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S1 Computational Details

S1.1 Optimal Tuning

The equilibrium geometries of [Fe(cpmp)2]2+in the ground, two lowest excited triplets states

(of MC and MLCT character), and MC quintet state have been optimized using B3LYP1/

def2TZVP2,3. The obtained configurations were checked for the absence of imaginary fre-

quencies by harmonic frequency analysis. To limit computational costs, the optimal tuning

of the functional was done using the 6-31G(d) basis set4,5 of moderate size. For selected

cases, the tuning was repeated using the def2TZVP basis set, leading to very similar results.

To optimize the range-separation parameters for a given compound in some electronic

state, single-point calculations on the (α, ω) grid were done with DFT (for closed-shell

systems) or UDFT (for open-shell configurations). The analysis of Huang-Rhys factors was

done with the VISPER program package (T. Möhle, University of Rostock).

The respective DFT and TDDFT calculations have been done with Gaussian6 and

QChem7 program suites. The calculations for the “MC-tuning” were performed using the

constrained SCF approach8 as provided by the QChem program package.7 The assignment of

excited states was done based on the analysis of the density-matrix.9 For the spectra, a phe-

nomenological broadening by a Gaussian line shape (FWHM = 0.2 eV) was employed. Sol-

vent effects (acetonitrile) for DFT/TDDFT calculations were included within the polarized

continuum model (PCM) approach.10 Note that the tuning of range-separation parameters

was done in vacuum as it was shown previously11,12 that tuning combined with the PCM

model leads to the underestimation of the exact exchange percentage in the constructed

functional.

The influence of the different geometries has been studied by us previously on the exam-

ple of complexes [Ir(bpy)(ppy)2]2+ with triethylamine and different iron carbonyls11. Both

mutual spatial orientation and the distance between IrPS and the second molecule have been

varied. We have shown that only substantial changes in the distance between the complex’
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constituents (but not their mutual orientation) lead to notable changes in optimal param-

eters. Even if some variations of optimal parameters may take place, the tuning of the

functional for each geometry of the subsystem may lead to size inconsistency or nonphysical

potential energy curves in excited states13,14.

S1.2 Multi-reference calculations

The CASSCF/CASPT2 calculations were performed using OpenMolcas 18.09.15 The ac-

tive space (10e/12MO) was constructed from the following orbitals to account for both MC

and MLCT states: three non-bonding 3d-orbitals of the iron atom as well as three corre-

sponding Rydberg-like 4d orbitals to include the double-shell effect, two σd-bonding and

two σ∗
d-antibonding orbitals, and the two vacant π∗-orbitals of the ligands (see Figure 1b)).

The highest possible Abelian point symmetry group C2, Cholesky decomposition of the two-

electron integral matrix16 and extended relativistic ANO-RCC-TZVP17,18 basis set together

with Douglas-Kroll-Hess approach19 for scalar relativistic effects or 6-31G(d) were utilized.

State-averaging was performed over the 10 lowest states of given symmetry and multiplicity,

and the frozen-core approximation was utilized at the CASPT2 level. A default IPEA shift20

of 0.25 a.u. (and 0.50 for the purpose of comparison) and an additional imaginary shift21

of 0.2 a.u. to cope with the intruder states problem have been applied. As different solvent

models are implemented in various quantum-chemistry packages, the lowest electronic tran-

sitions computed with CASPT2 and TDDFT were compared both in vacuum (with a larger

basis set ANO-RCC-TZVP) and in PCM solvent (with smaller basis set 6-31G(d)).

S1.3 Excited-state dynamics simulations

The nonadiabatic dynamics were simulated using the trajectory surface hopping (SH) method

on potentials parametrized with a linear vibronic coupling (LVC) model22–24 —an efficient

strategy to study the excited-state dynamics of transition-metal complexes.25–28 For this

purpose we used the SHARC approach29–31 with the SHARC2.1 program package.32 Two
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LVC models were setup using the LC-BLYP functional33 and different optimal values of the

range-separation parameters (α; ω), i.e., set A (0.0; 0.14) and set B (0.2; 0.08), see Section 2.

The LVC models comprise 11 singlet and 20 triplet (i.e. 71 total) states for set A and 9 singlet

and 14 triplet (i.e. 51 total) states for set B, respectively, corresponding to the number of

states in the energy range of the lowest-energy absorption band described with the different

tuning parameters (see Figure 5). Quintet MC states have not been included into the model.

Transient absorption data on this compound were assigned to an ultrafast MC population,

but there were no spectroscopic signatures that could be used to differentiate between the

multiplicities on that time scale. A possible reason could be, e.g. parallel running potential

curves along the reaction coordinates. Hence we expect that differentiating between triplet

and quintet MC states will not change our general conclusions for the few ps time range.

The LVC coupling elements were obtained numerically from TDDFT calculations on

geometries displaced by ±0.05 units from the ground-state optimized geometry for each

of the 213 normal modes of the molecule. Intrastate coupling constants were obtained as

numerical gradients and interstate coupling constants were obtained from the change in the

wavefunction overlaps.

TDDFT calculations were performed in the Tamm-Dancoff approximation (TDA)34 us-

ing the ORCA4.2 program.35 For both parametrizations, the 6-31G(d) basis set was used

for all atoms.36–39 Solvent effects of acetonitrile were included using the C-PCM model as

implemented in ORCA4.2. Scalar relativistic effects were modelled using the zeroth-order

regular approximation (ZORA) Hamiltonian.40 For the self-consistent-field (SCF) calcula-

tions, the resolution-of-identity approximation (RIJCOSX), tight SCF convergence criteria

(TightSCF), and the Grid4 integration grid were used.

