
 S1

Supplementary information

Automatic materials characterization from infrared spectra using
convolutional neural networks

Guwon Jung,1,2,3 Son Gyo Jung1,3,4, Jacqueline M. Cole1,3,4,*

* Corresponding author

1 Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson

Avenue, Cambridge, CB3 0HE, UK

E-mail: jmc61@cam.ac.uk

2 Scientific Computing Department, Science and Technology Facilities Council, Didcot, OX11

0FA, UK

3 Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11

OQX, U.K

4 ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Science and

Innovation Campus, Didcot, OX11 0QX, UK

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2023

 S2

Table of contents

Methods ... 3

Data collection ... 3

Choice of functional groups ... 4

Hyperparameter tuning ... 7

CNN architecture ... 9

CNN training ... 11

Evaluation metrics ... 13

Supplementary tables .. 15

References ... 15

 S3

Methods

Data collection

We obtained data from the National Institute of Advanced Industrial Science and Technology

(AIST)1 which comprises spectra of materials that were acquired in one of four different types

of condensed-phase sample environment: KBr disc, Nujol mull, single-component liquid film,

and CCl4 solution. The spectra were downloaded as image files which were subsequently

digitalized using pixel mapping. This entailed detecting vertical and horizontal lines that form

a rectangle of a specific size in order to identify the region of interest (ROI). Raster scanning

was used to inspect each pixel in the ROI, saving the x and y coordinates of pixels whose colors

exceed a certain threshold of red-green-blue (RGB) values. The extracted spectra had a

resolution of 4 cm-1 in the low wavenumber range (400-2000 cm-1), while the resolution in

the high wavenumber range (2000-4000 cm-1) was 8 cm-1. AIST data contained only

transmittance spectra. We also gathered data from the National Institute of Standards and

Technology (NIST)2 that contained gas-phase spectra. The spectra from NIST were obtained

as JCAMP-DX files, which had a resolution of 2 cm-1. NIST data contained both transmittance

and absorbance spectra.

It was necessary to normalize these spectra from different sources to present them on the

same scale. All absorbance spectra from the NIST database were converted to transmittance

spectra. The raw spectra from the two data sources were interpolated with first-order splines

in order to obtain vectors with 600 normalized transmittance values (at 6 cm-1 intervals)

across the frequency range of 400 cm-1 to 4000 cm-1. A relatively low resolution was chosen

 S4

because CNNs could detect patterns in the data with reduced dimensionality. Some of the

NIST spectra had gaps in the transmittance values where measurements were not taken over

the entire range of 400-4000 cm-1. AIST spectra collected in CCl4 solution exhibited

discontinuities in the 690-850 cm-1 and 1500-1600 cm-1 frequency ranges owing to heavy

solvent absorption of the IR beam, which were filled during the interpolation step.

For each spectrum, the InChI string of its sample material was scraped. InChI was chosen over

the alternate SMILES chemical-identity representation for this purpose because it intends to

give a unique (or canonical) identifier for chemical structures, whereas SMILES strings are

used for storage and interchange of chemical structures without a standard for generating

canonical strings.3

Certain spectra from the data sources were removed from consideration by manual selection

for various reasons. If spectra from either data source could not be linked to valid InChI strings,

they were removed. This accounted for 3437 spectra that were not included. A selection of

low-quality spectral images obtained from AIST were excluded, accounting for 2832 spectra.

Some InChI strings were converted to MOL format incorrectly, resulting in the exclusion of 83

spectra. After this data pruning stage, the two sources of data afforded 50,936 IR spectra on

30,611 compounds with unique InChI strings.

Choice of functional groups

We chose 37 functional groups to enable our task of chemical identification from IR-spectra.

This choice reflects the abundance of each functional group in the two dataset sources and

 S5

those that are commonly identified using FTIR spectroscopy. The most commonly

characterized functional groups were used to train the machine-learning model that can draw

insights from learned chemical patterns in the same manner that human chemists can do. It

is worth adding that this model could be expanded in future work to adopt more abstract

definitions of functional groups, e.g., if one wants to tailor the model to identify certain series

of compounds. We eliminated any functional groups that had fewer than 130 samples within

the dataset. These excluded functional groups are shown in Table S2. We defined and tested

SMARTS strings for each of the functional groups, as shown in Table S1. For every sample,

substructure matching was performed between a molecule constructed from its InChI string

and each of the 37 molecules that had been constructed from SMARTS strings of the 37

functional groups using RDKit.4 Through this process, labels were created to record the

presence of the functional groups.

