mathrm{ppm}$.
Data are consistent with the literature. ${ }^{[25]}$

1-Fluorocyclododecane (2x)

Prepared from cyclododecane according to the general procedure \mathbf{A} to give $\mathbf{2 w}$ (89% NMR yield, (trifluoromethyl)benzene as IS). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-177.0 \mathrm{ppm}$.
Data are consistent with the literature. ${ }^{[25]}$

4-(3-Fluorobutyl)benzonitrile (2d)

Prepared from 4-n-butylbenzonitrile according to General Procedure B. Purification was conducted via column chromatography (10% EtOAc in PE) that afforded the mixture of 3 isomers in $7: 2: 1(3 \mathrm{~F}: 2 \mathrm{~F}: 1 \mathrm{~F})$ ratio (based on ${ }^{19} \mathrm{~F}$ NMR) as yellow viscous liquid. Yield: $27.0 \mathrm{mg}, 55 \%$.
IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 2978,2937,2228,1740,1610,1505,1453,1386,1349,1282,1200,1133,1110,1062$, 1021, 950, 930, 887, 841, 827, 775; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.76-4.39(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{dd}, J=23.8,6.2 \mathrm{~Hz}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.1$ (s), $132.5-132.0$ (m), 130.2 (s), 129.2 (s), 125.9 (d, J=7.7 Hz), 119.0 (s), 109.9 (s), 95.7 (s), 93.9 (s), 90.4 (s), 88.8 (s), 41.3 (s), 41.1 (s), 39.3 (s), 39.1 (s), 38.1 (s), 37.9 (s), 31.5 (d, J = 4.6 Hz), 29.7 (s , 27.9 (s), 27.7 (s$), 21.0$ (s$), 20.8$ (s), 18.1 (d, J=4.3 Hz), 13.7 (s), 9.3 (d, J = 5.7 Hz) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-175.3 ppm.
HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{FN}: 177.0954$, found: 177.0951.

(3-Bromo-1-fluoropropyl)benzene (2h)

Prepared from (3-bromopropyl)benzene according to General Procedure A. Purification was conducted via column chromatography (1\% DCM in PE) that afforded the product as yellow viscous liquid. Yield: 66.0 $\mathrm{mg}, 54 \%$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.69$ (ddd, $\left.J=47.8,8.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.72-3.37(\mathrm{~m}, 2 \mathrm{H})$, 2.56 (m, 1H), 2.31 (m, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 139.0 (d, J=19.6 Hz), 128.7 (s), 125.5 (d, J $=6.7 \mathrm{~Hz}$), $93.0(\mathrm{~s}), 91.3(\mathrm{~s}), 40.2(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 28.5(\mathrm{~d}, J=4.8 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -179.8 ppm . HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrF}: 215.9950$, found: 215.9939.
Data are consistent with the literature. ${ }^{[26]}$

2-Fluoro-2-phenylethyl acetate (2j)

Prepared from phenethyl acetate according to General Procedure A. Purification was conducted via column chromatography (5% EtOAc in PE) that afforded the product as slightly yellow viscous liquid. Yield: $28.0 \mathrm{mg}, 27 \%$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.80-5.50(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.29(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7$ (s), 135.8 (d, $J=19.7 \mathrm{~Hz}$), 129.0 (d, $J=1.6 \mathrm{~Hz}$), 128.6 (s), 125.7 (d, $J=6.8 \mathrm{~Hz}$), $91.7(\mathrm{~d}, J=175.8 \mathrm{~Hz}), 66.8(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 20.8(\mathrm{~s}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-$ 184.8 ppm.

HRMS (+APCI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: exact mass calc. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{2}$: 200.1081, found: 200.1084.
Data are consistent with the literature. [27]

5-Fluorohexyl propionate (2k)

Prepared from hexyl propionate according to General Procedure A. Purification was conducted via column chromatography (5\% EtOAc in PE) that afforded the mixture of two isomers in $3.5: 1$ ($5 \mathrm{~F}: 4 \mathrm{~F}$) ratio (based on ${ }^{19}$ F NMR) as colorless viscous liquid. Yield: $67.0 \mathrm{mg}, 68 \%$.

IR (neat) v $\left(\mathrm{cm}^{-1}\right)$: 2963, 2926, 2855, 1259, 1084, 1021, 864, 797, 700; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.81-$ $4.27(\mathrm{~m}, 3 \mathrm{H}), 4.08(\mathrm{q}, J=6.3 \mathrm{~Hz}, 5 \mathrm{H}), 2.31(\mathrm{q}, J=7.6 \mathrm{~Hz}, 5 \mathrm{H}), 1.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 11 \mathrm{H}), 1.55-1.38(\mathrm{~m}$, 5 H), 1.31 (dd, $J=23.9,6.2 \mathrm{~Hz}, 7 \mathrm{H}), 1.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5$ (s), 174.5 (s), 118.1 (s), 96.1 (s), 93.9 (s), 91.8 (s), 89.6 (s), 64.1 (s), 64.0 (s), 36.4 (d, $J=20.8 \mathrm{~Hz}), 31.1(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 28.4(\mathrm{~s}), 28.0(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 27.5(\mathrm{~s}), 24.5(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 21.6(\mathrm{~d}, J=$ $4.9 \mathrm{~Hz}), 20.9(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 9.1(\mathrm{~s}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-173.47,-182.6 \mathrm{ppm}$. HRMS (+APCI) $(m / z)\left[M+\mathrm{NH}_{4}\right]^{+}$: exact mass calc. for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{FO}_{2}$: 194.1551, found: 194.1554 .
(3aR,9aS,9bR)-8-Fluoro-3a,6,6,9a-tetramethyldecahydronaphtho[2,1-b]furan-2(1H)-one (2I)

Prepared from (3aR)-(+)-Sclareolide according to General Procedure A. Purification was conducted via column chromatography (10% EtOAc in PE) that afforded the mixture of two isomers in 10:3 ($8 \mathrm{~F}: 7 \mathrm{~F}$) ratio (based on ${ }^{19} \mathrm{~F}$ NMR) as white solid. Yield: $118.0 \mathrm{mg}, 78 \%$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.02-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.83-4.63(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.29(\mathrm{~m}, 3 \mathrm{H}), 2.22(\mathrm{dddd}, \mathrm{J}=$ $10.2,8.0,5.7,1.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.14-1.56(\mathrm{~m}, 19 \mathrm{H}), 1.58-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.04(\mathrm{~m}, 19 \mathrm{H}), 1.04-0.76(\mathrm{~m}$, 28H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 176.4$ (s), 176.0 (s), 98.0 (s), 96.3 (s), 88.4 (s), 86.7 (s), 86.0 (s), 85.8 (s), 59.1 (s), 58.7 (s), 58.5 (s), 55.9 (d, $J=7.4 \mathrm{~Hz}$), 49.4 (s), 47.8 (d, $J=16.0 \mathrm{~Hz}$), 45.3 (t, $J=18.6 \mathrm{~Hz}$), 42.8 (d, $J=17.6 \mathrm{~Hz}), 38.4(\mathrm{~d}, J=19.5 \mathrm{~Hz}$), 37.3 (dd, $J=27.0,14.7 \mathrm{~Hz}$), 35.5 (s), 35.3 (s), 34.9 (d, $J=12.2$ Hz), 33.5 (s), 33.2 (s), 32.9 (s), 32.6 (s), 32.2 (s), 28.6 (d, $J=10.4 \mathrm{~Hz}$), 27.7 (d, J = 8.2 Hz), 23.2 (s), 23.0 (s), 22.3 (d, $J=2.0 \mathrm{~Hz}$), $21.6(\mathrm{t}, J=12.5 \mathrm{~Hz}$), $20.3-19.9(\mathrm{~m}), 16.1$ (s$), 15.8(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 14.8$ (s) ppm; ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-180.2(\mathrm{dd}, J=47.9,4.2 \mathrm{~Hz}) 1 \mathrm{~F},-187.7$ (td, $J=46.3,13.5 \mathrm{~Hz}$) 2 F ppm ; HRMS (ESI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$: exact mass calc. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{FO}_{2}$: 269.1911, found: 269.1921.
Data are consistent with the literature. ${ }^{[28 a]}$
1-((1r,3s,5R,7S)-3-Fluoroadamantan-1-yl)ethan-1-one (2m)

Prepared from 1-adamantyl methyl ketone according to General Procedure A. Purification was conducted via column chromatography (5\% EtOAc in PE) that afforded the product as slightly yellow solid. Yield: 86.0 $\mathrm{mg}, 78 \%$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.41-2.3(\mathrm{~m}, 2 \mathrm{H}) 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.91$ (d, $\left.J=5.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.88-1.81(\mathrm{~m}, 4 \mathrm{H})$, 1.73-1.65 (m, 4H), 1.62-1.55 (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 211.4 (d, J=1.7 Hz), 206.9 (s), 206.5 (s), $92.4(\mathrm{~d}, J=184.5 \mathrm{~Hz}), 50.8(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 43.1(\mathrm{~d}, J=19.5 \mathrm{~Hz}), 41.8(\mathrm{~d}, J=17.5 \mathrm{~Hz}), 36.9(\mathrm{~d}, J$ $=1.9 \mathrm{~Hz}), 34.8(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 30.8(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 24.6(\mathrm{~s}) \mathrm{ppm} ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-132.6$ ppm. HRMS (EI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$: exact mass calc. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{FO}: 196.1263$, found: 196.1252.
Data are consistent with the literature. ${ }^{[28 a]}$

Prepared from 2-adamantanone according to General Procedure B. Purification was conducted via column chromatography (5\% EtOAc in PE) that afforded the product as yellow solid. Yield: $29.0 \mathrm{mg}, 62 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.68(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 2 \mathrm{H}), 2.17-2.03(\mathrm{~m}, 4 \mathrm{H}), 2.02-1.89(\mathrm{~m}$, $4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.9(\mathrm{~d}, J=1.5 \mathrm{~Hz}$), $90.2(\mathrm{~d}, J=185.9 \mathrm{~Hz}), 47.1(\mathrm{~d}, J=10.3 \mathrm{~Hz})$, $42.1(\mathrm{~d}, J=20.2 \mathrm{~Hz}), 41.6(\mathrm{~d}, J=17.7 \mathrm{~Hz}), 38.0(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 30.5(\mathrm{~d}, J=9.9 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (377 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-140.8 \mathrm{ppm}$. HRMS (EI) (m / z) [M] $]^{+}$: exact mass calc. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FO}$: 168.0950, found: 168.0945.

Data are consistent with the literature. ${ }^{[29]}$

1,10-dibromo-5-fluorodecane (2q)

Prepared from 1,10-dibromodecane according to General Procedure B. Purification was conducted via column chromatography (1% DCM in PE) that afforded the mixture of two isomers in $2: 1(5 \mathrm{~F}: 4 \mathrm{~F}$) ratio (based on ${ }^{19} \mathrm{~F}$ NMR) as colorless viscous liquid. Yield: $49.0 \mathrm{mg}, 55 \%$.
IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 2937,2862,1461,1433,1390,1353,1244,1151,1054,969,846,805,767,730 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.61-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.36(\mathrm{~m}, 4 \mathrm{H}), 1.97-1.30(\mathrm{~m}, 14 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 94.7$ (s), 94.3 (s), 93.0 (s), 92.6 (s), 35.1 (s), 35.0 (s , 34.9 (s), 34.8 (s), 34.2 (d, J=21.1 Hz), 33.8 (s), 33.7 (s), 33.7 (s), 33.5 (s), 33.5 (s), 32.6 (s), 32.5 (d, $J=11.8 \mathrm{~Hz}$), 29.7 (s), 28.5 (s), 28.4 (d, J = 3.8 Hz), 28.0 (s), 27.9 (s$), 24.9(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 24.3(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 23.8(\mathrm{~d}, J=4.4 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (377 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-181.4(5 \mathrm{~F}),-181.7(4 \mathrm{~F}) \mathrm{ppm}$.
HRMS (ESI) (m/z) [M-HF] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{~F}: 295.9770$ found: 295.9777.

5-Fluorodecanedinitrile (2r)

Prepared from decanedinitrile according to General Procedure A. Purification was conducted via column chromatography (30% EtOAc in PE) that afforded the mixture of two isomers in $5: 1(4 \mathrm{~F}: 3 \mathrm{~F})$ ratio (based on ${ }^{19} \mathrm{~F}$ NMR) as white solid. Yield: $42.0 \mathrm{mg}, 41 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.69-4.39(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{ddd}, J=11.9,9.6,5.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.90-1.44(\mathrm{~m}, 10 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 119.7$ (d, $J=16.0 \mathrm{~Hz}$), 119.4 (d, $J=14.6 \mathrm{~Hz}$), 119.0 (s$), 93.8$ (s), 92.6 (s), 92.1 (s), 90.9 (s), 34.5 (s), 34.3 (s), 34.3 (s), 34.1 (s), 33.8 (d, $J=21.2 \mathrm{~Hz}$), 30.9 (d, J=21.5 Hz), 28.4
(d, J = 2.7 Hz), 28.3 (s), 25.2 (s), 25.1 (s), 25.1 (s), 24.3 (d, $J=4.2 \mathrm{~Hz}$), 24.2 (d, J=4.2 Hz), 21.3 (d, $J=3.8$ Hz), 17.1 (s), 17.0 (s$), 17.0(\mathrm{~s}), 13.3(\mathrm{~d}, J=5.0 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-182.9$ (4F), -185.4 (3F) ppm. HRMS (ESI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}-\mathrm{H}]^{+}$: exact mass calc. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{FN}_{2}$: 181.1141, found: 181.1144.
Data are consistent with the literature. ${ }^{[28 a]}$
(3s,5s,7s)-1-Fluoroadamantane (2w)

Prepared from adamantane according to General Procedure A. Purification was conducted via column chromatography ($100 \% \mathrm{PE}$) that afforded the product as white solid. Yield: $50.0 \mathrm{mg}, 58 \%$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{dd}, J=5.6,3.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 92.5(\mathrm{~d}, J=183.3 \mathrm{~Hz}$), $42.7(\mathrm{~d}, J=17.0 \mathrm{~Hz}), 35.8(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 31.4(\mathrm{~d}, J=9.7 \mathrm{~Hz})$ ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-128.9 \mathrm{ppm}$. HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~F}$: 154.1158, found: 154.1155.

Data are consistent with the literature. ${ }^{[30]}$
(1r,3s,5R,7S)-3-Fluoroadamantan-1-ol (2b)

Prepared from 1-adamantanol according to General Procedure A. Purification was conducted via column chromatography ($20 \% \mathrm{EtOAc}$ in PE) that afforded the product as white solid. Yield: $87.0 \mathrm{mg}, 91 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 2.35 (s, 2H), $1.93(\mathrm{~s}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{dd}, J=5.0,3.3 \mathrm{~Hz}$, $4 \mathrm{H}), 1.64(\mathrm{~s}, 4 \mathrm{H}), 1.48(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 93.3(\mathrm{~d}, \mathrm{~J}=185.6 \mathrm{~Hz}), 71.0$ (d, $J=11.9 \mathrm{~Hz}), 50.4(\mathrm{~d}, J=17.1 \mathrm{~Hz}), 43.7(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 41.3(\mathrm{~d}, J=17.6 \mathrm{~Hz}), 34.4(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 31.3$ (d, $J=10.3 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-133.4 \mathrm{ppm}$.
HRMS (EI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$: exact mass calc. for monofluorinated product $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{FO}$: 170.1107, found: 170.1103.
Data are consistent with the literature. ${ }^{[28 a]}$

4-Fluoropentyl benzoate (2a)

Prepared from pentyl benzoate according to General Procedure A. Purification was conducted via column chromatography (2% EtOAc in PE) that afforded the product as colorless oil. Yield: $63.0 \mathrm{~g}, 54 \%$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.87$ $-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.43-4.28(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.36(\mathrm{dd}, J=23.8,6.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5$ (s), 132.9 (s), 130.3 (s$), 128.9$ (d, $J=118.4 \mathrm{~Hz}$), 90.4 (d, J = 165.2 Hz), 64.6 (s), 33.5 (d, $J=21.2 \mathrm{~Hz}$), $24.5(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 21.0(\mathrm{~d}, J=22.7 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-173.9 \mathrm{ppm}$. HRMS (+APCI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$: exact mass calc. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{FO}_{2}$: 211.1129, found: 211.1132.

Data are consistent with the literature. ${ }^{[28 a]}$

4-Fluoropentyl 4-methylbenzenesulfonate (2f)

Prepared from 4-n-pentyl 4-methylbenzenesulfonate according to General Procedure A. Purification was conducted via column chromatography (10% EtOAc in PE) that afforded the mixture of 2 isomers of the product in $5: 1\left(4 \mathrm{~F}: 3 \mathrm{~F}\right.$) ratio (based on ${ }^{19} \mathrm{~F}$ NMR) as yellow viscous liquid. Yield: $60.0 \mathrm{mg}, 41 \%$.

NMR data of the major product is provided.
IR (neat) v $\left(\mathrm{cm}^{-1}\right): 2981,2933,1599,1494,1446,1356,1174,1095,1021,969,916,812,738,663 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.59(\mathrm{ddq}, J=49.0,12.3,6.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.05(\mathrm{qt}, J=9.8,6.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 6 \mathrm{H}), 1.93-1.50(\mathrm{~m}, 9 \mathrm{H}), 1.28(\mathrm{dd}, J=23.8,6.2 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 144.8$ (s), 133.0 (s), 128.8 (d, $J=201.0 \mathrm{~Hz}$), 90.0 (d, J= 165.5 Hz), 70.1 (s), 32.7 (d, $J=21.1 \mathrm{~Hz}$), $24.7(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 21.6(\mathrm{~s}), 20.9(\mathrm{~d}, J=22.6 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 174.7 ppm.

HRMS (ESI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$: exact mass calc. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{FO}_{3} \mathrm{~S}: 283.0775$, found: 283.0777.

3-Fluoro-3-methylbutyl benzoate (2c)

Prepared from isopentyl benzoate according to General Procedure B. Purification was conducted via column chromatography (2% EtOAc in PE) that afforded the product as yellow viscous liquid. Yield: 21.0 $\mathrm{mg}, 35 \%$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ $8.06-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{dt}, J=19.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~d}, J=21.5 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 $=23.1 \mathrm{~Hz}), 27.1(\mathrm{~d}, \mathrm{~J}=24.6 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-138.6 \mathrm{ppm}$. HRMS (+APCI) (m/z) $[\mathrm{M}+\mathrm{H}]^{+}$: exact mass calc. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{FO}_{2}$: 211.1129, found: 211.1131.
Data are consistent with the literature. ${ }^{[31 a]}$

4-Phenylbutyl benzoate (17)

According to General Procedure A (with $150 \mathrm{~mol} \%$ MFB). Yield: $69.0 \mathrm{mg}, 45 \%$; colorless oil; IR (neat) v $\left(\mathrm{cm}^{-1}\right): 3064,3034,2956,1715,1603,1495,1454,1387,1271,1178,1115,1070,1029,951,850,805$, 760, 712, ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94$ (dd, $J=5.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.58-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.19(\mathrm{~m}$, 7H), 5.43 (ddd, $J=47.5,8.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.15(\mathrm{~m}, 2 \mathrm{H}), 2.14-1.70(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6$ (s), 140.0 (d, J = 19.8 Hz), 133.0 (s), 130.3 (s), 129.6 (s), 128.6 (s$), 128.4$ (s), 125.5 (d, $J=6.9 \mathrm{~Hz}$), $94.1(\mathrm{~d}, J=171.3 \mathrm{~Hz}), 64.5(\mathrm{~s}), 33.8(\mathrm{~d}, J=24.1 \mathrm{~Hz}), 24.6(\mathrm{~d}, J=4.1 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-175.8--176.3 (m) ppm; $\mathrm{HRMS}(E S I)(m / z)[\mathrm{M}]^{+}$: exact mass calc. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}_{2}$: 272.1213, found: 272.1205.
(1R,2S)-2-Chloro-11-fluoro-1-phenyldodecyl diphenylphosphinate (2g)

Prepared from (1R,2S)-2-Chloro-1-phenyldodecyl diphenylphosphinate according to General Procedure A. Purification was conducted via column chromatography (50% EtOAc in PE) that afforded the mixture of several isomers (difficult to assign fluorine positions) as colorless viscous liquid. Yield: $218.0 \mathrm{mg}, \mathbf{7 5 \%}$.

IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 3060,2929,2855,1591,1494,1438,1382,1259,1230,1129,987,920,857,805,753$, 730,$693 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88$ (dd, $J=12.5,7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.67-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{dt}, J=$ $10.3,5.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.39(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.18(\mathrm{~m}, 7 \mathrm{H}), 5.48(\mathrm{dd}, J=9.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.29$ (m, 1H), $4.26(\mathrm{dd}, J=9.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.14(\mathrm{~m}, 17 \mathrm{H}), 0.95(\mathrm{dt}, J=6.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.2$ - 135.5 (m), 132.4 (s), 132.2 ($\mathrm{d}, \mathrm{J}=2.6 \mathrm{~Hz}$), 131.9 (d, $J=2.6 \mathrm{~Hz}$), 131.8 ($\mathrm{d}, \mathrm{J}=$ 10.5 Hz), $131.6(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 131.4(\mathrm{~s}), 131.0(\mathrm{~s}), 130.4(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 128.1$ (dd, $J=8.1,5.1 \mathrm{~Hz}$), 127.5 (s), 96.5 (s), $95.4-94.7$ (m), $93.6-93.1$ (m), 91.0 (d, J=163.9Hz), $79.8-79.1$ (m), $65.7-65.0(m), 37.2(d, J=20.9 \mathrm{~Hz}), 36.9(\mathrm{~d}, J=20.5 \mathrm{~Hz}), 35.4-34.3(\mathrm{~m}), 33.6-32.9(\mathrm{~m}), 31.7$ (dd, $J=12.6,9.1 \mathrm{~Hz}$), $30.0-28.9(\mathrm{~m}), 28.9-28.4(\mathrm{~m}), 28.0(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 27.2(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 26.4-25.7$ (m), $25.3-24.5(\mathrm{~m}), 24.5-24.2(\mathrm{~m}), 22.6(\mathrm{dd}, J=9.4,3.2 \mathrm{~Hz}), 21.0(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 18.4(\mathrm{~d}, J=4.8 \mathrm{~Hz})$, $14.2-13.8(\mathrm{~m}), 9.4(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.32,33.30,33.19,33.15,33.11$, 33.07, 33.03, 33.03, $33.00 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-172.5,-172.6,-180.6,-180.6,-180.7,-180.8$, -180.9, -181.0, -181.7, -181.8 ppm.
HRMS (ESI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$: exact mass calc. for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{CIFO}_{2} \mathrm{P}$: 515.2276 , found: 515.2281.

Methyl (4R)-4-((5S,8S,9S,10S,13R,14S,17R)-1-fluoro-10,13-dimethyl-3,7,12-trioxohexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoate (20)

Prepared from Methyl (R)-4-((5S, $8 R, 9 S, 10 S, 13 R, 14 S, 17 R)$-10,13-dimethyl-3,7,12-trioxohexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoate according to General Procedure A. Purification was conducted via column chromatography (50% EtOAc in PE) that afforded the product as white solid. Yield: $132.0 \mathrm{mg}, 54 \%$.

IR (neat) v (cmn ${ }^{-1}$: 2955, 2262, 1707, 1461, 1435, 1386, 1274, 1248, 1174, 1103, 834, 771, 726, 685; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.01$ - 4.75 (m, 1H), $3.64(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{t}, \mathrm{J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=13.0,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.78(\mathrm{t}, \mathrm{J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 5 \mathrm{H}), 2.15(\mathrm{dd}$, $J=7.1,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{dd}, J=13.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{ddd}, J=18.7,9.2,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.75(\mathrm{~m}$, 1 H), 1.61 (td, $J=14.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.21$ (m, 1H), 1.08 (s, 3H), 0.81 (d, J=6.6 $\mathrm{Hz}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.8$ (s), 209.0 (s), 206.8 (s), 174.2 (s), 94.8 (s), 92.9 (s), 56.9 (d, J = 4.9 Hz), 56.1 (d, J = 19.5 Hz), 51.5 (s$), 47.8$ (s$), 46.1$ (s$), 45.3$ (s$), 45.0$ (s$), 43.6$ (d, J = 1.1 Hz), 42.6 (s), 38.2 (s), 36.7 ($\mathrm{d}, ~ J=24.5 \mathrm{~Hz}$), 36.2 (s), 36.1 (s$), 34.9$ ($\mathrm{d}, J=13.7 \mathrm{~Hz}$), 31.1 (s$), 30.1$ (s$), 21.8$ (s$), 17.9$ (s), 13.0 (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-169.4 ppm; HRMS (ESI) (m / z) [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$: exact mass calc. for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{FO}_{5}$: 435.2541, found: 435.2547.

Fluorinated (+)-4-Cholesten-3-on (2p)

Prepared from (+)-4-cholesten-3-on according to General Procedure A. Purification was conducted via column chromatography ($5 \% \mathrm{EtOAc}$ in PE) that afforded the mixture of isomers (difficult to assign fluorine positions) as white solid. Yield: $52.0 \mathrm{mg}, 23 \%$.

IR (neat) v (cm^{-1}): 2933, 2870, 1715, 1677, 1465, 1379, 1267, 1230, 1185, 1081, 1029, 962, 868, 779, 686; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.75$ (d, J = $23.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.13-4.63(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.22(\mathrm{~m}, 4 \mathrm{H}), 2.00(\mathrm{dt}, ~ J$ $=11.7,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.37$ $-1.23(\mathrm{~m}, 6 \mathrm{H}), 1.21-1.08(\mathrm{~m}, 7 \mathrm{H}), 1.05-0.81(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.{ }_{3}\right) \delta 199.4,170.9$, $124.8,124.7,123.9,123.8,100.9,100.8,99.2,99.1,63.9,63.8,63.7,63.7,53.5,53.5,52.7,43.8,43.8$, $43.7,43.7,39.7,39.4,39.4,39.3,39.3,38.5,36.0,35.9,35.6,35.5,35.4,34.8,34.4,34.0,33.9,33.7,33.6$,
$33.2,32.7,31.8,31.7,31.4,30.1,29.7,27.9,25.7,24.8,24.1,23.8,23.7,22.8,22.5,22.5,20.8,20.6,18.6$, 18.5, 18.5, 18.3, 17.6, 17.4, 17.3, 13.3, $13.2 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-163.0,-163.1,-171.8$, 171.9 ppm ; HRMS (ESI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$: exact mass calc. for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{FO}_{5}$: 402.3298, found: 402.3277.

Methyl 2-(4-(1-fluoro-2-methylpropyl)phenyl)propanoate (2y)

Prepared from methyl 2-(4-isobutylphenyl)propanoate according to General Procedure A. Purification was conducted via column chromatography (5% EtOAc in PE) that afforded the desired product as colorless oil. Yield: $74.0 \mathrm{mg}, 55 \%$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.19(\mathrm{~m}, 5 \mathrm{H}), 5.08(\mathrm{dd}, \mathrm{J}=47.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.66$ (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}$), $2.21-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-0.98(\mathrm{~m}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1$ (s), 174.9 (s$), 140.3$ (t, $J=2.1 \mathrm{~Hz}$), 138.7 (s), 138.3 (d, J = 20.6 Hz), 130.6 (s), 127.3 (s), 127.2 (s), 126.4 (d, $J=7.0 \mathrm{~Hz}$), 99.1 (d, $J=173.5 \mathrm{~Hz}$), 52.0 (s), 52.0 (s), 47.2 (d, $J=22.9 \mathrm{~Hz}$), 45.1 (s), 45.0 (s), 34.2 (d, $J=22.8 \mathrm{~Hz}$), 31.6 (s), 26.6 (d, $J=24.5 \mathrm{~Hz}$), 22.6 (s), 18.6 (d, J $=1.8 \mathrm{~Hz}$), $18.3(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 17.5(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 14.1(\mathrm{~s}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-180.1$ (ddd, $J=47.0,17.1,8.0 \mathrm{~Hz}) \mathrm{ppm}$; $\operatorname{HRMS}(\mathrm{EI})(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$: exact mass calc. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{FO}_{2}: 238.1369$, found: 238.1363.

Data are consistent with the literature. [31b]

4-Fluoro-4-phenylbutyl acetate (20)

Prepared from 4-phenylbutyl acetate according to General Procedure A (1.5 eq. MFB). Purification was conducted via column chromatography (2% EtOAc in PE) that afforded the desired product as colorless oil. Yield: $35.0 \mathrm{mg}, 29 \%$.
IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 3064,3030,2956,1737,1495,1454,1364,1237,1144,1044,969,895,764,701 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 7.38-7.21(\mathrm{~m}, 5 \mathrm{H}), 5.39$ (ddd, $\left.J=47.7,8.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.11-3.96(\mathrm{~m}, 2 \mathrm{H})$, $1.98-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.95-1.58(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1$ (s), 140.0 (d, J=19.8 Hz), 128.5 (s$), 128.4(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 125.5(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 94.0(\mathrm{~d}, J=171.1 \mathrm{~Hz}), 63.9$ (s), 33.8 (s), 33.6 (s), 24.4 (d, J = 4.2 Hz), 20.9 (s$) \mathrm{ppm} ;{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(} 377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-175.9-176.4$ (m); HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{FO}_{2}$: 210.1056, found: 210.1060.

Prepared from 1-(2-ethylhexyl)-1-methylpyrrolidin-1-ium hexafluorophosphate according to General Procedure A (2.0 eq. SF). Purification was conducted via column chromatography ($10 \% \mathrm{MeOH}$ in DCM) that afforded the desired product as colorless oil. Yield: $163.0 \mathrm{mg}, 80 \%$.
IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 2963,2930,2974,1465,1387,1059,913,831,727 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 4.80-$ $4.53(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{td}, J=11.5,5.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.33-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 4 \mathrm{H}), 1.63(\mathrm{ddd}, \mathrm{J}=$ $15.1,13.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.21(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{tt}, J=13.9,4.7 \mathrm{~Hz}, 5 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$
 34.6 (d, $J=20.1 \mathrm{~Hz}$), 33.1 (s), 32.9 ($\mathrm{d}, J=3.8 \mathrm{~Hz}$), 32.6 (s), 28.2 (s$), 28.2$ (s$), 28.1$ (s$), 25.6(\mathrm{~d}, J=4.0 \mathrm{~Hz}$), $21.0(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 20.8(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 9.9(\mathrm{~s}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (377 MHz , None) $\delta-71.7$ (d, $J=707.5 \mathrm{~Hz}$), -171.6 - -172.7 (m) ppm; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{FN}$: 216.2122, found: 216.2128.

