Supporting information for

Germanium Hydrides as an Efficient Hydrogen-Storage Material Operated by an Iron Catalyst

Yoshinao Kobayashi^a and Yusuke Sunada^{a,b*}

^a Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1

Komaba, Meguro-ku, Tokyo 153-8505 Japan.

^b Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-

8505 Japan.

Contents

1. General	p. S1
2. Experimental details	p. S1
3. Actual NMR and IR charts	p. S10
4. X-ray diffraction analysis	p. S20
5. References	p. S62

General. All reactions were carried out under a dry nitrogen atmosphere using either Schlenk-line or glove-box techniques. All solvents used for the reaction were treated with oven-dried molecular sieves before use. ¹H and ¹³C NMR spectra were recorded using a JEOL Lambda 400 spectrometer at ambient temperature. Chemical shifts (δ) are reported in ppm, using the residual protons in the deuterated solvents as internal standards for the ¹H NMR and ¹³C NMR spectra. Elemental analyses (C, H) were carried out on a Thermo Scientific FLASH 2000 Organic Elemental Analyzer or externally at A Rabbit Science Co., Ltd. IR spectra were recorded on a PerkinElmer Spectrum Two spectrometer. FAB-MS spectra were measured on a JEOL SpiralTOFTM-plus spectrometer. Starting materials, ¹PrIM^{Me}, ¹EtIM^{Me}, ²MeIM^{Et}, ³PrIM^H, ⁴DippIM^H, ⁵MeCAAC, ⁶Ph₂GeH₂, ⁷Et₂GeH₂, ⁸Ph₂SnH₂, ⁹ "Bu₂SnH₂, ¹⁰ /Pr₂SiH₂, ¹¹ [Fe(mesityl)₂]₂, ¹² Fe[Si(SiMe₃)₃]₂(THF)₂, ¹³ Fe[Ge(SiMe₃)₃]₂(THF)₂, ¹⁴ Fe(OCO'Bu)₂, ¹⁵ Fe[N(SiMe₃)₂]₂, ¹⁶ [Mn(mesityl)₂]₃, ¹⁷ PhICl₂¹⁸ were synthesized by the method reported in the literature. Other reagents were purchased from Tokyo Chemical Industries Co., Ltd. or Kanto Chemical Co., Inc. or Sigma Aldrich, and were used without further purification.

General procedure for the dehydrogenative coupling of Ph₂GeH₂ or Et₂GeH₂ catalyzed by [Fe(mesityl)₂]₂ / NHC. In a 4 mL vial, [Fe(mesityl)₂]₂ (7 mg, 0.0125 mmol) was dissolved in THF (0.5 mL), then NHC [^{*i*}PrIM^{Me} (for Ph₂GeH₂, 9 mg, 0.05 mmol) or EtIM^{Me} (for Et₂GeH₂, 7 mg, 0.05 mmol)] was added to this solution under nitrogen atmosphere. The obtained reaction mixture was stirred at room temperature for several minutes, then Ph₂GeH₂ (114 mg, 0.5 mmol) or Et₂GeH₂ (67 mg, 0.5 mmol) was added to this solution. The resulting mixture then stirred room temperature for 40 h, then conversion of Ph₂GeH₂ or Et₂GeH₂ and yield of (GePh₂)₅ or (GeEt₂)₅ was estimated by ¹H NMR spectrum.

Isolation of (GePh₂)₅ by the catalytic dehydrogenative coupling of Ph₂GeH₂ catalyzed by [Fe(mesityl)₂]₂ / i PrIM^{Me}. In a 4 mL vial, [Fe(mesityl)₂]₂ (7.4 mg, 0.0125 mmol) was dissolved in THF (0.5 mL), then i PrIM^{Me} (9 mg, 0.05 mmol) was added to this solution under nitrogen atmosphere. The mixture was stirred at room temperature for several minutes, then Ph₂GeH₂ (114 mg, 0.5 mmol) was added. The resulting mixture then stirred for 40 h at room temperature, then THF was removed *in vacuo*. The resulting residue was washed by hexane (2 mL) and acetone (2 mL), and the supernatant was cooled to -20 °C. The remaining white powder as well as white powder formed from the cooled supernatant solution was combined, then (GePh₂)₅ was obtained as white powder (73 mg, 62%). ¹H NMR (400 MHz, r.t., C₆D₆): $\delta = 7.52-7.51$ (m, 10H, *o*-Ph), 6.92-6.90 (m, 5H, *p*-Ph), 6.86-6.84 (m, 10H, *m*-Ph). ¹³C NMR (100 MHz, r.t., C₆D₆): 138.3 (s, Ph), 137.2 (s, Ph), 128.6 (s, Ph), 128.4 (s, Ph).

Isolation of Ge₅Et₁₀ by the catalytic dehydrogenative coupling of Et₂GeH₂ catalyzed by [Fe(mesityl)₂]₂ / EtIM^{Me}. In a 4 mL vial, [Fe(mesityl)₂]₂ (15 mg, 0.025 mmol) was dissolved in THF (0.5 mL), then EtIM^{Me} (15 mg, 0.1 mmol) was added to this solution under nitrogen atmosphere. The mixture was stirred at room temperature for several minutes, then Et₂GeH₂ (132 mg, 1mmol) was added. The resulting mixture then stirred for 40 h at room temperature, then THF was removed *in vacuo*. The resulting residue was extracted by acetone (2 mL), then supernatant was cooled to -20 °C to afford (GeEt₂)₅ as colorless liquid (68 mg, 52%). ¹H NMR (600 MHz, r.t., C₆D₆): $\delta = 1.23$ (t, J_{H-H} = 6.0 Hz, 6H, $-CH_2$ -CH₃), 1.18 (q, $J_{H-H} = 6.0$ Hz, 4H, $-CH_2$ -CH₃), ¹³C NMR (150 MHz, r.t., C₆D₆): 12.50 (s, $-CH_2$ -CH₃), 6.13 (s, $-CH_2$ -CH₃).

Investigation of the effect of solvent in the dehydrogenative coupling of Ph_2GeH_2 catalyzed by $[Fe(mesityl)_2]_2$ / ${}^iPrIM^{Me}$. In a 4 mL vial, $[Fe(mesityl)_2]_2$ (7.4 mg, 0.0125 mmol) was dissolved in solvent listed in Table S1 (0.5 mL), then ${}^iPrIM^{Me}$ (9 mg, 0.05 mmol) was added to this solution under nitrogen atmosphere. The obtained reaction mixture was stirred at room temperature for several minutes, then Ph_2GeH_2 (114 mg, 0.5 mmol) was added to this solution. The resulting mixture then stirred room temperature for 20 h, then conversion of Ph_2GeH_2 and yield of (GePh₂)₅ was estimated by ¹H NMR spectrum.

	$Ph_2GeH_2 \qquad \begin{array}{c} [Fe(mesityl)_2]_2 (2.5 r \\ ^{\prime} PrIM^{Me} (10 mol)_2 \\ \hline \\ solvent (1 M), r.t., \end{array}$	nol%) (h)	H ₂
entry	solvent	conv. (%)	yield (%) ^a
1	THF	>99	62
2	toluene	>99	8
3	diethyl ether	>99	36

Table S1. Effect of solvent in the dehydrogenative coupling of Ph2GeH2 catalyzed by [Fe(mesityl)2]2 / ⁱPrIM^{Me}.

^ayield was estimated based on the amount of formed (GePh₂)₅. ¹H NMR spectrum of the crude reaction mixture suggest the formation of some oligomers as by-product when the reaction was performed in 20 h.

Investigation of the effect of ligand in the catalytic dehydrogenative coupling of Ph_2GeH_2 in the presence of a catalytic amount of $[Fe(mesityl)_2]_2$. In a 4 mL vial, $[Fe(mesityl)_2]_2$ (7.4 mg, 0.0125 mmol) was dissolved in THF (0.5 mL), then ligand shown in Table S2 (0.05 mmol) was added under nitrogen atmosphere. The obtained reaction mixture was stirred at room temperature for several minutes, then Ph_2GeH_2 (114 mg, 0.5 mmol) was added to this solution. The resulting mixture then stirred room temperature for time indicated in Table S2, then conversion of Ph_2GeH_2 and the yield of $(GePh_2)_5$ was estimated by ¹H NMR spectrum.

Table S2. Effect of ligand in the dehydrogenative coupling of Ph_2GeH_2 in the presence of a catalytic amount of $[Fe(mesityl)_2]_2$.

	Z [™] Z T⊢	IF (1 M), r.t., time F	Ph ₂ Ge-GePh ₂	
entry	ligand	time (h)	conv. (%)	yield (%) ^d
1		4	>99	n.d.
2]	20	>99	62
3	ⁱ Pr∼ _N ∕ ⁱ Pr ⟩=((ⁱ PrIM ^{Me})	40	>99	>99 (62) ^e
4 ^a	Me Me	20	<1	n.d. ^f
5 ^b		20	70	n.d. ^f
6	Et~N~Et Me Me (EtIM ^{Me})	20	>99	n.d. ^f
7	$ \begin{array}{c} $	20	>99	16
8	$ \begin{array}{c} \vdots \\ {}^{i} \Pr_{\Gamma \sim \mathbf{N}} \stackrel{i}{\sim} \Pr_{\Gamma \sim \mathbf{N}} \stackrel{i}{\sim} \Pr_{\Gamma \sim \mathbf{N}} \\ \downarrow = \downarrow \qquad (^{i} \Pr_{I} M^{H}) \\ H \qquad H \qquad H \end{array} $	20	>99	n.d. ^f
9 ^d	$ \begin{array}{c}\\ Dipp_{N} & & Dipp\\ & & Dipp_{H} & (DippIM^{H})\\ & & H & H \end{array} $	4	<1	n.d. ^f
10	······································	4	34	n.d. ^f
11	ⁱ Pr~N_N_(ⁱ PrPyC)	4	>99	n.d. ^f
12°	Dipp-N (^{Me} CAAC)	4	<1	n.d. ^f
13	without ligand	4	<1	n.d. ^f

 $\begin{array}{c} \mbox{[Fe(mesityl)_2]_2 (2.5 mol\%)} & \mbox{Ph}_2 \\ \mbox{ligand (10 mol\%)} & \mbox{Ge} \\ \hline \mbox{THF (1 M), r.t., time} & \mbox{Ph}_2 \mbox{Ge} \\ \hline \mbox{Ph}_2 \mbox{GePh}_2 + 5 \mbox{H}_2 \end{array}$

^a20 mol% of ligand was added. ^b5 mol% of ligand was added. ^cDipp indicates 2,6-diisopropylphenyl. ^dyield was estimated based on the amount of formed (GePh₂)₅. ^evalue in bracket indicates the isolated yield. ^fn.d. indicates "not detected".

Regeneration of Ph₂GeH₂ from (GePh₂)₅ by the reaction with H₂ catalyzed by [Fe(mesityl)₂]₂ / NHC. In a 20 mL flask, [Fe(mesityl)₂]₂ (2 mg, 0.0025 mmol) was dissolved in THF (0.4 mL), then ^{*i*}PrIM^{Me} (2 mg, 0.01 mmol) was added to this solution under nitrogen atmosphere. The obtained reaction mixture was stirred at room temperature for several minutes, then (GePh₂)₅ (23 mg, 0.02 mmol) was added to this solution. The atmosphere of this flask was replaced by 1 atm of hydrogen. The resulting mixture then stirred at 0 °C for 24 h, then conversion of (GePh₂)₅ was estimated to be >99%, and the yield of Ph₂GeH₂ and (Ph₂GeO)₃ was estimated to be 51 % and 49 %, respectively, by ¹H NMR spectrum.

Reaction of (GePh₂)₅ with PhICl₂ to afford Ph₂GeCl₂. In a 20 mL schlenk, (GePh₂)₅ (57 mg, 0.05 mmol) was dissolved in THF (0.5 mL), then PhICl₂ (138 mg, 0.5 mmol) was added to this solution under nitrogen atmosphere. The obtained reaction mixture was stirred at 40 °C for 14 h, then quantitative formation of Ph₂GeCl₂ was confirmed by the ¹H NMR spectrum of the crude product. Then, the reaction mixture was dried *in vacuo*, and the remaining residue was extracted with diethyl ether (10 mL). The filtrate was removed *in vacuo* to afford Ph₂GeCl₂ as pale yellow liquid (47 mg, 64%).

Reaction of Ph₂GeCl₂ with LiAlH₄ to afford Ph₂GeH₂. In a 100 mL flask, LiAlH₄ (0.38 g, 10 mmol) was suspended in diethyl ether (20 mL), then Ph₂GeCl₂ (3 g, 10 mmol) was added to this solution under nitrogen atmosphere. The obtained reaction mixture was stirred at room temperature for 18 h, then the reaction mixture was quenched by 1M HCl aq. (30 mL). The mixture was extracted by diethyl ether (30 mL×3), then combined organic phases was dried over by MgSO₄. The supernatant was collected, and the solvent was removed *in vacuo* to obtain Ph₂GeH₂ as colorless liquid (1.88g, 82%).

Dehydrogenative coupling of Ph₃GeH or 'BuGeH₃ in the presence of a catalytic amount of $[Fe(mesityl)_2]_2$. In a 4 mL vial, $[Fe(mesityl)_2]_2$ (7.4 mg, 0.0125 mmol) was dissolved in THF (0.5 mL), then ligand shown in Table S3 (0.05 mmol) was added under nitrogen atmosphere. The obtained reaction mixture was stirred at room temperature for several minutes, then hydrogermane (0.5 mmol) was added to this solution. The resulting mixture was then stirred at room temperature for time indicated in Table S3, then conversion of the substrate and yield of the dehydrogenative coupling product was estimated by ¹H NMR spectrum.

Table S3. Dehydrogenative coupling of Ph₃GeH or 'BuGeH₃ in the presence of a catalytic amount of [Fe(mesityl)₂]₂.

entry	substrate	ligand	product	time (h)	conv. (%)
1	Ph ₃ GeH	MeIM ^{Et}	Ph ₃ Ge-GePh ₃	66	>99
2	^t BuGeH ₃	^{<i>i</i>} PrIM ^{Me}	oligomers	20	>99

^aFormation of oligogermanes was suggested by ¹H NMR and FAB-MS spectrum (see Figures S13 and S14).

Synthesis of *trans*-Fe(^{*i*}PrIM^{Me})₂(mesityl)₂ (1). In 50 mL schlenk tube, [Fe(mesityl)₂]₂ (59 mg, 0.1 mmol) was dissolved in diethyl ether (5 mL), then ^{*i*}PrIM^{Me} (72 mg, 0.4 mmol) was added to the solution. The resulting solution

was stirred at room temperature for 16 h. The reaction mixture was dried *in vacuo*, then the remaining residue was extracted by pentane (2 mL). The pentane solution was centrifuged to remove small amount of insoluble materials, then was concentrated to ca. 0.5 mL. The solution was cooled at -20 °C, then *trans*-Fe(^{*i*}PrIM^{Me})₂(mesityl)₂ (1) was obtained as pale yellow crystals (68 mg, 52%). ¹H NMR (400 MHz, r.t., C₆D₆): no signal was observed. Magnetic susceptibility (Evans): $\mu_{eff} = 3.91$ (C₆D₆, 20.1 °C). Anal. Calcd. for C₅₈H₇₀N₄Ge₃Fe₁: C, 73.37; H, 9.54; N, 8.56. Found: C, 73.36; H, 9.45, N; 8.83.

Synthesis of *trans*-Fe(^{*i*}PrIM^{Me})₂[Ge(H)Ph₂]₂ (2) by the reaction of *in situ* generated complex 1 with Ph₂GeH₂. In a 20 mL vial, [Fe(mesityl)₂]₂ (59 mg,0.1 mmol) was dissolved in diethyl ether (10 mL), then ^{*i*}PrIM^{Me} (72 mg, 0.4 mmol) was added to this solution. The resulting solution was stirred at room temperature for 5 min. to generate complex 1. Then, diethyl ether (5 mL) solution of Ph₂GeH₂ (91 mg, 0.4 mmol) was added to this solution, and the obtained solution was stirred at room temperature for 5 min. The resulting solution was cooled to -20 °C to obtain trace amount of *trans*-Fe(^{*i*}PrIM^{Me})₂[Ge(H)Ph₂H]₂ (2) as red crystals.

Synthesis of *trans*-Fe(^{*i*}PrIM^{Me})₂[Ge(H)Ph₂]₂ (2) by the reaction of FeCl₂ and *in situ* generated LiGe(H)Ph₂. In a 20 mL Schlenk, Ph₂GeH₂ (664 mg, 2.9 mmol) was dissolved in THF (6 mL), then hexane solution of 'BuLi (1.6 M, 2 mL, 3.2 mmol) was added at -78 °C. The resulting solution was warmed to -40 °C, and was stirred for 20 minutes to generate LiGe(H)Ph₂ solution. In a 50 mL flask, FeCl₂ (152 mg, 1.2 mmol) was dissolved in THF (6 mL), then ^{*i*}PrIM^{Me} was added to this solution at room temperature. After stirring this solution for overnight, the resulting solution was cooled to -78 °C, and the LiGe(H)Ph₂ solution was slowly added. The resulting mixture was stirred for 1 h at -78 °C, and the solvent was removed *in vacuo*. The remaining residue was extracted by toluene (10 mL + 5 mL), and the solution was centrifuged to remove small amount of insoluble materials. The supernatant was concentrated to ca. 5 mL, kept at -20 °C to obtain *trans*-Fe(^{*i*}PrIM^{Me})₂[Ge(H)Ph₂H]₂ (**2**) as red crystals (445 mg, 43%).¹H NMR (400 MHz, r.t., C₆D₆): no signal was observed. Magnetic susceptibility (Evans): $\mu_{eff} = 3.46 \ \mu_B$ (in C₆D₆, 21.0 °C). IR (ATR): $\nu_{Ge-H} = 1848 \ cm^{-1}$. Anal. Calcd. for C₄₆H₆₂N₄Ge₂Fe₁: C, 63.35; H, 7.17; N, 6.42. Found: C, 63.29; H, 7.56, N; 6.25.

