Supporting information of

Planar Pentacoordinate s-Block Metals

Meng-hui Wang,^{#a} Amlan J. Kalita,^{#b} Mesías Orozco-Ic, ^{#c} Gai-ru Yan,^a Chen Chen,^a Bing Yan,^a Gabriela Castillo-Toraya,^d William Tiznado,^{*,e} Ankur K. Guha,^{*,b} Sudip Pan,^{*,a} Gabriel Merino,^{*,d} and Zhong-hua Cui^{*a,f}

^aInstitute of Atomic and Molecular Physics, Jilin University, Changchun 130023,

China

E-mails: <u>zcui@jlu.edu.cn</u> (ZC): <u>sudip@jlu.edu.cn</u> (SP) ^bAdvanced Computational Chemistry Centre, Department of Chemistry, Cotton University, Panbazar, Guwahati, Assam 781001, India

E-mail: <u>ankurkantiguha@gmail.com</u>

^cDepartment of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland.

^dDepartamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex,

97310, Mérida, Yuc., México.

Email: gmerino@cinvestav.mx

^eComputational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile.

E-mail: <u>wtiznado@unab.cle</u>

^fKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun 130023, China

#Equal contribution

AM ₅			Frequencies		
A	Li	Na	К	Rb	Cs
Li	77 <i>i</i> (1)	75 <i>i</i> (1)	121 <i>i</i> (5)	148 <i>i</i> (5)	178 <i>i</i> (5)
Na	24	41 <i>i</i> (1)	54 <i>i</i> (3)	50 <i>i</i> (3)	77 <i>i</i> (5)
K	9	16	30 <i>i</i> (1)	26 <i>i</i> (1)	26 <i>i</i> (3)
Rb	1	8	22 <i>i</i> (1)	19 <i>i</i> (1)	20 <i>i</i> (1)
Cs	5 <i>i</i> (2)	2	13 <i>i</i> (1)	13 <i>i</i> (1)	15 <i>i</i> (1)

Table S1. The lowest vibrational frequencies in cm⁻¹ and the number of the imaginary frequencies in parentheses for the D_{5h} structures of the AM₅ (A and M are alkali metals) clusters at the PBE0-D3/def2-QZVPP level.

Table S2. T_1 diagnostic values of the LiM₅ (M = Na, K, Rb) clusters at the single-point CCSD(T)/def2-QZVPP level.

	T ₁ -diagnostic							
	A1	A2	A3	A4	A5	A6	A7	A8
LiNa ₅	0.02	0.02	0.02	0.02	0.02	0.09	0.11	0.10
LiK ₅	0.03	0.03	0.03	0.03	0.02	0.08	0.15	0.14
LiRb ₅	0.02	0.02	0.02	0.02	0.02	0.03	0.06	0.05

Table S3. The relative energies in kcal/mol of the first three lowest-energy isomers of ppLi and ppAE computed at the CASPT2/def2-TZVPP optimization and CASPT2/def2-QZVPP//PBE0-D3/def2-QZVPP single-point calculations.

	CASPT2/def2-TZVPP			CASPT2/def2-QZVPP//PBE0- D3/def2-QZVPP		
	A1	A2	A3	A1	A2	A3
LiNa ₅	0.0	3.2	2.5	0.0	3.0	5.0
LiK ₅	0.0	-0.5	-0.7	0.0	-2.8	0.1
LiRb ₅	0.0	-1.4	0.8	0.0	-2.1	-1.3
	AE1	AE2	AE3	AE1	AE2	AE3
MgLi ₅ ⁺	0.0	4.1	4.3	0.0	4.7	5.1
$MgNa_5^+$	0.0	4.1	a	0.0	5.1	5.2
CaK_5^+	0.0	3.0	4.9	0.0	4.9	6.4
$CaRb_{5}^{+}$	0.0	1.8	3.3	0.0	3.9	5.6
SrRb_{5}^{+}	0.0	2.0	2.9	0.0	5.1	2.5
$SrCs_5^+$	0.0	1.0	1.4	0.0	3.7	4.3

^aTurning into **AE1** in the optimized process.

