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Generation and Curation of ELN dataset. The raw dataset was collected from the electronic laboratory 
notebooks at AstraZeneca using the NextMove software. To curate the raw data, a series of Jupyter 
notebooks were created, which can be found in the github repository. First, the original data format (.xml) 
was converted to the internally used library files. The scripts include several steps of data processing for 
automated curation of the dataset. Examples demonstrating the data format workflows for the generation 
of the features from the structures are described below. Next, the yield-related information was generated 
including reactants information, reaction variables (e.g. temperature, volume, and reaction scale). In many 
cases, the information was contained in the comment section of the .xml file rather than the appropriate 
data field. In these cases, the information was transferred (either through scripting or manual curation) to 
the correct field based on the preparation section which is shown as text form in the original dataset. 
Approximately half of the dataset consisted of reactions without yield information, denoted as 'None'. These 
non-valued reactions include incomplete reaction, reaction with no product, reaction with product but in 
very small quantity. These cases reported were classified to four types of non-yield reactions: (A) no 
reaction occurred (104 of 173), (B) trace amount of product (41 of 173) and (C) complex mixture of reaction 
products (28 of 173). This was done using a word filter and some manual filtering work  of the reaction 
description in the comment field of the ELN entries. Firstly, incomplete reactions were filtered out which 
was the incomplete reaction abandoned for several reasons, such as being aimed at testing, optimization or 
having incorrect reactants. For complete reactions with missing yield values, zero was set for those with a 
description indicating that the desired product was not present, these reaction was classified as a 'no-yield' 
reaction. For reactions that reported the presence of a desired product but too little to produce a measurable 
result, the yield was also set to zero, as the lowest reaction yield reported in the dataset was 0.5%. 
Finally, MDL molfiles were generated for each molecule from the compounds database included in the 
ELN, which were then used to generate SMILES strings. The SMILES files were converted into Cartesian 
coordinates for the Gaussian calculations using RDKit(1) and OpenBabel.(2)
Analysis of the ELN dataset identified 35 cases with the same reaction components and conditions. In some 
cases, the reported yields were significantly different as shown in Fig. 1. These cases were manually curated 
based on the comment section of the ELN dataset. For example, reaction 8 contained a comment “No sign 
of desired product. Now know that starting material needs to be columned. Reaction not progressed” and 
was therefore removed from the dataset. 

Figure S1: Yield distribution of 35 reactions in ELN dataset with identical reaction components and 
conditions 

The dependence of the fit from the experimental variability was tested by plotting the reported yield against 
the reported yield with random noise of ±15% and ±30% added, which leads to R2 values of 0.91 and 0.73, 
respectively.  
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Figure S2: Correlation plots of actual yields vs. actual yields ±15% (left) and ±30% (right) 
             

Feature generation and selection. For each molecule, two sets of chemical features were obtained. The 
first source is the full set of descriptors available in the RDKit library. The second source are the features 
from DFT calculations of each of the reactants using Gaussian16(3) with the B3LYP functional and 6-31G* 
basis set for geometry optimization and 6-311G* basis sets for single point calculations. The remaining 
features include the surface area generate from pymol, pKa of the base, solvent dielectric constant from the 
compound database. The following set shows the chemical features used for model training:
Molecular features: molecular volume, surface area, ovality, molecular weight, HOMO/LUMO Energy, 
electronegativity, hardness, and dipole moment.
Atomic features: Electrostatic charge and NMR shift
Reaction features: Temperature, Reaction scale and volume for some of reactions

To pre-select features, the features from above sources were combined, and a random forest model 
was trained on ten 70:30 random splits. Then, all features with feature importance of 10-4 or greater in any 
of the 30 random forest models were retained and included in the AGNN. Note that no feature engineering 
on the structural features is performed, the structural features are automatically generated by the GNN 
model. The random forest-based pre-selection helps reduce the number of the parameters used in the deep 
learning YieldGNN model.