Synthesis of $Fe(GePh_2)_4(^iPrIM^{Me})_2$ (3). In 4 mL vial, $Fe(GePh_2H)_2(^iPrIM^{Me})_2$ (2) (44 mg, 0.05 mmol) was dissolved in THF (2 mL), then Ph₂GeH₂ (12 mg, 0.05 mmol) and Et₂GeH₂ (7 mg, 0.05 mmol) were slowly added to this solution. The resulting solution was stirred for 18h at room temperature, then the solvent was removed *in vacuo*. The resulting residue was dissolved in diethyl ether (0.5 mL), then cooled to -20 °C to obtain Fe(GePh₂)₃(^{*i*}PrIM^{Me})₂ as dark brown crystals (17 mg, 32%). ¹H NMR (400 MHz, r.t., C₆D₆): $\delta = 27.1$ (brs, 24H), 21.3 (brs, 10H), 19.8 (brs, 20H), 15.8 (brs, 20H), 14.3 (brs, 10H), 7.5 (brs, 6H), -1.2 (brs, 10H). Magnetic susceptibility (Evans): $\mu_{eff} = 3.17 \mu_B$ (in C₆D₆, 20.3 °C). Anal. Calcd. for C₅₈H₇₀N₄Ge₃Fe₁: C, 63.51; H, 6.43; N, 5.11. Found: C, 63.55; H, 6.28, N; 5.14.

Synthesis of $Fe(GePh_2)_4({}^{i}PrIM^{Me})_2$ (4). In a 20 mL vial, $Fe(GePh_2H)_2({}^{i}PrIM^{Me})_2$ (2) (44 mg, 0.5 mmol) was dissolved in diethyl ether (4 mL), then Ph₂GeH₂ (23 mg, 1 mmol) was slowly added to this solution. The resulting solution was stirred at room temperature for 18 h, then solvent was removed *in vacuo*. The remaining residue was

extracted with 1,2-dimethoxyethane (1 mL), and the obtained solution was kept as -20 °C to obtain red crystals. ¹H NMR spectrum suggested that the obtained red crystals consists of complex **3** and **4** in ca. 1 : 1 molar ratio, and formation of small amount of (GePh₂)₅ was also observed. ¹H NMR spectrum data for complex **4** (400 MHz, r.t., C₆D₆): $\delta = \delta = 37.1$ (brs, 13H), 35.0 (brs, 14H), 28.9 (brs, 12H), 16.3 (brs, 13H), 13.1 (brs, 24H), 12.1 (brs, 8.5H), 10.1 (brs, 7H), -4.4 (brs, 16.5H), -7.7 (brs, 16.5H), -10.5 (brs, 7H). The actual ¹H NMR chart of the mixture of **3** and **4** was shown in Figure S12.

Dehydrogenative coupling of Ph₂SnH₂ catalyzed by [Fe(mesityl)₂]₂ / ^{*i*}**PrIM**^{Me}. In a 4 mL vial, [Fe(mesityl)₂]₂ (6 mg, 0.01 mmol) was dissolved in toluene (3 mL), then ^{*i*}PrIM^{Me} (7 mg, 0.04 mmol) were added to this solution. The resulting mixture was stirred at room temperature for several minutes, then toluene (2 mL) solution of Ph₂SnH₂ (275 mg, 1 mmol) was added. The resulting mixture was stirred at room temperature for 24 h. Analysis of the crude product by ¹H NMR spectrum revealed that Sn₆Ph₁₂ was formed in quantitative yield with complete conversion of Ph₂SnH₂. Then, the reaction mixture was dried *in vacuo*, and the remaining residue was washed by pentane (5 mL x 3). The obtained powder was dried under vacuum to afford Sn₆Ph₁₂ as white powder (191 mg, 70%).

$$6 \operatorname{Ph}_{2}\operatorname{SnH}_{2} \xrightarrow{i\operatorname{PrIM}^{\operatorname{Me}}(4 \operatorname{mol}^{\otimes}))}_{\operatorname{toluene, r.t., 24 h}} \xrightarrow{\operatorname{Ph}_{2}\operatorname{Sn}^{\otimes}}_{\operatorname{Ph}_{2}\operatorname{Sn}_{2}} + 6 \operatorname{H}_{2}$$

Dehydrogenative coupling of "Bu₂SnH₂ catalyzed by [Fe(mesityl)₂]₂ / ^{*i***}PrIM^{Me}. In a 4 mL vial, [Fe(mesityl)₂]₂ (6 mg, 0.01 mmol, 2 mol% for Fe) dissolved in toluene, then ^{***i***}PrIM^{Me} (7 mg, 0.04 mmol) was added to this solution. The obtained mixture was stirred at room temperature for several minutes, then toluene solution of ⁿBu₂SnH₂ (0.5 mmol) was added to this solution (total concentration of the reaction mixture was listed in Table S4). The resulting mixture was then stirred at room temperature for 24 h, then conversion of ⁿBu₂SnH₂ and the ratio of the formed product were estimated by ¹¹⁹Sn NMR spectrum (see Figures S17 and S18).**

Table S4. Dehydrogenative coupling of Bu₂SnH₂ catalyzed by [Fe(mesityl)₂]₂ / ^{*i*}PrIM^{Me}.

	[Fe(mes [/] PrIN ^{//} Bu ₂ SnH ₂ tolue	$ \begin{array}{c} \text{ityl}_{2]_{2}}(2 \text{ mol}\%) & \text{Bu}_{2} \\ \hline \text{Me} (4 \text{ mol}\%) & \text{Bu}_{2} \text{Sn} \\ \hline \text{ne, r.t., 24 h} & \text{Bu}_{2} \text{Sn} \\ & \text{Bu}_{2} \text{Sn} - \text{Sn} \text{Bu}_{2} \\ & \text{Bu}_{2} \text{Sn} - \text{Sn} \text{Bu}_{2} \\ & \text{Sn}_{5} \text{Ph}_{10} \end{array} $	$\begin{array}{c} & & Bu_2 \\ & Bu_2 Sn \overset{Sn}{\searrow} Sn Bu_2 \\ + & Bu_2 Sn \overset{Sn}{\searrow} Sn Bu_2 \\ & Bu_2 \\ & & Bu_2 \\ & & (Sn_6 Ph_{12}) \end{array}$
entry	concentration (mol/L)	conversion (%)	ratio of Sn ₅ Ph ₁₀ and Sn ₆ Ph ₁₂
1	1	>99	0.7 : 1
2	0.2	>99	2:1
3	0.02	>99	3 : 1

General Procedure for the dehydrogenative coupling of Ph₂SiH₂ catalyzed by various transition metal catalyst precursorss in the presence of ^{*i*}PrIM^{Me}. In a 4 mL vial, transition metal catalyst precursor (5 mol% for metal) was dissolved in diethyl ether (0.25 mL), then ^{*i*}PrIM^{Me} (10 mg, 0.054 mmol) was added to this solution. The obtained mixture was stirred at room temperature for several minutes, then Ph₂SiH₂ (100 mg, 0.54 mmol) was added to this solution. The resulting mixture was then stirred at room temperature for 24 h, then conversion of Ph₂SiH₂ was estimated by ¹H NMR spectrum.

	[/] PrIM ^{Me}	^{1e} (10 mol%)	Ph ₂ Si-SiPh ₂
	diethyl e	ether, r.t., 24 h	H H
entry	metal pre	recursor	Conversion of Ph ₂ SiH ₂ (%) ^a
1	[Fe(mesi	sityl) ₂] ₂	32
2	Fe[Si(SiMe ₃)	3)3]2(THF)2	37
3	Fe[Ge(SiMe ₃	23)3]2(THF)2	29
4	Fe(OCC	O'Bu) ₂	24
5	FeB	Br ₂	4
6	Fe[N(Sil	Me ₃) ₂] ₂	<1
8	[Mn(mes	sityl) ₂] ₃	<1
10	Co(O ⁱ	^p ⁱ Pr) ₂	37
11 ^b	Ni(CC	OD) ₂	23
12 ^b	[Ni(ⁱ PrIM ^{Me}	^e) ₂ (COD)] ₂	15
13	without meta	al precursor	<1

Table S5. I	Dehydrogenative	coupling of Ph2S	H ₂ catalyzed by	various metal	catalyst precursors.
	2 0		2 2 2		~ 1

cat. = metal precursor (5 mol% for metal)

^aconversion of Ph₂SiH₂ was determined by ¹H NMR. ^bPrIM^{Me} was not added.

General Procedure for the dehydrogenative coupling of Ph_2SiH_2 catalyzed by $[Fe(mesityl)_2]_2$ in the presence of various auxiliary ligands. In a 4 mL vial, $[Fe(mesityl)_2]_2$ (8 mg, 0.013 mmol) was dissolved in diethyl ether (0.25 mL), then ligand (5 or 10 mol%) was added to this solution. The resulting mixture was stirred at room temperature for several minutes, and the solvent was removed *in vacuo*. Then Ph_2SiH_2 (100 mg, 0.54 mmol) was added to this vial, and the obtained solution was stirred at room temperature for 24 h. Conversion of Ph_2SiH_2 was estimated by ¹H NMR spectrum.

Table S6. Dehydrogenative coupling of Ph_2SiH_2 catalyzed by $[Fe(mesityl)_2]_2$ in the presence of various auxiliary ligands.

cat. : [Fe(mesityl)₂]₂ (2.5 mol%)

$Ph_{2}SiH_{2} \xrightarrow{ligand (x mol\%)} 1/2 \xrightarrow{Ph_{2}Si-SiPh_{2}} H H_{2}$ diethyl ether, r.t., 24 h				
entry	ligand	ligand loading (mol%)	Conversion of Ph ₂ SiH ₂ (%) ^a	
1	 'Pr∼N∽'Pr Me Me ('PrIM ^{Me})	10	32	
2	 Me∼N∽Me ∠∠(MeIM ^{Et}) Et Et	10	<1	
3 ^b	$ \begin{array}{c} \vdots \\ Dipp \sim N & h \\ \downarrow \longrightarrow H & H \end{array} $ (DippIM ^H)	10	<1	
4	P(cyclohexyl) ₃	10	4	
5		5	<1	
6	N N	5	<1	
7°	Mes-N N-Mes	5	3	
8	without ligand	_	15	

^aconversion of Ph₂SiH₂ was determined by ¹H NMR. ^bDipp indicates 2,6-diisopropylphenyl. ^cMes indicates 2,4,6-trimethylphenyl.

General Procedure for the dehydrogenative coupling of various hydrosilanes catalyzed by [Fe(mesityl)₂]₂ / ^{*i*}**PrIM**^{Me}. In a 4 mL vial, [Fe(mesityl)₂]₂ (7 mg, 0.0125 mmol) was dissolved in diethyl ether (0.1 mL), then ^{*i*}PrIM^{Me} (9mg, 0.05 mmol) was added to this solution. The resulting mixture was stirred at room temperature for several minutes, and the solvent was removed *in vacuo*. Then hydrosilane (0.5 mmol) was added to this vial, and the obtained solution was stirred for 24 h at 80 °C. Conversion of the substrate and the yield and ratio of the dehydrogenative coupling products as well as products due to the redistribution were estimated by ¹H NMR spectrum.

Table S7. Dehydrogenative coupling of various hydrosilanes catalyzed by [Fe(mesistyl)₂]₂ / ^{*i*}PrIM^{Me}.

	cat. : [Fe(mesityl) ₂] ₂ (2.5 mol%)
D.SIH.	[/] PrIM ^{Me} (10 mol%)
R ₂ 3IH ₂	neat, 80 °C, 24 h

entry	substrate	conversion (%)	yield of the products (%) ^a	
1	Ph ₂ SiH ₂	82	Ph ₂ (H)Si-Si(H)Ph ₂ : 54%, Ph ₂ (H)-SiPh ₂ -Si(H)Ph ₂ : 8%	
2 ^b	MePhSiH ₂	75	Me ₂ PhSiH: 47%, MePh ₂ SiH: 19%, PhSiH ₃ : 9%	
3	(Et ₂ N) ₂ SiH ₂	39	(Et ₂ N) ₃ SiH: 39%	
4	ⁱ Pr ₂ SiH ₂	~0	<1	
6	Bu ₂ SiH ₂	~0	<1	

^aYield was determined by comparison between product and internal standard 1,4-dioxane. ^breaction was performed in 1,4-dioxane (0.2 M).

Figure S1. ¹H NMR spectrum of isolated (GePh₂)₅ in C_6D_6 at room temperature.

Figure S2. ¹³C NMR spectrum of isolated (GePh₂)₅ in C₆D₆ at room temperature.

Figure S3. ¹H NMR spectrum of isolated Ge₅Et₁₀ in C₆D₆ at room temperature.

Figure S4. ¹³C NMR spectrum of isolated Ge₅Et₁₀ in C₆D₆ at room temperature.

Figure S5. ¹H NMR spectrum of the crude product obtained in the reaction shown in entry 3 in Table S2.

Figure S6. ¹H NMR spectrum of the crude product obtained in the reaction shown in entry 1 in Table S2.

Figure S7. ¹H NMR spectrum of the crude product obtained in the reaction shown in entry 6 in Table S2.

Figure S8. ¹H NMR spectrum of the crude product obtained in the reaction shown in entry 7 in Table S2.

Figure S9. ¹H NMR spectrum of the crude product obtained in the reaction shown in entry 8 in Table S2.

Figure S10. ¹H NMR spectrum of the crude product obtained in the reaction shown in entry 11 in Table S2.

Figure S11. ¹H NMR spectrum of Fe(GePh₂)₃(^{*i*}PrIM^{Me})₂ (**3**) in C₆D₆ at room temperature.

Figure S12. ¹H NMR spectrum of the mixture of **3** and **4** obtained by the reaction of **2** with 2 equiv. of Ph₂GeH₂.

Figure S13. ¹H NMR spectrum of crude product obtained in the reaction shown in entry 2 in Table S3.

Figure S14. FAB-MS spectrum of the crude product obtained in the reaction shown in entry 2 in Table S3.

PPM 5.0 2.0 9.0 ΠT 7.0 6.0 ΠT 0.0 11111 т 11.0 10.0 8.0 4.0 3.0 1.0 -1.0 -3.0 -2.0

Figure S16. ¹¹⁹Sn NMR spectrum of isolated (SnPh₂)₆ in C₆D₆ at room temperature.

Figure S17. ¹H NMR spectrum of the crude product obtained by the reaction shown in entry 3 in Table S4.

Figure S18. ¹¹⁹Sn NMR spectrum of the crude product obtained by the reaction shown in entry 3 in Table S4.

X-ray data collection and reduction

X-ray crystallography for compounds 1, 2 and 4 was performed on a Rigaku Saturn CCD area detector with graphite monochromated Mo-K α radiation (λ =0.71075 Å), and single crystals of **3** suitable for X-ray crystallography were analyzed by synchrotron radiation at beam line BL02B1 (λ =0.41220 Å) of Spring-8 (Hyogo, Japan) using PILATUS3 X CdTe 1M detector. The data were collected at 133 K for 1 203 K for 2 and 100(1) K for 3 and 113 K for 4 using ω scan in the θ range of $1.83 \le \theta \le 31.25 \deg(1), 3.14 \le \theta \le 27.47 \deg(2), 1.52 \le \theta \le 19.18 \deg(3), 1.94 \le \theta \le 31.34$ deg (4). The data obtained were processed using Crystal-Clear (Rigaku) on a Pentium computer, and were corrected for Lorentz and polarization effects. The structures were solved by direct methods²¹, and expanded using Fourier techniques. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement on F^2 was based on 6,256 observed reflections and 213 variable parameters for 1, 4,814 observed reflections and 251 variable parameters for 2, 27,862 observed reflections and 607 variable parameters for 3, 16,430 observed reflections and 780 variable parameters for 4. Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4²². Anomalous dispersion effects were included in Fcalc²³; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley²⁴. The values for the mass attenuation coefficients are those of Creagh and Hubbell²⁵. All calculations were performed using the CrystalStructure²⁶ crystallographic software package except for refinement, which was performed using SHELXL Version 2017/127. Details of final refinement as well as the bond lengths and angle are summarized in Tables S8, S9, S10 and S11, and the numbering scheme employed is also shown in Figures S20 S21, S22 and S23, which were drawn with ORTEP at 50% probability ellipsoids. CCDC 2204746 (1), 2204747 (2), 2204748 (3) and 2204749 (4) contain the supplementary crystallographic data for this paper.

Figure S20. ORTEP drawing of 1 (50% probability of the thermal ellipsoids). Hydrogen atoms were omitted for clarity.

 Table S8. Crystal data and structure refinement for 1.