SH/LVC dynamics simulations were performed for each of the LVC models using the

pySHARC framework.23 Initial nuclear coordinates and momenta were sampled from a

Wigner distribution of 10.000 geometries around the Franck-Condon geometry.41 For each

Wigner ensemble, absorption spectra were calculated using the respective LVC model po-



S2 OPTIMAL TUNING S7

tentials. Initial excited states were selected stochastically within the energy range of the

lowest-energy absorption band (1.0-2.5 eV) based on their oscillator strength.42 1000 tra-

jectories were then propagated for a simulation time of 2000 fs using a nuclear time step

of 0.5 fs and an electronic time step of 0.02 fs within the local diabatization method.43 An

energy-based decoherence correction with a constant of C = 0.1 a.u. was used.44 During the

surface hops, kinetic energy was adjusted by re-scaling the velocity vectors. Surface hopping

probabilities were approximated using the wave function overlaps.45

S2 Optimal tuning

S2.1 General Strategy

The range-separation parameters α and ω have been tuned for the generalized form (Eq. S1)

of the LC-BLYP functional based on the following partitioning of the Coulomb operator:33

1

r12
=

1− [α + β · erf(ωr12)]
r12

+
α + β · erf(ωr12)

r12
. (S1)

With this, the initial exchange kernel in DFT is complemented with the exact Hartree-Fock

exchange, which has the correct asymptotic behavior. The ω parameter defines the switching

rate, and its inverse is proportional to a characteristic interelectron distance. The second

(dimensionless) parameter α sets a global r12-independent exact-exchange contribution. We

assume β = 1−α to ensure that the exact exchange cancels self-interaction completely. Thus,

the range-separated part of the LC-BLYP functional depends on the parameters (α, ω) that

we can exploit for tuning. The particular functional LC-BLYP has been chosen for tuning,

as it is the most similar one to the popular B3LYP that we have applied for the purpose of

comparison. Note that other functionals like BNL or PBE could be a possible option too,

see e.g. Refs. 46,47.

The tuning most commonly follows the ∆SCF method.13,48,49 Here, the energetic positions



S2 OPTIMAL TUNING S8

of HOMO and LUMO of a given system are tuned to the IP and EA according to Koopmans’

theorem. The LUMO can thereby be substituted with the HOMO of N +1-electron system.

The IP and EA are computed as the differences between ground state (gs) energies of a given

multiplicity with N and N ± 1 electrons, i.e.,

IPα,ω(N) = Eα,ω
gs (N − 1)− Eα,ω

gs (N) , (S2)

EAα,ω(N) = IPα,ω(N + 1) = Eα,ω
gs (N)− Eα,ω

gs (N + 1) . (S3)

Two separate tuning functions are considered:

J0(α, ω) = |εα,ωHOMO(N) + IPα,ω(N)| , (S4)

J1(α, ω) = |εα,ωHOMO(N + 1) + EAα,ω(N)| . (S5)

To ensure a proper description of the fundamental HOMO-LUMO gap, the functions J0(α, ω)

and J1(α, ω) should be minimized simultaneously which leads to minimizing the general

function

J∗(α, ω) =
√

J2
0 (α, ω) + J2

1 (α, ω) . (S6)

Note that, in general, J∗(α, ω) can be non-zero even for exact functionals, because it is

defined for systems with different numbers of electrons.

For organometallic systems with conjugated ligands of the size of cpmp, typical ω values

are in the range of 0.10-0.20, given that α is taken to be zero.11,50–59. Concerning the

constant exchange contribution, different functionals suggest numbers between 0 and 100%.

In general, the larger α is for optimal parameters, the smaller ω will be. Thus, if enough

constant exchange is added, the variable distance-dependent exchange contribution is less

important. However, if we take α to be 0.30, for instance, the physical significance of ω,

i.e., of the range-dependent exchange, is minute. That is why in this study, we focus on
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Figure S1: a) Dependencies of J∗(α, ω) at constant α=0. The color code is in accordance
with the corresponding 2D-plot in the main text (Figure 2). b) The deviation from the linear
dependence ∆a(n), see the integrand in eq. S7, for the four best couples of parameters.

the ranges [0.0-0.3] for α and [0.00-0.25] for ω as being the most reasonable. For tuning of

parameters in excited states when ionizing open-shell systems, there is an uncertainty in the

choice of the multiplicity of the N − 1-electron system when computing the IP. Here, we

choose to remove an unpaired electron, which leads to the lowering of multiplicity (triplet

to doublet and quintet to quartet). The increase of multiplicity has been also analyzed for

some cases resulting in generally similar values for both ionization pathways.

Often 2D tuning optimization plots have a distinct valley where the minimal points

for a given α-value are located46,60. For [Fe(cpmp)2]2+in the S0 state, the resulting two-

dimensional plot of J∗(α, ω) is presented by the colored surface in Figure 2 and displays a

global minimum of J∗ at (0.00; 0.14) located in the valley marked with white circles (for

exemplary 1D-cuts at α=0, see Fig. S1a).

S2.2 Piecewise Linearity Criterion

In cases where optimal (α, ω) pairs correspond to similar J∗ values, it is customary to employ

an additional criterion for selecting optimal values.46,60 For example, according to Janak’s

theorem, the energy E(N) for an exact exchange-correlation functional must vary linearly

for fractional electron numbers between integer N values.61 In reality, this condition is not
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fulfilled for many functionals pointing to a (de)localization error.46,62 We have tested the

performance of the present parameters along the minimum valley of J∗(α, ω) in Figure 2

(white line). For all points of (α;ω) in the valley, we have calculated the deviation of

the curvatures of the E(N)-dependence for fractional charges from being piecewise linear

according to

∆ =
∑
a=±1

∫ N

N+a

dn∆a(n) =
∑
a=±1

∫ N

N+a

dn
∣∣∣E(n)− E(N)

− 1

a
[E(N + a)− E(N)](n−N)

∣∣∣. (S7)

Thereby n is a non-integer charge of the system, and a can be 1 or −1 depending on the

situation of adding or removing an electron. The resulting deviations ∆a(n) are shown in

Figure S1b for four sets of parameters with the smallest deviations from linearity. Note

that the deviations from the piecewise linearity of E(n) in Eq. (S7) for the tuned functional

are very small, and the values are at least two orders of magnitude smaller than for stan-

dard density functionals63 and, therefore, cannot be considered as an ultimate criterion for

choosing optimal range-separation parameters. As can be seen, the global minimum (0.00;

0.14) performs best also in this fractional-electron test. Changing the parameter pair to

the next higher α value (0.05; 0.13) gives a similarly good description of the ionized system

(n−N ≤ 0).