S4

Test of standard ML architectures We tested the several types of widely used ML models covering 
Linear, SVM, KNN and NN models, which were also evaluated in prediction of Buchwald-Hartwig HTE 
dataset by Ahneman et al. The models were performed on the processed dataset with all pre-selected features 
with or without RDKit features using 70% of the data as training set to predict 30% of the data as test set 
in 30 random splits. The Python code could be found in the scrips folder which can be used once the data 
file was created from the first step of data loading. The parameters of all the ML models were selected by 
using Grid Search on 5 cross-validations. 

Table S1: Additional ML architectures tested  
Suzuki-Miyara

[HTE]
Buchwald-Hartwig

[HTE]
Buchwald-Hartwig 

[ELN]

0.455±0.013 0.615±0.012 0.061±0.037Lasso (w/o rdkit feat.)
(0.177±0.002) (0.135±0.002) (0.244±0.010)

0.512±0.012 0.699±0.011 ---
Lasso_CV (with rdkit feat.)

(0.164±0.001) (0.120±0.0017) ---
0.455±0.013 0.615±0.012 0.051±0.031Lasso_CV (w/o rdkit feat.) (0.177±0.002) (0.135±0.002) (0.246±0.009)

0.651±0.012 0.761±0.009 0.165±0.052SVM (w/o rdkit feat.)
(0.129±0.002) (0.102±0.002) (0.217±0.009)

0.735±0.026 0.840±0.018 ---NN (with rdkit feat.)
(0.111±0.007) (0.082±0.005) ---
0.631±0.0345 0.769±0.018 -1.575±2.866NN (w/o rdkit feat.) (0.135±0.007) (0.096±0.004) (0.246±0.022)

0.776±0.011 0.5176±0.017 0.041±0.038KNN (w/o rdkit feat.)
(0.090±0.002) (0.1486±0.003) (0.245±0.009)

-0.127±0.018 -0.0656±0.017 -0.132±0.050
Shuffle yield test w/o rdkit 
feat.

(0.262±0.004) (0.240±0.005) (0.247±0.011)
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Figure S3: Correlation plots of predicted vs. actual yields for KNN, Lasso, NN and SVM models with 
RDKit features

Suzuki-Miyaura (HTE) Buchwald-Hartwig (HTE) Buchwald-Hartwig (ELN)



S6

Figure S4: Correlation plots of predicted vs. actual yields for KNN, Lasso, NN and SVM models without 
RDKit features

Suzuki-Miyaura (HTE) Buchwald-Hartwig (HTE) Buchwald-Hartwig (ELN)
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YieldGNN Model architecture. The model integrates both the chemical features and the structural features 
for reaction molecules using two main components. An overview of the model is shown in Figure 3 of the 
main manuscript. The top component represents the AGNN which learns the structural features and the 
bottom module captures the chemical features. In this section the process of structural feature generation is 
detailed.

For each reaction, attributed graphs containing atom and bond features for each molecule are build 
first. Each atom feature contains atomic number, formal charge, degree of connectivity, explicit and implicit 
valence, and aromaticity. The bond features include the bond type, bond order and ring status. Atom features 
around the atom neighborhood are aggregated in an iterative manner using the Weisfeiler-Lehman Network 
(WLN)(4)  to obtain the local atom and bond features. WLN is a graph kernel based on the Weisfeiler-
Lehman test for graph isomorphism. Two graphs are isomorphic if they are topologically equivalent, and 
the WL test is a necessary condition for graph isomorphism. Thus, the WLN is one of the most expressive 
GNN methods and is used here. In each iteration, the atom feature representation is updated according to:

ℎ𝑙
𝑣 = 𝑅𝑒𝑙𝑢 (𝑈1ℎ𝑙 ‒ 1

𝑣 + 𝑈2 ∑
𝑢 ∈ 𝑁(𝑣)

