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Methods 

 

Data collection 

 

We obtained data from the National Institute of Advanced Industrial Science and Technology 

(AIST)1 which comprises spectra of materials that were acquired in one of four different types 

of condensed-phase sample environment: KBr disc, Nujol mull, single-component liquid film, 

and CCl4 solution. The spectra were downloaded as image files which were subsequently 

digitalized using pixel mapping. This entailed detecting vertical and horizontal lines that form 

a rectangle of a specific size in order to identify the region of interest (ROI). Raster scanning 

was used to inspect each pixel in the ROI, saving the x and y coordinates of pixels whose colors 

exceed a certain threshold of red-green-blue (RGB) values. The extracted spectra had a 

resolution of 4 cm-1 in the low wavenumber range (400-2000 cm-1), while the resolution in 

the high wavenumber range (2000-4000 cm-1) was 8 cm-1. AIST data contained only 

transmittance spectra. We also gathered data from the National Institute of Standards and 

Technology (NIST)2 that contained gas-phase spectra. The spectra from NIST were obtained 

as JCAMP-DX files, which had a resolution of 2 cm-1. NIST data contained both transmittance 

and absorbance spectra. 

 

It was necessary to normalize these spectra from different sources to present them on the 

same scale. All absorbance spectra from the NIST database were converted to transmittance 

spectra. The raw spectra from the two data sources were interpolated with first-order splines 

in order to obtain vectors with 600 normalized transmittance values (at 6 cm-1 intervals) 

across the frequency range of 400 cm-1 to 4000 cm-1. A relatively low resolution was chosen 
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because CNNs could detect patterns in the data with reduced dimensionality. Some of the 

NIST spectra had gaps in the transmittance values where measurements were not taken over 

the entire range of 400-4000 cm-1. AIST spectra collected in CCl4 solution exhibited 

discontinuities in the 690-850 cm-1 and 1500-1600 cm-1 frequency ranges owing to heavy 

solvent absorption of the IR beam, which were filled during the interpolation step. 

 

For each spectrum, the InChI string of its sample material was scraped. InChI was chosen over 

the alternate SMILES chemical-identity representation for this purpose because it intends to 

give a unique (or canonical) identifier for chemical structures, whereas SMILES strings are 

used for storage and interchange of chemical structures without a standard for generating 

canonical strings.3 

 

Certain spectra from the data sources were removed from consideration by manual selection 

for various reasons. If spectra from either data source could not be linked to valid InChI strings, 

they were removed. This accounted for 3437 spectra that were not included. A selection of 

low-quality spectral images obtained from AIST were excluded, accounting for 2832 spectra. 

Some InChI strings were converted to MOL format incorrectly, resulting in the exclusion of 83 

spectra. After this data pruning stage, the two sources of data afforded 50,936 IR spectra on 

30,611 compounds with unique InChI strings. 

 

Choice of functional groups 

 

We chose 37 functional groups to enable our task of chemical identification from IR-spectra. 

This choice reflects the abundance of each functional group in the two dataset sources and 
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those that are commonly identified using FTIR spectroscopy. The most commonly 

characterized functional groups were used to train the machine-learning model that can draw 

insights from learned chemical patterns in the same manner that human chemists can do. It 

is worth adding that this model could be expanded in future work to adopt more abstract 

definitions of functional groups, e.g., if one wants to tailor the model to identify certain series 

of compounds. We eliminated any functional groups that had fewer than 130 samples within 

the dataset. These excluded functional groups are shown in Table S2. We defined and tested 

SMARTS strings for each of the functional groups, as shown in Table S1. For every sample, 

substructure matching was performed between a molecule constructed from its InChI string 

and each of the 37 molecules that had been constructed from SMARTS strings of the 37 

functional groups using RDKit.4 Through this process, labels were created to record the 

presence of the functional groups. 

 

 

 

 

 

 

 

 

 

 

 



 S6 

Table S1. Definition of SMARTS strings used to identify the presence of functional groups in 

each sample molecule. The prevalence of each functional group across the entire dataset is 

also displayed. *Functional groups that were included in the training of the original model. 