 S6

Table S1. Definition of SMARTS strings used to identify the presence of functional groups in

each sample molecule. The prevalence of each functional group across the entire dataset is

also displayed. *Functional groups that were included in the training of the original model.

Functional group SMARTS string Sample frequency

Acid anhydride* [CX3](=[OX1])[OX2][CX3](=[OX1]) 285

Acyl halide* [CX3](=[OX1])[F,Cl,Br,I] 354

Alcohol* [#6][OX2H] 18142

Aldehyde* [CX3H1](=O)[#6,H] 928

Alkane* [CX4;H3,H2] 39002

Alkene* [CX3]=[CX3] 6593

Alkyne* [CX2]#[CX2] 562

Amide* [NX3][CX3](=[OX1])[#6] 1873

Amine* [NX3;H2,H1,H0;!$(NC=O)] 12521

Arene* [cX3]1[cX3][cX3][cX3][cX3][cX3]1 29571

Azo compound* [#6][NX2]=[NX2][#6] 501

Carbamate [NX3][CX3](=[OX1])[OX2H0] 239

Carboxylic acid* [CX3](=O)[OX2H] 5282

Enamine [NX3][CX3]=[CX3] 455

Enol [OX2H][#6X3]=[#6] 157

Ester* [#6][CX3](=O)[OX2H0][#6] 6614

Ether* [OD2]([#6])[#6] 14708

Haloalkane* [#6][F,Cl,Br,I] 10723

Hydrazine [NX3][NX3] 343

Hydrazone [NX3][NX2]=[#6] 784

Imide* [CX3](=[OX1])[NX3][CX3](=[OX1]) 536

Imine* [$([CX3]([#6])[#6]),$([CX3H][#6])]=[$([NX2][#6]),$([NX2H])] 326

Isocyanate [NX2]=[C]=[O] 131

Isothiocyanate [NX2]=[C]=[S] 270

Ketone* [#6][CX3](=O)[#6] 5441

Nitrile* [NX1]#[CX2] 1993

Phenol* [OX2H][cX3]:[c] 4796

Phosphine [PX3] 153

Sulfide [#16X2H0] 3034

Sulfonamide [#16X4]([NX3])(=[OX1])(=[OX1])[#6] 777

Sulfonate [#16X4](=[OX1])(=[OX1])([#6])[OX2H0] 313

Sulfone [#16X4](=[OX1])(=[OX1])([#6])[#6] 376

Sulfonic acid [#16X4](=[OX1])(=[OX1])([#6])[OX2H] 468

Sulfoxide [#16X3]=[OX1] 137

Thial* [CX3H1](=O)[#6,H] 928

Thioamide [NX3][CX3]=[SX1] 321

Thiol* [#16X2H] 955

 S7

Hyperparameter tuning

The collected IR-spectral data were split into five equal parts using stratified random sampling

where one part was reserved as the test set and the remaining four parts were used to

perform a four-fold cross validation of the hyperparameter tuning where one part acted as

the validation set.

Since tuning the hyperparameters of a CNN is computationally expensive, we used Bayesian

optimization for this process as described in Algorithm S1. We aimed to find the global

optimum 𝐱∗ of an unknown objective function 𝑓 where 𝑓(𝐱) was evaluated for 𝐱 ∈ 𝒳. That

is,

𝐱∗ = arg min𝐱∈𝒳 𝑓(𝐱), (S1)

where 𝒳 is a hyperparameter space that contains discrete and continuous variables (integers

and real numbers).

The objective function was approximated using Gaussian processes (GPs) as the surrogate

model. Prior functions were defined using GPs, which were used to incorporate prior beliefs

about the objective function. As the GP posterior is inexpensive to test, it was used to suggest

points in the search space where sampling is likely to result in an improvement.