AEM ₅ ⁺			Frequencies		
AE M	Be	Mg	Ca	Sr	Ba
Li	58 <i>i</i> (2)	67	77 <i>i</i> (3)	130 <i>i</i> (3)	115 <i>i</i> (2)
Na	26 <i>i</i> (2)	26	35 <i>i</i> (1)	38 <i>i</i> (2)	77 <i>i</i> (5)
K	26 <i>i</i> (2)	12 <i>i</i> (2)	15	10 <i>i</i> (1)	36 <i>i</i> (3)
Rb	18 <i>i</i> (2)	10 <i>i</i> (2)	7	8.6	18 <i>i</i> (1)
Cs	14 <i>i</i> (2)	9 <i>i</i> (2)	3 <i>i</i> (2)	4.7	12 <i>i</i> (1)

Table S4. The lowest vibrational frequencies in cm⁻¹ and the number of the imaginary frequencies in parentheses for the D_{5h} structures of the AEM₅⁺ (AE is an alkaline earth metal and M is an alkali metal) clusters at the PBE0-D3/def2-QZVPP level.

Table S5. T_1 diagnostic values of the Li_5Mg^+ , Na_5Mg^+ , K_5Ca^+ , $CaRb_5^+$, Rb_5Sr^+ , and $SrCs_5^+$ clusters at the single-point CCSD(T)/def2-QZVPP level.

	T_1 -diagnostic							
	AE1	AE2	AE3	AE4	AE5	AE6	AE7	AE8
Li_5Mg^+	0.02	0.02	0.03	0.01	0.09	-	0.02	0.06
Na ₅ Mg ⁺	0.02	0.03	0.03	0.03	0.07	0.03	0.03	0.05
K_5Ca^+	0.02	0.04	0.03	0.03	0.14	0.15	0.03	0.03
CaRb ₅ ⁺	0.02	0.04	0.03	0.04	0.15	0.15	0.03	0.03
Rb_5Sr^+	0.03	0.04	0.04	0.17	0.11	0.04	0.04	0.04
SrCs_5^+	0.03	0.03	0.03	0.15	0.09	0.03	0.03	0.03

Figure S1. Relative energies (in kcal/mol) between ppNa and the $C_{2\nu}$ lower-energy isomers in NaM₅ (M = K, (Rb), [Cs]) clusters computed at the CCSD(T)/def2-QZVPP//PBE0-D3/def2-QZVPP level. Total energies were corrected by the zero-point energies (ZPE) calculated at the PBE0-D3 level. Point groups and spectroscopic states are also given.

Figure S2. Structure and relative energies in kcal/mol of the low-lying energy isomers of LiM_5 (M = Na/*K*/**Rb**) computed at CASPT2/def2-QZVPP//PBE0-D3/def2-QZVPP. The point group and spectroscopic states were given in parenthesis.

Figure S3. Structure and relative energies in kcal/mol of the low-lying energy isomers of M_5Mg^+ (M = Li/Na) computed at CASPT2/def2-QZVPP//PBE0-D3/def2-QZVPP. The point group and spectroscopic states were given in parenthesis. "–" converges to AE2.

Figure S4. Structure and relative energies in kcal/mol of the low-lying energy isomers of CaK_5^+ and $CaRb_5^+$ computed at CCSD(T)/def2-QZVPP//PBE0-D3/def2-QZVPP. The energy of CCSD(T) is corrected by zero-point energy of PBE0-D3/def2-QZVPP. The point group and spectroscopic states were given in parenthesis.

Figure S5. Structure and relative energies in kcal/mol of the low-lying energy isomers of $SrRb_{5^+}$ and $SrCs_{5^+}$ computed at CCSD(T)/def2-QZVPP//PBE0-D3/def2-QZVPP. The energy of CCSD(T) is corrected by zero-point energy of PBE0-D3/def2-QZVPP. The point group and spectroscopic states were given in parenthesis.

Figure S6. Structure and relative energies in kcal/mol of the low-lying energy isomers of CaK_5^+ and $CaRb_5^+$ computed at CASPT2/def2-QZVPP//PBE0-D3/def2-QZVPP. The point group and spectroscopic states were given in parenthesis.