Functional group SMARTS string Sample frequency 

Acid anhydride* [CX3](=[OX1])[OX2][CX3](=[OX1]) 285 

Acyl halide* [CX3](=[OX1])[F,Cl,Br,I] 354 

Alcohol* [#6][OX2H] 18142 

Aldehyde* [CX3H1](=O)[#6,H] 928 

Alkane* [CX4;H3,H2] 39002 

Alkene* [CX3]=[CX3] 6593 

Alkyne* [CX2]#[CX2] 562 

Amide* [NX3][CX3](=[OX1])[#6] 1873 

Amine* [NX3;H2,H1,H0;!$(NC=O)] 12521 

Arene* [cX3]1[cX3][cX3][cX3][cX3][cX3]1 29571 

Azo compound* [#6][NX2]=[NX2][#6] 501 

Carbamate [NX3][CX3](=[OX1])[OX2H0] 239 

Carboxylic acid* [CX3](=O)[OX2H] 5282 

Enamine [NX3][CX3]=[CX3] 455 

Enol [OX2H][#6X3]=[#6] 157 

Ester* [#6][CX3](=O)[OX2H0][#6] 6614 

Ether* [OD2]([#6])[#6] 14708 

Haloalkane* [#6][F,Cl,Br,I] 10723 

Hydrazine [NX3][NX3] 343 

Hydrazone [NX3][NX2]=[#6] 784 

Imide* [CX3](=[OX1])[NX3][CX3](=[OX1]) 536 

Imine* [$([CX3]([#6])[#6]),$([CX3H][#6])]=[$([NX2][#6]),$([NX2H])] 326 

Isocyanate [NX2]=[C]=[O] 131 

Isothiocyanate [NX2]=[C]=[S] 270 

Ketone* [#6][CX3](=O)[#6] 5441 

Nitrile* [NX1]#[CX2] 1993 

Phenol* [OX2H][cX3]:[c] 4796 

Phosphine [PX3] 153 

Sulfide [#16X2H0] 3034 

Sulfonamide [#16X4]([NX3])(=[OX1])(=[OX1])[#6] 777 

Sulfonate [#16X4](=[OX1])(=[OX1])([#6])[OX2H0] 313 

Sulfone [#16X4](=[OX1])(=[OX1])([#6])[#6] 376 

Sulfonic acid [#16X4](=[OX1])(=[OX1])([#6])[OX2H] 468 

Sulfoxide [#16X3]=[OX1] 137 

Thial* [CX3H1](=O)[#6,H] 928 

Thioamide [NX3][CX3]=[SX1] 321 

Thiol* [#16X2H] 955 
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Hyperparameter tuning 

 

The collected IR-spectral data were split into five equal parts using stratified random sampling 

where one part was reserved as the test set and the remaining four parts were used to 

perform a four-fold cross validation of the hyperparameter tuning where one part acted as 

the validation set. 

 

Since tuning the hyperparameters of a CNN is computationally expensive, we used Bayesian 

optimization for this process as described in Algorithm S1. We aimed to find the global 

optimum 𝐱∗ of an unknown objective function 𝑓 where 𝑓(𝐱) was evaluated for 𝐱 ∈ 𝒳. That 

is, 

 

𝐱∗ = arg min𝐱∈𝒳  𝑓(𝐱),                                                       (S1) 

 

where 𝒳 is a hyperparameter space that contains discrete and continuous variables (integers 

and real numbers). 

 

The objective function was approximated using Gaussian processes (GPs) as the surrogate 

model. Prior functions were defined using GPs, which were used to incorporate prior beliefs 

about the objective function. As the GP posterior is inexpensive to test, it was used to suggest 

points in the search space where sampling is likely to result in an improvement. 

 

We applied expected improvement as the acquisition function in order to direct sampling to 

regions where an improvement over the current best observation is anticipated. This 
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direction is accomplished by balancing exploration and exploitation: sampling where the 

predictive uncertainty is large against sampling where the surrogate model predicts a high 

objective. Given that 𝑓′ is the minimal value of 𝑓 observed so far, expected improvement 

evaluates 𝑓 at the point where 𝑓′ is expected to improve the most. This is expressed by the 

following utility function: 

 

𝑢(𝐱)  =  max(0, 𝑓′  −  𝑓(𝐱)).                                                (S2)                                              

 

This means that if 𝑓(𝐱) is less than 𝑓′ , a reward equal to the improvement 𝑓′ − 𝑓(𝐱) is 

received, and no reward otherwise. Hence, the expected improvement is the expected utility 

as a function of 𝐱: 

 

𝛼EI(𝐱) = 𝔼[𝑢(𝐱) | 𝐱, 𝐷],                                                     (S3)                                                      

 

where 𝐷 are the samples drawn from 𝑓 so far. 

 

Algorithm S1. Bayesian Optimization 

1: for 𝑛 = 1, 2, ..., do 

2:       select new 𝐱𝑛+1 by optimizing acquisition function 𝛼:  

 𝐱𝑛+1 = arg max
𝐱

𝛼(𝐱; 𝐷𝑛)  

3:       query objective function to obtain 𝑦𝑛+1 

4:       update samples 𝐷𝑛+1 = {𝐷𝑛, (𝐱𝑛+1, 𝑦𝑛+1)} 

5:       update statistical model 

 

A total of 50 evaluations were made for each of the folds. During each evaluation, validation 

loss was monitored and if no improvement was seen for five consecutive epochs, the learning 

rate was reduced by a factor of 10 until the minimum learning rate of 1×10-6 was reached. 
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Training was terminated once validation loss stopped improving for 10 consecutive epochs. 

