Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Chiral Adaptive Recognition with Sequence Specificity of Aromatic

Dipeptides in Aqueous Solution by an Achiral Cage

Lin Cheng, Ping Tian, Honghong Duan, Qingfang Li, Xiaowen Song, Anyang Li, and Liping Cao*

College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China.

Table of Contents	Pages
1. General experimental details	S2
2. Recognition of Amino Acids	S4
2.1 UV-vis and CD experiments	S4
2.2 NMR experiments	S14
3. Recognition of Dipeptides	S25
3.1 NMR, UV-vis, and ITC experiments	S25
3.2 DFT calculated structures of $1 \supset (PhePhe)_2$	S41
3.3 CD, fluorescence, and CPL experiments	S42
4. Recognition of Tetrapeptides	S48
4.1 NMR, UV-vis, and ITC experiments	S49
4.2 Fluorescence and CD experiments	S58
5. Recognition of Polypeptides and Proteins	S63
5.1 NMR and ITC experiments	S63
5.2 UV-vis, fluorescence, and CD experiments	S66

1. General Experimental Details.

Starting materials were purchased from commercial suppliers were used without further purification. NMR spectra were recorded on a spectrometer operating at 400 MHz spectra on Bruker ascend spectrometer and JEOL 600 spectrometer. UV/vis spectra were done on Agilent Cary-100 spectrometer. Fluorescence spectra were performed by using a Horiba Fluorolog-3 spectrometer. Isothermal titration calorimetry (ITC) was carried out using a VP-ITC (Malvern) at 25 °C, and computer fitting of the data were performed using the VP-ITC analyze software. The Circular dichroism (CD) spectra were recorded on a J-1500 spectropolarimeter, using a 1 cm quartz cuvette. Circularly polarized luminescence (CPL) spectra were measured on JASCO CPL-300 spectrophotometers. X-ray diffraction data collection of the compounds were recorded by Bruker D8 Venture photon II diffractometer.

X-ray data of 1 and 1⊃(*L*-PhePhe)₂

Parameters	РМ-1	<i>PP/MM-</i> 1	1⊃(<i>L</i> -PhePhe) ₂
Empirical formula	$C_{244}H_{352}Cl_8N_8O_{48}$	C124 H96 Cl8 N8	$C_{160}H_{134}Br_6N_{12}O_6$
Formula weight	4448.92	1981.68	2800.24
Temperature (K)	100(2)	90	173(2)
Wavelength (Å)	1.34138	1.34138	1.34139
Crystal system	Monoclinic	Orthorhombic	Monoclinic
Space group	C12/m1	<i>I222</i>	<i>C2</i>
<i>a</i> , (Å)	28.8074(18)	18.7340(7)	39.987(3)
<i>b</i> , (Å)	21.7271(18)	21.4715(8)	16.180(2)
<i>c</i> , (Å)	19.0790(19)	66.271(3)	29.951(4)
α, (°)	90	90	90
β, (°)	131.248(6)	90	121.416(4)
γ, (°)	90	90	90

Table S1. Crystal Data for *PM*-1, *PP/MM*-1 and 1⊃(*L*-PhePhe)₂

			-
$V(Å^3)$	8978.4(14)	26657.3(18)	16537(3)
Z	2	6	4
$ ho_{ m calcd}$ (g/cm ³)	1.646	0.741	1.125
μ (mm ⁻¹)	1.283	0.930	1.421
F(000)	4784	6192	5744
Crystal size (mm ³)	0.09×0.04×0.03	0.22×0.20×0.18	0.22×0.20×0.18
θ range for data collection (°)	2.506 to 50.494	1.882 to 52.998	1.950 to 55.315
	$-33 \le h \le 33$	$-20 \le h \le 22$	$-47 \le h \le 48$
Limiting indices	$-24 \le k \le 24$	$-25 \le k \le 21$	$-19 \le k \le 19$
	$-20 \le l \le 21$	$-78 \le 1 \le 78$	$-36 \le l \le 36$
Reflections collected	9883	9857	9979
Data/restraints/parameters	7226/12/337	23569/1485/899	31270/25/1657
Goodness-of-fit	1.079	1.279	1.034
$R1, wR2 (I > 2\sigma(I))$	0.0909,0.2798	0.1160, 0.3104	0.0420, 0.1160
R1, $wR2$ (all data)	0.1030, 0.2885	0.1362, 0.3424	0.0440, 0.1169
Largest diff. peak and hole, e	0.359 and -0.345	1.187 and -0.412	0.741 1.0.(7(
Å-3			0.741 and -0.676
CCDC	2100784	2100668	2155590

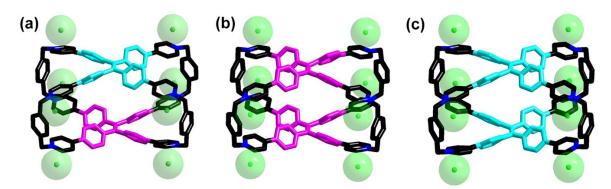


Figure S1. X-ray structures of (a) *PM*-1, (b) *MM*-1, and (c) *PP*-1.

2. Recognition of Amino Acids

2.1 UV-vis and circular dichroism experiments

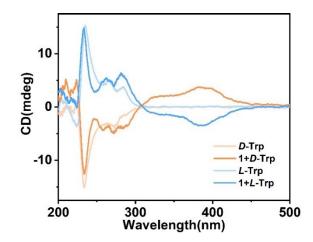
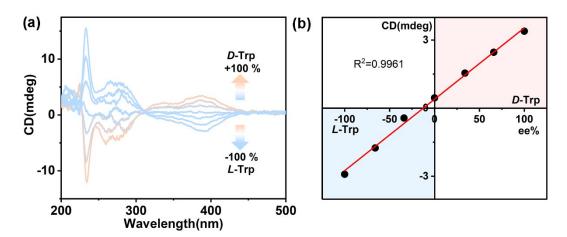



Figure S2. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-Trp in phosphate buffer (10 mM, pH = 7.4).

Figure S3. a) CD spectra of **1** (0.10 mM) in the presence of D/L-Trp (3.0 mM) with *ee* ranging from -100% to +100%. b) The calibration curve obtained for the CD signals (390 nm) upon varying *ee* values of D/L-Trp.

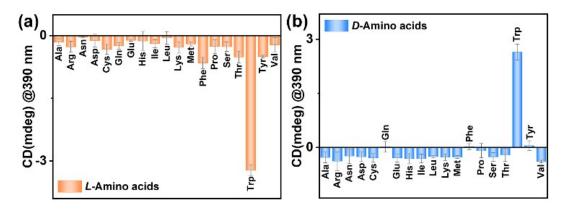


Figure S4. CD intensities of 1 (0.10 mM) with (a) *D*- and (b) *L*-amino acids (30.0 equiv) in phosphate buffer (10 mM sodium phosphate, pH = 7.4). Error bars are standard deviations based on three times of independent measurements.

Figure S5. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-Phe in phosphate buffer (10 mM, pH = 7.4)

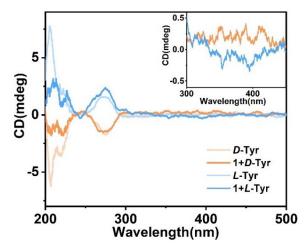


Figure S6. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-Tyr in phosphate buffer (10 mM, pH = 7.4).

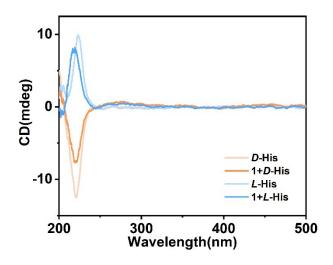


Figure S7. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-His in phosphate buffer (10 mM, pH = 7.4).

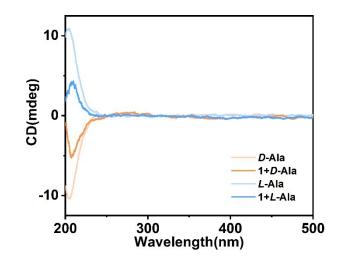


Figure S8. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-Ala in phosphate buffer (10 mM, pH = 7.4).

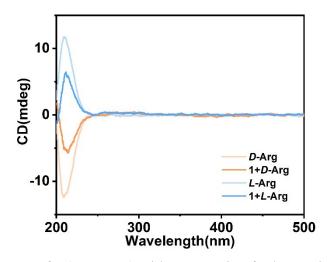


Figure S9. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-Arg in phosphate buffer (10 mM, pH = 7.4).

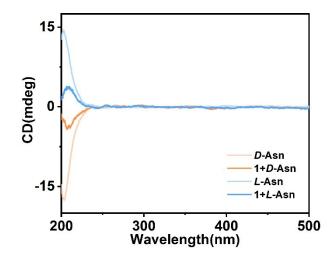


Figure S10. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-Asn in phosphate buffer (10 mM, pH = 7.4).

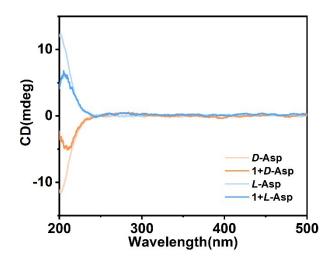


Figure S11. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-Asp in phosphate buffer (10 mM, pH = 7.4).

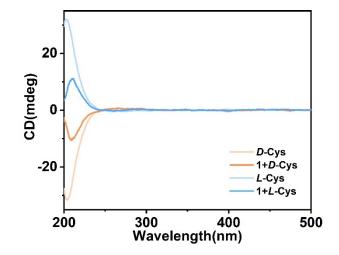


Figure S12. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-Cys in phosphate buffer (10 mM, pH = 7.4).