S2.3 Variational Stabilities

An additional criterion for choosing range-separation parameters can be the analysis of

variational stabilities of the wave function for neutral and especially ionic species on the

(α, ω) grid. This criterion can be essential when ionization or explicit redox reactions are

considered60 and also for extended systems, where triplet instability of the ground state

may occur.64–66 However, for [Fe(cpmp)2]2+, the wave function is variationally stable for
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all combinations of parameters. Thus, ∆SCF tuning of the S0 state suggests the global

minimum of J∗ found at (0.00; 0.14) as the optimal range-separation parameters. In the

following, it will be abbreviated as Set A. We note, however, that the J∗ tuning delivers only

a compromise between the J0 (HOMO/IP) and J1 (LUMO/EA) tuning. It can be seen from

the black and blue lines in Figure 2, showing the minimal values of J0 and J1 that do not

coincide. As both conditions are defined for systems with different number of electrons, the

minima should not necessarily be the same.

S2.4 Triplet Tuning

As an additional option, we have considered the recently suggested “triplet tuning” scheme56

It is based on the assumption that ∆SCF and TDDFT approaches with the exact exchange-

correlation kernel should yield the same energy ET of the first triplet excited state. This

condition can be achieved by minimizing the following functional JTT for tuning:

JTT(α, ω) = (E∆SCF
T (α, ω)− ETDDFT

T (α, ω))2 (S8)

This approach is not expected to deliver a systematic behavior of JTT as it is observed for

J0, J1, and J∗.56 Therefore, we will only discuss the position of the global minimum, which

is located at (0.10; 0.15), see the yellow star in Figure 2. In general, due to the change

of nature (MC vs. MLCT) of the lowest triplet states depending on the range-separation

parameters, it is not clear whether a smooth dependency of the tuned functional on the

parameters can be expected, as the tuned states may not maintain the same character for

the whole range of parameters. In the present case, the optimal parameters obtained with

triplet tuning are similar to the ω value affording a minimum to J0 in the TMLCT state for

α = 0.10; compare the position of the yellow asterisk and nearest green circle in Figure 2.

Fortunately, in this range of parameters, the MLCT state is the lowest one such that the

tuning results are consistent with each other.
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Figure S2: Frontier orbitals of [Fe(cpmp)2]2+computed with Sets A and B of optimal param-
eters. d and σ-orbitals (shown as insets) are colored with blue, π and π∗ are marked with
red.

S2.5 Influence of Range-Separation Parameters on Various Prop-

erties

Figure S2 presents the orbital diagrams of [Fe(cpmp)2]2+computed with two selected sets of

optimal parameters. The orbitals localized on central iron are marked with blue, whereas

π-orbitals of ligands are shown with red. The corresponding σ∗ and 3d-orbitals are shown

as insets. Note that visually the localization of orbitals can not be distinguished, but the

energies of σ∗ and 3d-orbitals differ notably with the change of the portion of exact exchange

in the short range. This observation is additionally supported by the more pronounced MC-

character of MC states for larger values of α (see Figure 4 in the main text and Figure S4

below).

The variations of vertical energies of the lowest singlet S1 and triplet T1 states within the

studied range of parameters are presented in Figure S3 a) and b). Note that the upper right

part of the graph (dashed area) corresponds to the region where the lowest excited state is

the MC one.
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The Figure S3 (panels c)-e)) demonstrates the adiabatic energies of the two lowest triplet

states (of MC and MLCT character) and lowest quintet state (MC character) computed with

the whole range of functional parameters. The short version of these three panels is plotted

in Figure 3 in the main text, where only the ranges of variations of adiabatic energies of

corresponding states are shown against the length of the central Fe-N bond. Note that for

the quintet state (panel c)), the values for α=0.30 and partially for smaller values (green

hatched area) were converged to the false states and excluded from the colormap.

In addition, we have computed the spin-orbit coupling (SOC) matrix elements for the

lowest five singlet and triplet states on a 2D (α, ω) grid. The 2-norms of the respective SOC

matrix, ||HSOC||2, are shown in Fig. S3 f). In general, one can see a systematic increase of

SOC with the amount of exact exchange, that is along the diagonal in the (α, ω) plane. In

the range of parameters considered here the magnitude of ||HSOC||2 changes by a factor of

about 2.5 from 1600 to 3700 cm−1. To estimate the influence of the (α, ω) parameters on

the state splittings we also computed the 2-norms of the couplings weighted with the energy

differences between zero-order states:

||H̃SOC||2 =

√√√√∑
ij

(
HSOC,ij

Ei − Ej

)2

(S9)

as their magnitudes are sensitive to the singlet-triplet energetic gaps. These gaps in turn

strongly depend on the amount of the exact exchange included in the XC functional that is

reflected in the values of SOC elements. The energy-weighted values also vary in quite wide

ranges and experience a singularity at the (0.15, 0.10) point since a near exact degeneracy

of states is accidentally met. Thus, one can expect the separation parameters to play an

important role for theoretical studies of photodynamics if intersystem crossing events are of

interest.
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S1 T1

Figure S3: a) and b) Energies of the lowest singlet S1 and triplet T1 vertical excited states
as computed with TDDFT on the geometry of the ground state; hatched area marks the
ranges of tuning parameters where the lowest singlet state has MC character. Unhatched
area corresponds to the MLCT character. c)-e) Adiabatic energies of the TMC, TMLCT, and
QMC states on the (α, ω)-grid. f) 2-norms of the SOC matrix for the 5 singlet and 5 triplet
states on the (α; ω) grid.



S3 INFLUENCE OF BASIS SET AND IPEA SHIFT ON CASPT2 RESULTS S15

S3 Influence of basis set and IPEA shift on CASPT2 re-

sults

S3.1 Basis Set Effects

In Figure S4, we show the comparison of the energies of the lowest excited singlet and triplet

states of MC and MLCT nature computed with the larger basis set def2TZVP in vacuum

(analogously to the results with a smaller basis set 6-31G(d) with PCM solvent in the main

text, see Figure 4 and Section 3.3 in the main paper). Note that only the default IPEA shift

0.25 has been applied for CASPT2 in this case.
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Figure S4: Energies of lowest MC and MLCT states in the singlet (left panel) and triplet
(right panel) manifolds predicted by various LC-BLYP variants, as well as B3LYP and
CASPT2 reference computed in vacuum with def2TZVP basis set. The percentage of main
character of the states is provided in upper (MLCT) and lower (MC) parts of both panels.