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters

Space Group Z value D_{calc} F₀₀₀ μ(MoKα) Diffractometer Radiation

Voltage, Current Temperature Detector Aperture Data Images ω oscillation Range (χ =45.0, ϕ =0.0) Exposure Rate Detector Swing Angle ω oscillation Range (χ =45.0, ϕ =90.0) Exposure Rate Detector Swing Angle Detector Position Pixel Size $2\theta_{max}$ No. of Reflections Measured

Corrections

C40H62FeN4 654.80 colorless, platelet 0.200 X 0.200 X 0.030 mm monoclinic C-centered a = 20.0556(10) Åb = 13.4841(5) Åc = 16.4559(7) Å $\beta = 107.412(5)$ o $V = 4246.3(3) Å^3$ C2/c (#15) 4 1.024 g/cm^3 1424.00 3.828 cm⁻¹ Saturn724 MoK α ($\lambda = 0.71075$ Å) graphite monochromated 50kV, 24mA -140.0°C 72.8 x 72.8 mm 720 exposures -70.0 - 110.00 10.0 sec./0 20.00° -70.0 - 110.00 10.0 sec./0 20.00° 45.00 mm 0.035 mm 62.4^o Total: 19705 Unique: $6256 (R_{int} = 0.0386)$ Lorentz-polarization Absorption

(trans. factors: 0.581 - 0.989)
Direct Methods (SHELXT Version 2014/5)
Full-matrix least-squares on F ²
$\Sigma \le (Fo^2 - Fc^2)^2$
$w = 1/ \left[\ \sigma^2(Fo^2) + (0.0681 \cdot P)^2 \right.$
+ 2.1911 · P]
where $P = (Max(Fo^2, 0) + 2Fc^2)/3$
62.4 ^o
All non-hydrogen atoms
6256
213
29.37
0.0497
0.0743
0.1327
1.025
0.000
0.35 e ⁻ /Å ³
-0.31 e ⁻ /Å ³

Atomic coordinates and $\mathrm{B}_{iso}/\mathrm{B}_{eq}$ and occupancy

atom	Х	У	Ζ	Beq	occ
Fe1	0.50000	0.74838(2)	0.25000	1.294(8)	1/2
N1	0.35038(7)	0.81364(10)	0.15767(9)	1.61(2)	1
N2	0.34973(7)	0.68233(11)	0.23013(9)	1.84(2)	1
C1	0.50051(8)	0.74776(12)	0.37524(10)	1.60(2)	1
C2	0.52836(8)	0.66870(13)	0.43121(11)	1.80(3)	1
C3	0.52786(9)	0.66855(15)	0.51590(11)	2.34(3)	1
C4	0.50098(10)	0.74673(15)	0.54968(11)	2.65(3)	1
C5	0.47391(9)	0.82565(15)	0.49690(12)	2.51(3)	1
C6	0.47249(9)	0.82646(13)	0.41146(11)	1.90(3)	1
C7	0.56053(9)	0.57981(13)	0.40190(12)	2.30(3)	1
C8	0.50101(14)	0.7464(2)	0.64124(14)	4.13(5)	1
С9	0.43925(10)	0.91496(14)	0.35905(12)	2.48(3)	1
C10	0.39423(8)	0.74846(11)	0.21087(10)	1.48(2)	1
C11	0.28053(9)	0.78858(14)	0.14392(11)	2.04(3)	1
C12	0.28016(9)	0.70633(15)	0.18934(12)	2.31(3)	1
C13	0.37639(9)	0.90023(12)	0.12146(11)	1.91(3)	1
C14	0.35987(10)	0.89210(15)	0.02553(12)	2.57(3)	1
C15	0.35278(11)	0.99871(13)	0.14840(14)	2.89(4)	1
C16	0.21951(9)	0.84290(16)	0.08683(14)	2.92(4)	1
C17	0.37507(9)	0.59838(13)	0.28828(11)	2.14(3)	1
C18	0.35073(12)	0.49771(15)	0.24723(14)	3.16(4)	1
C19	0.35835(10)	0.61102(15)	0.37151(12)	2.64(3)	1
C20	0.21833(10)	0.64942(19)	0.19711(14)	3.67(5)	1
$B_{eq} = \frac{8}{3} \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\beta + 2U_{23}(bb^*c$					

α)

Anisotropic displacement parameters

atom	U ₁₁	U ₂₂	U33	U ₁₂	U ₁₃	U23
Fe1	0.01486(16)	0.01906(15)	0.01501(15)	0.00000	0.00409(11)	0.00000
N1	0.0172(6)	0.0239(7)	0.0192(7)	0.0016(5)	0.0041(5)	0.0010(5)
N2	0.0172(6)	0.0308(7)	0.0211(7)	-0.0028(6)	0.0046(5)	0.0044(6)
C1	0.0154(7)	0.0262(8)	0.0188(7)	-0.0023(6)	0.0046(6)	-0.0009(6)
C2	0.0171(8)	0.0299(8)	0.0204(8)	-0.0018(6)	0.0038(6)	0.0017(6)
C3	0.0233(9)	0.0437(11)	0.0206(8)	0.0011(8)	0.0048(7)	0.0080(7)
C4	0.0264(9)	0.0548(12)	0.0196(8)	-0.0006(9)	0.0071(7)	0.0004(8)
C5	0.0272(9)	0.0461(11)	0.0238(9)	0.0025(8)	0.0102(7)	-0.0072(8)

C6	0.0204(8)	0.0315(9)	0.0207(8)	-0.0006(7)	0.0067(6)	-0.0022(7)
C7	0.0292(9)	0.0286(9)	0.0277(9)	0.0027(7)	0.0059(7)	0.0058(7)
C8	0.0494(14)	0.0861(19)	0.0234(10)	0.0089(12)	0.0141(9)	0.0021(11)
C9	0.0352(10)	0.0320(9)	0.0280(9)	0.0084(8)	0.0108(8)	-0.0027(7)
C10	0.0178(7)	0.0215(7)	0.0170(7)	0.0008(6)	0.0055(6)	-0.0005(6)
C11	0.0156(8)	0.0378(9)	0.0233(8)	0.0033(7)	0.0045(6)	0.0004(7)
C12	0.0167(8)	0.0447(11)	0.0249(9)	-0.0032(7)	0.0043(7)	0.0024(8)
C13	0.0234(8)	0.0217(8)	0.0260(9)	0.0030(6)	0.0055(7)	0.0038(6)
C14	0.0305(10)	0.0393(10)	0.0272(10)	0.0029(8)	0.0077(8)	0.0090(8)
C15	0.0395(11)	0.0252(9)	0.0427(12)	0.0086(8)	0.0086(9)	0.0017(8)
C16	0.0193(9)	0.0446(11)	0.0430(12)	0.0060(8)	0.0030(8)	0.0028(9)
C17	0.0255(9)	0.0289(9)	0.0255(9)	-0.0050(7)	0.0054(7)	0.0068(7)
C18	0.0461(12)	0.0342(10)	0.0386(11)	-0.0132(9)	0.0109(9)	0.0029(9)
C19	0.0321(10)	0.0403(11)	0.0265(9)	-0.0089(8)	0.0070(8)	0.0077(8)
C20	0.0222(9)	0.0756(16)	0.0394(12)	-0.0128(10)	0.0061(8)	0.0166(11)
						-

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Bond length	ns (Å)				
atom	atom	distance	atom	atom	distance
Fe1	C1	2.0579(17)	Fe1	C1 ¹	2.0579(17)
Fe1	C10	2.0241(15)	Fe1	C10 ¹	2.0241(15)
N1	C10	1.3607(19)	N1	C11	1.392(2)
N1	C13	1.475(2)	N2	C10	1.364(2)
N2	C12	1.393(2)	N2	C17	1.471(2)
C1	C2	1.410(2)	C1	C6	1.413(3)
C2	C3	1.397(3)	C2	C7	1.507(3)
C3	C4	1.375(3)	C4	C5	1.378(3)
C4	C8	1.507(3)	C5	C6	1.398(3)
C6	С9	1.506(2)	C11	C12	1.339(3)
C11	C16	1.493(2)	C12	C20	1.496(3)
C13	C14	1.517(3)	C13	C15	1.520(3)
C17	C18	1.530(3)	C17	C19	1.514(3)

Symmetry Operators:

(1) -X+1,Y,-Z+1/2

Bond ang	les (⁰)						
atom	atom	atom	angle	atom	atom	atom	angle
C1	Fe1	C1 ¹	179.53(7)	C1	Fe1	C10	90.53(6)
C1	Fe1	C10 ¹	89.47(6)	C1 ¹	Fe1	C10	89.47(6)
C1 ¹	Fe1	C10 ¹	90.53(6)	C10	Fe1	C10 ¹	179.94(6)
C10	N1	C11	111.90(14)	C10	N1	C13	122.17(13)
C11	N1	C13	125.92(13)	C10	N2	C12	111.51(14)
C10	N2	C17	122.10(13)	C12	N2	C17	126.39(16)
Fe1	C1	C2	122.64(13)	Fe1	C1	C6	122.40(12)
C2	C1	C6	114.95(16)	C1	C2	C3	122.21(17)
C1	C2	C7	121.06(16)	C3	C2	C7	116.73(16)
C2	C3	C4	121.54(17)	C3	C4	C5	117.74(18)
C3	C4	C8	121.29(18)	C5	C4	C8	121.0(2)
C4	C5	C6	121.71(19)	C1	C6	C5	121.82(16)
C1	C6	С9	121.14(16)	C5	C6	С9	117.03(17)
Fe1	C10	N1	128.25(12)	Fe1	C10	N2	128.45(11)
N1	C10	N2	103.29(13)	N1	C11	C12	106.49(14)
N1	C11	C16	125.36(17)	C12	C11	C16	128.12(17)
N2	C12	C11	106.82(16)	N2	C12	C20	125.16(17)
C11	C12	C20	128.02(16)	N1	C13	C14	111.69(14)
N1	C13	C15	113.27(17)	C14	C13	C15	112.13(15)
N2	C17	C18	113.15(14)	N2	C17	C19	112.02(15)
C18	C17	C19	111.81(17)				

Symmetry Operators:

(1) -X+1,Y,-Z+1/2

Torsion Angles(⁰)

(Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
C1	Fe1	C10	N1	124.94(13)	C1	Fe1	C10	N2	-56.39(13)
C10	Fe1	C1	C2	116.50(11)	C10	Fe1	C1	C6	-63.08(11)
C1	Fe1	C10 ¹	N1 ¹	-55.52(13)	C1	Fe1	C10 ¹	N21	123.15(13)
C10 ¹	Fe1	C1	C2	-63.56(11)	C10 ¹	Fe1	C1	C6	116.86(11)
C11	Fe1	C10	N1	-55.52(13)	C1 ¹	Fe1	C10	N2	123.15(13)
C10	Fe1	C11	C21	-63.56(11)	C10	Fe1	C11	C6 ¹	116.86(11)
C11	Fe1	C10 ¹	N1 ¹	124.94(13)	C1 ¹	Fe1	C10 ¹	N21	-56.39(13)
C10 ¹	Fe1	C1 ¹	C2 ¹	116.50(11)	C10 ¹	Fe1	C1 ¹	C6 ¹	-63.08(11)
C10	N1	C11	C12	0.16(19)	C10	N1	C11	C16	-178.01(14)

S26

C11	N1	C10	Fe1	178.70(13)	C11	N1	C10	N2	-0.23(18)
C10	N1	C13	C14	114.32(15)	C10	N1	C13	C15	-117.92(16)
C13	N1	C10	Fel	-2.1(2)	C13	N1	C10	N2	179.00(13)
C11	N1	C13	C14	-66.6(2)	C11	N1	C13	C15	61.2(2)
C13	N1	C11	C12	-179.04(14)	C13	N1	C11	C16	2.8(3)
C10	N2	C12	C11	-0.1(2)	C10	N2	C12	C20	-179.70(15)
C12	N2	C10	Fe1	-178.71(13)	C12	N2	C10	N1	0.22(18)
C10	N2	C17	C18	-122.02(16)	C10	N2	C17	C19	110.48(17)
C17	N2	C10	Fel	2.2(2)	C17	N2	C10	N1	-178.89(14)
C12	N2	C17	C18	59.0(2)	C12	N2	C17	C19	-68.5(2)
C17	N2	C12	C11	178.93(15)	C17	N2	C12	C20	-0.6(3)
Fe1	C1	C2	C3	-179.38(9)	Fel	C1	C2	C7	0.8(2)
Fe1	C1	C6	C5	-179.23(10)	Fel	C1	C6	С9	1.2(2)
C2	C1	C6	C5	1.2(2)	C2	C1	C6	С9	-178.46(13)
C6	C1	C2	C3	0.2(2)	C6	C1	C2	C7	-179.58(13)
C1	C2	C3	C4	-1.0(2)	C7	C2	C3	C4	178.78(13)
C2	C3	C4	C5	0.4(3)	C2	C3	C4	C8	-179.60(14)
C3	C4	C5	C6	1.0(3)	C8	C4	C5	C6	-178.99(17)
C4	C5	C6	C1	-1.8(3)	C4	C5	C6	C9	177.79(15)
N1	C11	C12	N2	-0.0(2)	N1	C11	C12	C20	179.53(16)
C16	C11	C12	N2	178.08(18)	C16	C11	C12	C20	-2.4(3)

Symmetry Operators:

(1) -X+1,Y,-Z+1/2

Figure S21. ORTEP drawing of 2 (50% probability of the thermal ellipsoids). Hydrogen atoms were omitted for clarity.

Table S9. Crystal data and structure refinement for 2.

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters

Space Group Z value D_{calc} F₀₀₀ μ(MoKα) Diffractometer Radiation

Voltage, Current Temperature Detector Aperture Data Images ω oscillation Range (χ =45.0, ϕ =0.0) Exposure Rate Detector Swing Angle ω oscillation Range (χ =45.0, ϕ =90.0) Exposure Rate Detector Swing Angle Detector Position Pixel Size $2\theta_{max}$ No. of Reflections Measured

Corrections

C46H62FeGe2N4 872.05 red, block 0.100 X 0.100 X 0.050 mm monoclinic Primitive a = 12.836(4) Åb = 12.928(4) Åc = 13.403(4) Å $\beta = 104.798(4)$ o $V = 2150.4(11) Å^3$ P21/n (#14) 2 1.347 g/cm³ 912.00 17.564 cm⁻¹ Saturn724 MoK α ($\lambda = 0.71075$ Å) multi-layer mirror monochromated 50kV, 24mA -69.8°C 72.8 x 72.8 mm 720 exposures -70.0 - 110.00 16.0 sec./0 19.960 -70.0 - 110.00 16.0 sec./0 19.960 44.81 mm 0.141 mm 55.0° Total: 17535 Unique: $4814 (R_{int} = 0.1537)$ Lorentz-polarization

Absorption

Structure Solution Refinement Function Minimized Least Squares Weights

 $2\theta_{max}$ cutoff Anomalous Dispersion No. Observations (All reflections) No. Variables Reflection/Parameter Ratio Residuals: R1 (I>2.00 σ (I)) Residuals: R (All reflections) Residuals: wR2 (All reflections) Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map

(trans. factors: 0.728 - 0.916) Direct Methods (SHELXT Version 2014/5) Full-matrix least-squares on F² $\Sigma \text{ w} (\text{Fo}^2 - \text{Fc}^2)^2$ w = 1/ [$\sigma^2(Fo^2) + (0.0394 \cdot P)^2$ + 0.8991 · P] where $P = (Max(Fo^2, 0) + 2Fc^2)/3$ 55.0⁰ All non-hydrogen atoms 4814 251 19.18 0.0607 0.0878 0.1470 1.083 0.001 1.00 e⁻/Å³

-0.82 e⁻/Å³

Х	У	Z	Beq	occ
0.49474(3)	0.50917(3)	0.68114(3)	2.379(12)	1
0.50000	0.50000	0.50000	1.903(14)	1/2
0.2726(2)	0.5896(2)	0.4459(2)	2.08(5)	1
0.3923(2)	0.7097(2)	0.4813(2)	2.09(5)	1
0.5728(3)	0.4202(3)	0.7991(3)	2.86(7)	1
0.6509(3)	0.3502(3)	0.7918(3)	2.88(7)	1
0.7085(4)	0.2944(4)	0.8778(4)	3.84(9)	1
0.6864(4)	0.3093(4)	0.9721(4)	4.56(11)	1
0.6086(5)	0.3770(5)	0.9807(4)	4.93(12)	1
0.5511(4)	0.4323(4)	0.8947(3)	4.26(10)	1
0.3505(3)	0.5168(3)	0.7097(3)	2.64(7)	1
0.3017(4)	0.4290(4)	0.7345(3)	3.79(9)	1
0.2001(4)	0.4310(5)	0.7534(4)	4.52(10)	1
0.1465(4)	0.5230(5)	0.7491(4)	4.33(11)	1
0.1926(4)	0.6107(4)	0.7239(4)	4.29(10)	1
0.2945(4)	0.6084(4)	0.7043(3)	3.37(8)	1
0.3823(3)	0.6051(3)	0.4745(3)	2.05(6)	1
0.2173(3)	0.6828(3)	0.4338(3)	2.48(7)	1
0.2909(3)	0.7590(3)	0.4549(3)	2.50(7)	1
0.2265(3)	0.4852(3)	0.4221(3)	2.39(6)	1
0.1345(3)	0.4629(4)	0.4725(3)	3.42(8)	1
0.1924(4)	0.4678(4)	0.3059(3)	3.43(8)	1
0.0965(3)	0.6948(4)	0.4051(3)	3.44(8)	1
0.2717(4)	0.8727(3)	0.4545(3)	3.35(8)	1
0.4987(3)	0.7603(3)	0.5072(3)	2.66(7)	1
0.5117(4)	0.8331(4)	0.5996(3)	3.68(9)	1
0.5209(4)	0.8128(4)	0.4134(3)	3.84(9)	1
	x 0.49474(3) 0.50000 0.2726(2) 0.3923(2) 0.5728(3) 0.6509(3) 0.7085(4) 0.6864(4) 0.6086(5) 0.5511(4) 0.3505(3) 0.3017(4) 0.2001(4) 0.1465(4) 0.1926(4) 0.2945(4) 0.2945(4) 0.2945(4) 0.2945(4) 0.2945(4) 0.2909(3) 0.2265(3) 0.1345(3) 0.1924(4) 0.0965(3) 0.2717(4) 0.4987(3) 0.5117(4)	x y 0.49474(3) 0.50917(3) 0.50000 0.50000 0.2726(2) 0.5896(2) 0.3923(2) 0.7097(2) 0.5728(3) 0.4202(3) 0.6509(3) 0.3502(3) 0.6509(3) 0.3502(3) 0.7085(4) 0.2944(4) 0.6864(4) 0.3093(4) 0.6086(5) 0.3770(5) 0.5511(4) 0.4323(4) 0.3505(3) 0.5168(3) 0.3017(4) 0.4290(4) 0.2001(4) 0.4310(5) 0.1465(4) 0.5230(5) 0.1926(4) 0.6084(4) 0.3823(3) 0.6051(3) 0.2173(3) 0.6828(3) 0.2909(3) 0.7590(3) 0.2909(3) 0.7590(3) 0.2909(3) 0.7590(3) 0.2265(3) 0.4852(3) 0.1345(3) 0.4629(4) 0.1924(4) 0.4678(4) 0.0965(3) 0.6948(4) 0.2717(4) 0.8727(3) 0.4987(3) 0.7603(3) <	xyz $0.49474(3)$ $0.50917(3)$ $0.68114(3)$ 0.50000 0.50000 0.50000 $0.2726(2)$ $0.5896(2)$ $0.4459(2)$ $0.3923(2)$ $0.7097(2)$ $0.4813(2)$ $0.5728(3)$ $0.4202(3)$ $0.7991(3)$ $0.6509(3)$ $0.3502(3)$ $0.7918(3)$ $0.7085(4)$ $0.2944(4)$ $0.8778(4)$ $0.6864(4)$ $0.3093(4)$ $0.9721(4)$ $0.6864(4)$ $0.3093(4)$ $0.9721(4)$ $0.6866(5)$ $0.3770(5)$ $0.9807(4)$ $0.5511(4)$ $0.4229(4)$ $0.7345(3)$ $0.3505(3)$ $0.5168(3)$ $0.7097(3)$ $0.3017(4)$ $0.4290(4)$ $0.7345(3)$ $0.2001(4)$ $0.4310(5)$ $0.7534(4)$ $0.1465(4)$ $0.5230(5)$ $0.7491(4)$ $0.1926(4)$ $0.6107(4)$ $0.7239(4)$ $0.2945(4)$ $0.6084(4)$ $0.7043(3)$ $0.3823(3)$ $0.6051(3)$ $0.4745(3)$ $0.2909(3)$ $0.7590(3)$ $0.4549(3)$ $0.2265(3)$ $0.4852(3)$ $0.4221(3)$ $0.1345(3)$ $0.4629(4)$ $0.4725(3)$ $0.1924(4)$ $0.4678(4)$ $0.3059(3)$ $0.0965(3)$ $0.6948(4)$ $0.4051(3)$ $0.2717(4)$ $0.8727(3)$ $0.4545(3)$ $0.4987(3)$ $0.7603(3)$ $0.5072(3)$ $0.5209(4)$ $0.8128(4)$ $0.4134(3)$	xyz B_{eq} 0.49474(3)0.50917(3)0.68114(3)2.379(12)0.500000.500001.903(14)0.2726(2)0.5896(2)0.4459(2)2.08(5)0.3923(2)0.7097(2)0.4813(2)2.09(5)0.5728(3)0.4202(3)0.7991(3)2.86(7)0.6509(3)0.3502(3)0.7918(3)2.88(7)0.7085(4)0.2944(4)0.8778(4)3.84(9)0.6864(4)0.3093(4)0.9721(4)4.56(11)0.6086(5)0.3770(5)0.9807(4)4.93(12)0.5511(4)0.4323(4)0.8947(3)4.26(10)0.3505(3)0.5168(3)0.7097(3)2.64(7)0.3017(4)0.4220(4)0.7345(3)3.79(9)0.2001(4)0.4310(5)0.7534(4)4.52(10)0.1465(4)0.5230(5)0.7491(4)4.33(11)0.1926(4)0.6107(4)0.7239(4)4.29(10)0.2945(4)0.6084(4)0.7043(3)3.37(8)0.3823(3)0.6051(3)0.4745(3)2.50(7)0.2265(3)0.4852(3)0.4338(3)2.48(7)0.2909(3)0.7590(3)0.4549(3)2.50(7)0.2265(3)0.4852(3)0.4221(3)3.37(8)0.1924(4)0.4678(4)0.3059(3)3.43(8)0.0965(3)0.6948(4)0.4051(3)3.44(8)0.2717(4)0.8727(3)0.4545(3)3.35(8)0.4987(3)0.7603(3)0.5072(3)2.66(7)0.5117(4)0.8331(4)0.5996(3)3.68(9)0.5209(

