Electronic Supporting Information Regioselectivity of Concerted Proton-Electron Transfer at the Surface of a Polyoxovanadate Cluster

Eric Schreiber, William W. Brennessel, and Ellen M. Matson*

Department of Chemistry, University of Rochester, Rochester NY, USA 14627

Supporting Information Table of Contents:

Table S1. Crystallographic parameters of the molecular structures obtained for complexes $2-V_6O_8^{2-}$ and $V_4O_7(OH)^{2-}$	1 3- S2
Figure S1 ¹ H NMR spectra of $1-V_1\Omega_0^0$ and reactions with ¹ / ₂ and 1 equiv of H ₂ Phen at 21°C in CD ₂ CN	53
Figure S2. ESI-MS of 2-V ₆ O_6^{2-}	.55 S4
Figure S3. Cyclic voltammogram of 1 mM $1-V_6 Q_8^0$ (green, bottom) and $2-V_6 Q_8^{2-}$ (purple, top) collected in	.~.
MeCN with 100 mM [$^{n}Bu_{4}N$][PF ₆] supporting electrolyte at 100 mV/s	. S4
Figure S4. ¹ H NMR spectra of $1-V_6 O_8^0$ and $2-V_6 O_8^{-2}$ at 21°C in CD ₃ CN	.S3
Figure S5. ¹ H NMR spectra of $2-V_6 O_8^{2-}$ (purple, bottom), $3-V_6 O_7 (OH)^{2-}$ (teal, middle), and $3-V_6 O_7 (OH)^{2-}$	
after reacting with 1 equivalent of TEMPO (red, top) recorded in CD ₃ CN at 21°C	.S5
Figure S6. ESI-MS of $3-V_6O_7(OH)^2$.S5
Figure S7. Single crystal X-ray structure of $3-V_6O_7(OH)^2$ a) Cluster asymmetric unit with C-atom	
occupancies. b) Cluster formula unit after data refinement, with the O4-H bond highlighted	. S6
Table S2. Bond valence sum calculations on X-ray crystal structure data of $2-V_6O_8^{2-}$. Bolded values indicate	
the representative oxidation state of the respective ion	. S6
Figure S8. Cyclic voltammogram of 1 mM 2 -V ₄ O_{2} ²⁻ from 1.5 to -2.5 V vs Fc ^{+/0} collected in MeCN with 100	
mM ["Bu ₄ N][PF ₆] supporting electrolyte at 100 mV/s.	.S6
Figure S9. ¹ H NMR spectra of $2-V_cO_s^{2-}$ before (purple, bottom), and after exposure to one equivalent of	
triethylammonium tetrafluoroborate (brown, top) recorded in CD ₃ CN at 21°C	.S7
Figure S10. Paramagnetic region of the ¹ H NMR spectrum of $2-V_6 O_8^{2-}$ after exposure to half an equivalent	
of hydrazobenzene at 21°C for 14 days recorded in CD ₂ CN at 21°C.	. S8
Figure S11. ¹ H NMR spectra of hydrazobenzene after exposure to two equivalents of $2-V_6 O_8^{2-}$ at 21°C for	
14 days recorded in CD ₂ CN at 21°C (Trial A).	.89
Figure S12. ¹ H NMR spectra of hydrazobenzene after exposure to two equivalents of $2-V_cO_s^{2-}$ at 21°C for	
14 days recorded in CD ₃ CN at 21°C (Trial B)	510
Figure S13. ¹ H NMR spectra of hydrazobenzene after exposure to two equivalents of $2-V_cO_s^{2-}$ at 21°C for	
14 days recorded in CD ₃ CN at 21°C (Trial C)	S11
Figure S14. ¹ H NMR spectra of hydrazobenzene after exposure to two equivalents of $2-V_6 O_8^{2-}$ at 21°C for	
14 days recorded in CD ₃ CN at 21°C (Trial D)	S12
Table S3. BDFF _{adi} calculated from equilibrium reactions described in Figures S11-S14, using the equation	
outlined in the Experimental section in the main text	S12
Figure S15. Plots of absorbance at 1024 nm over time for reactions between $2-V_6O_8^{2-1}$ (1.45 mM) and excess	
H ₂ Phen under pseudo-first order conditions recorded in CH ₃ CN at -25 °C, with raw data	
(black) and a fit curve (red). Concentration of D ₂ Phen for each reaction is noted, alongside	
the fit-derived k _{obs}	S13
Figure S16. Plots of absorbance at 1024 nm over time for reactions between $2-V_6O_8^{2-1}$ (1.45 mM) and excess	
D ₂ Phen under pseudo-first order conditions recorded in CH ₃ CN at -25 °C, with raw data	
(black) and a fit curve (red). Concentration of D ₂ Phen for each reaction is noted, alongside	
the fit-derived k _{obs}	S14
Figure S17. Plots of absorbance at 1024 nm over time for reactions between $2-V_6O_8^{2-}$ (1.45 mM) and H ₂ Phen	
(10.6 mM) recorded in CH ₃ CN between -40 and 10 °C, with raw data (black) and a fit curve	
(red), providing k _{obs} and k _{exp}	S15
Figure S18. Plots of absorbance at 1050 nm over time for reactions between [ⁿ Bu ₄ N][V ₆ O ₇ (OCH ₃) ₁₂] (1.44	
mM) with H ₂ Phen (16.44 mM) recorded in CH ₃ CN between -42.5 and -12.5 °C, with raw	
data (black) and a fit curve (red), providing kobs and kexp	516
Figure S19. Eyring plot for the reaction of $[^{n}Bu_{4}N][V_{6}O_{7}(OCH_{3})_{12}]$ (1.44 mM) with H ₂ Phen (16.44 mM) in	
CH ₃ CN between -42.5 and -12.5 °C. Y-axis values were determined by dividing k _{obs} by the	
concentration of H ₂ Phen, providing the rate constant, k _{exp} . Activation parameters are labelled	
on the plot	517
Figure S20. FTIR (ATR) spectra of $2-V_6O_8^{2-}$ and $3-V_6O_7(OH)^{2-}$	S17