S3.2 IPEA shifts effects

The influence of the IPEA shift20 on the CASPT2 results has been investigated as well.

Introduced to correct for systematic underestimation of open-shell electronic states, the role

of the IPEA shift and its recommended value of 0.25 a.u. have been controversial recently.67

For excitation energies of organic molecules, setting the shift to zero seems beneficial –at
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least in combination with moderately-sized basis sets.67 Contrarily, studies on the high-spin-

low-spin gaps of hexaaza iron(II) compounds sometimes suggest using even larger IPEA shift

values to obtain the correct spin-crossover behavior in CASPT2 calculations.68–71 Systematic

studies on the correct description of excited states of transition-metal complexes – and, in

particular, when these states are of different electronic character –however, are still missing.

Thus, we have also tested the effect of using a larger IPEA shift value of 0.50 a.u., see

Figure 4 in the main paper. For [Fe(cpmp)2]2+, the usage of IPEA=0.50 a.u. instead of the

default parameter 0.25 a.u., led to an overall increase in energies of the lowest excited states,

but the MC states were shifted only by about 0.17 eV, whereas the MLCT states are shifted

by 0.3–0.4 eV. Comparison of tuned LC-BLYP results with the CASPT2 (IPEA=0.50 a.u.)

points again to the (0.20; 0.08) pair (set B), as it provides the best agreement for the order

of the lowest singlet and triplet states.

S4 Nonadiabatic Dynamics

S4.1 Full Simulation Time

In Figure S5 we present the adiabatic and diabatic state populations for the full simulation

time of 2 ps. In the adiabatic state populations, no fits for the kinetic model are shown,

since the models discussed in the main paper only included data until 500 fs.
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Electronic State Populations for the Full Simulation Time of 2 ps
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Figure S5: Time evolution of the adiabatic (a/b) and diabatic (c/d) state populations of
the LVC/SH dynamics for the complete 2 ps simulation time. (a/c) using range-separation
parameters (0.0; 0.14) of set A. (b/d) using range-separation parameters (0.2; 0.08) of set B.

S4.2 Excited-State Mechanisms

In this section, we explain the derivation of the excited-state mechanisms shown in Fig-

ure 7(c,d) in the main paper. For range-separation parameters of set A, excitation in the

energy range 1.0-2.5 eV populates initially mostly higher-lying singlet states SN (N≥ 2, 95%,

orange line) with some trajectories already starting in the S1 state (5%, red line) as can

be seen by the adiabatic state populations in Figure 7(a). The SN population quickly de-

creases and falls below 10% within 200 fs. The S1 population first increases to 8% before it

steadily decreases to 3% after 500 fs. Within the first few femtoseconds, populations rise in

the higher-lying triplet states TN (N≥ 3, violet line), totaling 40% after 100 fs, before they

slowly drop to a steady value of 35% after 300 fs. Population starts to accumulate in the

lower-lying T2 (light-blue line) and T1 (dark blue line) states after 50 and 100 fs, respectively,

which reach a steady state value of 20% and 35% after 300 fs.

The evolution of the adiabatic state population for set A suggests the simple kinetic
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model

SN → S1 → TN (S10)

S1 → TN (S11)

TN → T2 → T1 (S12)

Analyzing the hops occurring in the dynamics (Table S1) reveals that the steady population

in all three sets of triplet states (TN, T2, T1) is maintained through continuous repopulation

of the TN from the T1. Including the pathway

TN → T1 (S13)

in the kinetic model, we show exponential fits in Figure 7(a), while the mechanism including

the fitted time constants is summarized in Figure 7(c). As can be seen, the fitted curves

(thick lines) closely follow the computed electronic state populations (thin lines), confirming

that the simple model of eqs. S10-S13 describes the dynamics well. In this simulation, all

major processes, i.e., SN→TN intersystem crossing as well as TN→T2 and T2→T1 internal

conversion, occur on sub-100 fs time scales.

In Figure 7(b) we show the time evolution of the adiabatic state populations from sim-

ulations on LVC potentials using the range-separation parameters of set B. Again, most

trajectories are started in higher-lying singlet states SN (85%), although now a larger por-

tion is initiated in the S1 state (15%). Both sets of singlet populations readily decrease to

1-2% within 100 fs. Within few femtoseconds, populations starts to accumulate in both,

the higher-lying triplet states TN –where we have now included the T2 state – and the sin-

glet ground state S0. With some delay, population also increases in the T1 state. The TN

population reaches a maximum of 40% at 50 fs and decreases to 4% after 500 fs. The T1

population increases to 35% at 300 fs before it slowly decreases, reaching 20% after 2 ps (see

Figure S5 in the SI). The fast initial increase of the S0 populations slows down after 100 fs,
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however the S0 population continues to rise, reaching 60% after 500 fs and 80% after 2 ps.

The evolution of the adiabatic state population for set B suggests the simple kinetic

model

SN → S1 → S0 (S14)

SN → TN → T1 → S0 (S15)

Exponential fits (thick lines) shown in Figure 7(b) for this mechanism again closely follow

the simulated electronic state populations (thin lines), confirming that eqs S14 and S15

adequately describe the simulated dynamics. Time constants for the fits are shown in Fig-

ure 7(d).

As can be seen, population from the SN is split in sub-100 fs reactions with the majority

undergoing intersystem crossing into the TN states and a smaller portion undergoing internal

conversion to the S1 state. From the S1 state, all population relaxes to the S0 ground state

on a 20 fs time scale. The population in the higher-lying triplet states TN is transferred to

the T1 state on a 150 fs time scale, before the population in the triplet manifold relaxes back

to the S0. This triplet-to-singlet back intersystem crossing occurs on a 750 fs time scale,

accounting for the slower component in the rise of the S0 population.