Atomic coordinates and $B_{iso}\!/B_{eq}$ and occupancy

 $B_{eq} = \frac{8}{3} \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

Anisotropic displacement parameters

atom	U ₁₁	U ₂₂	U33	U ₁₂	U ₁₃	U ₂₃
Gel	0.0349(2)	0.0311(2)	0.0248(2)	0.00495(17)	0.00843(17)	0.00073(16)
Fe1	0.0254(4)	0.0259(4)	0.0214(4)	0.0044(3)	0.0066(3)	0.0001(3)
N1	0.0220(15)	0.0291(16)	0.0269(16)	0.0010(13)	0.0041(13)	0.0016(13)
N2	0.0274(15)	0.0238(15)	0.0271(16)	-0.0002(13)	0.0052(13)	-0.0014(12)

C1	0.038(2)	0.033(2)	0.034(2)	0.0012(18)	0.0016(18)	0.0001(17)
C2	0.037(2)	0.034(2)	0.035(2)	-0.0008(18)	0.0041(18)	0.0052(17)
C3	0.039(2)	0.040(3)	0.058(3)	-0.000(2)	-0.003(2)	0.011(2)
C4	0.060(3)	0.052(3)	0.047(3)	-0.004(3)	-0.012(2)	0.020(2)
C5	0.081(4)	0.070(4)	0.032(3)	0.006(3)	0.007(3)	0.010(2)
C6	0.069(3)	0.059(3)	0.035(3)	0.016(3)	0.015(2)	0.007(2)
C7	0.038(2)	0.038(2)	0.026(2)	0.0040(18)	0.0108(17)	-0.0003(16)
C8	0.056(3)	0.036(2)	0.056(3)	0.003(2)	0.023(2)	0.010(2)
С9	0.058(3)	0.063(4)	0.058(3)	-0.004(3)	0.029(3)	0.011(3)
C10	0.043(3)	0.084(4)	0.044(3)	-0.002(3)	0.022(2)	-0.012(3)
C11	0.048(3)	0.052(3)	0.064(3)	0.013(2)	0.016(2)	-0.014(2)
C12	0.044(2)	0.037(2)	0.048(3)	0.0054(19)	0.015(2)	-0.0112(19)
C13	0.0276(18)	0.0277(19)	0.0228(18)	0.0003(15)	0.0072(15)	-0.0029(14)
C14	0.0276(19)	0.038(2)	0.029(2)	0.0091(16)	0.0071(16)	0.0040(16)
C15	0.035(2)	0.031(2)	0.028(2)	0.0071(17)	0.0070(17)	0.0000(16)
C16	0.0279(18)	0.032(2)	0.031(2)	-0.0059(16)	0.0073(16)	-0.0052(16)
C17	0.040(2)	0.050(3)	0.042(3)	-0.010(2)	0.014(2)	0.002(2)
C18	0.050(3)	0.043(2)	0.037(2)	-0.012(2)	0.010(2)	-0.0050(19)
C19	0.027(2)	0.050(3)	0.051(3)	0.0113(19)	0.0047(19)	0.007(2)
C20	0.048(3)	0.027(2)	0.049(3)	0.0098(19)	0.007(2)	0.0026(18)
C21	0.0319(19)	0.032(2)	0.036(2)	-0.0030(16)	0.0053(17)	-0.0033(16)
C22	0.042(3)	0.046(3)	0.047(3)	-0.005(2)	0.003(2)	-0.016(2)
C23	0.043(3)	0.060(3)	0.043(3)	-0.016(2)	0.011(2)	0.003(2)

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Bond	lengths	(Å)
------	---------	-----

atom	atom	distance	atom	atom	distance
Gel	Fe1	2.4488(8)	Ge1	C1	2.004(4)
Gel	C7	1.986(4)	Fe1	C13	1.995(4)
Fel	C13 ¹	1.995(4)	N1	C13	1.376(5)
N1	C14	1.387(5)	N1	C16	1.475(5)
N2	C13	1.359(5)	N2	C15	1.411(5)
N2	C21	1.473(5)	C1	C2	1.372(6)
C1	C6	1.388(6)	C2	C3	1.400(6)
C3	C4	1.377(8)	C4	C5	1.354(8)
C5	C6	1.397(6)	C7	C8	1.378(7)
C7	C12	1.378(6)	C8	С9	1.391(8)

C9	C10	1.367(8)	C10	C11	1.360(8)
C11	C12	1.399(7)	C14	C15	1.344(6)
C14	C19	1.508(5)	C15	C20	1.491(6)
C16	C17	1.531(6)	C16	C18	1.523(5)
C21	C22	1.531(6)	C21	C23	1.519(6)
Gel	H1	1.76(4)			

Symmetry Operators:

(1) -X+1,-Y+1,-Z+1

Bond	l angl	les	$(^{0})$
------	--------	-----	----------

atom	atom	atom	angle	atom	atom	atom	angle
Fe1	Gel	C1	128.28(13)	Fe1	Gel	C7	117.17(10)
C1	Gel	C7	100.33(17)	Gel	Fe1	Gel ¹	180.000(18)
Gel	Fe1	C13	85.74(10)	Gel	Fe1	C13 ¹	94.26(10)
Ge1 ¹	Fe1	C13	94.26(10)	Gel ¹	Fe1	C13 ¹	85.74(10)
C13	Fe1	C13 ¹	180.0(2)	C13	N1	C14	111.2(3)
C13	N1	C16	121.3(3)	C14	N1	C16	127.2(3)
C13	N2	C15	111.5(3)	C13	N2	C21	121.5(3)
C15	N2	C21	126.8(3)	Gel	C1	C2	123.3(3)
Gel	C1	C6	119.1(3)	C2	C1	C6	117.5(4)
C1	C2	C3	121.6(4)	C2	C3	C4	119.6(4)
C3	C4	C5	119.8(4)	C4	C5	C6	120.4(5)
C1	C6	C5	121.1(5)	Gel	C7	C8	120.6(3)
Gel	C7	C12	122.2(3)	C8	C7	C12	117.2(4)
C7	C8	С9	122.3(5)	C8	С9	C10	119.6(5)
С9	C10	C11	119.3(5)	C10	C11	C12	121.1(5)
C7	C12	C11	120.6(4)	Fe1	C13	N1	128.6(3)
Fel	C13	N2	127.7(3)	N1	C13	N2	103.6(3)
N1	C14	C15	107.5(3)	N1	C14	C19	125.6(4)
C15	C14	C19	126.9(4)	N2	C15	C14	106.0(3)
N2	C15	C20	126.0(3)	C14	C15	C20	128.0(4)
N1	C16	C17	112.9(3)	N1	C16	C18	110.6(3)
C17	C16	C18	111.8(3)	N2	C21	C22	111.5(3)
N2	C21	C23	111.2(3)	C22	C21	C23	112.9(4)

Symmetry Operators:

(1) -X+1,-Y+1,-Z+1

Torsion Angles(⁰)	Tors	ion	Angl	les	(0)
--------------------------------	------	-----	------	-----	-----

(Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
Fe1	Gel	C1	C2	8.7(4)	Fe1	Gel	C1	C6	-174.25(17)
C1	Gel	Fe1	C13	172.50(15)	C1	Gel	Fe1	C13 ¹	-7.50(15)
Fe1	Gel	C7	C8	97.2(2)	Fe1	Gel	C7	C12	-81.8(3)
C7	Gel	Fel	C13	41.07(14)	C7	Gel	Fe1	C13 ¹	-138.93(14)
C1	Gel	C7	C8	-46.1(3)	C1	Gel	C7	C12	135.0(3)
C7	Gel	C1	C2	146.0(3)	C7	Gel	C1	C6	-36.9(3)
Gel	Fe1	C13	N1	-93.2(3)	Gel	Fe1	C13	N2	86.8(3)
Gel	Fe1	C13 ¹	$N1^1$	-86.8(3)	Gel	Fe1	C13 ¹	$N2^1$	93.2(3)
Ge1 ¹	Fe1	C13	N1	86.8(3)	Ge1 ¹	Fe1	C13	N2	-93.2(3)
Ge1 ¹	Fe1	C13 ¹	$N1^1$	93.2(3)	Ge1 ¹	Fe1	C13 ¹	$N2^1$	-86.8(3)
C13	N1	C14	C15	-0.3(4)	C13	N1	C14	C19	-178.6(3)
C14	N1	C13	Fe1	-178.8(3)	C14	N1	C13	N2	1.1(4)
C13	N1	C16	C17	134.6(3)	C13	N1	C16	C18	-99.4(3)
C16	N1	C13	Fe1	-4.7(5)	C16	N1	C13	N2	175.3(3)
C14	N1	C16	C17	-52.3(4)	C14	N1	C16	C18	73.8(4)
C16	N1	C14	C15	-174.0(3)	C16	N1	C14	C19	7.7(6)
C13	N2	C15	C14	1.4(4)	C13	N2	C15	C20	179.6(3)
C15	N2	C13	Fe1	178.4(3)	C15	N2	C13	N1	-1.6(4)
C13	N2	C21	C22	-125.8(3)	C13	N2	C21	C23	107.1(3)
C21	N2	C13	Fe1	2.0(5)	C21	N2	C13	N1	-178.0(3)
C15	N2	C21	C22	58.3(4)	C15	N2	C21	C23	-68.7(4)
C21	N2	C15	C14	177.6(3)	C21	N2	C15	C20	-4.2(6)
Gel	C1	C2	C3	175.7(2)	Gel	C1	C6	C5	-175.7(3)
C2	C1	C6	C5	1.5(7)	C6	C1	C2	C3	-1.4(6)
C1	C2	C3	C4	0.3(6)	C2	C3	C4	C5	0.6(7)
C3	C4	C5	C6	-0.5(8)	C4	C5	C6	C1	-0.6(8)
Gel	C7	C8	C9	-178.9(2)	Gel	C7	C12	C11	179.4(2)
C8	C7	C12	C11	0.3(5)	C12	C7	C8	C9	0.1(6)
C7	C8	C9	C10	-1.1(6)	C8	C9	C10	C11	1.6(6)
C9	C10	C11	C12	-1.2(7)	C10	C11	C12	C7	0.2(6)
N1	C14	C15	N2	-0.6(4)	N1	C14	C15	C20	-178.8(3)
C19	C14	C15	N2	177.6(3)	C19	C14	C15	C20	-0.5(6)

Symmetry Operators:

(1) -X+1,-Y+1,-Z+1

Figure S22. ORTEP drawing of 3 (50% probability of the thermal ellipsoids). Hydrogen atoms were omitted for clarity.

 Table S10. Crystal data and structure refinement for 3.

Empirical Formula	C ₅₈ H ₇₀ FeGe ₃ N ₄
Formula Weight	1096.83
Crystal Color, Habit	paleyellow, plate
Crystal Dimensions	0.050 X 0.020 X 0.020 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	a = 12.2039(2) Å
	b = 20.0943(3) Å
	c = 22.0081(4) Å
	$\beta = 98.0205(16)^{\circ}$
	$V = 5344.23(15) \text{ Å}^3$
Space Group	P2 ₁ /n (#14)
Z value	4
D _{calc}	1.363 g/cm ³
F000	2272.00
μ (synchrotron radiation, $\lambda = 0.41220$ Å)	0.000 cm ⁻¹
Diffractometer	R-AXIS IV
Radiation ($\lambda = 0.41220$ Å)	
Voltage, Current	8kV, 100mA
Temperature	-173.0°C
Detector Aperture	300.0 x 300.0 mm
Data Images	1080 exposures
$ω$ oscillation Range (χ =45.0, ϕ =0.0)	0.0 - 180.0 ^o
Exposure Rate	10.0 sec./ ^o
$ω$ oscillation Range (χ =45.0, ϕ =-90.0)	0.0 - 180.0 ^o
Exposure Rate	10.0 sec./ ^o
$ω$ oscillation Range (χ =45.0, ϕ =-180.0)	0.0 - 180.0 ^o
Exposure Rate	600.0 sec./ ⁰
Detector Position	130.00 mm
Pixel Size	0.172 mm
20 _{max}	43.6 ^o
No. of Reflections Measured	Total: 204926
	Unique: 27862 (R _{int} = 0.1399)
Corrections	Lorentz-polarization
	Absorption
	(trans. factors: 0.349 - 1.000)

Structure Solution	Direct Methods (SHELXT Version 2014/5)
Refinement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma \le (Fo^2 - Fc^2)^2$
Least Squares Weights	$w = 1/[\sigma^2(Fo^2) + (0.0492 \cdot P)^2$
	+ 6.4759 · P]
	where $P = (Max(Fo^2, 0) + 2Fc^2)/3$
$2\theta_{max}$ cutoff	43.6 ^o
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	27862
No. Variables	607
Reflection/Parameter Ratio	45.90
Residuals: R1 (I>2.00σ(I))	0.0750
Residuals: R (All reflections)	0.1582
Residuals: wR2 (All reflections)	0.1567
Goodness of Fit Indicator	1.032
Max Shift/Error in Final Cycle	0.001
Maximum peak in Final Diff. Map	1.85 e ⁻ /Å ³
Minimum peak in Final Diff. Map	-0.93 e ⁻ /Å ³

Atomic coordinates and $\mathrm{B}_{iso}\!/\mathrm{B}_{eq}$ and occupancy

atom	Х	У	Ζ	Beq
Gel	0.74795(2)	0.26880(2)	0.46608(2)	1.840(5)
Ge2	0.54800(2)	0.24203(2)	0.44546(2)	1.930(5)
Ge3	0.55670(2)	0.24276(2)	0.33371(2)	1.946(5)
Fe1	0.75035(3)	0.29377(2)	0.35169(2)	1.904(6)
N1	0.8559(2)	0.43343(11)	0.36329(11)	2.07(4)
N2	0.6876(2)	0.44494(11)	0.32185(11)	2.03(4)
N3	0.95137(19)	0.20761(12)	0.31643(11)	2.01(3)
N4	0.8621(2)	0.25635(12)	0.23821(11)	2.12(4)
C1	0.7633(2)	0.39816(13)	0.34325(13)	1.96(4)
C2	0.8643(2)	0.24799(13)	0.29976(12)	1.92(4)
C3	0.7325(3)	0.50842(13)	0.32891(14)	2.16(4)
C4	0.8388(3)	0.50130(13)	0.35477(13)	2.14(4)
C5	0.5750(3)	0.42722(15)	0.29358(16)	2.76(5)
C6	0.4875(3)	0.4495(2)	0.3306(2)	4.20(8)
C7	0.5543(3)	0.44926(19)	0.22675(17)	3.59(7)
C8	0.6734(3)	0.57154(14)	0.30962(16)	2.71(5)
С9	0.9230(3)	0.55490(15)	0.36956(17)	2.80(5)
C10	0.9597(3)	0.40011(14)	0.38849(15)	2.45(5)
C11	1.0036(3)	0.42196(19)	0.45285(16)	3.15(6)
C12	1.0450(3)	0.4057(2)	0.34566(18)	3.59(7)
C13	0.9476(3)	0.22115(16)	0.21688(14)	2.41(5)
C14	1.0034(2)	0.19008(16)	0.26590(14)	2.36(5)
C15	0.7702(3)	0.29134(14)	0.20114(14)	2.29(4)
C16	0.8100(4)	0.34159(19)	0.15735(19)	3.90(8)
C17	0.6885(3)	0.24162(15)	0.16849(15)	2.44(5)
C18	0.9714(3)	0.21925(19)	0.15203(15)	3.07(6)
C19	1.1014(3)	0.14458(19)	0.26787(16)	3.13(6)
C20	0.9820(2)	0.18557(14)	0.38011(13)	2.07(4)
C21	1.0901(3)	0.21676(17)	0.40969(15)	2.76(5)
C22	0.9835(3)	0.11047(15)	0.38634(16)	2.77(5)
C23	0.7662(2)	0.33465(14)	0.53367(13)	2.09(4)
C24	0.7557(3)	0.40303(15)	0.52240(15)	2.50(5)
C25	0.7575(3)	0.44830(16)	0.56988(18)	3.02(6)
C26	0.7719(3)	0.42658(19)	0.62991(18)	3.37(6)
C27	0.7851(3)	0.3595(2)	0.64242(16)	3.38(6)
C28	0.7804(3)	0.31458(17)	0.59471(14)	2.68(5)