5-(6-fluoroheptyl)dihydrofuran-2(3H)-one (2ab)

$C_{6}: C_{5}: C_{4}=2: 1.5: 1$
Prepared from 5-heptyldihydrofuran-2(3H)-one according to General Procedure A. Purification was conducted via column chromatography ($10 \% \mathrm{EtOAc}$ in PE) that afforded the mixture of isomers ($6 \mathrm{~F}: 5 \mathrm{~F}: 4 \mathrm{~F}$ $=2: 1.5: 1)$ as colorless oil. Yield: $65.0 \mathrm{mg}, 57 \%$.
IR (neat) v $\left(\mathrm{cm}^{-1}\right)$: 2937, 2863, 1771, 1461, 1424, 1387, 1353, 1286, 1178, 1129, 1014, 977, 917, 839, 805, $731 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 4.78-4.26(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.41$ - $2.24(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.79$ $(\mathrm{m}, 1 \mathrm{H}), 1.77-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.19(\mathrm{~m}, 8 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.{ }_{3}\right)$ ס 177.2 (s), 177.2 (s$), 177.1$ (d, J = 0.5 Hz), 177.0 (s$), 96.2$ (d, $J=1.5 \mathrm{~Hz}$), 95.0 (s$), 94.8$ (s$), 94.7$ (s), 94.6 (d, $J=1.6 \mathrm{~Hz}$), 94.4 (s), 93.3 (s$), 93.1$ (d, $J=13.5 \mathrm{~Hz}$), 92.7 (s$), 90.9$ (dd, $J=164.2,1.0 \mathrm{~Hz}$), 80.9 (d, $J=$ 1.3 Hz), 80.9 (s), 80.8 (s), 80.7 (s), 80.2 (s), 77.3 (s), 60.4 (s), 37.2 (dd, $J=20.8,1.2 \mathrm{~Hz}$), 36.7 (d, $J=20.7$ Hz), 35.5 (s), 35.5 (s), 35.3 (s), 35.0 (s), 35.0 (s), 34.8 (d, J = 2.9 Hz), 34.7 (s), 34.6 (s), 34.6 (s), 34.5 (s), 34.4 (d, J = 3.8 Hz), 31.9 (s), 31.8 (d, $J=3.6 \mathrm{~Hz}$), 31.5 (s), 31.3 (s$), 31.0(\mathrm{~d}, J=3.9 \mathrm{~Hz}$), 30.6 (d, $J=21.3$

 Hz), 24.8 (s), 22.7 (s), 22.5 (s), 21.2 (d, J = 4.3 Hz), 21.1 (d, J= 0.7 Hz), 21.0 (s), 21.0 (s), 20.9 (d, J= 0.9 Hz), 18.3 (dd, $J=4.7,0.9 \mathrm{~Hz}$), 14.2 (s$), 14.1$ (s$), 13.9$ (s), 13.9 (s), $9.4(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (377
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-172.7--173.4(\mathrm{~m}),-181.1--181.9(\mathrm{~m}),-181.9--182.4(\mathrm{~m}) ; \mathrm{HRMS}(\mathrm{EI})(\mathrm{m} / \mathrm{z})\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: exact mass calc. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{FO}_{2}$: 220.1713 , found: 220.1708.

1-(6-Fluoroheptyl)-3-methyl-1H-imidazol-3-ium tetrafluoroborate (2ac)

Prepared from 1-heptyl-3-methyl-1H-imidazol-3-ium tetrafluoroborate according to General Procedure A (2.0 eq. SF). Purification was conducted via column chromatography ($10 \% \mathrm{MeOH}$ in DCM) that afforded the mixture of two isomers ($6 \mathrm{~F}: 5 \mathrm{~F}=2: 1$) as colorless oil. Yield: $158.0 \mathrm{mg}, 98 \%$.

IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 3638,3161,3124,2926,2859,1625,1573,1461,1387,1286,1170,1036,917,850$, 731; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.17(\mathrm{~m}, 2 \mathrm{H}), 4.62-4.13(\mathrm{~m}, 1 \mathrm{H}), 4.09-3.97(\mathrm{~m}$, 2 H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.22(\mathrm{~m}, 5 \mathrm{H}), 1.16$ (ddd, $J=16.7,9.7,4.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.76$ (m, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.2$ (s), 123.7 (s), 123.0 (s), 122.3 (s), 122.3 (s), 122.2 (s), 120.8 (s), 95.3 (d, J = 167.1 Hz), 90.9 (d, $J=163.9 \mathrm{~Hz}$), 90.1 (s), 50.0 (s$), 49.8$ (s$), 49.7$ (s$), 46.6$ (s), 36.4 (d, J = 20.7 Hz), 36.2 (s), 34.3 (s), 33.8 (d, J = 21.0 Hz), 33.3 (s), 31.5 (s), 30.2 (s), 30.0 (s$), 29.9$ (s$), 29.8$
 Hz), 21.0 (d), 20.1 (s), 17.4 (s), 14.0 (s), 13.6 (s), 9.3 (d, J = 5.8 Hz) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -$151.7--151.8(\mathrm{~m}),-172.6--173.9(\mathrm{~m}),-181.95--183.00(\mathrm{~m}) \mathrm{ppm} ;{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-1.23(\mathrm{~s})$ ppm; HRMS (EI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$: exact mass calc. for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{FN}$ 2: 199.1605, found: 199.1607.

1-(3-Fluoro-3-phenylpropyl)-3-methyl-1H-imidazol-3-ium hexafluorophosphate (2ad)

Prepared from 3-methyl-1-(3-phenylpropyl)-1H-imidazol-3-ium hexafluorophosphate according to General Procedure A (2.0 eq. SF). Purification was conducted via column chromatography ($10 \% \mathrm{MeOH}$ in DCM) that afforded the desired product as colorless oil. Yield: $144.0 \mathrm{mg}, 70 \%$.
IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 3653,3168,3123,2922,2851,2263,1737,1685,1577,1498,1457,1368,1215,1170$, 1096, 1055, 988, 917, 828, 753, 701; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.09(\mathrm{~m}, 6 \mathrm{H}), 5.31$ (ddd, $J=48.0,9.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.04(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR
 126.2 (d, $J=6.7 \mathrm{~Hz}$), 123.7 (d, $J=130.1 \mathrm{~Hz}$), 117.9 (s$), 92.1(\mathrm{~d}, J=169.2 \mathrm{~Hz}), 46.6$ (d, $J=4.3 \mathrm{~Hz}$), 37.0 (d, $J=23.8 \mathrm{~Hz}$), 36.4 (s) ppm; ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-71.6$ (d, $J=706.7 \mathrm{~Hz}$), -176.1--176.5 (m) ppm; ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-143.1$ (hept, $J=706.8 \mathrm{~Hz}$) ppm; HRMS (EI) (m / z) [M]+: exact mass calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{FN}_{2}$: 219.1292, found: 219.1297.

1-(3-Fluorobutyl)-2,3-dimethyl-1H-imidazol-3-ium bis((trifluoromethyl)sulfonyl)amide (2ae)

Prepared from 1-butyl-2,3-dimethyl-1H-imidazol-3-ium bis((trifluoromethyl)sulfonyl)amide according to General Procedure A (2.0 eq. SF). Purification was conducted via column chromatography ($10 \% \mathrm{MeOH}$ in DCM) that afforded the desired product as colorless oil. Yield: $173.0 \mathrm{mg}, 68 \%$.
IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 3153,2941,2263,1592,1543,1465,1349,1178,1133,1051,965,928,883,846,790$, $738 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.18-7.01(\mathrm{~m}, 2 \mathrm{H}), 4.67-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{t}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.37$ (s, 3H), $1.97-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{dd}, J=24.2,6.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 145.3$ (s), 125.3 (s), 122.9 (d, $J=19.3 \mathrm{~Hz}$), 122.1 (s$), 121.4$ (d, $J=8.9 \mathrm{~Hz}$), 118.9 (s), 117.9 (s), 115.7 (s), 88.6 (d, J
 19.7 (s), 13.3 (s), 9.6 (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-78.9$ (s), -175.7--176.2 (m) ppm; HRMS (EI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$: exact mass calc. for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{FN}_{2}$: 171.1292, found: 171.1295 .

N-(2-((S)-2-cyanopyrrolidin-1-yl)-2-oxoethyl)-4-fluoro-N-((1R,3R,5S,7R)-3-fluoro-5-hydroxyadamantan-1-yl)benzamide (11g)

Prepared from N-(2-((S)-2-cyanopyrrolidin-1-yl)-2-oxoethyl)-4-fluoro- N-((1r,3R,5R,7S)-3-hydroxyadamantan-1-yl)benzamide according to General Procedure C. Purification was conducted via column chromatography (50\% EtOAc in PE) that afforded desired product as white solid. Yield: 143.0 mg , 57\%.

IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 3407,2922,2863,1707,1636,1510,1446,1394,1357,1323,1260,1223,1159,1036$, 1003, 958, 850, 768, 712, 678; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.97$ (td, $J=8.6,5.4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.77-4.56(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{q}, J=18.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-1.32(\mathrm{~m}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$

NMR (101 MHz, CDCl ${ }_{3}$) $\delta 172.3$ (s), 172.2 (s), 168.8 (s), 168.6 (d, J = 1.1 Hz), 164.1 (s), 164.0 (s), 161.6
 115.5 (ddd, $J=18.8,12.2,6.7 \mathrm{~Hz}$), $94.1(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 92.3(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 77.4(\mathrm{~s}), 70.6(\mathrm{~d}, J=12.8 \mathrm{~Hz})$, 61.8 (d, $J=12.4 \mathrm{~Hz}$), 60.2 (s), 49.3 (dd, $J=11.5,5.2 \mathrm{~Hz}$), 49.1 (s), 49.0 (s), 47.2 (s), 46.0 (d, $J=4.2 \mathrm{~Hz}$), 43.9 (d, $J=15.0 \mathrm{~Hz}), 43.2(\mathrm{~d}, J=19.7 \mathrm{~Hz}), 42.4(\mathrm{~d}, J=15.7 \mathrm{~Hz}), 40.3(\mathrm{~d}, J=17.9 \mathrm{~Hz}), 36.5(\mathrm{~d}, J=8.5 \mathrm{~Hz})$, 29.9 (s), 29.7 (d, J = 11.4 Hz), 29.6 (s$) ~ p p m ;{ }^{19}$ F NMR (377 MHz , None) δ-112.1--112.3 (m), -133.6 (s) ppm; HRMS (EI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$: exact mass calc. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$: 444.2099, found: 444.2098.

Fluorinated 1-cyclohexyl-2-methoxy-2-oxo-1-phenylethyl 4-fluorobenzoate (9i)

Prepared from 1-cyclohexyl-2-methoxy-2-oxo-1-phenylethyl 4-fluorobenzoate according to General Procedure C. Purification was conducted via column chromatography ($5 \% \mathrm{EtOAc}$ in PE) that afforded the mixture of isomers (4F:3F:2F = 4.8:4.5:1) as white solid. Yield: $116.0 \mathrm{mg}, 53 \%$.
IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 2948,2870,1729,1602,1505,1449,1412,1360,1274,1237,1155,1088,1025,954$, 857, 767, 704; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б $8.33-8.14(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.36(\mathrm{~m}, 3 \mathrm{H})$, $7.31-7.21(\mathrm{~m}, 2 \mathrm{H}), 5.12-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=7.0,3.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.02-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{ddd}, \mathrm{J}=$ $20.4,10.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{dt}, \mathrm{J}=9.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.28$ (m, 2H), $1.29-0.99(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5(\mathrm{~s}), 170.0(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}), 167.3(\mathrm{~d}, \mathrm{~J}=$ $1.9 \mathrm{~Hz}), 164.8(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 164.0(\mathrm{~s}), 164.0(\mathrm{~s}), 163.9(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 136.7(\mathrm{t}, J=13.4 \mathrm{~Hz}), 132.4(\mathrm{dd}, J$ $=9.4,2.8 \mathrm{~Hz}$), $128.5-127.6(\mathrm{~m}), 126.5-125.5(\mathrm{~m}, J=11.3,10.5 \mathrm{~Hz}), 116.3-115.5(\mathrm{~m}), 89.8(\mathrm{~d}, J=10.3$ $\mathrm{Hz}), 88.7$ (s), 88.1 (d, $J=10.6 \mathrm{~Hz}$), 87.1 (s$), 86.5(\mathrm{~d}, J=25.0 \mathrm{~Hz}), 52.4(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 45.4(\mathrm{~s}), 41.0(\mathrm{~d}, J$ $=3.3 \mathrm{~Hz}$), 32.2 (dd, $J=42.2,20.9 \mathrm{~Hz}$), 30.7 (dd, $J=21.3,3.8 \mathrm{~Hz}$), 30.3 (d, $J=21.4 \mathrm{~Hz}$), 29.7 (s), 27.0 (s), 26.6 (s), 22.0 (s), 21.2 (s), 20.1 (s) ppm; ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-104.9$ (s), -105.0 (d, J=10.9 Hz), 105.21 (s), -105.2 (d, J = 6.6 Hz), -167.7 (d, J=61.0 Hz), -170.4 (s), -184.1 (d, J = 73.0 Hz), -185.9 (s) ppm; HRMS (ESI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$: exact mass calc. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{O}_{4}: 411.1378$, found: 411.1379.

2-(3-Fluorobutoxy)ethyl 4-fluorobenzoate (9a)

Prepared from 2-butoxyethyl 4-fluorobenzoate according to General Procedure C. Purification was conducted via column chromatography ($5 \% \mathrm{EtOAc}$ in PE) that afforded the mixture of two isomers in $2: 1$ (3F : 2F) ratio (based on ${ }^{19} \mathrm{~F}$ NMR) as slightly yellow oil. Yield: $95.0 \mathrm{mg}, 65 \%$.
IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 2959,2877,1722,1602,1509,1457,1412,1386,1271,1237,1155,1092,987,894$, 857, 767, 689; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.22-6.98(\mathrm{~m}, 2 \mathrm{H}), 4.98-4.29(\mathrm{~m}, 3 \mathrm{H})$, $4.07-3.50(\mathrm{~m}, 3 \mathrm{H}), 1.99-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{dd}, J=24.0,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.04-0.76(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0$ (s), 165.6 (s), 164.5 (s), 132.2 (d, $J=9.3 \mathrm{~Hz}$), 126.3 (d, $J=3.0 \mathrm{~Hz}$), 115.5 (d, J $=22.0 \mathrm{~Hz}$), $94.2(\mathrm{~d}, J=171.1 \mathrm{~Hz}), 88.1(\mathrm{~d}, J=164.1 \mathrm{~Hz}), 72.8(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 69.5(\mathrm{~s}), 68.8$ (s), 67.1 (d, $J=5.2 \mathrm{~Hz}), 64.1(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 37.0(\mathrm{~d}, J=20.8 \mathrm{~Hz}), 24.6(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 21.1(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 9.2(\mathrm{~d}, J$ $=5.8 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-106.1, -106.2, $-175.8,-187.2 \mathrm{ppm} ; \mathrm{HRMS}(\mathrm{ESI})(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$: exact mass calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{3}$: 259.1140, found: 259.1142.

4-Fluoro-4-phenylbutyl 4-fluorobenzoate (9b)

Prepared from 4-phenylbutyl 4-fluorobenzoate according to General Procedure C. Purification was conducted via column chromatography (1% EtOAc in PE) that afforded the product as colorless oil. Yield: $115.0 \mathrm{mg}, 70 \%$.
IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 3063,3030,2955,1714,1602,1505,1453,1408,1267,1237,1151,1110,961,916$, 853, 764, 700; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.05(\mathrm{~m}, 2 \mathrm{H})$, 5.53 (ddd, $J=47.5,8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.29(\mathrm{~m}, 2 \mathrm{H}), 2.19-1.86(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz ,
 $=1.8 \mathrm{~Hz}), 126.5(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 125.5(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 94.0(\mathrm{~d}, J=171.4 \mathrm{~Hz}), 64.6$
 (ESI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$: exact mass calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{2}$: 291.1191, found: 291.1193.

Fluorinated 1-phenyldodecyl 4-fluorobenzoate (9c)

Prepared from 1-phenyldodecyl 4-fluorobenzoate according to General Procedure C. Purification was conducted via column chromatography ($1 \% \mathrm{EtOAc}$ in PE) that afforded the mixture of several isomers (difficult to assign fluorine positions) as white solid. Yield: $197.0 \mathrm{~g}, 87 \%$.
IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 2929,2858,1722,1602,1505,1457,1412,1367,1267,1155,1110,1013,954,909$, 853, 767, 700; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18-8.03$ (m, 2H), 7.34 (ddt, $J=14.2,7.2,4.3 \mathrm{~Hz}, 5 \mathrm{H}$), 7.22 $-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.98(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.79-4.29(\mathrm{~m}, 1 \mathrm{H}), 2.22-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.59$ (dddd, $J=13.2,10.8$,
10.2, $4.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.39-1.25(\mathrm{~m}, 11 \mathrm{H}), 1.00-0.87(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 167.0$ (s , 164.9 (s), 164.5 (s$), 140.8$ (s$), 132.1$ ($\mathrm{d}, \mathrm{J}=9.3 \mathrm{~Hz}$), 129.1 - 128.4 (m), 127.9 (d, $J=6.6$
 90.2 (s), 37.1 (d, $J=15.1 \mathrm{~Hz}$), 36.8 (s), $36.6-36.1(\mathrm{~m}), 35.4-34.4(\mathrm{~m}), 31.7(\mathrm{dd}, J=9.6,6.0 \mathrm{~Hz}), 30.0-$ $29.0(\mathrm{~m}), 27.3(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 25.5(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 25.0(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 22.6(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}), 21.1(\mathrm{~s})$, 20.9 (s), 18.4 (d, $J=4.8 \mathrm{~Hz}$), $14.3-13.8(\mathrm{~m}), 9.4(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.0$, -106.1, -106.2, -106.3, -106.3, -106.3, -172.6, -180.5, -180.6, -180.7, -180.8, -180.9, -181.0, -181.0, -181.3, -181.4, -181.7 ppm; HRMS (ESI) $(m / z)\left[M+\mathrm{NH}_{4}\right]^{+}$: exact mass calc. for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~F}_{2} \mathrm{O}_{2}$: 420.2709, found: 420.2713.
(1R,2R,5R)-2-(2-Fluoropropan-2-yl)-5-methylcyclohexyl 4-fluorobenzoate (9d)

Prepared from (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4-fluorobenzoate according to General Procedure C. Purification was conducted via column chromatography (5% EtOAc in PE) that afforded the product as colorless viscous oil. Yield: $100.0 \mathrm{mg}, 60 \%$.

IR (neat) v (cm^{-1}): 2959, 2933, 2877, 1714, 1602, 1505, 1461, 1412, 1371, 1326, 1267, 1151, 1110, 1013, 987, 894, 853, 767, 685; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25-8.16(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.19(\mathrm{~m}, 2 \mathrm{H}), 5.21-5.01$ $(\mathrm{m}, 1 \mathrm{H}), 4.80(\mathrm{~d}, \mathrm{~J}=48.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{dd}$, $J=23.4,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95$ (d, J = 6.9 Hz, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0$ (s), 165.1 (s), 164.5 (s), 132.1 (d, $J=9.3 \mathrm{~Hz}), 126.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 115.4(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 91.7(\mathrm{~d}, J=172.4 \mathrm{~Hz}), 73.7$ (s), 40.2 (s), 34.4 (d, $J=20.2 \mathrm{~Hz}$), $34.0(\mathrm{~d}, J=1.1 \mathrm{~Hz}$), 29.1 (d, $J=21.4 \mathrm{~Hz}$), 25.9 (s$), 20.4$ (s), 17.2 (d, $J=3.5 \mathrm{~Hz}$), 16.2 (s) ppm; ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.4,-199.9 \mathrm{ppm}$. HRMS (ESI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$: exact mass calc. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{O}_{2}$: 297.1661, found: 297.1658.

3-Fluoro-3-methyl-1-phenylbutyl 4-fluorobenzoate (9e)

Prepared from 3-methyl-1-phenylbutyl 4-fluorobenzoate according to General Procedure C. Purification was conducted via column chromatography (1\% EtOAc in PE) that afforded the product as colorless viscous oil. Yield: 93.0 mg, 54\%.

IR (neat) v $\left(\mathrm{cm}^{-1}\right): 2981,2937,1722,1602,1505,1457,1412,1375,1271,1155,1110,1013,857,767$, 700; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14$ - $8.02(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.06$ (m, 2H), $6.23(\mathrm{dd}, J=9.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{ddd}, J=20.3,15.1,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{ddd}, J=18.3,15.2,3.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.44 (dd, J = 21.5, $1.6 \mathrm{~Hz}, 6 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1$ (s), 164.6 (s$), 164.5$ (s), 141.0 (s), 132.2 (d, $J=9.3 \mathrm{~Hz}$), 128.6 (s), 128.1 (s$), 126.5(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 126.3$ (s), $115.5(\mathrm{~d}, J=22.0 \mathrm{~Hz})$, 95.0 (s), 93.3 (s), 73.2 (d, $J=5.2 \mathrm{~Hz}$), 47.6 (d, $J=23.0 \mathrm{~Hz}$), 27.5 (d, $J=24.5 \mathrm{~Hz}$), 27.0 (d, $J=24.7 \mathrm{~Hz}$) ppm; ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.0$, -136.4 ppm ; HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: exact mass calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{O}_{2}$: 322.1613, found: 322.1616 .

Fluorinated ((1R,2R,4S)-bicyclo[2.2.1]heptan-2-yl)methyl 4-fluorobenzoate (9f)

Prepared from ((1R,2R,4S)-bicyclo[2.2.1]heptan-2-yl)methyl 4-fluorobenzoate according to General Procedure C. Purification was conducted via column chromatography (5% EtOAc in PE) that afforded the mixture of several isomers (difficult to assign fluorine positions) as colorless viscous oil. Yield: 78.0 mg , 52\%.

IR (neat) v $\left(\mathrm{cm}^{-1}\right): 2963,2877,1714,1602,1505,1453,1412,1349,1267,1155,1110,976,853,767,685 ;$ ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3) $\delta 8.10-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.01(\mathrm{~m}, 2 \mathrm{H}), 5.05-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.12(\mathrm{~m}$, $1 \mathrm{H}), 4.11-3.98(\mathrm{~m}, 1 \mathrm{H}), 2.65-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.17(\mathrm{~m}, 2 \mathrm{H})$, 1.12 - $0.47(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.1$ - $166.8(\mathrm{~m}), 165.6-165.2(\mathrm{~m}), 164.6-164.3$ (m), 132.6-131.9 (m), 126.4 (dt, $J=6.7,3.1 \mathrm{~Hz}$), $115.7-115.2(\mathrm{~m}), 96.4-96.0(\mathrm{~m}), 94.5-94.2(\mathrm{~m}), 93.2$ (s), 91.4 (s), 67.7 (d, $J=1.3 \mathrm{~Hz}$), 67.1 (d, $J=3.3 \mathrm{~Hz}$), 65.9 (s), 65.6 (s), 64.3 (d, $J=4.5 \mathrm{~Hz}$), 49.0 (d, $J=$ 19.9 Hz), 44.4 (dd, $J=20.1,6.8 \mathrm{~Hz}$), $42.5(\mathrm{~d}, J=19.2 \mathrm{~Hz}), 42.1(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 41.9(\mathrm{~s}), 40.6-40.0(\mathrm{~m})$, 39.8 (d, $J=17.8 \mathrm{~Hz}$), 39.4 (s), 39.2 (s$), 37.4(\mathrm{~d}, J=6.8 \mathrm{~Hz}$), 37.1 (d, $J=9.4 \mathrm{~Hz}$), 36.0 (t, $J=10.1 \mathrm{~Hz}$), 35.7 - 35.3 (m), $34.8-34.5$ (m), 33.2 (s), 33.0 (s), 32.5 (d, $J=1.8 \mathrm{~Hz}$), 31.8 (d, J = 14.7 Hz), 31.4 (s), 29.6 (s), $26.8(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 26.4(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 22.8(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 21.7(\mathrm{~s}), 14.1(\mathrm{~s}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (377 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-106.0,-106.1,-106.1,-106.2,-106.2,-158.9,-161.2,-162.5,-162.7,-168.8 \mathrm{ppm} ; \mathrm{HRMS}(\mathrm{ESI})$ $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$: exact mass calc. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{2}$: 267.1191, found: 267.1195.

7-fluoro-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-yl 4-fluorobenzoate (9g)

Prepared from 6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-yl 4-fluorobenzoate according to General Procedure C. Purification was conducted via column chromatography (1% EtOAc in PE) that afforded the mixture of three isomers (7F : 8F : 9F) as white solid. Yield: $112.0 \mathrm{mg}, 66 \%$.
IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 3071,3026,2940,2866,1718,1602,1505,1453,1412,1364,1267,1155,1107,1002$, 887, 853, 764, 689; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б $8.28-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.09(\mathrm{~m}$, $5 \mathrm{H}), 6.59-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.31-4.55(\mathrm{~m}, 1 \mathrm{H}), 3.70-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.64-1.85(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.1$ (d, J=2.0 Hz), 167.1 (s), 164.6 (s), 164.6 (s), 164.6 (s), 164.5 (s), 164.5 (s), 164.4 (s), 164.2 (s), 140.2 (s), 140.1 (s), 139.2 (s), 138.9 (s), 134.0 (d, $J=14.6 \mathrm{~Hz}$), 133.6 (d, J=10.9 Hz), 132.3 (s), 132.2 (dd, J = 9.5, 1.4 Hz), 131.6 (s), 131.4 (s), 130.1 (s), 129.9 (s), 129.0 (s), 128.9 (s), 128.3 (s), 128.0 (s), 127.2 (s), 127.2 (s), 126.6 (s), 126.6 (s), 126.5 (d, $J=3.1 \mathrm{~Hz}$), 126.4 (d, $J=3.1 \mathrm{~Hz}$), 125.6 (s), 115.7 (dd, $J=22.0,2.9 \mathrm{~Hz}$), 91.4 (s), 90.6 (s), 89.7 (d, $J=3.4 \mathrm{~Hz}$), 88.9 (s), 76.1 (s), 75.5 (s), 42.1 (d, $J=23.8$ Hz), $41.4(\mathrm{~d}, J=23.3 \mathrm{~Hz}), 38.7(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 34.8(\mathrm{~s}), 33.6(\mathrm{~d}, J=20.5 \mathrm{~Hz}), 32.7(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 31.8$ (d, $J=22.3 \mathrm{~Hz}$), $29.2(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 28.7(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 28.2(\mathrm{~d}, J=12.2 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (377 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-105.6,-105.7,-105.7,-163.0,-171.0,-173.5 \mathrm{ppm}$; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{2}$: 302.1118, found: 302.1115.

5-fluorocyclododecyl 4-fluorobenzoate (9h)

Prepared from cyclododecyl 4-fluorobenzoate according to General Procedure C. Purification was conducted via column chromatography (1% EtOAc in PE) that afforded the mixture of six isomers (2F:3F:4F:5F:6F:7F) as white solid. Yield: $112.0 \mathrm{mg}, 61 \%$.
IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 2944,2862,1714,1602,1505,1468,1412,1274,1155,1114,991,957,913,857,767$, $689 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.00(\mathrm{~m}, 2 \mathrm{H}), 5.33-5.08(\mathrm{~m}, 1 \mathrm{H}), 4.89-4.60$ $(\mathrm{m}, 1 \mathrm{H}), 1.90-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.31(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $167.0-166.8(\mathrm{~m}), 165.4-165.0(\mathrm{~m}), 164.5-164.3(\mathrm{~m}), 132.2-131.8(\mathrm{~m}), 126.9$ (ddd, $J=8.3,4.7,2.0$ Hz), 115.5 (d, $J=1.8 \mathrm{~Hz}$), 115.3 (d, $J=1.7 \mathrm{~Hz}$), $93.2(\mathrm{~s}), 93.0(\mathrm{~s}), 92.9(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 92.5(\mathrm{~s}), 92.2(\mathrm{~s})$, 91.3 (dd, J = 25.2, 13.6 Hz), 90.8 (s), 90.6 (s), 72.8 (s$), 72.6$ (s$), 72.5$ (s), 72.3 (s$), 72.3$ (s), 71.9 (s), 30.7 (s), 30.5 (s), 30.4 (s), 30.3 (d, J = 5.8 Hz), 30.2 (s), 30.1 (dd, J = 8.9, 3.5 Hz), 29.9 (s), 29.7 (s$), 29.7$ (s),
 (s), 27.1 (d, J = 22.2 Hz), 26.2 (d, J=7.2 Hz), 25.7 (t, J=4.6 Hz), 24.5 (s), 24.3 (d, J=15.1 Hz), 24.1 (s), 24.1 (s), 24.0 (s), 23.9 (s), 23.9 (s), 23.7 (s), 23.5 (s), 23.4 (s), 23.3 (s), 23.0 (d, J=6.8 Hz), 22.0 (s), 21.7 (d, J=2.4 Hz), 21.6 (s), 21.6 (s), 21.5 (s), 21.5 (s), 21.2 (d, J = 7.3 Hz), 20.7 (s), 20.7 (s), 20.6 (s), 20.6 (s), $20.5(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 20.3(\mathrm{dd}, J=6.9,1.5 \mathrm{~Hz}), 19.8(\mathrm{~s}), 19.7(\mathrm{~s}), 19.7(\mathrm{~s}), 19.1(\mathrm{~s}), 19.0(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 16.5$
(d, J = 7.2 Hz) ppm; ${ }^{19}$ F NMR (377 MHz, CDCl ${ }_{3}$) δ-106.5, -106.5, -106.5, -106.6, -106.6, -106.7, -176.6, 176.7, -176.8, -177.0, -177.0, -177.4 ppm; HRMS (ESI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$: exact mass calc. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{O}_{2}$: 325.1974, found: 325.1979.