During this process, we monitored the binary cross-entropy metric, which was minimized. The 

dimensions, corresponding search space, and the best performing hyperparameters, that 

were explored are shown in Table S2. 

 

Table S2. The optimized hyperparameters, search space, and optimum values for our CNN 

model. 

Dimension Search space Optimum 

Number of convolutional layers Low = 1, high = 5 (integer) 2 

Number of filters Low = 4, high = 32 (integer) 31 

Kernel size Low = 2, high = 12 (integer) 11 

Number of dense nodes Low = 1000, high = 5000 (integer) 4927 

Dense layer divisor Low = 0.25, high = 0.8 (real) 0.5653 

Dropout Low = 0, high = 0.5 (real) 0.4860 

Batch size Low = 8, high = 512 (integer) 41 

 

CNN architecture 

 

The hyperparameters, which yielded the best performance, regarding validation loss during 

the Bayesian optimization process, were used to train the CNN on the combined data of the 

training set and the validation set. Figure 1 displays a graphical representation of the CNN 

architecture, while Table S2 provides further details. We trained one-dimensional 

convolutional kernels since the CNN accepts one-dimensional inputs that cover the complete 

IR spectrum (intensity gathered at equally-spaced wavenumbers, in 6 cm-1 increments across 

the full 400-4000 cm-1 range). 

 

Our CNN architecture, which is a variant of LeNet 5, consists of two convolutional layers for 

feature extraction and four fully-connected layers for classification. The first convolutional 
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layer carries out convolutional with a kernel (or filter) size of 11 and stride of 1. The first and 

second convolution layers have 31 and 62 filters, respectively. We employed padding with 

zeros evenly to the left and right of the input, resulting in an output that had the same size as 

the input. Each convolutional layer is followed by a max-pooling layer with a pool size of two, 

through which a region in the input map is pooled, with a stride of two, into a neuron within 

the output map. The output of the second max-pooling layer is flattened so that it can be fed 

into the fully-connected upper layers of the CNN. The first, second, and third dense layers of 

this CNN have 4927, 2785, and 1574 nodes, respectively. For these upper layers and the 

convolutional layers, we used the ReLU6 activation function to introduce nonlinearity 

between the layers of the network. It is defined as 

 

𝑓(𝑥) = {
𝑥, if 𝑥 ≥ 0 
0, if 𝑥 < 0,

                                                       (S4) 

 

where 𝑥 is the input to a neuron. The number of outputs in the final dense layer is equal to 

the number of classes and uses the sigmoid activation function which is defined as 

 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
.                                                             (S5) 

 

Batch normalization7 was conducted after each convolutional layer and dropout8 was used 

after each fully-connected layer to minimize overfitting of the model to the data. 
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CNN training 

 

The prediction of multi-label functional groups was enabled by employing binary cross-

entropy as the loss function, which is defined as 

 

𝐽𝑏𝑐𝑒 = −
1

𝑀
∑ [𝑦𝑚 ∙ log(ℎ𝜃(𝑥𝑚)) + (1 − 𝑦𝑚) ∙ log(1 − ℎ𝜃(𝑥𝑚))]

𝑀

𝑚=1

,                (S6) 

 

where 𝑀 is the number of training examples, 𝑦𝑚 is the target label for the training example, 

𝑚, 𝑥𝑚  is the input for the training example, 𝑚, and ℎ𝜃  is the model with neural network 

weights, 𝜃. 

 

The weights of the model were trained using the Adam algorithm9 for 42 epochs with 𝛽1 =

0.9, 𝛽2 = 0.999, and 𝜖 = 1 ×10-8. We used a custom learning-rate scheduler to reduce the 

learning rate at specific epochs. The initial learning rate was 2.5×10-4. At epoch 31, this was 

reduced to 2.5×10-5. Finally, for epochs 37 to 42 inclusive, the learning rate was reduced to 

2.5×10-6. The layers were initialized using a Gaussian distribution with a mean of zero and a 

variance of 0.05. 

 

We implemented several additional techniques in an attempt to improve the performance of 

our model, including data augmentation using weighted binary cross-entropy as the loss 

function, and optimal thresholding.  
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We augmented the data in four different ways: (1) We introduced random noise that was 

proportionate to the magnitude at each wavenumber. (2) We translated each spectrum by a 

few wavenumbers left or right at random. (3) We used a linear combination of a random 

selection of two spectra for compounds that are described by more than one spectrum in the 

dataset. The coefficients for each linear combination, which were summed to one, were 

assigned randomly. (4) We carried out oversampling to act as a control. The amount of data 

that was augmented was kept constant for all augmentation methods and oversampling: 25%, 

50%, 75%, and 100% of the training set and validation set combined. With the exception of 

the linear combination process, augmentation and oversampling were undertaken on the 

same selection of samples so that their effects could be compared. 