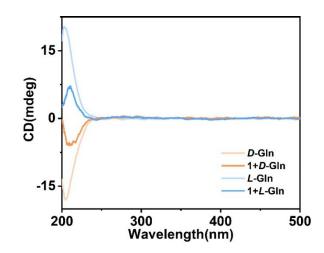


Figure S13. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-Gln in phosphate buffer (10 mM, pH = 7.4).

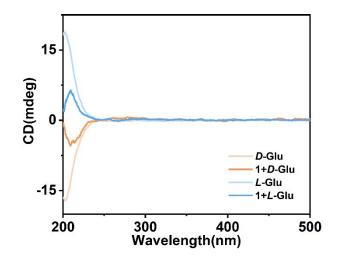


Figure S14. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-Glu in phosphate buffer (10 mM, pH = 7.4).

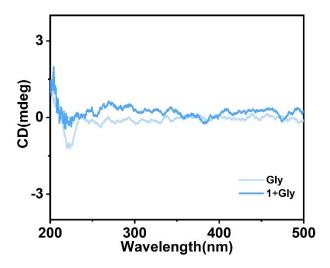


Figure S15. CD spectra of 1 (0.10 mM) with 30.0 equiv of Gly in phosphate buffer (10 mM, pH = 7.4).

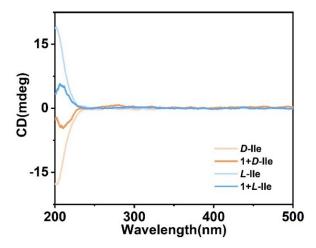


Figure S16. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-Ile in phosphate buffer (10 mM, pH = 7.4).

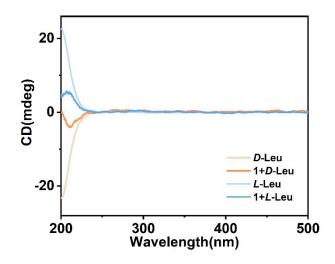


Figure S17. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-Leu in phosphate buffer (10 mM, pH = 7.4).

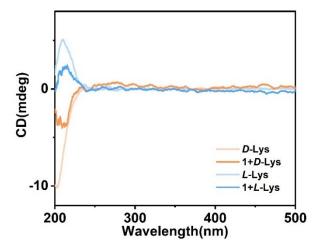


Figure S18. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-Lys in phosphate buffer (10 mM, pH = 7.4).

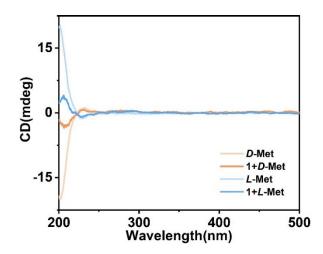


Figure S19. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-Met in phosphate buffer (10 mM, pH = 7.4).

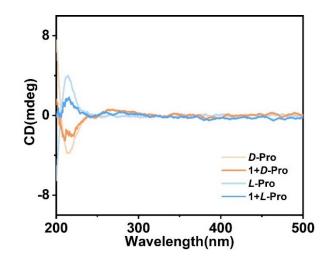


Figure S20. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-Pro in phosphate buffer (10 mM, pH = 7.4).

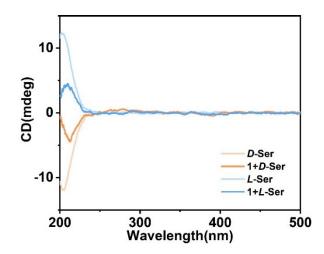


Figure S21. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-Ser in phosphate buffer (10 mM, pH = 7.4).

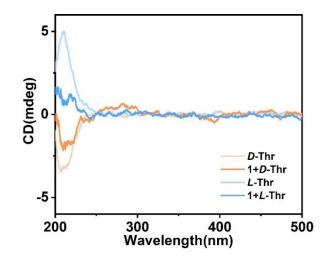


Figure S22. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-Thr in phosphate buffer (10 mM, pH = 7.4).

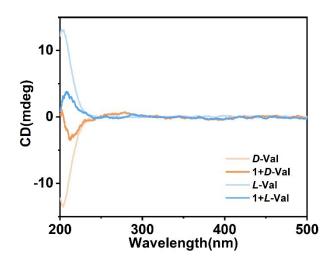
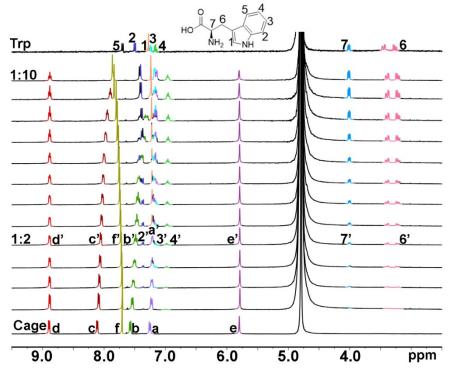



Figure S23. CD spectra of 1 (0.10 mM) with 30.0 equiv of D/L-Val in phosphate buffer (10 mM, pH = 7.4).

2.2 NMR experiments

Figure S24. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-Trp (0 – 10.0 equiv).

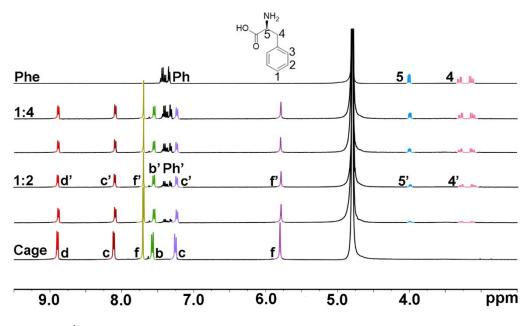


Figure S25. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-Phe (0 – 4.0 equiv).

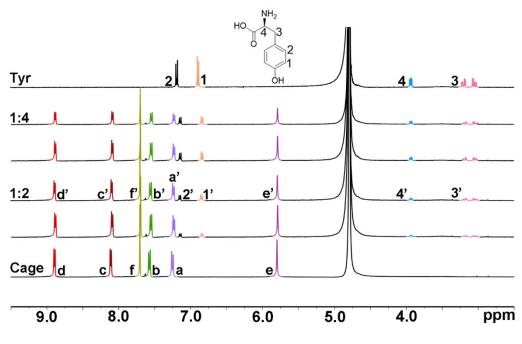


Figure S26. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-Tyr (0 – 4.0 equiv).

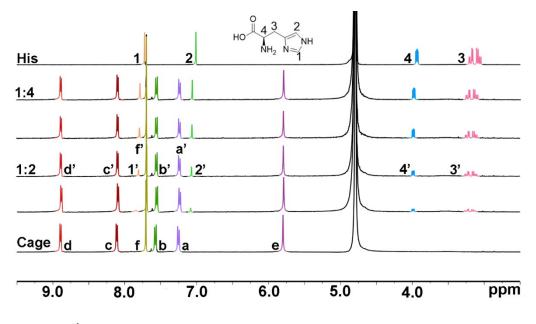


Figure S27. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-His (0 – 4.0 equiv).

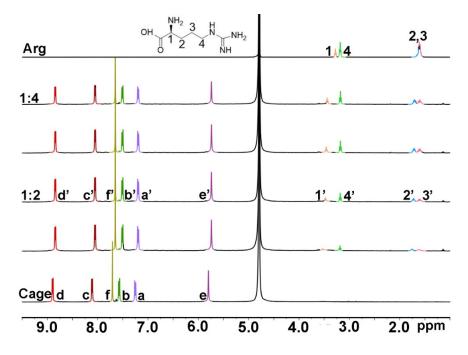
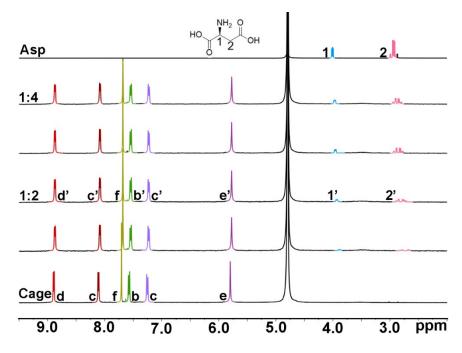



Figure S28. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-Arg (0 – 4.0 equiv).

Figure S29. ¹H NMR titration (400 MHz, 298 K, D₂O) of **1** (0.40 mM) with *L*-Asp (0 – 4.0 equiv).

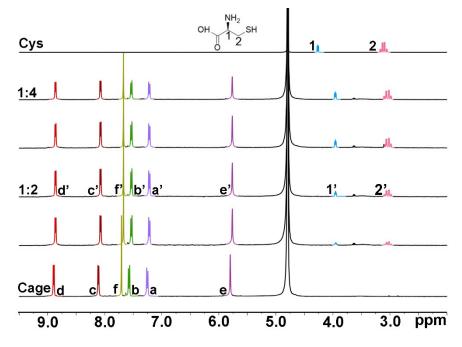


Figure S30. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-Cys (0 – 4.0 equiv).

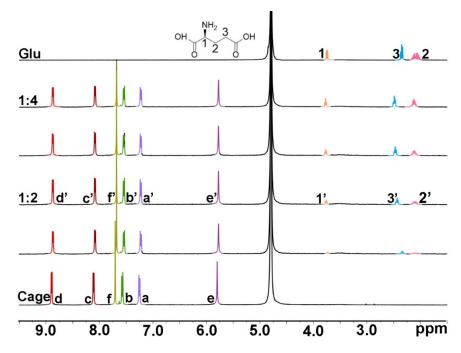


Figure S31. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-Glu (0 – 4.0 equiv).