Fluorinated amyl 4-fluorobenzoate (9j)

According to General Procedure 1. Yield: $95.0 \mathrm{mg}, 74 \%\left(\mathrm{C}_{4}: \mathrm{C}_{3}: \mathrm{C}_{2}=8: 2: 1\right.$); colorless oil; IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$: 2978, 1718, 1603, 1510, 1454, 1413, 1271, 1238, 1156, 1111, 1014, 984, 857, 768, 690; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.18(\mathrm{~m}, 2 \mathrm{H}), 5.01-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.66-4.36(\mathrm{~m}, 2 \mathrm{H}), 2.28-$ 1.77 (m, 4H), 1.51 (dd, J = 23.8, $6.2 \mathrm{~Hz}, 2.6 \mathrm{H}$), $1.20-1.03(\mathrm{~m}, 0.4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 167.0 (s), 165.6 (s), 164.5 (s), 132.1 (d, $J=9.3 \mathrm{~Hz}$), 126.6 (d, $J=3.0 \mathrm{~Hz}$), 115.5 (d, J=22.0 Hz), 92.3 (d, J $=168.5 \mathrm{~Hz}), 90.4(\mathrm{~d}, J=165.3 \mathrm{~Hz}), 64.9(\mathrm{~s}), 64.8(\mathrm{~s}), 61.4(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 34.0(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 33.5(\mathrm{~d}, J$ $=21.2 \mathrm{~Hz}), 30.0(\mathrm{~d}, J=19.8 \mathrm{~Hz}), 28.4(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 28.1(\mathrm{~s}), 24.6(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 22.0(\mathrm{~d}, J=5.2 \mathrm{~Hz})$, $21.0(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 9.3(\mathrm{~d}, J=5.7 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-106.1 - -106.2 (m), -106.3 (tt, $J=8.5,5.5 \mathrm{~Hz}),-173.6--174.5(\mathrm{~m}),-184.2--185.1(\mathrm{~m}) \mathrm{ppm}$; HRMS (EI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$: exact mass calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}_{2}$: 228.0962, found: 228.0957.

4-fluoropentyl 4-fluorobenzoate (9j-1)

Data for major isomer depicted: IR (neat) v $\left(\mathrm{cm}^{-1}\right):$ 2978, 1718, 1603, 1510, 1450, 1409, 1271, 1156, 1111, 1014, 980, 857, 768, 690; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.04(\mathrm{~m}, 2 \mathrm{H}), 4.90-$ $4.59(\mathrm{~m}, 1 \mathrm{H}), 4.41-4.28(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.36(\mathrm{dd}, J=23.9,6.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0$ (s), 165.6 (s), 164.5 (s$), 132.1$ (d, $J=9.3 \mathrm{~Hz}$), 126.6 (d, J = 3.0 Hz), 115.5 (d, J = 22.0 Hz), 90.4 (d, $J=165.3 \mathrm{~Hz}$), $64.8(\mathrm{~s}), 33.5(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 24.6(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 21.0(\mathrm{~d}, J=22.7 \mathrm{~Hz}) \mathrm{ppm}$; ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-106.3 (tt, $J=8.4,5.5 \mathrm{~Hz}$), -173.7--174.3(m) ppm; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}_{2}$: 228.0962, found: 228.0956.

Fluorinated (3R,5R,8R,9S,10S,13R,14S,17R)-17-((R)-5-(benzyloxy)-5-oxopentan-2-yl)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-3-yl 4-fluorobenzoate (9k)

(from lithocholic acid)

Prepared from (3R,5R,8R,9S,10S,13R,14S,17R)-17-((R)-5-(benzyloxy)-5-oxopentan-2-yl)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-3-yl 4-fluorobenzoate according to General Procedure C. Purification was conducted via column chromatography ($2 \% \mathrm{EtOAc}$ in PE) that afforded the mixture of isomers (difficult to assign fluorine positions) as white solid. Yield: $68.0 \mathrm{mg}, 20 \%$.
IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 2937,2870,1718,1602,1505,1453,1412,1379,1323,1274,1155,1114,987,857$, 767, 697; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $5.20-5.05(m, 2 H), 5.04-4.83(m, 1 H), 2.49-2.23(m, 2 H), 2.11-1.90(m, 3 H), 1.91-1.74(m, 5 H)$, $1.73-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.48-0.99(\mathrm{~m}, 14 \mathrm{H}), 0.99-0.88(\mathrm{~m}, 5 \mathrm{H}), 0.65(\mathrm{dd}, J=13.4,4.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$
 ($\mathrm{d}, \mathrm{J}=1.1 \mathrm{~Hz}$), 165.0 (s$), 165.0$ (s$), 164.9$ ($\mathrm{d}, \mathrm{J}=3.8 \mathrm{~Hz}$), 164.7 (s$), 164.5$ (s$), 164.4$ (s$), 164.4$ (d, J = 1.0 Hz), 164.3 (s), 138.4 (s), 136.2 (s), 136.2 (s), 136.1 (s), 132.2 (d, $J=9.4 \mathrm{~Hz}$), 132.1 (d, J = 9.2 Hz), 131.9 (s), 128.5 (s), 128.3 (s), 128.2 (s), 128.1 (s), 127.4 (d, $J=3.0 \mathrm{~Hz}$), 127.1 (d, $J=2.9 \mathrm{~Hz}$), 127.0 (d, J=2.9 Hz), 127.0 (s), $127.0-126.8(\mathrm{~m}), 126.6(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 122.3(\mathrm{~s}), 115.4$ (dd, $J=21.9,4.9 \mathrm{~Hz}), 100.8(\mathrm{~s})$, 100.4 (s), 99.1 (s), 98.6 (s), 96.7 (s), 95.9 (s), 95.0 (s), 94.9 (s), 94.3 (s), 94.1 (s), 93.2 (s), 92.6 (s), 90.9 (s), 90.4 (s), 89.2 (s), 88.7 (s), 75.0 (s), 74.3 (d, $J=2.7 \mathrm{~Hz}$), 74.2 (d, $J=2.7 \mathrm{~Hz}$), 71.4 (d, $J=28.5 \mathrm{~Hz}$), 66.1
 53.5 (d, J = 1.3 Hz), 53.4 (s), 50.3 (s$), 47.5$ (s$), 46.5$ (d, $J=15.0 \mathrm{~Hz}$), 45.9 (d, $J=18.4 \mathrm{~Hz}$), 44.1 (d, $J=5.8$ $\mathrm{Hz}), 43.9$ (d, $J=5.2 \mathrm{~Hz}$), 43.5 (d, $J=6.6 \mathrm{~Hz}$), 43.2 (s$), 42.8$ (d, $J=5.5 \mathrm{~Hz}$), 42.7 (s$), 42.6$ (s$), 42.4$ (s), 42.3 (s), 42.2 (s), 42.0 (s), 41.8 (s$), 41.7$ (s$), 41.6$ (s$), 41.3$ (d, J = 1.2 Hz), 40.9 (s$), 40.8$ (s$), 40.5$ (s$), 40.4$ (d, J $=2.0 \mathrm{~Hz}$), 40.3 (s$), 40.2$ (s$), 40.1$ - 39.4 (m), 38.7 (d, $J=9.4 \mathrm{~Hz}$), 37.3 (d, J = 10.6 Hz), 37.1 (s$), 36.9$ (s), 36.6 (s), 36.2 (d, J = 7.5 Hz), 35.9 (s), 35.8 (s), 35.7 (s$), 35.2$ (dd, J = 5.9, 3.6 Hz), 35.1 (s), 35.1 (s$), 35.0$
 34.1 (d, J = 0.7 Hz), 34.0 (s), 33.9 (s$), 33.7$ (s$), 33.5$ (s), 33.4 (s$), 33.2$ (s$), 33.1$ (s$), 32.9$ (s$), 32.5$ (s), 32.3
 30.9 (s), 30.7 (s), 30.4 (s), 30.2 (s), 30.2 (s), 29.7 (s), 29.7 (s), 29.4 (d, $J=10.1 \mathrm{~Hz}$), 28.4 (d, $J=2.0 \mathrm{~Hz}$), 28.1 (s), 28.1 (s), 28.0 (s), 26.9 (s), 26.8 (s), 26.7 (s), 26.6 (s), 26.6 (s), 26.4 (s), 26.3 (s), 26.3 (s), 26.0 (t, J $=4.5 \mathrm{~Hz}$), 25.9 (s), 25.7 ($\mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}$), 24.7 ($\mathrm{d}, J=6.3 \mathrm{~Hz}$), 24.2 (s$), 24.1$ (s$), 24.1$ (s$), 23.4$ (s$), 23.3$ (s$)$, 23.3 (s), 23.3 (s), 23.2 (s), 23.0 (s), 22.7 (s), 21.2 (s), 21.1 (s), 20.8 (s), 20.7 (s), 20.7 (s), 20.6 (s), 20.5 (s), 18.9 (s), 18.6 (d, J = 3.8 Hz), 18.4 (s), 18.3 (s$), 18.3$ (d, J = 2.0 Hz), 18.2 (s$), 18.1$ (s), 17.9 (s), 17.8 (s), 16.7 (s), 16.6 (s), 16.5 (s), 14.2 (s), 13.4 (s), 13.2 (s), 13.0 - 12.8 (m), 12.0 (s), 12.0 (s), 11.8 (s) ppm; ${ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl 3) $\delta-106.0,-106.2,-106.3,-106.3,-106.4,-106.4,-106.5,-106.5,-106.6,-150.4,-163.4,-$ 166.7, -171.3, -173.1, -177.0, -182.9, -185.8, -194.0 ppm ; HRMS (ESI) (m / z) [M+Na]+: exact mass calc. for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{FO}_{5}$: 629.3413 , found: 629.3411 .

4-Fluoro- N-((1r,3s,5R,7S)-3-fluoroadamantan-1-yl)benzamide (11d)

Prepared from N-((3s,5s,7s)-adamantan-1-yl)-4-fluorobenzamide according to General Procedure C. Purification was conducted via column chromatography (10\% EtOAc in PE) that afforded the mixture of mono- and difluorinated products in $5: 1$ (3F:3F+7F) ratio as white solid. Yield: $115.0 \mathrm{mg}, 70 \%$.

IR (neat) v (cm-1): 3309, 2918, 2862, 1714, 1643, 1602, 1539, 1498, 1457, 1356, 1312, 1230, 1159, 1110, 1017, 950, 902, 849, 767, 685; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) ס 7.78 - 7.64 (m, 2H), 7.16 - $6.99(\mathrm{~m}, 2 \mathrm{H}), 5.87$ ($\mathrm{s}, 1 \mathrm{H}$), $2.39(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 4 \mathrm{H}), 1.97-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.60(\mathrm{ddd}, J=22.7,16.3$, $7.1 \mathrm{~Hz}, 2 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 165.8 (s), 165.7 (s), 163.3 (s), 131.7 (d, J = 3.1 Hz), 129.0 ($\mathrm{d}, J=8.9 \mathrm{~Hz}$), 115.5 (d, $J=21.8 \mathrm{~Hz}$), $93.2(\mathrm{~s}), 91.4(\mathrm{~s}), 55.3(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 46.5(\mathrm{~d}, J=18.9 \mathrm{~Hz}), 41.6$ (d, $J=17.5 \mathrm{~Hz}$), $40.1(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 34.6(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 31.0(\mathrm{~d}, J=10.2 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (377 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-109.1,-133.1 \mathrm{ppm} ; \mathrm{HRMS}(\mathrm{ESI})(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$: exact mass calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}: 292.1507$, found: 292.1513.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72$ (dd, J = 8.7, $5.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.10(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 2.59-$ 2.47 ($\mathrm{m}, 1 \mathrm{H}$), $2.42-2.23(\mathrm{~m}, 4 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{ddd}, J=10.3,6.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 2 \mathrm{H})$, 1.92 - $1.80(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.96$ (d, $J=12.0 \mathrm{~Hz}$), 163.51 (s$), 131.26$ (s), 129.13 (d, $J=8.9 \mathrm{~Hz}$), 115.79 (s), 115.57 (s), 93.23 (d, $J=14.5 \mathrm{~Hz}$), 91.35 (d, $J=14.5 \mathrm{~Hz}$), 55.60 (t, $J=$ 13.1 Hz), $47.35(\mathrm{t}, J=19.3 \mathrm{~Hz}), 45.45(\mathrm{dt}, J=10.5,5.6 \mathrm{~Hz}), 40.33(\mathrm{dt}, J=9.9,6.2 \mathrm{~Hz}), 38.84(\mathrm{~s}), 29.72(\mathrm{~s})$, 29.27 (t, J = 11.3 Hz) ppm; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-108.48,-138.94 \mathrm{ppm} ; \mathrm{HRMS}(\mathrm{ESI})(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}:$ exact mass calc. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}$: 309.1340, found: 309.1345.

4-Fluoro-N-(4-fluoropentyl)benzamide (11a)

Prepared from 4-fluoro-N-pentylbenzamide according to General Procedure C. Purification was conducted via column chromatography (15% EtOAc in PE) that afforded the product as slightly yellow oil. Yield: 41.0 $\mathrm{mg}, 32 \%$.
IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 2937,2862,1636,1595,1546,1502,1449,1315,1230,1159,1095,1017,969,849$, 767,$678 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ (ddd, $J=8.8,5.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.15-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.17$ (s, 1 H), 4.70 (dddd, $J=13.7,9.3,6.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (q, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), $1.85-1.62$ (m, 4H), 1.34 (dd, $J=$ 24.0, 6.2 Hz, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5$ (s), 165.9 (s), 163.4 (s), 130.8 (d, J = 3.2 Hz), 129.1 (d, $J=8.9 \mathrm{~Hz}$), 115.6 (d, $J=21.9 \mathrm{~Hz}$), 91.5 (s$), 89.9$ (s$), 39.8$ (s$), 34.2$ (d, $J=20.9 \mathrm{~Hz}$), 25.4 (d, $J=$ 3.9 Hz), 21.1 (s), 20.9 (s$) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-108.9, -173.3 ppm; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{NO}$: 227.1122 , found: 227.1116.
(4-fluoroazepan-1-yl)(4-fluorophenyl)methanone (11b)

Prepared from azepan-1-yl(4-fluorophenyl)methanone according to General Procedure C. Purification was conducted via column chromatography (20% EtOAc in PE) that afforded the product as white solid. Yield: $36.0 \mathrm{mg}, 27 \%$.

IR (neat) v (cmn ${ }^{-1}$: 2933, 2866, 2489, 2068, 1632, 1513, 1453, 1375, 1297, 1233, 1162, 1110, 980, 849, 764, 693; ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD) $\delta 7.90-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.26$ (dddd, $J=16.8,12.3,6.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.39(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD) ס 169.0 (s), 167.3 (s), 164.8 (s), 132.2 (d, $J=3.2 \mathrm{~Hz}$), 130.7 (d, $J=8.9 \mathrm{~Hz}$), 116.3 (d, $J=22.1$ $\mathrm{Hz}), 98.8(\mathrm{dd}, J=25.4,6.4 \mathrm{~Hz}), 95.8(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 94.1(\mathrm{~d}, J=23.8 \mathrm{~Hz}), 49.7-48.6$ (m), 48.5 (s), 48.3 (s), 40.8 (s), 30.7 (dd, $J=24.5,20.6 \mathrm{~Hz}$), $30.3\left(\mathrm{~d}, J=1.3 \mathrm{~Hz}\right.$), 23.4 (dd, $J=3.3,1.4 \mathrm{~Hz}$) ppm; ${ }^{19} \mathrm{~F}$ NMR (377 $\mathrm{MHz}, \mathrm{MeOD}) \delta$-109.4, -194.5, -195.6 ppm; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{NO}$: 239.1122, found: 239.1078.

Fluorinated N-cycloheptyl-4-fluorobenzamide (11c)

Prepared from N-cycloheptyl-4-fluorobenzamide according to General Procedure C. Purification was conducted via column chromatography (15% EtOAc in PE) that afforded the mixture of isomers (difficult to assign fluorine positions) as white solid. Yield: $43.0 \mathrm{mg}, 30 \%$.
IR (neat) v $\left(\mathrm{cm}^{-1}\right): 2933,2862,1632,1598,1543,1498,1330,1285,1230,1159,1095,995,905,849,805$, 767, 730; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.80-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.45-5.97(\mathrm{~m}, 1 \mathrm{H}), 5.07$ $-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.58-4.04(\mathrm{~m}, 1 \mathrm{H}), 2.38-1.82(\mathrm{~m}, 6 \mathrm{H}), 1.81-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.47-$ 1.37 (m, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) ס 165.9 (s), 165.4 (s), 165.4 (s), 163.3 (s), 130.9 (d, J= 3.1 Hz), 129.1 (dd, $J=8.9,1.2 \mathrm{~Hz}$), 115.5 (d, $J=21.9 \mathrm{~Hz}$), 94.0 (s , 93.4 (s$), 93.0$ (s$), 92.4$ (s$), 91.8$ (s$), 91.4$ (s), 91.4 (s), 89.7 (s), 50.8 (s), 50.1 (s), 46.8 (d, $J=10.4 \mathrm{~Hz}$), 45.6 (d, $J=7.4 \mathrm{~Hz}$), 40.9 (d, $J=22.7 \mathrm{~Hz}$), 40.4 (d, $J=21.2 \mathrm{~Hz}$), 35.4 (d, $J=14.0 \mathrm{~Hz}$), 35.1 (s$), 34.9$ (s$), 34.5(\mathrm{dd}, J=21.9,7.5 \mathrm{~Hz}), 34.1$ (dd, $J=21.6$, 2.8 Hz), 30.1 (dd, $J=22.4,4.2 \mathrm{~Hz}$), 28.5 (d, $J=10.9 \mathrm{~Hz}$), 28.0 (s$), 27.7$ (d, $J=5.0 \mathrm{~Hz}$), 25.2 (s$), 24.5$ (s), 24.4 (s), 24.1 (s$), 22.7$ (d, $J=8.9 \mathrm{~Hz}$), 21.9 (d, $J=7.9 \mathrm{~Hz}$), 18.8 (d, $J=8.3 \mathrm{~Hz}$), 18.4 (d, $J=6.7 \mathrm{~Hz}$) ppm; ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-108.8,-108.9,-108.9,-109.0,-109.3,-164.9,-168.5,-168.8,-169.3,-169.7$ ppm; HRMS (EI) (m / z) [M] $]^{+}$: exact mass calc. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}: 253.1278$, found: 253.1267.

Fluorinated \mathbf{N}-(cyclohexylmethyl)-4-fluorobenzamide (11e)

Prepared from N-(cyclohexylmethyl)-4-fluorobenzamide according to General Procedure C. Purification was conducted via column chromatography ($15 \% \mathrm{EtOAc}$ in PE) that afforded the mixture of 3 isomers (3F:4F:2F = 8:4:3) as white solid. Yield: $47.0 \mathrm{mg}, 33 \%$.

IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 2937,2862,1636,1601,1546,1502,1449,1315,1230,1159,1095,1017,969,849$, 812, 767, 715, 678; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ (ddd, $J=8.1,6.5,4.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.21-6.98(\mathrm{~m}, 2 \mathrm{H})$, $6.45-6.07(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.34(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.66(\mathrm{~m}, 2 \mathrm{H})$, $1.66-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.13-0.87(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.6(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}), 165.9$ (s$), 165.9$ (s$), 163.4$ (s$), 163.4(\mathrm{~s}), 130.8(\mathrm{dt}, J=5.4,3.9 \mathrm{~Hz}), 129.1$ (d, $J=8.8 \mathrm{~Hz}$), 115.5 (dd, $J=21.9,2.0 \mathrm{~Hz}$), 92.9 (s$), 92.6$ (s), 91.2 (s), 90.9 (s), 89.7 (s), 89.4 (s), 88.0 (s), 87.8 (s), 45.8 (s), 45.6 (s), 45.5 (d, $J=1.4 \mathrm{~Hz}$), 45.1 (d, $J=3.1 \mathrm{~Hz}$), 37.0 (s$), 36.9-36.8$ (m), 36.7 (s), 36.2 (d, $J=10.1 \mathrm{~Hz}$), 35.1 (d, $J=21.2 \mathrm{~Hz}$), 32.6 (s), 32.5 (s$), 31.7$ (d, $J=18.7 \mathrm{~Hz}$), 30.9 (s$), 30.6$ (d, $J=21.2$ Hz), 30.1 (d, $J=21.2 \mathrm{~Hz}$), $29.7(\mathrm{~s}), 29.3(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 27.9(\mathrm{~d}, J=11.5 \mathrm{~Hz}), 25.8(\mathrm{~s}), 24.5(\mathrm{~d}, J=1.4 \mathrm{~Hz})$, 22.5 (d, $J=11.4 \mathrm{~Hz}$), 19.7 ($\mathrm{d}, J=1.4 \mathrm{~Hz}$) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-108.7,-108.8,-108.9,-108.9$, -168.6, -170.9, -183.5, -185.4 ppm; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}: 253.1278$, found: 253.1275 .

Prepared from 4-fluoro-N-(1-hydroxy-2-(hydroxymethyl)-4-(4-octylphenyl)butan-2-yl)benzamide according to the General Procedure C to give 11 f (38% NMR yield, (trifluoromethyl)benzene as IS). ${ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) δ-165.3, $-165.8,-166.8,-170.1 \mathrm{ppm}$; HRMS (ESI) (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$: exact mass calc. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{FNO}_{3}: 448.2658$, found: 448.2660.

Fluorinated Haloperidol (13)

Prepared from Haloperidol according to the General Procedure C to give 13 (43% NMR yield, (trifluoromethyl)benzene as IS). ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-104.9, -105.1, -125.8, -125.9, -127.1, -127.3 ppm. As a proof of concept experiment, the compound was not isolated.
((4bR,9S)-8a-fluoro-3-methoxy-6,7,8,8a,9,10-hexahydro-5H-9,4b-(epiminoethano)phenanthren-11-yl)(4-fluorophenyl)methanone (11h)

Prepared from (4-fluorophenyl)((4bS,9S)-3-methoxy-6,7,8,8a,9,10-hexahydro-5H-9,4b-(epiminoethano)-phenanthren-11-yl)methanone according to General Procedure C. Purification was conducted via column chromatography (20% EtOAc in PE) that afforded a mixture of two isomers of the product in $3: 1$ ($8 \mathrm{~F}: 9 \mathrm{~F}$) ratio as white solid. Yield: $85.0 \mathrm{mg}, 38 \%$.

IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 2929,2855,1714,1628,1490,1423,1360,1330,1282,1222,1159,1107,1013,931$, 849, 797, 760, 708; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.29$ (m, 7H), 7.07 (dt, J=24.1, 8.3 Hz, 7H), 6.86 (dd, $J=19.4,8.5 \mathrm{~Hz}, 7 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 11 \mathrm{H}), 3.45(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H})$,
3.27 (dd, $J=18.4,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{dd}, J=18.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.82(\mathrm{~m}, 5 \mathrm{H}), 2.81-2.55(\mathrm{~m}, 5 \mathrm{H})$, $1.79-1.51(\mathrm{~m}, 18 \mathrm{H}), 1.48-1.12(\mathrm{~m}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.4(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}), 169.4$ (s), 164.4 (s), 161.9 (s), 152.8 (s), 152.1 (s), 150.3 (s), 149.6 (s), 146.6 (s), 146.5 (s), 146.4 (s), 134.6 (d, J $=3.6 \mathrm{~Hz}), 132.8(\mathrm{~s}), 132.5(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 130.0(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 129.2(\mathrm{~s}), 129.0(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 128.7(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}), 126.8(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 123.2(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 123.1(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 115.8(\mathrm{~s}), 115.6$ (s$), 115.3$ (s), 111.3 (s), 110.9 (s), 56.6 (d, J = 4.7 Hz), 56.2 (s), 55.2 (s), 53.9 (s), 47.6 (s), 45.9 (s), 45.0 (s), 43.8 (s), 42.6 (s), 42.4 (d, J = 1.3 Hz), 42.1 (s), 39.5 (s$), 38.7$ (s$), 38.6$ (s$), 38.5$ (s), 37.7 (d, J=11.3 Hz), 37.2 (d, J=13.7 Hz), 36.5 (s), 31.8 (s), 31.4 (s), 31.4 (s), 31.1 (s), 30.1 (s), 29.7 (s), 26.7 (s), 26.3 (s), 26.2 (s), 22.8 (s), 22.7 (s), 22.0-21.7 (m) ppm; ${ }^{19}$ F NMR (376 MHz, CDCl_{3}) ס-111.2, -111.3, -111.3, -134.8, -134.9, -138.9, -139.0 ppm; HRMS (EI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$: exact mass calc. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{NO}_{2}$: 397.1853, found: 397.1845.

Fluorinated (4bS,9S)-11-methyl-6,7,8,8a,9,10-hexahydro-5H-9,4b-(epiminoethano)-phenanthren-3-yl 4-fluorobenzoate (91)

O-auxiliary method
Prepared from (4bS,9S)-11-methyl-6,7,8,8a,9,10-hexahydro-5H-9,4b-(epiminoethano)phenanthren-3-yl 4fluorobenzoate according to the General Procedure A to give 9k (42\% NMR yield, (trifluoromethyl)benzene as IS). ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-104.8,-129.6 \mathrm{ppm}$. As a proof of concept experiment, the compound was not isolated.

5-Fluorocyclododecan-1-ol (14h)

Prepared from 5-fluorocyclododecyl 4-fluorobenzoate according to General Procedure D. Purification was conducted via column chromatography (10% EtOAc in PE) that afforded the product as white solid. Yield: $167.0 \mathrm{mg}, 96 \%$.

IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 2937,2858,1468,1364,1125,1080,1043,1006,946,909,730 ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.79-4.55(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.73(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.50(\mathrm{~m}, 6 \mathrm{H}), 1.49-1.27(\mathrm{~m}$, 13H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 94.2$ (d, $J=8.5 \mathrm{~Hz}$), 93.3 (s), 93.0 (s), 92.9 (s), 92.7 (s), 92.6 (s), 92.5 (s), 92.5 (s , 91.7 (s$), 91.1$ (dd, $J=31.5,14.0 \mathrm{~Hz}$), 70.6 (d, $J=11.6 \mathrm{~Hz}$), 69.2 (s$), 68.9$ (s$), 68.8$ (s$),$ 68.7 (s), 68.4 (s), 68.2 (s), 33.0 (s), 32.9 (s), 32.8 (s), 32.7 (s), 32.7 (s), 32.3 (s), 32.3 (s), 32.2 (s), 31.2 (s),
31.0 (s), 30.8 (s), 30.8 (s), 30.8 (s), 30.6 (s), 30.5 (s), 30.4 (d, J = 3.4 Hz), 30.3 (s), 30.2 (s), 30.2 (s), 30.0
 $J=10.3 \mathrm{~Hz}$), 28.4 (s), 28.4 (s), 27.6 (d, $J=21.8 \mathrm{~Hz}$), 26.6 (d, $J=6.9 \mathrm{~Hz}$), 25.8 (s), 25.7 (s), 25.1 (d, $J=21.5$ Hz), 24.4 (d, $J=1.2 \mathrm{~Hz}$), 24.2 (s$), 24.1$ (s$), 23.9(\mathrm{~d}, J=11.0 \mathrm{~Hz}$), 23.6 (s$), 23.5$ (s$), 23.5(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 23.1$
 Hz), 20.9 (s), 20.8 (s), 20.7 (s), $20.6-20.4(m), 20.2(d, J=6.3 \mathrm{~Hz}), 19.9(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 19.3$ (d, J=2.1 $\mathrm{Hz}), 19.2-18.8(\mathrm{~m}), 18.7(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 16.2(\mathrm{~d}, J=7.9 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-176.1$, 176.4, -176.6, -176.7, -176.7, -176.9, -177.0, -177.1 ppm; HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: exact mass calc. for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{FO}: 220.2071$, found: 220.2071.
(1S,2S,5S)-2-(2-Fluoropropan-2-yl)-5-methylcyclohexan-1-ol (14d)

Prepared from (1R,2R,5R)-2-(2-fluoropropan-2-yl)-5-methylcyclohexyl 4-fluorobenzoate according to General Procedure D. Purification was conducted via column chromatography (10\% EtOAc in PE) that afforded the product as white solid. Yield: $166.0 \mathrm{mg}, 95 \%$.

IR (neat) v $\left(\mathrm{cm}^{-1}\right): 2959,2937,2873,1464,1367,1271,1215,1181,1133,1073,1032,969,887,827,790$, 738,$667 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.40(\mathrm{ddd}, J=53.3,48.5,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-3.35(\mathrm{~m}, 3 \mathrm{H}), 2.28-$ $1.81(\mathrm{~m}, 7 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 6 \mathrm{H}), 1.66-1.39(\mathrm{~m}, 7 \mathrm{H}), 1.39-1.08(\mathrm{~m}, 10 \mathrm{H}), 1.04-0.74(\mathrm{~m}, 28 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 98.0$ (s), 96.5 (s), 96.3 (s), 94.9 (s), 92.9 (s), 91.2 (s), 71.0 (d, J = 0.9 Hz), 70.6 (s), 70.1 (d, $J=1.8 \mathrm{~Hz}$), 69.1 (d, $J=10.3 \mathrm{~Hz}$), 68.1 (s), 60.4 (s), 50.2 (s), 49.3 (s), 49.2 (s), 47.8 (d, $J=10.2$ Hz), 46.0 (d, $J=21.8 \mathrm{~Hz}$), 43.1 (s$), 41.5(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 38.1(\mathrm{~d}, J=1.1 \mathrm{~Hz}), 36.5(\mathrm{~d}, J=18.6 \mathrm{~Hz}), 36.2(\mathrm{~d}$, $J=22.5 \mathrm{~Hz}$), $35.6(\mathrm{~d}, J=21.1 \mathrm{~Hz}$), $34.6(\mathrm{~d}, J=20.3 \mathrm{~Hz}), 34.1(\mathrm{~s}), 29.3(\mathrm{~d}, J=19.2 \mathrm{~Hz}), 28.6(\mathrm{~d}, J=21.3$
 (s), 19.3 (d, $J=9.8 \mathrm{~Hz}), 18.7(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 17.6(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 17.3(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 17.2(\mathrm{~s}), 16.0(\mathrm{~s})$, 15.8 (s), 14.1 (s), 14.0 (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-149.5,-178.4,-199.6 \mathrm{ppm} ; \mathrm{HRMS}(E S I)(\mathrm{m} / \mathrm{z})$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: exact mass calc. for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{FO}$: 292.1758, found: 292.1757.

(1r,3s,5R,7S)-3-Fluoroadamantan-1-amine (15c)

Prepared from 4-Fluoro- N-(($1 r, 3 s, 5 R, 7 S)$-3-fluoroadamantan-1-yl)benzamide according to General Procedure E. Purification was conducted via column chromatography ($5 \% \mathrm{MeOH}$ in DCM) that afforded the product as slightly yellow solid. Yield: $17.0 \mathrm{mg}, \mathbf{9 8 \%}$.

IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 2929,2862,2668,2571,1591,1502,1457,1356,1118,1010,939,898,834,730 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD) ס $2.48-2.39(m, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.99$ (d, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.84$ (m, 4H), 1.81 (s, 4H), $1.68-1.56(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD) $\delta 93.1$ (s), 91.2 (s), 55.2 (d, J = 11.8 Hz), 49.7 - 48.9 (m), 48.7 (s), 48.5 (s), 48.3 (s), 46.6 (d, $J=21.1 \mathrm{~Hz}$), 41.9 (d, $J=17.9 \mathrm{~Hz}$), 40.1 (d, $J=1.3$ Hz), 34.7 (d, $J=1.9 \mathrm{~Hz}$), $32.0(\mathrm{~d}, J=10.0 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{MeOD}$) $\delta-133.9 \mathrm{ppm}$; HRMS (EI) $(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$: exact mass calc. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{FN}$: 169.1267, found: 169.1264.
(4b $R, 8 \mathrm{a} R, 9 S$)-8a-fluoro-3-methoxy-6,7,8,8a,9,10-hexahydro-5H-9,4b-(epiminoethano)phenanthrene (15f)

Prepared from ((4bR,9S)-8a-fluoro-3-methoxy-6,7,8,8a,9,10-hexahydro-5H-9,4b-(epiminoethano) phenanthrene-11-yl)(4-fluorophenyl)methanone according to the General Procedure E. Purification was conducted via column chromatography ($5 \% \mathrm{MeOH}$ in DCM) that afforded the product as slightly yellow solid. Yield: 26.0 mg, 93\%.

IR (neat) v (cm ${ }^{-1}$): 3414, 2926, 2855, 2769, 2676, 2467, 1741, 1655, 1618, 1573, 1491, 1442, 1274, 1267, 1245, 1204, 1159, 1089, 1051, 958, 854, 816, 757, 701; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.11$ (brs, 1H), 6.99 $-6.71(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.79(\mathrm{dd}, J=9.8,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.33-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=13.2,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.95(\mathrm{~m}, 2 \mathrm{H})$, $1.82(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.4,159.2,152.5$, $152.3,150.0,149.8,147.1,147.0,147.0,146.9,138.9,138.9,138.7,133.4,133.4,131.3,129.6,129.4$, $128.5,128.1,127.2,127.2,126.7,126.6,125.6,125.5,123.7,123.6,115.6,115.5,112.8,112.4,111.9$, $110.8,110.7,110.6,58.8,56.6,56.2,55.3,55.2,52.2,51.1,41.9,40.6,40.3,40.1,37.9,37.9,37.7,37.5$, $37.5,37.2,37.0,36.8,36.3,36.2,35.6,35.5,29.6,27.9,27.7,25.7,25.6,25.5,25.3,22.4,21.4,14.0,0.9$ ppm; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-134.5, -137.5 ppm ; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{FNO}: 275.1685$, found: 275.1675 .

Fluorinated cyclohexylmethanamine (15b)

Prepared from fluorinated N-(cyclohexylmethyl)-4-fluorobenzamide according to the General Procedure E. Purification was conducted via column chromatography ($5 \% \mathrm{MeOH}$ in DCM) that afforded the mixture of 3 isomers (3F:4F:2F = 8:4:3) as slightly yellow solid. Yield: $25.0 \mathrm{mg}, \mathbf{9 5 \%}$.

IR (neat) v (cm-1): 3422, 2933, 2676, 2490, 2207, 2054, 1610, 1510, 1461, 1394, 1219, 1163, 1103, 1033, 958, 835, 809, 731, 686; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62$ (brs, 2H), $5.08-4.31$ (m, 2H), $3.00-2.85$ (m, 1 H), 2.20 (dd, $J=16.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93$ (tdd, $J=26.2,18.6,10.9 \mathrm{~Hz}, 2 \mathrm{H}$), $1.77-1.19$ ($\mathrm{m}, 4 \mathrm{H}$), 1.09 (ddd, $J=25.0,14.7,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.92-0.77(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 91.7,90.0,89.0,88.7$, $87.3,87.0,45.7,45.3,45.2,44.8,44.7,36.4,36.2,35.6,34.7,34.6,34.5,34.3,34.0,33.9,32.2,32.0,31.8$, $31.3,31.1,30.3,30.4,30.2,29.9,29.7,29.6,29.5,29.2,28.8,28.8,27.6,27.5,25.8,25.2,24.2,22.6,21.9$, $21.8,20.9,19.3,14.1,14.1,14.0,13.9,10.9,10.9,10.9,0.9 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl ${ }_{3}$) $\delta-169.3,-$ 171.5, -183.7, -185.8 ppm; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{FN}$: 131.1110, found: 131.1108.

N-cinnamyl-4-fluorobenzamide (22)

Prepared from cinnamyl amine and 4-fluorobenzoyl chloride by General Procedure 3. Yellow solid (250.0 $\mathrm{mg}, 91 \%$). Data: IR (neat) v $\left(\mathrm{cm}^{-1}\right): 3295,3064,3027,2914,1633,1620,1543,1498,1361,1312,1290$, 1230, 1159, 1096, 973, 962, 850, 841, 747, 742, 690; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.73(\mathrm{~m}, 2 \mathrm{H})$, $7.34-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.08-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.24-6.12(\mathrm{~m}, 1 \mathrm{H}), 4.13$ (dd, J = 8.3, 3.4 Hz, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4$ (s), 166.0 (s), 163.5 (s), 136.5 (s), 132.5 (s), 130.6 (d, J = 3.1 Hz), 129.4 (d, J = 8.9 Hz), 128.6 (s$), 127.8$ (s$), 126.4$ (s$), 125.3$ (s), 115.6 (d, J=21.9 Hz), 42.2 (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-108.6 --108.7 (m) ppm; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{FNO}$: 255.1059, found: 255.1062.

N, N^{\prime}-((3,4-diphenylcyclobutane-1,2-diyl)bis(methylene))bis(4-fluorobenzamide) (23)

Prepared from N-cinnamyl-4-fluorobenzamide (22). After charging 22 (0.05 mmol) to a vial and dissolving in MeCN (1 mL for 0.05 M) under air, the reaction was not degassed and was irradiated with 400 nm LEDs for 72 h. $6 \times$ reaction vials were combined. Following evaporation of solvent in vacuo, purification was conducted via column chromatography (50% EtOAc in PE) that afforded 23 a colorless oil ($24.0 \mathrm{mg}, 31 \%$), the single head-to-head regioisomer as a mixture of two diastereomers (all-trans 23-1: all-cis 23-2 = $5: 1$):
$N, N^{\prime}-(((1 R, 2 R, 3 S, 4 S)-3,4-d i p h e n y l c y c l o b u t a n e-1,2-d i y l) b i s(m e t h y l e n e)) b i s(4-f l u o r o b e n z a m i d e)(23-1)$

IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 3310,3071,2926,2859,1726,1655,1603,1543,1510,1454,1413,1342,1260,1234$, 1156, 1129, 1088, 980, 913, 850, 820, 760, 701, 678; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04-7.96(\mathrm{~m}, 2 \mathrm{H})$, 7.40 (ddd, $J=9.0,5.9,1.9 \mathrm{~Hz}, 5 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{td}, J=6.7,4.6 \mathrm{~Hz}$, 1 H), $3.74(\mathrm{dd}, J=16.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=16.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 137.5$ (s), 129.6 (d, J = 8.8 Hz), 128.9 (s), 128.8 (s), 126.3 (s , , 115.2 ($\mathrm{d}, \mathrm{J}=21.8 \mathrm{~Hz}$), 81.0 (s), 66.6 (s), 48.1 (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-109.8$ - -109.9 (m) ppm; HRMS (EI) (m/z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: 510.2119 , found: 510.2121 (peak \#1).
$N, N^{\prime}-(((1 R, 2 S, 3 R, 4 S)-3,4$-diphenylcyclobutane-1,2-diyl)bis(methylene))bis(4-fluorobenzamide) (23-2)

IR (neat) v $\left(\mathrm{cm}^{-1}\right): 3310,3071,2926,2859,1726,1655,1603,1543,1510,1454,1413,1342,1260,1234$, 1156, 1129, 1088, 980, 913, 850, 820, 760, 701, 678; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94-7.87(\mathrm{~m}, 4 \mathrm{H})$, $7.85-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.31$ (overlaps with the other diastereomer, m, 5H), $7.18-6.98$ (overlaps with the other diastereomer, $\mathrm{m}, 5 \mathrm{H}$), $5.04(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.95-4.81(\mathrm{~m}, 3 \mathrm{H}), 4.14-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{dd}$, $J=15.0,9.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.62 (brs, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9$ (s), 163.4 (s), 154.8 (s), 139.2 (s), 130.4 (d, $J=8.9 \mathrm{~Hz}$), 129.8 (d, $J=9.1 \mathrm{~Hz}$), 128.7 (d, $J=2.8 \mathrm{~Hz}$), 128.7 (s$), 128.2$ (s$), 126.3$ (s), 115.8 (s), 115.6 (d, J = 1.5 Hz), 115.4 (s), 82.9 (s$), 73.7$ (s$), 55.0$ (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -$107.6-$-107.9 (m), -108.4--108.7 (m) ppm; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: 510.2119 , found: 510.2122 (peak \#2).

Cinnamyl 4-fluorobenzoate (24)

Prepared from cinnamyl alcohol and 4-fluorobenzoyl chloride by General Procedure 1. Colorless viscous oil (1.32 g, 94\%). Data: IR (neat) v (cm^{-1}): 3070, 3030, 2890, 2820, 1701, 1650, 1513, 1403, 1380, 1261, 1221, 1114, 1011, 932, 825, 768, 701; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.35-8.16$ (m, 2H), $7.62-7.54$ (m, 2H), $7.53-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dt}, J=15.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (dd, J=6.4, 1.3 Hz, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1$ (s), 165.4 (s), 164.6 (s), 136.2 (s), 134.5 (s), 132.3 (d, $J=9.3 \mathrm{~Hz}$), 128.7 (s), 128.5 (d, $J=7.5 \mathrm{~Hz}$), 128.2 (s), 126.7 (s), 126.5 (d, $J=3.0 \mathrm{~Hz}$), 123.1 (s), 115.6 (d, $J=21.9 \mathrm{~Hz}$), 65.7 (s$) \mathrm{ppm} ;{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(} 377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.1$ (dq, $J=8.4,5.5 \mathrm{~Hz}$) ppm; HRMS (EI) (m / z) [M] ${ }^{+}$: exact mass calc. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{FO}_{2}$: 256.0900, found: 256.0903.

(3,4-Diphenylcyclobutane-1,2-diyl)bis(methylene) bis(4-fluorobenzoate) (25)

Prepared from cinnamyl-4-fluorobenzoate (24). After charging 24 (0.05 mmol) to a vial and dissolving in MeCN (1 mL for 0.05 M) under air, the reaction was not degassed and was irradiated with 400 nm LEDs for $72 \mathrm{~h} .6 \times$ reaction vials were combined. Following evaporation of solvent in vacuo, purification was conducted via column chromatography (5% EtOAc in PE) that afforded 25 as a colorless oil, ($67.0 \mathrm{mg}, 87 \%$) as a single head-to-head regioisomer and single diastereomer:

IR (neat) $v\left(\mathrm{~cm}^{-1}\right): 3320,3070,2920,2810,1711,1641,1598,1542,1503,1441,1398,1319,1220,1054$, 974, 853, 827, 778, 702; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.10-6.98$ $(\mathrm{m}, 2 \mathrm{H}), 4.65(\mathrm{dd}, J=12.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=12.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.31$ (ddd, $J=5.5,3.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.2$ (s), 165.3 (s), 164.7 (s), 136.2 (s), 132.4 (d, J = 9.3 Hz), 128.6 (s), 128.5 (s$), 125.9$ (d, $J=3.0 \mathrm{~Hz}$), 125.7 (s$), 115.7$ (d, J = 22.0 Hz), 64.9 (s), 59.4 (s), 56.5 (s) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-105.6$ (tt, $J=8.4,5.5 \mathrm{~Hz}$) ppm; HRMS (EI) (m / z) [M]+: exact mass calc. for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{O}_{4}$: 512.1799, found: 512.1801.

Considering that triplet state energies of methyl benzoate ($77.9 \mathrm{kcal} \mathrm{mol}^{-1}{ }^{[32]}$), benzonitrile ($77.0 \mathrm{kcal} \mathrm{mol}^{-1}$ ${ }^{[32]}$), and benzamide ($79.4 \mathrm{kcal} \mathrm{mol}^{-1}{ }^{[33]}$) are all higher than the energy gap between singlet and triplet states of SF ($61.4 \mathrm{kcal} \mathrm{mol}^{-1}{ }^{[28 a \mathrm{a}]}$), TTET from the PSCats to SF by formation of PSCat-SF exciplex should be feasible in each case. However, methyl benzoate, 4-n-butyl benzonitrile, and 4-n-butyl benzamide could not be used as an exogenous PSCat (entries 1,9,10, Table S5). Presumably, either i) they form a "weak" exciplex, that is too short-lived to approach the substance to undergo downstream HAT and FAT processes, or ii) they form an exciplex a concentration too small to give productive downstream chemistry. Unlike amyl benzoate, 4-n-butyl benzonitrile and 4-n-butyl benzamide did not undergo self-fluorination at their n-butyl chains. Yet, in the presence of catalytic MFB, both underwent fluorination at their alkyl chains (Scheme S1), which confirms the necessity of the benzoate moiety in corresponding fluorination reactions.

Scheme S1. Control experiments on fluorination of benzonitrile and benzamide. ${ }^{a}$ only the major isomer of the product is depicted, ${ }^{b}$ overall NMR yield.

The reason that amyl benzoate did undergo self-fluorination but that methyl benzoate cannot be used as an exogenous PSCat, is likely that they both form a "weak" exciplex, however, in the case of amyl benzoate, the exciplex does not need to diffuse to a molecule of substrate, but rather can undergo rapid, intramolecular self-fluorination at its alkyl chain. Although the triplet energy of MFB is not known, we assume that the p fluorine substituent of MFB assisted in the formation of longer-lived exciplex, or has a triplet energy that is much closer matched to that of SF, which resulted in its utilization as an efficient exogenous PSCat.

3.1 Radical Trapping

To investigate the intermediacy of radicals in the reaction, a radical trapping experiment with 1.5 eq. of TEMPO was performed. As clear evidence of the alkyl chain radical intermediate, LC-MS data (Figure S5) detected a product which matched the TEMPO-bound 16 and no fluorination products was detected (Scheme S2). As has been reported in the literature, ${ }^{[34]}$ the radical dication of SF can act as a hydrogen atom transfer (HAT) reagent. Presumably, the alkyl radical intermediate forms via HAT between the radical dication of SF and the substrate (hexyl propionate, 1k). Thus, the selectivity of fluorination reactions depends on the bond dissociation enthalpy (BDE) and the hydricity (electron richness) of $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ positions
within the substrate as per previous reports. ${ }^{[28 a]}$ Selectivity favors the $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ with the lowest BDE and highest hydricity (electron richness).

Scheme S2. Radical trapping reaction with TEMPO.

Qualitative Analysis Report

Figure S5. Mass spectra for TEMPO-trapped radicals from LC-MS analysis.

3.2 UV-visible Spectroscopy Studies

Formation of an exciplex in the case of our PSCat (MFB) is hypothesized based on the previous proposals of Tan and co-workers ${ }^{[28 b]}$ as well as Egami, Hamashima and co-workers. ${ }^{[35]}$ Their first clue to a PSCat-SF exciplex was the reported changes in the UV-vis absorption and fluorescence of PSCat in the presence of SF. Therefore, we elected to measure UV-vis absorption spectra of individual substrates separately and compared these to the UV-vis absorptions of reaction mixtures corresponding to the 'catalytic method'
(Figures S6-S7). As can be seen below, under these conditions the absorption of the reaction mixtures were identical to that of SF. Moreover, no different could be observed between MFB and MB (methyl benzoate), confirming that the enabling role of the F atom in the PSCat is not related to absorptive properties.

Comparison 1 (catalytic method) preparation:

Substrate (Sub):

1k

Substrate: 0.15 M, SF: 0.1 M, MFB (methyl 4-fluorobenzoate): $10 \mathrm{~mol} \%$ with regards to SF, Reaction mixture (RM): $0.15 \mathrm{M} \mathrm{Sub}+0.1 \mathrm{M} \mathrm{SF}$.

Figure S6. UV-vis data of Comparison 1.

Comparison 2 (catalytic method) preparation:

Substrate (Sub):

1k

Substrate: 0.15 M, SF: 0.1 M, MB (methyl benzoate): $10 \mathrm{~mol} \%$ with regards to SF, Reaction mixture (RM):
0.15 M Sub + 0.1 M SF

Figure S7. UV-vis data of Comparison 2.

We then compared the UV-vis absorptions of reaction components of the reactions of $\mathbf{5 b} \mathbf{a n d} \mathbf{8 b}$ (Figures S8-S9). In the synthetic PSAux-type reaction, 5b gives only traces of fluorinated product while $\mathbf{8 b}$ gives a high yield of fluorinated product (see main manuscript, Table 5). As can be seen below, under these conditions the reaction mixtures gave clear absorptions at the LED wavelength of the synthetic reaction (λ $=400 \mathrm{~nm}$) while individual components absorbed only traces. However, again no difference could be detected between the reaction mixture of $\mathbf{5 b}$ or $\mathbf{8 b}$, confirming that the F atom in the PSAux is not related to absorptive properties

Comparison 3 (auxiliary method) preparation:

Substrate:

5b

Substrate: 0.15 M, SF: 0.1 M, Reaction mixture (RM): 0.15 M 5b + 0.1 M SF

Figure S8. UV-vis data of Comparison 3.

Comparison 4 (auxiliary method) preparation:

Substrate:

8b
0.15 M, SF: 0.1 M, Reaction mixture (RM): 0.15 M 5b + 0.1 M SF

Figure S9. UV-vis data of Comparison 4.

3.3 Luminescence Measurements

Information is gained about which reactants (quenchers) are most strongly involved in excited state deactivation by measuring the luminescence intensity and lifetime of the PSCat in the presence and absence of an increasing concentration of quenchers. The relationship between luminescence intensity and quencher concentration is described by the Stern-Volmer relationship: ${ }^{[36]}$

$$
\frac{I_{0}}{I}=1+k_{S V} *[Q]
$$

Where: I_{0} - is the intensity of luminescence without the quencher, I - is the intensity of luminescence with the quencher, [Q] - is the concentration of the quencher and $k_{S V}$ - is the Stern-Volmer constant.

For steady-state luminescence measurements, a 0.2 mM concentration of MFB (ca. 10x less than that reaction condition \mathbf{B} of the fluorination reactions) and the concentrations of SF employed ranged from 1.6 mM (ca. 100x less than that of reaction condition B) to 15.6 mM (ca. 10x less than that of reaction condition B). Spectroscopic concentrations had to be kept lower than preparative concentrations to: i) ensure full solubility of SF, ii) ensure that luminescence-derived photon counts did not saturate the detector.

On its own, MFB (at the representative 0.2 mM concentration) was stable and absolutely no photodecomposition was observed after repeated measurements for 5 min (Figure S10). In comparison, SF (at the representative 15.6 mM concentration) displayed a slight decrease in emission intensity after 6 min,
and this continued to decrease with repeated measurements until 18 min (Figure S11), at a slow rate (-5.6 $\left.\times 10^{-3} \operatorname{Ln}_{[\text {Emission Counts] }} / \mathrm{min}\right)$.

Figure S10. MFB photostability, measured repeatedly over time.

Figure S11. SF photostability (left), $\lambda_{\max }=467 \mathrm{~nm}$ peak height (right) measured repeatedly over time.

Upon mixing MFB ($0.2 \mathrm{mM}, 12.5 \mathrm{~mol} \% \mathrm{vs}$. SF) with 1.6 mM SF (8 eq.), a considerable decrease in the ca. 434 nm peak intensity was observed (by 42\%) and the peak shape was altered (Figure S12, left vs. right). The peak was different from both SF (no peak at $\lambda_{\max }=467 \mathrm{~nm}$) and MFB (different shape) alone. This new peak profile barely decreased, even after 5 min of repeated measurements (Figure S12, right). Mixing MFB (0.2 mM) with larger excesses of SF: 3.8 mM (10 eq.) and 7.9 mM (20 eq.) led to peaks that more closely resembled SF and led to faster photodecomposition rates of the SF peak: - $24.9 \times 10^{-3} \mathrm{Ln}_{[\text {[Emission Counts] }} /$ min and $-62.8 \times 10^{-3} \mathrm{Ln}_{[\text {Emission Counts] }} / \mathrm{min}$ (Figures S13,S14). In conclusion, SF photodecomposes faster in the presence of MFB than in its absence. This corroborates an energy transfer ($\mathrm{E}_{\mathrm{n}} \mathrm{T}$) between MFB and SF.

Figure S12. Emission of MFB alone (left) and in the presence of 1.6 mM (4 eq.) of $\mathbf{S F}$ (right).

Figure S13. Emission of MFB with 3.9 mM (10 eq.) $\mathbf{S F}$ (left) and $\lambda_{\max }=467 \mathrm{~nm}$ peak height (right) measured repeatedly over time.

Figure S14. Emission spectra of MFB with 20 eq. SF (left) and $\lambda_{\max }=467 \mathrm{~nm}$ peak height (right) measured repeatedly over time.

Experiments were repeated (Figures S15, left and right) and examined to higher [SF] ($1.6 \rightarrow 15.6 \mathrm{mM}$). Due to the increasing photodecomposition rate at higher [SF], the exact intensities were difficult to reproduce
between experiments, but the trend was the same - as [SF] increases, the intensity of the SF peak (at $\lambda_{\text {max }}$ $=467 \mathrm{~nm}$) increases to a point, then decreases as the photodecomposition takes over. As seen in Figure S15 (left, $15.6 \mathrm{mM} \mathbf{S F}$), eventually the spectrum resembles that of MFB +1.6 mM SF; Figure S12 (right).

Table S7. Steady state luminescence measurement of MFB (0.2 mM in MeCN), see Figure S11, right.

Entry	Selectfluor concentration (mM)	Intensity at 433 nm	Intensity at 464 nm
1	0 (Figure S10)	833687	-
2	1.6 (8 eq.)	484878	468398
3	3.9 (20 eq.)	562448	643149
4	7.8 (40 eq.)	582848	766066
5	11.7 (60 eq.)	640507	895729
6	15.6 (78 eq.)	507306	573777

Figure S15. Steady state luminescence measurement of MFB (0.2 mM in MeCN) with increasing [SF]. Left: Run 1 (peak increases $1.6 \rightarrow 7.8 \mathrm{mM}$, then decreases $7.8 \rightarrow 15.6 \mathrm{mM}$). Right: Run 2 (peak increases $1.6 \mathrm{mM} \rightarrow 11.7 \mathrm{mM}$, then decreases $11.7 \mathrm{mM} \rightarrow 15.6 \mathrm{mM}$).

Consistent with these observations is the formation of an MFB-SF assembly, either before (preassembly) or after (exciplex) light irradiation (Figure S16, which is stable and accelerates the photodecomposition of SF to its radical cation to initiate the reaction. While further, advanced spectroscopic investigations (transient absorption spectroscopy) lie outside of the scope of the current study, we note that spectroscopic and DFT evidence was provided for an anthraquinone-SF exciplex in a related study by Lu, Soo, Tan and coworkers. ${ }^{[28 b]}$

MFB-SF preassembly

MFB-SF exciplex

Figure S16. Proposed structure for the MFB-SF preassembly or exciplex based on literature. ${ }^{[28 b]}$
Lifetime measurements were obtained by Time-Correlated Single Photon Counting (TCSPC) spectroscopy. TCSPC-derived lifetime data are shown in Table S8. Using the same solution (0.2 mM) of MFB, TCSPC monitoring emission at 433 nm revealed a biexponential decay where the major component had a lifetime of 18 ns (a sample measured at 0.02 mM gave a similar result). The lifetime of SF was then measured (at $\lambda_{\max }=467 \mathrm{~nm}$), affording a biexponential decay where the major component had a lifetime of 28 ns (Figure S17). A mixture of MFB (0.2 mM) + SF (15.6 mM) was then measured (at $\lambda_{\max }=467 \mathrm{~nm}$), affording a biexponential decay where the major component had a slightly shorter lifetime of 25 ns (Figure S17). It is safe to assume the resulting data corresponds predominantly to SF due to i) the monitored wavelength being optimal for SF and sub-optimal for MFB and ii) the large concentration difference between SF and MFB. These data consist with the steady-state emission data, revealing that SF decays more rapidly in the presence of MFB. However, no further insightful information can be extracted from the lifetime data.

Table S8. Lifetime measurements of MFB, SF and their combination.

Entry	$[\mathbf{M F B}](\mathrm{mM})$	$[\mathbf{S F}](\mathrm{mM})$	Lifetimes $\tau_{1}, \tau_{2}(\mathrm{~ns})$	CHISQ
1	0.2	0	$18.0(63 \%), 3.6(37 \%)^{[\mathrm{a}]}$	1.3
2	0	15.6	$28.0(74 \%), 3.5(26 \%)^{[b]}$	2.0
3	0.2	15.6	$25.4(79 \%), 3.6(21 \%)^{[b]}$	1.4

All decays fitted to two exponentials. Single exponentials gave poor fitting ($\mathrm{x}^{2}>2.0$). [a]Emission wavelength $=433 \mathrm{~nm}$.
[b]Emission wavelength $=464 \mathrm{~nm}$.

Figure S17. Exponential decays of emissions at 433 nm (blue) and 464 nm (red). Raw decay data (left). Calibrated and overlayed decay profiles (right).

3.4 Advanced NMR-spectroscopic Investigations

3.4.1 General

NMR experiments were performed on a Bruker Avance III HD 600 (600.03 MHz) spectrometer with a 5 mm fluorine selective TBIF probe and TopSpin 3.2 or TopSpin 3.6. For in situ illumination-NMR spectroscopy the reported setup with 5 mm amberized thin wall NMR tubes was applied. ${ }^{[37]}$ NMR data were processed, evaluated and plotted with TopSpin 3.2 and 4.0 software. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-$ NMR spectra without TMS as internal reference were calibrated on the solvent residual peak of $\mathrm{CD}_{3} \mathrm{CN}\left(\delta\left({ }^{1} \mathrm{H}\right)=1.94 \mathrm{ppm}\right)$ or CDCl_{3} $\left(\delta\left({ }^{1} \mathrm{H}\right)=7.26 \mathrm{ppm}, \delta\left({ }^{13} \mathrm{C}\right)=77.16 \mathrm{ppm}\right)$; otherwise on $\operatorname{TMS}\left(\delta\left({ }^{1} \mathrm{H}\right)=0.00 \mathrm{ppm}\right)$. Further plotting of the obtained data was performed with Origin 2019 and Corel Draw 2020 software.

3.4.2 Chemicals

Commercially available chemicals were, unless otherwise stated, used without further purification. $\mathrm{CD}_{3} \mathrm{CN}$ and $\mathrm{CH}_{3} \mathrm{CN}$ were distilled over CaH_{2}, degassed using the freeze-pump-thaw method and stored in a flask with $3 \AA \AA$ molecular sieve inside the glove box. TMS was degassed using the freeze-pump-thaw method and stored in a Schlenk-flask with $3 \AA$ molecular sieve.

3.4.3 Method for quantitative reaction monitoring by in situ illumination-NMR spectroscopy

For illumination of the NMR sample inside the NMR spectrometer an illumination setup as described in literature with a Seoul UV CA3535 series (CUNOGF1A) LED, emitting at a peak wavelength of 405 nm , was applied. ${ }^{[37]}$ The LED was operated with maximum forward current (1.4 A). The kinetic studies were performed at r.t. $\left(25^{\circ} \mathrm{C}\right)$ as the standard reaction. The starting point of each kinetic $(t=0 \mathrm{~s})$ was measured without illumination and during illumination, ${ }^{1} \mathrm{H}$ - and ${ }^{19} \mathrm{~F}$-spetra were recorded alternately. The NMR experiments were measured as following to obtain spectra for quantitative evaluation: Due to the high concentration of the NMR samples (see NMR sample preparation), a S / N of $>250: 1$ was already achieved
in single scan experiments. Additional S / N enhancement was achieved by removing heteronuclear ${ }^{1} \mathrm{H}-{ }^{19} \mathrm{~F}-$ coupling using a zgig pulse program (inverse gated decoupling). A relaxation delay $\mathrm{d} 1=300 \mathrm{~s}$ was applied to ensure full relaxation of all signals before every scan and pulse lengths for ${ }^{1} \mathrm{H}$-experiments were calibrated.

3.4.4 Reaction monitoring of photosensitization auxiliary method

3.4.4.1 NMR sample preparation

The entire NMR sample preparation was executed under inert gas conditions. The actual preparation was done inside glove box, the glass fiber insert for in situ illumination was inserted following Schlenk line technique. Selectfluor ${ }^{\circledR}$ ($22.0 \mathrm{mg}, 62.1 \mu \mathrm{~mol}, 1.0$ eq.) was weighed in an oven dried amberized 5 mm thin wall NMR tube. A $300 \mu \mathrm{~L}$ aliquot of substrate $\mathbf{8 b}$ in anhydrous and degassed $\mathrm{CD}_{3} \mathrm{CN}(500 \mu \mathrm{~L}$) (amount of substrate $\mathbf{8 b}$: see Table S9) and pentafluorobenzene ($2.9 \mu \mathrm{~L}, 18.6 \mu \mathrm{~mol}, 0.3 \mathrm{eq}$.) as internal standard were added to the NMR tube. In order to maximize the amount of dissolved Selectfluor ${ }^{\circledR}$ and to ensure a homogeneous sample, the sample was shaken intensively. Lastly a in situ illumination insert as described in literature (glass fiber: Thorlabs; fiber type: MM, FP1500URT, 0.50 NA, $300-1200 \mathrm{~nm}, 1500 \mu \mathrm{~m}$ core) was inserted into the NMR tube and fastened with enough parafilm to prevent oxygen and moisture from penetrating the sample. ${ }^{[37]}$

Table S9. Different amounts of substrate for reaction monitoring of photosensitization auxiliary method.

entry	equivalents	concentration $[\mathrm{mM}]$	amount of substrate $[\mu \mathrm{mol}]^{[\mathrm{al}}$	mass $[\mathrm{mg}]^{[\mathrm{al}]}$
1	1.5	310.5	155.3	42.3
2	2.0	414.0	207.0	56.4
3	2.5	517.5	258.8	70.5
4	3.0	621.0	310.5	84.6

[a] The amounts are based on the $500 \mu \mathrm{~L}$ stock solution.

3.4.4.2 Reaction monitoring of photosensitization auxiliary method applying different substrate equivalents

For a first insight in the reaction kinetic of the photosensitization auxiliary method, a reaction from the synthetic part of this work with the same concentrations was investigated (Scheme S3).

Scheme S3: Model reaction for reaction monitoring by in situ illumination-NMR spectroscopy of photosensitization auxiliary method.