We applied expected improvement as the acquisition function in order to direct sampling to

regions where an improvement over the current best observation is anticipated. This

 S8

direction is accomplished by balancing exploration and exploitation: sampling where the

predictive uncertainty is large against sampling where the surrogate model predicts a high

objective. Given that 𝑓′ is the minimal value of 𝑓 observed so far, expected improvement

evaluates 𝑓 at the point where 𝑓′ is expected to improve the most. This is expressed by the

following utility function:

𝑢(𝐱) = max(0, 𝑓′ − 𝑓(𝐱)). (S2)

This means that if 𝑓(𝐱) is less than 𝑓′ , a reward equal to the improvement 𝑓′ − 𝑓(𝐱) is

received, and no reward otherwise. Hence, the expected improvement is the expected utility

as a function of 𝐱:

𝛼EI(𝐱) = 𝔼[𝑢(𝐱) | 𝐱, 𝐷], (S3)

where 𝐷 are the samples drawn from 𝑓 so far.

Algorithm S1. Bayesian Optimization

1: for 𝑛 = 1, 2, ..., do

2: select new 𝐱𝑛+1 by optimizing acquisition function 𝛼:

 𝐱𝑛+1 = arg max
𝐱

𝛼(𝐱; 𝐷𝑛)

3: query objective function to obtain 𝑦𝑛+1

4: update samples 𝐷𝑛+1 = {𝐷𝑛, (𝐱𝑛+1, 𝑦𝑛+1)}

5: update statistical model

A total of 50 evaluations were made for each of the folds. During each evaluation, validation

loss was monitored and if no improvement was seen for five consecutive epochs, the learning

rate was reduced by a factor of 10 until the minimum learning rate of 1×10-6 was reached.

 S9

Training was terminated once validation loss stopped improving for 10 consecutive epochs.

During this process, we monitored the binary cross-entropy metric, which was minimized. The

dimensions, corresponding search space, and the best performing hyperparameters, that

were explored are shown in Table S2.

Table S2. The optimized hyperparameters, search space, and optimum values for our CNN

model.

Dimension Search space Optimum

Number of convolutional layers Low = 1, high = 5 (integer) 2

Number of filters Low = 4, high = 32 (integer) 31

Kernel size Low = 2, high = 12 (integer) 11

Number of dense nodes Low = 1000, high = 5000 (integer) 4927

Dense layer divisor Low = 0.25, high = 0.8 (real) 0.5653

Dropout Low = 0, high = 0.5 (real) 0.4860

Batch size Low = 8, high = 512 (integer) 41

CNN architecture

The hyperparameters, which yielded the best performance, regarding validation loss during

the Bayesian optimization process, were used to train the CNN on the combined data of the

training set and the validation set. Figure 1 displays a graphical representation of the CNN

architecture, while Table S2 provides further details. We trained one-dimensional

convolutional kernels since the CNN accepts one-dimensional inputs that cover the complete

IR spectrum (intensity gathered at equally-spaced wavenumbers, in 6 cm-1 increments across

the full 400-4000 cm-1 range).

Our CNN architecture, which is a variant of LeNet 5, consists of two convolutional layers for

feature extraction and four fully-connected layers for classification. The first convolutional

 S10

layer carries out convolutional with a kernel (or filter) size of 11 and stride of 1. The first and

second convolution layers have 31 and 62 filters, respectively. We employed padding with

zeros evenly to the left and right of the input, resulting in an output that had the same size as

the input. Each convolutional layer is followed by a max-pooling layer with a pool size of two,

through which a region in the input map is pooled, with a stride of two, into a neuron within

the output map. The output of the second max-pooling layer is flattened so that it can be fed

into the fully-connected upper layers of the CNN. The first, second, and third dense layers of

this CNN have 4927, 2785, and 1574 nodes, respectively. For these upper layers and the

convolutional layers, we used the ReLU6 activation function to introduce nonlinearity

between the layers of the network. It is defined as

𝑓(𝑥) = {
𝑥, if 𝑥 ≥ 0
0, if 𝑥 < 0,

 (S4)

where 𝑥 is the input to a neuron. The number of outputs in the final dense layer is equal to

the number of classes and uses the sigmoid activation function which is defined as

𝜎(𝑥) =
1

1 + 𝑒−𝑥
. (S5)

Batch normalization7 was conducted after each convolutional layer and dropout8 was used

after each fully-connected layer to minimize overfitting of the model to the data.