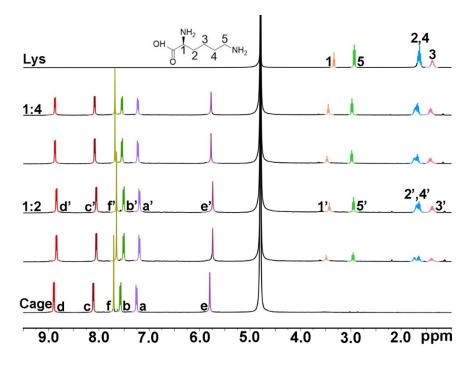


Figure S32. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-Lys (0 – 4.0 equiv).

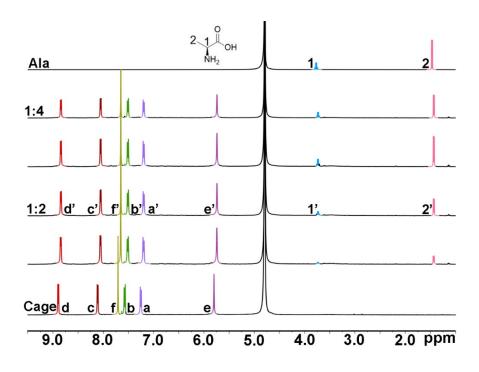


Figure S33. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-Ala (0 – 4.0 equiv).

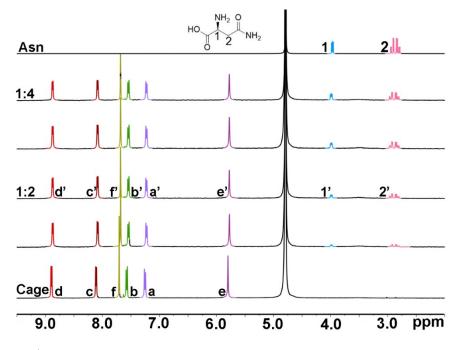
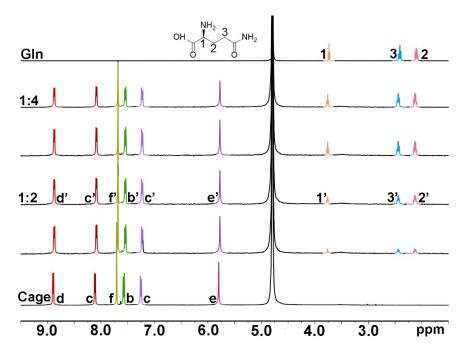



Figure S34. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-Asn (0 – 4.0 equiv).

Figure S35. ¹H NMR titration (400 MHz, 298 K, D₂O) of **1** (0.40 mM) with *L*-Gln (0 – 4.0 equiv).

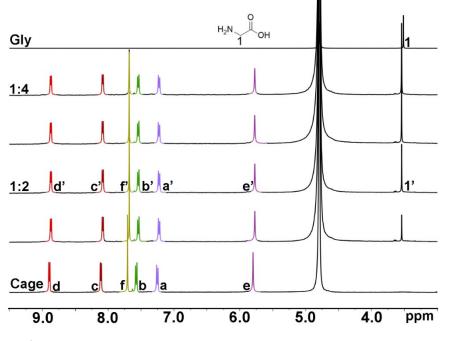


Figure S36. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with Gly (0 – 4.0 equiv).

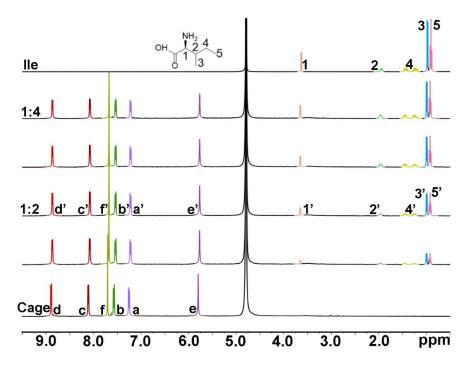


Figure S37. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-Ile (0 – 4.0 equiv).

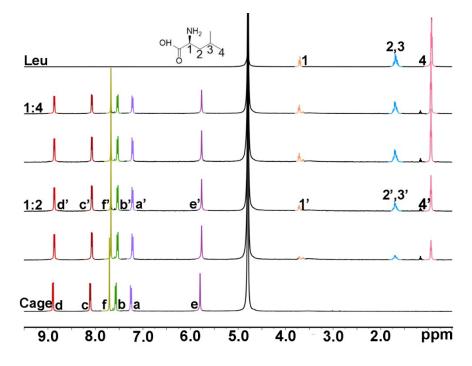


Figure S38. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-Leu (0 – 4.0 equiv).

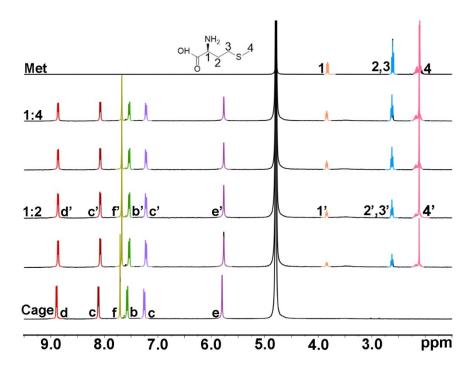


Figure S39. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-Met (0 – 4.0 equiv).

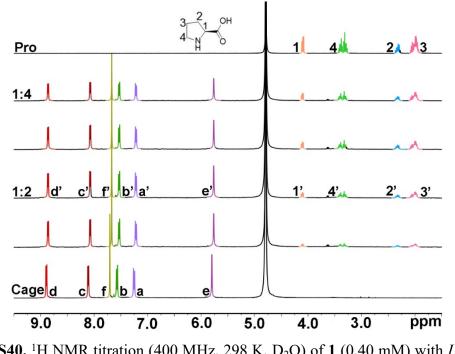


Figure S40. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-Pro (0 – 4.0 equiv).

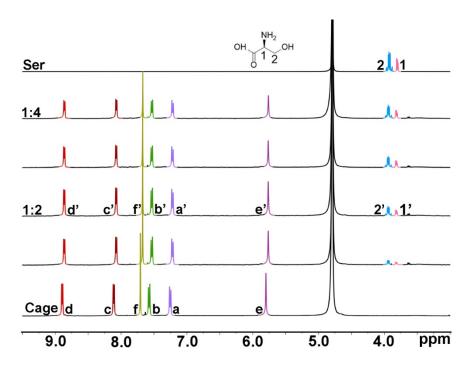


Figure S41. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-Ser (0 – 4.0 equiv).

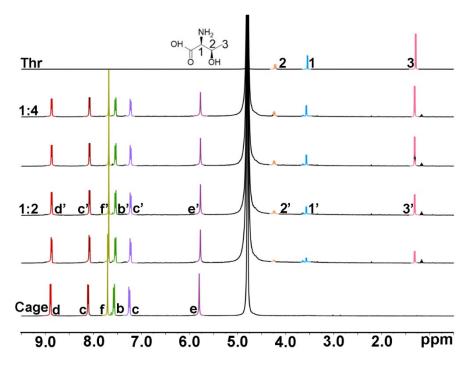
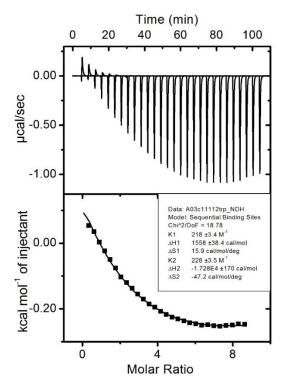



Figure S42. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-Thr (0 – 4.0 equiv).

Figure S43. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-Val (0 – 4.0 equiv).

Figure S44. ITC of **1** (0.30 mM) with *L*-Trp (12.0 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).

3. Recognition of Dipeptides

3.1 NMR, UV-vis, and ITC experiments

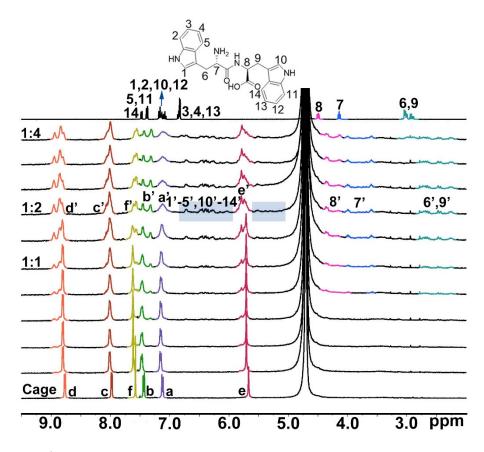


Figure S45. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-TrpTrp (0 – 4.0 equiv).

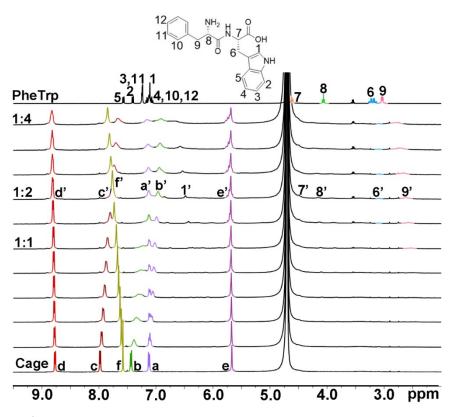


Figure S46. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-PheTrp (0 – 4.0 equiv).