\mathbf{E}		
	slope $(\mathrm{yEr} \pm)[\mathrm{mM} / \mathrm{s}]$	\mathbf{R}^{2} (cor.)
product	$9.64 \mathrm{E}-4(0.89 \mathrm{E}-5)$	0.998
Selectfluor	$11.7 \mathrm{E}-4(0.86 \mathrm{E}-5)$	0.998
Prot. Selectluor	$11.9 \mathrm{E}-4(0.76 \mathrm{E}-5)$	0.999
substrate	$11.7 \mathrm{E}-4(1.13 \mathrm{E}-5)$	0.997

F

Figure S18. Data from the model reaction for in situ illumination NMR-spectroscopy shown in Scheme S3. A: Due to the high concentration and moderate solubility of Selectfluor ${ }^{\text {® }}$, it is not completely dissolved. Therefore, substrate 8b and Selectfluor ${ }^{\circledR}$ are present in a ratio of 1.0:3.0 instead of 1.0:1.5. B: The reaction does not occur over a typical reaction profile. Instead, an induction phase of 9.2 h is required before the reaction begins with a first-order rate. C: The first traces of product, however, can be detected after just 25 minutes. D: Product build-up curves were measured over ${ }^{1} \mathrm{H}\left\{{ }^{19} \mathrm{~F}\right\}$ and ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ spectra without discernible difference. E : Rates for the linear build-up of the different reagents and products. The substrate and Selectfluor ${ }^{\circledR}$ are consumed at the same rate as the protonated Selectfluor ${ }^{\circledR}$ is formed. The product forms at a slightly slower rate. F: For a better comparison of the different processes, the absolute values of concentration changes are shown.

Due to the high concentration and moderate solubility of Selectfluor ${ }^{\circledR}$ in $\mathrm{CD}_{3} \mathrm{CN}$, it has not completely dissolved. Therefore, substrate $\mathbf{8 b}$ and Selectfluor ${ }^{\circledR}$ were not in a ratio of 1.5:1.0 as weighed, but in a ratio of 1.0:3.0 (Figure S18, A). The reaction shows a very long induction phase of approximately 9.2 h . Afterwards product forms with a build-up curve typical for a first-order reaction (Figure S18, B). Interestingly however, the first traces of product can be detected after 25 minutes in the ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$-spectra (Figure S18 C), which provide the same kinetic profile as the ${ }^{1} \mathrm{H}$ measurements (Figure S18, D). Looking at the rates for the different reagents and products during the linear build shows a similar consumption of substrate (11.7E-4 mM / s) and Selectfluor ${ }^{\circledR}$ ($11.7 \mathrm{E}-4 \mathrm{mM} / \mathrm{s}$) as the fluorinating agent. Protonated Selectfluor ${ }^{\circledR}$ ($11.9 \mathrm{E}-4 \mathrm{mM} / \mathrm{s}$), a stoichiometric by-product, also forms at the same rate. The monofluorinated product is obtained at a somewhat slower rate ($9.64 \mathrm{E}-4 \mathrm{mM} / \mathrm{s}$). This indicates that, in addition to the monofluorination, other reactions such as multiple fluorination or elimination reactions must take place to a small component (Figure S18, E and F).

For further studies the effect of substrate loading on the kinetic profile has been examined. 1.5, 2.0, 2.5 and 3.0 equivalents of substrate $\mathbf{8 b}$ were examined for this.

B

Ratio Substrate/Selectfluor ${ }^{\text {® }}$ (weighed in)	Ratio Substrate/Selectfluor ${ }^{\text {® }}$ (dissolved)
$1.5: 1.0$	$3.0: 1.0$
$2.0: 1.0$	$4.5: 1.0$
$2.5: 1.0$	$6.8: 1.0$
$3.0: 1.0$	$9.3: 1.0$

Figure S19. Comparison of the ratios of substrate $\mathbf{8 b}$ and Selectfluor ${ }^{\circledR}$ weighed in vs. in solution for different amounts of substrate 8b. A: Based on the integrals of Selectfluor ${ }^{\circledR}$ - and substrate-signals, the ratio of the two reagents in solution can be determined. B: Evaluation of the different ratios shows that the solubility of Selectfluor ${ }^{\circledR}$ decreases as the amount of substrate increases.

Based on the NMR spectra (Figure S19, A), it can be seen that due to the moderate solubility of Selectfluor ${ }^{\circledR}$, the ratios of Selectfluor ${ }^{\circledR}$ to substrate $\mathbf{8 b}$ in solution do not correspond to those weighed in. There is a clear trend that the solubility of Selectfluor ${ }^{\circledR}$ continues to decrease as the substrate equivalents increases. While 50% of Selectfluor ${ }^{\circledR}$ are dissolved at the beginning of the reaction with 1.5 eq. of substrate $\mathbf{8 b}$, it is only 32% when 3.0 eq. substrate are applied.

Figure S20. Kinetic profiles of the photosensitization auxiliary reaction with different substrate loadings. As the amount of substrate $\mathbf{8 b}$ increases, the induction phase becomes shorter. Apart from that, the reaction profiles are very similar.

When repeating the reaction with different amounts of substrate (Figure S20), a clear trend emerges: The induction phase with scarcely any product formation becomes shorter as the substrate loading increases. While the standard reaction with 1.5 eq . of substrate $\mathbf{8 b}$ has an induction phase of 9.2 h , it takes ca. 4.2 h with 2 eq. of substrate $\mathbf{8 b}$. With 2.5 eq. it takes ca. 3.1 h , while when using 3 eq. substrate $\mathbf{8 b}$ it only takes ca. 1.9 h until product formation with a profile typical of a first-order reaction begins. In summary, by doubling the amount of substrate $\mathbf{8 b}$, the induction phase can be shortened by 79%.

Figure S21. A: Despite the long induction phases, first traces of product can be detected independent of the amount of substrate $\mathbf{8 b}$ after a significantly shorter time. However, the first-order type product formation begins much later. B: By using a zgig pulse sequence instead of the standard zg pulse sequence, traces of product can be identified which would otherwise be almost indistinguishable from baseline noise.

Even if it takes more than 9 h for significant product formation to begin, the first traces of product can be detected much earlier. In the standard reaction with 1.5 eq. of substrate $\mathbf{8 b}$, a small product signal can be detected after just 25 minutes. Increasing the amount of substrate also reduces the time until an initial, small amount of product starts to form. With 2.0 and 2.5 eq. substrate, products can be detected after just 15 minutes. With 3.0 eq. substrate, a clear product signal can already be identified in the first spectrum after the illumination has been started (Figure S21 A). This also shows the clear advantage of the zgig pulse sequence. When using a zg pulse sequence, the standard pulse sequence for routine NMR measurements, the product signal is obtained as a multiplet due to the heteronuclear ${ }^{1} \mathrm{H}-{ }^{19} \mathrm{~F}$ coupling. Due to the low concentration of the product at the beginning of the reaction and hence a low signal intensity, this is hardly distinguishable from the baseline noise of the ${ }^{19} \mathrm{~F}$-spectrum (Figure S21 B top). In contrast, inverse gated decoupling, which is implemented in the zgig pulse sequence, suppresses the heteronuclear ${ }^{1} \mathrm{H}-{ }^{19} \mathrm{~F}$ coupling. As a result, the product signal appears as a more intense singlet, which clearly stands out from the baseline noise (Figure S21 B bottom). However, since there is no signal enhancement through NOE as it is with power gated decoupling (zgpg pulse sequence), the standard method for decoupling, the spectra obtained are still quantitative.

To gain insight in the role of product, the reaction with 1.5 eq. substrate was repeated with additional 10 mM product.

Figure S22. Kinetic profiles of the photosensitization auxiliary reaction with 1.5 eq. substrate $\mathbf{8 b}$ (top) and additional 10 mM product $\mathbf{8 b}$ (bottom). Since the additional product whether shortens the induction phase nor increases the rate for product formation an autocatalytic effect of the product can be excluded.

Comparison of the reaction profiles of the standard reaction (Figure S 22 top) and the one with additional 10 mM product $\mathbf{8 b}$ (Figure S 22 bottom) shows that the length of the induction phase remains unchanged. In both reactions, it takes ca. 9.2 h before a distinct product formation occurs. A positive contribution of the product to the reaction mechanism can also be ruled out when looking at the rate of product formation. The additional product even reduces the reaction rate for product formation in the linear build-up by 36% from $9.64 \mathrm{E}-4 \mathrm{mM} / \mathrm{s}$ to $6.15 \mathrm{E}-4 \mathrm{mM} / \mathrm{s}$.

1.5 eq. substrate

	slope $(\mathbf{y E r} \pm)[\mathrm{mM} / \mathrm{s}]$	\mathbf{R}^{2} (cor.)
product	$9.64 \mathrm{E}-4(0.89 \mathrm{E}-5)$	0.998
Selectfluor $^{\ominus}$	$11.7 \mathrm{E}-4(0.86 \mathrm{E}-5)$	0.998
Prot. Selectfluor ${ }^{\oplus}$	$11.9 \mathrm{E}-4(0.76 \mathrm{E}-5)$	0.999
substrate	$11.7 \mathrm{E}-4(1.13 \mathrm{E}-5)$	0.997

2.0 eq. substrate

	slope $(\mathbf{y E r} \pm)[\mathrm{mM} / \mathrm{s}]$	\mathbf{R}^{2} (cor.)
product	$9.92 \mathrm{E}-4(2.55 \mathrm{E}-5)$	0.986
Selectfluor 8	$12.4 \mathrm{E}-4(1.56 \mathrm{E}-5)$	0.997
Prot. Selectfluor		
substrate	$12.3 \mathrm{E}-4(1.30 \mathrm{E}-5)$	0.998

2.5 eq. substrate

	slope $(\mathbf{y E r} \pm)[\mathrm{mM} / \mathrm{s}]$	\mathbf{R}^{2} (cor.)
product	$8.46 \mathrm{E}-4(1.27 \mathrm{E}-5)$	0.994
Selectfluor $^{-}$	$10.2 \mathrm{E}-4(1.02 \mathrm{E}-5)$	0.997
Prot. Selectfluor *	$10.8 \mathrm{E}-4(1.29 \mathrm{E}-5)$	0.996
substrate	$11.4 \mathrm{E}-4(2.43 \mathrm{E}-5)$	0.988

3.0 eq. substrate

	slope $(\mathbf{y E r} \pm)[\mathrm{mM} / \mathrm{s}]$	\mathbf{R}^{2} (cor.)
product	$9.70 \mathrm{E}-4(2.37 \mathrm{E}-5)$	0.983
Selectfluor *	$11.6 \mathrm{E}-4(1.06 \mathrm{E}-5)$	0.998
Prot. Selectfluor	$11.7 \mathrm{E}-4(1.25 \mathrm{E}-5)$	0.997
substrate	$13.7 \mathrm{E}-4(3.18 \mathrm{E}-5)$	0.985

Figure S23. Rates and reaction kinetics (plotted as absolute changes) for photosensitization auxiliary reactions with different substrate loadings. With an increasing amount of substrate $\mathbf{8 b}$, the induction phase shortens. The rate at which the concentrations of the different species change is unaffected.

Plotting the absolute values of the concentration changes of all species involved, i.e. reagents (substrate 8b and Selecfluor ${ }^{\circledR}$) and products (product and protonated Selectfluor ${ }^{\circledR}$), enables to read the transformation into each other out directly from the course of the curve. Overall, an increased substrate loading primarily affects the induction phase of the reaction. As in Figure S20, a shortening of the induction phase with increasing amount of substrate $\mathbf{8 b}$ is observable. However, the amount of product that is generated and the rate at which this happens remains unchanged. The situation is similar with the other three species shown. The fact that everything of consumed Selectfluor ${ }^{\circledR}$ ($\mathbf{S F}$) is transformed into its protonated form is reflected by the almost identical curves. The slightly smaller amount of generated product in all reactions indicates side reactions taking place in parallel, such as multiple fluorination and elimination reactions. A possible explanation for the shortening of the induction phase as the substrate loading increases can be found in the initial curve of the substrate kinetics. From almost the first spectrum, substrate $\mathbf{8 b}$ is consumed up to a concentration of 5 mM . This process begins earlier and more pronounced as the amount of substrate increases. This fact in combination with the traces of product, which can also be detected from the beginning (see Figure S 21), possibly indicates a so far unknown pre-aggregate, which is required for effective product formation. Further studies are ongoing to uncover the nature of aggregation changes.

3.4.5 Reaction monitoring of photocatalytic $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-H fluorination

3.4.5.1 NMR sample preparation

The NMR samples were prepared as for reaction monitoring of photosensitization auxiliary method under inert gas conditions (see Reaction monitoring of photosensitization auxiliary method, NMR sample preparation).

For monitoring the influence of catalyst loading a stock solution of MFB (16.6 mM in anhydrous and degassed $\mathrm{CD}_{3} \mathrm{CN}$) was prepared, which was stored inside a glove box refrigerator. Depending on the catalyst loading to be examined (see Table S10), the corresponding amount was transferred from the stock solution to an NMR tube loaded with Selectfluor ${ }^{\circledR}$ ($22.0 \mathrm{mg}, 62.1 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) and then diluted with enough anhydrous and degassed $\mathrm{CD}_{3} \mathrm{CN}$ to reach a volume of $300 \mu \mathrm{~L}$. Afterwards, substrate $\mathbf{1 k}(14.7 \mathrm{mg}, 16.8 \mu \mathrm{~L}$, $93.2 \mu \mathrm{~mol}, 1.5 \mathrm{eq}$.) and pentafluorobenzene as internal standard ($2.9 \mu \mathrm{~L}, 18.6 \mu \mathrm{~mol}, 0.3 \mathrm{eq}$.) were added. The sample was shaken intensively to ensure a homogeneous and saturated Selectfluor ${ }^{\circledR}$ solution. Lastly a in situ illumination insert as described in literature (glass fiber: Thorlabs; fiber type: MM, FP1500URT, 0.50 NA, $300-1200 \mathrm{~nm}, 1500 \mu \mathrm{~m}$ core) was inserted into the NMR tube, which was fastened with enough parafilm to prevent oxygen and moisture from penetrating the sample. ${ }^{[37]}$

Table S10. Different catalyst loadings for reaction monitoring of photocatalytic $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ fluorination.

Entry	Catalyst loading [mol\%]	Amount of stock solution $[\mu \mathrm{L}]$
1	1	37.5
2	5	188
3	5	188
4	8	300

To investigate the influence of substrate loading a stock solution of catalyst MFB and pentafluorobenzene as internal standard (1.0 mM respectively 7.5 mM in anhydrous and degassed $\mathrm{CD}_{3} \mathrm{CN} / \mathrm{CH}_{3} \mathrm{CN} 1: 1$) was prepared, which was stored inside glove box refrigerator. Depending on the substrate loading to be examined (see Table S11), the corresponding amount of substrate $\mathbf{1 k}$ and a $300 \mu \mathrm{~L}$ aliquot of the catalyst/ internal standard stock solution were added to the with Selectfluor ${ }^{\circledR}$ ($10.6 \mathrm{mg}, 30.0 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) loaded NMR tube. To ensure a homogenous sample, the NMR tube was shaken intensively and finally a in situ illumination insert as described in literature (glass fiber: Thorlabs; fiber type: MM, FP1500URT, 0.50 NA, 300-1200 nm, $1500 \mu \mathrm{~m}$ core) was inserted into the NMR tube and fastened with enough parafilm to prevent oxygen and moisture from penetrating the sample. ${ }^{[37]}$

Table S11. Different substrate loadings for reaction monitoring of photocatalytic $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ - H fluorination.

Entry	Equivalents	${\text { Volume }[\mu \mathrm{L}]^{\text {a] }}}^{\text {Amount of substrate }[\mu \mathrm{mol}]^{[\mathrm{a}]}}$	
1	1.5	8.1	45
2	2.0	10.8	60
3	2.0	10.8	60
4	3.0	16.3	90

3.4.5.2 Reaction monitoring of photocatalytic $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ fluorination with different catalyst and substrate

loadings
To gain information about the reaction kinetic of photocatalytic $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-H fluorination, the following reaction from the synthetic part of this work was chosen.

Scheme S4: Model reaction for reaction monitoring of photocatalytic $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-H fluorination by in situ illumination-NMR spectroscopy.

As with the photosensitization auxiliary fluorination reaction, it was investigated how the kinetics of the reaction change by varying the catalyst loading or the amount of substrate $\mathbf{8 b}$. The same concentrations as in the synthetic part of this work were used to screen for the influence of catalyst loading. To investigate the influence of the substrate, however, the concentrations of all involved reagents were decreased until all Selectfluor® ${ }^{\otimes}$ weighed in was also completely dissolved, which was the case at $\mathrm{c}=100 \mathrm{mM}$. So this time the weighed-in conditions correspond precisely to the dissolved ones.

A Screening of catalyst-loading

B Screening of substrate-loading

Figure S24. Reaction monitoring of photocatalytic $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-H fluorination reaction with different catalyst- and substrate loadings. Similar to the photosensitization auxiliary fluorination reactions an induction phase is required before the reaction proceeds via a first order reaction profile. A: Product curves with different catalyst loadings: The reaction with $5 \mathrm{~mol} \%$ was performed twice, one yielding product with a very high rate and one with a rate comparable to the other catalyst loadings. B: Reaction profiles showing the product formation with different substrate loadings: While the reaction with 1.5 equivalents of substrate $\mathbf{1 k}$ gave the product in a very good rate and conversion, no product was obtained with increasing the amount of substrate. The reaction with 2.0 eq. was done twice, once product was generated, but after a very long induction phase and with a rate, similar to those from catalyst loading screening.

Performing photocatalytic $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ fluorination reaction with $1 \mathrm{~mol} \%$ catalyst loading, product was generated after an induction phase of 8.3 h at a rate of $0.92 \mathrm{E}-4 \mathrm{mM} / \mathrm{s}$. Increasing the catalyst loading to 5 or $8 \mathrm{~mol} \%$ improved the product formation in a similar way. In both cases the induction phase is shortened by 41% to about 4.9 h and the product is formed at a rate almost 4 times higher than with $1 \mathrm{~mol} \%$ catalyst loading ($3.51 \mathrm{E}-4 \mathrm{mM} / \mathrm{s}$ for $5 \mathrm{~mol} \%$ and $3.38 \mathrm{E}-4 \mathrm{mM} / \mathrm{s}$ for $8 \mathrm{~mol} \%$). In one example with $5 \mathrm{~mol} \%$ catalyst loading, product was generated after approximately 40 min with a rate of $119 \mathrm{E}-4 \mathrm{mM} / \mathrm{s}$. As with the screening of catalyst loading (Figure S24 A), different substrate loadings gave results that were difficult to classify (Figure S24 B): In contrast to the 1.5 eq. reaction of catalyst loading screening, here a by far more pronounced product formation could be observed. Product was yielded after an induction phase of 3.1 h with a rate of $19.9 \mathrm{E}-4 \mathrm{mM} / \mathrm{s}$. When increasing the substrate loading, however, no product was obtained. Only in one example product was generated after a very long induction phase of 15.6 h and a rate comparable to that from the catalyst loading studies ($1.76 \mathrm{E}-4 \mathrm{mM} / \mathrm{s}$). Despite the generally less pronounced and slower product formation, "catalytic" PS fluorination nevertheless shows a reaction behavior like photosensitization auxiliary fluorination, consisting of an induction phase followed by first-order reaction type product generation.

In summary, the photocatalytic $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ fluorination reaction kinetics were poorly reproducible. This emphasizes the importance of agitation of the slurry reaction mixture (in the NMR tube experiments, SF sediments at the bottom of the tube). Moreover, it highlights a key advantage of the "auxiliary" PS fluorination in terms of robustness and reliability. The reason for the high robustness and generally better performance of "auxiliary" PS fluorination compared to the "catalytic" method, however, is the subject of further investigations.

3.4.6 Method for aggregate-investigations by diffusion ordered spectroscopy (DOSY) in

 photosensitization auxiliary fluorinationFor DOSY measurements the dstebpgp3s pulse program, a convection suppressing DSTE (double stimulated echo) pulse sequence developed by Jerschow and Müller was applied in a pseudo 2D mode. ${ }^{[38]}$ The diffusion time delay was set to 100 ms and a gradient pulse of $1350 \mu \mathrm{~s}$ was applied. Sine. 100 as gradient program and a linear gradient ramp with 20 increments between 10% and 95% of the maximum gradient strength were used. For z-only gradients $100 \%,-13.17 \%,-17.13 \%$ and -15.17% were used. NMR data were processed and evaluated with TopSpin 3.2 (Topspin T1/T2 Module). Diffusion coefficients and average volumes were obtained according to Jerschow and Müller. ${ }^{[38]}$

3.4.6.1 NMR sample preparation

The entire NMR sample preparation was executed similar as for reaction monitoring of photosensitization auxiliary fluorination under inert gas conditions (see Reaction monitoring of photosensitization auxiliary fluorination, NMR sample preparation). The actual preparation was done inside glove box, anhydrous and degassed TMS and in case of the DOSY reaction monitoring also the glass fiber insert for in situ illumination were added following Schlenk line technique. To examine the pure components, depending on the concentration, they were weighed directly into the NMR tube or a dilution series was used to achieve the respective concentration (see Table S12). The sample preparation for investigating the reaction mixtures (1.5 eq. respectively 3.0 eq. substrate $\mathbf{8 b}$) was carried out as for the reaction monitoring of "auxiliary "PS fluorination (see Table S9) but without additional pentafluorobenzene as internal standard.

Table S12. Different amounts of substrate and Selectfluor ${ }^{\circledR}$ for DOSY studies of the pure compounds in anhydrous and degassed $\mathrm{CD}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$.

Entry	Compound	Concentration [mM]
1		621.0
2	substrate 8 b	310.5
3		1.0
4	Selectfluor $^{\circledR}$	207^{a}
5		1.0

${ }^{a}$ Weighed in concentration. Due to moderate solubility, the concentration in solution is lower.

3.4.6.2 DOSY studies of photosensitization auxiliary fluorination using pure compounds at different

concentrations and reaction mixtures with different substrate loadings and substrates

Figure S25. Representative ${ }^{1} \mathrm{H}$-NMR spectrum of the photosensitization auxiliary fluorination of substrate $\mathbf{8 b}$ measured in anhydrous and degassed $\mathrm{CD}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$. The volumes given in Tables S 13 to S 15 correspond to mean values with SD. In the investigations of both, the pure compounds (Table S13) and the reaction mixtures (Table S14 and S15), the intense and non-overlapping signals sub 1 and sub 2 were used for substrate $\mathbf{8 b}$ and the signals SF 1 and SF $\mathbf{2}$ for Selectfluor ${ }^{\circledR}$.

To obtain the volumes of the pure reagents at the concentrations present in the reaction, they were first examined as pure samples (Table S13).

Table S13: Mean diffusion coefficients and average volumes of substrate $\mathbf{8 b}$ and Selectfluor ${ }^{\circledR}$ as pure compounds at different concentrations in anhydrous and degassed $\mathrm{CD}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$.

Entry	Compound	Concentration [mM]	Mean diffusion coefficient [E-9 m²/s] with SD	Average volume $\left[\AA^{3}\right]$ with SD
1		621.0	6.48 ± 0.0291	431.4 ± 5.371
2	substrate 8b	310.5	7.33 ± 0.0493	410.1 ± 7.44
3		1.0	8.52 ± 0.0375	390.0 ± 5.019
4	Selectfluor ${ }^{\text {® }}$	$207{ }^{\text {[a] }}$	5.03 ± 0.0128	952.2 ± 6.439
5		1.0	6.61 ± 0.104	714.4 ± 29.06

[^0]At the concentrations found in the standard reaction with 1.5 eq. substrate $\mathbf{8 b}$, the substrate $\mathbf{8 b}$ has a volume of $410.1 \pm 7.44 \AA^{3}$ (Table S13 entry 2) and Selectfluor ${ }^{\circledR}$ of $952.2 \pm 6.439 \AA^{3}$ (Table S13 entry 4). At a concentration of 621 mM (Table S13 entry 1), which is present in the reaction with 3.0 eq , the volume of substrate $\mathbf{8 b}$ increases slightly by 5.2%. If the concentration is significantly reduced to 1 mM (Table S13 entry 3), the volume diminishes by a similar amount to $390.0 \pm 5.019 \AA^{3}$. When Selectfluor ${ }^{\circledR}$ is diluted to a concentration of 1 mM (Table S13 entry 5), the volume is also reduced, but by 25%. To check whether substrate $\mathbf{8 b}$ and Selectfluor ${ }^{\circledR}$ are already present as monomers in the 1 mM samples, the monomervolumes were calculated based on the known intermolecular van der Waals radii of the corresponding functional groups and atoms. ${ }^{[39,40]}$ A volume of $247.23 \AA^{3}$ for substrate $\mathbf{8 b}$ and $332.27 \AA^{3}$ for Selectfluor ${ }^{\circledR}$ were received. Since the calculated volumes, which are in general good approximations, differ significantly from the ones received by DOSY, this suggests that the two reagents are still aggregated even at such low concentrations.

Next, mixtures of substrate 8b and Selectfluor ${ }^{\circledR}$ with 1.5 eq. substrate (Table S14) and 3.0 eq. (Table S15) were examined before and during the reaction.

Table S14: Mean diffusion coefficients and average volumes of substrate $\mathbf{8 b}$ and Selectfluor ${ }^{\circledR}$ in a reaction mixture with 1.5 equivalents substrate $\mathbf{8 b}$ at different times (reaction states) in anhydrous and degassed $\mathrm{CD}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$.

Entry	Compound	Reaction status	Mean diffusion coefficient [$\mathrm{E}-9 \mathrm{~m}^{2} / \mathrm{s}$] with SD	Average volume [\AA^{3}] with SD
1		No illumination	6.74 ± 0.0131	423.8 ± 2.671
2	substrate 8b	Illumination started	6.80 ± 0.0694	408.6 ± 10.63
3		Distinct product formation starts	6.81 ± 0.029	409.0 ± 4.151
4		Reaction finished	6.75 ± 0.047	408.5 ± 7.612
5		No illumination	5.13 ± 0.0713	845.4 ± 30.77
6	Selectfluor ${ }^{\text {® }}$	Illumination started	5.16 ± 0.0183	816.3 ± 7.574
7		Distinct product formation starts	5.15 ± 0.041	822.3 ± 17.09
8		Reaction finished	5.13 ± 0.0243	817.1 ± 10.15

Table S15: Mean diffusion coefficients and average volumes of substrate 8b and Selectfluor ${ }^{\circledR}$ in a reaction mixture with 3.0 equivalents substrate $\mathbf{8 b}$ at different times (reaction states) in anhydrous and degassed $\mathrm{CD}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$.

Entry	Compound	Reaction status	Mean diffusion coefficient [E-9 m²/s] with SD	Average volume $\left[\AA^{3}\right]$ with SD
1		No illumination	6.07 ± 0.0244	428.6 ± 4.765
2		Illumination started	6.16 ± 0.0786	417.2 ± 13.71
3		Distinct product formation starts	6.17 ± 0.0284	429.2 ± 5.378
4		Reaction finished	6.11 ± 0.0633	427.5 ± 11.48
5		No illumination	4.64 ± 0.0498	846.0 ± 23.74
6	Selectfluor ${ }^{\circledR}$	Illumination started	4.73 ± 0.0239	810.0 ± 10.70
7		Distinct product formation starts	4.70 ± 0.0439	852.3 ± 20.81
8		Reaction finished	4.67 ± 0.0352	839.2 ± 16.53

In order to determine whether there is a change in the volumes of the reagents involved during photosensitization auxiliary fluorination, their volume was identified for certain reaction states. It turns out, that in both reactions (1.5 eq substrate $\mathbf{8 b}$, Table S 14 and 3.0 eq. substrate $\mathbf{8 b}$, Table S15), the volume of the two reagents, substrate $\mathbf{8 b}$ and Selectfluor ${ }^{\circledR}$, remains almost unchanged. The average volume of the substrate in the 1.5 equivalent reaction $\left(412.5 \pm 6.266 \AA^{3}\right)$ and 3.0 equivalent reaction ($425.6 \pm 8.833 \AA^{3}$) do not differ from those, when substrate $\mathbf{8 b}$ is present as a pure compound (see Table S13). The average volume of Selectfluor ${ }^{\circledR}$, however, is reduced to $825.3 \pm 16.40 \AA^{3}$ for the 1.5 eq. reaction and 836.9 ± 17.95 \AA^{3} for the 3.0 eq. reaction. This corresponds to a reduction of 13% (1.5 eq. reaction) respectively 12% (3.0 eq. reaction) compared to Selectfluor ${ }^{\circledR}$ as a pure compound of the same concentration (see Table S13 entry 4).

To check the origin of the Selectfluor ${ }^{\circledR}$ de-aggregation inside the reaction mixture with substrate $\mathbf{8 b}$, the unreactive substrate $\mathbf{5 b}$ without the fluorine in para-position was selected.

8b
= 'sub'

5b
= 'sub-H'

Figure S26. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of substrate 5 b ($1.5 \mathrm{eq} ., 310.5 \mathrm{mM}$) and Selectfluor ${ }^{\circledR}$ (1.0 eq., not completely dissolved) measured in anhydrous and degassed $\mathrm{CD}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$. The volumes given in Table S 16 correspond to mean values with SD. For this, the intense and non-overlapping signals sub-H 1 and sub-H 2 were used for substrate $5 \mathbf{b}$ and the signals SF 1 and SF 2 for Selectfluor ${ }^{\circledR}$.

Table S16: Mean diffusion coefficients and average volumes of substrate $\mathbf{5 b}$ and Selectfluor ${ }^{\circledR}$ in a mixture with 1.5 eq. substrate $\mathbf{5 b}$ and 1.0 eq. Selectfluor ${ }^{\circledR}$ in anhydrous and degassed $\mathrm{CD}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$.

Entry	Compound	Concentration [mM]	Mean diffusion coefficient $\left[\mathbf{E - 9} \mathbf{~ m}^{2} / \mathbf{s}\right]$ with SD	Average volume $\left[\AA^{3}\right]$ with SD
1	substrate 5b	310.5	6.78 ± 0.0839	413.9 ± 13.24
2	Selectfluor $^{\circledR}$	$207^{[\text {ad] }}$	4.95 ± 0.0181	917.5 ± 8.864

[a] Weighed in concentration. Due to moderate solubility, the concentration in solution is lower.
Similar to the previous investigations, a sample containing 1.5 eq. substrate $\mathbf{5 b}$ and 1.0 eq. Selectfluor ${ }^{\circledR}$ was prepared. With $413.9 \pm 13.24 \AA^{3}$, the volume of substrate $\mathbf{5 b}$ is very similar to that of substrate $\mathbf{8 b}(412.5 \pm$ $6.266 \AA^{3}$, see Table S14). This is not surprising given that only the fluorine in the para-position has been replaced by a hydrogen atom. On the other hand, looking at the volume of Selectfluor ${ }^{\circledR}$ shows a clear effect of substrate $\mathbf{8 b}$ compared to $\mathbf{5 b}$. While Selectfluor ${ }^{\circledR}$ mixed with 1.5 eq. $\mathbf{8 b}$ was de-aggregated by 13% compared to its volume as pure compound with the same concentration (see Table S13 entry 4), its volume only decreases by 3.6% upon mixing with $\mathbf{5 b}$. Considering the good reactivity of $\mathbf{8 b}$ vs $\mathbf{5 b}$, it is suggested that the ability of the PSAux F atom to de-aggregate Selectfluor ${ }^{\circledR}$ may play a key role in initiating reactivity.