Compound	2-V ₆ O ₈ ²⁻	3-V6O7(OH) ²⁻
Empirical formula	C ₃₁ H ₅₃ O ₁₉ Co ₂ V ₆	C43H106N2O19V6
Formula weight	1153.23	1260.93
Temperature / K	223.00(10)	100.00(10)
Wavelength / Å	1.54184	1.54184
Crystal group	Orthorhombic	Triclinic
Space group	Pnna	P-1
Unit cell dimensions	a = 16.8845(2) Å b = 41.3260(6) Å c = 14.1744(3) Å $a = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$	a = 11.98260(10) Å b = 11.99650(10) Å c = 13.43130(10) Å $a = 95.1060(10)^{\circ}$ $\beta = 115.5700(10)^{\circ}$ $\gamma = 113.8640(10)^{\circ}$
Volume / Å ³	9890.5(3)	1509.23(3)
Ζ	8	1
Reflections collected	124947	95852
Independent reflections	67691	51188
Completeness (theta)	100.0% (74.504°)	99.7% (74.504°)
Goodness-of-fit on <i>F</i> ²	1.064	1.078
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0854	R1 = 0.0361
Largest diff. peak and hole	2.392 and -1.301 e.Å ⁻³	1.082 and -1.015 e.Å ⁻³

Table S1. Crystallographic parameters of the molecular structures obtained for complexes 2-
 $V_6O_8^{2-}$ and 3- $V_6O_7(OH)^{2-}$

Figure S1. ¹H NMR spectra of 1-V₆O₈⁰ and reactions with ¹/₂ and 1 equiv of H₂Phen at 21°C in CD₃CN.

Figure S2. ESI-MS of 2-V₆O₈²⁻.

Figure S3. Cyclic voltammogram of 1 mM **1-V₆O₈⁰** (green, bottom) and **2-V₆O₈²⁻** (purple, top) collected in MeCN with 100 mM [ⁿBu₄N][PF₆] supporting electrolyte at 100 mV/s.

Figure S4. ¹H NMR spectra of $1-V_6O_8^0$ and $2-V_6O_8^{2-}$ at 21°C in CD₃CN.

Figure S5. ¹H NMR spectra of $2-V_6O_8^{2-}$ (purple, bottom), $3-V_6O_7(OH)^{2-}$ (teal, middle), and $3-V_6O_7(OH)^{2-}$ after reacting with 1 equivalent of TEMPO (red, top) recorded in CD₃CN at 21°C.

Figure S7. Single crystal X-ray structure of $3-V_6O_7(OH)^{2-}$. a) Cluster asymmetric unit with C-atom occupancies. b) Cluster formula unit after data refinement, with the O4-H bond highlighted.

Table S2. Bond valence sum calculations on X-ray crystal structure data of $2-V_6O_8^{2-}$. Bolded values indicate the representative oxidation state of the respective ion.

Complex	Oxidation State (V ⁿ)	V1ª	V2 ^a	V3	V4	V5	V6
2 V.O.(OCH.)2-	VIV	4.490	4.023	4.071	4.044	4.024	3.999
3-V6O8(OCH3)11-	VV	4.779	4.291	4.340	4.314	4.292	4.266

^a Indicates V ions bound to the μ_2 -oxide.

Figure S8. Cyclic voltammogram of 1 mM **2-V₆O₈²⁻** from 1.5 to -2.5 V vs Fc^{+/0} collected in MeCN with 100 mM [ⁿBu₄N][PF₆] supporting electrolyte at 100 mV/s.