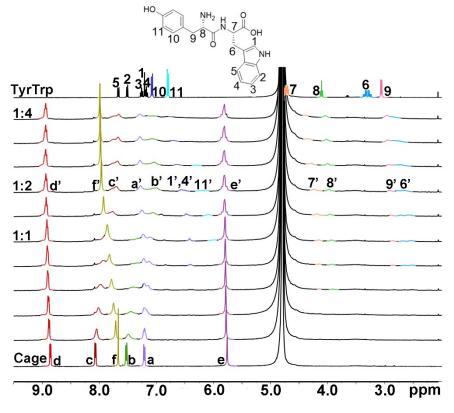


Figure S47. ¹H NMR titration (400 MHz, 298 K, D_2O) of **1** (0.40 mM) with *L*-TyrTrp (0 – 4.0 equiv).

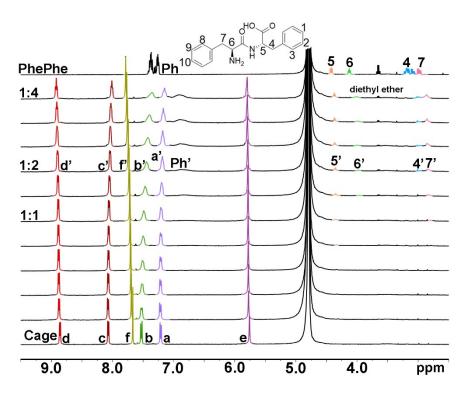


Figure S48. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-PhePhe (0 – 4.0 equiv).

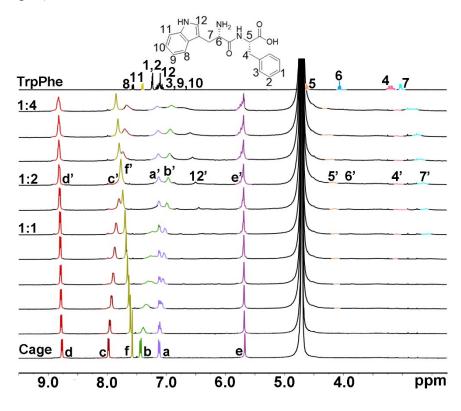


Figure S49. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-TrpPhe (0 – 4.0 equiv).

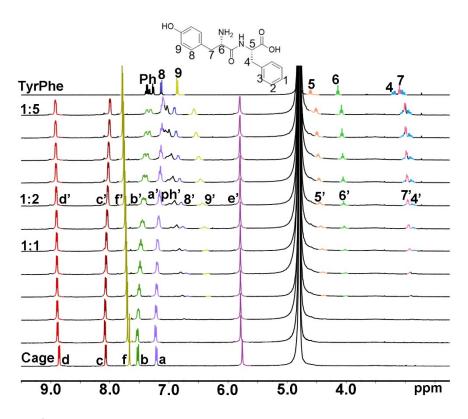


Figure S50. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-TyrPhe (0 – 5.0 equiv).

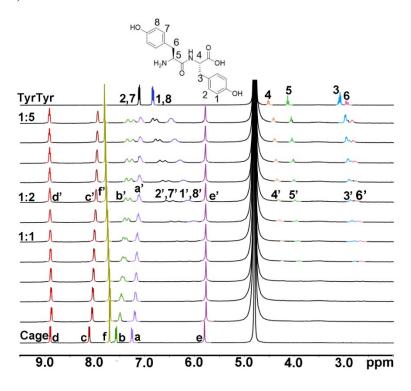


Figure S51. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-TyrTyr (0 – 5.0 equiv).

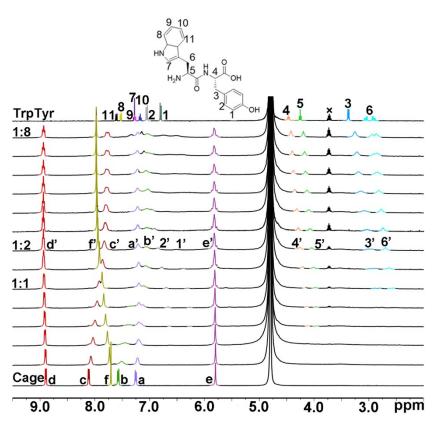
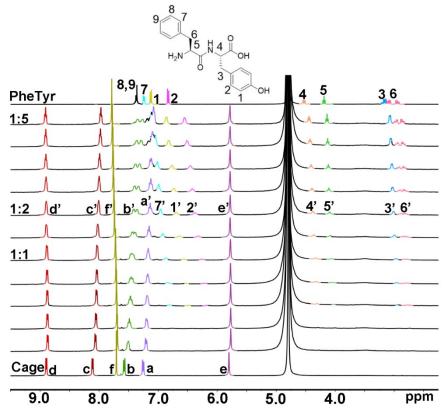



Figure S52. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with *L*-TrpTyr (0 – 8.0 equiv).

Figure S53. ¹H NMR titration (400 MHz, 298 K, D_2O) of **1** (0.40 mM) with *L*-PheTyr (0 – 5.0 equiv).

Figure S54. ITC of 1 (50 μ M) with *D*-TrpTrp (1.0 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).

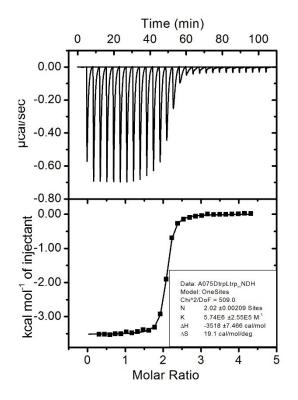


Figure S55. ITC of 1 (50 μ M) with *D*-Trp-*L*-Trp (1.0 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).

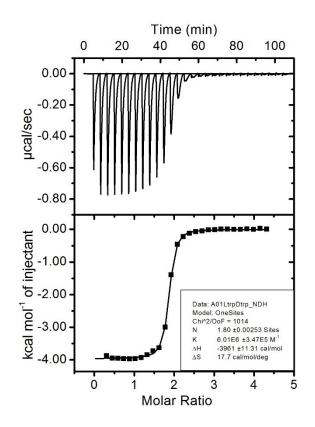


Figure S56. ITC of 1 (50 μ M) with *L*-Trp-*D*-Trp (1.0 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).

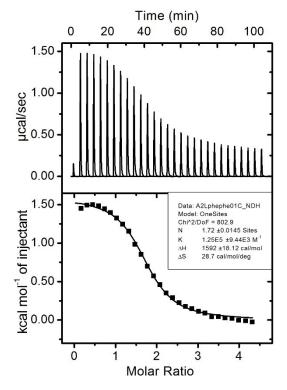


Figure S57. ITC of 1 (0.10 mM) with *L*-PhePhe (2.0 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).

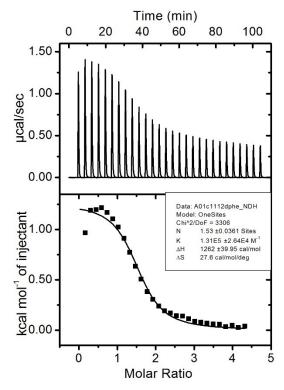


Figure S58. ITC of 1 (0.10 mM) with *D*-PhePhe (2.0 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).

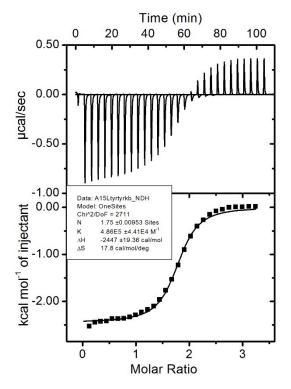


Figure S59. ITC of 1 (0.10 mM) with *L*-TyrTyr (1.50 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).

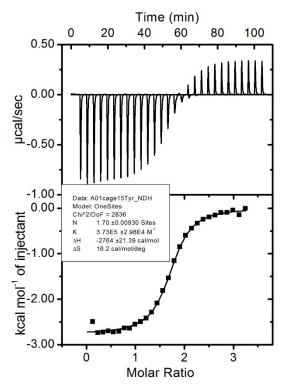


Figure S60. ITC of 1 (0.10 mM) with *D*-TyrTyr (1.50 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).

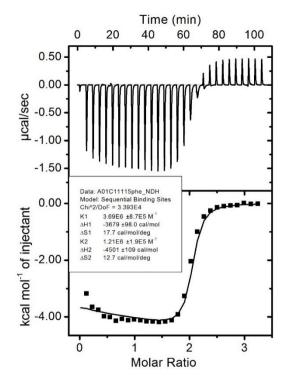


Figure S61. ITC of 1 (0.10 mM) with *L*-PheTrp (1.50 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).

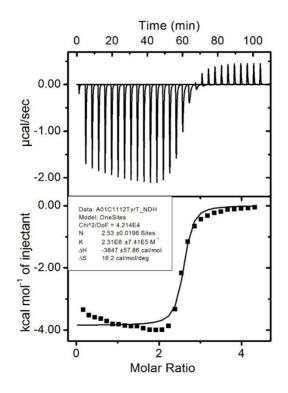


Figure S62. ITC of 1 (0.10 mM) with *L*-TyrTrp (2.0 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).

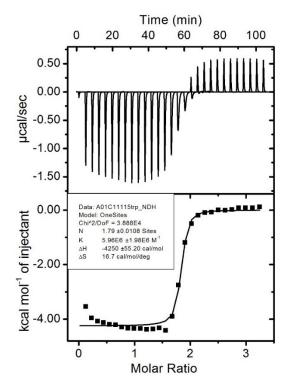


Figure S63. ITC of 1 (0.10 mM) with *L*-TrpPhe (1.50 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).