𝑅𝑒𝑙𝑢 (𝑉1ℎ𝑙 ‒ 1
𝑣 + 𝑉2ℎ𝑢𝑣))

where  is the atom feature representation at iteration ). ,  are paramters to ℎ𝑙
𝑣 𝑙 (1 ≤ 𝑙 ≤ 𝐿 𝑈1 𝑈2,𝑉1,𝑉2

be learned, which are shared across  iterations. The final atom feature representation for atom  is obtained 𝐿 𝑣
at the end of the final iteration using:

ℎ𝑣 = ∑
𝑢 ∈ 𝑁(𝑣)

(𝜃1ℎ𝐿
𝑢 ⨀  𝜃2ℎ 𝐿

𝑢𝑣 ⨀ 𝜃1ℎ𝐿
𝑣)

where  is the convolution operation and  are the model weights. For the HTE datasets, two ⨀ 𝜃
iterations are used to capture the 2-hop neighborhoods. Therefore, for these datasets the above operation 
translates to two iterations to obtain the local representation of atoms. 

Next, the local structural features are fed to an attention layer to capture the global structural 
features. The intuition behind including attention(5)  is that different components of the reaction may 
influence the reaction yield differently. The attention layer is meant to capture the degree to which different 
atoms influence each other. The global representation of atom  is equivalent to the weighted sum of all 𝑣
other atoms in the reaction:

ℎ̃𝑣 = ∑
𝑧

𝛼𝑣𝑧ℎ𝑣

 The attention score for a given atom pair (  is calculated using:𝑣,𝑧)
𝛼𝑣𝑧 = 𝜎(𝑢𝑇 × 𝑅𝑒𝑙𝑢 (𝑊1ℎ𝑣 + 𝑊2ℎ𝑧 + 𝑊3𝑏𝑣𝑧))

where  is the sigmoid function,  is the binary features for atom pair (  and  is the 𝜎(.) 𝑏𝑣𝑧 𝑣,𝑧) 𝑊
attention weights to be learned by the model. Both global and local structural features are concatenated to 
generate the final structural features. The YieldGNN model provides two yield scores, one from the 
structural features (Yield(graph)) and the other from the chemical features (Yield(chem)). The two scores 
are fed to a linear layer to generate the final reaction yield predictions in analogy to earlier work by Coley 
et al.,(6) but for prediction of the reaction yield through combining both structural graph-based features as 
well as chemical properties.
Parameter Selection. A grid-search for each hyper parameter is performed and tuned for each dataset 
separately. For all datasets, batch size, dropout ratio, and initial learning rate are set to 40, 0.04, 0.01 and 
0.005 respectively. A learning rate decay ratio of 0.5 is used on all datasets if the loss plateaus. A 2-hop 
neighborhood is used for the HTE datasets and a 3-hop neighborhood for the ELN data. The size of all 
hidden layers is set to 100 for the ELN data and 200 for the HTE data. The gradient is clipped with a 0.8 
ratio on all datasets to avoid the exploding gradient problem. The model is trained for 200 epochs for HTE 
data and 100 epoch for the ELN data using Adam optimizers(7) with =0.9 and =0.99.𝛽1 𝛽2

For pre-training, the models developed by Hu et al.(8) we use Graph Isomorphism Network (GIN), which 
based on the author’s finding resulted in the best performance. Following the best parameters suggested by 
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the authors in their original work, we set the batch size, number of layers, and dropout ratio to 256, 5, and 
0.15, respectively. We use an embedding dimension of 300 and a learning rate of 0.001, and pre-train the 
models for 100 epochs. For the fine-tuning module, we set batch size, number of layers, embedding 
dimensions, and dropout ratio to 32, 5, 0.5, and 300, respectively based on the author’s recommended 
parameters. We set the learning rate to 0.001 and decay it with a 0.9 rate upon loss plateau. We use mean 
pooling for GNN during both pre-training and fine-tuning. We fine-tune the pre-trained model for 100 
epochs as well.