C29	0.8257(3)	0.18887(14)	0.50373(13)	2.18(4)
C30	0.9303(3)	0.19486(16)	0.53875(14)	2.56(5)
C31	0.9899(3)	0.13932(18)	0.56165(16)	3.24(6)
C32	0.9475(3)	0.07648(17)	0.55029(16)	3.28(6)
C33	0.8460(3)	0.06907(16)	0.51492(18)	3.20(6)
C34	0.7858(3)	0.12449(15)	0.49213(16)	2.58(5)
C35	0.4489(2)	0.30733(14)	0.47714(13)	2.05(4)
C36	0.4779(3)	0.37289(16)	0.49029(18)	3.05(6)
C37	0.4074(3)	0.41662(17)	0.51467(19)	3.47(7)
C38	0.3054(3)	0.39627(18)	0.52501(16)	3.03(6)
C39	0.2733(3)	0.33133(17)	0.51255(14)	2.63(5)
C40	0.3445(2)	0.28728(16)	0.48947(14)	2.34(4)
C41	0.4968(3)	0.15914(14)	0.48011(14)	2.30(5)
C42	0.5385(3)	0.13953(15)	0.53988(15)	2.68(5)
C43	0.4966(4)	0.08490(17)	0.56649(17)	3.45(7)
C44	0.4127(4)	0.04795(19)	0.5342(2)	4.15(8)
C45	0.3708(4)	0.06614(19)	0.4751(2)	4.13(8)
C46	0.4137(3)	0.12139(17)	0.44844(17)	3.08(6)
C47	0.4167(2)	0.27522(14)	0.28641(13)	2.13(4)
C48	0.4141(3)	0.29869(16)	0.22706(14)	2.51(5)
C49	0.3191(3)	0.32526(16)	0.19382(15)	2.72(5)
C50	0.2233(3)	0.32593(18)	0.21945(17)	3.08(6)
C51	0.2219(3)	0.29955(19)	0.27739(17)	3.21(6)
C52	0.3183(3)	0.27564(17)	0.31078(16)	2.83(5)
C53	0.5547(3)	0.14646(14)	0.31457(13)	2.29(4)
C54	0.6525(3)	0.11038(17)	0.32527(17)	3.27(6)
C55	0.6535(4)	0.04188(18)	0.3147(2)	4.24(8)
C56	0.5579(5)	0.00928(17)	0.29283(17)	4.46(9)
C57	0.4602(4)	0.04383(18)	0.28175(19)	4.62(10)
C58	0.4592(3)	0.11182(16)	0.29297(16)	3.34(6)
-	•	• •		

 $B_{eq} = \frac{8}{3} \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

Anisotropic displacement parameters								
atom	U ₁₁	U22	U33	U ₁₂	U ₁₃	U23		
Gel	0.02443(13)	0.02132(12)	0.02406(13)	0.00047(10)	0.00303(10)	-0.00006(10)		
Ge2	0.02458(13)	0.02243(13)	0.02674(14)	-0.00079(10)	0.00502(10)	-0.00115(11)		
Ge3	0.02570(14)	0.02183(12)	0.02626(14)	-0.00135(10)	0.00305(11)	-0.00082(10)		

Fe1	0.02592(19)	0.01989(16)	0.02611(19)	-0.00065(14)	0.00220(15)	0.00033(14)
N1	0.0274(12)	0.0204(10)	0.0300(12)	-0.0008(8)	0.0013(9)	-0.0008(9)
N2	0.0261(11)	0.0207(10)	0.0296(12)	-0.0004(8)	0.0014(9)	0.0004(9)
N3	0.0241(11)	0.0295(11)	0.0235(11)	-0.0021(9)	0.0057(9)	0.0002(9)
N4	0.0273(11)	0.0277(11)	0.0251(11)	-0.0051(9)	0.0017(9)	0.0024(9)
C1	0.0272(13)	0.0194(11)	0.0275(13)	-0.0002(9)	0.0021(10)	0.0004(9)
C2	0.0254(12)	0.0225(11)	0.0244(12)	-0.0037(9)	0.0015(9)	-0.0001(9)
C3	0.0312(14)	0.0190(11)	0.0322(14)	0.0014(10)	0.0059(11)	-0.0018(10)
C4	0.0313(14)	0.0207(11)	0.0300(14)	0.0009(10)	0.0061(11)	-0.0012(10)
C5	0.0293(15)	0.0258(13)	0.0473(19)	-0.0024(11)	-0.0037(13)	0.0040(12)
C6	0.0351(19)	0.054(2)	0.072(3)	-0.0027(16)	0.0129(18)	-0.000(2)
C7	0.045(2)	0.0394(18)	0.047(2)	-0.0031(15)	-0.0117(16)	0.0067(15)
C8	0.0378(16)	0.0223(12)	0.0422(17)	0.0027(11)	0.0027(13)	0.0005(12)
С9	0.0308(15)	0.0225(12)	0.052(2)	-0.0028(11)	0.0022(14)	-0.0027(12)
C10	0.0271(14)	0.0233(12)	0.0405(17)	0.0005(10)	-0.0030(12)	0.0003(11)
C11	0.0297(16)	0.0503(19)	0.0378(18)	-0.0003(14)	-0.0015(13)	-0.0001(14)
C12	0.0364(18)	0.054(2)	0.047(2)	0.0174(16)	0.0098(15)	-0.0019(17)
C13	0.0286(14)	0.0374(15)	0.0268(14)	-0.0085(11)	0.0084(11)	-0.0021(11)
C14	0.0244(13)	0.0379(15)	0.0283(14)	-0.0012(11)	0.0064(11)	-0.0020(11)
C15	0.0325(14)	0.0236(12)	0.0295(14)	-0.0024(11)	-0.0005(11)	0.0035(10)
C16	0.055(2)	0.0378(18)	0.051(2)	-0.0170(16)	-0.0094(18)	0.0159(16)
C17	0.0282(14)	0.0298(13)	0.0340(15)	-0.0036(11)	0.0017(11)	-0.0026(12)
C18	0.0386(17)	0.051(2)	0.0287(15)	-0.0092(14)	0.0100(13)	-0.0002(13)
C19	0.0303(16)	0.052(2)	0.0376(17)	0.0041(14)	0.0092(13)	-0.0043(15)
C20	0.0241(13)	0.0312(13)	0.0235(12)	0.0018(10)	0.0045(10)	0.0010(10)
C21	0.0311(15)	0.0420(17)	0.0302(15)	-0.0054(12)	-0.0010(12)	0.0002(12)
C22	0.0417(17)	0.0279(14)	0.0364(16)	0.0040(12)	0.0088(14)	0.0024(12)
C23	0.0235(13)	0.0288(13)	0.0268(13)	0.0001(10)	0.0029(10)	-0.0029(10)
C24	0.0290(14)	0.0294(13)	0.0360(16)	0.0019(11)	0.0029(12)	-0.0025(11)
C25	0.0292(15)	0.0295(14)	0.056(2)	-0.0011(12)	0.0077(14)	-0.0105(14)
C26	0.0352(17)	0.049(2)	0.044(2)	-0.0031(14)	0.0076(14)	-0.0210(16)
C27	0.0443(19)	0.053(2)	0.0317(16)	-0.0015(16)	0.0092(14)	-0.0118(15)
C28	0.0347(16)	0.0371(16)	0.0308(15)	0.0016(12)	0.0073(12)	-0.0030(12)
C29	0.0311(14)	0.0254(12)	0.0276(13)	0.0037(10)	0.0090(11)	0.0019(10)
C30	0.0343(15)	0.0312(14)	0.0302(14)	0.0058(11)	-0.0012(12)	-0.0027(11)
C31	0.0435(19)	0.0419(18)	0.0350(17)	0.0154(14)	-0.0042(14)	-0.0011(14)
C32	0.052(2)	0.0340(16)	0.0397(18)	0.0141(15)	0.0113(16)	0.0096(14)
C33	0.048(2)	0.0237(13)	0.055(2)	0.0021(13)	0.0245(17)	0.0057(13)

C34	0.0291(14)	0.0277(13)	0.0434(17)	0.0018(11)	0.0122(13)	-0.0002(12)
C35	0.0205(12)	0.0295(13)	0.0271(13)	0.0008(10)	0.0009(10)	-0.0020(10)
C36	0.0295(15)	0.0283(14)	0.058(2)	0.0008(12)	0.0058(14)	-0.0058(14)
C37	0.0394(18)	0.0300(15)	0.063(2)	0.0013(13)	0.0076(17)	-0.0126(15)
C38	0.0334(16)	0.0448(18)	0.0364(17)	0.0137(13)	0.0026(13)	-0.0062(14)
C39	0.0273(14)	0.0431(17)	0.0304(15)	0.0041(12)	0.0064(12)	0.0036(13)
C40	0.0265(13)	0.0340(14)	0.0280(14)	0.0009(11)	0.0024(11)	-0.0007(11)
C41	0.0323(14)	0.0232(12)	0.0344(15)	-0.0014(10)	0.0142(12)	-0.0008(11)
C42	0.0422(17)	0.0296(14)	0.0322(15)	0.0028(12)	0.0124(13)	0.0012(12)
C43	0.063(2)	0.0326(16)	0.0398(18)	0.0050(15)	0.0230(17)	0.0045(14)
C44	0.070(3)	0.0349(17)	0.060(3)	-0.0074(17)	0.035(2)	0.0036(17)
C45	0.062(3)	0.0382(18)	0.061(3)	-0.0214(17)	0.024(2)	-0.0049(17)
C46	0.0450(19)	0.0334(15)	0.0395(18)	-0.0109(14)	0.0086(14)	-0.0018(13)
C47	0.0272(13)	0.0256(12)	0.0279(13)	-0.0041(10)	0.0029(11)	-0.0042(10)
C48	0.0275(14)	0.0356(15)	0.0325(15)	0.0050(11)	0.0052(11)	-0.0028(12)
C49	0.0390(17)	0.0325(14)	0.0306(15)	0.0001(12)	0.0006(13)	0.0003(12)
C50	0.0286(15)	0.0422(17)	0.0434(19)	0.0042(13)	-0.0045(13)	-0.0069(14)
C51	0.0289(16)	0.0476(19)	0.046(2)	0.0006(14)	0.0067(14)	-0.0071(15)
C52	0.0312(15)	0.0398(16)	0.0368(16)	-0.0016(12)	0.0059(13)	-0.0037(13)
C53	0.0389(16)	0.0247(12)	0.0234(13)	-0.0012(11)	0.0049(11)	-0.0001(10)
C54	0.050(2)	0.0303(15)	0.047(2)	0.0088(14)	0.0141(16)	0.0012(14)
C55	0.080(3)	0.0313(17)	0.052(2)	0.0175(18)	0.020(2)	0.0024(16)
C56	0.109(4)	0.0217(14)	0.0364(19)	0.0016(19)	0.004(2)	-0.0012(13)
C57	0.095(3)	0.0281(16)	0.045(2)	-0.0118(19)	-0.017(2)	-0.0038(15)
C58	0.059(2)	0.0252(14)	0.0385(18)	-0.0038(14)	-0.0067(16)	-0.0024(12)

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Bond lengths (Å)

atom	atom	distance	atom	atom	distance
Gel	Ge2	2.4780(4)	Ge1	Fe1	2.5712(6)
Gel	C23	1.980(3)	Ge1	C29	1.987(3)
Ge2	Ge3	2.4765(6)	Ge2	C35	1.976(3)
Ge2	C41	1.970(3)	Ge3	Fe1	2.5557(5)
Ge3	C47	1.983(3)	Ge3	C53	1.980(3)
Fel	C1	2.114(3)	Fe1	C2	2.128(3)
N1	C1	1.354(4)	N1	C4	1.388(3)
N1	C10	1.471(4)	N2	C1	1.356(3)

N2	C3	1.389	(3)	N2		C5		1.470(4)
N3	C2	1.347(4)		N3		C14	4	1.400(4)
N3	C20	1.468	(4)	N4		C2		1.362(4)
N4	C13	1.395(4)		N4	N4		5	1.471(4)
C3	C4	1.349	1.349(4)		C3			1.491(4)
C4	С9	1.493	(4)	C5		C6		1.499(6)
C5	C7	1.523	(5)	C10		C11	1	1.508(5)
C10	C12	1.503	(5)	C13		C14	4	1.346(4)
C13	C18	1.496	(5)	C14		C19	9	1.501(5)
C15	C16	1.521	(5)	C15		C17	7	1.520(4)
C20	C21	1.522	(4)	C20		C22	2	1.515(4)
C23	C24	1.399	(4)	C23		C28	8	1.390(4)
C24	C25	1.383	(5)	C25		C26	5	1.379(5)
C26	C27	1.381	(6)	C27		C28	8	1.380(5)
C29	C30	1.401	(4)	C29		C34	4	1.393(4)
C30	C31	1.388	(5)	C31		C32	2	1.374(5)
C32	C33	1.376	(5)	C33		C34	4	1.389(5)
C35	C36	1.384	(4)	C35		C4(0	1.399(4)
C36	C37	1.389	(5)	C37		C38	8	1.359(5)
C38	C39	1.379	(5)	C39		C4(0	1.385(5)
C41	C42	1.399	(4)	C41		C46	5	1.376(4)
C42	C43	1.376	(5)	C43		C44	4	1.379(6)
C44	C45	1.378	(6)	C45		C46	5	1.392(6)
C47	C48	1.385	(4)	C47		C52	2	1.382(5)
C48	C49	1.389	(4)	C49		C5(0	1.366(5)
C50	C51	1.383	(5)	C51		C52	2	1.383(5)
C53	C54	1.388	(5)	C53		C58	8	1.384(5)
C54	C55	1.396	(5)	C55		C56	5	1.365(7)
C56	C57	1.373	(7)	C57		C58	8	1.389(5)
Bond angl	les (⁰)							
atom	atom	atom	angle	atom	atom		atom	angle
Ge2	Gel	Fe1	90.487(17)	Ge2	Gel		C23	106.68(8)
Ge2	Gel	C29	107.57(9)	Fe1	Gel		C23	126.14(9)
Fe1	Gel	C29	119.74(9)	C23	Gel		C29	103.29(11)
Gel	Ge2	Ge3	90.173(17)	Gel	Ge2		C35	115.26(8)
Ge1	Ge2	C41	118.05(9)	Ge3	Ge2		C35	117.36(8)
Ge3	Ge2	C41	116.71(9)	C35	Ge2		C41	100.49(12)

Ge2	Ge3	Fe1	90.886(17)	Ge2	Ge3	C47	111.72(9)
Ge2	Ge3	C53	101.80(9)	Fe1	Ge3	C47	131.29(9)
Fe1	Ge3	C53	114.12(9)	C47	Ge3	C53	103.04(12)
Gel	Fe1	Ge3	86.372(17)	Gel	Fe1	C1	106.91(8)
Gel	Fe1	C2	122.62(7)	Ge3	Fe1	C1	117.60(8)
Ge3	Fe1	C2	113.76(7)	C1	Fe1	C2	108.62(11)
C1	N1	C4	111.5(2)	C1	N1	C10	121.3(2)
C4	N1	C10	127.1(2)	C1	N2	C3	111.0(2)
C1	N2	C5	122.0(2)	C3	N2	C5	126.9(2)
C2	N3	C14	111.3(2)	C2	N3	C20	121.9(2)
C14	N3	C20	126.8(2)	C2	N4	C13	111.1(2)
C2	N4	C15	121.2(2)	C13	N4	C15	127.2(2)
Fe1	C1	N1	124.05(19)	Fe1	C1	N2	131.5(2)
N1	C1	N2	104.3(2)	Fe1	C2	N3	131.6(2)
Fe1	C2	N4	123.88(19)	N3	C2	N4	104.5(2)
N2	C3	C4	106.9(2)	N2	C3	C8	125.6(3)
C4	C3	C8	127.5(3)	N1	C4	C3	106.2(2)
N1	C4	С9	126.4(3)	C3	C4	С9	127.4(3)
N2	C5	C6	113.1(3)	N2	C5	C7	111.0(3)
C6	C5	C7	113.7(3)	N1	C10	C11	113.3(3)
N1	C10	C12	111.4(3)	C11	C10	C12	112.4(3)
N4	C13	C14	106.5(3)	N4	C13	C18	126.0(3)
C14	C13	C18	127.5(3)	N3	C14	C13	106.6(3)
N3	C14	C19	125.3(3)	C13	C14	C19	128.1(3)
N4	C15	C16	112.5(3)	N4	C15	C17	110.3(2)
C16	C15	C17	112.5(3)	N3	C20	C21	112.0(2)
N3	C20	C22	112.7(2)	C21	C20	C22	111.9(2)
Gel	C23	C24	121.7(2)	Gel	C23	C28	121.2(2)
C24	C23	C28	116.9(3)	C23	C24	C25	121.4(3)
C24	C25	C26	120.1(3)	C25	C26	C27	119.7(3)
C26	C27	C28	119.7(3)	C23	C28	C27	122.1(3)
Gel	C29	C30	120.4(2)	Gel	C29	C34	122.6(2)
C30	C29	C34	116.7(3)	C29	C30	C31	121.4(3)
C30	C31	C32	120.5(3)	C31	C32	C33	119.3(3)
C32	C33	C34	120.4(3)	C29	C34	C33	121.6(3)
Ge2	C35	C36	123.7(2)	Ge2	C35	C40	119.7(2)
C36	C35	C40	116.5(3)	C35	C36	C37	121.9(3)
C36	C37	C38	120.4(3)	C37	C38	C39	119.5(3)

C38	C39	C40	120.2(3)	C35	C40	C39	121.5(3)
Ge2	C41	C42	120.6(2)	Ge2	C41	C46	121.4(2)
C42	C41	C46	117.8(3)	C41	C42	C43	121.1(3)
C42	C43	C44	120.2(3)	C43	C44	C45	119.7(4)
C44	C45	C46	119.8(4)	C41	C46	C45	121.3(3)
Ge3	C47	C48	120.8(2)	Ge3	C47	C52	122.0(2)
C48	C47	C52	117.2(3)	C47	C48	C49	122.3(3)
C48	C49	C50	119.1(3)	C49	C50	C51	119.9(3)
C50	C51	C52	120.3(3)	C47	C52	C51	121.1(3)
Ge3	C53	C54	119.3(2)	Ge3	C53	C58	123.3(2)
C54	C53	C58	117.3(3)	C53	C54	C55	120.9(4)
C54	C55	C56	120.3(4)	C55	C56	C57	119.9(3)
C56	C57	C58	119.7(4)	C53	C58	C57	121.9(4)

Torsion Angles(⁰)

(Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
Ge2	Gel	Fe1	Ge3	-10.711(15)	Ge2	Gel	Fe1	C1	107.058(18)
Ge2	Gel	Fel	C2	-126.73(2)	Fel	Gel	Ge2	Ge3	11.036(16)
Fe1	Gel	Ge2	C35	-109.60(2)	Fel	Gel	Ge2	C41	131.75(2)
Ge2	Gel	C23	C24	-87.67(19)	Ge2	Gel	C23	C28	86.70(19)
C23	Gel	Ge2	Ge3	139.22(9)	C23	Gel	Ge2	C35	18.59(9)
C23	Gel	Ge2	C41	-100.06(9)	Ge2	Gel	C29	C30	-158.44(17)
Ge2	Gel	C29	C34	28.1(2)	C29	Gel	Ge2	Ge3	-110.50(9)
C29	Gel	Ge2	C35	128.87(9)	C29	Gel	Ge2	C41	10.22(9)
Fe1	Gel	C23	C24	15.6(2)	Fe1	Gel	C23	C28	-170.02(13)
C23	Gel	Fe1	Ge3	-121.91(10)	C23	Gel	Fel	C1	-4.14(10)
C23	Gel	Fe1	C2	122.07(10)	Fe1	Gel	C29	C30	100.54(19)
Fe1	Gel	C29	C34	-73.0(2)	C29	Gel	Fel	Ge3	99.93(10)
C29	Gel	Fe1	C1	-142.30(10)	C29	Gel	Fel	C2	-16.09(10)
C23	Gel	C29	C30	-45.9(2)	C23	Gel	C29	C34	140.7(2)
C29	Gel	C23	C24	159.10(19)	C29	Gel	C23	C28	-26.5(2)
Gel	Ge2	Ge3	Fe1	-11.104(16)	Gel	Ge2	Ge3	C47	-146.869(19)
Gel	Ge2	Ge3	C53	103.777(15)	Gel	Ge2	C35	C36	22.0(2)
Gel	Ge2	C35	C40	-155.73(14)	Gel	Ge2	C41	C42	41.4(2)
Gel	Ge2	C41	C46	-143.42(17)	Ge3	Ge2	C35	C36	-82.38(19)
Ge3	Ge2	C35	C40	99.92(18)	C35	Ge2	Ge3	Fel	107.71(9)
C35	Ge2	Ge3	C47	-28.05(9)	C35	Ge2	Ge3	C53	-137.41(9)

Ge3	Ge2	C41	C42	147.19(17)	Ge3	Ge2	C41	C46	-37.6(2)
C41	Ge2	Ge3	Fe1	-132.97(10)	C41	Ge2	Ge3	C47	91.27(10)
C41	Ge2	Ge3	C53	-18.09(10)	C35	Ge2	C41	C42	-84.8(2)
C35	Ge2	C41	C46	90.4(2)	C41	Ge2	C35	C36	150.0(2)
C41	Ge2	C35	C40	-27.7(2)	Ge2	Ge3	Fe1	Gel	10.719(15)
Ge2	Ge3	Fel	C1	-96.48(2)	Ge2	Ge3	Fe1	C2	134.93(2)
Ge2	Ge3	C47	C48	160.16(15)	Ge2	Ge3	C47	C52	-19.7(2)
Ge2	Ge3	C53	C54	-82.1(2)	Ge2	Ge3	C53	C58	95.3(2)
Fe1	Ge3	C47	C48	48.3(2)	Fe1	Ge3	C47	C52	-131.55(15)
C47	Ge3	Fe1	Gel	131.13(12)	C47	Ge3	Fe1	C1	23.92(12)
C47	Ge3	Fel	C2	-104.67(12)	Fe1	Ge3	C53	C54	14.2(2)
Fe1	Ge3	C53	C58	-168.38(17)	C53	Ge3	Fe1	Gel	-92.64(9)
C53	Ge3	Fel	C1	160.16(9)	C53	Ge3	Fe1	C2	31.57(10)
C47	Ge3	C53	C54	161.98(19)	C47	Ge3	C53	C58	-20.6(2)
C53	Ge3	C47	C48	-91.3(2)	C53	Ge3	C47	C52	88.8(2)
Gel	Fe1	C1	N1	71.1(2)	Gel	Fe1	C1	N2	-104.7(2)
Gel	Fel	C2	N3	-6.4(3)	Gel	Fe1	C2	N4	174.82(14)
Ge3	Fel	C1	N1	165.95(17)	Ge3	Fe1	C1	N2	-9.9(3)
Ge3	Fel	C2	N3	-107.9(2)	Ge3	Fe1	C2	N4	73.3(2)
C1	Fel	C2	N3	119.0(2)	C1	Fe1	C2	N4	-59.7(2)
C2	Fe1	C1	N1	-63.1(2)	C2	Fe1	C1	N2	121.1(2)
C1	N1	C4	C3	0.2(3)	C1	N1	C4	С9	-177.9(2)
C4	N1	C1	Fel	-176.7(2)	C4	N1	C1	N2	0.1(3)
C1	N1	C10	C11	-122.7(3)	C1	N1	C10	C12	109.4(3)
C10	N1	C1	Fel	5.2(4)	C10	N1	C1	N2	-178.0(2)
C4	N1	C10	C11	59.5(4)	C4	N1	C10	C12	-68.4(3)
C10	N1	C4	C3	178.2(3)	C10	N1	C4	С9	0.0(5)
C1	N2	C3	C4	0.5(3)	C1	N2	C3	C8	179.1(3)
C3	N2	C1	Fel	176.1(2)	C3	N2	C1	N1	-0.4(3)
C1	N2	C5	C6	113.6(3)	C1	N2	C5	C7	-117.1(3)
C5	N2	C1	Fel	-5.7(4)	C5	N2	C1	N1	177.8(2)
C3	N2	C5	C6	-68.4(4)	C3	N2	C5	C7	60.8(4)
C5	N2	C3	C4	-177.6(3)	C5	N2	C3	C8	1.0(5)
C2	N3	C14	C13	0.7(3)	C2	N3	C14	C19	-178.6(2)
C14	N3	C2	Fel	-179.4(2)	C14	N3	C2	N4	-0.5(3)
C2	N3	C20	C21	-110.4(3)	C2	N3	C20	C22	122.4(3)
C20	N3	C2	Fe1	1.7(4)	C20	N3	C2	N4	-179.4(2)
C14	N3	C20	C21	70.9(3)	C14	N3	C20	C22	-56.3(3)

C20	N3	C14	C13	179.5(2)	C20	N3	C14	C19	0.2(4)
C2	N4	C13	C14	0.4(3)	C2	N4	C13	C18	-179.4(2)
C13	N4	C2	Fe1	179.1(2)	C13	N4	C2	N3	0.1(3)
C2	N4	C15	C16	134.1(2)	C2	N4	C15	C17	-99.3(3)
C15	N4	C2	Fel	-8.2(4)	C15	N4	C2	N3	172.7(2)
C13	N4	C15	C16	-54.5(4)	C13	N4	C15	C17	72.1(3)
C15	N4	C13	C14	-171.7(2)	C15	N4	C13	C18	8.5(5)
N2	C3	C4	N1	-0.4(3)	N2	C3	C4	С9	177.7(2)
C8	C3	C4	N1	-178.9(3)	C8	C3	C4	С9	-0.8(5)
N4	C13	C14	N3	-0.6(3)	N4	C13	C14	C19	178.6(2)
C18	C13	C14	N3	179.1(3)	C18	C13	C14	C19	-1.6(5)
Gel	C23	C24	C25	173.46(18)	Gel	C23	C28	C27	-175.15(19)
C24	C23	C28	C27	-0.5(4)	C28	C23	C24	C25	-1.1(4)
C23	C24	C25	C26	1.2(5)	C24	C25	C26	C27	0.4(5)
C25	C26	C27	C28	-2.0(5)	C26	C27	C28	C23	2.1(5)
Gel	C29	C30	C31	-175.09(19)	Gel	C29	C34	C33	174.6(2)
C30	C29	C34	C33	0.9(5)	C34	C29	C30	C31	-1.2(5)
C29	C30	C31	C32	0.2(5)	C30	C31	C32	C33	1.2(5)
C31	C32	C33	C34	-1.5(6)	C32	C33	C34	C29	0.4(6)
Ge2	C35	C36	C37	-177.5(2)	Ge2	C35	C40	C39	179.04(17)
C36	C35	C40	C39	1.2(4)	C40	C35	C36	C37	0.2(5)
C35	C36	C37	C38	-1.6(5)	C36	C37	C38	C39	1.6(5)
C37	C38	C39	C40	-0.2(5)	C38	C39	C40	C35	-1.2(4)
Ge2	C41	C42	C43	174.3(2)	Ge2	C41	C46	C45	-174.2(2)
C42	C41	C46	C45	1.1(5)	C46	C41	C42	C43	-1.0(5)
C41	C42	C43	C44	0.5(5)	C42	C43	C44	C45	-0.2(6)
C43	C44	C45	C46	0.4(6)	C44	C45	C46	C41	-0.8(6)
Ge3	C47	C48	C49	-176.30(18)	Ge3	C47	C52	C51	178.88(19)
C48	C47	C52	C51	-1.0(4)	C52	C47	C48	C49	3.6(4)
C47	C48	C49	C50	-2.7(5)	C48	C49	C50	C51	-0.9(5)
C49	C50	C51	C52	3.4(5)	C50	C51	C52	C47	-2.4(5)
Ge3	C53	C54	C55	177.4(2)	Ge3	C53	C58	C57	-178.0(2)
C54	C53	C58	C57	-0.6(5)	C58	C53	C54	C55	-0.1(5)
C53	C54	C55	C56	0.7(6)	C54	C55	C56	C57	-0.6(6)
C55	C56	C57	C58	-0.1(6)	C56	C57	C58	C53	0.7(6)

Figure S23. ORTEP drawing of **4** (50% probability of the thermal ellipsoids). Hydrogen atoms and solvated 1,2dimethoxyethane molecule were omitted for clarity

 Table S11. Crystal data and structure refinement for 4.

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters

Space Group Z value D_{calc} F₀₀₀ μ(MoKα) Diffractometer Radiation

Voltage, Current Temperature Detector Aperture Data Images ω oscillation Range (χ =45.0, ϕ =0.0) Exposure Rate Detector Swing Angle ω oscillation Range (χ =45.0, ϕ =90.0) Exposure Rate Detector Swing Angle Detector Position Pixel Size $2\theta_{max}$ No. of Reflections Measured

Corrections

$C_{74}H_{90}FeGe_4N_4O_2$
1413.76
red, plate
0.100 X 0.100 X 0.020 mm
monoclinic
C-centered
a = 14.0493(6) Å
b = 24.0246(9) Å
c = 19.8466(7) Å
$\beta = 92.615(4)^{\circ}$
$V = 6691.8(4) \text{ Å}^3$
Cc (#9)
4
1.403 g/cm ³
2928.00
20.348 cm ⁻¹
Saturn724
MoKα ($\lambda = 0.71075$ Å)
graphite monochromated
50kV, 24mA
-160.0°C
72.8 x 72.8 mm
720 exposures
-70.0 - 110.0 ^o
32.0 sec./ ⁰
20.00 ^o
-70.0 - 110.0 ^o
32.0 sec./ ^o
20.00 ^o
45.00 mm
0.035 mm
62.4 ^o
Total: 32128
Unique: 16430 ($R_{int} = 0.0461$)
Parsons quotients (Flack x parameter): 4190
Lorentz-polarization

	Absorption
	(trans. factors: 0.895 - 0.960)
Structure Solution	Direct Methods (SHELXT Version 2014/5)
Refinement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma \mathrm{w} (\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$
Least Squares Weights	$w = 1/[\sigma^2(Fo^2) + (0.0401 \cdot P)^2$
	+ 0.0000 · P]
	where $P = (Max(Fo^2, 0) + 2Fc^2)/3$
$2\theta_{\text{max}}$ cutoff	62.4 ^o
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	16430
No. Variables	780
Reflection/Parameter Ratio	21.06
Residuals: R1 (I>2.00σ(I))	0.0505
Residuals: R (All reflections)	0.0749
Residuals: wR2 (All reflections)	0.0996
Goodness of Fit Indicator	1.015
Flack parameter (Parsons' quotients = 4190)	-0.010(6)
Max Shift/Error in Final Cycle	0.001
Maximum peak in Final Diff. Map	0.82 e ⁻ /Å ³
Minimum peak in Final Diff. Map	-0.71 e ⁻ /Å ³

Atomic coordinates and $\mathrm{B}_{iso}\!/\mathrm{B}_{eq}$ and occupancy

Х	У	Ζ	Beq
0.49738(4)	0.30083(2)	0.36211(3)	1.445(11)
0.52922(4)	0.40196(2)	0.35782(3)	1.484(11)
0.54345(4)	0.42699(2)	0.47649(3)	1.409(10)
0.62965(4)	0.34871(2)	0.53249(3)	1.445(11)
0.58069(6)	0.25881(3)	0.46838(4)	1.277(14)
0.0880(4)	0.4817(3)	0.6586(3)	4.70(13)
0.0794(4)	0.5231(2)	0.8030(3)	3.90(11)
0.7545(3)	0.1864(2)	0.5145(2)	1.49(8)
0.7607(4)	0.1986(2)	0.4079(2)	1.68(9)
0.4520(3)	0.19854(19)	0.5744(2)	1.40(8)
0.4735(4)	0.14734(18)	0.4877(3)	1.55(8)
0.7059(4)	0.2104(2)	0.4607(3)	1.50(10)
0.8379(4)	0.1614(2)	0.4954(3)	1.67(10)
0.8413(4)	0.1686(3)	0.4282(3)	1.84(11)
0.7191(4)	0.1903(2)	0.5833(3)	1.54(10)
0.6814(5)	0.1351(3)	0.6068(3)	2.25(12)
0.7930(5)	0.2150(3)	0.6325(3)	2.39(12)
0.7356(5)	0.2202(3)	0.3394(3)	2.12(11)
0.7089(5)	0.1746(3)	0.2898(3)	2.74(13)
0.8130(5)	0.2576(3)	0.3143(4)	2.88(14)
0.9109(5)	0.1352(3)	0.5422(3)	2.34(12)
0.9174(5)	0.1489(3)	0.3829(4)	2.82(14)
0.4922(4)	0.1988(2)	0.5133(3)	1.33(9)
0.4103(5)	0.1474(2)	0.5870(3)	1.66(10)
0.4241(4)	0.1154(2)	0.5326(3)	1.71(10)
0.4516(4)	0.2486(3)	0.6173(3)	1.72(10)
0.5060(5)	0.2401(3)	0.6841(3)	2.11(11)
0.3519(5)	0.2708(3)	0.6246(3)	2.20(11)
0.5019(5)	0.1311(3)	0.4199(3)	1.99(11)
0.4163(6)	0.1167(3)	0.3733(4)	3.24(15)
0.5780(6)	0.0868(3)	0.4229(4)	2.87(14)
0.3622(5)	0.1325(3)	0.6495(3)	2.16(11)
0.3948(5)	0.0554(3)	0.5213(4)	2.60(13)
0.5183(4)	0.2754(3)	0.2676(3)	1.66(10)
0.4703(5)	0.2289(3)	0.2427(3)	2.09(11)
0.4868(5)	0.2080(3)	0.1791(3)	2.30(12)
	x 0.49738(4) 0.52922(4) 0.54345(4) 0.62965(4) 0.58069(6) 0.0880(4) 0.0794(4) 0.7545(3) 0.7607(4) 0.4520(3) 0.4735(4) 0.7059(4) 0.8379(4) 0.8413(4) 0.7191(4) 0.6814(5) 0.7930(5) 0.7356(5) 0.7089(5) 0.7356(5) 0.7089(5) 0.8130(5) 0.9109(5) 0.9109(5) 0.9174(5) 0.4922(4) 0.4103(5) 0.4922(4) 0.4103(5) 0.4922(4) 0.4103(5) 0.5019(5) 0.5019(5) 0.5019(5) 0.51183(4) 0.4703(5) 0.4868(5)	x y 0.49738(4) 0.30083(2) 0.52922(4) 0.40196(2) 0.54345(4) 0.42699(2) 0.62965(4) 0.34871(2) 0.58069(6) 0.25881(3) 0.0880(4) 0.4817(3) 0.0794(4) 0.5231(2) 0.7545(3) 0.1864(2) 0.7607(4) 0.1985(19) 0.4735(4) 0.14734(18) 0.7059(4) 0.2104(2) 0.8379(4) 0.1614(2) 0.8413(4) 0.1686(3) 0.7191(4) 0.1903(2) 0.6814(5) 0.1351(3) 0.7930(5) 0.2150(3) 0.7930(5) 0.2150(3) 0.7089(5) 0.1746(3) 0.8130(5) 0.2576(3) 0.9109(5) 0.1352(3) 0.9109(5) 0.1352(3) 0.9109(5) 0.1474(2) 0.44103(5) 0.2401(3) 0.4516(4) 0.2486(3) 0.5060(5) 0.2401(3) 0.519(5) 0.1311(3) 0.4103(6) 0.1167(3)	x y z 0.49738(4) 0.30083(2) 0.36211(3) 0.52922(4) 0.40196(2) 0.35782(3) 0.54345(4) 0.42699(2) 0.47649(3) 0.62965(4) 0.34871(2) 0.53249(3) 0.58069(6) 0.25881(3) 0.46838(4) 0.0880(4) 0.4817(3) 0.6586(3) 0.0794(4) 0.5231(2) 0.8030(3) 0.7545(3) 0.1864(2) 0.4079(2) 0.4520(3) 0.19854(19) 0.5744(2) 0.4735(4) 0.14734(18) 0.4877(3) 0.7059(4) 0.2104(2) 0.4607(3) 0.8379(4) 0.1614(2) 0.4954(3) 0.8413(4) 0.1686(3) 0.4282(3) 0.7191(4) 0.1903(2) 0.5833(3) 0.6814(5) 0.2150(3) 0.6325(3) 0.7356(5) 0.2202(3) 0.3394(3) 0.7089(5) 0.1746(3) 0.2898(3) 0.7930(5) 0.2576(3) 0.3143(4) 0.9109(5) 0.1352(3) 0.5422(3) 0.7174(5) 0