3.4.6.3 DOSY plots

Pure compounds (Table S13)
entry 1

entry 3

sub 1
entry 4

sub 2

entry 5

TMS

1.5 eq. reaction (Table S14)
entry 1

sub 2

entry 3

sub 1

entry 5

SF 1
entry 6

SF 2

entry 7
entry 8
SF 1

3.0 eq. reaction (Table S15)
entry 1

sub 1
sub 2

entry 3

sub 1

entry 5

SF 1
entry 6

SF 2

entry 7
entry 8
SF 1

1.5 eq. substrate 5 b +1.0 eq. Selectfluor ${ }^{\circledR}$ (Table S16)
entry 1

sub-H 2

3.4.7 Structural elucidation of $\mathbf{2 o}$ in CDCl_{3} at $25^{\circ} \mathrm{C}$

To assign the signals for 20 in CDCl_{3} (saturated solution) at $25^{\circ} \mathrm{C}$ (Figure S 27) a series of 1 D and 2D NMR experiments (1D-1 $\mathrm{H} ; 1 \mathrm{D}-{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} ; 1 \mathrm{D}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} ; 2 \mathrm{D}-{ }^{-1} \mathrm{H},{ }^{1} \mathrm{H}$ correlated spectroscopy (COSY); 2D-1 $\mathrm{H},{ }^{1} \mathrm{H}$ nuclear Overhauser enhancement spectroscopy (NOESY), 2D-1 $\mathrm{H},{ }^{13} \mathrm{C}$ heteronuclear multiple bond correlation (HMBC); 2D- ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ heteronuclear single quantum coherence (HSQC)) was measured (Figure S28-S34). Next to the routine 1D- ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ a $1 \mathrm{D}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ with additional ${ }^{19} \mathrm{~F}$-decoupling was measured. By comparing the two NMR spectra the carbons next to the fluorine substituent can explicitly be identified and assigned via the associated ${ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}$ coupling constants(${ }^{1} \mathrm{~J}_{\mathrm{CF}}-{ }^{3} \mathrm{~J}_{\mathrm{CF}}$). (Figure S 35).

Figure S27. Assignment of 20 in CDCl_{3} (saturated solution) at $25^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ chemical shift, multiplicity, coupling constants and integral are highlighted black, ${ }^{13} \mathrm{C}$ blue and ${ }^{19} \mathrm{~F}$ green.

Figure S28: $1 \mathrm{D}-{ }^{1} \mathrm{H}$ spectrum $(\mathrm{ns}=16)$ of $\mathbf{2 o}$ in CDCl_{3} (saturated solution) measured at $25^{\circ} \mathrm{C}$.

Figure S29. $1 \mathrm{D}-{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum ($\mathrm{ns}=8$) of $\mathbf{2 o}$ in CDCl_{3} (saturated solution) measured at $25^{\circ} \mathrm{C}$.

Figure S30. $1 \mathrm{D}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum ($\mathrm{ns}=1024$) of $\mathbf{2 o}$ in CDCl_{3} (saturated solution) measured at $25^{\circ} \mathrm{C}$.

Figure S31. 2D- ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY spectrum of 2 o in CDCl_{3} (saturated solution) measured at $25^{\circ} \mathrm{C}$.

Figure S32. 2D- ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ NOESY spectrum (mixing time $=0.7 \mathrm{~s}$) of $\mathbf{2 o}$ in CDCl_{3} (saturated solution) measured at $25^{\circ} \mathrm{C}$.

Figure $\mathbf{S 3 3} .2 \mathrm{D}-{ }^{-1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC spectrum of $\mathbf{2 o}$ in CDCl_{3} (saturated solution) measured at $25^{\circ} \mathrm{C}$.

Figure S34. $2 \mathrm{D}-{ }^{-1} \mathrm{H},{ }^{13} \mathrm{C}$ HSQC spectrum of 2 o in CDCl_{3} (saturated solution) measured at $25^{\circ} \mathrm{C}$.

Figure S35. Sections of a routine $1 \mathrm{D}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum ($\mathrm{ns}=1024$) (bottom) and a $1 \mathrm{D}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ spectrum (ns = 1024) (top) with additional ${ }^{19} \mathrm{~F}$-decoupling. Because the adjacent ${ }^{13} \mathrm{C}$ signals merge to one signal with additional ${ }^{19} \mathrm{~F}$ decoupling, these signals must correspond to one carbon close to the fluorine substituent. The magnitude of J-coupling provides information on the number of bonds between in this case carbon and fluorine. In general, the smaller the coupling constant, the more bonds are between the coupled nuclei.

Computations were performed using Density Functional Theory (DFT) ${ }^{[41]}$ using the Gaussian09 software package. ${ }^{[42]}$ Geometry optimizations were carried out using CAM-B3LYP ${ }^{[43]}$, ω B97X- $D^{[44 a]}$ or M06-2X ${ }^{[44 b]}$ functional with a $6-31+g(d, p){ }^{[45]}$ basis set. Solvation was modeled implicitly using the Conductor-like Polarizable Continuum Model (CPCM) ${ }^{[46]}$ in acetonitrile. For the triplet excited states, vertical excitation energy (from singlet ground state: S_{0} to triplet excited state: T_{1}) was calculated from the optimized geometries using Time Dependent-Density Functional Theory (TD-DFT) ${ }^{[48]}$ (code: "td=(triplet)") with their respective unrestricted functionals.

The summary for the calculated triplet energies of various sensitizers at various functionals, together with the T_{1} values obtained from the literature (see Table 4, main manuscript) is shown below. As seen on chart, the functional that gave the closest values with the literature reports is CAM-B3LYP, hence the calculated T_{1} value for the catalyst MFB is reported as $78.3 \mathrm{kcal} \mathrm{mol}^{-1}$.

Figure S36. Summary of T_{1} energies using various DFT functionals.

Summary of ground state cartesian coordinates and T_{1} energies:

Methyl Benzoate:

CAM-B3LYP		X						
C $\quad 2.98737300-0.28377200-0.00003200$	c	2.98962900	-0.28254000	-0.00006500	c	2.98888600	-0.27898700	-0.00005600
C $\quad 2.12179000-1.37569200-0.00001000$	c	2.12420500	-1.37651900	-0.00000900	-	2.12570100	-1.37553300	-0.00001100
C $\quad 0.74591800-1.175197000000001800$	c	0.74666600	-1.17745600	0.00004700	c	0.74667000	-1.17929400	0.00003800
$\begin{array}{lllll}\text { C } & 0.23259100 & 0.12448000 & 0.00002700\end{array}$	c	0.23138300	0.12324700	0.00005200	c	0.23280400	0.12122600	0.00004500
$\begin{array}{llllll}\text { C } & 1.10226100 & 1.21737200 & 0.00000400\end{array}$	c	1.10108800	1.21820400	-0.00000500	c	1.09726900	1.21956100	-0.00000100
C $\quad 2.476597001 .01303200-0.00002500$	c	2.47699700	1.01495500	-0.00006300	c	2.47435200	1.01869300	-0.00005200
H $\quad 2.51938900-2.38513100-0.00001500$	H	2.52369600	-2.38540100	-0.00001000	H	2.52706100	-2.38372500	-0.00001300
$\begin{array}{llllll}\mathrm{H} & 0.06922500 & -2.02107100 & 0.00003500\end{array}$	H	0.07195900	-2.02572900	0.00009000	H	0.06967400	-2.02628900	0.00007400
$\begin{array}{lllll}\mathrm{H} & 0.68994600 & 2.22000000 & 0.00001000\end{array}$	H	0.68908300	2.22155900	-0.00000100	H	0.67925800	2.22097200	0.00000400
$\begin{array}{lllll}\text { H } & 3.14978900 & 1.86385000 & -0.00004200\end{array}$	H	3.15003900	1.86610300	-0.00010600	H	3.14554900	1.87124000	-0.00008700
C $\quad-1.231339000 .390161000000006100$	C	-1.23497200	0.39058200	0.00012000	C	-1.23477200	0.38633900	0.00010500
C $\quad-3.39216300-0.55550000-0.00004000$	c	-3.39094500	-0.55682300	-0.00007600	C	-3.38821200	-0.54925700	-0.00006700
H $\quad 3.70702200-0.01189100-0.89186700$	H	-3.70766000	-0.01426500	-0.89266800	H	-3.69551400	-0.00060400	-0.89199600
H $\quad-3.80533200-1.56173400-0.00012500$	H	-3.80372200	-1.56348000	-0.00023200	H	-3.81193800	-1.55098300	-0.00019700
H $\quad-3.70709300-0.0120130000089183800$	H	-3.70779000	-0.01448900	0.89260500	H	-3.69563100	-0.00078800	0.89193500
$\begin{array}{lllll}\text { O } & -1.72459700 & 1.50371600 & 0.00001800\end{array}$	o	-1.72550200	1.50525900	0.00004400	0	-1.72585700	1.49784000	0.00003700
O $\quad-1.96638400-0.725952000000000700$	o	-1.96739900	-0.72585100	0.00000900	0	-1.96634600	-0.73163200	0.00000900
$\begin{array}{lllll}\text { H } & 4.06077400 & -0.44342600 ~ & -0.00005400\end{array}$	H	4.06329800	-0.44144800	-0.00010900	H	4.06297100	-0.43597100	-0.00009500
TD-DFT T ${ }_{1}=3.3801 \mathrm{eV}$	TD-DFT T ${ }_{1}=3.5468 \mathrm{eV}$				TD-DFT ${ }_{1}=4.0364 \mathrm{eV}$			

Benzonitrile

Benzamide

MFB

The nature interaction of the interaction between SelectFluor ${ }^{\circledR}(\mathbf{S F})$ and benzoates in the ground state was explored computationally using ω B97X- $D^{[44]} / 6-31++g(2 d, p)^{[45]}$ level of theory with CPCM $=$ acetonitrile solvation model was used). To probe the nature of non-covalent interactions and interacting orbitals between MFB-SF complex, NBO calculations and Second Order Perturbation theory analysis was carried out. This provides the interaction energies (E2) between donor and acceptor orbitals of the given system.

Cartesian coordinates of the optimized structures:

SelectFluor:

Geometry optimization of the MFB-SF assembly revealed that the F atom of SF interacts with the benzoate.
F interacts with the carbonyl carbon perpendicular to the $\mathrm{N}-\mathrm{F}$ bond (distance between $\mathrm{F}-\mathrm{C}=2.7 \AA$, angle between $\mathrm{N}-\mathrm{F}-\mathrm{C}=97^{\circ}$). Furthermore, F is oriented to the carbonyl at an angle of 104° (note that the Bürgi-

Dunitz angle is 107°). This suggests that electrons of F interact with the π^{*} of $C=O$. On the other hand the arene ring tends to interact at the tip (i.e., closer to 180°) of N-F bond as follows: i) $\mathrm{C}_{\mathrm{ipso}}-\mathrm{F}$ interaction (distance $=2.7 \AA$, angle $=124^{\circ}$); ii) $C_{\text {para }}-F$ interaction (distance $=2.7 \AA$, angle $=153^{\circ}$). These structural observations suggests that SF interacts with the catalyst interacts via 2 modes of halogen bonding. Halogen bonding is known in the literature ${ }^{[49]}$ to interact with electron donors linearly via its sigma hole or with electron acceptors at the halogen's periphery via its lone pairs. The N-F moiety of SF was reported to undergo halogen bonding to pyridine N atoms. ${ }^{50}$

On the other hand, such a dual binding mode is not observed for methyl benzoate. The binding of MFB and $\mathbf{S F}$ is $1.0 \mathrm{kcal} \mathrm{mol}^{-1}$ more favorable than that of methyl benzoate and $\mathbf{S F}$, which is in line with MFB being a superior de-aggregating agent (see Section 3.8). Such a binding interaction may direct SF in regioselective fluorinations by the PSAux method, but advanced spectroscopic probing is needed to confirm this proposal.
A. DFT optimized structure

B. 'Dual' Halogen bonding modes of SF:

Figure S37. A: DFT optimized structure of the assembly of methyl 4-fluorobenzoate and SelectFluor and relevant angles. B: Possible 'dual' binding mores of SelectFluor.

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis:

To probe the nature of non-covalent interactions and interacting orbitals between MFB-SF complex, NBO calculations and Second Order Perturbation theory analysis was carried out. This will provide the interaction energies (E2) between donor and acceptor orbitals of the given system. The following significant interactions support the notion of a dual halogen bonding mode of SF with MFB:

LP electrons of F to $\pi^{*} \mathrm{C}=\mathrm{O}($ total $)=2.0 \mathrm{kcal} \mathrm{mol}^{-1}$
π electrons of $\mathrm{C}_{\mathrm{ipso}}-\mathrm{C}_{\text {para }}$ to $\sigma^{*} \mathrm{~F}-\mathrm{N}=35.2 \mathrm{kcal} \mathrm{mol}^{-1}$

SelectFluor / methyl 4-fluorobenzoate complex :

from unit 1 to unit 2
2. $\mathrm{BD}(1) \mathrm{C} 1-\mathrm{C} 35$ 2. BD (1) C 1-C 35 3. BD (1) C 1-C 41 4. BD (2) C 1-C 41 4. $\mathrm{BD}(\mathrm{2}) \mathrm{C} 1-\mathrm{C} 41$
4. BD (2) C 1-C 41
7. $\mathrm{BD}(2) \mathrm{C}$ 2-C 4
11. $\mathrm{BD}(2) \mathrm{C} 5-\mathrm{C} 6$
15. BD (1) O 9-C 35
16. BD (2) O 9-C 35
16. $\mathrm{BD}(2) \mathrm{O} 9-\mathrm{C} 35$
16. $\mathrm{BD}(2) \mathrm{O}$ 9-C 35
43. BD (1) C 35-O 36
45. BD (1) C 37 - H 38 46. BD (1) C 37 - H 39 46. BD (1) C 37 - H 39 47. BD (1) C 37 - H 40 47. BD (1) C 37 - H 40 48. BD (1) C 41 - H 42 75. LP (1) O 9 75. LP (1) O 76. LP (2) O 9 76. LP (2) O 9 76. LP (2) O 9 83. LP (1) O 36 84. LP (2) O 36 648. BD*(2) O 9-C 35 675. BD*(1) C 35-O 36
/264. RY*(2) C 12
/358. RY*(1) H 19
/649. $\mathrm{BD}^{*}\left(\begin{array}{l}\text { 1) F } 10-\mathrm{N} 29\end{array}\right.$
/224. RY* (2) F 10
/226. RY* (4) F 10
/649. BD* (1)F $10-\mathrm{N} 29$
/649. BD* (1) F $10-\mathrm{N} 29$
/649. BD*(1) F 10-N 29
/424. RY* (2) N 29
/227. RY* (5) F 10
/323. RY* (1) H 15
/358. RY* (1) H 19
/649. BD* (1) F 10-N 29
/651. BD*(1) C $11-\mathrm{H} 15$ /656. BD^{*} (1) C 12 - H 19 /436. RY* (14) N 29 /656. BD*(1) C 12 - H 19 /358. RY* (1) H 19 /656. BD*(1) C 12 - H 19 /358. RY* (1) H 19
/656. BD*(1) C 12 - H 19 /649. BD* (1) F $10-\mathrm{N} 29$ /651. BD*(1) C 11 - H 15 /656. BD*(1) C 12 - H 19 /649. BD*(1) F $10-\mathrm{N} 29$ /651. BD*(1) C 11 - H 15 /656. BD*(1) C 12 - H 19 /430. RY* (8) N 29
/264. RY* (2) C 12
/265. RY* (3) C 12
/649. BD* (1) F 10 - N 29
/654. BD^{*} (1) C 12 - C 17
/656. BD* (1) C 12 - H 19
/651. BD* (1) C 11 - H 15
/657. BD* (1) C 12 -N 29
from unit 2 to unit 1

| 17. BD (1) F $10-\mathrm{N} 29$ | /590. RY* | (3) C 41 | 0.05 | 1.94 | 0.009 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 17. BD (| | | | | |

17. BD (1) F 10-N 29	/636. BD*(2) C 1-C 41	$0.22 \quad 0.65 \quad 0.012$
19. BD (1) C $11-\mathrm{H} 15$	/204. $\mathrm{RY}^{*}(2) \mathrm{O} 9$	$0.09 \quad 1.49 \quad 0.010$
19. BD (1) C $11-\mathrm{H} 15$	/648. BD^{*} (2) O 9-C 35	$\begin{array}{lll}0.14 & 0.71 & 0.009\end{array}$
21. BD (1) C $11-\mathrm{N} 29$	/100. $\mathrm{RY}^{*}(13) \mathrm{C} 1$	$\begin{array}{lll}0.06 & 2.62 & 0.011\end{array}$
21. BD (1) C $11-\mathrm{N} 29$	/523. RY* (11) C 35	$\begin{array}{lll}0.08 & 2.46 & 0.012\end{array}$
21. BD (1) C $11-\mathrm{N} 29$	1525. RY*(13) C 35	$\begin{array}{lll}0.10 & 3.05 & 0.015\end{array}$
21. BD (1) C $11-\mathrm{N} 29$	/597. RY* (10) C 41	$0.05 \quad 2.92 \quad 0.011$
23. BD (1) C $12-\mathrm{H} 18$	/678. BD*(1) C 37-H 39	$0.06 \quad 1.22 \quad 0.008$
24. BD (1) C $12-\mathrm{H} 19$	/578. RY* ${ }^{*}$) H 39	$0.05 \quad 1.62 \quad 0.008$
24. BD (1) C $12-\mathrm{H} 19$	/678. BD* (1) C 37-H 39	$\begin{array}{lll}0.19 & 1.23 & 0.014\end{array}$
25. BD (1) C $12-\mathrm{N} 29$	/100. RY* (13) C 1	$\begin{array}{lll}0.05 & 2.62 & 0.010\end{array}$
25. BD (1) C $12-\mathrm{N} 29$	1523. RY* (11) C 35	$\begin{array}{lll}0.07 & 2.46 & 0.012\end{array}$
25. BD (1) C $12-\mathrm{N} 29$	1525. RY* (13) C 35	$\begin{array}{lll}0.08 & 3.05 & 0.014\end{array}$
25. BD (1) C $12-\mathrm{N} 29$	/597. RY* (10) C 41	$\begin{array}{lll}0.06 & 2.92 & 0.012\end{array}$
29. BD (1) C 13-N 29	/100. RY* (13) C 1	$\begin{array}{lll}0.10 & 2.62 & 0.015\end{array}$
29. BD (1) C 13-N 29	/523. RY*(11) C 35	$\begin{array}{lll}0.10 & 2.46 & 0.014\end{array}$
29. BD (1) C $13-\mathrm{N} 29$	1525. RY*(13) C 35	$\begin{array}{lll}0.14 & 3.05 & 0.019\end{array}$
29. BD (1) C $13-\mathrm{N} 29$	/597. RY* (10) C 41	$\begin{array}{lll}0.05 & 2.92 & 0.011\end{array}$
32. BD (1) C 14-N 30	/597. RY* (10) C 41	$\begin{array}{lll}0.08 & 2.85 & 0.013\end{array}$
35. BD (1) C $17-\mathrm{N} 30$	/597. RY* (10) C 41	$\begin{array}{lll}0.08 & 2.85 & 0.014\end{array}$
38. BD (1) C $22-\mathrm{N} 30$	/597. RY* (10) C 41	$\begin{array}{lll}0.08 & 2.85 & 0.013\end{array}$
39. BD (1) N 30-C 31	/523. RY* (11) C 35	$\begin{array}{lll}0.09 & 2.41 & 0.013\end{array}$
39. BD (1) N 30-C 31	/524. RY*(12) C 35	$\begin{array}{lll}0.07 & 2.85 & 0.012\end{array}$
39. BD (1) N 30-C 31	1525. RY* (13) C 35	$\begin{array}{lll}0.13 & 3.00 & 0.018\end{array}$
39. BD (1) N 30-C 31	/581. RY* ${ }^{*}$) H 39	$\begin{array}{lll}0.05 & 1.94 & 0.009\end{array}$
77. LP (1) F 10	/633. BD^{*} (1) C 1-C 2	$\begin{array}{lll}0.06 & 1.79 & 0.010\end{array}$
77. LP (1) F 10	/648. $\mathrm{BD}^{*}(2) \mathrm{O} 9-\mathrm{C} 35$	$\begin{array}{lll}0.08 & 1.18 & 0.009\end{array}$
77. LP (1) F 10	/680. BD* ${ }^{\text {() C }} 41-\mathrm{H} 42$	$\begin{array}{lll}0.07 & 1.72 & 0.010\end{array}$
78. LP (2) F 10	/636. BD^{*} (2) C 1-C 41	$\begin{array}{lll}0.33 & 0.69 & 0.015\end{array}$
78. LP (2) F 10	/648. BD^{*} (2) O 9-C 35	$\begin{array}{lll}0.11 & 0.70 & 0.008\end{array}$
79. LP (3) F 10	/633. BD^{*} (1) C 1-C 2	$\begin{array}{lll}0.17 & 1.24 & 0.013\end{array}$
79. LP (3) F 10	1639. $\mathrm{BD}^{*}($ 2) C $2-\mathrm{C} 4$	$\begin{array}{lll}0.06 & 0.64 & 0.006\end{array}$
79. LP (3) F 10	/646. $\mathrm{BD}^{*}(1) \mathrm{C}$ 6-C 41	$\begin{array}{lll}0.09 & 1.17 & 0.009\end{array}$
79. LP (3) F 10	/648. BD^{*} (2) O 9-C 35	$1.84 \quad 0.63 \quad 0.032$
649. BD* (1) F $10-\mathrm{N} 29$	/100. RY* (13) C 1	$\begin{array}{lll}0.06 & 1.90 & 0.021\end{array}$
649. BD*(1) F $10-\mathrm{N} 29$	1523. RY*(11) C 35	$\begin{array}{lll}0.07 & 1.75 & 0.021\end{array}$
649. BD*(1) F $10-\mathrm{N} 29$	1525. RY* (13) C 35	$\begin{array}{lll}0.10 & 2.33 & 0.029\end{array}$
649. BD* (1) F $10-\mathrm{N} 29$	1597. RY* (10) C 41	$\begin{array}{lll}0.06 & 2.21 & 0.021\end{array}$
649. BD* (1) F $10-\mathrm{N} 29$	/636. BD*(2) C 1-C 41	$\begin{array}{lll}0.39 & 0.27 & 0.014\end{array}$
649. BD* (1) F $10-\mathrm{N} 29$	/639. $\mathrm{BD}^{*}(2) \mathrm{C} 2-\mathrm{C} 4$	$\begin{array}{lll}0.06 & 0.29 & 0.006\end{array}$
649. BD*(1) F $10-\mathrm{N} 29$	/643. BD^{*} (2) C 5-C 6	$\begin{array}{lll}0.11 & 0.30 & 0.008\end{array}$
649. BD*(1) F $10-\mathrm{N} 29$	/648. BD*(2) O 9-C 35	$\begin{array}{lll}0.05 & 0.28 & 0.006\end{array}$

3.6 Quantum Yield Measurement

Quantum yield is a measurement for probing the photon efficiency of photochemistry reactions to confirm whether radical chain processes are involved. ${ }^{[49]}$ The previously reported apparatus ${ }^{[50]}$ shown in Figure S38 combines optoelectronic measurement of the absorbed amount of light with the quantitative measurement of product formed by ${ }^{19}$ F NMR. For this measurement, 400 nm LED (Manufacturer - Luxeon, Type - LHUV-0400-0450, $I_{\max }-100 \mathrm{~mA}, \mathrm{U}_{\max }-3.1 \mathrm{~V}$) was used. For an accurate optoelectronic measurement, it is important that the reaction mixture is clear and transparent to avoid the interference of light scattering on the measurement. Therefore, a 0.1 M (1 eq.) concentration of SF and a 0.15 M (1.5 eq .) concentration of substrate $\mathbf{8 b}$ were used, where everything was dissolved. Due to low intensity of LED and large distance between LED and the sample, the reaction was slow, and it was run for 96 h . The experiment was carried our two times and, in both cases, similar values of Φ was obtained (Table S17). The obtained values for Φ
are all markedly less than 1 , suggesting it is very unlikely that a radical chain mechanism is not involved (although a radical chain mechanism with an efficient mechanism for chain-death/termination cannot be fully excluded).

Figure S38. A) and B) Assembled setup for quantitative irradiation of reaction mixture using high 400 nm LED, as previously reported ${ }^{[50]} \mathbf{C}$) Application of PC for running the quantum yield measurement. D) Adjustable power supply "KORAD KA3005D - Precision Variable Adjustable 30 V, 5 A DC Power Supply Digital Regulated Lab Grade".

The quantum yield was calculated by the following equation:

$$
\phi=\frac{N_{\text {prod }}}{N_{\text {photons }, \text { abs }}}=N_{A} h c \frac{c_{\text {prod }} V}{P_{\text {abs }} \Delta t \lambda_{L E D}}
$$

where, N_{A} is the Avogadro constant, h is Planck's constant, c is the speed of light, C prod is the product concentration, V is the sample volume, Δt is the illumination time and $\lambda_{\text {LED }}$ is the central wavelength of the LED. The absorbed radiant power $P_{\text {abs }}$ can be calculated from $P_{\text {ref }}$ and $P_{\text {sample, }}$ where a small correction factor is applied to correct for back reflection from the terminal glass/air interface. ${ }^{[50]}$

Table S17. Calculation of quantum yield Φ after 96 h irradiation time from the radiant power of the reference (solvent, $\mathrm{P}_{\text {reff }}$) and the radiant power of reaction mixture ($\mathrm{P}_{\text {sample }}$) with stirring.