Model Evaluation
Evaluation metrics. The model is compared to a series of standard ML architectures (Tables 1 and S1-S3). 
The performance of each model using coefficient of determination, denoted as , and the mean absolute 𝑅2

error, denoted as MAE. 30 models with different random splits of each dataset are run and the mean and 
standard deviation of the 30 experiments is reported. As an alternate metric, we created three pairs of data 
consisting of both training and test data, along with their corresponding predicted values, and merged 
training and test data with its predicted value. We then performed t-tests for each pair of samples using the 
'ttest_ind()' function in scipy.stats library's, which calculate the t-statistic and p-value. Finally, we calculated 
the mean value for the 30 random splits. Note that this produces the p-value for the model hypothesis rather 
than the null hypothesis, which is more commonly reported.  

Table S2: Results for three reaction datasets. For each dataset, the 
p-value for the model hypothesis for the test set and total dataset 
(in parenthesis) is shown

Method Suzuki-Miyaura
[HTE]18 

Buchwald-
Hartwig
[HTE]10 

Buchwald-
Hartwig [ELN]

RFa 0.784
(0.875)

0.826
(0.891)

0.430
(0.634)

RFb 0.746
(0.837)

0.827
(0.891)

0.434
(0.624)

BERT22 0.729
(0.646)

0.656
(0.735)

0.307
(0.259)

Lassoa 0.631
(0.784)

0.724
(0.840)

0.408
(0.586)

SVMa 0.762
(0.759)

0.767
(0.813)

0.418
(0.525)

KNNa 0.415
(0.294)

0.685
(0.623)

0.202
(0.131)

One-hot 
Encoding

0.774
(0.863)

0.782
(0.849)

0.390
(0.393)

Shufflea 0.480
(0.664)

0.480
(0.663)

0.376
(0.582)

a: with rdkit features; b: without rdkit features

Table S3: Results for three reaction datasets. Results for three 
reaction datasets. For each dataset, the p-value for the model 
hypothesis for the test set and total dataset (in parenthesis) is 
shown

Method Suzuki-Miyaura
[HTE]18 

Buchwald-
Hartwig
[HTE]10 

Buchwald-
Hartwig [ELN]

YieldGNNa 0.880
(0.931)

0.802
(0.893)

0.473
(0.663)

YieldGNNb

YieldGNNc 

0.778
(0.878)

0.820
(0.875)

0.867
(0.925)

0.766
(0.775)

0.217
(0.594)

0.335
(0.389)

a: with RDKit features; b: without RDKit features; c: without chemical 
features
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Figure S5: Correlation plots of predicted vs. actual yields for training (A) and test (B) sets. (C): Learning 
plots of R2 vs. epoch of YieldGNN. (D): Weights of the two components of the YieldGNN as function of 
epoch 

Suzuki-Miyaura (HTE) Buchwald-Hartwig (HTE) Buchwald-Hartwig (ELN)

A

B 

C

D 
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Table S4. Learned weights for the chemical properties in YieldGNN model of Suzuki-Miyaura HTE 
dataset with RDKit features

Rank Feature name Weight
1 ligand_SlogP_VSA4 -0.542
2 ligand_dipole_moment 0.507
3 halide_EState_VSA8 0.469
4 ligand_fr_NH0 0.404
5 halide_Kappa1 -0.374
6 solvent_Kappa1 -0.322
7 ligand_FpDensityMorgan3 -0.295
8 ligand_Kappa2 0.275
9 ligand_SlogP_VSA7 -0.271