S4.3 Hops During the Dynamics

In Tables S1 and S2 we report the difference number of hops from the linear-vibronic cou-

pling/surface hopping (LVC/SH) simulations based on the LC-BLYP potenitals using set A

and set B, respectively. The hops are counted for 1000 trajectories each propagated for 4000

time steps of 0.5 fs. The difference number of hops counts only the net number of hops in a

specific direction (from one state to another state), i.e., hops in the reverse direction cancel

out.
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Table S1: Difference number in hops from singlet to singlet/triplet adiabatic states from the
LVC/SH dynamics using longe-range parameters of set A. Continued next page.

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
S0 0 0 0 0 0 0 0 0 0 0 0
S1 0 0 59 -88 -16 2 0 -1 0 -2 -3
S2 0 -59 0 423 49 -11 -11 0 -1 0 0
S3 0 88 -423 0 161 27 4 -1 -1 -2 -1
S4 0 16 -49 -161 0 -1 18 -3 1 -1 0
S5 0 -2 11 -27 1 0 -30 -2 -2 -2 0
S6 0 0 11 -4 -18 30 0 53 -4 0 0
S7 0 1 0 1 3 2 -53 0 42 -2 1
S8 0 0 1 1 -1 2 4 -42 0 26 -2
S9 0 2 0 2 1 2 0 2 -26 0 3
S10 0 3 0 1 0 0 0 -1 2 -3 0
T1 0 -20 -2 -2 1 0 1 0 0 -1 0
T2 0 -31 -8 -2 2 0 -1 -2 0 0 0
T3 0 108 24 -6 0 -1 -1 0 0 -2 -1
T4 0 42 125 -16 -7 -1 -2 0 0 0 -1
T5 0 -14 215 -47 -11 3 -1 0 0 0 0
T6 0 -59 179 194 -21 -10 -2 0 0 -1 -1
T7 0 -45 -10 1 66 65 -4 0 -1 0 0
T8 0 -14 -44 2 21 82 11 -2 0 0 0
T9 0 -2 -26 -28 13 39 11 -1 0 0 0
T10 0 3 -1 -3 -26 22 64 7 1 -1 0
T11 0 -1 0 -18 7 13 57 8 -1 0 0
T12 0 0 2 -5 -12 3 35 5 7 0 0
T13 0 0 1 1 0 0 4 11 4 -3 0
T14 0 0 0 1 -1 0 0 -7 -16 9 2
T15 0 0 0 1 0 0 1 -9 -3 -7 0
T16 0 2 1 0 0 0 0 -5 -1 6 -2
T17 0 0 2 0 0 0 0 -6 0 -14 3
T18 0 3 0 1 0 0 0 1 -4 3 4
T19 0 1 0 0 0 0 0 1 6 -5 1
T20 0 0 0 0 0 0 0 -1 -2 1 -3
Sum 0 22 68 222 212 268 105 5 1 -1 0
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S4.4 Diabatic Character of the Trajectories

S4.4.1 Discussion of the Mechanisms

In the main paper, we state that the admixture of 3MLCT and 3MC character in the dia-

batic state population in the set A dynamics is due to state mixing rather than the system

traversing two different pathways. In order to demonstrate this, we show the time evolution

of the dominant diabatic contribution to the electronic state of a random selection of 50

trajectories in the dynamics shown in Figure S6(a). A contribution is considered dominant

if its weight |c|2 in the electronic wave function is at least 50%. Results applying a stricter

threshold are discussed in Section S4.5. As can be seen in Figure S6(a), the trajectories are

dominated most of the simulation time by the 3MLCT character (dark blue). Occasionally,

the dominant character changes to 3MC (violet), but always for short intervals before it

switches back to 3MLCT. If a minor pathway populating 3MC states existed, the analysis

in Figure S6(a) would display a small number of trajectories with dominant 3MC character

in place of these oscillations. Similarly to the 3MLCT/3MC oscillations, some trajectories

display back-and-forth switching between 3MLCT and 1MLCT character (orange).

The difference between the adiabatic and diabatic S0 populations in the set B dynamics

can be explained when analyzing the dominant diabatic state characters of the trajectories.

As can be seen in Figure S6(b), a number of trajectories exhibit dominant diabatic S0

character (green). These trajectories enter S0 characters mainly from the 3MC character

(violet). More examples of this behavior are shown in the full dynamics of Figure S8. Thus,

the diabatic S0 only seems to be readily reached via the triplet states according to eq. S15.

In the other relaxation pathways to the adiabatic S0 state, the trajectories still possess

large portions of 1MLCT character as is also displayed by the many dominant 1MLCT

contributions (orange) in Figure S6(b).



S4 NONADIABATIC DYNAMICS S24

Diabatic Character of Trajectories
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Figure S6: Time evolution of the dominant diabatic contribution to the electronic state of a
random selection of 50 trajectories for dynamics using range-separation parameters set A and
set B in (a) and (b), respectively. Dominant contributions above thresholds of |c|2 = 0.5 (a)
and |c|2 = 0.4 (b). Blank areas denote simulation times without a dominant state according
to the |c|2 threshold criterion.
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Diabatic Character of Trajectories: Comparison of Threshold
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(a/b) Range-Separation Parameters (0.0; 0.14)
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Figure S7: Comparison of threshold |c|2 for assigning trajectories to a dominant diabatic
state characters for dynamics using set A in (a/b) and set B in (c/d), respectively.

S4.5 Threshold of Classification

For range-separation parameters set A and set B, we thereby used threshold of |c|2 = 0.5 and

|c|2 = 0.4, respectively, in order to classify a state character as dominant. Here, in Figure S7,

we compare this analysis with one using stricter thresholds, i.e., |c|2 = 0.6 and |c|2 = 0.5

for set A and set B, respectively. As can be seen in Figure S7(a/b) for set A, increasing the

threshold from 50% to 60% affects mainly the assignment of trajectories to 3MLCT states

(dark blue). This difference is simply due to these trajectories possessing 3MLCT characters

between 50-60%.

