Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Individually separated supramolecular polymer chains toward solution processable supramolecular polymeric materials

Takuma Shimada,^{1,2} Yuichiro Watanabe,³ Takashi Kajitani,⁴ Masayuki Takeuchi,²

Yutaka Wakayama,^{1,2} Kazunori Sugiyasu³*

¹ Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Nishiku, Fukuoka 819-0395, Japan

² National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan

³ Department of Polymer Chemistry, Kyoto University, Kyotodaigaku-katsura, Kyoto 615-8510, Japan

⁴ Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.

sugiyasu.kazunori.8z@kyoto-u.ac.jp

Table of Contents

1. General Methods	
2. Synthesis and Characterization	S3
3. Note and references	S14
4. Supporting Figures	

General Methods

Air and water sensitive synthetic manipulations were performed under a nitrogen or an argon atmosphere using standard Schlenk techniques. Chemicals were purchased from Aldrich, TCI, Kanto Chemical, or Fujifilm Wako and used as received without further purification. Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL, ECS-400 (400 MHz) and an ECZ400S (400 MHz) spectrometer using tetramethylsilane (0 ppm for ¹H NMR) or residual CHCl₃ (77 ppm for ¹³C NMR) as an internal standard. CDCl₃ and DMSO-d₆ were purchased from Kanto Chemical or Eurisotop. Splitting patterns are designated as s, singlet; d, doublet; m, multiplet; t, triplet; q, quartet; br, broad. Gel permeation chromatography (GPC) was performed using a Japan Analytical Industry, LC-5060P equipped with JAIGEL-2.5HR Plus column and JAIGEL-2HR Plus column (eluent: CHCl₃) and a UV detector. Scanning Electron Microscopy (SEM) measurements were performed on a HITACHI, FE-SEM: SU8220. Samples were mounted on conducting carbon tape attached to a SEM stage, and then coated with platinum. The images were recorded with an operating voltage of 1.0 kV. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectra were obtained using a Bruker Daltonics, ultrafleXtreme (Laser: 337 nm) with dithranol as a matrix. Electrospray ionization (ESI) mass spectra were obtained using a Thermo Fisher Scientific Exactive Plus. Polarized optical microscopy (POM) were performed on a Nikon ECLIPSE E600 POL. Atomic force microscopy (AFM) was performed on a Bruker, model MultiMode 8 atomic force microscope under ambient conditions in the scan assist mode. AFM images were analyzed by Bruker, Nanoanalysis. Powder X-ray diffraction (XRD) experiment was carried out on the Rigaku, NANO-Viewer equipped with a Dectris, Pilatus100k detector, and wavelength of the X-ray beam is 1.541 Å. The position of incident X-ray beam on the detector were calibrated using silver behenate. Grazing incidence wide-angle X-ray diffraction (GI-WAXD) experiment was carried out on the Rigaku, NANOPIX equipped with a Rigaku, HyPix-6000 detector, and wavelength of the X-ray beam is 1.541 Å. The position of incident X-ray beam on the detector were calibrated using silver behenate. The sample was placed on Si substrate.

Synthesis and Characterization

Scheme S1. Synthetic route of Triphenylene derivative 4.

Synthesis of 3

2,3,6,7,10,11-Hexahydroxytriphenylene (0.294 g, 0.91 mmol), *tert*-butyl *N*-(4bromobutyl)carbamate (1.65 g, 6.54 mmol), K_2CO_3 (2.60 g, 18.8 mmol) were dissolved in dry *N*,*N*-dimethylformamide (DMF) (22 mL). After stirring for 24 h at 70 °C, the reaction mixture was poured into water and extracted with ethyl acetate. The organic phase was washed with brine, then dried with MgSO₄ (anhydrous). The filtrate was evaporated, and the solid residue was purified with flash chromatography on silica gel using dichloromethane/ethyl acetate (2:1) as eluent. The obtained solid was further purified by reprecipitation with dichloromethane/*n*-hexane to give **3** (0.871 g, 71%) as a pale yellow solid.

¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.78 (s, 6H), 4.93 (s^{br}, 6H), 4.25 (t, J = 6.0 Hz, 12H), 3.26 (q, J = 6.1 Hz, 12H), 1.98 (quin, J = 6.6 Hz, 12H), 1.78 (quin, J = 7.0 Hz, 12H), 1.43 (s, 54H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.2, 148.7, 123.6, 106.6, 79.1, 69.1, 40.4, 28.6, 27.2, 26.6. HRMS (ESI) m/z: [M + Na]⁺ Calcd. for C₇₂H₁₁₄N₆O₁₈ 1373.8082 found 1373.8026.

Synthesis of 4

To a solution of compound **3** (2.12 g, 1.6 mmol) in dichloromethane (50 mL) was added trifluoroacetic acid (TFA) (6.5 mL, 85 mmol). After stirring for 5 h at room temperature, a small amount of methanol, followed by a large amount of dichloromethane were added to give a precipitate. The precipitate was collected by filtration and dried *in vacuo* to give **4** (2.19 g, 97% yield as a TFA salt) as a white solid.

¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) 8.00 (s, 6H), 7.88 (br, 18H), 4.27 (t, *J* = 5.8 Hz, 12H), 2.96 (t, *J* = 7.6 Hz, 12H), 1.93–1.87 (m, 12H), 1.84–1.77 (m, 12H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ (ppm) 158.9, 148.8, 123.5, 107.5, 68.8, 39.3, 26.4, 24.8. HRMS (ESI) *m/z*: [M + H]⁺ Calcd. for C₄₂H₆₆N₆O₆ 751.5117 found 751.5089.

Scheme S2. Synthetic route of monomers 18, 118, 1rnd.

Compound 28, 58, 218, 518 were synthesized following similar procedure to the literature^{S1}.

Synthesis of 2_{rnd}

To a mixture of methyl 3,4,5-trihydroxybenzoate (methyl gallate) (5.00 g, 27.2 mmol) and K₂CO₃ (26.3 g, 190 mmol) in dry DMF (80 mL) were added 1-bromooctane (10.5 g, 54.3 mmol) and 1-bromooctadecane (18.1 g, 54.3 mmol) under an argon atmosphere. After stirring overnight at 70 °C, the reaction mixture was filtered. The filtrate was extracted with hexane, and the organic phase was washed with water, then dried with Na₂SO₄ (anhydrous). The filtrate was chromatographed on silica gel using dichloromethane/*n*-hexane (1:1) as eluent to give 2_{rnd} (yellow oil, 21.0 g, quant.) as a mixture of six distinct compounds.

¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.25 (s, 2H), 4.02–3.99 (m, 6H), 3.89 (s, 3H), 1.85– 1.70 (m, 6H), 1.528–1.407 (m, 6H), 1.39–1.181 (m, 55H), 0.90–0.86 (m, 9H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 167.0, 152.8, 142.3, 124.6, 107.9, 73.5, 69.1, 52.1, 31.9, 31.8, 30.3, 29.7, 29.6, 29.5, 29.4, 29.3, 26.1, 22.7, 14.1. HRMS (ESI) *m/z*: [M + Na]⁺ Calcd. for C₃₂H₅₆O₅ 543.4020 found 543.3997, [M + Na]⁺ Calcd. for C₄₂H₇₆O₅ 683.5585 found 683.5555, [M + Na]⁺ Calcd. for C₅₂H₉₆O₅ 823.7150 found 823.7114, [M + Na]⁺ Calcd. for C₆₂H₁₁₆O₅ 963.8715 found 963.8667.

Synthesis of 5rnd

To a solution of 2_{rnd} (21.0 g, 28.7 mmol) in ethanol (280 mL) was added KOH (20.4 g, 364 mmol). After stirring for 4 h at 80 °C, the reaction mixture was poured into 1 M HCl aq. (400 mL), and the precipitate was filtered. The solid was washed with water and methanol and then dried *in vacuo* to give a pale orange solid 5_{rnd} (19.1 g, 92%) as a mixture of six distinct compounds.

¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.21 (s, 2H), 6.39 (s^{br}, 1H), 3.98 (t, *J* = 6.6 Hz, 2H), 3.93 (t, *J* = 6.4 Hz, 4H), 1.79–1.71 (m, 6H), 1.50–1.39 (m, 6H), 1.33–1.22 (m, 53H), 0.89–0.86 (m, 9H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.6, 152.6, 141.9, 126.2, 108.0, 73.4, 69.0, 31.9, 31.8, 30.4, 29.8, 29.7, 29.6, 29.5, 29.4, 29.4, 29.4, 26.2, 26.1, 22.7, 14.1. HRMS (ESI) *m/z*: [M – H][–] Calcd. for C₃₁H₅₄O₅ 505.3888 found 505.3893, [M – H][–] Calcd. for C₄₁H₇₄O₅ 645.5453 found 645.5453, [M – H][–] Calcd. for C₅₁H₉₄O₅ 785.7018 found 785.7019, [M – H][–] Calcd. for C₆₁H₁₁₄O₅ 925.8583 found 925.8583.

Synthesis of 6rnd

A mixture of 5_{rnd} (9.96 g, 13.9 mmol), N-hydroxysuccinimide (NHS) (3.23 g, 28.0 mmol), *N*,*N*'-Dicyclohexylcarbodiimide 18.1 (DCC) (3.74 g, mmol) and 4dimethylaminopyridine (DMAP) (0.173 g, 1.4 mmol) were dissolved in dry dichloromethane (20 mL). After stirring overnight at room temperature, the reaction mixture was filtered. The filtrate was extracted with dichloromethane and washed with brine. the organic phase was separated, then dried with Na₂SO₄ (anhydrous). After filtration on silica gel, the filtrate was evaporated to give a pale yellow solid 6_{rnd} (10.7 g, 95%) as a mixture of six distinct compounds with trace amount of unreacted DCC. The mixture was used without further purification in order not to change the statistical compositions of the mixture.

¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.33 (s, 2H), 4.04 (t, J = 6.6 Hz, 2H), 4.01 (t, J = 6.4 Hz, 4H), 2.91–2.90 (m, 4H), 1.85–1.70 (m, 6H), 1.52–1.41 (m, 6H), 1.39–1.22 (m, 56H), 0.90–0.86 (m, 9H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 169.3, 161.7, 153.1, 144.1, 119.0, 108.9, 73.6, 69.2, 31.9, 31.8, 30.3, 29.7, 29.6, 29.5, 29.5, 29.3, 29.3, 29.2, 29.2, 26.0, 25.6, 22.7, 22.6, 14.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd. for C₃₅H₅₇NO₇ 626.4027 found 626.3998, [M + Na]⁺ Calcd. for C₄₅H₇₇NO₇ 766.5592 found 766.5556, [M + Na]⁺ Calcd. for C₅₅H₉₇NO₇ 906.7157 found 906.7113, [M + Na]⁺ Calcd. for C₆₅H₁₁₇NO₇ 1046.8722 found 1046.8722.

Figure S1. ¹H NMR spectrum of 6_{rnd} in CDCl₃ at 298 K.

Synthesis of 68

To a mixture of 5_8 (10.0 g, 19.8 mmol), NHS (4.56 g, 39.6 mmol) and DMAP (0.254 g, 2.1 mmol) in dry dichloromethane (25 mL) was added DCC (5.30 g, 25.7 mmol). After stirring overnight at room temperature, the reaction mixture was filtered. The filtrate was washed with brine and the organic phase was separated and dried with Na₂SO₄ (anhydrous). The crude product was chromatographed on silica gel using dichloromethane as eluent to give 6_8 (11.5 g, 96%) as a pale yellow solid.

¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.33 (s, 2H), 4.06 (t, J = 6.8 Hz, 2H), 4.01 (t, J = 6.4 Hz, 4H), 2.91 (s, 2H), 2.90 (s, 2H), 1.85–1.70 (m, 6H), 1.50–1.29 (m, 30H), 0.90–0.87 (m, 9H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 169.5, 161.8, 153.2, 144.2, 119.2, 109.0, 73.7, 69.3, 32.0, 31.9, 30.4, 29.5, 29.4, 29.4, 29.3, 29.3, 26.1, 25.8, 22.7, 14.2. HRMS (ESI) *m/z*: [M + Na]⁺ Calcd. for C₃₅H₅₇NO₇ 626.4027 found 626.4000.

Synthesis of 618

To a mixture of 5_{18} (3.00 g, 3.2 mmol), NHS (0.754 g, 6.6 mmol), DMAP (0.0428 g, 0.35 mmol) in dry dichloromethane (8 mL) was added DCC (0.866 g, 4.2 mmol). Then, target compound 6_{18} was synthesized following similar procedure to 6_8 as a white solid (1.80 g, 54%).

¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.32 (s, 2H), 4.05 (t, J = 6.8 Hz, 2H), 4.00 (t, J = 6.8 Hz, 4H), 2.92 (s, 2H), 2.90 (s, 2H), 1.85–1.70 (m, 6H), 1.42–1.18 (m, 90H), 0.90–0.86 (m, 9H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 169.3, 161.7, 153.1, 144.1, 119.1, 108.9, 73.7, 69.3, 31.9, 30.3, 29.7, 29.6, 29.5, 29.4, 29.2, 26.0, 25.7, 22.7, 14.1. HRMS (ESI) *m/z*: [M + Na]⁺ Calcd. for C₆₅H₁₁₇NO₇ 1046.8722 found 1046.8643.

Synthesis of 1_{rnd}

To a solution of triphenylene derivative 4 (0.523 g, 0.36 mmol) in dry DMF (50 mL) under a N₂ atmosphere was added triethylamine (1.5 mL, 10.8 mmol). Then, the mixture was added to NHS ester 6_{rnd} (1.96 g, 2.4 mmol) in dry dioxane (30 mL). After stirring for 24 h at 80 °C, the reaction mixture was poured into water, and then, the precipitate was filtered. The residue was purified by column chromatography using chloroform/acetone (19:1) as eluent. The product was further purified with GPC (CHCl₃ as eluent) and reprecipitated with dichloromethane/methanol to give 1_{rnd} as a white solid (1.46 g, 79%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.77 (s, 6H), 7.24 (br, 6H), 7.08 (s, 12H), 4.25– 4.22 (m, 12H), 3.93 (t, J = 6.8 Hz, 12H), 3.88–3.84 (m, 24H), 3.52–3.47 (m, 12H), 1.97– 1.85 (m, 24H), 1.75–1.63 (m, 36H), 1.47–1.22 (m, 372H), 0.88–0.81 (m, 55H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 167.4, 153.0, 148.5, 140.8, 129.4, 123.5, 106.2, 105.6, 73.5, 69.1, 40.0, 31.9, 31.8, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 27.1, 27.0, 26.1, 26.1, 22.7, 14.1. HRMS (ESI)^{S2} m/z: [M + 2Na]²⁺ Calcd. for C₂₈₈H₄₉₈N₆O₃₀ 2283.8706 found 2283.8804, $[M + 2Na]^{2+}$ Calcd. for $C_{298}H_{518}N_6O_{30}$ 2353.94885 found 2353.9641, $[M + 2Na]^{2+}$ Calcd. for $C_{308}H_{538}N_6O_{30}$ 2424.0271 found 2424.0178, $[M + 2Na]^{2+}$ Calcd. for $C_{318}H_{558}N_6O_{30}$ 2494.10535 found 2494.1162, [M + 2Na]²⁺ Calcd. for C₃₂₈H₅₇₈N₆O₃₀ 2564.1836 found 2564.1646.