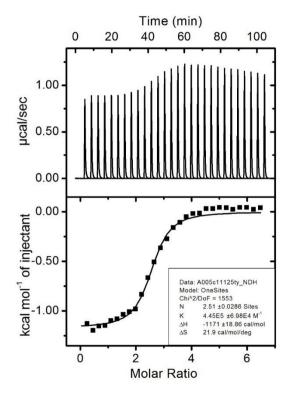


Figure S64. ITC of 1 (50 μ M) with *L*-TyrPhe (1.50 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).

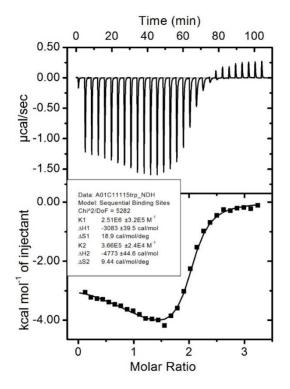
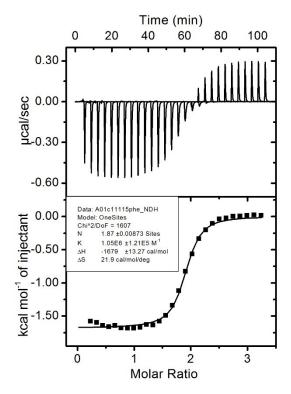
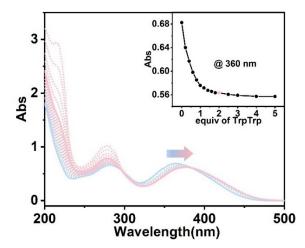
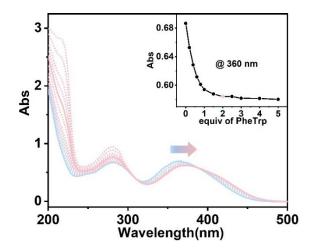
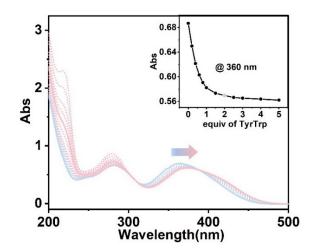
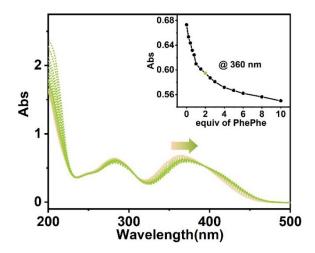
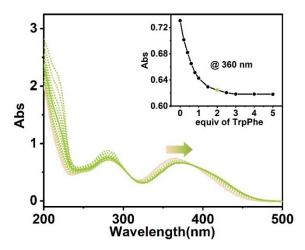


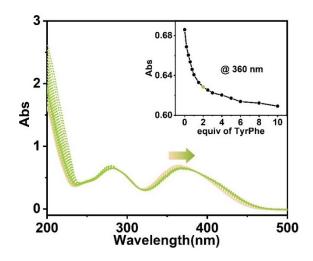
Figure S65. ITC of 1 (0.10 mM) with *L*-TrpTyr (1.0 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).

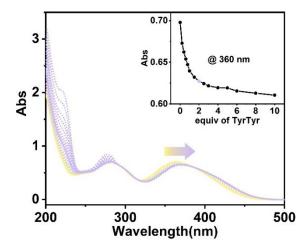




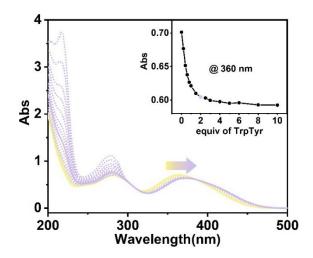

Figure S66. ITC of 1 (0.10 mM) with *L*-PheTyr (1.50 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).


Figure S67. UV/vis titration of **1** (10 μ M) with *L*-TrpTrp in water. Insert: Plots of Abs vs the equiv of *L*-TrpTrp.


Figure S68. UV/vis titration of **1** (10 μ M) with *L*-PheTrp in water. Insert: Plots of Abs vs the equiv of *L*-PheTrp.


Figure S69. UV/vis titration of **1** (10 μ M) with *L*-TyrTrp in water. Insert: Plots of Abs vs the equiv of *L*-TyrTrp.


Figure S70. UV/vis titration of **1** (10 μ M) with *L*-PhePhe in water. Insert: Plots of Abs vs the equiv of *L*-PhePhe.


Figure S71. UV/vis titration of **1** (10 μ M) with *L*-TrpPhe in water. Insert: Plots of Abs vs the equiv of *L*-TrpPhe.

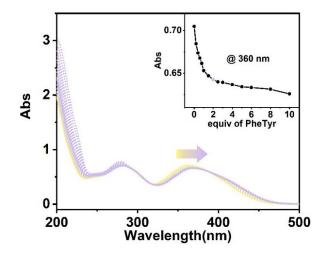

Figure S72. UV/vis titration of **1** (10 μ M) with *L*-TyrPhe in water. Insert: Plots of Abs vs the equiv of *L*-TyrPhe.

Figure S73. UV/vis titration of **1** (10 μ M) with *L*-TyrTyr in water. Insert: Plots of Abs vs the equiv of *L*-TyrTyr.

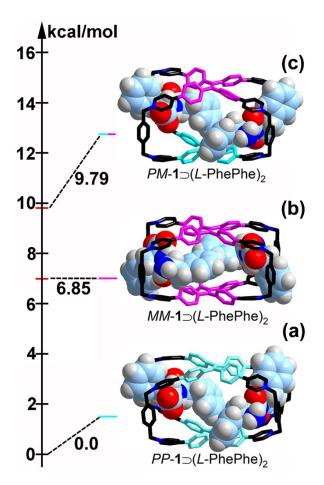
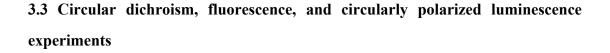
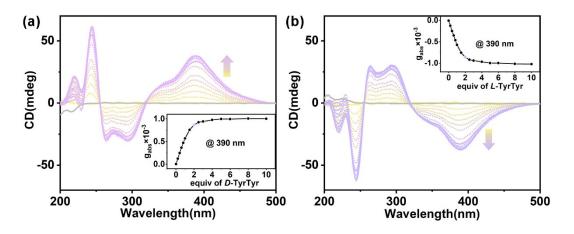


Figure S74. UV/vis titration of **1** (10 μ M) with *L*-TrpTyr in water. Insert: Plots of Abs vs the equiv of *L*-TrpTyr.




Figure S75. UV/vis titration of **1** (10 μ M) with *L*-PheTyr in water. Insert: Plots of Abs vs the equiv of *L*-PheTyr.

3.2 DFT calculated structures of 1⊃(L-PhePhe)₂

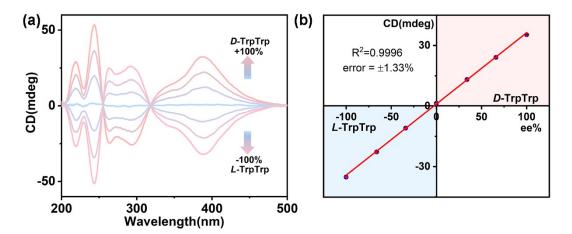
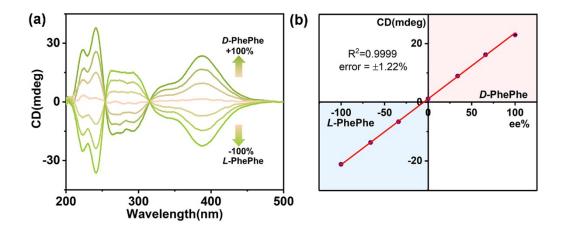
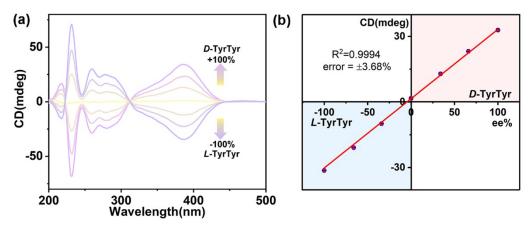
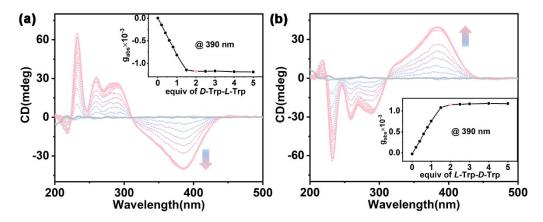
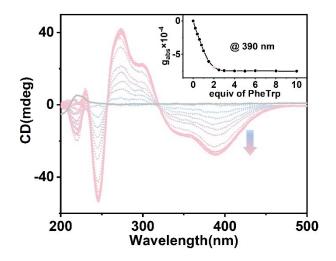


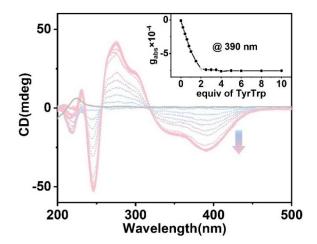
Figure S76. DFT calculated structures of a) $PP-1 \supset (L-PhePhe)_2$, b) $MM-1 \supset (L-PhePhe)_2$ and c) $PM-1 \supset (L-PhePhe)_2$. The geometries of the host-guest complexes were optimized by B3LYP-D3 (the hybrid functionals B3LYP augmented with dispersion correction) with 6-31G(d) basis set, and the energies were corrected using the solvation model density (SMD) method at M06-2x/def2-SVP level.