Entry	Irradiation time (min)	Pref $^{(\mu \mathrm{W})}$	$\mathbf{P}_{\text {sample }(\mu \mathrm{W})}$	${ }^{19} \mathrm{~F} \mathrm{NMR}$ Yield ${ }^{[a]}(\%)$	$\boldsymbol{\Phi}$
1	5801	69.00	65.70	12	0.00585 (i.e. $0.6 \%)$
2	5760	69.00	65.85	9	0.00461 (i.e. $0.5 \%)$

[a] Pentafluorobenzene was used as an internal standard for quantification of product yields by ${ }^{19} \mathrm{~F}$ NMR.
${ }^{1} \mathrm{H}$ NMR of compound MFB in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound MFB in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 22 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 22 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 4}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 4}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 1 f in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 f}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 c}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 1 c in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 25 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 5}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 g}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 10 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 10 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 1 y in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1} \boldsymbol{y}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 19 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 19 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 1aa in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1}$ aa in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 1aa in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 a e}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 a e}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{1 a e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 1ad in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 a d}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 1ad in CDCl_{3}

${ }^{31} \mathrm{P}$ NMR of compound 1ad in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 a c}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 a c}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 1ac in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{8 i}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{8 i}$ in CDCl_{3}

${ }^{19}$ F NMR of compound $\mathbf{8 i}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 8a in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $8 \mathbf{a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{8 b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{8 b}$ in CDCl_{3}

${ }^{19}$ F NMR of compound $\mathbf{8 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $8 \mathbf{c}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{8 c}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $8 \mathbf{c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 8cc in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $8 \mathbf{c c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{8 d}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{8 d}$ in CDCl_{3}

${ }^{19}$ F NMR of compound $8 \mathbf{d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{8 e}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{8 e}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $8 \mathbf{e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 8ee in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 8ee in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{8 f}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{8 f}$ in CDCl_{3}

${ }^{19}$ F NMR of compound 8 f in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{8 g}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{8 g}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{8 g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{8} \mathbf{h}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 8 h in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{8} \mathbf{h}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{8 j}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{8} \mathbf{j}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 8 j in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{8 k}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{8 k}$ in CDCl_{3}

${ }^{19}$ F NMR of compound $\mathbf{8 k}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 10 d in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 10 d in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 10 d in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 10 a in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 0 a}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 10 a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 0 b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 0 b}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{1 0 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 10 c in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 0 c}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 10 c in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 0 e}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 0 e}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{1 0 e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 0 f}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $10 f$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{1 0 f}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 0 g}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 0 g}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{1 0 g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 10 h in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 0 h}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 10 h in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{8 I}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $8 \mathbf{1}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $8 \mathbf{8}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 d}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 d}$ in CDCl_{3}

${ }^{19}$ F NMR of compound 2d in CDCl_{3}

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of compound 2d in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 h}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 h}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{2 h}$ in CDCl_{3}
(
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 j}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2} \mathbf{j}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{2 j}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 k}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 k}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{2 k}$ in CDCl_{3}

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{2 k}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 l}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 1}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{2 l}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 m}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 m}$ in CDCl_{3}

000
4000
-2000

${ }^{19}$ F NMR of compound $\mathbf{2 m}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 n}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 n}$ in CDCl_{3}

${ }^{19}$ F NMR of compound $\mathbf{2 n}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 q}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 q}$ in CDCl_{3}

${ }^{19}$ F NMR of compound $\mathbf{2 q}$ in CDCl_{3}

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{2 q}$ in CDCl_{3}
(
${ }^{1} \mathrm{H}$ NMR of compound 2 r in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 r}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{2 r}$ in CDCl_{3}

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{2 r}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 w}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 w}$ in CDCl_{3}

${ }^{19}$ F NMR of compound $\mathbf{2 w}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 b}$ in CDCl_{3}

${ }^{19}$ F NMR of compound $\mathbf{2 b}$ in CDCl_{3}
(
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 a}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 a}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{2 a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 f}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 f}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{2 f}$ in CDCl_{3}
(
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 c}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 c}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{2 c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 17 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 17 in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 17 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 g}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 g}$ in CDCl_{3}

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{2 g}$ in CDCl_{3}

${ }^{31} \mathrm{P}$ NMR of compound $\mathbf{2 g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 o}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 20 in CDCl_{3}

${ }^{19}$ F NMR of compound $\mathbf{2 o}$ in CDCl_{3}

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of compound $\mathbf{2 o}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 p}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 p}$ in CDCl_{3}

${ }^{19}$ F NMR of compound $\mathbf{2 p}$ in CDCl_{3}

COSY NMR of compound $2 p$ in CDCl_{3}

TOCSY NMR of compound $\mathbf{2 p}$ in CDCl_{3}

HSQC NMR of compound 2 p in CDCl_{3}

HMBC NMR of compound $2 \mathbf{p}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 y}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 y}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{2} \mathbf{y}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 20 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 20 in CDCl_{3}

${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{of} \mathrm{compound} 20$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 2aa in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 2aa in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 2aa in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 a e}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 2ae in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 2ae in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 a d}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 2ad in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 2ad in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 2ac in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 2ac in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 2ac in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2} \mathbf{a b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 a b}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{2 a b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 9 i in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 9 i in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{9 i}$ in CDCl_{3}

COSY NMR of compound 9 i in CDCl_{3}

HSQC NMR of compound $9 \mathbf{i}$ in CDCl_{3}

HMBC NMR of compound $9 \mathbf{i}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 9 a in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $9 \mathbf{a}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 9 a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{9 b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{9 b}$ in CDCl_{3}

${ }^{19}$ F NMR of compound $\mathbf{9 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 9 c in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 9 c in CDCl_{3}

${ }^{19}$ F NMR of compound 9 c in CDCl_{3}

COSY NMR of compound 9c in CDCl_{3}

HSQC NMR of compound 9c in CDCl_{3}

HMBC NMR of compound 9 c in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 9 d in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 9 d in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $9 \mathbf{d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 9 e in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{9 e}$ in CDCl_{3}

${ }^{19}$ F NMR of compound $9 \mathbf{e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 9 f in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 9 f in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 9 f in CDCl_{3}

COSY NMR of compound 9 in CDCl_{3}

HSQC NMR of compound $9 \mathbf{f}$ in CDCl_{3}

HMBC NMR of compound $9 \mathbf{f}$ in CDCl_{3}
隹
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{9 g}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $9 \mathbf{g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 9 h in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $9 \mathbf{h}$ in CDCl_{3}

${ }^{19}$ F NMR of compound 9 h in CDCl_{3}

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 9 h in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 9 j in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{9} \mathbf{j}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 9 j in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{9 j} \mathbf{- 1}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{9 j}-1$ in CDCl_{3}

${ }^{19}$ F NMR of compound $9 \mathbf{j} \mathbf{- 1}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{9 k}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{9 k}$ in CDCl_{3}

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 9 k in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $11 \mathrm{~d}-1$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 1 d} \mathbf{- 1}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $11 \mathrm{~d}-1$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 1 d} \mathbf{- 2}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $11 \mathrm{~d}-\mathbf{2}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $11 \mathrm{~d}-2$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 1} \mathrm{a}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 11 a in CDCl_{3}

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 11a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 11 b in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 1 b}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 11 b in CDCl_{3}

${ }^{19} \mathrm{~F} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}$ of compound $\mathbf{1 1 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 11 c in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 11 c in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 11c in CDCl_{3}

COSY NMR of compound 11c in CDCl_{3}

TOCSY NMR of compound 11c in CDCl_{3}

HSQC NMR of compound 11c in CDCl_{3}

HMBC NMR of compound 11c in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 11 e in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 11 e in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 11 e in CDCl_{3}

COSY NMR of compound 11 e in CDCl_{3}

TOCSY NMR of compound 11e in CDCl_{3}

HSQC NMR of compound 11e in CDCl_{3}

HMBC NMR of compound 11e in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 1} \mathrm{g}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 1} \mathrm{g}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{1 1} \mathrm{g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 11 h in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 11 h in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 11 h in CDCl_{3}

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 11 h in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 14 h in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 4} \mathrm{h}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 14 h in CDCl_{3}

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{1 4 h}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 14 d in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 14 d in CDCl_{3}

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of compound $\mathbf{1 4 d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 15 c in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 15 c in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 15 c in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 5 f}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 15 f in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 15 f in CDCl_{3}

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound 15 f in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 15 b in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 15 b in CDCl_{3}

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of compound $\mathbf{1 5 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 22 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 2}$ in CDCl_{3}

${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{of} \mathrm{compound} 22$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 23 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 3}$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{2 3}$ in CDCl_{3}

COSY NMR of compound 23 in CDCl_{3}

TOCSY NMR of compound 23 in CDCl_{3}

HSQC NMR of compound 23 in CDCl_{3}

HMBC NMR of compound 23 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 24 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 4}$ in CDCl_{3}

${ }^{19}$ F NMR of compound $\mathbf{2 4}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of compound 25 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of compound 25 in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR of compound 25 in CDCl_{3}

Single crystal XRD data were recorded for suitable crystals of 11d and 20. Empirical multi-scan ${ }^{[51]}$ and analytical absorption corrections ${ }^{[52]}$ were applied to the data. Experimental details as specified below:

Crystal data for 11d:

Experimental. Single clear colourless plate-shaped crystals of 11d (CCDC 2212436) were used as supplied. A suitable crystal with dimensions $0.22 \times 0.09 \times 0.02 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder inert oil on a XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer. The crystal was kept at a steady $T=123.01$ (10) K during data collection. The structure was solved with the SheIXT 2018/2 solution program ${ }^{[53]}$ using dual methods and by using Olex2 1.5-alpha ${ }^{[54]}$ as the graphical interface. The model was refined with ShelXL 2018/3[55] using full matrix least squares minimisation on \boldsymbol{F}^{2}.

Crystal Data. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NOF}_{2}, M_{r}=291.33$, onoclinic, $I a$ (No. 9), $a=9.67810(10) \AA, b=11.1140(10) \AA, c=$ 14.2033(2) $\AA, \beta=103.6270(10)^{\circ}, \alpha=\gamma=90^{\circ}, V=$ 1484.92(3) $\AA^{3}, T=123.01(10) K, Z=4, Z^{\prime}=1, \mu(\mathrm{Cu}$ $\left.\mathrm{K}_{\alpha}\right)=0.812,14494$ reflections measured, 2928 unique ($\mathrm{R}_{\mathrm{int}}=0.0215$) which were used in all calculations. The final $w R_{2}$ was 0.0962 (all data) and R_{1} was $0.0364(\mathrm{l} \geq 2 \sigma(\mathrm{I})$).

Compound	11d
Formula	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NOF}_{2}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.303
μ / mm^{-1}	0.812
Formula Weight	291.33
Colour	clear colourless
Shape	plate-shaped
Size/mm ${ }^{3}$	$0.22 \times 0.09 \times 0.02$
T/K	123.01(10)
Crystal System	monoclinic
Flack Parameter	-0.02(4)
Hooft Parameter	-0.01(3)
Space Group	1α
a lÅ	9.67810(10)
b/Å	11.11540(10)
$c / A ̊$	14.2033(2)
$\alpha{ }^{\circ}$	90
$\beta{ }^{\circ}$	103.6270(10)
γI°	90
V / \AA^{3}	1484.92(3)
Z	4
Z'	1
Wavelength/A	1.54184
Radiation type	$\mathrm{CuK}{ }_{\alpha}$
$\Theta_{\text {min }} I^{\circ}$	5.109
$\Theta_{\text {max }} 1^{\circ}$	75.076
Measured Refl's.	14494
Indep't Refl's	2928
Refl's l $\geq 2 \sigma$ ()	2818
R int	0.0215
Parameters	194
Restraints	2
Largest Peak	0.319
Deepest Hole	-0.313
GooF	1.038
$w R_{2}$ (all data)	0.0962
$w R_{2}$	0.0949
R_{1} (all data)	0.0378
R_{1}	0.0364

Table S17: Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters ($\AA^{2} \times 10^{3}$) for 11 d . $U_{\text {eq }}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{U}_{\text {eq }}$
O1	$2792.6(18)$	$5387.8(16)$	$5600.7(15)$	$36.8(5)$
F2	$5064(3)$	$296.4(17)$	$7072.6(17)$	$65.9(7)$
F1	$7195(3)$	$8366.2(18)$	$3548.6(19)$	$70.0(7)$
N1	$4955(2)$	$5538.6(17)$	$5249.1(15)$	$25.3(4)$
C11	$3984(2)$	$4970(2)$	$5619.6(18)$	$26.1(5)$
C1	$4685(2)$	$6643(2)$	$4658.4(16)$	$23.3(5)$
C2	$4257(3)$	$7703(2)$	$5218.1(17)$	$26.9(5)$
C6	$6088(3)$	$6972(2)$	$4387(2)$	$32.6(6)$
C12	$4378(2)$	$3747(2)$	$6043.2(18)$	$25.9(5)$
C17	$5183(2)$	$2945(2)$	$5635.5(18)$	$27.5(5)$
C15	$4830(3)$	$1438(3)$	$6733(2)$	$41.9(7)$
C13	$3807(3)$	$3360(3)$	$6804(2)$	$36.5(6)$
C4	$5447(3)$	$9141(2)$	$4306(2)$	$34.8(6)$
C16	$5412(3)$	$1783(2)$	$5980(2)$	$34.5(6)$
C3	$4039(3)$	$8832(2)$	$4576(2)$	$34.4(6)$
C5	$5873(3)$	$8092(3)$	$3765(2)$	$40.3(7)$
C14	$4041(4)$	$2203(3)$	$7161(2)$	$45.8(7)$
C7	$3536(3)$	$6417(3)$	$3731(2)$	$42.3(7)$
C8	$2896(4)$	$8595(3)$	$3660(3)$	$54.1(9)$
C9	$4765(5)$	$7863(3)$	$2837(2)$	$61.7(11)$
C10	$3361(5)$	$7552(3)$	$3101(2)$	$62.3(10)$

Table S18: Anisotropic Displacement Parameters ($\times 10^{4}$) for 11d. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \times U_{11}+\ldots+2 h k a^{*} \times b^{*} \times U_{12}\right]$

Atom	$\boldsymbol{U}_{\mathbf{1 1}}$	$\boldsymbol{U}_{\mathbf{2 2}}$	\boldsymbol{U}_{33}	\boldsymbol{U}_{23}	$\boldsymbol{\boldsymbol { U } _ { 1 3 }}$	$\boldsymbol{\boldsymbol { U } _ { \mathbf { 1 2 } }}$
O1	$19.9(8)$	$27.7(9)$	$67.1(13)$	$-3.9(8)$	$19.2(8)$	$-1.4(6)$
F2	$93.9(17)$	$29.7(9)$	$87.6(16)$	$20.2(9)$	$48.2(14)$	$5.7(10)$
F1	$91.3(16)$	$44.5(11)$	$101.1(17)$	$20.0(11)$	$76.9(15)$	$12.3(10)$
N1	$19.6(9)$	$22.7(9)$	$36.1(10)$	$4.0(8)$	$11.4(8)$	$2.6(8)$
C11	$20.3(11)$	$24.7(11)$	$36.0(13)$	$-3.9(9)$	$12.1(9)$	$-3.1(9)$
C1	$24.4(11)$	$22.5(11)$	$24.0(11)$	$0.1(8)$	$7.9(9)$	$2.8(8)$
C2	$29.4(11)$	$24.7(12)$	$30.7(12)$	$-4.7(10)$	$15.2(9)$	$-0.9(9)$
C6	$36.2(13)$	$26.7(12)$	$42.9(14)$	$7.1(11)$	$25.9(11)$	$7.2(10)$
C12	$21.2(10)$	$24.2(12)$	$34.7(12)$	$-1.6(10)$	$11.3(9)$	$-4.5(9)$
C17	$24.4(11)$	$25.2(11)$	$35.6(12)$	$-2.0(10)$	$12.5(10)$	$-5.0(9)$
C15	$49.5(17)$	$25.6(13)$	$54.5(18)$	$6.5(12)$	$20.1(14)$	$-3.4(12)$
C13	$39.6(13)$	$31.4(13)$	$44.6(15)$	$-1.4(11)$	$22.1(12)$	$-4.2(11)$
C4	$43.0(14)$	$25.0(12)$	$41.4(14)$	$4.6(11)$	$19.9(11)$	$1.3(11)$
C16	$36.1(13)$	$24.2(13)$	$46.7(15)$	$-1.9(11)$	$17.0(12)$	$-1.7(10)$
C3	$36.5(14)$	$22.5(11)$	$48.7(15)$	$-1.6(11)$	$18.7(12)$	$5.4(10)$
C5	$59.0(17)$	$32.2(14)$	$40.7(15)$	$8.7(12)$	$33.9(14)$	$9.1(12)$
C14	$57.1(19)$	$38.6(16)$	$50.8(17)$	$7.3(14)$	$30.7(15)$	$-5.2(13)$
C7	$54.7(17)$	$33.0(15)$	$31.2(13)$	$-7.0(11)$	$-5.9(12)$	$-4.2(12)$
C8	$44.6(17)$	$42.5(18)$	$67(2)$	$18.4(15)$	$-3.1(15)$	$11.3(13)$
C9	$116(3)$	$47.2(18)$	$24.8(14)$	$5.8(12)$	$21.5(17)$	$10(2)$
C10	$87(3)$	$52(2)$	$30.4(15)$	$3.1(14)$	$-22.7(16)$	$-0.4(18)$

Table S19: Bond Lengths in Å for 11d.

Atom	Atom	Length/A
O1	C11	$1.238(3)$
F2	C15	$1.357(3)$
F1	C5	$1.418(4)$
N1	C11	$1.339(3)$
N1	C1	$1.475(3)$
C11	C12	$1.500(3)$

Atom	Atom	Length/A
C1	C2	$1.532(3)$
C1	C6	$1.540(3)$
C1	C7	$1.531(3)$
C2	C3	$1.536(3)$
C6	C5	$1.512(4)$
C12	C17	$1.395(3)$

Atom	Atom	Length/Å
C12	C13	$1.393(3)$
C17	C16	$1.381(4)$
C15	C16	$1.376(4)$
C15	C14	$1.376(4)$
C13	C14	$1.382(4)$
C4	C3	$1.539(4)$

Atom	Atom	Length/Å
C4	C5	$1.506(4)$
C3	C8	$1.520(5)$
C5	C9	$1.512(5)$
C7	C10	$1.533(5)$
C8	C10	$1.531(6)$
C9	C10	$1.532(6)$

Table S20: Bond Angles in ${ }^{\circ}$ for 11d.

Atom	Atom	Atom	Angle $^{\circ}$
C11	N1	C1	$124.72(19)$
O1	C11	N1	$123.5(2)$
O1	C11	C12	$119.8(2)$
N1	C11	C12	$116.75(19)$
N1	C1	C2	$112.23(18)$
N1	C1	C6	$106.92(18)$
N1	C1	C7	$110.4(2)$
C2	C1	C6	$108.1(2)$
C7	C1	C2	$110.0(2)$
C7	C1	C6	$109.1(2)$
C1	C2	C3	$109.67(19)$
C5	C6	C1	$109.5(2)$
C17	C12	C11	$121.8(2)$
C13	C12	C11	$118.7(2)$
C13	C12	C17	$119.2(2)$
C16	C17	C12	$120.6(2)$
F2	C15	C16	$118.2(3)$
F2	C15	C14	$119.0(3)$
C14	C15	C16	$122.8(3)$
C14	C13	C12	$120.7(3)$

Atom	Atom	Atom	Angle $^{\circ}$
C5	C4	C3	$108.6(2)$
C15	C16	C17	$118.4(2)$
C2	C3	C4	$108.9(2)$
C8	C3	C2	$109.7(2)$
C8	C3	C4	$109.5(2)$
F1	C5	C6	$107.3(2)$
F1	C5	C4	$108.3(2)$
F1	C5	C9	$109.8(3)$
C4	C5	C6	$110.9(2)$
C4	C5	C9	$110.6(3)$
C9	C5	C6	$110.0(3)$
C15	C14	C13	$118.3(3)$
C1	C7	C10	$109.0(2)$
C3	C8	C10	$109.4(2)$
C5	C9	C10	$108.2(2)$
C8	C10	C7	$109.0(3)$
C8	C10	C9	$110.0(3)$
C9	C10	C7	$110.3(3)$

Table S21: Torsion Angles in ${ }^{\circ}$ for 11d.

Atom	Atom	Atom	Atom	Angle $^{\circ}$
O1	C11	C12	C17	$141.4(2)$
O1	C11	C12	C13	$-32.1(3)$
F2	C15	C16	C17	$-179.7(2)$
F2	C15	C14	C13	$-179.7(3)$
F1	C5	C9	C10	$179.1(3)$
N1	C11	C12	C17	$-36.5(3)$
N1	C11	C12	C13	$150.0(2)$
N1	C1	C2	C3	$178.14(19)$
N1	C1	C6	C5	$179.2(2)$
N1	C1	C7	C10	$-175.9(3)$
C11	N1	C1	C2	$62.0(3)$
C11	N1	C1	C6	$-179.7(2)$
C11	N1	C1	C7	$-61.1(3)$
C11	C12	C17	C16	$-173.5(2)$
C11	C12	C13	C14	$174.4(3)$
C1	N1	C11	O1	$-8.7(4)$
C1	N1	C11	C12	$169.1(2)$
C1	C2	C3	C4	$-61.1(3)$
C1	C2	C3	C8	$58.7(3)$
C1	C6	C5	F1	$179.1(2)$
C1	C6	C5	C4	$61.1(3)$
C1	C6	C5	C9	$-61.6(3)$
C1	C7	C10	C8	$-61.0(4)$
C1	C7	C10	C9	$59.9(3)$
C2	C1	C6	C5	$-59.8(3)$

Atom	Atom	Atom	Atom	Angle ${ }^{\circ}$
C2	C1	C7	C10	$59.8(3)$
C2	C3	C8	C10	$-60.4(3)$
C6	C1	C2	C3	$60.5(3)$
C6	C1	C7	C10	$-58.6(3)$
C6	C5	C9	C10	$61.3(3)$
C12	C17	C16	C15	$-0.1(4)$
C12	C13	C14	C15	$-1.2(5)$
C17	C12	C13	C14	$0.6(4)$
C13	C12	C17	C16	$0.0(4)$
C4	C3	C8	C10	$59.1(3)$
C4	C5	C9	C10	$-61.5(3)$
C16	C15	C14	C13	$1.1(5)$
C3	C4	C5	F1	$-178.0(2)$
C3	C4	C5	C6	$-60.6(3)$
C3	C4	C5	C9	$61.7(3)$
C3	C8	C10	C7	$61.6(4)$
C3	C8	C10	C9	$-59.4(3)$
C5	C4	C3	C2	$59.9(3)$
C5	C4	C3	C8	$-60.0(3)$
C5	C9	C10	C7	$-60.6(3)$
C5	C9	C10	C8	$59.6(3)$
C14	C15	C16	C17	$-0.5(5)$
C7	C1	C2	C3	$-58.6(3)$
C7	C1	C6	C5	$59.8(3)$

Table S22: Hydrogen Fractional Atomic Coordinates ($\times 10^{4}$) and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 11 d . $U_{\text {eq }}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\boldsymbol{U}_{\text {eq }}$
H2A	5008.81	7853.6	5811.98	32
H2B	3365.46	7508.67	5413.4	32
H6A	6839.88	7114.98	4982.05	39
H6B	6393.93	6298.04	4027.4	39
H17	5576.04	3201.86	5116.19	33
H13	3250.04	3898.37	7081.3	44
H4A	5325.91	9870.51	3894.49	42
H4B	6195.63	9303.03	4899.33	42
H16	5958.26	1235.15	5703	41
H3	3743.75	9520.06	4938.81	41
H14	3667.38	1941.49	7687.54	55
H7A	2624.49	6217.37	3896.52	51
H7B	3813.08	5729.5	3372.14	51
H8A	2742.78	9325.89	3250.44	65
H8B	1989.4	8390.56	3830.34	65
H9A	5066.87	7189.32	2476.38	74
H9B	4643.49	8588.89	2421.46	74
H10	2613.2	7406.2	2493.79	75
H1	$5890(30)$	$5240(30)$	$5400(20)$	$31(7)$

Crystal data for 20:

Experimental. Single clear colourless needleshaped crystals of 20 (CCDC 2212438) were used as supplied. A suitable crystal with dimensions $\quad 0.26 \times 0.03 \times 0.03 \mathrm{~mm}^{3} \quad$ was selected and mounted on a MITIGEN holder with mineral oil on a XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer. The crystal was kept at a steady $T=123.00$ (10) K during data collection. The structure was solved with the ShelXT 2018/2 solution program ${ }^{[53]}$ using dual methods and by using Olex2 1.5-alpha ${ }^{[54]}$ as the graphical interface. The model was refined with olex2.refine 1.5-alpha ${ }^{[56]}$ using full matrix least squares minimisation on F^{2}.

Crystal Data. $\mathrm{C}_{25} \mathrm{H}_{35.09} \mathrm{~F}_{0.92} \mathrm{O}_{5}, M_{r}=433.023$, monoclinic, $P 2_{1}$ (No. 4), $a=10.4636(4) \AA, b=$ $6.90652(18) \AA, \quad \mathbf{c}=\quad 16.1323(6) \AA, \quad \beta=$ 108.458(4) ${ }^{\circ}, \alpha=\gamma=90^{\circ}, V=1105.87(7) \AA^{3}, T=$ $123.00(10) \mathrm{K}, Z=2, Z^{\prime}=1, \mu\left(\mathrm{Cu}_{\alpha}\right)=0.768$, 11859 reflections measured, 3857 unique ($\mathrm{R}_{\text {int }}=$ 0.0407) which were used in all calculations. The final wR R_{2} was 0.1052 (all data) and R_{1} was 0.0443 $(\mathrm{I} \geq 2 \sigma(\mathrm{I})$).

Compound	20
Formula	$\mathrm{C}_{25} \mathrm{H}_{35.09} \mathrm{~F}_{0.92} \mathrm{O}_{5}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.300
μ / mm^{-1}	0.768
Formula Weight	433.023
Colour	clear colourless
Shape	needle-shaped
Size/mm ${ }^{3}$	$0.26 \times 0.03 \times 0.03$
T/K	123.00(10)
Crystal System	monoclinic
Flack Parameter	0.12(12)
Hooft Parameter	0.12(12)
Space Group	$P 21$
a/Å	10.4636(4)
b/Å	6.90652(18)
c/Å	16.1323(6)
$\alpha{ }^{\circ}$	90
$\beta 1^{\circ}$	108.458(4)
χ^{10}	90
V / \AA^{3}	1105.87(7)
Z	2
Z'	1
Wavelength/A	1.54184
Radiation type	$\mathrm{Cu} \mathrm{K}{ }_{\alpha}$
$\Theta_{\text {min }} /{ }^{\circ}$	2.89
$\Theta_{\text {max }}{ }^{\circ}$	75.16
Measured Refl's.	11859
Indep't Refl's	3857
Refl's $\mathrm{l} \geq 2 \sigma$ ($)$	2981
R int	0.0407
Parameters	413
Restraints	13
Largest Peak	0.2077
Deepest Hole	-0.2155
GooF	1.0399
$w R_{2}$ (all data)	0.1052
$w R_{2}$	0.0947
R_{1} (all data)	0.0666
R_{1}	0.0443

Table S23: Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{2 0}$. $U_{\text {eq }}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom	x	y	z	$U_{\text {eq }}$
O^{001}	5737.0(18)	619(3)	5435.2(12)	28.6(5)
F^{002}	8303.5(18)	2380(3)	6229.2(12)	29.9(7)
O^{003}	6025.8(19)	7502(3)	7479.8(14)	32.7(5)
O^{004}	255(2)	3564(3)	3842.6(14)	35.6(5)
O^{005}	12631(2)	9942(4)	9138.7(15)	51.6(7)
C^{006}	5029(3)	689(4)	5902.4(17)	20.9(6)
C^{007}	6906(3)	4253(4)	7796.3(18)	20.6(6)
O 008	13300(2)	7021(5)	8822.9(18)	66.8(9)
C^{009}	4128(3)	3428(4)	6541.0(18)	20.6(6)
$\mathrm{C}^{00 \mathrm{~A}}$	5805(3)	5773(4)	7537.4(17)	23.6(6)
$\mathrm{C}^{\text {00B }}$	6643(2)	3089(4)	6923.5(17)	20.8(6)
$\mathrm{C}^{00 \mathrm{C}}$	1198(3)	3501(4)	4516.9(18)	25.3(6)
C^{000}	1393(3)	4916(5)	5253(2)	27.2(6)
$\mathrm{C}^{\text {OOE }}$	8379(2)	4943(4)	7975.8(18)	22.7(6)
$\mathrm{C}^{00 \mathrm{~F}}$	2753(2)	2368(5)	6354.6(17)	22.0(6)
C^{000}	2543(3)	956(4)	5580.8(18)	22.5(6)
$\mathrm{C}^{\mathrm{OOH}}$	5327(3)	1960(4)	6695.7(17)	20.4(6)
C^{001}	6778(3)	2984(5)	8548.9(19)	26.9(7)
$\mathrm{C}^{00 \mathrm{~J}}$	1578(3)	3834(5)	6110(2)	26.2(7)
$\mathrm{C}^{\text {00K }}$	9122(3)	5699(5)	8899.2(19)	26.6(6)
$\mathrm{C}^{\text {00L }}$	3741(3)	-446(4)	5711(2)	25.0(6)
$\mathrm{C}^{00 \mathrm{M}}$	4389(3)	4964(5)	7267.6(19)	23.8(6)
$\mathrm{C}^{00 \mathrm{~N}}$	2678(3)	1257(5)	7162(2)	29.4(7)
C^{000}	12406(3)	8146(6)	8810(2)	43.2(9)
C^{000}	2262(3)	1949(5)	4685.8(18)	25.3(6)
C^{000}	7983(3)	2059(5)	7021.5(18)	29.0(7)
$\mathrm{C}^{00 R}$	9051(3)	3120(5)	7746(2)	28.4(7)
$\mathrm{C}^{\text {O0S }}$	10622(3)	6089(5)	9047.4(19)	28.9(7)
$\mathrm{C}^{\text {00T }}$	10932(3)	7692(5)	8482(2)	38.3(8)
C^{000}	8448(3)	7451(6)	9164(2)	37.2(8)
Coov	14037(4)	10514(7)	9487(3)	76.3(16)
F^{4}	9904(19)	3696(8)	7299(14)	32(7)
F^{1}	8360(50)	6555(8)	7360(30)	23(6)

Table S24: Anisotropic Displacement Parameters $\left(\times 10^{4}\right)$ for 20. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \times U_{11}+\ldots+2 h k a^{*} \times b^{*} \times U_{12}\right]$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
O^{001}	29.1(10)	26.0(12)	30.3(11)	-1.0(9)	8.8(9)	-5.6(10)
F^{002}	24.7(11)	38.7(14)	27.3(12)	0.9(9)	9.9(8)	-5.7(11)
O^{003}	26.8(10)	16.5(11)	45.8(13)	-0.6(9)	-1.2(9)	0.8(11)
O 004	31.1(11)	35.7(14)	30.6(11)	2.2(10)	-3.5(9)	2.2(11)
O^{005}	53.4(15)	53.7(18)	40.9(14)	-27.2(13)	5.2(12)	2.9(14)
C^{006}	21.6(13)	14.9(14)	22.1(13)	4.4(11)	1.2(11)	-0.6(12)
C^{007}	20.1(14)	17.4(15)	21.3(13)	2.1(10)	2.4(11)	-0.1(12)
O 008	35.7(14)	89(2)	72.7(19)	0.5(15)	12.9(14)	-4.3(19)
C009	19.6(13)	20.0(15)	20.7(14)	-0.4(11)	4.2(11)	0.6(13)
$\mathrm{C}^{\text {O0A }}$	24.7(14)	24.6(16)	19.8(14)	0.4(12)	4.6(11)	-4.3(13)
$\mathrm{C}^{\text {OOB }}$	18.2(12)	21.4(15)	20.2(14)	0.4(11)	2.2(11)	-1.5(12)
$\mathrm{C}^{00 \mathrm{C}}$	23.4(14)	24.8(17)	26.2(15)	-1.9(12)	5.5(13)	5.7(13)
C^{000}	22.6(15)	24.2(16)	32.4(16)	4.1(13)	5.0(12)	2.6(15)
$\mathrm{C}^{00 \mathrm{E}}$	17.8(13)	20.9(15)	26.7(14)	-2.5(11)	3.3(11)	1.1(13)
C 000	19.8(13)	23.6(16)	21.0(13)	-2.8(12)	4.4(10)	-0.0(13)
$\mathrm{C}^{\text {O0G }}$	20.4(14)	21.0(16)	23.0(14)	-2.4(12)	2.6(11)	1.3(13)
$\mathrm{C}^{00 \mathrm{H}}$	20.9(13)	17.5(15)	19.4(13)	-0.5(11)	1.8(11)	-0.3(12)
C^{001}	27.2(16)	28.6(18)	22.3(15)	-1.5(13)	4.3(13)	-0.2(13)
$\mathrm{C}^{\text {OOJ }}$	20.6(14)	28.7(18)	29.5(16)	-1.0(12)	8.3(13)	-4.8(14)
$\mathrm{C}^{\text {OOK }}$	26.6(14)	24.3(16)	23.7(14)	-2.0(12)	0.4(12)	-0.3(14)
$\mathrm{C}^{00 \mathrm{~L}}$	26.7(15)	18.4(16)	24.6(15)	-1.5(12)	0.8(12)	0.7(14)

Atom	U_{11}	U_{22}	U_{33}	\mathbf{U}_{23}	U_{13}	U_{12}
$\mathrm{C}^{00 \mathrm{M}}$	22.1(14)	21.2(16)	26.2(15)	3.1(12)	5.0(12)	-0.9(14)
$\mathrm{C}^{00 \mathrm{~N}}$	24.1(15)	35(2)	26.5(16)	-8.1(14)	5.1(13)	1.1(15)
C^{000}	39.4(19)	55(3)	33.7(18)	-14.3(18)	9.4(15)	4.8(18)
$\mathrm{C}^{00 \mathrm{P}}$	27.1(15)	24.6(17)	22.3(15)	0.5(12)	5.2(12)	2.0(13)
C^{000}	23.8(14)	29.4(18)	32.5(16)	0.3(12)	7.2(12)	-4.7(15)
$\mathrm{C}^{00 \mathrm{R}}$	21.3(14)	28.8(17)	32.4(16)	2.1(12)	4.7(12)	-3.3(14)
$\mathrm{C}^{00 \mathrm{~S}}$	26.3(15)	30.1(19)	23.7(15)	-2.7(13)	-1.3(12)	1.2(14)
C^{009}	33.5(17)	39(2)	37.3(18)	-6.7(15)	3.9(15)	8.8(17)
$\mathrm{C}^{00 \mathrm{U}}$	31.9(17)	37(2)	38.7(19)	-4.2(15)	5.1(15)	-15.3(18)
Coov	59(3)	101(4)	57(3)	-46(3)	1(2)	11(3)
F^{4}	28(9)	40(11)	34(9)	-3(4)	18(4)	-11(5)
F^{1}	17(10)	19(10)	28(10)	-6(5)	1(5)	2(5)

Table S25: Bond Lengths in $\AA \AA$ for 20.