Using set B, comparing the thresholds 40% and 50% shows little difference for most

trajectories, that are in diabatic 1MLCT states. Differences are mostly seen for trajectories

in triplet states, signifying a stronger mixing of state character.

In addition, we show the diabatic character of the trajectories for the full simulation time
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Diabatic Character of Trajectories: Full Simulation Time
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Figure S8: Diabatic character of the trajectories for the full simulation time of 2 ps.

of 2 ps using the thresholds of 0.5 and 0.3 for set A and set B, respectively, in Figure S8.

S4.6 Example Trajectories Shown for Extended Simulation Times

The difference between the adiabatic and diabatic S0 populations can be understood by

investigating the behavior of trajectories undergoing deactivation within the singlet manifold

in more detail. To do this, we show the potentials of the singlet (blue lines) and triplet (red

lines) electronic states along example trajectories in Figure S9, where the active electronic

is marked by black circles. Figure S9(a) shows the ultrafast relaxation of a trajectory within

the singlet manifold from the initial excited singlet state to the adiabatic ground state

within 22 fs. Analyzing the diabatic character of this state reveals predominant 1MLCT and
1MC characters. This state is still close in energy to the excited singlet and triplet states,

indicating that it is still displaced from the Franck-Condon geometry (where adiabatic and

diabatic S0 states coincide). Thus, this state is denoted as S∗
0 and can be viewed as a hot
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Example Trajectories of Set B Simulation
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Figure S9: Example trajectories from LVC/SH simulations using range-separation param-
eters of set B. Selected simulation windows from a trajectory relaxing via the hot S∗

0 state
(a/b) or relaxing via the triplet manifold (c/d). Lines depict electronic potentials of all
states during the simulation. Black circles denote the active state during the simulation.
Line color refers to spin expectation value ⟨S2⟩ of the electronic states: 0 (blue), 1 (green),
2 (red). Top panel: geometries from the beginning of the dynamics and at the transition
between the S∗

0/S0 and T1/S0 states.

ground state. The S∗
0 is maintained in the trajectory until ca. 635 fs, where the dominant

character changes to the diabatic S0 and the state is separated in energy from the excited

singlet and triplet states; see Figure S9(b). The full simulation of 0-1000 fs of this trajectory

is also shown in Figure S10.

For comparison, we show in Figure S9(c/d) a trajectory that traverses via the triplet

pathway, first relaxing to the adiabatic T1 state (80 fs) before it reaches the ground state S0.

In this case, i.e., when reaching the adiabatic S0 state from the triplet manifold, the state

takes immediately a diabatic S0 character and separates in energy from the other electronic

states. Before re-entering the singlet manifold, however, also the triplet-pathway trajectory

passes through geometries with many low-lying electronic states close in energy. Selected

representative geometries of both trajectories are also depicted in Figure S9.
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(a) Extended Example Trajectories of Set B Simulation: Relaxation via Hot S∗0
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(b) Extended Example Trajectories of Set B Simulation: Relaxation via Triplet Manifold
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Figure S10: Example trajectories from LVC/SH simulations using range-separation param-
eters of set B. Simulation from a trajectory relaxing via the hot S∗

0 state (a) or relaxing via
the triplet manifold (b). Lines depict electronic potentials of all states during the simula-
tion. Black circles denote the active state during the simulation. Line color refers to spin
expectation value of the electronic states: 0 (blue), 1 (green), 2 (red).
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S4.7 Rationalizing the Simulated Mechanisms based on the Density

of States at the Franck-Condon Geometry

Density of Diabatic States Around the FC Geometry
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Figure S11: Density of diabatic singlet states (positive axis) and triplet states (negative
axis) of the initial conditions used in the LVC/SH dynamics, based on a Wigner distribution
around the Franck-Condon (FC) geometry and the LVC model potentials. Diabatic state
character calculated from a transition-density matrix analysis.

An interesting question is if it is possible to find simple descriptors of the system that

can predict (parts of) its photodynamics mechanism. To do this, we analyze the density

of states (DOS) around the Franck-Condon geometry in the diabatic basis based on the

transition-density matrix analysis. In Figure 5 in the main paper we have already analyzed

the diabatic character of the electronic states directly at the Franck-Condon geometry. In

Figure S11, this analysis is expanded to geometries around the Franck-Condon geometry by

considering the ensemble of 10000 structures sampled from the Wigner distribution that was

used to initialize the nonadiabatic dynamics. This Wigner ensemble includes the nuclear

motion of the molecule in its ground state and the large number of samples allows to obtain

a smooth distribution of the state characters.

As can be seen in Figure S11(a) for range-separation parameters of set A, the singlet
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DOS (positive axis) below 2.5 eV is dominated by 1MLCT character (orange area), while
1MC states (red area) are found above 2.5 eV. Since we start our dynamics by excitation

between 1.0-2.5 eV, mostly 1MLCT states were initially populated, recall Figure 7(e) in the

main paper. Among the triplet states (negative axis), most DOS below 2.0 eV is given by
3MLCT states (dark blue area). 3MC DOS (violet curve) is found between energies of 1.5

and 2.5 eV, and above 2.5 eV, the largest triplet DOS contributions are given 3LC (turquois

area). While 3MC DOS is also found within the excitation energy window of 1.0-2.5 eV, it is

less than the 3MLCT DOS and, more importantly, it does not reach as far down in energy

as that of the 3MLCT state. This distribution is mirrored by the dynamics, that mainly

populate 3MLCT states [Figure 7(e)].

In Figure S11(b), the diabatic DOS is shown for the range-separation parameters of

set B. While the comparison to the TAS results indicates that the (0.2; 0.08) set does not

yield the potential energy surfaces of all states correctly, we can still test if analyzing its

DOS can predict the corresponding mechanism. In the singlet domain, DOS from both

the 1MLCT and 1MC states is found between energies of 1.5-3.0 eV with a rather constant

ration of 2:1. This ratio is also found in the initial singlet populations [Figure 7(f)], and

was maintained throughout the dynamics. Among the triplet states, the largest DOS below

energies of 2.5 eV is still given by the 3MLCT –as was for the (0.0; 0.14) range-separation

parameters. However, the amount of 3MC DOS at these energies is now comparable, and

especially at energies below 1.75 eV, the 3MC DOS is even larger than that of the 3MLCT

states. Similarly, the diabatic triplet populations during the dynamics showed almost equal

contributions of 3MC and 3MLCT states.