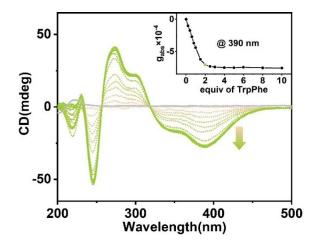


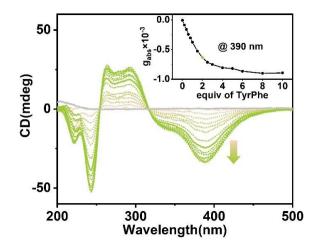

Figure S77. CD titration of 1 (20 μ M) with a) *D*-TyrTyr and b) *L*-TyrTyr (0 – 10.0 equiv) in phosphate buffer (10 mM, pH = 7.4). Inset: Plots of g_{abs} vs the equiv of *D*/*L*-TyrTyr.

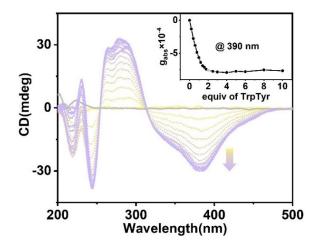

Figure S78. a) CD spectra of **1** (20 μ M) in the presence of *D/L*-TrpTrp (40 μ M) with *ee* ranging from -100% to +100%. b) The calibration curve obtained for the CD signals (390 nm) upon varying *ee* values of *D/L*-TrpTrp.


Figure S79. a) CD spectra of 1 (20 μ M) in the presence of *D/L*-PhePhe (40 μ M) with *ee* ranging from -100% to +100%. b) The calibration curve obtained for the CD signals (390 nm) upon varying *ee* values of *D/L*-PhePhe.


Figure S80. a) CD spectra of **1** (20 μ M) in the presence of *D/L*-TyrTyr (40 μ M) with *ee* ranging from -100% to +100%. b) The calibration curve obtained for the CD signals (390 nm) upon varying *ee* values of *D/L*-TyrTyr.


Figure S81. CD titration of **1** (20 μ M) with a) *D*-Trp-*L*-Trp and b) *L*-Trp-*D*-Trp (0 – 5.0 equiv) in phosphate buffer (10 mM, pH = 7.4). Inset: Plots of g_{abs} vs the equiv of *D*-Trp-*L*-Trp or *L*-Trp-*D*-Trp.


Figure S82. CD titration of **1** (20 μ M) with *L*-PheTrp in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of g_{abs} vs the equiv of *L*-PheTrp.


Figure S83. CD titration of **1** (20 μ M) with *L*-TyrTrp in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of g_{abs} vs the equiv of *L*-TyrTrp.

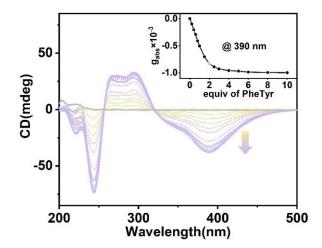

Figure S84. CD titration of **1** (20 μ M) with *L*-TrpPhe in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of g_{abs} vs the equiv of *L*-TrpPhe.

Figure S85. CD titration of **1** (20 μ M) with *L*-TyrPhe in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of g_{abs} vs the equiv of *L*-TyrPhe.

Figure S86. CD titration of **1** (20 μ M) with *L*-TrpTyr in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of g_{abs} vs the equiv of *L*-TrpTyr.

Figure S87. CD titration of 1 (20 μ M) with *L*-PheTyr in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of g_{abs} vs the equiv of *L*-PheTyr.

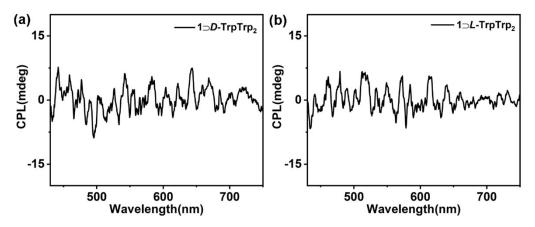


Figure S88. CPL spectra of 1 (20 μ M) with *D/L*-TrpTrp (40 μ M,) in phosphate buffer (10 mM, pH = 7.4). $\lambda_{ex} = 320$ nm, E_x/E_m slit = 3000 μ m.

4. Recognition of Tetrapeptides

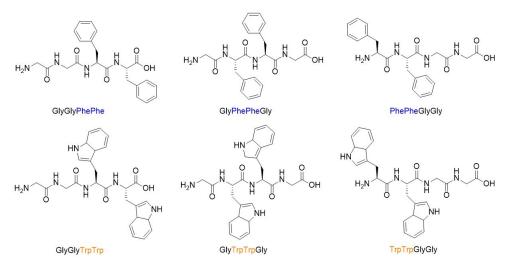


Figure S89. Chemical structures of tetrapeptides.

4.1 NMR and ITC experiments

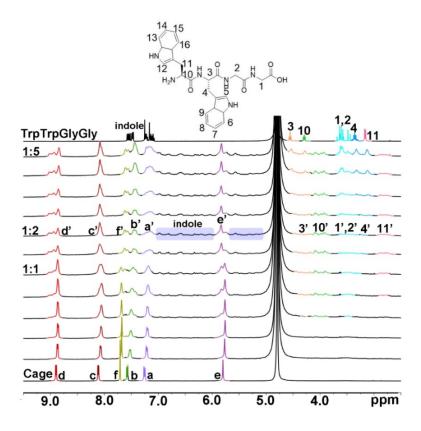


Figure S90. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with TrpTrpGlyGly (0 – 5.0 equiv).

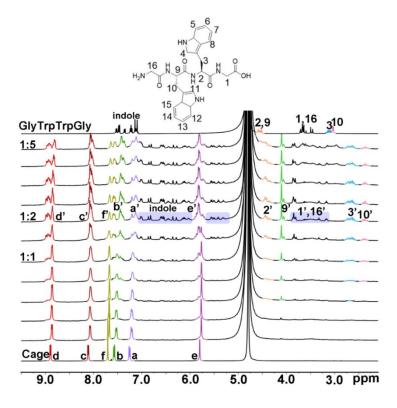


Figure S91. $^1\mathrm{H}$ NMR titration (400 MHz, 298 K, D2O) of 1 (0.40 mM) with $_{\mathrm{S49}}$

GlyTrpTrpGly (0 - 5.0 equiv).

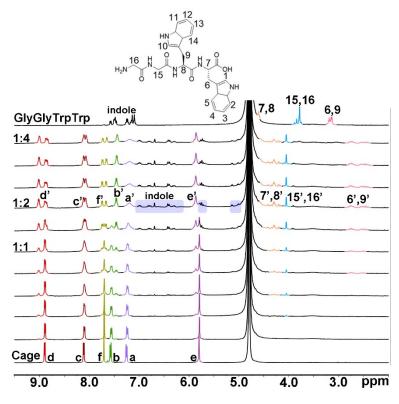


Figure S92. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with GlyGlyTrpTrp (0 – 4.0 equiv).

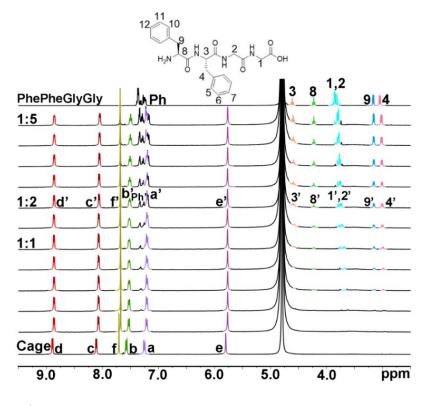


Figure S93. ¹H NMR titration (400 MHz, 298 K, D₂O) of 1 (0.40 mM) with

PhePheGlyGly (0 - 5.0 equiv).

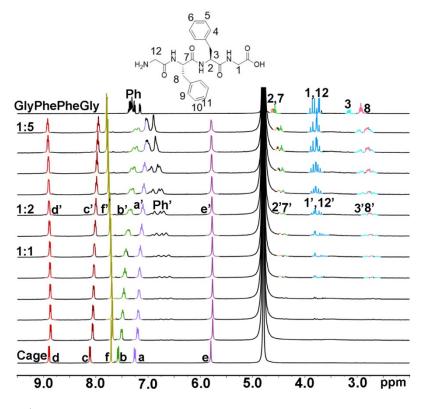


Figure S94. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with GlyPhePheGly (0 – 5.0 equiv).

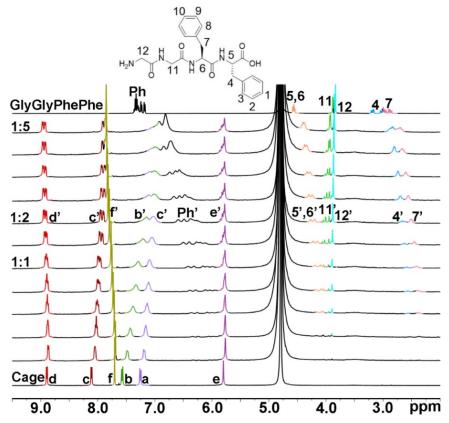


Figure S95. ¹H NMR titration (400 MHz, 298 K, D_2O) of 1 (0.40 mM) with

GlyGlyPhePhe (0 - 5.0 equiv).