Figure S2. ¹H NMR spectrum of 1_{rnd} in CDCl₃ at 298 K^{S3}.

Figure S3. ¹³C NMR spectrum of 1_{rnd} in CDCl₃ at 298 K.

Synthesis of 18

To a solution of triphenylene derivative **4** (0.306 g, 0.21 mmol) in dry DMF (15 mL) under a N₂ atmosphere was added triethylamine (0.9 mL, 6.5 mmol). Then, the mixture was added to NHS ester **6**₈ (0.800 g, 1.3 mmol) in dry dioxane (30 mL). Target compound **1**₈ was obtained following the similar procedure to **1**_{rnd} as a white solid (0.486 g, 62%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.77 (s, 6H), 7.21 (t, *J* = 5.8 Hz, 6H), 7.08 (s, 12H), 4.25 (t, *J* = 5.2 Hz, 12H), 3.95 (t, *J* = 6.6 Hz, 12H), 3.87 (t, *J* = 6.6 Hz, 24H), 3.51 (q, *J* = 6.2 Hz, 12H), 1.99–1.85 (m, 24H), 1.75–1.66 (m, 36H), 1.48–1.233 (m, 180H), 0.89–0.84 (m, 54H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 167.4, 153.0, 148.5, 140.8, 129.4, 123.5, 106.2, 105.6, 73.4, 69.1, 40.0, 31.9, 31.8, 30.3, 29.5, 29.4, 29.3, 27.1, 27.0, 26.1, 22.7, 14.1. HRMS (ESI) *m/z*: [M + Na]⁺ Calcd. for C₂₂₈H₃₇₈N₆O₃₀ 3703.813 found 3703.8203.

Figure S4. ¹H NMR spectrum of 1₈ in CDCl₃ at 298 K.

Figure S5. ¹³C NMR spectrum of 1₈ in CDCl₃ at 298 K.

Synthesis of 1₁₈

To a solution of triphenylene derivative 4 (0.102 g, 0.075 mmol) in dry DMF (10 mL) under a N2 atmosphere was added triethylamine (0.31 mL, 2.2 mmol). Then, NHS ester 6_{18} (0.537 g, 0.52 mmol) and dry dioxane (5 mL). Target compound 1_{18} was obtained following the similar procedure to 1_{rnd} as a white solid (0.321 g, 69%).

¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.79 (s, 6H), 7.26–7.23 (m, 6H), 7.09 (s, 12H), 4.26–4.24 (m, 12H), 3.94 (t, J = 6.4 Hz, 12H), 3.87 (t, J = 6.4 Hz, 24H), 3.53–3.48 (m, 12H), 1.98–1.85 (m, 24H), 1.75–1.66 (m, 36H), 1.48–1.17 (m, 540H), 0.89–86 (m, 54H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 167.5, 153.0, 148.6, 140.9, 129.5, 123.6, 106.4, 105.6, 73.5, 69.2, 40.1, 32.0, 30.4, 29.9, 29.6, 29.5, 27.2, 27.1, 26.2, 22.8, 14.2. HRMS (ESI) *m/z*: [M + 2Na]²⁺ Calcd. for C₄₀₈H₇₃₈N₆O₃₀ 3126.8163 found 3126.8149^{S4}.

Figure S6. ¹H NMR spectrum of 1₁₈ in CDCl₃ at 298 K.

Figure S7. ¹³C NMR spectrum of 1₁₈ in CDCl₃ at 298 K.

Note and reference

- S1 D. H. Wang, Z. Shen, M. Guo, S. Z. D. Cheng and F. W. Harris, *Macromolecules*, 2007, 40, 889–900.
- S2 Among the 18 different molecular weight of the monomers, the five most strongly detected peaks were used for identification.
- S3 Sum of the integration values of the protons on the alkyl chains is expected for 486H, found 499H.
- S4 Due to the high molecular weight, monoisotopic peaks could not be obtained, and isotopic peaks were used for identification.