10 halide_Chi1n 0.268
11 boronic Acid_PEOE_VSA4 -0.257
12 ligand_SlogP_VSA6 0.247
13 halide_PEOE_VSA6 0.246
14 halide_EState_VSA1 -0.246
15 ligand_BCUT2D_LOGPHI 0.241
16 base_VSA_EState4 -0.24
17 ligand_BCUT2D_CHGHI 0.24
18 ligand_PEOE_VSA14 -0.235
19 ligand_FpDensityMorgan2 -0.235
20 ligand_MolWt 0.235
21 halide_BalabanJ -0.234
22 boronic Acid_BCUT2D_MWLOW -0.234
23 halide_SlogP_VSA7 -0.234
24 base_BCUT2D_MWHI -0.233
25 ligand_fr_para_hydroxylation 0.232
26 ligand_.P1_electrostatic_charge -0.227
27 halide_Chi4v 0.226
28 halide_NumAliphaticRings 0.224
29 base_SlogP_VSA10 0.221
30 boronic Acid_NumSaturatedRings -0.219
31 ligand_NumValenceElectrons 0.217
32 base_fr_COO2 -0.217
33 halide_BCUT2D_LOGPLOW -0.214
34 boronic Acid_EState_VSA8 -0.213
35 ligand_fr_methoxy -0.213
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Table S5. Learned weights for the chemical properties in YieldGNN model of Suzuki-Miyaura HTE 
dataset without RDKit features

Rank Feature name Weight
1 halide_.C4_electrostatic_charge 0.605
2 halide_V2_frequency -0.575
3 halide_V1_frequency 0.461
4 solvent_1 -0.428
5 halide_V2_intensity -0.355
6 halide_.C9_NMR_shift 0.351
7 boronic Acid_dipole_moment 0.305
8 boronic Acid_E_LOMO -0.304
9 halide_V1_intensity 0.302

10 halide_.C5_electrostatic_charge -0.295
11 halide_.C8_NMR_shift -0.288
12 halide_molecular_volume -0.285
13 halide_.C3_NMR_shift -0.284
14 ligand_molecular_weight 0.263
15 halide_.C1_NMR_shift -0.253
16 solvent_3 0.243
17 halide_.C3_electrostatic_charge -0.237
18 ligand_E_HOMO -0.225
19 ligand_hardness 0.223
20 halide_.C9_electrostatic_charge 0.22
21 halide_hardness 0.199
22 boronic Acid_.C16_electrostatic_charge 0.197
23 halide_molecular_weight 0.193
24 halide_ovality 0.191
25 halide_.C15_electrostatic_charge -0.182
26 halide_V0_intensity 0.181
27 halide_.N3_electrostatic_charge 0.176
28 halide_.C8_electrostatic_charge 0.174
29 halide_.C10_NMR_shift -0.173
30 boronic Acid_.C12_NMR_shift 0.168
31 halide_.C13_electrostatic_charge 0.162
32 boronic Acid_.C8_electrostatic_charge 0.152
33 boronic Acid_.C3_electrostatic_charge 0.148
34 halide_.C2_NMR_shift -0.145
35 boronic Acid_.C4_electrostatic_charge 0.143
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Table S6. Learned weights for the chemical properties in YieldGNN model of Buchwald-Hartwig HTE 
dataset with RDKit features

Rank Feature name Weight
1 ligand_.C10_electrostatic_charge -0.47
2 halide_PEOE_VSA9 0.452
3 ligand_MaxPartialCharge -0.451
4 ligand_MinAbsEStateIndex -0.431
5 ligand_.C11_NMR_shift 0.427
6 halide_PEOE_VSA8 -0.419
7 halide_MinAbsPartialCharge -0.374
8 ligand_.C10_NMR_shift 0.363
9 ligand_VSA_EState4 0.361