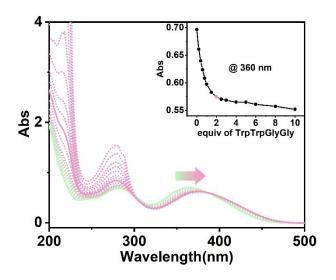
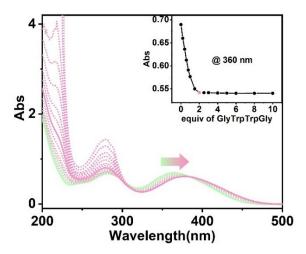
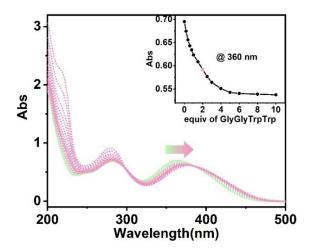




Figure S96. UV/vis titration of 1 (10 μ M) with TrpTrpGlyGly (0 – 10.0 equiv) in water.

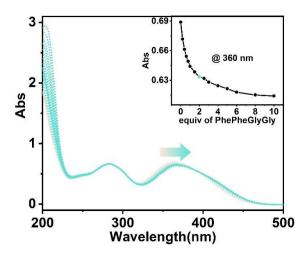
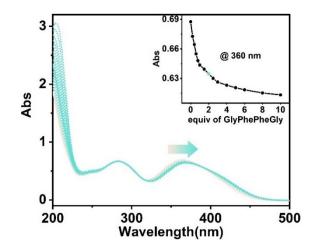
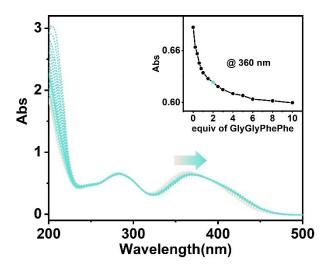
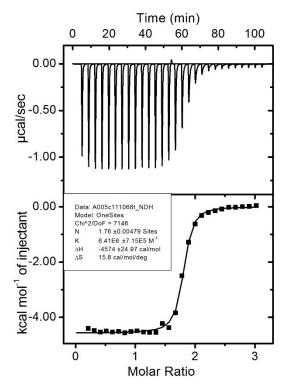
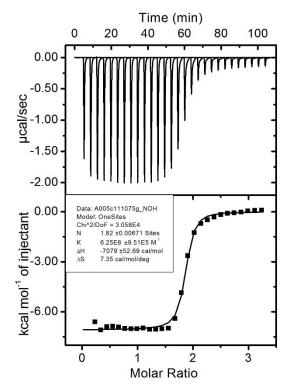

Insert: Plots of Abs vs the equiv of TrpTrpGlyGly.

Figure S97. UV/vis titration of **1** (10 μ M) with GlyTrpTrpGly (0 – 10.0 equiv) in water. Insert: Plots of Abs vs the equiv of GlyTrpTrpGly.

Figure S98. UV/vis titration of **1** (10 μ M) with GlyGlyTrpTrp (0 – 10.0 equiv)in water. Insert: Plots of Abs vs the equiv of GlyGlyTrpTrp.

Figure S99. UV/vis titration of **1** (10 μ M) with PhePheGlyGly (0 – 10.0 equiv) in water. Insert: Plots of Abs vs the equiv of PhePheGlyGly.


Figure S100. UV/vis titration of 1 (10 μ M) with GlyPhePheGly (0 – 10.0 equiv) in water. Insert: Plots of Abs vs the equiv of GlyPhePheGly.

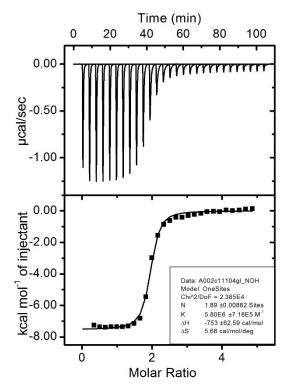

Figure S101. UV/vis titration of **1** (10 μ M) with GlyGlyPhePhe (0 – 10.0 equiv) in water. Insert: Plots of Abs vs the equiv of GlyGlyPhePhe.

Figure S102. ITC of **1** (50 μ M) with TrpTrpGlyGly (750 μ M) at 298 K in phosphate buffer (10 mM, pH = 7.4).

Figure S103. ITC of **1** (30 μ M) with GlyTrpTrpGly (450 μ M) at 298 K in phosphate buffer (10 mM, pH = 7.4).

Figure S104. ITC of **1** (30 μ M) with GlyGlyTrpTrp (450 μ M) at 298 K in phosphate buffer (10 mM, pH = 7.4).

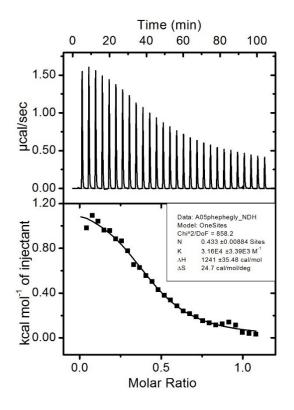


Figure S105. ITC of PhePheGlyGly (0.50 mM) with 1 (2.50 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).

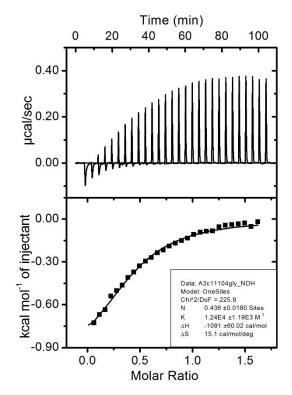


Figure S106. ITC of GlyPhePheGly (0.40 mM) with 1 (3.0 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).

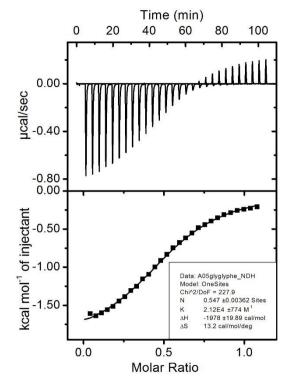
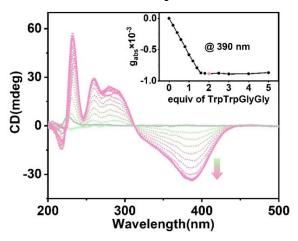
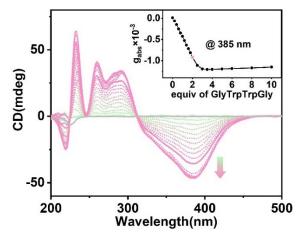
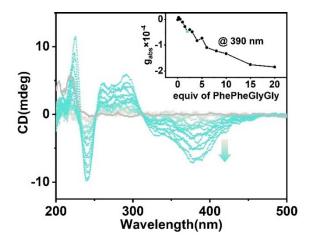




Figure S107. ITC of GlyGlyPhePhe (0.50 mM) with 1 (2.50 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).


4.2 Fluorescence and circular dichroism experiments

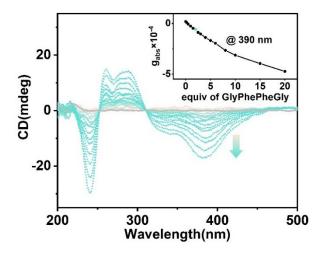

Figure S108. CD titration of **1** (20 μ M) with TrpTrpGlyGly (0 – 5.0 equiv) in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of g_{abs} vs the equiv of TrpTrpGlyGly.

Figure S109. CD titration of **1** (20 μ M) with GlyTrpTrpGly (0 – 10.0 equiv) in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of g_{abs} vs the equiv of GlyTrpTrpGly.

Figure S110. CD titration of 1 (20 μ M) with PhePheGlyGly (0 – 20.0 equiv) in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of g_{abs} vs the equiv of PhePheGlyGly.

Figure S111. CD titration of 1 (20 μ M) with GlyPhePheGly (0 – 20.0 equiv) in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of g_{abs} vs the equiv of GlyPhePheGly.

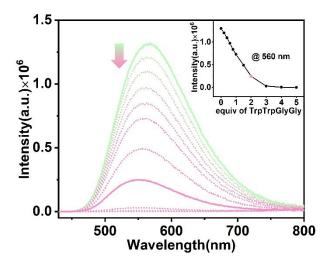


Figure S112. Fluorescence titration of 1 (10 μ M) with TrpTrpGlyGly (0 – 5.0 equiv) in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of fluorescence intensity versus the equiv of TrpTrpGlyGly. $\lambda_{ex} = 410$ nm, E_x/E_m slit = 1.2 nm.

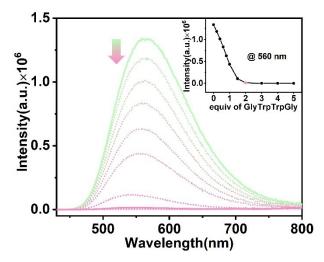


Figure S113. Fluorescence titration of 1 (10 μ M) with GlyTrpTrpGly (0 – 5.0 equiv) in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of fluorescence intensity versus the equiv of GlyTrpTrpGly. $\lambda_{ex} = 410$ nm, E_x/E_m slit = 1.2 nm.

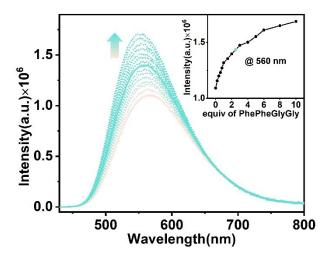


Figure S114. Fluorescence titration of 1 (10 μ M) with PhePheGlyGly (0 – 10.0 equiv) in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of fluorescence intensity versus the equiv of PhePheGlyGly. $\lambda_{ex} = 410$ nm, E_x/E_m slit = 1.2 nm.