Analyzing the density of states also seems to predict the course of the set B dynamics

well. However, this applies only to the initial processes occuring close to the Franck-Condon

geometry. For example, there is no 3MC DOS reaching further down to lower energies that

could explain the intersystem crossing back to the ground state S0. As discussed in Section 4.3

in the main paper, population of MC states leads to displacements in the metal-ligand bond
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lengths. Processes involving MC states occur in regions, for which the DOS sampled around

the Franck-Condon geometry is not an adequate representation anymore. Thus, predicting

the outcome of excited-state dynamics based on analyzing the DOS around the Franck-

Condon geometry is not straightforward without the knowledge already established from the

dynamics simulations.
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S5 Testing the Accuracy of the LVC Potentials

S5.1 Normal-Mode Scans

The LVC/SH simulations using the Set B parameters resulted in trajectories undergoing

differences in Fe−N bond lengths of up to 0.10-0.15 Å. As the LVC potentials are expressed

in the basis of the harmonic normal modes of the electronic ground state, these large dis-

placements could possibly lead to regions of the potential energy surface with anharmonicity.

In this case, the LVC potentials may not be a good approximation of the underlying TDDFT

reference potentials anymore.

In order to test this scenario, we have computed potential energy scans along a number of

normal modes using both the Set B TDDFT level of theory as well as the thereof derived LVC

model. In particular, scans were performed along the normal modes 19 (135.21 cm−1), 23

(169.96 cm−1), 25 (194.95 cm−1), 26 (203.06 cm−1), 27 (207.96 cm−1), and 28 (230.91 cm−1),

which corresponded to the six modes with the largest change in Fe−N bond lengths. The

resulting curves for the lowest 9 singlet states (including the ground state) as well as the

14 lowest triplet states are shown in Figure S12, where TDDFT and LVC curves are drawn

as solid lines and dashed lines respectively. In addition, we show the time evolution of the

average displacement of all trajectories during the 2 ps surface hopping simulation for each

normal mode as a black line and its standard deviation as a gray area.

As can be seen in Figure S12, the ground-state LVC curve coincides with the TDDFT

reference for displacements of ±2 a.u. For more pronounced displacements, the LVC curves

underestimate the TDDFT energies due a smaller curvature. However, geometries with larger

displacements are rarely reached by the trajectories in the surface hopping simulations as

both the average plus standard deviation of the displacements are typically restricted to

the range of ±2. The only exception for this behavior among the selected modes is given

by mode 23, where the average oscillates between −2 and 0 a.u., while the average plus

standard deviation increases this range to ca. −4 and 0 a.u. Thus, we can conclude, that
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TDDFT vs. LVC Potential Energy Scans
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Figure S12: Overlay of TDDFT (solid line) vs. LVC (dashed lines) potential energy curves
(colorful lines) and time evolution of average (black line) as well standard deviation (grey
areas) of the normal-mode displacement of the trajectories from the Set B simulations for
six normal describing Fe-N bond elongation. Ground-state and excited-state curves.
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the ground-state potential is in general well described by the LVC model for the geometries

that are traversed in the dynamics. For the large displacements of −4 a.u. of mode 23, the

difference between LVC and DFT potentials is ca. 0.6 eV; it is there, however, also of similar

size for the excited states, thus, leaving only a small error in relative energies.

At energies of 2 eV above the electronic ground state lies a dense region of singlet and

triplet excited states. In order to better see the differences between LVC and TDDFT

potentials for these states, we show selected parts of the curves in Figure S13. As can be

seen, for modes 19, 27, and 28 –which appear harmonic in the selected displacement range

–LVC and TDDFT curves agree well. The energetic differences reach 0.1 eV for some states

at the edges of the shown displacement range, however, they are typically much smaller at

all other displacements shown. For mode 23, which also shows harmonic potentials (see full

range in Figure S12), there is expectantly close agreement between LVC and TDDFT curves

around the equilibrium geometry. However, larger energetic differences of up to 0.2 eV are

reached at larger negative displacements (< −2 a.u.) for some of the excited states.

For modes 25 and 26, Figure S13 shows a combination of harmonic and anharmonic

TDDFT potentials. While the harmonic potentials are again well reproduced in the LVC

model, the situation is more nuanced for the anharmonic potentials, where the LVC model

is able to capture some of features but misses others. For example, for the lowest excited

states (blue-violet lines) of the mode 25 scan, the potentials are well reproduced at positive

displacements. In contrast, at negative displacements, the energy difference between the two

lowest excited TDDFT potential curves decreases, while this difference increases in the LVC

model. However, the average displacement of the trajectories tends towards positive values

where also the minimum of the lowest excited stays lies, and in this displacement range, the

LVC potentials agree well with the TDDFT ones.

Concluding, this analysis suggests that the LVC potentials can in general describe the

reference TDDFT potentials of the complex [Fe(cpmp)2]2+well, at least, for geometries that

are actually reached in the surface hopping dynamics simulations. At certain, very displaced
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TDDFT vs. LVC Potential Energy Scans: Selected Parts
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Figure S13: Overlay of TDDFT (solid line) vs. LVC (dashed lines) potential energy curves
(colorful lines) and time evolution of average (black line) as well standard deviation (grey
areas) of the normal-mode displacement of the trajectories from the Set B simulations for
six normal describing Fe-N bond elongation. Focus on excited-state curves.
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geometries, energetic differences between LVC and TDDFT potentials can become ca. 0.2 eV,

however, the differences are typically much smaller and of the order of < 0.1 eV. Finally,

the analysis further shows, that while the LVC potentials are formulated in the basis of the

harmonic normal modes of the electronic ground states, LVC potentials can display certain

anharmonic features due to the inclusion of state-state coupling elements.