10 ligand_.C4_electrostatic_charge 0.356
11 ligand_.C8_electrostatic_charge -0.353
12 halide_.C1_NMR_shift 0.351
13 ligand_.C12_electrostatic_charge -0.344
14 Additive_Chi1n 0.323
15 Additive_VSA_EState5 -0.319
16 ligand_.C5_electrostatic_charge -0.311
17 ligand_electronegativity 0.309
18 ligand_NumHeteroatoms -0.297
19 ligand_.C7_electrostatic_charge 0.297
20 halide_VSA_EState3 -0.282
21 ligand_Chi1n -0.282
22 ligand_.H9_electrostatic_charge 0.281
23 ligand_molecular_weight -0.275
24 ligand_.C15_NMR_shift -0.27
25 ligand_.C4_NMR_shift 0.269
26 product_MinAbsPartialCharge 0.268
27 ligand_VSA_EState6 -0.267
28 base_BalabanJ 0.266
29 Additive_.C4_NMR_shift 0.266
30 halide_HallKierAlpha -0.262
31 Additive_PEOE_VSA11 0.261
32 ligand_.C14_NMR_shift -0.256
33 ligand_.H11_NMR_shift -0.254
34 halide_Chi3v 0.248
35 ligand_.C6_NMR_shift 0.244
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Table S7. Learned weights for the chemical properties in YieldGNN model of Buchwald-Hartwig HTE 
dataset without RDKit features

Rank Feature name Weight
1 halide_.H2_electrostatic_charge 1.009
2 Additive_.C4_electrostatic_charge 0.738
3 halide_.C4_electrostatic_charge 0.659
4 halide_.H3_electrostatic_charge 0.523
5 halide_.H3_NMR_shift -0.482
6 amine_.C7_electrostatic_charge 0.452
7 Additive_.N1_electrostatic_charge -0.442
8 amine_dipole_moment 0.396
9 Additive_.C5_electrostatic_charge 0.39

10 amine_.C2_electrostatic_charge 0.386
11 amine_.C2_NMR_shift 0.381
12 halide_dipole_moment -0.363
13 halide_.C1_electrostatic_charge 0.362
14 base_pka 0.357
15 amine_E_HOMO -0.336
16 halide_.C3_electrostatic_charge -0.332
17 Additive_molecular_weight 0.309
18 amine_ovality -0.295
19 Additive_.C3_NMR_shift -0.27
20 amine_.C4_NMR_shift 0.267
21 halide_molecular_volume 0.267
22 ligand_.C17_NMR_shift -0.266
23 halide_surface_area -0.266
24 halide_.H2_NMR_shift 0.254
25 amine_hardness -0.247
26 ligand_.C6_electrostatic_charge 0.226
27 amine_.C7_NMR_shift 0.226
28 amine_electronegativity 0.225
29 halide_.C4_NMR_shift 0.225
30 amine_.N1_NMR_shift -0.224
31 halide_.C2_electrostatic_charge -0.224
32 amine_.C1_NMR_shift -0.221
33 amine_surface_area -0.214
34 ligand_molecular_weight 0.21
35 Additive_.O1_electrostatic_charge 0.201
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Table S8. Feature importance for the chemical properties in RF model of Buchwald-Hartwig ELN dataset 
with and without RDKit features.

                           No RDKit Features                                                        With RDKit Features

Ran
k Feature name Weight Ran

k Feature name Weight

1 ligand_molecular_weight 0.048171 1 temperature 0.021893
2 temperature 0.043841 2 product_SlogP_VSA2 0.01427
3 halide_ovality 0.042808 3 product_VSA_EState2 0.010126
4 amine_ovality 0.039912 4 halide_MolLogP 0.009896
5 amine_E_LOMO 0.035032 5 halide_VSA_EState10 0.009477

6 halide_molecular_weight 0.03335 6 product_MinAbsPartialChar
ge 0.00876

7 halide_.C1_electrostatic_char
ge 0.031769 7 product_MinAbsEStateInde

x 0.008755
8 halide_V1_frequency 0.030433 8 product_MolLogP 0.008598
9 halide_molecular_volume 0.028384 9 product_Chi3n 0.008443

10 halide_.C2_electrostatic_char
ge 0.028137 10 product_Chi4n 0.008369

11 amine_dipole_moment 0.027836 11 ligand_qed 0.008162
12 halide_V0_frequency 0.027743 12 product_Chi2n 0.007621
13 halide_dipole_moment 0.026655 13 product_VSA_EState3 0.007247
14 halide_V2_intensity 0.026558 14 product_Chi3v 0.007051
15 solvent_1 0.026309 15 product_MaxPartialCharge 0.007023
16 halide_V2_frequency 0.026306 16 product_Chi1v 0.006745