 

The standard weighted binary cross entropy was employed, as defined by: 

 

𝐽𝑤𝑏𝑐𝑒 = −
1

𝑀
∑ [𝑤 ∙ 𝑦𝑚 ∙ log(ℎ𝜃(𝑥𝑚)) + (1 − 𝑦𝑚) ∙ log(1 − ℎ𝜃(𝑥𝑚))]

𝑀

𝑚=1

,        (S7) 

 

where the weight, 𝑤, was implemented to improve our model. An additional weight term was 

set to adjust the impact of the positive class and give more weight to the minority class. 

 

The optimal threshold for each class was calculated by plotting a precision-recall curve and 

selecting the corresponding threshold for precision and recall values, which gives the highest 

F1-score; see section 2.6 for definitions of precision, recall, and F1-score. The performance of 

our model was evaluated using the calculated optimal thresholds and the default threshold 

of 0.5 when interpreting the predicted probabilities. 
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Evaluation metrics 

 

The evaluation metrics used to assess the multi-label classification performance of our model 

in identifying 37 functional groups are: F1-score, precision, recall, accuracy, average precision, 

and exact match ratio (EMR). All of these metrics, except for the EMR, were calculated per 

class label. 

 

Precision represents how many of the returned predictions are true positives and recall 

measures how many of the true positives are found. The harmonic mean of precision and 

recall is the F1-score. 

 

We also calculate the accuracy per class label. Rather than calculating the overall accuracy, 

we separate calculations of accuracy for the presence and the absence of functional groups 

as there is a large imbalance between the positive class and the negative class. 

 

Furthermore, we report a metric that allows us to focus our attention on the positive class, 

which we want to find, the average precision (AP). The AP summarizes precision-recall (PR) 

curves which are sensitive to improvements in the positive class. As we have a heavily 

imbalanced dataset, where the fraction of the positive class is small compared to that of the 

negative class, PR curves were useful as a diagnostic tool to aid in the interpretation of 

probabilistic forecasts for the per-class binary classification. They show the trade-off between 

the positive predictive value (PPV) and the true positive rate (TPR) for different probability 

thresholds, allowing us to focus our attention on the positive class. To summarize the PR 

curves for each target class, the average precision (AP) is calculated as the weighted mean of 



 S14 

precisions that are acquired at each threshold, with the increase in recall from the previous 

threshold being used as the weight; see Equation S8.  

 

𝐴𝑃 = ∑(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛

𝑛

,                                                    (S8) 

 

where 𝑃𝑛 and 𝑅𝑛 are the precision and recall at the 𝑛-th threshold. The AP provides a better 

summary when compared to computing the area under the PR curve, which can be too 

optimistic due to its use of the trapezoidal rule 10. 

 

For a complete analysis, it is paramount to identify all functional groups that are present in a 

molecule. One way to measure this is by extending the accuracy metric used in single-label 

cases to multi-label cases. Such an evaluation metric is the EMR, which is the ratio of samples 

that have all their labels classified correctly; see Equation S9. 

 

𝐸𝑀𝑅 =
1

𝑛
∑ 𝐼(𝑌𝑖 = 𝑍𝑖)

𝑛

𝑖=1

,                                                     (S9) 

 

where 𝑛  is the number of training examples, 𝑌𝑖  are the true labels for the 𝑖 -th training 

example, 𝑍𝑖  are the predicted labels for the 𝑖-th training example. It is a harsh metric for 

multi-label classification performance as it considers all partially correct predictions as 

incorrect. 
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Supplementary tables 

 
 
Table S3. Definition of SMARTS strings and the prevalence of functional groups that were 

excluded from consideration due to a lack of samples. 

 
Functional group SMARTS string Sample frequency 

Allene [CX3]=[CX2]=[CX3] 36 

Azide [$(*-[NX2-]-[NX2+]#[NX1]),$(*-[NX2]=[NX2+]=[NX1-])] 47 

Carbamic acid [NX3][CX3](=[OX1])[OX2H] 1 

Cyanate [OX2][CX2]#N 0 

Nitrate [$([NX3](=[OX1])(=[OX1])O),$([NX3+]([OX1-])(=[OX1])O)] 39 

Nitrite [OX2][NX2]=O 8 

Sulfinic acid [#16X3](=[OX1])[OX2H] 6 

Thiocyanate [SX2][CX2]#N 60 

Thioketone [#6][CX3](=S)[#6] 8 
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