S5.2 Internal Conversion from S1 to Hot Ground-State S∗
0

The TSH/LVC dynamics of the Set B simulations showed internal conversion from the

S1 state to a hot ground state S∗
0. Such a process is possible due to non-adiabatic couplings

between the two states. These couplings are largest in the vicinity of a conical intersection,

where state transfer is consequently most efficient. In surface hopping dynamics, the ex-

act geometries of conical intersections are rarely hit when simulating polyatomic molecules.

However, molecules still come to points with small energy differences between the coupled

states, thus, coming close to a conical intersection. In a simplified picture, the S1→S0 in-

ternal conversion is thus mediated by a S1/S0 conical intersection. In principle, LVC models

can describe the correct shape of conical intersections.72 However, the reference method used

in the current study, TDDFT, is not capable of describing S1/S0 conical intersections cor-

rectly.73 It is, thus, interesting to investigate the S1→S0 internal conversion in the TSH/LVC

simulations in more detail. For this, we have re-calculated the potential energies of an ex-

ample trajectory using the set B LC-BLYSP functional and compare them with the LVC

potential energy curves in Figure S14.

As can be seen, while some the general trends of the LVC trajectory (Figure S14(a)) such

as the simultaneous rise and fall of the states due to the nuclear motion are also found when

re-computing the potential energies with TDDFT (Figure S14(b)), there are some differences

in the relative energies between the states. Most notable, TDDFT excitation energies are

larger than LVC excitation energies, which appears to be most prominent for the S1 state

(red curve). The LVC trajectory hops from the S1 state to the S0 state at t = 623 fs, see

Figure S14(a). At this time step, the energy difference between the S1 and S0 states in the
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LVC vs. TDDFT Potential Energies of a Trajectory
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Figure S14: Comparison of lowest-excited states computed with (a) LVC and (b) TDDFT
(set B) along an example trajectory. The relative energies were set to zero for the ground-
state energy in the first time step (t = 0 fs).

LVC model is 0.08 eV. Using TDDFT, the energy gap is much larger, amounting to 1.29

eV. This large discrepancy, however, is due to the inability to describe this region of the

potential energy surface correctly. Already at the next time step, t = 623.5 fs, the (TD)DFT

calculations –at the geometry taken from the LVC trajectory –converges to a very different

result, where the ground-state DFT energy drops from a value of −3176.232585 a.u. to a

value of −4785.064624 a.u., clearly indicating a serious problem of the DFT calculation. At

the following time step (t = 624.0 fs), the DFT energies reaches again a reasonable value of

−3176.260653 a.u. At t = 623.5 fs, the S1/S0 TDDFT energy difference dropped to 0.51 eV,

while it returns to 1.28 eV at t = 624.0 fs. In contrast to the extreme changes in the (TD)DFT

energies, the LVC potentials follow an orderly progression with the S1/S0 LVC energy gap

changing only slightly to 0.10 and 0.12 eV at the time steps following the hop. This example

thus shows the peculiar case where the LVC potentials might compensate for errors in the

TDDFT potentials near the S1/S0 conical intersection. This assumption is difficult to test
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without further reference calculations using multi-reference methods such as CASPT2, which

come for [Fe(cpmp)2]2+unfortunately with prohibitively large computational costs.

Concluding this analysis, thus, suggests, that in the case where a S1/S0 conical intersection

could be reached by LVC extrapolation from the TDDFT reference potentials from the

Franck-Condon reference geometry, the LVC methods actually provides a way to bypass the

deficiencies of (TD)DFT at this point. The effect of using LVC model potentials on the

observed reaction mechanism in set B simulations appears to cancel out the error introduced

by TDDFT near the S1/S0 degeneracies for [Fe(cpmp)2]2+.

S6 Transient Absorption Spectroscopy of [Fe(cpmp)2]2+

Transient absorption spectra of [Fe(cpmp)2]2+were recorded with a time resolution of about

100 fs by a pump-probe setup in which tunable ultrashort laser pulses generated by a non-

collinear optical parametric amplifier (NOPA) are used for excitation and a white light

continuum for probing.74 The NOPA and the white light stage featuring a CaF2 crystal

are pumped by a regenerative Ti:sapphire amplifier system (CPA 2001, Clark MXR, Inc.)

operating at a center wavelength of 775 nm and a repetition rate of 1 kHz. The excitation

pulses had a center wavelength of 620 nm and their dispersion was controlled by a prism

compressor. The polarizations of pump and probe were set to magic angle to avoid signal

contributions due to orientational relaxation. The beams were focused onto the sample to

overlapping spots with diameters of 345 µm for the pump and 150 µm for the probe. After the

sample, the probe was dispersed by a prism and the transmission changes were spectrally

resolved recorded by a CCD array detector. As sample served an acetonitrile solution of

[Fe(cpmp)2]2+(PF6)2 which was filled into a 1 mm thick fused silica cuvette. The compound

was generously provided by Prof. Katja Heinze and coworkers from the Johannes Gutenberg

University Mainz.
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Figure S15: Left panel: Selected transient absorption spectra of [Fe(cpmp)2]2+in acetonitrile
after optical excitation at 620 nm. The delay times of the spectra are given in the legend.
Right panel: Time traces of the transient absorption probed at 525 nm (red circles) and at
600 nm (blue circles). The solid lines represent kinetic traces of an exponential global fit
which reveals a decay time of 550 ps.

Transient absorption spectra after optical excitation of [Fe(cpmp)2]2+dissolved in ace-

tonitrile are shown for selected delay times in Figure S15. They are completely dominated

by the ground state bleach (GSB) which reflects the missing ground state absorption of

molecules in excited states. Accordingly its shape resembles the inverse of the steady state

absorption spectrum. The GSB appears with the time resolution of the experiment and de-

cays then on the sub-nanosecond scale. A global monoexponential signal decay was fitted to

the transient absorption data and revealed a decay time of 550 ps. In Figure S15 time traces

of the transient absorption at 525 nm and 600 nm are compared to the corresponding fit

traces showing that the monoexponential decay reproduces the data within the experimental

accuracy. The results indicate that after optical excitation of the low lying singlet MLCT

states intersystem crossing and relaxation to the lowest electronically excited triplet states

occurs very quickly and is not resolved in our measurements. In these states the molecules

stay for 550 ps until they return to the ground state.
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