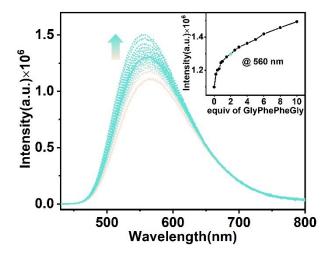


Figure S115. Fluorescence titration of 1 (10 μ M) with GlyPhePheGly (0 – 10.0 equiv) in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of fluorescence intensity versus the equiv of GlyPhePheGly. $\lambda_{ex} = 410$ nm, E_x/E_m slit = 1.2 nm.

5. Recognition of Polypeptides and Proteins

5.1 NMR and ITC experiments

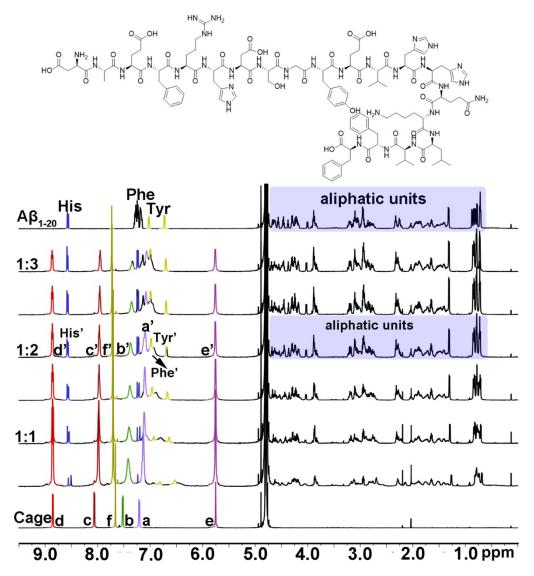


Figure S116. ¹H NMR titration (600 MHz, 298 K, D₂O) of 1 (0.40 mM) with $A\beta_{1-20}$ (0 – 3.0 equiv).

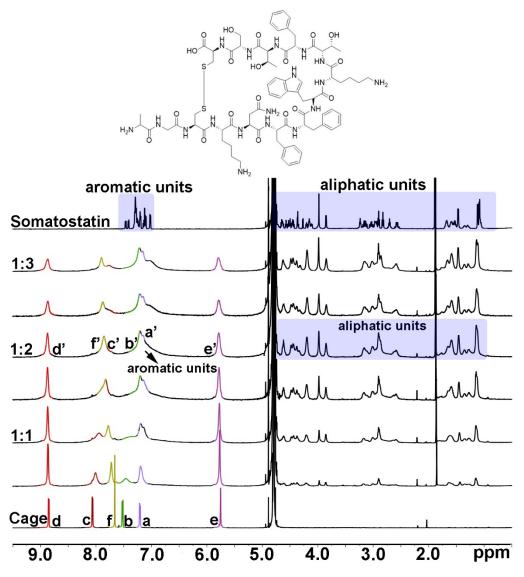


Figure S117. ¹H NMR titration (600 MHz, 298 K, D_2O) of 1 (0.40 mM) with somatostatin (0 – 3.0 equiv).

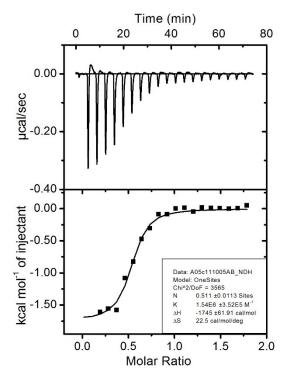


Figure S118. ITC of A β_{1-20} (50 µM) with 1 (0.50 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).

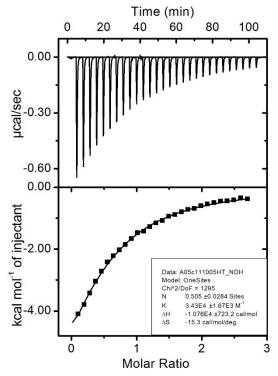


Figure S119. ITC of somatostatin (50 μ M) with 1 (0.50 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).

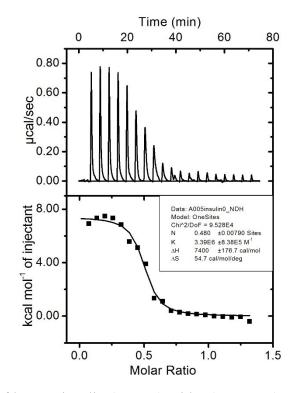
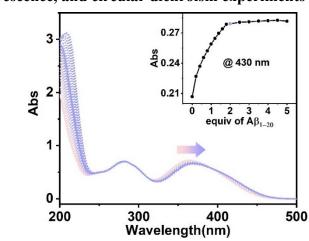
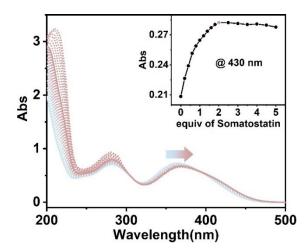




Figure S120. ITC of human insulin (50 μ M) with1 (0.35 mM) at 298 K in phosphate buffer (10 mM, pH = 7.4).

5.2 UV-vis, fluorescence, and circular dichroism experiments

Figure S121. UV/vis titration of **1** (10 μ M) with A β_{1-20} (0 – 5.0 equiv) in water. Insert: Plots of Abs vs the equiv of A β_{1-20} .

Figure S122. UV/vis titration of **1** (10 μ M) with somatostatin (0 – 5.0 equiv) in water. Insert: Plots of Abs vs the equiv of somatostatin.

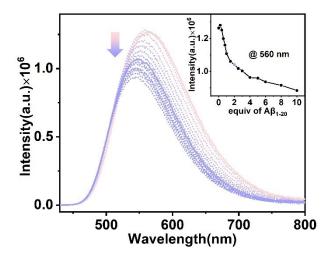


Figure S123. Fluorescence titration of 1 (10 μ M) with A β_{1-20} (0 – 10.0 equiv) in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of fluorescence intensity versus the equiv of A β_{1-20} . $\lambda_{ex} = 410$ nm, E_x/E_m slit = 1.2 nm.

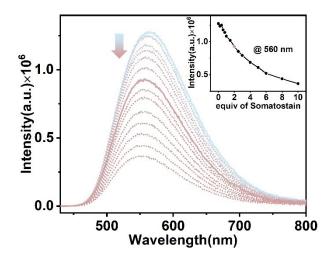


Figure S124. Fluorescence titration of 1 (10 μ M) with somatostatin (0 – 10.0 equiv) in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of fluorescence intensity versus the equiv of somatostatin. $\lambda_{ex} = 410$ nm, E_x/E_m slit = 1.2 nm.

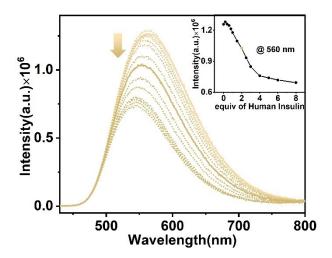


Figure S125. Fluorescence titration of 1 (10 μ M) with human insulin (0 – 8.0 equiv) in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of fluorescence intensity versus the equiv of human insulin. $\lambda_{ex} = 410$ nm, E_x/E_m slit = 1.2 nm.

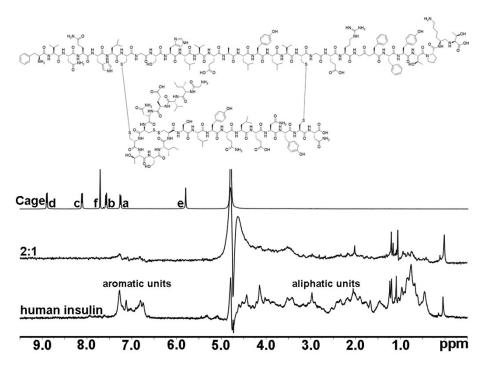
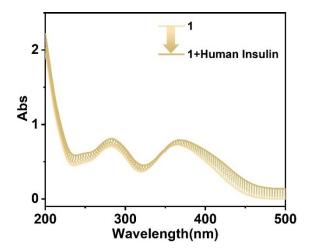



Figure S126. ¹H NMR titration (600 MHz, 298 K, D_2O) of human insulin (50 μ M) with 1 (0.5 equiv).

Figure S127. UV/vis titration of 1 (10 μ M) with human insulin (0 – 2.0 equiv) in water. Insert: Plots of Abs vs the equiv of human insulin.

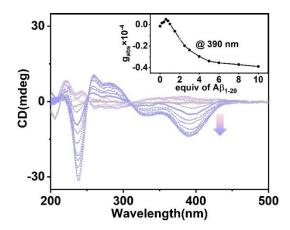


Figure S128. CD titration of 1 (20 μ M) with A β_{1-20} (0 – 10.0 equiv) in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of g_{abs} vs the equiv of $A\beta_{1-20}$.

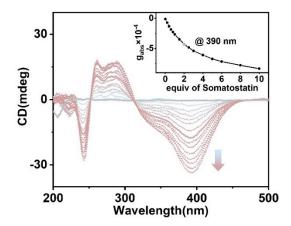


Figure S129. CD titration of 1 (20 μ M) with somatostatin (0 – 10.0 equiv) in phosphate buffer (10 mM, pH = 7.4). Insert: Plots of g_{abs} vs the equiv of somatostatin.

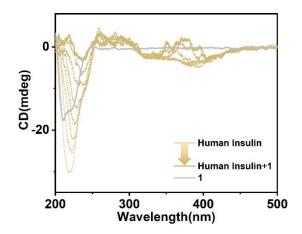


Figure S130. CD titration of human insulin (20 μ M) with 1 (0 – 2.5 equiv) in phosphate

buffer (10 mM, pH = 7.4). Insert: Plots of g_{abs} vs the equiv of human insulin.