S50

C26	0.5515(5)	0.2340(3)	0.1394(3)	2.41(12)
C27	0.5982(5)	0.2797(3)	0.1632(3)	2.02(11)
C28	0.5826(4)	0.3006(3)	0.2271(3)	1.79(10)
C29	0.3561(5)	0.2947(2)	0.3631(3)	1.82(11)
C30	0.3126(5)	0.2626(3)	0.4107(3)	2.21(12)
C31	0.2147(5)	0.2553(3)	0.4104(4)	2.94(14)
C32	0.1575(5)	0.2787(3)	0.3605(4)	2.72(13)
C33	0.1984(5)	0.3105(3)	0.3122(4)	2.73(13)
C34	0.2958(5)	0.3187(3)	0.3143(3)	2.14(11)
C35	0.6543(5)	0.4231(3)	0.3249(3)	1.94(11)
C36	0.7353(5)	0.3991(3)	0.3533(4)	3.11(14)
C37	0.8255(6)	0.4192(4)	0.3432(4)	4.15(18)
C38	0.8360(6)	0.4640(4)	0.3007(4)	3.87(18)
C39	0.7561(6)	0.4883(3)	0.2692(4)	3.45(16)
C40	0.6667(5)	0.4680(3)	0.2814(4)	2.56(13)
C41	0.4380(5)	0.4462(3)	0.3033(3)	1.95(11)
C42	0.3754(5)	0.4827(3)	0.3290(4)	2.68(13)
C43	0.3141(6)	0.5145(3)	0.2877(4)	3.47(15)
C44	0.3168(5)	0.5108(3)	0.2197(4)	3.30(15)
C45	0.3799(6)	0.4746(3)	0.1912(4)	2.92(14)
C46	0.4375(6)	0.4427(3)	0.2329(4)	2.90(14)
C47	0.5966(4)	0.5014(2)	0.4961(3)	1.62(10)
C48	0.6066(4)	0.5198(3)	0.5625(3)	1.76(10)
C49	0.6402(4)	0.5721(3)	0.5784(3)	1.94(11)
C50	0.6661(5)	0.6075(3)	0.5277(3)	2.09(11)
C51	0.6590(4)	0.5909(3)	0.4617(3)	1.97(11)
C52	0.6239(4)	0.5379(2)	0.4459(3)	1.81(11)
C53	0.4099(5)	0.4324(3)	0.5033(3)	1.70(11)
C54	0.3523(5)	0.3864(3)	0.5081(4)	2.56(13)
C55	0.2577(5)	0.3907(3)	0.5226(4)	3.32(15)
C56	0.2188(5)	0.4425(3)	0.5327(4)	2.97(14)
C57	0.2729(5)	0.4890(3)	0.5270(3)	2.67(13)
C58	0.3681(5)	0.4841(3)	0.5134(3)	2.39(12)
C59	0.7683(5)	0.3650(3)	0.5263(3)	2.05(11)
C60	0.8124(5)	0.4094(3)	0.5591(4)	3.01(14)
C61	0.9105(6)	0.4165(3)	0.5575(5)	4.07(18)
C62	0.9658(5)	0.3796(3)	0.5226(5)	3.76(17)
C63	0.9231(5)	0.3352(3)	0.4909(4)	2.98(14)

C64	0.8257(5)	0.3284(3)	0.4941(4)	2.46(12)
C65	0.6168(5)	0.3638(2)	0.6307(3)	1.69(10)
C66	0.5371(5)	0.3884(3)	0.6567(3)	2.09(11)
C67	0.5293(5)	0.3966(3)	0.7257(3)	2.32(12)
C68	0.6011(6)	0.3794(3)	0.7693(3)	2.71(13)
C69	0.6800(5)	0.3543(3)	0.7457(3)	2.53(13)
C70	0.6879(5)	0.3467(3)	0.6771(3)	2.11(11)
C71	0.0790(9)	0.4311(4)	0.6970(6)	6.8(3)
C72	0.0351(8)	0.5234(4)	0.6843(4)	5.3(2)
C73	0.0862(6)	0.5547(3)	0.7430(4)	3.37(15)
C74	0.1136(7)	0.5560(3)	0.8600(4)	4.36(19)
$B_{eq} = 8/3 \pi^2 (U$	$11(aa^*)^2 + U_{22}(bb^*)$	$(1)^2 + U_{33}(cc^*)^2 + 2$	2U12(aa*bb*)cos γ +	$2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\beta$

α)

Anisotropic displacement parameters

atom	U11	U22	U33	U ₁₂	U13	U23
Gel	0.0224(3)	0.0178(3)	0.0145(3)	0.0016(3)	-0.0015(3)	-0.0012(3)
Ge2	0.0238(3)	0.0174(3)	0.0150(3)	0.0013(3)	-0.0009(3)	0.0001(3)
Ge3	0.0210(3)	0.0165(3)	0.0158(3)	0.0005(3)	-0.0007(3)	-0.0014(3)
Ge4	0.0214(3)	0.0178(3)	0.0155(3)	0.0001(3)	-0.0013(3)	-0.0009(3)
Fe1	0.0179(4)	0.0157(4)	0.0149(4)	0.0018(3)	0.0003(3)	0.0002(3)
01	0.058(4)	0.062(4)	0.059(4)	-0.006(3)	0.000(3)	0.009(3)
02	0.066(4)	0.049(3)	0.034(3)	-0.016(3)	-0.001(3)	0.006(3)
N1	0.018(3)	0.023(3)	0.016(2)	0.002(2)	0.001(2)	0.002(2)
N2	0.021(3)	0.027(3)	0.016(3)	0.006(2)	0.004(2)	0.003(2)
N3	0.022(3)	0.013(2)	0.018(3)	-0.0001(19)	0.000(2)	-0.003(2)
N4	0.022(3)	0.015(2)	0.022(3)	0.003(2)	-0.000(2)	-0.003(2)
C1	0.018(3)	0.021(3)	0.018(3)	-0.001(2)	0.002(2)	-0.001(2)
C2	0.020(3)	0.021(3)	0.023(3)	0.007(2)	0.003(3)	-0.003(2)
C3	0.019(3)	0.028(3)	0.024(3)	0.003(3)	0.003(3)	-0.001(3)
C4	0.023(3)	0.020(3)	0.014(3)	0.001(2)	-0.001(2)	0.001(2)
C5	0.029(4)	0.034(4)	0.022(3)	0.008(3)	0.000(3)	0.002(3)
C6	0.031(4)	0.033(4)	0.027(4)	0.003(3)	-0.001(3)	-0.005(3)
C7	0.031(4)	0.032(4)	0.018(3)	0.010(3)	0.008(3)	0.004(3)
C8	0.042(4)	0.041(4)	0.021(4)	0.008(3)	-0.002(3)	-0.000(3)
C9	0.046(5)	0.041(4)	0.023(4)	0.003(3)	0.009(3)	0.001(3)
C10	0.025(4)	0.035(4)	0.029(4)	0.006(3)	0.002(3)	0.002(3)
C11	0.033(4)	0.047(5)	0.028(4)	0.015(3)	0.006(3)	-0.002(3)

C12	0.019(3)	0.014(3)	0.017(3)	0.002(2)	0.001(2)	-0.003(2)
C13	0.023(3)	0.017(3)	0.023(3)	-0.004(2)	0.001(3)	0.004(2)
C14	0.020(3)	0.018(3)	0.026(3)	-0.000(2)	-0.001(3)	0.003(3)
C15	0.018(3)	0.023(3)	0.025(3)	-0.002(2)	0.005(3)	-0.001(3)
C16	0.027(3)	0.030(4)	0.023(3)	-0.001(3)	0.001(3)	-0.004(3)
C17	0.031(4)	0.027(3)	0.026(3)	0.006(3)	0.004(3)	-0.002(3)
C18	0.040(4)	0.019(3)	0.017(3)	-0.001(3)	-0.000(3)	-0.001(2)
C19	0.057(5)	0.038(4)	0.027(4)	-0.007(4)	-0.007(4)	-0.001(3)
C20	0.056(5)	0.021(3)	0.034(4)	0.006(3)	0.012(4)	-0.002(3)
C21	0.025(3)	0.028(4)	0.029(4)	-0.006(3)	0.002(3)	0.008(3)
C22	0.040(4)	0.018(3)	0.041(4)	-0.002(3)	0.008(3)	-0.001(3)
C23	0.025(3)	0.022(3)	0.016(3)	0.009(3)	-0.004(3)	-0.003(2)
C24	0.030(4)	0.026(3)	0.024(3)	0.002(3)	-0.000(3)	-0.002(3)
C25	0.035(4)	0.025(4)	0.027(4)	0.006(3)	-0.008(3)	-0.007(3)
C26	0.042(4)	0.030(4)	0.019(3)	0.013(3)	-0.005(3)	-0.003(3)
C27	0.034(4)	0.028(3)	0.015(3)	0.008(3)	0.006(3)	0.005(3)
C28	0.024(3)	0.016(3)	0.028(3)	-0.001(2)	-0.001(3)	-0.000(3)
C29	0.028(3)	0.016(3)	0.025(3)	-0.000(3)	-0.003(3)	-0.004(2)
C30	0.028(4)	0.028(4)	0.028(4)	-0.000(3)	0.002(3)	0.003(3)
C31	0.028(4)	0.043(4)	0.041(4)	-0.003(3)	0.003(3)	0.013(4)
C32	0.020(3)	0.039(4)	0.043(4)	-0.006(3)	-0.003(3)	-0.002(3)
C33	0.030(4)	0.044(4)	0.029(4)	0.003(3)	-0.007(3)	-0.002(3)
C34	0.029(4)	0.031(4)	0.021(3)	0.002(3)	-0.001(3)	0.003(3)
C35	0.031(4)	0.024(3)	0.020(3)	0.002(3)	0.004(3)	-0.008(3)
C36	0.032(4)	0.042(4)	0.044(5)	-0.005(3)	-0.005(4)	0.006(4)
C37	0.024(4)	0.073(6)	0.060(6)	-0.004(4)	-0.002(4)	0.012(5)
C38	0.032(5)	0.062(6)	0.055(6)	-0.010(4)	0.022(4)	0.000(4)
C39	0.049(5)	0.039(4)	0.044(5)	-0.012(4)	0.017(4)	0.006(4)
C40	0.039(4)	0.029(4)	0.030(4)	0.003(3)	0.010(3)	-0.003(3)
C41	0.029(3)	0.024(3)	0.021(3)	-0.005(3)	-0.000(3)	0.003(3)
C42	0.035(4)	0.040(4)	0.027(4)	0.004(3)	0.001(3)	0.010(3)
C43	0.034(4)	0.046(5)	0.052(5)	0.012(3)	-0.003(4)	0.009(4)
C44	0.039(4)	0.042(5)	0.043(5)	-0.003(3)	-0.021(4)	0.015(4)
C45	0.053(5)	0.035(4)	0.022(4)	-0.007(4)	-0.014(3)	0.001(3)
C46	0.051(5)	0.033(4)	0.026(4)	0.006(3)	-0.003(3)	-0.005(3)
C47	0.019(3)	0.021(3)	0.021(3)	0.003(2)	-0.001(3)	-0.005(2)
C48	0.022(3)	0.023(3)	0.021(3)	0.001(2)	-0.002(3)	0.003(3)
C49	0.025(3)	0.026(3)	0.022(3)	-0.002(3)	-0.003(3)	-0.006(3)

C50	0.027(3)	0.020(3)	0.032(4)	-0.002(3)	-0.005(3)	-0.003(3)
C51	0.027(3)	0.025(3)	0.023(3)	-0.004(3)	0.002(3)	0.005(3)
C52	0.024(3)	0.025(3)	0.019(3)	-0.002(3)	-0.006(3)	-0.002(3)
C53	0.026(3)	0.021(3)	0.017(3)	0.006(3)	0.000(3)	-0.003(2)
C54	0.035(4)	0.025(4)	0.037(4)	-0.000(3)	0.003(3)	-0.001(3)
C55	0.022(4)	0.046(5)	0.058(5)	-0.007(3)	0.004(4)	0.003(4)
C56	0.023(4)	0.055(5)	0.034(4)	0.005(3)	-0.001(3)	-0.005(4)
C57	0.025(4)	0.041(4)	0.035(4)	0.012(3)	0.001(3)	-0.018(3)
C58	0.029(4)	0.027(4)	0.034(4)	0.002(3)	-0.000(3)	-0.005(3)
C59	0.028(4)	0.022(3)	0.027(4)	0.003(3)	-0.004(3)	0.005(3)
C60	0.038(4)	0.021(4)	0.054(5)	-0.001(3)	-0.007(4)	0.008(3)
C61	0.044(5)	0.034(4)	0.075(6)	-0.020(4)	-0.025(4)	0.017(4)
C62	0.023(4)	0.047(5)	0.072(6)	-0.005(4)	-0.004(4)	0.019(4)
C63	0.025(4)	0.050(5)	0.039(4)	0.002(3)	0.002(3)	0.008(4)
C64	0.025(4)	0.029(4)	0.040(4)	-0.002(3)	0.004(3)	0.006(3)
C65	0.034(4)	0.015(3)	0.016(3)	-0.003(3)	-0.001(3)	0.002(2)
C66	0.037(4)	0.026(3)	0.016(3)	-0.002(3)	0.001(3)	0.003(3)
C67	0.040(4)	0.024(3)	0.025(4)	0.003(3)	0.007(3)	0.000(3)
C68	0.053(5)	0.031(4)	0.019(3)	-0.011(3)	-0.001(3)	-0.004(3)
C69	0.033(4)	0.038(4)	0.024(4)	-0.004(3)	-0.008(3)	-0.000(3)
C70	0.032(4)	0.027(3)	0.021(3)	-0.001(3)	-0.007(3)	0.000(3)
C71	0.130(11)	0.047(6)	0.078(8)	-0.022(6)	-0.031(7)	0.012(6)
C72	0.089(8)	0.085(7)	0.030(5)	0.040(6)	0.010(5)	0.007(5)
C73	0.052(5)	0.049(5)	0.028(4)	-0.007(4)	0.001(4)	0.002(3)
C74	0.086(7)	0.044(5)	0.035(5)	-0.020(5)	-0.004(5)	0.001(4)
			2	a a a		•

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Bond lengths (Å)

atom	atom	distance	atom	atom	distance
Gel	Ge2	2.4726(7)	Gel	Fe1	2.5714(10)
Gel	C23	2.007(6)	Gel	C29	1.991(6)
Ge2	Ge3	2.4301(8)	Ge2	C35	1.969(7)
Ge2	C41	1.954(6)	Ge3	Ge4	2.4730(7)
Ge3	C47	1.970(6)	Ge3	C53	1.979(6)
Ge4	Fe1	2.5840(9)	Ge4	C59	1.996(7)
Ge4	C65	1.998(6)	Fe1	C1	2.121(6)
Fe1	C12	2.126(6)	01	C71	1.443(12)

01	C72	1.361(12)	O2	C73	1.420(9)
02	C74	1.445(10)	N1	C1	1.368(7)
N1	C2	1.386(8)	N1	C4	1.476(7)
N2	C1	1.357(8)	N2	C3	1.387(8)
N2	C7	1.482(8)	N3	C12	1.359(7)
N3	C13	1.388(7)	N3	C15	1.474(8)
N4	C12	1.358(7)	N4	C14	1.387(8)
N4	C18	1.474(8)	C2	C3	1.348(9)
C2	C10	1.491(9)	C3	C11	1.504(10)
C4	C5	1.511(9)	C4	C6	1.513(9)
C7	C8	1.508(9)	C7	С9	1.514(10)
C13	C14	1.347(9)	C13	C21	1.484(9)
C14	C22	1.511(9)	C15	C16	1.514(9)
C15	C17	1.511(9)	C18	C19	1.521(10)
C18	C20	1.508(10)	C23	C24	1.383(9)
C23	C28	1.377(9)	C24	C25	1.387(9)
C25	C26	1.379(10)	C26	C27	1.354(9)
C27	C28	1.390(9)	C29	C30	1.383(9)
C29	C34	1.383(9)	C30	C31	1.387(10)
C31	C32	1.368(10)	C32	C33	1.372(10)
C33	C34	1.382(10)	C35	C36	1.374(10)
C35	C40	1.398(9)	C36	C37	1.379(11)
C37	C38	1.379(12)	C38	C39	1.389(11)
C39	C40	1.377(11)	C41	C42	1.358(10)
C41	C46	1.399(9)	C42	C43	1.390(10)
C43	C44	1.356(11)	C44	C45	1.380(11)
C45	C46	1.365(10)	C47	C48	1.392(8)
C47	C52	1.393(8)	C48	C49	1.373(9)
C49	C50	1.380(9)	C50	C51	1.368(9)
C51	C52	1.397(8)	C53	C54	1.376(9)
C53	C58	1.392(9)	C54	C55	1.377(10)
C55	C56	1.377(11)	C56	C57	1.358(10)
C57	C58	1.381(10)	C59	C60	1.383(10)
C59	C64	1.371(10)	C60	C61	1.391(11)
C61	C62	1.384(12)	C62	C63	1.363(11)
C63	C64	1.383(10)	C65	C66	1.387(9)
C65	C70	1.390(9)	C66	C67	1.393(9)
C67	C68	1.363(10)	C68	C69	1.364(10)

C69	C70	1.383(9)	C72	C	273	1.537(12)
Bond angl	es (⁰)						
atom	atom	atom	angle	atom	atom	atom	angle
Ge2	Gel	Fe1	109.74(3)	Ge2	Gel	C23	103.46(17)
Ge2	Gel	C29	104.74(17)	Fe1	Gel	C23	124.48(17)
Fe1	Gel	C29	112.33(18)	C23	Gel	C29	100.1(3)
Gel	Ge2	Ge3	102.52(3)	Gel	Ge2	C35	115.51(18)
Gel	Ge2	C41	115.99(19)	Ge3	Ge2	C35	102.86(18)
Ge3	Ge2	C41	115.18(19)	C35	Ge2	C41	104.4(3)
Ge2	Ge3	Ge4	105.33(3)	Ge2	Ge3	C47	115.46(17)
Ge2	Ge3	C53	103.90(17)	Ge4	Ge3	C47	115.36(17)
Ge4	Ge3	C53	112.33(18)	C47	Ge3	C53	104.0(2)
Ge3	Ge4	Fe1	107.48(3)	Ge3	Ge4	C59	106.43(19)
Ge3	Ge4	C65	103.67(17)	Fe1	Ge4	C59	111.82(19)
Fe1	Ge4	C65	126.70(17)	C59	Ge4	C65	99.0(3)
Gel	Fe1	Ge4	100.18(3)	Gel	Fe1	C1	120.30(16)
Gel	Fel	C12	110.92(15)	Ge4	Fe1	C1	106.91(16)
Ge4	Fe1	C12	120.51(15)	C1	Fe1	C12	99.3(2)
C71	01	C72	111.1(7)	C73	O2	C74	109.3(6)
C1	N1	C2	111.4(5)	C1	N1	C4	121.2(5)
C2	N1	C4	127.3(5)	C1	N2	C3	111.7(5)
C1	N2	C7	121.0(5)	C3	N2	C7	127.2(5)
C12	N3	C13	111.2(5)	C12	N3	C15	121.6(5)
C13	N3	C15	127.2(5)	C12	N4	C14	110.9(5)
C12	N4	C18	121.8(5)	C14	N4	C18	127.2(5)
Fe1	C1	N1	124.1(4)	Fe1	C1	N2	132.1(4)
N1	C1	N2	103.6(5)	N1	C2	C3	106.5(5)
N1	C2	C10	125.3(5)	C3	C2	C10	128.1(6)
N2	C3	C2	106.7(5)	N2	C3	C11	125.8(5)
C2	C3	C11	127.5(6)	N1	C4	C5	111.5(5)
N1	C4	C6	111.8(5)	C5	C4	C6	112.6(5)
N2	C7	C8	112.8(5)	N2	C7	С9	111.4(5)
C8	C7	C9	112.2(5)	Fe1	C12	N3	130.7(4)
Fe1	C12	N4	124.5(4)	N3	C12	N4	104.4(5)
N3	C13	C14	106.5(5)	N3	C13	C21	125.3(5)
C14	C13	C21	128.2(5)	N4	C14	C13	107.0(5)
N4	C14	C22	124.9(5)	C13	C14	C22	128.0(6)