Atom	Atom	Length/A
O^{001}	C^{000}	$1.213(3)$
F^{002}	$\mathrm{C}^{00 \mathrm{Q}}$	$1.437(3)$
O^{003}	$\mathrm{C}^{00 \mathrm{~A}}$	$1.225(4)$
O^{004}	$\mathrm{C}^{00 \mathrm{C}}$	$1.216(3)$
O^{005}	C^{000}	$1.340(4)$
O^{005}	C^{000}	$1.453(4)$
C^{006}	$\mathrm{C}^{00 \mathrm{H}}$	$1.501(4)$
C^{006}	$\mathrm{C}^{00 L}$	$1.505(4)$
C^{007}	$\mathrm{C}^{00 \mathrm{~A}}$	$1.516(4)$
C^{007}	$\mathrm{C}^{00 \mathrm{~B}}$	$1.568(4)$
C^{007}	$\mathrm{C}^{00 \mathrm{E}}$	$1.551(4)$
C^{007}	C^{000}	$1.537(4)$
O^{008}	C^{000}	$1.211(4)$
C^{009}	C^{000}	$1.557(4)$
C^{009}	$\mathrm{C}^{00 \mathrm{H}}$	$1.570(4)$
C^{009}	$\mathrm{C}^{00 \mathrm{M}}$	$1.540(4)$
$\mathrm{C}^{00 \mathrm{~A}}$	$\mathrm{C}^{00 \mathrm{M}}$	$1.513(4)$
$\mathrm{C}^{00 \mathrm{~B}}$	$\mathrm{C}^{00 \mathrm{H}}$	$1.523(4)$
$\mathrm{C}^{00 \mathrm{~B}}$	C^{000}	$1.535(4)$

Atom	Atom	Length/A
${ }^{\text {Cooc }}$	$\mathrm{C}^{00 \mathrm{D}}$	1.501(4)
$\mathrm{C}^{00 \mathrm{C}}$	$\mathrm{C}^{\text {OOP }}$	1.507(4)
COOD	Coos	1.529(4)
$\mathrm{C}^{\text {OOE }}$	$\mathrm{C}^{00 \mathrm{~K}}$	1.537(4)
C ${ }^{00 E}$	C ${ }^{00 R}$	1.544(4)
C 00 E	F^{1}	1.49(3)
C00F	$\mathrm{C}^{00 \mathrm{G}}$	1.544(4)
C ${ }^{00 F}$	$\mathrm{C}^{00 \mathrm{~J}}$	1.545(4)
C ${ }^{00 F}$	$\mathrm{C}^{00 \mathrm{~N}}$	1.535(4)
$\mathrm{C}^{00 \mathrm{G}}$	$\mathrm{C}^{00 \mathrm{~L}}$	1.545(4)
$\mathrm{C}^{00 \mathrm{G}}$	$\mathrm{C}^{\text {O0P }}$	1.540(4)
$\mathrm{C}^{\text {O0K }}$	C^{005}	1.535(4)
$\mathrm{C}^{\text {00K }}$	C^{000}	1.528(5)
C^{000}	$\mathrm{C}^{\text {OOT }}$	1.497(4)
C^{000}	CORR	1.524(4)
C 00 R	F^{4}	1.372(16)
$\mathrm{C}^{\text {O0S }}$	$\mathrm{C}^{\text {OTT }}$	1.533(4)

Table S26: Bond Angles in ${ }^{\circ}$ for $\mathbf{2 o .}$

Atom	Atom	Atom	Angle ${ }^{\circ}$
$\mathrm{C}^{00 \mathrm{~V}}$	O^{005}	C^{000}	$115.8(3)$
$\mathrm{C}^{00 \mathrm{H}}$	C^{006}	O^{001}	$123.4(3)$
$\mathrm{C}^{00 \mathrm{~L}}$	C^{006}	O^{001}	$122.4(3)$
$\mathrm{C}^{00 \mathrm{~L}}$	C^{006}	$\mathrm{C}^{00 \mathrm{H}}$	$114.2(2)$
$\mathrm{C}^{00 \mathrm{~B}}$	C^{007}	$\mathrm{C}^{00 \mathrm{~A}}$	$101.9(2)$
$\mathrm{C}^{00 \mathrm{E}}$	C^{007}	$\mathrm{C}^{00 \mathrm{~A}}$	$117.5(2)$
$\mathrm{C}^{00 \mathrm{E}}$	C^{007}	$\mathrm{C}^{00 \mathrm{~B}}$	$101.9(2)$
C^{001}	C^{007}	$\mathrm{C}^{00 \mathrm{~A}}$	$111.4(2)$
C^{001}	C^{007}	$\mathrm{C}^{00 \mathrm{~B}}$	$112.5(2)$
C^{001}	C^{007}	$\mathrm{C}^{00 \mathrm{E}}$	$110.9(2)$
$\mathrm{C}^{00 \mathrm{H}}$	C^{009}	$\mathrm{C}^{00 \mathrm{~F}}$	$111.7(2)$
$\mathrm{C}^{00 \mathrm{M}}$	C^{009}	$\mathrm{C}^{00 \mathrm{~F}}$	$113.7(2)$
$\mathrm{C}^{00 \mathrm{M}}$	C^{009}	$\mathrm{C}^{00 \mathrm{H}}$	$112.6(2)$
C^{007}	$\mathrm{C}^{00 \mathrm{~A}}$	O^{003}	$123.4(2)$
$\mathrm{C}^{00 \mathrm{M}}$	$\mathrm{C}^{00 \mathrm{~A}}$	O^{003}	$121.9(3)$
$\mathrm{C}^{00 \mathrm{M}}$	$\mathrm{C}^{00 \mathrm{~A}}$	C^{007}	$114.4(3)$
$\mathrm{C}^{00 \mathrm{H}}$	$\mathrm{C}^{00 \mathrm{~B}}$	C^{007}	$111.6(2)$
C^{000}	C^{000}	C^{007}	$104.5(2)$
C^{000}	$\mathrm{C}^{000 \mathrm{~B}}$	$\mathrm{C}^{00 \mathrm{H}}$	$121.0(2)$
$\mathrm{C}^{00 \mathrm{D}}$	$\mathrm{C}^{00 \mathrm{C}}$	O^{000}	$123.6(3)$
$\mathrm{C}^{00 \mathrm{P}}$	$\mathrm{C}^{00 \mathrm{C}}$	O^{004}	$122.0(3)$

Atom	Atom	Atom	Angle ${ }^{\circ}$
$\mathrm{C}^{00 \mathrm{P}}$	$\mathrm{C}^{00 \mathrm{C}}$	C^{000}	114.4(2)
C^{000}	C^{000}	C^{000}	110.1(3)
$\mathrm{C}^{\text {00K }}$	$\mathrm{C}^{\text {O }}$ E	C^{007}	116.9(2)
$\mathrm{C}^{00 R}$	$\mathrm{C}^{\text {OOE }}$	C^{007}	101.9(2)
C00R	$\mathrm{C}^{\text {O }}$ E	$\mathrm{C}^{00 \mathrm{~K}}$	112.4(2)
F^{1}	COOE	C^{007}	107.6(19)
F^{1}	$\mathrm{C}^{00 \mathrm{E}}$	$\mathrm{C}^{00 \mathrm{~K}}$	106.9(17)
F^{1}	$\mathrm{C}^{\text {OOE }}$	$\mathrm{C}^{00 R}$	111.1(16)
$\mathrm{C}^{00 \mathrm{G}}$	$\mathrm{C}^{\text {OOF }}$	C009	109.8(2)
C^{000}	$\mathrm{C}^{00 \mathrm{~F}}$	C^{009}	110.7(2)
$\mathrm{C}^{00 \mathrm{~J}}$	$\mathrm{C}^{00 \mathrm{~F}}$	$\mathrm{C}^{00 \mathrm{G}}$	108.0(2)
$\mathrm{C}^{00 \mathrm{~N}}$	$\mathrm{C}^{00 \mathrm{~F}}$	C^{009}	111.3(2)
$\mathrm{C}^{00 \mathrm{~N}}$	$\mathrm{C}^{00 \mathrm{~F}}$	$\mathrm{C}^{00 \mathrm{G}}$	109.8(3)
$\mathrm{C}^{00 \mathrm{~N}}$	$\mathrm{C}^{\text {O0F }}$	$\mathrm{C}^{00 \mathrm{~J}}$	107.1(2)
$\mathrm{C}^{00 \mathrm{~L}}$	$\mathrm{C}^{00 \mathrm{G}}$	$\mathrm{C}^{00 \mathrm{~F}}$	112.6(2)
$\mathrm{C}^{00 \mathrm{P}}$	$\mathrm{C}^{00 \mathrm{G}}$	$\mathrm{C}^{\text {O0F }}$	114.4(2)
$\mathrm{C}^{\text {O0P }}$	$\mathrm{C}^{00 \mathrm{G}}$	$\mathrm{C}^{00 \mathrm{~L}}$	108.2(2)
C^{009}	$\mathrm{C}^{\mathrm{OOH}}$	C^{006}	107.6(2)
$\mathrm{C}^{00 \mathrm{~B}}$	$\mathrm{C}^{\mathrm{OOH}}$	C^{006}	115.6(2)
$\mathrm{C}^{\text {O0B }}$	$\mathrm{C}^{\text {OOH }}$	C^{009}	108.9(2)
$\mathrm{C}^{\text {OOF }}$	$\mathrm{C}^{\text {00J }}$	C^{000}	114.4(2)

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C00S	$\mathrm{C}^{00 \mathrm{~K}}$	C ${ }^{\text {OOE }}$	112.9(2)
$\mathrm{C}^{00 \mathrm{U}}$	$\mathrm{C}^{\text {00K }}$	$\mathrm{C}^{\text {OOE }}$	113.8(3)
COOU	C00k	C^{005}	110.9(3)
$\mathrm{C}^{00 \mathrm{G}}$	$\mathrm{C}^{00 \mathrm{~L}}$	C^{006}	109.7(2)
C ${ }^{00 A}$	$\mathrm{C}^{00 \mathrm{M}}$	C^{009}	113.3(2)
O 008	C^{000}	O^{005}	123.3(3)
$\mathrm{C}^{\text {OOT }}$	C^{000}	O^{005}	111.5(3)
$\mathrm{C}^{\text {OOT }}$	C^{000}	O^{008}	125.1(4)
$\mathrm{C}^{00 \mathrm{G}}$	$\mathrm{C}^{\text {OOP }}$	C^{000}	113.4(2)

Atom	Atom	Atom	Angle $^{\circ}$
$\mathrm{C}^{00 B}$	C^{000}	$\mathrm{~F}^{002}$	$107.4(2)$
$\mathrm{C}^{00 R}$	C^{000}	$\mathrm{~F}^{002}$	$106.7(2)$
$\mathrm{C}^{00 R}$	C^{000}	C^{000}	$106.3(2)$
C^{000}	$\mathrm{C}^{00 R}$	C^{000}	$107.3(2)$
F^{4}	$\mathrm{C}^{00 R}$	C^{000}	$108.1(4)$
F^{4}	$\mathrm{C}^{00 R}$	C^{000}	$100.2(9)$
$\mathrm{C}^{00 T}$	C^{000}	$\mathrm{C}^{00 \mathrm{~K}}$	$115.6(3)$
C^{005}	$\mathrm{C}^{00 T}$	C^{000}	$109.2(3)$

Table S27: Torsion Angles in ${ }^{\circ}$ for $\mathbf{2 0}$.

Atom	Atom	Atom	Atom	Angle ${ }^{\circ}$
O^{001}	C^{006}	$\mathrm{C}^{\text {OOH }}$	C^{009}	118.0(3)
O^{001}	C^{006}	$\mathrm{C}^{\mathrm{OOH}}$	$\mathrm{C}^{\text {O0B }}$	-3.9(3)
O 001	C^{006}	$\mathrm{C}^{\text {O0L }}$	$\mathrm{C}^{00 \mathrm{G}}$	-119.3(3)
F^{002}	C^{000}	$\mathrm{C}^{\text {O0B }}$	C^{007}	-132.2(2)
F^{002}	C^{000}	$\mathrm{C}^{\text {OOB }}$	$\mathrm{C}^{\text {O0H }}$	101.1(2)
F^{002}	C^{000}	$\mathrm{C}^{00 R}$	$\mathrm{C}^{\text {O0E }}$	106.2(2)
F^{002}	C^{000}	$\mathrm{C}^{00 R}$	F^{4}	-6.6(5)
O^{003}	$\mathrm{C}^{00 \mathrm{~A}}$	C^{007}	$\mathrm{C}^{\text {O0B }}$	-111.7(3)
O^{003}	$\mathrm{C}^{\text {00A }}$	C^{007}	$\mathrm{C}^{\text {OOE }}$	-1.4(3)
O^{003}	$\mathrm{C}^{\text {00A }}$	C007	C^{001}	128.2(3)
O^{003}	$\mathrm{C}^{00 \mathrm{~A}}$	$\mathrm{C}^{00 \mathrm{M}}$	C009	120.6(3)
O^{004}	$\mathrm{C}^{00 \mathrm{C}}$	C^{000}	$\mathrm{C}^{\text {OOJ }}$	127.0(3)
O^{004}	$\mathrm{C}^{00 \mathrm{C}}$	C ${ }^{00 p}$	$\mathrm{C}^{00 \mathrm{G}}$	-130.4(3)
O^{005}	C^{000}	$\mathrm{C}^{\text {OOT }}$	$\mathrm{C}^{00 \mathrm{~S}}$	-114.0(3)
C^{006}	$\mathrm{C}^{\mathrm{OOH}}$	C^{009}	$\mathrm{C}^{\text {OOF }}$	57.1(2)
C^{006}	$\mathrm{C}^{\mathrm{OOH}}$	C^{009}	$\mathrm{C}^{00 \mathrm{M}}$	-173.6(2)
C^{006}	$\mathrm{C}^{\mathrm{OOH}}$	$\mathrm{C}^{00 \mathrm{~B}}$	C^{007}	-176.0(2)
C^{006}	$\mathrm{C}^{\mathrm{OOH}}$	$\mathrm{C}^{00 \mathrm{~B}}$	C^{000}	-52.6(3)
C^{006}	$\mathrm{C}^{\text {00L }}$	$\mathrm{C}^{00 \mathrm{G}}$	$\mathrm{C}^{00 \mathrm{~F}}$	-53.8(3)
C^{006}	$\mathrm{C}^{\text {00L }}$	$\mathrm{C}^{00 \mathrm{G}}$	C OOP	73.6(3)
C^{007}	$\mathrm{C}^{00 \mathrm{~A}}$	$\mathrm{C}^{\text {00m }}$	C^{009}	-53.8(2)
C^{007}	$\mathrm{C}^{\text {O0B }}$	$\mathrm{C}^{\mathrm{OOH}}$	C^{009}	62.7(2)
C^{007}	$\mathrm{C}^{00 \mathrm{~B}}$	C^{000}	$\mathrm{C}^{00 R}$	-18.3(2)
C^{007}	COOE	$\mathrm{C}^{\text {00K }}$	C^{000}	172.3(3)
C^{007}	$\mathrm{C}^{\text {OOE }}$	$\mathrm{C}^{\text {00K }}$	C^{000}	-60.1(3)
C^{007}	COOE	COOR	C^{000}	31.6(2)
C^{007}	$\mathrm{C}^{\text {O0E }}$	$\mathrm{C}^{00 R}$	F^{4}	138.9(10)
O 008	C^{000}	$\mathrm{C}^{\text {OOT }}$	$\mathrm{C}^{00 \mathrm{~S}}$	62.7(4)
C^{009}	$\mathrm{C}^{00 \mathrm{~F}}$	$\mathrm{C}^{00 \mathrm{G}}$	$\mathrm{C}^{00 \mathrm{~L}}$	53.0(3)
C^{009}	$\mathrm{C}^{\text {O0F }}$	$\mathrm{C}^{00 \mathrm{G}}$	$\mathrm{C}^{\text {OOP }}$	-71.1(2)
C^{009}	$\mathrm{C}^{\text {OOF }}$	$\mathrm{C}^{00 \mathrm{~J}}$	C^{000}	65.2(2)
C^{009}	$\mathrm{C}^{\text {OOH }}$	$\mathrm{C}^{\text {O0B }}$	C^{000}	-173.8(2)
$\mathrm{C}^{00 \mathrm{~B}}$	C^{000}	$\mathrm{C}^{00 R}$	$\mathrm{C}^{\text {O }}$ E	-8.2(2)
$\mathrm{C}^{00 \mathrm{~B}}$	C^{000}	$\mathrm{C}^{00 R}$	F^{4}	-121.0(5)
$\mathrm{C}^{00 \mathrm{C}}$	C^{000}	$\mathrm{C}^{\text {O0J }}$	$\mathrm{C}^{\text {OOF }}$	56.7(3)
C^{000}	$\mathrm{C}^{00 \mathrm{P}}$	$\mathrm{C}^{00 \mathrm{G}}$	C 000	-48.0(3)
$\mathrm{C}^{00 \mathrm{C}}$	COOP	C^{000}	$\mathrm{C}^{00 \mathrm{~L}}$	-174.4(2)
C^{000}	C^{000}	C 000	$\mathrm{C}^{00 \mathrm{G}}$	-55.0(3)
COOD	Coos	C 00 F	$\mathrm{C}^{00 \mathrm{~N}}$	-173.2(3)
$\mathrm{C}^{\text {OOE }}$	$\mathrm{C}^{\text {00K }}$	C^{005}	$\mathrm{C}^{\text {OOT }}$	64.1(3)
$\mathrm{C}^{\text {00K }}$	C^{005}	$\mathrm{C}^{\text {OOT }}$	C^{000}	169.8(3)

Table S28: Hydrogen Fractional Atomic Coordinates ($\times 10^{4}$) and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{2 0}$. $U_{\text {eq }}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom	x	y	z	$U_{\text {eq }}$
H^{009}	4090(30)	4040(50)	6026(19)	24(8)
$\mathrm{H}^{00 \mathrm{~B}}$	6570(20)	4150(40)	6443(17)	15(7)
$\mathrm{H}^{00 \mathrm{a}}$	2170(30)	5730(50)	5278(18)	28(8)
$\mathrm{H}^{00 \mathrm{c}}$	610(20)	5870(40)	5130(16)	13(6)
$\mathrm{H}^{\text {OOE }}$	8386(2)	5983(4)	7546.0(18)	27.2(7)
$\mathrm{H}^{00 \mathrm{G}}$	1710(30)	230(50)	5557(19)	31(8)
$\mathrm{H}^{00 \mathrm{H}}$	5300(30)	1120(50)	7174(19)	25(8)
$\mathrm{H}^{\text {00d }}$	6950(30)	3710(60)	9080(20)	47(10)
$\mathrm{H}^{00 \mathrm{f}}$	5880(30)	2440(50)	8430(19)	32(8)
$\mathrm{H}^{00 \mathrm{i}}$	7480(30)	1840(60)	8670(20)	40(9)
$\mathrm{H}^{00 \mathrm{j}}$	1700(30)	4700(60)	6600(20)	42(10)
$\mathrm{H}^{00 \mathrm{k}}$	730(30)	3110(50)	6040(20)	39(9)
H^{001}	9140(30)	4600(50)	9310(20)	33(8)
$\mathrm{H}^{00 \mathrm{~m}}$	3560(30)	-1230(60)	5140(20)	44(10)
$\mathrm{H}^{00 \mathrm{n}}$	3840(30)	-1250(50)	6207(19)	22(8)
H^{000}	3740(30)	6040(50)	7074(18)	22(7)
$\mathrm{H}^{00 \mathrm{p}}$	4300(30)	4480(50)	7820(20)	36(9)
$\mathrm{H}^{00 \mathrm{a}}$	3440(30)	390(50)	7430(20)	37(9)
$\mathrm{H}^{00 \mathrm{r}}$	2600(30)	2190(50)	7660(20)	35(8)
$\mathrm{H}^{00 \mathrm{~s}}$	1830(30)	630(50)	6989(19)	30(8)
$\mathrm{H}^{00 \mathrm{t}}$	1910(30)	950(50)	4168(19)	24(7)
$\mathrm{H}^{00 \mathrm{u}}$	3060(30)	2580(50)	4607(18)	28(8)
$\mathrm{H}^{00 \mathrm{v}}$	7933(3)	683(5)	7179.7(18)	34.8(8)
$\mathrm{H}^{00 \mathrm{w}}$	8200(3)	2121(5)	6467.5(18)	34.8(8)
$\mathrm{H}^{00 y}$	9818(3)	3491(5)	7544(2)	34.1(8)
$\mathrm{H}^{00 \mathrm{x}}$	9392(3)	2276(5)	8265(2)	34.1(8)
H^{002}	11050(30)	6470(50)	9700(20)	34.6(8)
H	11170(30)	4810(50)	8960(19)	34.6(8)
H^{00}	10380(30)	9010(60)	8470(20)	56(11)
$\mathrm{H}^{\text {a }}$	10660(30)	7170(50)	7840(20)	33(8)
H^{1}	8520(40)	8530(70)	8800(30)	62(13)
$\mathrm{H}^{\text {b }}$	7400(30)	7200(60)	9160(20)	41(9)
$\mathrm{H}^{\text {c }}$	9020(30)	7780(60)	9810(20)	51(10)
H^{2}	14602(16)	9880(40)	9088(16)	114(2)
$\mathrm{H}^{\text {d }}$	14111(5)	12090(40)	9475(17)	114(2)
$\mathrm{H}^{\text {e }}$	14455(15)	10000(40)	10160(18)	114(2)

Table S29: Atomic Occupancies for all atoms that are not fully occupied in $\mathbf{2 0}$.

Atom	Occupancy
F^{002}	$0.808(6)$
$\mathrm{H}^{00 \mathrm{E}}$	$0.973(4)$
$\mathrm{H}^{00 \mathrm{w}}$	$0.192(6)$
$\mathrm{H}^{00 \mathrm{y}}$	$0.922(6)$
F^{4}	$0.078(6)$
F^{1}	$0.027(4)$

References

[1] C. Liu, J. Wang, L. Meng, Y. Deng, Y. Li and A. Lei, Angew. Chem. Int. Ed., 2011, 51, 5144.
[2] T. Mukaiyama, T. Shintou and K. Fukumoto, J. Am. Chem. Soc., 2003, 125, 10538.
[3] V. Valerio, D. Petkova, C. Madelaine and N. Maulide, Chem. Eur. J., 2013, 19, 2606.
[4] K. Asano and S. Matsubara, Org. Lett., 2009, 11, 1757.
[5] S. Guo, X. Zhang and P. Tang, Angew. Chem. Int. Ed., 2015, 54, 4065.
[6] X. F. Wu and C. Darcel, Eur. J. Org. Chem., 2009, 2009, 1144.
[7] S. Kamijo, Y. Amaoka and M. Inoue, Tetrahedron Lett., 2011, 52, 4654.
$[8]$ a) I. Pravst, M. Zupan, S. Stavber, Tetrahedron, 2008, 64, 5191; b) J. C. Lee, Y. H. Bae and S. K. Chang, Bull. Korean Chem. Soc., 2003, 24, 407.
[9] X. Tian, T. A. Karl, S. Reiter, S. Yakubov, R. de Vivie-Riedle, B. König and J. P. Barham, Angew. Chem. Int. Ed., 2021, 60, 20817.
[10] S. Ikonen, Nonappa, A. Valkonen, R. Juvonen, H. Salo and E. Kolehmainen, Org. Biomol. Chem., 2010, 8, 2784.
[11] M. A. Maslov, N. G. Morozova, T. V. Solomatina, N. G. Shaforostova and G. A. Serebrennikova, Russ. J. Bioorg. Chem., 2011, 37, 507.
[12] H. Fujioka, A. Goto, K. Otake, O. Kubo, Y. Sawama and T. Maegawa, Chem. Commun., 2011, 47, 9894.
[13] A. Dasgupta, R. Babaahmadi, S. Pahar, K. Stefkova, L. Gierlichs, B. F. Yates, A. Ariafard and R. L. Melen, Angew. Chem. Int. Ed., 2021, 60, 24395.
[14] Y. Peng, Y. Y. Jiang, X. J. Du, D. Y. Ma and L. Yang, Org. Chem. Front., 2019, 6, 3065.
[15] C. H. Xing and Q. S. Hu, Tetrahedron Lett., 2010, 51, 924.
[16] H. Masuno, Y. Kazui, A. Tanatani, S. Fujii, E. Kawachi, T. Ikura, N. Ito, K. Yamamoto and H. Kagechika, Bioorg. Med. Chem., 2019, 27, 3674.
[17] P. Mampuys, E. Ruijter, R. V. Orru and B. U. Maes, Org. Lett., 2018, 20, 4235.
[18] Y. Zhu, J. Shi and W. Yu, Org. Lett., 2020, 22, 8899.
[19] A. Schuhmacher, T. Shiro, S. J. Ryan and J. W. Bode, Chem. Sci., 2020, 11, 7609.
[20] Z. L. Li, K. K. Sun and C. Cai, Org. Lett., 2018, 20, 6420.
[21] R. A. Olofson, J. T. Martz, J. P. Senet, M. Piteau and T. Malfroot, J. Org. Chem., 1984, 49, 2081.
[22] a) S. G. Senderoff, S. W. Landvatter and J. R. Heys, J. Labelled Compd. Radiopharm., 2000, 43, 1283; b) Y. F.Liang, N. Jiao, Angew. Chem. Int. Ed. 2014, 53, 548.
[23] a) M. Domański, J. Žurauskas, J. P. Barham, Org. Process Res. Dev. 2022, 26, 2498; b) T. Zeng, G. Song, C. J. Li, Chem. Comm. 2009, 6249; c) M. Szostak, M. Spain, A. J. Eberhart and D. J. Procter, J. Am. Chem. Soc., 2014, 136, 2268.
[24] N. Ilayaraja and M. Noel, J. Electroanalytic Chem., 2010, 638, 39.
[25] J. B. Xia, C. Zhu and C. Chen, Chem. Comm., 2014, 50, 11701.
[26] S. Bloom, C. R. Pitts, R. Woltornist, A. Griswold, M. G. Holl and T. Lectka, Org. Lett., 2013, 15, 1722.
[27] S. Bloom, M. McCann and T. Lectka, Org. Lett., 2014, 16, 6338.
$[28]$ a) C. W. Kee, K. F. Chin, M. W. Wong and C. H. Tan, Chem. Comm., 2014, 50, 8211; b) J. W. Kee, H. Shao, C. W. Kee, Y. Lu, H. S. Soo and C. H. Tan, Catal. Sci. Technol., 2017, 7, 848.
[29] W. Knoll, J. L. Mieusset, V. B. Arion, L. Brecker and U. H. Brinker, Org. Lett., 2010, 12, 2366.
[30] M. Aoyama, T. Fukuhara and S. Hara, J. Org. Chem., 2008, 73, 4186.
[31] a) Z. Lu, X. Zeng, G. B. Hammond and B. Xu, J. Am. Chem. Soc., 2017, 139, 18202; b) Y. Amaoka, M. Nagatomo, M. Inoue, Org. lett. 2013, 15, 2160.
[32] D. R. Arnold, J. R. Bolton, G. E. Palmer and K. V. Prabhu, Canad. J. Chem., 1977, 55, 2728.
[33] Y. Kanda, R. Shimada and Y. Takenoshita, Spectrochimica Acta, 1963, 19, 1249.
[34] F. J. Aguilar Troyano, K. Merkens and A. Gómez-Suárez, Asian J. Org. Chem., 2020, 9, 992.
[35] H. Egami, S. Masuda, Y. Kawato and Y. Hamashima, Org. Lett., 2018, 20, 1367.
[36] N. J. Green, S. M. Pimblott and M. Tachiya, J. Phys. Chem., 1993, 97, 196.
[37] C. Feldmeier, H. Bartling, E. Riedle and R. M. Gschwind, J. Magn. Reson., 2013, 232, 39.
[38] A. Jerschow and N. Müller, J. Magn. Reson., 1997, 125, 372.
[39] A. Bondi, J. Phys. Chem., 1964, 68, 441.
[40] M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. A, 2009, 113, 5806.
[41] a) V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995; b) W. Kohn and L. J. Sham. Phys. Rev., 1965, 140, A1133.
[42] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian Inc., Wallingford CT, 2, 2016.
[43] T. Yanai, D. P. Tew and N. C. Handy, Chem. Phys. Lett., 2004, 393, 51.
$[44] ~ a) ~ J . ~ D . ~ C h a i ~ a n d ~ M . ~ H . ~ G o r d o n, ~ P h y s . ~ C h e m . ~ C h e m . ~ P h y s ., ~ 2008, ~ 10, ~ 6615 ; ~ b) ~ Y . ~ Z h a o ~ a n d ~ D . G . ~$ Truhlar, J. Chem. Phys., 2006, 194101; c) Y. Zhao and D. G. Truhlar, Acc. Chem. Res., 2008, 41, 157.
[45] a) R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650; b) M. J. Frisch, J. A. People and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265; c) A. D. McLean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639.
[46] M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24. 669.
[47] C. Adamo and D. Jacquemin, Chem. Soc. Rev., 2013, 42, 845.
[48] E. Runge and E. K. U. Gross, Phys. Rev. Lett., 1984, 52, 997.
[49] M. A. Cismesia and T. P. Yoon, Chem. Sci., 2015, 6, 5426.
[50] U. Megerle, R. Lechner, B. König and E. Riedle, Photochem. Photobiol. Sci., 2010, 9, 1400.
[51] a) SCALE3ABS, CrysAlisPro, Agilent Technologies Inc., Oxford, U.K., 2015; b) G. M. Sheldrick, SADABS, Bruker AXS, Madison, U.S.A., 2007.
[52] R. C. Clark, J. S. Reid, Acta Crystallogr. A. Found Crystallogr. 1995, 51, 887.
[53] G. M. Sheldrick, Acta Cryst., 2015, C71, 3.
[54] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341.
[55] G. M. Sheldrick, Acta Cryst. 2015, A71, 3.
[56] L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard, H. Puschmann, Acta Cryst. A, 2015, A71, 59.

[^0]: [a] Weighed in concentration. Due to moderate solubility, the concentration in solution is lower.