 S11

CNN training

The prediction of multi-label functional groups was enabled by employing binary cross-

entropy as the loss function, which is defined as

𝐽𝑏𝑐𝑒 = −
1

𝑀
∑ [𝑦𝑚 ∙ log(ℎ𝜃(𝑥𝑚)) + (1 − 𝑦𝑚) ∙ log(1 − ℎ𝜃(𝑥𝑚))]

𝑀

𝑚=1

, (S6)

where 𝑀 is the number of training examples, 𝑦𝑚 is the target label for the training example,

𝑚, 𝑥𝑚 is the input for the training example, 𝑚, and ℎ𝜃 is the model with neural network

weights, 𝜃.

The weights of the model were trained using the Adam algorithm9 for 42 epochs with 𝛽1 =

0.9, 𝛽2 = 0.999, and 𝜖 = 1 ×10-8. We used a custom learning-rate scheduler to reduce the

learning rate at specific epochs. The initial learning rate was 2.5×10-4. At epoch 31, this was

reduced to 2.5×10-5. Finally, for epochs 37 to 42 inclusive, the learning rate was reduced to

2.5×10-6. The layers were initialized using a Gaussian distribution with a mean of zero and a

variance of 0.05.

We implemented several additional techniques in an attempt to improve the performance of

our model, including data augmentation using weighted binary cross-entropy as the loss

function, and optimal thresholding.

 S12

We augmented the data in four different ways: (1) We introduced random noise that was

proportionate to the magnitude at each wavenumber. (2) We translated each spectrum by a

few wavenumbers left or right at random. (3) We used a linear combination of a random

selection of two spectra for compounds that are described by more than one spectrum in the

dataset. The coefficients for each linear combination, which were summed to one, were

assigned randomly. (4) We carried out oversampling to act as a control. The amount of data

that was augmented was kept constant for all augmentation methods and oversampling: 25%,

50%, 75%, and 100% of the training set and validation set combined. With the exception of

the linear combination process, augmentation and oversampling were undertaken on the

same selection of samples so that their effects could be compared.

The standard weighted binary cross entropy was employed, as defined by:

𝐽𝑤𝑏𝑐𝑒 = −
1

𝑀
∑ [𝑤 ∙ 𝑦𝑚 ∙ log(ℎ𝜃(𝑥𝑚)) + (1 − 𝑦𝑚) ∙ log(1 − ℎ𝜃(𝑥𝑚))]

𝑀

𝑚=1

, (S7)

where the weight, 𝑤, was implemented to improve our model. An additional weight term was

set to adjust the impact of the positive class and give more weight to the minority class.

The optimal threshold for each class was calculated by plotting a precision-recall curve and

selecting the corresponding threshold for precision and recall values, which gives the highest

F1-score; see section 2.6 for definitions of precision, recall, and F1-score. The performance of

our model was evaluated using the calculated optimal thresholds and the default threshold

of 0.5 when interpreting the predicted probabilities.

 S13

Evaluation metrics

The evaluation metrics used to assess the multi-label classification performance of our model

in identifying 37 functional groups are: F1-score, precision, recall, accuracy, average precision,

and exact match ratio (EMR). All of these metrics, except for the EMR, were calculated per

class label.

Precision represents how many of the returned predictions are true positives and recall

measures how many of the true positives are found. The harmonic mean of precision and

recall is the F1-score.

We also calculate the accuracy per class label. Rather than calculating the overall accuracy,

we separate calculations of accuracy for the presence and the absence of functional groups

as there is a large imbalance between the positive class and the negative class.