Figure S9. ¹H NMR spectra of $2-V_6O_8^{2-}$ before (purple, bottom), and after exposure to one equivalent of triethylammonium tetrafluoroborate (brown, top) recorded in CD₃CN at 21°C.

Figure S10. Paramagnetic region of the ¹H NMR spectrum of $2-V_6O_8^{2-}$ after exposure to half an equivalent of hydrazobenzene at 21°C for 14 days recorded in CD₃CN at 21°C.

Figure S11. ¹H NMR spectra of hydrazobenzene after exposure to two equivalents of **2-V₆O₈²⁻** at 21°C for 14 days recorded in CD₃CN at 21°C (Trial A).

Figure S12. ¹H NMR spectra of hydrazobenzene after exposure to two equivalents of $2-V_6O_8^{2-}$ at 21°C for 14 days recorded in CD₃CN at 21°C (Trial B).

Figure S13. ¹H NMR spectra of hydrazobenzene after exposure to two equivalents of $2-V_6O_8^{2-}$ at 21°C for 14 days recorded in CD₃CN at 21°C (Trial C).

Figure S14. ¹H NMR spectra of hydrazobenzene after exposure to two equivalents of $2-V_6O_8^{2-}$ at 21°C for 14 days recorded in CD₃CN at 21°C (Trial D).

Table S3. BDFE _{adj} cal	culated from equilibit	rated reactions b	between $2 - V_6 O_8^{2}$	and half an equivalent
of Hyd	z described in Figure	S8, using the eq	quation for BDFI	E _{adj} .

		Hyd	razobenze	ene ^b		Azobenzene					
	7.16 ppm (4 H)		6.77 ppm (6 H)		A	7.91 ppm (4 H) 7.58 ppm (6 H)		A			
		Relative		Relative	Avg.		Relative		Relative	Avg.	BDFEadj
Trial	Integral	Conc. ^a	Integral	Conc. ^a	Conc.	Integral	Conc. ^a	Integral	Conc. ^a	Conc.	(kcal/mol)
Α	1.85	0.463	3.06	0.510	0.486	1.00	0.250	1.50	0.250	0.250	60.7
В	2.39	0.598	3.75	0.625	0.611	1.00	0.250	1.48	0.247	0.248	60.6
C	2.43	0.608	3.89	0.648	0.628	1.00	0.250	1.54	0.257	0.253	60.6
D	2.43	0.608	3.80	0.633	0.620	1.00	0.250	1.54	0.257	0.253	60.6
^{<i>a</i>} Relative concentration of either hydrazobenzene or azobenzene was determined by dividing the integral by the number of Avg.								Avg.	60.6		
protons a given signal(s) corresponds with. Std.								0.1			
^b Integration of the N-H resonance of hydrazobenzene was omitted in this study due to potential broadening of the Dev.									0.1		
resonance by H-bonding with $2-V_6O_8^{2-1}$.											

Figure S15. Plots of absorbance at 1024 nm over time for reactions between $2-V_6O_8^{2-}$ (1.45 mM) and excess H₂Phen under pseudo-first order conditions recorded in CH₃CN at -25 °C, with raw data (black curve) fit by the equation defined in the relevant portion of the Experimental section (red curve). Concentration of H₂Phen for each reaction is noted, alongside the fit-derived k_{obs}.

Figure S16. Plots of absorbance at 1024 nm over time for reactions between $2-V_6O_8^{2-}$ (1.45 mM) and excess D₂Phen under pseudo-first order conditions recorded in CH₃CN at -25 °C, with raw data (black curve) fit by the equation defined in the relevant portion of the Experimental section (red curve). Concentration of D₂Phen for each reaction is noted, alongside the fit-derived k_{obs}.

Figure S17. Plots of absorbance at 1024 nm over time for reactions between $2-V_6O_8^{2-}$ (1.45 mM) and H₂Phen (10.6 mM) recorded in CH₃CN between -40 and 10 °C, with raw data (black curve) fit by the equation defined in the relevant portion of the Experimental section (red curve), providing k_{obs} and k_{exp} (after dividing by the concentration of H₂Phen).

Figure S18. Plots of absorbance at 1050 nm over time for reactions between [ⁿBu₄N][V₆O₇(OCH₃)₁₂] (1.44 mM) with H₂Phen (16.44 mM) recorded in CH₃CN between -42.5 and -12.5 °C, with raw data (black) and a fit curve (red), providing k_{obs} and k_{exp}.

Figure S19. Eyring plot for the reaction of [ⁿBu₄N][V₆O₇(OCH₃)₁₂] (1.44 mM) with H₂Phen (16.44 mM) in CH₃CN between -42.5 and -12.5 °C. Y-axis values were determined by dividing k_{obs} by the concentration of H₂Phen, providing the rate constant, k_{exp}. Activation parameters are labelled on the plot.

Figure S18. FTIR (ATR) spectrum of 2-V₆O₈²⁻ and 3-V₆O₇(OH)²⁻.