N3	C15	C16	112.3(5)	N3	C15	C17	111.8(5)
C16	C15	C17	113.3(5)	N4	C18	C19	112.0(6)
N4	C18	C20	111.8(5)	C19	C18	C20	113.8(6)
Gel	C23	C24	119.3(5)	Gel	C23	C28	122.7(4)
C24	C23	C28	117.9(6)	C23	C24	C25	121.3(6)
C24	C25	C26	119.8(6)	C25	C26	C27	119.3(6)
C26	C27	C28	121.1(6)	C23	C28	C27	120.6(6)
Gel	C29	C30	121.2(5)	Gel	C29	C34	122.8(5)
C30	C29	C34	115.8(6)	C29	C30	C31	122.4(6)
C30	C31	C32	120.1(7)	C31	C32	C33	118.9(6)
C32	C33	C34	120.3(6)	C29	C34	C33	122.4(6)
Ge2	C35	C36	119.4(5)	Ge2	C35	C40	122.9(5)
C36	C35	C40	116.9(6)	C35	C36	C37	122.8(7)
C36	C37	C38	119.2(7)	C37	C38	C39	119.7(8)
C38	C39	C40	119.9(7)	C35	C40	C39	121.4(7)
Ge2	C41	C42	124.3(5)	Ge2	C41	C46	119.6(5)
C42	C41	C46	116.1(6)	C41	C42	C43	121.9(7)
C42	C43	C44	120.3(7)	C43	C44	C45	119.8(7)
C44	C45	C46	118.7(7)	C41	C46	C45	123.1(7)
Ge3	C47	C48	119.8(4)	Ge3	C47	C52	122.9(4)
C48	C47	C52	117.3(5)	C47	C48	C49	121.8(6)
C48	C49	C50	119.8(6)	C49	C50	C51	120.5(6)
C50	C51	C52	119.4(6)	C47	C52	C51	121.3(6)
Ge3	C53	C54	122.2(5)	Ge3	C53	C58	120.6(5)
C54	C53	C58	117.0(6)	C53	C54	C55	122.0(6)
C54	C55	C56	119.5(7)	C55	C56	C57	120.2(7)
C56	C57	C58	119.8(7)	C53	C58	C57	121.5(6)
Ge4	C59	C60	122.6(5)	Ge4	C59	C64	120.0(5)
C60	C59	C64	117.1(6)	C59	C60	C61	120.4(7)
C60	C61	C62	120.9(7)	C61	C62	C63	119.1(7)
C62	C63	C64	119.2(7)	C59	C64	C63	123.3(7)
Ge4	C65	C66	123.4(4)	Ge4	C65	C70	119.9(5)
C66	C65	C70	116.6(5)	C65	C66	C67	121.8(6)
C66	C67	C68	119.5(6)	C67	C68	C69	120.4(6)
C68	C69	C70	120.0(6)	C65	C70	C69	121.7(6)
01	C72	C73	113.7(8)	O2	C73	C72	109.0(7)

Torsion Angles(⁰)

(Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
Ge2	Gel	Fe1	Ge4	11.28(4)	Ge2	Gel	Fel	C1	-105.29(4)
Ge2	Gel	Fe1	C12	139.66(3)	Fe1	Gel	Ge2	Ge3	-31.29(4)
Fe1	Gel	Ge2	C35	79.72(4)	Fe1	Gel	Ge2	C41	-157.66(3)
Ge2	Gel	C23	C24	-152.5(3)	Ge2	Gel	C23	C28	30.8(4)
C23	Gel	Ge2	Ge3	-166.06(18)	C23	Gel	Ge2	C35	-55.05(18)
C23	Gel	Ge2	C41	67.57(18)	Ge2	Gel	C29	C30	-129.5(4)
Ge2	Gel	C29	C34	55.0(4)	C29	Gel	Ge2	Ge3	89.50(19)
C29	Gel	Ge2	C35	-159.49(19)	C29	Gel	Ge2	C41	-36.87(19)
Fe1	Gel	C23	C24	81.7(4)	Fe1	Gel	C23	C28	-95.0(4)
C23	Gel	Fe1	Ge4	134.4(2)	C23	Gel	Fel	C1	17.8(2)
C23	Gel	Fel	C12	-97.2(2)	Fel	Gel	C29	C30	-10.4(5)
Fe1	Gel	C29	C34	174.1(3)	C29	Gel	Fel	Ge4	-104.81(19)
C29	Gel	Fel	C1	138.63(19)	C29	Gel	Fel	C12	23.58(19)
C23	Gel	C29	C30	123.6(4)	C23	Gel	C29	C34	-51.9(5)
C29	Gel	C23	C24	-44.5(4)	C29	Gel	C23	C28	138.8(4)
Ge1	Ge2	Ge3	Ge4	38.74(3)	Gel	Ge2	Ge3	C47	167.23(3)
Ge1	Ge2	Ge3	C53	-79.53(3)	Gel	Ge2	C35	C36	-51.4(5)
Ge1	Ge2	C35	C40	139.2(4)	Gel	Ge2	C41	C42	110.0(4)
Ge1	Ge2	C41	C46	-72.6(4)	Ge3	Ge2	C35	C36	59.4(4)
Ge3	Ge2	C35	C40	-110.0(4)	C35	Ge2	Ge3	Ge4	-81.47(19)
C35	Ge2	Ge3	C47	47.02(19)	C35	Ge2	Ge3	C53	160.26(19)
Ge3	Ge2	C41	C42	-9.7(5)	Ge3	Ge2	C41	C46	167.7(3)
C41	Ge2	Ge3	Ge4	165.6(2)	C41	Ge2	Ge3	C47	-65.9(2)
C41	Ge2	Ge3	C53	47.4(2)	C35	Ge2	C41	C42	-121.7(5)
C35	Ge2	C41	C46	55.7(5)	C41	Ge2	C35	C36	-180.0(4)
C41	Ge2	C35	C40	10.6(5)	Ge2	Ge3	Ge4	Fe1	-32.97(3)
Ge2	Ge3	Ge4	C59	86.98(3)	Ge2	Ge3	Ge4	C65	-169.14(2)
Ge2	Ge3	C47	C48	179.3(3)	Ge2	Ge3	C47	C52	0.4(5)
Ge2	Ge3	C53	C54	69.8(4)	Ge2	Ge3	C53	C58	-105.3(4)
Ge4	Ge3	C47	C48	-57.3(4)	Ge4	Ge3	C47	C52	123.7(4)
C47	Ge3	Ge4	Fe1	-161.52(19)	C47	Ge3	Ge4	C59	-41.57(19)
C47	Ge3	Ge4	C65	62.31(19)	Ge4	Ge3	C53	C54	-43.6(5)
Ge4	Ge3	C53	C58	141.3(3)	C53	Ge3	Ge4	Fe1	79.48(19)
C53	Ge3	Ge4	C59	-160.57(19)	C53	Ge3	Ge4	C65	-56.69(19)
C47	Ge3	C53	C54	-169.0(4)	C47	Ge3	C53	C58	15.9(5)

C53	Ge3	C47	C48	66.2(4)	C53	Ge3	C47	C52	-112.8(4)
Ge3	Ge4	Fe1	Gel	12.79(4)	Ge3	Ge4	Fe1	C1	138.97(3)
Ge3	Ge4	Fe1	C12	-109.01(4)	Ge3	Ge4	C59	C60	66.0(5)
Ge3	Ge4	C59	C64	-120.6(4)	Ge3	Ge4	C65	C66	33.7(4)
Ge3	Ge4	C65	C70	-149.7(3)	Fe1	Ge4	C59	C60	-176.9(4)
Fe1	Ge4	C59	C64	-3.5(5)	C59	Ge4	Fe1	Gel	-103.7(2)
C59	Ge4	Fe1	C1	22.5(2)	C59	Ge4	Fe1	C12	134.5(2)
Fe1	Ge4	C65	C66	-90.9(4)	Fe1	Ge4	C65	C70	85.8(4)
C65	Ge4	Fe1	Gel	135.7(2)	C65	Ge4	Fe1	C1	-98.1(2)
C65	Ge4	Fe1	C12	13.9(2)	C59	Ge4	C65	C66	143.1(4)
C59	Ge4	C65	C70	-40.2(4)	C65	Ge4	C59	C60	-41.2(5)
C65	Ge4	C59	C64	132.2(4)	Gel	Fe1	C1	N1	-179.8(3)
Gel	Fe1	C1	N2	5.7(6)	Gel	Fe1	C12	N3	-115.8(4)
Gel	Fe1	C12	N4	73.0(4)	Ge4	Fe1	C1	N1	67.2(4)
Ge4	Fe1	C1	N2	-107.3(5)	Ge4	Fe1	C12	N3	0.6(5)
Ge4	Fe1	C12	N4	-170.6(3)	C1	Fe1	C12	N3	116.6(4)
C1	Fe1	C12	N4	-54.6(4)	C12	Fe1	C1	N1	-58.8(4)
C12	Fe1	C1	N2	126.7(5)	C71	01	C72	C73	84.4(9)
C74	02	C73	C72	-170.9(6)	C1	N1	C2	C3	-1.3(6)
C1	N1	C2	C10	175.2(5)	C2	N1	C1	Fe1	-174.8(4)
C2	N1	C1	N2	1.0(6)	C1	N1	C4	C5	108.4(5)
C1	N1	C4	C6	-124.5(5)	C4	N1	C1	Fe1	3.3(7)
C4	N1	C1	N2	179.0(4)	C2	N1	C4	C5	-73.9(7)
C2	N1	C4	C6	53.2(7)	C4	N1	C2	C3	-179.1(5)
C4	N1	C2	C10	-2.7(9)	C1	N2	C3	C2	-0.4(6)
C1	N2	C3	C11	-179.7(5)	C3	N2	C1	Fe1	174.9(4)
C3	N2	C1	N1	-0.4(6)	C1	N2	C7	C8	-114.1(6)
C1	N2	C7	C9	118.7(5)	C7	N2	C1	Fe1	-1.3(8)
C7	N2	C1	N1	-176.6(4)	C3	N2	C7	C8	70.3(7)
C3	N2	C7	C9	-56.9(7)	C7	N2	C3	C2	175.6(5)
C7	N2	C3	C11	-3.7(9)	C12	N3	C13	C14	-0.5(6)
C12	N3	C13	C21	178.5(5)	C13	N3	C12	Fe1	-171.6(4)
C13	N3	C12	N4	0.9(6)	C12	N3	C15	C16	-117.9(5)
C12	N3	C15	C17	113.3(5)	C15	N3	C12	Fe1	11.1(8)
C15	N3	C12	N4	-176.3(4)	C13	N3	C15	C16	65.3(7)
C13	N3	C15	C17	-63.4(7)	C15	N3	C13	C14	176.6(5)
C15	N3	C13	C21	-4.4(9)	C12	N4	C14	C13	0.8(6)
C12	N4	C14	C22	-177.8(5)	C14	N4	C12	Fe1	172.1(4)

C14	N4	C12	N3	-1.1(6)	C12	N4	C18	C19	-118.0(5)
C12	N4	C18	C20	112.9(5)	C18	N4	C12	Fe1	-9.5(7)
C18	N4	C12	N3	177.4(4)	C14	N4	C18	C19	60.2(7)
C14	N4	C18	C20	-68.9(7)	C18	N4	C14	C13	-177.5(5)
C18	N4	C14	C22	3.8(9)	N1	C2	C3	N2	1.0(6)
N1	C2	C3	C11	-179.7(5)	C10	C2	C3	N2	-175.4(5)
C10	C2	C3	C11	3.9(10)	N3	C13	C14	N4	-0.2(6)
N3	C13	C14	C22	178.3(5)	C21	C13	C14	N4	-179.2(5)
C21	C13	C14	C22	-0.6(10)	Gel	C23	C24	C25	-176.2(4)
Ge1	C23	C28	C27	176.7(4)	C24	C23	C28	C27	-0.1(8)
C28	C23	C24	C25	0.6(9)	C23	C24	C25	C26	-0.6(9)
C24	C25	C26	C27	0.0(9)	C25	C26	C27	C28	0.5(10)
C26	C27	C28	C23	-0.5(9)	Gel	C29	C30	C31	-176.6(4)
Ge1	C29	C34	C33	174.5(4)	C30	C29	C34	C33	-1.2(9)
C34	C29	C30	C31	-0.8(9)	C29	C30	C31	C32	2.3(10)
C30	C31	C32	C33	-1.8(10)	C31	C32	C33	C34	-0.1(10)
C32	C33	C34	C29	1.7(10)	Ge2	C35	C36	C37	-166.6(5)
Ge2	C35	C40	C39	167.7(4)	C36	C35	C40	C39	-1.9(9)
C40	C35	C36	C37	3.4(10)	C35	C36	C37	C38	-2.7(12)
C36	C37	C38	C39	0.4(12)	C37	C38	C39	C40	1.0(12)
C38	C39	C40	C35	-0.2(11)	Ge2	C41	C42	C43	177.8(4)
Ge2	C41	C46	C45	-176.0(4)	C42	C41	C46	C45	1.6(10)
C46	C41	C42	C43	0.3(10)	C41	C42	C43	C44	-1.5(11)
C42	C43	C44	C45	0.9(11)	C43	C44	C45	C46	0.9(11)
C44	C45	C46	C41	-2.2(11)	Ge3	C47	C48	C49	-177.7(4)
Ge3	C47	C52	C51	178.3(3)	C48	C47	C52	C51	-0.6(8)
C52	C47	C48	C49	1.3(8)	C47	C48	C49	C50	-0.9(9)
C48	C49	C50	C51	-0.3(9)	C49	C50	C51	C52	0.9(9)
C50	C51	C52	C47	-0.4(9)	Ge3	C53	C54	C55	-175.8(4)
Ge3	C53	C58	C57	174.8(4)	C54	C53	C58	C57	-0.5(9)
C58	C53	C54	C55	-0.5(9)	C53	C54	C55	C56	0.1(11)
C54	C55	C56	C57	1.3(11)	C55	C56	C57	C58	-2.4(10)
C56	C57	C58	C53	2.0(10)	Ge4	C59	C60	C61	175.0(4)
Ge4	C59	C64	C63	-176.4(4)	C60	C59	C64	C63	-2.7(10)
C64	C59	C60	C61	1.4(10)	C59	C60	C61	C62	0.6(12)
C60	C61	C62	C63	-1.6(12)	C61	C62	C63	C64	0.4(12)
C62	C63	C64	C59	1.8(11)	Ge4	C65	C66	C67	177.8(4)
Ge4	C65	C70	C69	-177.3(4)	C66	C65	C70	C69	-0.4(9)

C70	C65	C66	C67	1.0(9)	C65	C66	C67	C68	-0.8(9)
C66	C67	C68	C69	-0.2(10)	C67	C68	C69	C70	0.7(10)
C68	C69	C70	C65	-0.5(10)	01	C72	C73	02	-79.9(9)

References

- (1) R. A. Kunetskiy, I. Císařová, D. Šaman, I. M. Lyapkalo, Chem. Eur. J. 2009, 15, 9477-9485.
- (2) N. Kuhn, T. Kratz, Synthesis 1993, 561-562.
- (3) R. Usui, Y. Sunada, Chem. Commun. 2020, 56, 8464-8467.
- (4) T. Schaub, U. Radius, Chem. Eur. J. 2005, 11, 5024-5030.
- (5) A. J. Arduengo III, R. Krafczyk, R. Schmutzler, Tetrahedron 1999, 55, 14523-14534.
- (6) C. Müller, D. M. Andrada, I. A. Bischoff, M. Zimmer, V. Huch, N. Steinbrück, A. Schäfer, *Organometallics* 2019, 38, 1052-1061.
- (7) R. J. Batchelor, T. Birchall, J. Am. Chem. Soc. 1983, 105, 3848-3852.
- (8) G. Beltram, T. P. Fehlner, K. Mochida, J. K. Kochi, J. Electron Spectrosc. Relat. Phenom. 1980 18, 153-159.
- (9) S. Harrypersad, D. Foucher, Chem. Commun. 2015, 51, 7120-7123.
- (10) I. Suzuki, Y. Uji, R. Ieki, S. Tsunoi, I. Shibata, Org. Lett. 2017, 19, 5392-5394.
- (11) L. Horner, J. Mathias, J. Organomet. Chem. 1985, 282, 155-174.
- (12) A. Klose, E. Solari, C. Floriani, A. Chiesi-Villa, C. Rizzoli, N. Re, J. Am. Chem. Soc. 1994, 116, 9123-9135.
- (13) S. Arata, Y. Sunada, Dalton Trans. 2049, 48, 2891-2895.
- (14) Y. Kobayashi, Y. Sunada, Catalysts 2020, 20, 1/29-12/29.
- (15) D. Noda, A. Tahara, Y. Sunada, H. Nagashima, J. Am. Chem. Soc. 2016, 138, 2480-2483.
- (16) Y. Ohki, S. Ohta, K. Tatsumi, L. M. Davis, G. S. Girolami, A. M. Royer, T. B. Rauchfuss, *Inorg. Synth.* 2010, 35, 137-143.
- (17) S. Gambarotta, C. Floriani, A. Chiesi-Villa, C. A. Guastini, J. Chem. Soc., Chem. Commun. 1983, 1128-1129.
- (18) X. Zhao, C. Zhang, Synthesis 2007, 551-557.
- (19) M. Nonnenmacher, D. Kunz, F. Rominger, T. Oeser, Chem. Commun. 2006, 1378-1380.
- (20) T. Schaub, U. Radius, Chem. Eur. J. 2005, 11, 5024-5030.
- (21) SIR2008: M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, D. Siliqi, R. Spagna, *J. Appl. Cryst.* 2007, 40, 609-613.
- (22) International Tables for Crystallography, Vol. C; (Ed. A. J. C. Wilson) Kluwer Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, 1992, pp. 572.
- (23) J. A. Ibers, W. C. Hamilton, Acta Cryst. 1964, 17, 781-782.
- (24) J. A. Ibers, W. C. Hamilton, in International Tables for Crystallography, Vol C; (Ed. A. J. C. Wilson), Kluwer Academic Publishers, Dordrecht, Netherlands, Table 4.2.6.8, 1992, pages 219-222.
- (25) D. C. Creagh, J. H. Hubbell, in International Tables for Crystallography, Vol C; (Ed. A. J. C. Wilson), Kluwer Academic Publishers, Boston, Table 4.2.4.3, 1992, pages 200-206.
- (26) CrystalStructure 4.2.5: Crystal Structure Analysis Package, Rigaku Corporation (2000-2017). Tokyo 196-8666, Japan.
- (27) SHELXL Version 2017/1: G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122