Figure S7. Structure and relative energies in kcal/mol of the low-lying energy isomers of $SrRb_5^+$ and $SrCs_5^+$ computed at CASPT2/def2-QZVPP//PBE0-D3/def2-QZVPP. The point group and spectroscopic states were given in parenthesis.

	НОМО	HOMO'	HOMO-1
	3	3	3
LiNa ₅	-3.4	-3.4	-4.6
LiK ₅	-2.8	-2.8	-3.8
MgLi ₅ ⁺	-7.1	-7.1	-9.5
MgNa ₅ ⁺	-6.6	-6.6	-8.9
CaK_5^+	-5.3	-5.3	-6.9
$CaRb_{5}^{+}$	-5.1	-5.1	-6.7
SrRb_{5}^{+}	-5.0	-5.0	-6.5
SrCs_5^+	-4.7	-4.7	-6.2

Figure S8. Three molecular orbitals and their corresponding energies (ϵ , eV) in ppLi and ppAE isomers.

 $3 \times 6c\text{-}2e \sigma \text{ bonds} \quad ON = 2.00 |e|$

Figure S9. The orbitals recovered in AdNDP analysis in ppLi and ppAE, ON refers to occupation number.

Coordinates of ppLi and ppAE PBE0-D3/def2-QZVPP level

LiNa ₅			
Na	0.000000	3.110810	-0.000000
Na	-2.958556	0.961293	-0.000000
Li	0.000000	0.000000	0.000000
Na	-1.828488	-2.516698	-0.000000
Na	2.958556	0.961293	-0.000000
Na	1.828488	-2.516698	-0.000000
LiK5			
Κ	-0.000000	3.797096	0.000000
Κ	3.611253	1.173367	0.000000
Li	0.000000	0.000000	0.000000
Κ	2.231877	-3.071915	0.000000
Κ	-3.611253	1.173367	0.000000
Κ	-2.231877	-3.071915	0.000000
LiRb ₅			
Rb	0.000000	4.026182	0.000000
Rb	-3.829127	1.244159	0.000000
Li	0.000000	0.000000	0.000000
Rb	-2.366530	-3.257250	0.000000
Rb	3.829127	1.244159	0.000000
Rb	2.366530	-3.257249	0.000000
Li ₅ Mg ⁺			
Li	-0.000000	2.887777	0.000000
Li	1.697393	-2.336261	0.000000
Li	-2.746439	0.892372	0.000000
Li	2.746439	0.892372	0.000000
Mg	0.000000	0.000000	0.000000
Li	-1.697393	-2.336261	0.000000
Na ₅ Mg ⁺			
Na	0.000000	3.234468	-0.000000
Na	1.901173	-2.616740	-0.000000
Na	-3.076162	0.999506	-0.000000
Na	3.076162	0.999506	-0.000000
Mg	0.000000	0.000000	0.000000
Na	-1.901173	-2.616740	-0.000000

 K_5Ca^+

Κ	-0.000000	4.123352	0.000000
Κ	2.423646	-3.335862	0.000000
Κ	-3.921541	1.274186	0.000000
Κ	3.921541	1.274186	0.000000
Ca	0.000000	0.000000	0.000000
Κ	-2.423646	-3.335862	0.000000
CaRb ₅ +			
Ca	0.000000	0.000000	0.000000
Rb	0.000000	4.336895	-0.000000
Rb	2.549163	-3.508622	-0.000000
Rb	-4.124632	1.340174	-0.000000
Rb	-2.549163	-3.508622	-0.000000
Rb	4.124632	1.340174	-0.000000
Rb ₅ Sr ⁺			
Rb	0.000000	4.490004	-0.000000
Rb	2.639158	-3.632489	-0.000000
Rb	-4.270247	1.387487	-0.000000
Rb	-2.639158	-3.632489	-0.000000
Rb	4.270247	1.387487	-0.000000
Sr	0.000000	0.000000	0.000000
SrCs5 ⁺			
Cs	0.000000	4.763923	-0.000000
Cs	2.800164	-3.854095	-0.000000
Cs	-4.530760	1.472133	-0.000000
Cs	-2.800164	-3.854095	-0.000000
Cs	4.530760	1.472133	-0.000000
Sr	0.000000	0.000000	0.000000