Supporting Figures

Figure S8. Tube inversion test of concentrated solutions of (a) 1_8 , (b) 1_{18} , (c) 1_{rnd} in aliphatic hydrocarbon solvents incubated for several days (1 mM). From left to right, *n*-hexane (nHex), *n*-heptane, *n*-octane, *n*-decane, *n*-dodecane as linear aliphatic solvent, isooctane (iOc) as branched aliphatic solvent and cyclohexane (cHex), methylcyclohexane, decahydronaphthalene (decaline) as cyclic aliphatic solvent.

Figure S9. AFM image of 1_{18} in cHex (50 µM) incubated for 2 months, spin-coated on a HOPG substrate (scale bar = 500 nm).

Figure S10. A photograph of the cHex solution of 1_8 (50 μ M) taken 2 days after Fig. 2 (a–c). The solution had been stirred at 400 rpm at room temperature for 2 days. The formation of precipitates in the solution indicates that the bundles were not caused by the drying process.

Figure S11. Photographs of (a) nHex gel and (b) iOc gel formed by 1_8 after mechanical agitation using vortex mixer for 10 sec.

Figure S12. Statistical calculation of molecular weight distribution (above) and obtained MALDI-TOF-MS spectrum (below) of 1_{rnd} . (Note that MALDI-TOF-MS sensitivity decreases with the increase in molecular weight.)

Figure S13. Photographs of (a) nHex gel formed by 1_{rnd} (1 mM), (b) the same gel which was mechanically agitated using vortex mixer for 10 sec, and (c) the agitated solution which was left for 2 days: the clear gel reformed.

Figure S14. (a) A photograph of nHex gel consisting of a mixture of 1_8 and 1_{18} ([$1_8 + 1_{18} = 1 \text{ mM}$]). (b) A photograph and (c) an AFM image of the same gel which was mechanically agitated using vortex mixer for 10 sec.

Figure S15. Successive AFM images of seeded polymerization of 1_{rnd} . Supramolecular polymers prepared in iOc (50 μ M, Figure 3b) were added as seeds to a cHex solution of 1_{rnd} (1.2 mM) at a ratio of iOc seed solution : cHex solution = 1 : 5 (v/v). The images were taken (a) immediately after seeding, (b) 2 hours, and (c) and 4 hours after seeding (scale bar = 1 μ m).

Figure S16. Discussion of the width of individually separated supramolecular polymer chains of 1_{rnd} prepared by seeded supramolecular polymerization in a cHex/iOc mixed solvent (1 mM) described in Fig. 3d. (a) High resolution AFM image of an area where slight bundling occurs; Scale bar = 100 nm. (b) Height measurements across the each coloured line on (a). (c) Computer-generated molecular model of a component of 1_{rnd} . Atom colour code: grey, C; red, O; blue, N; white, H.

It is known that the effect called probe-convolution, an inherent feature of AFM, makes objects appear wide depending on the sharpness of the probe. Therefore, when we measure the width of a single supramolecular polymer directly, we would get an 'apparent' value (green line in Figure S16 a,b). However, if the bundled part is measured, the spacing of the supramolecular polymers (that is, width of a supramolecular polymer) can be obtained as an 'actual' value (blue and red line in Figure S16 a,b), and the obtained value corresponds to the diameter of a monomer (Figure S16 c).

Figure S17. Photographs taken (a) during the preparation of self-standing film and (b) the obtained film; Scale bar = 1 cm. A concentrated solution of supramolecular polymer of 1_{rnd} (1 mM) was drop-casted on a surface of water, and upon drying the organic solvent, the film was formed.

Figure S18. 1D WAXD pattern of 1_{rnd} obtained from 2D GI-WAXD measurement upon exposure to an X-ray beam from the directions parallel to the long axis of the threads.