17 amine_.N1_electrostatic_char
ge 0.02544 17 amine_electronegativity 0.006711

18 amine_electronegativity 0.024788 18 halide_BCUT2D_LOGPLO
W 0.006647

19 amine_.N1_NMR_shift 0.024255 19 product_FpDensityMorgan3 0.006561
20 halide_V0_intensity 0.023632 20 halide_V0_frequency 0.006513
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Table S9. Results of “Leave one group out” analysis of Buchwald-Hartwig HTE dataset
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Figure S6: Shared atom features and atom numbering for each reaction component
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Table S10: Table of chemical properties in the prediction model

 Function Basis set Method Software
charges HF 6-31G*, 6-311G* Pop = chelpg G16(3)
NMR shift B3LYP 6-31G*, 6-311G* GIAO G16
volume B3LYP 6-31G*, 6-311G* Opt G16
E(HOMO) B3LYP 6-31G*, 6-311G* SCF G16
E(LUMO) B3LYP 6-31G*, 6-311G* SCF G16
vibration B3LYP 6-31G*, 6-311G* Freq G16
dipole_moment B3LYP 6-31G*, 6-311G* Pop = full G16
surface area --- --- --- Pymol(9)
RDKit Features https://www.rdkit.org/docs/cppapi/namespaceRDKit_1_1Descriptors.html

The atom properties used as domain features in the model and the level of theory at which they 
were generated are listed in Table S8. A list of features generated in RDKit can be obtained from the website 
listed. These atom features were embedded following the atom numbering scheme shown in Fig S6. The 
features are used in the model to find the effect that may be attributed to certain types of atoms on the 
reaction yield. The feature weights of domain features for HTE datasets are shown in Tables S2-S5, which 
are generated from the trained linear feature selection model. A positive value means the positive influence 
on the reaction yield value, while the negative value means the negative influence on the reaction yield 
value. The details for the molecule properties are included in the feature tables as shown in Table S8.

The feature importance for the ELN dataset in the Random Forest model is shown in Table S6. 
Information that was not found to have a significant feature weight in this analysis ( e.g. reaction volume, 
base amount, reactant amount) was removed from the feature vector. It should be noted that the data 
variance on reaction scale, temperature, reaction volume, reactants amount can make the prediction 
challenging.

Figure S7: Highlighted atom weights in molecular graph neural network in two examples 

                                         

              correct prediction                                                               incorrect prediction 

Molecular maps with highlighted atoms for two prediction examples that were generated from the Graph 
Neural Network (Figure S7). The interactions between the labeled parts were considered as important 
influences on reaction yield. In the model shown on the right, the prediction was able to correctly capture 
the interaction between the phosphorus atom and carbon atom in the ligand, while on the right the model 
did not identify the influence of the atom interactions in the ligand, leading to an incorrect prediction. 
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Figure S8: Yield-GNN flow chart showing model architecture

The Yield-GNN model was employed to predict the reaction performance for the three reaction datasets 
included in the data directory (./su, ./dy, ./az)  of the model. The model includes an embedded molecular 
Graph Neural Network and a linear model dealing with chemical properties (Figure 3 in the main text). The 
predictions were performed using the Yield-GNN model with 30 randomized splits into test (30%) and 
training set (70%) with a learning rate of 0.005 and a dropout rate of 0.2. The model can generate RDKit 
features that are useful for reaction prediction through feature selection. In the feature selection process, all 
the features generated from the RDKit library will go through a random forest model to collect the names 
of the higher-ranked features into a file, and then use the file to generate the features in reaction prediction. 
Finally, the leave-one-group-out (LOGO) validation was performed on the types of additives used in 
Buchwald-Hartwig reaction dataset (see Table S7).
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Table S11 Table of Contents for the GitHub repository.