Furthermore, we report a metric that allows us to focus our attention on the positive class,

which we want to find, the average precision (AP). The AP summarizes precision-recall (PR)

curves which are sensitive to improvements in the positive class. As we have a heavily

imbalanced dataset, where the fraction of the positive class is small compared to that of the

negative class, PR curves were useful as a diagnostic tool to aid in the interpretation of

probabilistic forecasts for the per-class binary classification. They show the trade-off between

the positive predictive value (PPV) and the true positive rate (TPR) for different probability

thresholds, allowing us to focus our attention on the positive class. To summarize the PR

curves for each target class, the average precision (AP) is calculated as the weighted mean of

 S14

precisions that are acquired at each threshold, with the increase in recall from the previous

threshold being used as the weight; see Equation S8.

𝐴𝑃 = ∑(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛

𝑛

, (S8)

where 𝑃𝑛 and 𝑅𝑛 are the precision and recall at the 𝑛-th threshold. The AP provides a better

summary when compared to computing the area under the PR curve, which can be too

optimistic due to its use of the trapezoidal rule 10.

For a complete analysis, it is paramount to identify all functional groups that are present in a

molecule. One way to measure this is by extending the accuracy metric used in single-label

cases to multi-label cases. Such an evaluation metric is the EMR, which is the ratio of samples

that have all their labels classified correctly; see Equation S9.

𝐸𝑀𝑅 =
1

𝑛
∑ 𝐼(𝑌𝑖 = 𝑍𝑖)

𝑛

𝑖=1

, (S9)

where 𝑛 is the number of training examples, 𝑌𝑖 are the true labels for the 𝑖 -th training

example, 𝑍𝑖 are the predicted labels for the 𝑖-th training example. It is a harsh metric for

multi-label classification performance as it considers all partially correct predictions as

incorrect.

 S15

Supplementary tables

Table S3. Definition of SMARTS strings and the prevalence of functional groups that were

excluded from consideration due to a lack of samples.

Functional group SMARTS string Sample frequency

Allene [CX3]=[CX2]=[CX3] 36

Azide [$(*-[NX2-]-[NX2+]#[NX1]),$(*-[NX2]=[NX2+]=[NX1-])] 47

Carbamic acid [NX3][CX3](=[OX1])[OX2H] 1

Cyanate [OX2][CX2]#N 0

Nitrate [$([NX3](=[OX1])(=[OX1])O),$([NX3+]([OX1-])(=[OX1])O)] 39

Nitrite [OX2][NX2]=O 8

Sulfinic acid [#16X3](=[OX1])[OX2H] 6

Thiocyanate [SX2][CX2]#N 60

Thioketone [#6][CX3](=S)[#6] 8

References

(1) National Institute of Advanced Science and Technology, SDBS Web.

https://sdbs.db.aist.go.jp (accessed Jan 12, 2021)

(2) Lindstrom, P. J.; Mallard, W. G.; Eds. "Infrared Spectra" in NIST Chemistry

WebBook; NIST Standard Reference Database Number 69. National Institute of

Standards and Technology: Gaithersburg, MD. https://webbook.nist.gov (accessed Oct

20, 2020).

(3) O’Boyle, N. M. Towards a Universal SMILES Representation - A Standard Method to

Generate Canonical SMILES Based on the InChI. Journal of Cheminformatics 2012, 4

(1). https://doi.org/10.1186/1758-2946-4-22.

(4) Landrum, G. RDKit: Open-Source Cheminformatics Software; https://www.rdkit.org.

2016
(5) Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to

Document Recognition. Proceedings of the IEEE 1998, 86 (11), 2278–2324.

https://doi.org/10.1109/5.726791.

(6) Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical Evaluation of Rectified Activations in

Convolutional Network. 2015. https://doi.org/10.48550/arXiv.1505.00853

(7) Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift. 2015. https://doi.org/10.48550/arXiv.1502.03167

(8) Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.;

Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of

Machine Learning Research 2014, 15 (1), 1929-1958.

(9) Kingma, D. P.; Ba, J. Adam: A Method for Stochastic Optimization. 2014.

https://doi.org/10.48550/arXiv.1412.6980

 S16

(10) Saito, T.; Rehmsmeier, M. The Precision-Recall Plot Is More Informative than the

ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLOS ONE

2015, 10 (3). https://doi.org/10.1371/journal.pone.0118432.