Name Description
README.md General instruction for downloading the data, installing the necessary 

packages, and running the code.
01_prepare_data.py Python script for converting the .json format data into clean .csv format, and 

splitting it into 10 sets of train/test data.
02_train_rf.py Python script for training the random forest models and feature selection.

03_train_yield.py Python script for training the YieldGNN model.

rxntorch Python module including all necessary data containers and models for running 
03_train_yield.py. 

scripts Contains a set of Python scripts for auxiliary functions that are used for plotting 
the results or loading the model for analysis.

jupyter_notebooks Contains Jupyter notebooks for loading and analyzing the model. 

RawDataPreparation This directory is under jupyter_notebooks, and contains the notebooks used for 
processing the ELN data and converting it into the .json format. 

Model operation guide

Setting up of the environment
The Yield-GNN model is based on chemical toolkit RDKit and machine learning toolkits PyTorch and 
Scikit-learn. These toolkits are required and can be downloaded using the Anaconda package manager. The 
version should be the same as the version shown in the READE.md file in the Github repository. 
Preparation of dataset
The input of the three datasets (su, dy, az) here have been provided and can be downloaded from the Github 
repository. The prediction for other data sets needs to generate data files in JSON format, including reactant 
SMILES information and feature vectors containing the chemical information described in Table S8. The 
model will use the reaction SMILES information to generate the molecular graph. The properties in the 
feature vector will undergo feature selection and are forwarded to the linear part of the YieldGNN model.
Loading of dataset
The three datasets (.su,.dy,.az) are provided on Github and the JSON files are loaded using different 
arguments for the data loading script. Then, the JSON file is curated and processed and generates a .csv file 
that contains all possible features (depending on whether you use RDKit features or not). Examples of the 
formats are provided in the Github directory. It also generates 30 sets of train-test indexes in the .pickle file 
which are then used to split the data later for training and testing.
Feature selection
If RDKit features are considered in the Yield-GNN model, a feature selection step is required. The script 
will first read the .csv file and the .pickle file to load and split the data and read all possible features. A 
Random Forest model is trained on each data split. The script will then output the R2 value calculated for 
each model and the selected feature, and select features based on the feature importance. The selected 
features are written to the selected_feats.txt file. 
Running the YieldGNN model
To run the YieldGNN model, the script will first load the .pickle file, the selected_feats.txt file (depending 
on whether or not using the RDKit features), and .csv file to split the dataset to train and test, read the names 
of feature selected and the values for the selected features. It provides an output for output R2, MAE, RMSE 
for the selected model for a given random split. The model parameter can be adjusted by using different 
arguments as provided in the code. 

https://github.com/msaebi1993/yield-rxn/blob/model_5.3.0/README.md
https://github.com/msaebi1993/yield-rxn/blob/model_5.3.0/01_prepare_data.py
https://github.com/msaebi1993/yield-rxn/blob/model_5.3.0/02_train_rf.py
https://github.com/msaebi1993/yield-rxn/blob/model_5.3.0/03_train_yield.py
https://github.com/msaebi1993/yield-rxn/tree/model_5.3.0/rxntorch
https://github.com/msaebi1993/yield-rxn/tree/model_5.3.0/scripts
https://github.com/msaebi1993/yield-rxn/tree/model_5.3.0/jupyter_notebooks
https://github.com/msaebi1993/yield-rxn/tree/model_5.3.0/jupyter_notebooks/RawDataPreperation
https://github.com/msaebi1993/yield-rxn/tree/model_5.3.0/jupyter_notebooks
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After the prediction is finished, the performance of the prediction model can be further analyzed by using 
the script in ./scripts and the ./jupyter_notebooks. These analysis tools include loading previous models, 
generating true and predicted values, model performance vs epochs, and feature weights for chemical 
properties.
Model evaluation metrics
All metrics used to calculate model performance are calculated using the sklearn python library. package. 
To evaluate the model performance, R2, RMSE, and MAE values are calculated between predicted result 
and true result for each of epoch of the prediction model using:
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